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Introduction

Both current (Virgo, LIGO, KAGRA) and future (eg. ET, Cosmic Explorer) interferometric gravitational-
wave detectors are designed to be limited in most of their sensitivity band by quantum noise, which
occurs at low frequencies in the form of quantum radiation pressure noise and at high frequencies as
shot noise. To reduce this noise contributions the state-of-the-art of gravitational-wave interferometers
makes use of nonclassical states of the electromagnetic field, called squeezed vacuum states, injecting
them in the interferometer’s dark port. To fully exploit this technique and overcome the so-called
standard quantum limit, these squeezed states must be controlled by reflecting them o↵ detuned op-
tical resonators, called filter cavities, which allow to optimize the squeezing angle as a function of
frequency. The ultimate reduction in quantum noise is however severely limited by light losses, for
which one of the main contributions is represented by the imperfect matching between the mode of the
squeezed and bright beams, and the various cavities present in the interferometer, including the filter
cavities. To be able to monitor and actively correct this issue, an accurate, online mode-matching
sensing technique is needed.

A sensing technique based on fast modulation of the Laguerre-Gauss 10 (LG10) mode is being de-
veloped by the ET-Virgo group in Laboratori Nazionali of Legnaro (INFN-LNL), in Padova, and
it is based on an electro-optical lens (EOL), a device capable of changing its focal length at radio
frequency. This generates sidebands whose beat signal with the carrier field reflected by the cavity
contains information on the amount and type of mismatch.

The aim of this thesis is to characterize and study the performance of di↵erent EOL designs on a
dedicated bench-top experiment. In particular two di↵erent approaches will be compared: one is the
direct modulation of LG10 modes; the other is the modulation of the Hermite-Gauss 02 and 20 modes
and their subsequent conversion in LG10 mode by an appropriate cylindrical telescope.

The following thesis work is divided into five chapters. Chapter 1 starts from a brief theoretical intro-
duction on gravitational waves and then move on to the functioning of the interferometers and finally
to the concept of noise and vacuum squeezing. The chapter 2 constitutes a theoretical background
on laser beams and optical cavities. Chapter 3 goes into more detail of the main topic of the thesis:
after a brief theoretical introduction on the concept of modematching and electro-optical modulation,
it moves on to the description of the electro-optical lens prototypes to be characterized. Chapter 4
describes the experimental setup, the two tools used for the measurements and the theoretical expec-
tations. Finally, in chapter 5, defines in more detail the two analysis methodologies used, in particular
the wavefront variation sensing through a device called Shack-Hartmann and the modal analysis of
the frequencies inside a triangular optical cavity using a photodiode. Finally, in this last chapter the
experimental results obtained are presented.

vii
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Chapter 1

Gravitational waves

Historically, the study of the Universe relies almost exclusively on electromagnetic radiation (e.g. vis-
ible light, X-rays, radio waves and microwaves) and on subatomic particle (e.g. neutrinos) detection.
The panorama of multimessanger physics has expanded enormously with the observation of gravita-
tional wave signals. Since gravitational waves interact very weakly with matter, unlike EM radiation,
the detection of this phenomenon give us the opportunity to look further back in time (close to the
Big Bang) and to see the all the sky around us at the same time, due to the fact that the Earth does
not stop the gravitational signal. These waves bring us information on phenomena that do not emit
EM radiation, such as the coalescence of black holes (or, more generally, the binaries of black holes),
or phenomena which would be extremely di�cult to observe with EM signals due to the distance and
required resolution. For this reason the detection of gravitational waves constitutes a new window on
the universe, making it possible to observe space-time regions of the universe and phenomena that are
normally inaccessible. On the other hand the extremely weak interaction of gravitational phenomena
with matter makes revealing their passage very di�cult. Today’s detection methods are basically
based on the measurement of the strain on the distance between two free falling masses.

Albert Einstein predicted the existence of gravitational waves in 1916, after publishing his final for-
mulation of the field equations of general relativity: in simple terms gravitiational waves are ripples
in space-time caused by violent and energetic processes in the Universe, such as colliding black holes,
merging neutron stars, exploding stars, and possibly even the birth of the Universe itself. He found
that massive accelerating objects would disrupt space-time injecting waves of undulating space-time
with quadrupolar emission. Mathematically these waves are the solutions of the linearized weak-field
equations: transverse waves of spatial strain that travel at the speed of light, generated by time
variations of the mass quadrupole moment of the source [1].

1.1 Theory

General relativity provides a unified description of gravity as a geometric property of space and time.
In particular, in the presence of non-null energy and momentum, the non-intertiality of reference
systems results in a curvature in space-time. General relativity follows from Einstein’s principle of
equivalence: on a local scale it is impossible to distinguish between physical e↵ects due to gravity
and those due to acceleration. The relation is specified by the Einstein field equations: a system
of second order partial di↵erential equations, which describe the relation between the geometry of a
four-dimensional pseudo-Riemannian manifold gµ⌫ representing spacetime, and the energy–momentum
tensor Tµ⌫ contained in that spacetime

Rµ⌫ �
1

2
gµ⌫R =

8⇡G

c4
Tµ⌫ (1.1)

with G the gravitational constant, c the speed of light, Rµ⌫ and R respectivily the Ricci tensor and
scalar. To understand where GWs come from, let’s expand the Einstein equations around the flat-
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1.1. THEORY CHAPTER 1. GRAVITATIONAL WAVES

space assuming that the induced space-time curvature is a small perturbation of the flat Minkowsky
metric tesor ⌘µ⌫

gµ⌫ ' ⌘µ⌫ + hµ⌫ |hµ⌫ | ⌧ 1. (1.2)

Now, expanding the equations of motion to linear order in hµ⌫ , condition for the linearized theory,
and using the gauge freedom to choose the De Donder gauge, is possible to rewrite the field equation
as a simple wave equation

⇤hµ⌫ = �16⇡G

c4
Tµ⌫ (1.3)

with ⇤ the flat space d’Alembertian

⇤ = ⌘µ⌫@
µ@⌫ = �

✓
1

c2

◆
@2t +r2 (1.4)

which implies that the GWs travel at the speed of light.

1.1.1 Interaction of GWs with test masses

To study the propagation of them, we are interested in the equation outside the source, i.e. where
Tµ⌫ = 0, ✓

1

c2
@2

@t2
+

@2

@x2i

◆
hµ⌫ = 0 i = 1, 2, 3. (1.5)

At this point, imposing the transverse-traceless gauge, or TT gauge

h0µ = 0 hii = 0 @jhij = 0 (1.6)

Eq. 1.5 has plane wave solutions
hTT
µ⌫ (x) = Aµ⌫(k

µ)ejk⇢x
⇢

(1.7)

with kµ = (!/c,~k) the four-momentum or momentum energy and Aµ⌫ the polarization tensor. Choos-

ing z as the direction of propagation n̂ = ~k/|~k| of the wave vector

hTT
xy (t, z) =

✓
h+ h⇥
h⇥ �h+

◆

xy

cos
h
!
⇣
t� z

c

⌘i
(1.8)

with h+,⇥ the amplitudes of the plus and cross polarization of the wave. Fig. 1.1 schematically
represents the e↵ect produced by a gravitational wave in the two polarizations.

The amplitude of the GWs is given by the Einstein’s quadrupole formula

hTT
ij (t, r) =

1

r

2G

c4
Q̈TT

ij

⇣
t� r

c

⌘
(1.9)

where Q̈TT
ij is the second derivative of the quadrupole moment in the TT gauge. Typically the GW

amplitude reaching Earth is of the order h0 ⇠ 10�21.

In the condition of Eq. 1.8, the space-time interval becomes

ds2 = �c2dt2 + dz2+ (1.10)

+
⇣
1 + h+ cos

h
!
⇣
t� z

c

⌘i⌘
dx2 +

⇣
1� h⇥ cos

h
!
⇣
t� z

c

⌘i⌘
dy2 + 2h⇥ cos

h
!
⇣
t� z

c

⌘i
dxdy.

Therefore the physical e↵ect of a GW on two events or test masses, at (t, x1, 0, 0) and at (t, x2, 0, 0),
is to change periodically their proper distance

s = (x1 � x2)[1 + h+ cos[!t]]1/2 ' L

✓
1 +

1

2
h+ cos[!t]

◆
. (1.11)

If these two test masses are mirrors between which a light beam travels back and forth, it is the
proper distance that determines the time taken by the light to make a round trip, so the e↵ect of
the GW’s passage can be detected measuring the round-trip time. This is the working principle of
interferometers [14].
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CHAPTER 1. GRAVITATIONAL WAVES 1.2. VIRGO

(a)

(b)

Figure 1.1: The e↵ect on a circle of test particlesr of a gravitational wave traveling perpendicular to the xy
plane in the two polarizations. (a) Plus polarization h+ (b) Cross polarization h⇥ [7].

1.2 Virgo

AGW interferometer is an extremely complex instrument whose degrees of freedom must be kept under
control with extraordinary accuracy. All modern interferometers are based on the Michelson scheme:
it consists of a monochromatic light source, a laser, whose light is sent on a beam-splitter which
separates the light into two beams, with equal probability amplitudes, traveling in two orthogonal
arms. At the end of each arm a mirror reflects the laser beam back to the beam-splitter to generate
an interference pattern which is read by a photodetector. Any length variation between the two arms
results in a variation of the power at the photodetector. Because of the quadrupolar nature of the
gravitational wave, the plus polarization, which for example propagates in the �ẑ direction, will cause
a variation on the arm length of ±�L in the ŷ direction. At the same time the other arm will change
by ⌥�L in the x̂ direction. The di↵erential arm motion will produce a phase change in the recombined
beam of

�� =
4⇡

�
�L. (1.12)

It is possible to find out that the optimal length of the arms is

L ' 750 km

✓
100Hz

fGW

◆
. (1.13)

Arms of hundreds of kms are impossible to obtain in a ground-based interferometer, for practical and
financial reasons. The idea is to fold the optical path of light, making it bounce back and forth many
times in each arm. The number that quantifies the bounces of the laser in the arms is defined by the
Finesse (see Eq. 2.25) and is approximately F ⇠ 400. The solution is to trasform each arm into a
Fabry-Pérot cavity (see Sec. 2.3). With this expedient the phase change is enhanced

��FP =
8F

�
�L. (1.14)

Another important improvement of a GW interferometer, is to use a resonant cavity (see Sec. 2.3) as
power recycling cavities.

Fig. 1.2 shows the basic layout of the Advanced Virgo interferometer. A suspended, triangular
Fabry-Pérot cavity serves as an input mode cleaner to clean up the spatial profile of the laser beam,
suppress input beam jitter, clean polarization, and to help stabilize the laser frequency. The Michelson

3



1.3. NOISE CHAPTER 1. GRAVITATIONAL WAVES

interferometer is enhanced by two 4 km long resonant arm cavities, which increase the optical power
in the arms by a factor of ' 270. A power recycling mirror and a signal recycling mirror are used
respectively to increase the circulating power in the interferometer and to broaden the response of
the detector beyond the linewidth of the arm cavities. Eventually an output mode cleaner rejects the
unwanted spatial and frequency components of the light, before the signal is detected by the main
photodetectors [14]. In total there are six cavities inside an interferometer.

Figure 1.2: Layout of an Advanced LIGO detector [15].

1.3 Noise

The sensitivity at which a GW interferometer must aim is extremely ambitious. As a benchmark, as we
already anticipated in Sec. 1.1.1, a typical GW amplitude, which releases an energy of ⇠ M� (i.e. solar
masses), is of the order of h ⇠ 10�21. The corrisponding displacement of the mirror of an interferometer
is �L ⇠ 10�18 m, which means that we aim at measuring a phase shift ��FP ⇠ 10�8 rad. Since these
values are extremely small, to detec a signal, it is important to minimize all the possible sources of
noises. They can be divided in technical noises, due to the enviroment or to the interferometer design
(e.g. seismic and Newtonian noise, thermal noise, fluctiation of the laser power and frequecy, scattered
light inside the arms, vacuum control) and fundamental noises, related to the fundamental physics
and to the detection procedure. In particular, currente generation GW detectors are designed to be
limited by quantum noise in most of their sensitivity band (see Sec. 1.3.1) [14].

The standard quantum limit of an interferometer refers to the quantum nature of light and it is
a combined e↵ect of two mechanism, both due to the poissonian distribution of photons in a light
beam: photon-counting error shot noise and fluctuations in radiation pressure on the masses quantum
radiation-pressure [8].

• Shot noise: it is the high-frequency intensity noise of a laser. This originates from the Possonian
distribution on the number of photons that arrive on the photodetector. It is possible to obtain
the strain sensitivity due to this e↵ect

S1/2
n (f)

����
shot

=
�0
4⇡L

r
2~!0

P0

⇠ 1p
P0

(1.15)

where !0 and P0 are respectively the frequency and power of the laser and L is the arm length.
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CHAPTER 1. GRAVITATIONAL WAVES 1.3. NOISE

• Radiation pressure: it is the low-frequency intensity noise of a laser. Since the number of photons
arriving on each mirror fluctuates, the pressure contribution, due to the impact of photons that
release momentum, fluctuats too, generating a stochastic force that shakes the mirrors. The
strain sensitivity of this mechanism is

S1/2
n (f)

����
rad

=
4

ML(2⇡f)2

r
2~!0P0

c2
⇠
p
P0 (1.16)

with f the GW frequency and M the mass of the mirror.

Now, consider the combined e↵ect of these noise sources, and minimize with respect to P0, is possible
to find the minimum value of the spectal density also known as standard quantum limit [14]

S1/2
SQL(f) =

1

2⇡fL

r
8~
M

. (1.17)

1.3.1 Vacuum squeezing and the problem of mode mismatch

A squeezed state of light is a nonclassical states which presents reduced uncertainty in one of the
quadrature components of the EM field; due to the Heisenberg Uncertainty principle, the other quadra-
ture must however show increased uncertainty. By injecting a squeezed vacuum state from the output
port of the interferometer, one can thus decrease shot noise (linked to the so called phase quadrature)
while increasing quantum radiation pressure noise (linked to the so called amplitude quadrature), or
vice versa, depending on the ”direction” in which the uncertainty ellipse is squeezed (squeezing angle).
This technology has been used in the last observing run of both the Virgo and LIGO interferometers
to reduce shot noise at high frequency, since radiation pressure at low frequency was anyway masked
by other noises [9].
If one wants to gain an advantage simultaneously in the whole band of the interferometer, the squeez-
ing angle must be varied as a function of frequency, so that at high frequency one would reduce shot
noise and increase radiation pressure noise (which however is negligible), and the opposite at low
frequency. The principle is illustrated in Fig. 1.3. This technique is being implemented in the current
upgrades of the detectors by reflecting the squeezed light field o↵ of a special detuned resonator called
filter cavity, so that it gains a phase rotation dependent on its frequency o↵set form the carrier.

Unfortunately squeezed light is severely limited by optical losses in the detector, which destroy the
crucial feature of the technique, i.e. the reduced noise in one of the two quadrature phases, or, in other
words, the coherency condition. To minimize the losses due to the imperfect agreement, or mismatch
(Sec. 2.4), between the laser beam and the optical cavity where it circulates, one has to provide an
active correction system that keep the setup aligned.

5
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Figure 1.3: Beating the standard quantum limit in position meter with frequency-dependent squeezed light [2].
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Chapter 2

Theoretical background

2.1 Gaussian beams

In optics and in particulare in laser physics, laser beams are often described in terms of Gaussian
beams, i.e. light beams where the electric field profile in a plane perpendicular to the beam axis can
be described with a Gaussian function. This way of treating the light rays arises from a possible
solution of the paraxial Helmholtz equation [18].

Starting from the complex amplitude of a monochromatic paraxial wave and imposing that the complex
envelope must satisfy the paraxial Helmholtz equation, the simplest possible solution yields to the
paraboloid wave

A(~r) =
A1

q(z)
exp


�jk

⇢2

2q(z)

�
⇢2 = x2 + y2 A1 = const x, y ⌧ z (2.1)

with ~r = (x, y, z), laser beam propagation axis ẑ and A1 normalization constant which corresponds to
the amplitude in (0, 0, 0).
This Gaussian complex amplitude solution is obtained directly from a shifted version of the paraboloid
wave equation by a purely imaginary term. This choice is done to obtain a real term in the exponential
that produces a rapidly decay of the beam intensity away from the optical axis. This condition is
necessary otherwise the approximations, both the paraxial one, and that of approximating a spherical
surface with a paraboloid, fall. In particular, the z coordinate is replaced by the so-called Kogelnik or
complex q-parameter

z ! q(z) = z + jzR (2.2)

with zR known as the Rayleigh range. The real and imaginary part of this complex parameter can be
separated defining two real functions of z

1

q(z)
=

1

z + jzR
=

1

R(z)
� j

�

⇡W 2(z)
(2.3)

with R(z) the wavefront radius of curvature and W (z) the beam width.
Eventually the complex ampilude becomes

U(~r) = A0

W0

W (z)
exp


� ⇢2

W 2(z)

�
exp


�jkz � jk

⇢2

2R(z)
+ j�(z)

�
(2.4)

and the beam parameters

W (z) = W0

s

1 +

✓
z

zR

◆2

R(z) = z


1 +

⇣zR
z

⌘2�
�(z) = tan�1

z

zR
W0 =

r
�zR
⇡

. (2.5)

The last phase term in 2.4 is the so called Gouy phase and corresponds the accumulated phase of this
paraxial wavefront in relation to a plane wave.

7



2.2. RAY MATRIX CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Hermite-Gauss and Laguerre-Gauss

The complex amplitude found, or gaussian beam, is the lowest order solution of an infinite family of
higher order solutions, which also satisfy the paraxial Helmholtz equation. The higher order solutions
to the same equations can be expressed in terms of Hermite-Gauss (HG) functions in rectangular
coordinates or of Laguerre-Gauss (LG) functions in cylindrical coordinates [19]. These higher order
modes exhibit non-Gaussian intensity distributions but share the same wavefronts of the Gaussian
beam. Such beams are able to match the curvatures of spherical mirrors of large radius, such as those
that form an optical resonator, and reflect between them almost unaltered. Such self-reproducing
waves are called the modes of the resonator. The HG and LG modes form a complete orthogonal
basis, orthonormal if properly normalized. This means that any laser beam can be expressed as a
linear combination of modes of di↵erent order which evolve with di↵erent phase and therefore, on
di↵erent planes, the profile of a generic beam changes because of the interference between the modes
in which it is decomposed [18].
The decomposition in the Hermite-Gauss base gives

Unm(x, y, z) =

s
2

⇡W 2(z)2n+mm!n!
Hl

" p
2x

W (z)

#
Hm

" p
2y

W (z)

#
(2.6)

exp


�x2 + y2

W 2(z)

�
exp


�k(x2 + y2)

2R(z)

�
exp[�jkz] exp


j((n+m) + 1) arctan

z

zR

�

and in the Laguerre-Gauss base

Upl(r, , z) =

s
2p!

⇡(|l|+ p)!

1

W (z)

 p
2r

W (z)

!|l|

L|l|
p


2r2

W 2(z)

�
(2.7)

exp


� r2

W 2(z)

�
exp


� kr2

2R(z)

�
exp[�jkz] exp[+jl ] exp


j((|m|+ 2p) + 1) arctan

z

zR

�

Tab. 2.1 and 2.2 list the first elements of the respective bases; in order to simplify the notation the
higher order modes are described as a function of the fundamental mode.

nm N + 1 HnHm Unm(x, y, z)

00 1 1
q

2

⇡
1

W (z) exp
h
�x2

+y2

W 2(z) �
k(x2

+y2)
2R(z) � jkz + j arctan z

zR

i

10 2 2
p
2x

W (z) 2 x
W (z) exp

h
j arctan z

zR

i
U00(x, y, z)

01 2 2
p
2y

W (z) 2 y
W (z) exp

h
j arctan z

zR

i
U00(x, y, z)

11 3 8 xy
W 2(z) 4 xy

W (z) exp
h
2j arctan z

zR

i
U00(x, y, z)

20 3 2
⇣
4 x2

W 2(z) � 1
⌘

1p
2

⇣
4 x2

W 2(z) � 1
⌘
exp

h
2j arctan z

zR

i
U00(x, y, z)

02 3 2
⇣
4 y2

W 2(z) � 1
⌘

1p
2

⇣
4 y2

W 2(z) � 1
⌘
exp

h
2j arctan z

zR

i
U00(x, y, z)

Table 2.1: List of Hermite-Gauss modes, polynomials and total complex amplitude. The order number here is
defined as N = n+m.

2.2 Ray matrix

When light waves propagate through and around objects whose dimensions are much greater than the
wavelength of the light (� ⌧ 1), the behavior of light can be adequately described by rays obeying a
set of geometrical rules. This model of light is called ray optics.

Paraxial rays travel at small inclinations with respect to the optical axis and the change in the position
and inclination of a paraxial ray as it travels can be e↵eciently described by the use of a matrix. Matrix

8
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pl N + 1 L|l|
p Upl(r, , z)

00 1 1
q

2

⇡
1

W (z) exp
h
� r2

W 2(z) � j zRr2z
W 2

0 (z
2+z2R)

+ j arctan z
zR

i

10 3
⇣
1� 2r2

W 2(z)

⌘ ⇣
1� 2r2

W 2(z)

⌘
exp

h
2j arctan z

zR

i
U00(r, , z)

01 2 1
p
2r

W (z) exp
h
�j + j arctan z

zR

i
U00(r, , z)

11 4
⇣
2� 2r2

W 2(z)

⌘ p
2r

W (z)

⇣
2� 2r2

W 2(z)

⌘
exp

h
�j + 3j arctan z

zR

i
U00(r, , z)

20 5
⇣
1� 4r2

W 2(z) +
2r4

W 4(z)

⌘ ⇣
1� 4r2

W 2(z) +
2r4

W 4(z)

⌘
exp

h
4j arctan z

zR

i
U00(r, , z)

02 3 1
p
2r2

W 2(z) exp
h
�2j + 2j arctan z

zR

i
U00(r, , z)

Table 2.2: List of Laguerre-Gauss modes, polynomials and total complex amplitude. The order number here is
defined as N = |l|+ 2p.

optics is an algebric tool for tracing paraxial rays that travel through an optical system, i.e. a set
of optical components placed between two transverse planes at di↵erent axial distances z1 and z2,
referred to as the input and output planes. The system is characterized completely by its e↵ect on
an incoming ray of arbitrary crossing point. The system steers the ray so that it emerges from the
output plane with a new position and direction (y2, ✓2).

Figure 2.1: The position and direction of a paraxial ray is modified by an optical system [18].

In the paraxial approximation, when all angles are su�ciently small, the relation between (y1,2, ✓1,2)
is linear and can generally be written in matrix form, also known as ray-transfer matrix, as

✓
y2
✓2

◆
=

✓
A B
C D

◆✓
y1
✓1

◆
. (2.8)

The convenience of using matrix methods lies in the fact that the ray-transfer matrix of a cascade
of optical components is a product of the ray-transfer matrix of the individual components. Matrix
optics therefore provides a formal mechanism for describing complex optical systems in the paraxial
approximation [12].
Tab. 2.3 contains some example of ray-transfer matrix for common optical systems.

It can be shown that this formalism can be also applied to gaussian beams, using the same ray-
trasferm matrix of conventional ray optics. Since the parameter which completely characterizes a
Gaussian beam is the q-parameter, for an arbitrary paraxial optical system, the transmitted beam is
described by Collins’ rule

q2 =
Aq1 +B

Cq1 +D
. (2.9)

2.2.1 Imaging

By definition two image (or conjugate) planes describe an optical system where the characteristics
of a beam are imaged from an input to an output plane. For a telescope this means that the beam

9
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Optical system Ray transfer matrix

Propagation in a medium

✓
1 d

n
0 1

◆

Refraction at a planar boundary

✓
1 0
0 n1

n2

◆

Refraction at a spherical boundary

 
1 0

� (n2�n1)

n2R
n1
n2

!

Transmission through a thin lens

✓
1 0
� 1

f 1

◆

Reflection from a planar mirror

✓
1 0
0 1

◆

Table 2.3: Example of some ray transfer matrix for di↵erent optical systems.

profile at the aperture plane or midplane of one amplifier can be imaged as an essentially identical
but magnified beam profile at the midplane or image plane of the next amplifier. Moreover Fermat’s
principle says that all rays connecting two conjugate points must have the same optical path length

between these two points which for a gaussian beam means that in the two planes the Gouy phase
coincide [19].
In the case of a two lens optical system, let’s define f1,2 the focal lengths of the two lenses and d1,2,3 the
distances respectively between the input plane and the first lens, between the two lenses and between
the second lens and the output plane. Using the ray transfer matrix analysis the resulting matrix for
the total optical setup becomes

✓
y2
✓2

◆
=

✓
1 d3
0 1

◆✓
1 0

� 1

f2
1

◆✓
1 d2
0 1

◆✓
1 0

� 1

f1
1

◆✓
1 d1
0 1

◆✓
y1
✓1

◆
. (2.10)

When this system is setup for imaging, y2 is independent of ✓1 (i.e. B = 0). In this case one obtains
a condition on d3

d3 =

2

4 1

f2
� 1

d2

⇣
1

d1
� 1

f1

⌘

⇣
1

d1
+ 1

d2
+ 1

f1

⌘

3

5
�1

. (2.11)

It is easy to see that if B = 0, the magnification factor is simply given by A [5]

M = 1� d2
f1

+

⇣
1

d1
+ 1

d2
� 1

f1

⌘⇣
d2
f1f2

� 1

f1
� 1

f2

⌘

1

f2

⇣
1

d1
+ 1

d2
� 1

f1

⌘
� 1

d2

⇣
1

d1
� 1

f1

⌘ . (2.12)

2.3 Optical resonators

An optical resonator (or resonant optical cavity) is an arrangement of optical components, such as
mirrors, crystals or optical fibers, which allows a beam of light to circulate in a closed path producing
a travelling wave at certain frequencies. Optical cavities are extensively used to enhance the sensitivity
of gravitational wave detectors and others high precision optical experiments.
The simplest kind of optical resonator consists of just two perfect plane mirrors set up facing each
other, called Fabry-Pérot cavity (Fig. 2.2(a)). These mirrors can in practice trap the beam that will
bounce back and forth between the two mirrors. This set of trapped Hermite-gaussian modes form,
to a first approximation, a set of resonant modes for the cavity [19].

To describe a Fabry-Pérot cavity let’s suppose that a steady-state sinusoidal optical signal Ẽi 2 C is
incident on one of the cavity mirrors. The circulating signal amplitude inside the cavity is

Ẽc = jt1Ẽi + g̃rt(!)Ẽc ! Ẽc =
jt1

1� g̃rt(!)
Ẽi (2.13)

10
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(a) (b) (c)

Figure 2.2: Traveling-wave resonator. (a) Two-mirror planar or Fabry-Pérot resonator (b) Three-mirror ring
resonator. (c) Four-mirror bow-tie resonator [18].

with t1 the first mirror amplitude transmittivity and g̃rt(!) the net complex round trip gain for a wave
making one complete transit around the interior of the resonant cavity

g̃rt(!) = r1r2(r3...) exp


�↵0p�

j!p

c

�
, (2.14)

with |r1,2,3| < 1 the wave-amplitude reflection coe�cients of the mirrors, p the perimeter or the round-
trip path length, ↵0 the voltage absorption coe�cient (or other possible kinds of internal losses and
gains) of the material inside the cavity and the last factor of the exponential, considering here plane
waves with frequency !, is a phase shift or propagation factor associated with the round trip.
Considering an ideal cavity whose internal losses are negligible, i.e. ↵0 ⌧ 1. If

j!p

c
= 2⇡n with n 2 Z (2.15)

then
Ẽc

Ẽi
=

jt1
1� r1r2(r3...)

. (2.16)

If the reflection coe�cients r1,2,3 ⇠ 1 the above ratio is very large. This is the resonance frequency
condition for the laser cavity

!n = 2⇡n
c

p
(2.17)

which are also called cavity axial modes. Resonant frequencies form an evenly spaced combination
and the distance (in frequency)

�!FSR = c/p (2.18)

is called free spectral range or axial-mode interval between consecutive resonant transverse modes.
Physically this means that when the traveling wave is at frequency !n it is trapped and interferes
constructively with itself, so the field inside the cavity raises to a very large value. Therefore the
circulating intensity inside the cavity at these resonances becomes many times larger than the incident
one. In general the circulating intensity is simply given by the square modulus of the circulating electric
field

Ic
Ii

����
!=!n

=
t2
1

[1� r1r2(r3...)e�↵0p]2
. (2.19)

Is possible to obtain a relation also for the transmitted and reflected field, being careful to consider if
the round-trip travelled by the beam inside the cavity is completed or not, in the Fabry-Pérot case

Ẽt = jt2 exp


�↵0p

2
� j!p

2c

�
Ẽc = �

t1t2 exp
h
�↵0p

2
� j!p

2c

i

1� r1r2 exp
h
�↵0p� j!p

c

iẼi (2.20)

11
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Ẽr = r1Ẽi + jt1r2 exp


�↵0p�

j!p

c

�
Ẽc =

r1 � t2
1
r2 exp

h
�↵0p� j!p

c

i

1� r1r2 exp
h
�↵0p� j!p

c

i Ẽi. (2.21)

A special situation arises when the input mirror power reflectivity R1 = 1 � T1 = 1 � t2
1
is exactly

equal to the additional loss term given by R2 exp[�2↵0p]. In this case the two terms in the reflection
expression cancel out, and the net reflection coe�cient becomes exactly zero at resonance. This is
often called the impedance-matched situation.

Using 2.19, the transmitted intensity if ↵0 ⌧ 1 becomes

It = IcT =
t2
2
t2
1����1� g̃rt(!)

����
2
. (2.22)

The linewidth of the cavity resonance is defined as its Full Width at Half Maximum (FWHM), referred
to the power curve (either circulating or transmitted)

1

2
=

It(!HM )

It(!n)
=

����1� g̃rt(!n)

����
2

����1� g̃rt(!HM )

����
2

(2.23)

which gives

�!HM =
4c

p
arcsin


1� g̃rt
2
p
g̃rt

�
' �!FSR

1� g̃rt
2
p
g̃rt

. (2.24)

The ratio of the FSR to the FWHM is called Finesse [14] [3]

F =
�!FSR

�!HM
=

⇡
p
g̃rt

1� g̃rt
(2.25)

It is immediate to see that this parameter is a measure of how narrow the resonances are in relation
to their frequency distance: a high finesse means sharp resonances. Moreover it is fully determined
by the resonator losses and is independent of the resonator length.

2.3.1 Stable spherical-mirror resonator

Up to now there has been talk of ideal optical resonators that trap plane waves thanks to the use of
plane mirrors of infinite dimensions. However, this scenario is not possible. A real optical resonator
consists of spherical mirrors that trap Gaussian beams (see Sec. 2.1.1). To be supported by a cavity,
in a real Fabry-Pérot cavity, the radii of curvature of the wavefronts of the Gaussian beam have to
match the radii of the spherical mirrors, which are separated by a distance d.

Figure 2.3: Fitting a Gaussian beam inside a spherical mirror resonator [18].

12
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The z axis is defined by the centers of curvature of the mirrors (Fig. 2.3). Calling z1,2 the mirrors’
positions, to determine a suitable value for the beam Rayleigh range is necessary to impose the
following conditions 8

>>>>><

>>>>>:

z2 = z1 + d

R1 = z1 +
z2R
z1

�R2 = z2 +
z2R
z2

.

(2.26)

Solving the system it results

8
>>>>>><

>>>>>>:

z1 =
�d(R2 + d)

R2 +R1 + 2d

z2 =
d(R1 + d)

R2 +R1 + 2d

z2R =
�d(R1 + d)(R2 + d)(R1 +R2 + d)

(R2 +R1 � 2d)2
.

(2.27)

To find real solutions fot the above system, zR 2 R. An imaginary value of Rayleigh range would
signify an unconfined solution of the Helmholtz equation because otherwise the condition introduced
at the beginning of the Sec. 2.1 falls, i.e. having a rapid decay of the beam intensity away from the
optical axis. The condition z2R > 0 is equivalent to

0 
✓
1 +

d

R1

◆✓
1 +

d

R2

◆
 1 (2.28)

0  g1g2  1

which is known as the confinement condition written in terms of the cavity g-parameter. Fig. 2.4
shows the so-called stability diagram and some remarkable configurations of stable resonators.

Figure 2.4: Resonator stability diagram [18].

Higher-order modes

In the Sec. 2.1.1 we have seen that the Gaussian beam is not the only solution for the Helmholtz
paraxial equation. The HG (or LG) mode family of order (n,m) is itself a solution. So all members
of the HG family of beams represent modes of the spherical-mirror resonator. However the resonance
frequencies of higher order modes depend on the indices because of the dependence of the Gouy phase
shift on n and m. In general after a round-trip inside the cavity, each mode fulfills this equation

2kd� 2(n+m+ 1)(�(z2)� �(z1)) = 2⇡q q 2 Z (2.29)

13
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where the index q defines the so called longitudinal or axis modes which are separated by one free
spectral range. Now using the fact that the wavenumber is defined as k = !q,n,m/c and that the Gouy
phase can be written as � = 2⇡!/�!FSR one obtains

!q,n,m = (q + (n+m+ 1)(±p
g1g2))!FSR. (2.30)

The direct consequence of this equation is that the higher order modes with the same order number
(see Tab.2.1) resonate at the same frequency. The confinement condition (Eq. 2.28) is important
in the latter case because it sets the higher order modes’ frequency spacing inside the free spectral
range [11].

2.4 Mode-matching

For a beam to properly resonate inside a stable optical cavity it must satisfy the following two condi-
tions: the laser frequency is at the cavity resonance frequency and the laser beam wavefront matches
the curvature of the cavity reflection mirrors. The mode mismatch consists in the failure in meeting
the second condition, the geometric one [20].
A mathematical way to see the mismatch between a Gaussian beam and a cavity is to use the q-
parameter, defined in Eq. 2.3. We then consider a cavity whose waist is in zc and whose resonant
modes are described by the parameter qc(z) and a Gaussian beam in the fundamental mode that
enters the cavity with a parameter qi(z). When:

qc(zc) 6= qi(zc) (2.31)

there is a mismatch between beam and cavity. The coupling of a mode refers to how good a spatial
mode in a base is represented in another base: to quantify the decoupling between the cavity and the
incoming beam it is therefore necessary to project the beam into the base of the cavity and calculate
the coupling coe�cients to the higher order modes through an overlapping integral. The procedure
that allows to reduce this decoupling as much as possible is called mode-matching.

2.4.1 Mismatch description with LG modes

To mathematically describe the mismatch between cavity and laser beam let’s introduce two families
of LG modes, one defined by the q-parameter qi of the input beam, Vij , and one by the fundamental
mode supported by the cavity Ukl, qc. If the laser is perfectly aligned with the resonator

Z
UijV

⇤
lmdxdy = �il�jm. (2.32)

If instead there is a mismatch, the matrix for the base change is not diagonal anymore. Consider the
mismatch only given by di↵erences in the waist size �w0 and position �z0 and expand these LG modes
in their McLaurin series up to the second order, around (�w0, �z0) = (0, 0) . The goal is to write the
beam modes in the cavity basis.
Let’s treat first the case of a laser beam with a non-null mismatch given only by waist size di↵erences
parametrize by � = �w0/w0. Using the McLaurin series expansion

V00(r, w0 + �w0) ' V00(r, w0) + �w0

@V00

@w0

(r, z)

����
z=0

+
@w2

0

2

@2V00

@w2
0

(r, z)

����
z=0

(2.33)

=

✓
1� �2

2

◆
V00(r, w0) +

✓
�� +

�2

2

◆
V10(r, w0) + �2V20(r, w0)

written as a linear composition of LG modes. In the same way

V10(r, w0 + �w0) ' �V00(r, w0) + V10(r, w0)� 2�V20(r, w0). (2.34)
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Consider now the case where there is a mismatch between the waist positions, it is parametrized by
� = �z0/2zR. Also in this case is possible to expand in a linear combination of LG modes, with z0 = 0
for convenience. One obtain

V00(r, �z0) ' V00(r, w0) + �z0
@V00

@z
(r, z)

����
z=0

+
@z2

0

2

@2V00

@z2
(r, z)

����
z=0

(2.35)

= V00(r, w0)
�
1 + j� � �2

�
+ V10(r, w0) (j� � 2�)� �2V20(r, w0).

In the same way

V10(r, �z0) ' j�V00(r, w0) + V10(r, w0) (1 + j3�) + j2�V20(r, w0). (2.36)

At this point consider the case of the cavity matching. The parameters � and � become

� =
w(i)
0

� w(c)
0

w(i)
0

� =
z(i)
0

� z(c)
0

2z(i)R

. (2.37)

with index i which stands for the parameters of the input beam and c for the cavity parameters.
Summing the Eq. 2.33 with 2.35 and 2.34 with 2.36 is possible to obtain the change-base matrix
between laser base and the cavity one

V00(r, w0 + �w0, �z0) ' U00(r, w0 + �w0) + U00(r, w0, �z0) ' (2.38)

' U00(r, w0)

✓
1 + j� � �2

2
� �2

◆
+ U10(r, w0)

✓
j� � � +

�2

2
� 2�2

◆
+ (2.39)

+ U20(r, w0)
�
�2 � �2

�

and

V10(r, w0 + �w0, �z0) ' U00(r, w0 + �w0) + U00(r, w0, �z0) ' (2.40)

' U00(r, w0) (j� + �) + U10(r, w0) (1 + j3�) + U20(r, w0) (j2� � 2�) .
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Chapter 3

Mode match sensing

3.1 RF sensing technique

Let’s consider a system where there is a mismatch between the laser beam and the optical cavity;
expressed in the base of the cavity, the input beam will have components corresponding to higher
order modes; if the carrier is resonant, in general the HOM will not, and will be mostly reflected
annmariamthomas.

Using a particular device is possible to generate two modulated sidebands at the frequencies ! ± ⌦.
The interference between these sidebands and the carrier at frequency ⌦ produces a modulation,
which gives rise to a beat signal that can be detected. The laser beam is modulated in a way that the
sideband !+⌦ is resonant. The detected beat signal between the sidebands and the carrier component
⌦ is then demodulated in the in-phase and quadrature components. By a proper phase changing of the
quadratures is possible to obtain two isolated error signals on the mismatch in waist size and position.
Optically this device operates as a lens modifying the input beam and the di↵erences in waist size and
position between the modulated beam and the input one can be described as follow

�w0

wi
0

= B =
mB

2

�
ej⌦t + e�j⌦t

�
(3.1)

�z0
2ziR

= G =
mG

2

�
ej⌦t + e�j⌦t

�
.

Using 2.38 and limiting to the first order expansion it is possible to rewrite the modulated beam in
its own basis

V (r, z) = (1 + jG)V00(r, z) + (jG�B)V10(r, z). (3.2)

To reach the cavity the beam propagates for a distance zc accumulating a Gouy phase given by 2.5.
In the cavity base, the resulting input complex amplitude could be express as

V (r, zc) =(1 + jG)((1 + j�)U00(r, zc) + (j� � �)U10(r, zc))+ (3.3)

+(jG�B)((j� + �)U00(r, zc) + (1 + j3�)U10(r, zc) + (j2� � 2�)U20(r, zc))e
j��.

Keeping only first order terms in � and � of 2.38 and remembering that the electric field of a monochro-
matic wave of frequency ! is given by the complex amplitude multiplied by exp[j!t] it follows:

Ẽ = E0V (r, zc)e
j!t = (3.4)

= E0

⇣
(1 + j(� +G))V00(r, zc) + (j(� +Gej��)� (� +Bej��)V01(r, zc)

⌘
ej!t.
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The reflected field from the cavity is obtained by the product of the incident field with the reflection
transfer function:

V (r)
00

= (1+j(�+G))ej!t⌦F (!) = F00(!)(1+j�)ej!t+jF00(!+⌦)
mG

2
ej(!+⌦)t+jF00(!�⌦)

mG

2
ej(!�⌦)t

(3.5)
and similarly

V (r)
10

=
⇣
j
⇣
� +Gej��

⌘
�
⇣
� +Bej��

⌘⌘
ej!t ⌦ F01(!) = (3.6)

= F01(!)(j� � �)ej!t + F01(! + ⌦)
⇣
j
mG

2
� mB

2

⌘
ej��ej(!+⌦)t+ (3.7)

+ F01(! � ⌦)
⇣
j
mG

2
� mB

2

⌘
ej��ej(!�⌦)t.

For completeness

Fpl(!) =
r1 � r2(r21 + t2

1
) exp

h
�j
⇣

!
�!FSR

+N�rt
⌘i

1� r1r2 exp
h
�j
⇣

!
�!FSR

+N�rt
⌘i (3.8)

with LG order number N and �rt the Gouy phase accumulated after a round-trip.

In general the normalized reflected intensity of the reflected field is

I(r)

I0
=

����V
(r)
00

����
2

+

����V
(r)
10

����
2

����E0

����
2

= (3.9)

=� jF00(!)F
⇤
00(! + ⌦)(1 + j�)

mG

2
e�j⌦t + c.c.+ (3.10)

� jF00(!)F
⇤
00(! � ⌦)(1 + j�)

mG

2
ej⌦t + c.c.+

+ F10(!)F
⇤
10(! + ⌦)(j� � �)

⇣
�j

mG

2
� mB

2

⌘
e�j��e�j⌦t + c.c.+

+ F10(!)F
⇤
10(! � ⌦)(j� � �)

⇣
�j

mG

2
� mB

2

⌘
e�j��ej⌦t + c.c.

Considering now the case where one of the two sidebands, for example the one at frequency ! + ⌦,
is perfectly resonant with LG01 mode of a perfectly matched cavity. The assumption of a perfectly
matched cavity is made for simplicity of calculation, however it works in more general cases. The
reflection transfer functions at the resonant frequencies becomes

F00(!) = F10(! + ⌦) = 0 (3.11)

and for the non-resonant frequency

F10(!) = F10(! � ⌦) = 1. (3.12)

After some simple math steps, the reflected intensity becomes

I(r)

I0
= (�mG + �mB) cos(⌦t���) + (�mG � �mB) sin(⌦t���). (3.13)

Therefore the two components read by the photodiode, after demodulation, have amplitudes:

IQ = I0(�mG + �mB) (3.14)

II = I0(�mG � �mB)

which are the in-phase and quadrature error signals. From the above system is imediate to find an
expression of � and � as a function of the error signals

� =
mGIQ �mBII
I0(m2

G +m2

B)
(3.15)

� =
mGII +mBIQ
I0(m2

G +m2

B)
.
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The I and Q module becomes

MODIQ =
q
(�2 + �2)

�
m2

G +m2

B

�
(3.16)

and finally the total mode-mismatch between the input laser beam and the cavity is defined as

MM =
p
�2 + �2. (3.17)

3.2 Electro-optical lens

The purpose of this thesis work is based on the design and study of the correct functioning of two
electro-optical lens prototypes. Both EOL are modulating suitable devices based on a lithium niobate
crystals enclosed by some suitable electrodes. These electrodes, exploiting the Pockels e↵ect via a RF
signal, induce the crystal to behave like a lens, generating radiofrequency sidebands in the LG10 or
HG02 modes on the main beam. The e↵ects that these devices produce on a laser beam interacting
with an optical cavity can be read by photodetectors. In particular, looking at the reflected field from
the cavity, is possible to online ectract a signal proportional to the mismatch [20].

3.2.1 Pockel e↵ect

The functioning of an EOL is based on the electro-optical (or Pockel) e↵ect: an electric field, applied
to a lithium niobate (LiNbO3) crystals, is able to alter its index of refraction. Since the refractive
index of a lens determines its focal length, modifying the electric field applied to the EOL device is
possible to change waist sizes and positions of the outgoing laser beam. By continuously varying the
beam waist in such a manner, the device can modulate a laser beam at radio frequencies.
Ferroelectric lithium niobate is a human-made dielectric material and is one of the most widely used
electro-optic materials because of its large-magnitude physical e↵ects. This material has a trigonal
crystal structure and is naturally birefringent. It is characterized by large pyroelectric, piezoelectric,
electro-optic and photoelastic coe�cients [22] [4].

For a quantitative description of the electro-optical modulation e↵ect is necessary to introduce a
geometric construction called the index ellipsoid. If the axes of the ellipsoid correspond to the principal
axes of the medium, its dimensions along these axes are the principal refractive indices

x2
1

n2
1

+
x2
2

n2
2

+
x2
3

n2
3

= 1. (3.18)

The latter equation can be rewritten in a bilinear form

1

⌘ij
xixj = 1 (3.19)

with ⌘ij a dielectric (or impermeability) tensor.

When a steady electric field ~E is applied to a crystal, the elements of the dielectric tensor are altered
and each elements of it becomes a function of the electric field, so that the index ellipsoid is modified.
Expanding ⌘ij in a Taylor series around ~E = 0

⌘ij( ~E) = ⌘ij(~0) +
X

k

rijkEk +
X

kl

sijklEkEl i, j, k, l = 1, 2, 3 rijk =
@⌘ij
@Ek

sijkl =
1

2

@2⌘ij
@Ek@El

.

(3.20)
For the Pockels e↵ect, this change has a linear dependence from the electric field

�

✓
1

⌘ij

◆
= rijkEk (3.21)

19



3.2. ELECTRO-OPTICAL LENS CHAPTER 3. MODE MATCH SENSING

where rijk is the electro-optic tensor. Because ⌘ is symmetric, r is invariant under permutations of
the indices i and j. Because of this permutation symmetry, the indices i and j generate six instead of
nine independent elements. Consequently, rijk has 6⇥ 3 indepentent elements.
The symmetry of the crystal adds further constraints to the elements of the two derivative matrices. In
particular, a trigonal crystal, such as the ferroelectric lithium niobate, is uniaxial, i.e. has n1 = n2 = no

called ordinary refraction index and n3 = ne called extraordinary refraction index. The matrix r in
this case gives

r =

0

BBBBBB@

0 �r22 r13
0 r22 r13
0 0 r33
0 r51 0
r51 0 0
�r22 0 0

1

CCCCCCA
. (3.22)

Assuming that the applied electric field points along the optics axis, ~E = (0, 0, E), the modified
ellipsoid gives

x2
1
+ x2

2

n2
o(E)

+
x2
3

n2
e(E)

=

✓
1

n2
o
+ r13E

◆
(x21 + x22) +

✓
1

n2
e
+ r33E

◆
x23 = 1. (3.23)

Now, using the Taylor-series approximation, one obtains

n1 = n2 = no(E) ' no �
1

2
n3

or13E (3.24)

n3 = ne(E) ' ne �
1

2
n3

er33E

where the electooptics coe�cients measure r13 = 9.6 pm/V and r33 = 30.9 pm/V and the refractive
indices n0 = 2.176 and ne = 2.2457 at 0.633 nm. Fig. 3.1 shows how an uniaxial crystal is modified
by an electric field applied along its optical axis: in particular is easy to see that the crystal remains
uniaxial with the same principal axes.

Figure 3.1: Modification of the index ellipsoid for a trigonal crystal while applying a steady electric field along
the direction of the optic axis [18].

Electro-optical modulation

In the next chapter it will be described the experimental setup which includes three Lithium Niobate
crystals: one Electro-Optic Modulator (EOM) and two custom built Electro-Optic Lenses.

Let’s briefly analyze the functioning of the simplest type of EOM. A laser beam polirized in one of the
ordinary crystal axes (for example x1) interacts with a crystal with an applied electric field directed
along ẑ, a change in the electric field induces a phase shift on the output beam

EEOM (x, t) = E0 exp [kx� !0t+�↵(t)] + c.c. �↵(t) = k�n(t)l = k
n3
e

2
r33Ez(t)l (3.25)
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with l the length of the crystal. Now consider the applied electrical field periodically varying over
time Ez(t) = Ez(0) cos(⌦t). Usually the phase shift of an high quality EOM is a really small value
that can be treated as a perturbation and it is possible to apply Taylor

EEOM (x, t) ' E(!t)(1 + j�↵(⌦t)) = E(!t)

✓
1 +

j�↵(0)

2

�
ej⌦t + e�j⌦t

�◆
. (3.26)

In addition to the initial laser beam field at frequency !, two side bands of frequencies ! + ⌦ and
! � ⌦ have appeared.

The EOM modulates an input beam at radio-frequency generating two sidebands at frequency ⌫FSR±
⌦/2⇡. Instead the two EOLs will produce sidebands in LG10 or HG02 and HG20 modes; this is
possible by applying a spatially non-uniform electric field.

A novel mode matching sensing technique

Now a novel high-sensitivity method to characterize and improve mode matching into optical cavities
will be described. The technique is based on an electro-optical device which is able to produce a
quadratic phase gradient on a laser beam, i.e. 45� rotated Hermite-Gauss mode (HG11). Thanks to
the use of a mode converter telescope, an optical configuration made up of two cylindrical lenses, it is
possible to convert the saddle wavefront in a Laguerre-Gauss bullseye mode (LG01). The generated
sidebands of higher order modes produce a beat signal with the carrier field reflected by the cavity
which contains information on the amount and type of mismatch [16] [10].

Figure 3.2: Beam decomposition of the |HG45�
11 > (a) and |LG01 > (b) mode in the HG basis. Shown are the

(real) field amplitudes of the two relevant HG modes (left) and the resulting modes (right). The intensity profile
for each field is plotted in the bottom right corner for each field image [13].

To mathematically understand how this conversion works, let’s decompose an initial beam with a
hyperbolic saddle point wave front in the |HGnm > basis

|HG45
�

11 >=
1p
2
|HG20 > � 1p

2
|HG02 > . (3.27)

On the contrary the parabolic wave front beam, i.e. bullseye mode, in the same basis yields

|LG01 >=
1p
2
|HG20 > +

1p
2
|HG02 > . (3.28)

This means that the only di↵erence between the two modes is a sign flip along one axis.

Using an astigmatic telescope composed by two cylindrical lenses is possible to obtain the desire
e↵ect. Let’s use the ray matrix method, calling S and T rispectively the sagittal and tangential plane
orthogonal to the beam direction

MS =

 
1� l

f1
l

1�f1�f2
f1f2

1� l
f2

!
MT =

✓
1 l
0 1

◆
(3.29)
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with l the distance between the lenses and f1,2 their focal lengths. Now using Eq. 2.9 the extra Gouy
phase induced by the telescope becomes

� nm =

✓
n+

1

2

◆
 T +

✓
m+

1

2

◆
 S with  S,T = Arg[CS,T qi +DS,T ]. (3.30)

A ⇡/2 mode converter creates a region where Gouy phase is accumulated at di↵erent rates for each
of the transverse axis. Since second order modes accumulate twice the Gouy phase, the |HG20 > and
the |HG02 > have a phase di↵erence of ⇡ which, via the Euler identity �1 = ej⇡, confirmed the sign
flipping between the two decompositions. Mathematically

� 02 �� 20 = �2( T �  S) = ⇡. (3.31)

Since CT = 0,  T = 0 and so  S = ⇡/2.
Moreover we have to impose that the beam after the telescope has the same Kogelnik parameters in
the two planes qS = qT , i.e. the two HG mode has to be re-matched.
Imposing for simplicity f1 = f2 = f the focal length entirely defines the beam parameters and the
position of the lenses. The conditions thus obtained are:

l =
p
2f (3.32)

z � z0 =
l

2
(3.33)

w0 =

s✓
1 +

1p
2

◆
�f

⇡
.

3.2.2 EOL-Pd

The first EOL device is made of a sandwich of two biconcave electrodes that enclose a Lithium Niobate
crystal in between. This device is designed to behave as a lens that can change its refraction index,
proportionally to the voltage applied to its electrodes. For a more in-depth analysis of this apparatus,
see [17].
The substrate used for this porpuse is essentially a parallelepiped with dimensions 2⇥ 0.8⇥ 0.5 cm so
that the longer side is placed along the laser beam propagation direction. The electrodes are collocated
at the end of the larger surfaces so that the electric field in the sample is directed along the vertical
axis (see Fig 3.3). Optically the electro-optical device’s e↵ect can be compared to the one of a spherical
lens with focal length

fEOL-Pd = 8.3 · 103 m (3.34)

and propagation through a medium with index of refraction

nEOL = 2.23. (3.35)

Therefore the idea behind this project is to realize a device that can induce RF modulation of the
beam mode LG10.

3.2.3 EOL-Fl

The concept for the second EOL was developed initially by Mauricio Diaz-Ortiz Jr and Paula Fulda
from the University of Florida and subsequently modified by the PhD student G. Chiarini. The idea
is similar to the EOL-Pd, i.e. a Lithium Niobate crystal enclosed by some electrodes. What changes
is the geometry of the electrodes and the consequent lens e↵ect of the crystal on the laser beam. The
sandwich now is composed by six rectangular electrodes, three above and three below the crystal, with
alternating polarity: this configuration is able to produce a quadratic phase gradient, which results
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Figure 3.3: Graphic representation of the EOL-Pd geometery modeled by COMSOL Multiphysics software for
finite element analysis. In this case the laser beam is directed along the x axis, from left to right.

in a saddle e↵ect on the laser wavefront. Therefore the final e↵ect of the device is to induce RF
modulation of the beam mode HG11 rotated by an angle of 45� [13].

Optically this particular device must produce an antisymmetric e↵ect in the two directions orthogonal
with respect to the laser beam propagation axis. In other words, the diopters in ŷ and ẑ, consequently
the optical paths or focal lengths, must be equal and opposite. In particular,

f (y)
EOL-Fl

' �30m f (z)
EOL-Fl

= 30m. (3.36)

COMSOL Multiphysics software for finite element analysis was used to find the optimal geometry for
the electrodes: four copper electrodes with dimensions 10 ⇥ 2 ⇥ 0.5 mm and two smaller one with
dimensions 7⇥ 2⇥ 0.5mm. Thanks to the use of a 3D printer, a plastic case was created to contain
the electrodes and the crystal. Fig. 3.5 shows the final result of the construction process.

3.3 EOL testing

An optical cavities to be stable has to satisfy the following conditions: the laser frequency matches the
cavity resonance frequency and the laser beam wavefront matches the curvature of the cavity reflection
mirror. Failure in meeting the second condition, the geometric condition, is called mode mismatch.

The EOL device can alter the laser waist by applying a varying electric fields to the crystal. The
modulation it induces is similar to the Pound-Drever-Hall locking scheme for frequency stabilization.
The device generates one resonant and one non-resonant sideband around the carrier signal at the
MHz frequency. The light is modulated at a frequency ⌦ such that the LG01 sideband with frequency
!+⌦ is resonant and completely transmitted into the cavity. If some mode mismatch is present, then
the carrier has a component that couples to the higher-order modes of the cavity and will be reflected
o↵ from the cavity. Demodulating in the I and Q quadratures the detected beat signal between
this component and the non-resonant sideband provides the error signal for mode mismatch which
quantifies how di↵erent the beam waist is with respect to the waist required by the cavity [?].
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Figure 3.4: Graphic representation of the EOL-Fl geometery modeled by COMSOL Multiphysics software for
finite element analysis. In this case the laser beam is directed along the x axis, from left to right.

Figure 3.5: Photo of the final result of the construction process. In addition to the green case, the electrodes
and the crystal, note the coaxial connector to which the various cables have been soldered.
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Chapter 4

Experimental setup

To implement the investigated RF mode sensing technique an experimental setup has been built before
this thesis work in Laboratori Nazionali of Legnaro (INFN-LNL) [17] [6]. In this chapter it will be
analyze the implementation of two di↵erent EOL for two configurations of the same experimental
setup. After that two technique for mode mismatch sensing will be presented: analysis of the modes
inside a triangular cavity and wavefront di↵erential measurements.

4.1 Optical table

To study the e↵ects of the firts EOL device, called EOL-Pd, on the optical table, another optical
line is implemented that allows to analyze the beam variations, leaving unchanged the alignment with
the cavity. To do that a beamsplitter 70/30, labeled M16, is positioned between the mode-matching
telescope L6 � L7 and the triangular cavity (see Fig.4.1). At this point two subsequent mirrors (M17

and M18) direct the beam onto a free area of the optical bench. Finally another telescope (L9 � L10)
prepares the beam for the wavefront sensor.

Figure 4.1: First optical bench scheme. The laser source is a Nd:Yag crystal that emits light at 1064 nm. The
Faraday isolator is used to prevent the back-reflection of light towards the laser. The EOM is used for the
stabilization of the cavity. The light reflected o↵ from the triangular optical cavity is detected by PD1 and the
transmitted light by PD2. In yellow the new optical line implemented.
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4.1. OPTICAL TABLE CHAPTER 4. EXPERIMENTAL SETUP

To determine the optics necessary for the optical setup it is essential to study the beam parameters
through analytical calculations with the use of ray-transfer matrix method. Defining as ẑ the laser
beam propagation axis, the zero reference (i.e. z = 0) for all the rest of the discussion will be the lens
position z5. The parameters of the initial beam after L5 are already known

w(x)
0

= 438 µm z(x)
0

= 35.8 cm (4.1)

w(y)
0

= 405 µm z(y)
0

= 36.6 cm.

Using Eq. 3.17 is possible to measure the mismatch between the beam parameters in the two orthog-
onal directions

MM ' 8% (4.2)

a small value of it justifies the possibility of taking the average of 4.1

w(i)
0

= 421.5 µm z(i)
0

= 36.2 cm. (4.3)

A triangular optical cavity is used in place of a linear cavity due to limitations in space. It consists in
two flat mirrors and a curved mirror. The cavity is impedance matched with

�⌫FSR = 83.3MHz �⌫HM = 686.8 kHz F = 386.5. (4.4)

The cavity parameters are the following

length = L = 180.163 cm R1 = +1 R2 = 600 cm (4.5)

using the formula for the g-parameter

g1,2 = 1� L

R1,2
(4.6)

gives

w(cav)
0

=

"✓
L�

⇡

◆2 g1g2(1� g1g2)

(g1 + g2 � 2g1g2)2

#1/4
' 965 µm (4.7)

The waist position is in the center of the short side of the cavity, that is, between M10 and M12, which
are 15 cm away from each other. The waist position becomes

z(cav)
0

' 2m. (4.8)

After positioning the electro-optical lens at position zEOL�Pd = 30 cm a suitable optical telescope has
been studied to match the cavity parameter using a software called Just Another Mode Matching Tool
(JamMT). This graphis interface software allows to calculate, through ABCD matrices, the outgoing
beam from a given optical system, knowing the input parameters and the characteristics of the optical
components that constitute the optical setup. Using the modematching tool in JamMt it is possible to
obtain di↵erent telescope options for cavity modematching. The best configuration, which mimimize
the mismatch and takes into account the real space available on the optical bench, yields a lens L6

of f6 = �112mm at z6 = 423mm and L7 of f7 = 280mm at z7 = 604mm. The values of the focal
lengths in this case are already the result of the sum of their nominal values plus a correction of 12%,
obtained using the general focal length’s formula

1

f
= (n� 1)


1

R1

� 1

R2

+
(n� 1)d

nR1R2

�
(4.9)

where n is the refractive index of the lens medium, R1,2 the radii of curvature and d the thickness.

At this point, considering the space available on the optical bench, on which other experiments are
placed, M16 is inserted at z16 = 77.5 cm from M5. The beam parameter at the beamsplitter position
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are obtained scanning the outgoing laser, previously aligned using M17 and M18. The results of the
beam scan are reported below:

w(x)
0

= 0.78± 0.01mm z(x)
0

= 1690± 50mm (4.10)

w(y)
0

= 0.741± 0.008mm z(y)
0

= 1450± 30mm.

Considering the available space on the optical bench to place the wavefront sensor and using the
beam parameters 4.10, a possible configuration found consists in a telescope with the first lens L9 of
f9 = 112 mm at z9 = 1475 mm and the second one L10 of f10 = 336 mm at z10 = 1725 mm. The
resulting beam has the following parameters

w(x)
0

= 75 µm z(x)
0

= 707mm (4.11)

The sensor is positioned at zWFS ' 1916 cm and the beam at this distance is W (zWFS) ' 2.25mm
wide.

4.1.1 Modification to integrate EOL-Fl

In order to be able to study the functioning of the two EOL, EOL-Pd and EOL-FL, a new version of the
same optical setup (Fig. 4.2) is organized, consisting in a line with common optical components, and
thanks to the presence of two flip mirrors (M5 and M8), gives the possibility to operate alternatively
on the two EOL.

Figure 4.2: New configurations of the same experimental setup of Fig. 4.1. The optical components before L5

are the same. In yellow the optical line described in the following section. The dashed rectangles represents the
dedicated mount for the two EOL and the linear stages for L8 and L9.

The initial beam parameters after L5 are the same of Eq. 4.1. Considering Sec. 3.2.1, an electro-
optical device which is able to produce a quadratic phase gradient on a laser beam needs a mode
converter telescope to work. In order to determine the positions of the cylindrical lenses (LC1 and
LC2) of the mode converter telescope I have to impose the theoretical conditions of Eq. 3.32. In
particular the fused silicia cylindrical lenses used for this aim have the following characteristics

n = 1.4496 (@ 1064 nm) R1 = 50.85mm R2 ⇠ 1 d = 5mm. (4.12)

Now using the general focal length’s formula 4.9 it gives a value of fcyl ' 113mm and inserting it in
3.32

lcyl ' 15.98 cm w(cyl)
0

' 255.6 µm.
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This means that the lenses will be positioned approximately at zLC = z(1)
0

± lcyl/2, being z(1)
0

the
waist position after the first telescope (L6 � L7). Because of the necessity of having enough space to
install a flip mirror and the EOL-Fl between the first mode matching telescope and the astigmatic
one, I search with JamMT this configuration, finding

f6 = �112mm z6 ' 20.5 cm f7 = 112mm z7 ' 23.5 cm. (4.13)

The beam after this first telescope has the following parameters

w(1)

0
' 252 µm z(1)

0
' 60 cm. (4.14)

Due to the inaccuracy of the positions of the various optical components on the optical bench, to
establish the real positions of the cylindrical lenses is necessary to perform several beam scans, moving
a bit the lenses, in order to minimize the astigmatism of the beam after of the mode converter telescope.
The best fit obtained is for

zLC1 ' 54.5 cm zLC2 ' 69.5 cm (4.15)

shown in the figure 4.3 and the resulting parameters are

wy(2)
0

= (248± 2)µm zy(2)
0

= (62.0± 0.6)cm zy(2)R = (18.2± 0.3)cm (4.16)

wx(2)
0

= (247± 3)µm zx(2)
0

= (61.7± 0.9)cm zx(2)R = (18.0± 0.5)cm.

Figure 4.3: Beam scan fitting curve after the mode converter telescope. Because of the fluctuations of the
measurements each waist measurement is the mean of 10 values.

A second mode matching telescope is installed to match the beam to the cavity. Also this time several
configurations are studied with JamMT and the best solution gives

f8 = 112mm z8 ' 83 cm f9 = 336mm z7 ' 131.4 cm. (4.17)

The beam after this telescope has the following parameters

w(3)

0
' 887 µm z(3)

0
' 193 cm. (4.18)
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The total mismatch with the cavity gives MM ' 8%.

For the sake of simplicity M7 is removed to install a new telescope for the wavefront sensor consisting
of the following optical components

f10 = 84mm z10 = 97.5 cm f11 = 336mm z11 = 115.0 cm. (4.19)

With the above optical setup, the position for the wavefront sensor gives zWFS ' 134.1 cm.

4.2 Optical cavity as mode analyzer

The e↵ect of the EOL device can be characterized by scanning the optical cavity at varying frequencies
of the laser light. As seen at the end of Sec. 2.3.1, each mode resonates at a di↵erent frequency,
therefore the power of each resonant peak is a measure of the strength of the corresponding mode
within the beam. The mode mismatch percentage in the optical setup is obtained by looking at the
power of the 02 and 20 mode as a percentage of the 00 mode peak power while switching ON and OFF
the device by sending an oscillating wave to it. In particular the EOL power supply signal consists in
a square wav that oscillates between 0� 400 V .

The instument which read the photodetected signal is called MOKU:lab: this instrument uses a FPGA
to acquire, analyse, and generate signals. Its output is connected to a laser piezo actuation which it
is used to control the laser frequency, for both cavity scan and PDH feedback loop.

4.3 Shack-Hartmann sensor for wavefront measurements

Another way to study the e↵ects that the electro-optical device produces on a laser beam is through
the use of a wavefront sensor, called Shack-Hartmann, which, in this particular case, will perform
di↵erential measurements of how the wavefront is modified by switching ON and OFF the EOL.

A Shack-Hartmann Wavefront Sensor (WFS) is a device based on a digital camera and a microlens
array (MLA), able to privide measurements of the wavefront and the intensity distribution of optical
beams. The operation principle consists in creating a matrix of focal spots on a camera sensor, which is
mounted in the focal plane of the microlens array. In other words each lenslet collects the light incident
to its aperture and generate a single spot on the sensor plane, then the WFS software analyzes the
intensity and centroid locations of the focal spots, which indicate the field intensity and the orientation
of the wavefront respectively averaged over the entrance area of the lenslet [21].

Figure 4.4: Operation principle of the microlens array which focuses a planar and a distorted wavefront [21].

Let’s consider a distorted wavefront incident on the sensor: the focal spot has coordinates (�x, �y)
with respect to the corresponding reference coordinates, or reference spotfield, which corresponds
to the coordinates of the spots if the incident wavefront is planar and parallel to the plane of the
lenslets. Calling W (x, y) the phase of the beam on the MLA plane, the partial derivatives in the plane
orthogonal to the optical axis is determined by the spot shift

@

@x
W (x, y) =

�x

fML

@

@y
W (x, y) =

�y

fML
(4.20)
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where fML is the focal length of the microlens. The wavefront shape function is obtain by a 2-
dimensional integration process of these spot deviations.

In general, the function describing an arbitrary wavefront in cartesian (or polar) coordinates, denoted
by W (x, y), can be expanded in terms of a sequence of Zernike functions Zn(x, y). These functions
consist in a complete set of infinite number of polynomials, parametrized by two variables, that are
orthogonal and continuous over the interior of a unit circle, or circular pupil

W (x, y) =
1X

n=0

cnZn(x, y). (4.21)

with cn 2 R the Zernike amplitudes or coe�cients, which weigh the contribution of each single poly-
nomial and generally are determined by a least square Zernike fit. In Tab. 4.1 are reported the first
ten Zernike coe�cients and polynomials. Fig. 4.5 illustrates the wavefront aberrations for Zernike
functions of order 0� 7 for all angular frequencies.

Nome Mode Order Frequency Norm Zn(x, y) Zn(⇢, ✓)
Piston 1 0 0 1 1 1
Tip y 2 1 �1 1 ⇢ sin[✓] y
Tilt x 3 1 1 2 ⇢ cos[✓] x

Astigmatism ±45� 4 2 �2
p
6 ⇢2 sin[2✓] 2xy

Defocus 5 2 0
p
3 2⇢2 � 1 2x2 + 2y2 � 1

Astigmatism 0�/90� 6 2 2
p
6 ⇢2 cos[2✓] x2 � y2

Trefoil y 7 3 �3
p
8 ⇢3 sin[3✓] 3x2y � y3

Coma x 8 3 �1
p
8 3⇢3 sin[✓]� 2⇢ sin[✓] 3x2y + 3y3 � 2y

Coma y 9 3 1
p
8 3⇢3 cos[✓]� 2⇢ cos[✓] 3x3 + 3xy2 � 2x

Trefoil x 10 3 3
p
8 ⇢3 cos[3✓] x3 � 3xy2

Table 4.1: Zernike polynomials in polar and cartesian coordinates of order 0� 3.

Figure 4.5: Wavefront aberration for Zernike functions [21].

The wavefront parameters (e.g. the beam center or diameter) are calculated over the entire selected
sensor area, while the Zernike functions are calculated only for the area of a user-defined pupil. The
pupil defines a circular area within the spot field. Since all Zernike functions are defined within the
unic circle, only the spots located within the pupil area are used for fitting the measured wavefront to
Zernike functions. For a Gaussian beam shape the pupil diameter is usually set to its width (see Eq.
2.5).
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The camera image size defines the acrive area used for wavefront measurements. The smaller the
image size, the fewer spots are used for calculation and the lower maximum achievable Zernike order.
On the other hand, measurement speed increases. This means that to correctly measure higher order
wavefront terms up to a certain Zernike order, it requires a minimum number of detected microlens
spots. Fig. 4.6 shows the possible camera resolutions for the sensor used in this thesis work, i.e.
Thorlabs’ Shack-Hartman WFS30-5C. The minimum camera resolution 360 ⇥ 360 px corresponds
to an aperture of 2.11 ⇥ 2.11 mm and being the sensor filled by a 150 µm microlenses, this mean
13 ⇥ 13 = 169 spots count. Moreover the accuracy and the sensitivity associated at each wavefront
measurement, for the just mentioned device, are respectively �/25 and �/80 at 633 nm.

Figure 4.6: Selectable camera image sizes for WFS30 [21].

4.3.1 Defocus

The defocus corresponds to the fifth Zernike mode and it is directly linked to the radius of curvature,
i.e. a parameter that describes the degree of curvature of the measured wavefront. In other words,
the radius of curvature represents the distance between the reference plane of the WFS and the point
source of the spherical wavefront. In polar coordinates

W (⇢) = c5Z5(⇢) = c5
p
3(2⇢2 � 1) (4.22)

with
p
3 the normalization factor (Tab. 4.1). Since the normalized radial coordinate ⇢ ranges from 0

to 1 and the spherical shape achieves its minimum and maximum wavefront deviation at these points,
the peak to valley PV (Fig. 4.7) value is just the di↵erence

PV = W (⇢ = 0)�W (⇢ = 1) = �2
p
3c5. (4.23)

Figure 4.7: Peak to valley scheme.

One can assume a circle or radius of curvature RoC which gives the same PV value over the considered
pupil. The sagitta formula in spherical coordinates gives

RoC =
d2pupil
8PV

+
PV

2
'

d2pupil
8PV

because RoC � PV

2
(4.24)
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with dpupil the pupil diameter.

4.3.2 Conjugate plane discussion

In order to use the Shack-Hartmann sensor for the study of the wavefront, usually a telescope to
modify the beam implemented . Considering Eq. 4.24, for a telescope with magnification factor M

RoC(out) = M2RoC(in) ! PV (out) =
1

M2
PV (in). (4.25)

so, it means that to increase �c5, I have to decrease the magnification factor as much as possible,
taking into account the minimal camera aperture of the WFS which is 2.11 mm (figure 4.6), it is
decided to put the laser beam in the condition that its beam is slightly greater than the minimum
selectable camera image size for the sensor.

EOL-Pd theoretical predictions

Using the dedicated Python program it is possible to obtain the theoretical values one expects via the
ray-transfer matrix method and the sagitta formula. As said in Sec. 3.2.2 the e↵ect of EOL-Pd, when
switched ON, can be described by the product of two matrices: one describing the propagation inside
the medium and the second one describing the transmission thorough a thin lens. For the numerical
values of the refractive index and the focal length see Eq. 3.35 and 3.34. In the case of a magnification
factor of M ' 5 (see Eq. 2.12) and computing all the values at zWFS

W (Pd)
OFF ' 3.1147mm RoC

(Pd)
OFF ' 417.6630mm c(Pd)

5,OFF ' �1.749530 µm PV (Pd)
OFF ' 6.060548 µm

(4.26)

W (Pd)
ON ' 3.1146mm RoC

(Pd)
ON ' 417.6632mm c(Pd)

5,ON ' �1.749531 µm PV (Pd)
ON ' 6.060552 µm

with pupil diameter dpupil = 4.5mm. The theoretical di↵erences are

�W (Pd) ' 0.08 µm �RoC
(Pd) ' 2 µm �c(Pd)

5
' 1 pm �PV (Pd) ' 3 pm. (4.27)

EOL-Fl theoretical predictions

Using another time the same dedicated Python program is possible to obtain the theoretical predictions
of the wavefront variations, with the di↵erence that in this case the focal lengths of the resulting lens
for EOL-Fl are given by Eq. 3.36

W (F l)
OFF ' 1.181mm RoC

(F l)
OFF ' 287.1mm c(F l)

5,OFF ' �0.5028 µm PV (F l)
OFF ' 1.741 µm (4.28)

W (F l)
ON ' 1.183mm RoC

(F l)
ON ' 286.8mm c(F l)

5,ON ' �0.5032 µm PV (F l)
ON ' 1.743 µm.

The theoretical di↵erences are

�W (F l) ' 3 µm �RoC
(F l) ' 0.3mm �c(F l)

5
' 1 nm �PV (F l) ' 2 nm. (4.29)
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Chapter 5

Measurements

Once the experimental setup and the theoretical expectations of the e↵ect of the two EOLs on the
laser wavefront have been presented, in this chapter the various measurement methodologies adopted
and the results obtained will be described. As already mentioned in chapter 4, the methods used
for the measurements are two: the first consists in measuring the variations on the laser wavefront
by switching the electro-optical devices ON and OFF; the second consists in a modal analysis of the
frequencies inside the triangular cavity, in particular how the height of the LG10 mode, excited by
the mismatch (see Sec 2.4).

5.1 SH measurements

5.1.1 Methodology

In this first section will be presented the WFS’s methodology and the results obtained. The Shack-
Hartman wavefront sensor used in this thesis is able to acquire images in three di↵erent modes:

• Continuous mode: the camera operates in free running mode acquiring the images automatically
and continuously.

• Software mode: the WFS application controls the image acquisition delating all bu↵ered images
at the start of each new exposure, and new images acquired by the camera are transferred to
the PC.

• Trigger mode: in this mode the image acquisition is synchronized by an external trigger signal,
which may be a pulsed laser source or an electrical function generator.

Since an extremely small variation of the wavefront is expected (see Sec. 2.2.1) it is not possible to
carry out a direct measurement of the wavefront with EOL ON and OFF. To push the sensitivity of
the instrument beyond its limit (see 4.3), I will try to carry out lock-in measurements with a large
number of averages. For this porpuse it is used the trigger mode. In particular, through a common
function generator (Keysight 33522A), two square waves are sent both to the investigated electro-
optical device, as power supply, and to the WFS as trigger signal, after being suitably amplified (using
a HV amplifier TREK model 2210 and a piezo amplifier PI E-413). The square waves are synchronized
in such a way that the trigger frequency is exactly double that of the switching ON and OFF of the
EOL. The trigger mode of the SH works in such a way that it acquires an image on the rising edge of
the signal whenever the amplitude sent exceeds a certain threshold. Therefore, if you want to make
measurements both in the ON and OFF phases of the EOL, you will need a trigger frequency double
with respect to the power supply. Fig. 5.1 shows a screenshot of the MOKU:lab device in oscilloscope
mode where is possible to see the two signals sent to the devices.
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Figure 5.1: MOKU:lab screenshot in oscilloscope mode. In red the signal sent to the EOL as power supply and
in blue the trigger signal sent to the WFS.

A dedicated LabVIEW program writes on a text file the values of the first ten Zernike coe�cients
and the time elapsed between one measurement and the next one. Taking some measurements in
continuous mode it can be seen that the time between one measurement and the next, i.e. the
program execution time, is ' 125ms; this imposes a lower limit for the trigger frequency of ' 8Hz.
If the trigger frequency is higher, it causes a delay of several frames in the acquisition, thus destroying
the condition of synchrony between EOL and WFS.
The measurement technique just described doesn’t allow to know if the first recorded data refers to
the EOL ON or OFF phase; for this reason the two phases will be indicated as A and B for the rest
of the discussion. This is not a significant problem because what matters is the wavefront variation
and not the absolute value of the Zernike coe�cients in the two phases.

The acquired data are subsequently analyzed by a Python program that calculates the di↵erence
between the Zernike coe�cients of an image taken during phase B and the one taken immediately
before, in phase A, this allows to reduce the e↵ects of possible drifts or transients with a characteristic
time slower with respect to the sampling rate.

5.1.2 EOL-Pd results

Considering the configuration described in Sec. 4.1, six data acquisitions were taken at di↵erent
frequencies, in particular the first four samples has a sampling rate, i.e. the trigger frequency, of 4Hz,
the fifth one 7Hz and the last one 4Hz. The reason to take measurements at di↵erent frequencies
is to verify if the data behavior of the Zernike coe�cients in time remains the same. The same trend
occurs in all samples. Fig. 5.2 shows the behavior of the Zernike coe�cients in time for the first
sample. These plots are a↵ected by a big initial transient: this behaviour could be caused by the
warming up of the sensor, whose mechanical components have di↵erent response times and thermal
capacities. Due to this fact the first 105 data points are eliminated to perform the analysis.
Fig. 5.3 shows the distribution of the di↵erences between two consecutive images in di↵erent phases,
i.e. �c = c(A) � c(B), for sample one. Since the data show a normal distribution it is possible to
perform a Gaussian fit. The compatibility of the Guassian centroid with zero could mean that the
instrument used for these measurements does not have adequate sensitivity.
Since the standard deviation of the mean for each �c on all the analyzed samples is underestimated,
one way to improve the associated error is divide the samples in 150 subgrups for each of which the
mean of the �cs are calculated with the associated error, i.e. the standard deviation. Fig. 5.4 shows
the trend of these segmented mean values with respect to the number of the referred segment: note
that the various �csgms fluctuate and are also all compatible with zero within the error. Tab. 5.1
shows the various �cs obtained by taking the average of the segmented subsamples with their standard
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deviations. It is evident from the table that, apart from the first sample, the �c5 ⇠ 0 inside the error.
However, the value of the first �c5 ⇠ 102 pm is two orders of magnitude larger than theoretical

expectations �c(Pd)
5

' 1 pm (see 4.3.2, suggesting some issue with this specific measurement.

[nm] Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6
�c1 �2.8± 0.6 0.3± 0.1 �0.4± 0.1 �0.3± 0.1 �0.2± 0.2 0.1± 0.3
�c2 2.5± 0.5 �0.25± 0.06 0.24± 0.05 0.20± 0.09 0.1± 0.2 0.0± 0.2
�c3 0.7± 0.3 �0.05± 0.06 0.04± 0.09 0.04± 0.06 0.03± 0.08 0.0± 0.1
�c4 �0.2± 0.2 �0.03± 0.04 0.02± 0.04 0.02± 0.05 0.00± 0.05 0.00± 0.04
�c5 �0.3± 0.2 0.00± 0.04 0.03± 0.03 0.00± 0.03 0.00± 0.03 0.00± 0.03
�c6 0.2± 0.2 �0.01± 0.05 0.04± 0.04 0.02± 0.05 0.00± 0.05 �0.01± 0.04
�c7 0.0± 0.1 0.02± 0.04 0.00± 0.03 0.00± 0.05 0.00± 0.04 0.00± 0.03
�c8 �0.4± 0.2 0.01± 0.03 �0.02± 0.03 �0.01± 0.02 0.00± 0.03 0.00± 0.03
�c9 �0.10± 0.09 0.01± 0.02 0.00± 0.02 0.00± 0.02 0.00± 0.03 0.00± 0.04
�c10 2.0± 0.2 0.38± 0.02 0.37± 0.01 0.31± 0.02 0.30± 0.01 0.36± 0.01

Table 5.1: Results of the di↵erence between the Zernike coe�cients in the two phases of EOLPd, dividing the
sample into subsamples and averaging the obtained values.

Because a few times the sensor misses one or more trigger events, together with the various Zernike
coe�cients, the Labview program prints also the time elapsed between one measurement and the
next one and subsequently the Python program reject those measurements that occurred at an even
multiple of the sampling frequency: in this case the SH skips the phase A and immediately jumps to
phase B, therefore it is no longer possible to analyze the pair of measurements. Moreover, in this data
cleansing procedure, a margin of 125ms, i.e. the program execution time, it is considered.
Another test performed is to verify that there are no consecutive events with the same values of the
Zernike coe�cients. This would indicate a bu↵er refresh problem. There are no events of this type in
all the samples analyzed.
All the data acquisitions have been taken during the night to avoid noises of any kind related to the
activity of the personell present in the laboratory or temperature drifts related to the air conditioning
system.

5.1.3 EOL-Fl results

The same type of analysis is performed for the second EOL with the optical table configuration
described in 4.1.1.
As previously said, due to Pockel e↵ect, the higher the voltage applied to the lithium niobate crystal
the bigger the alteration of the refractive indices (see Eq. 3.24). To observe this behavior several
data acquisitions at di↵erent EOL power supply potentials were taken. Even if these samples are
also a↵ected by the initial thermal gradient (Fig. 5.5), due to the reduced number of measurements
of the sample it is not possible to eliminate the first values to celan up the trend. However this
e↵ect is negligible since it has a much greater characteristic time than the sampling time of the WFS
⌧thermal ⇠ min � ⌧sampling = 250 ms. In Tab. 5.2 are reported the �cs obtained by averaging the
segmented values with their standard deviations, this time segmenting the sample in 50 subsamples.
The only value of �c5 not compatible with zero is the one for 350 V of power supply. However,

it is one order of magnitude lower than theoretical expectations �c(F l)
5

' nm (see 4.3.2) and the
incompatibility between the experimental and the theoretical value does not allow to give reliability
to the value found experimentally.

Since the WFS calculates the Zernike functions only inside the area defined by the pupil diameter, the
choice of the camera aperture size, i.e. the number of lenses of the selected sensor area, influences the
reconstruction of the wavefront and his fitting function. To investigate if this dependence significantly
a↵ects the Zernike coe�cients measurements, various samples with di↵erent camera size were taken.
These data acquisitions are carried out with an applied potential of 350 V . Because in this case the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.2: Behavior in time of the Zernike coe�cients belonging to sample 1.

36



CHAPTER 5. MEASUREMENTS 5.1. SH MEASUREMENTS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.3: Histogram of the di↵erences of the Zernike coe�cients between the two EOL phases, for sample 1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.4: Behavior in time of the Zernike coe�cient di↵erences between the two EOL phases obtained averaging
the values in each subsample, for sample 1.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.5: Behavior in time of the Zernike coe�cients belonging to the sample with the maximum voltage
applied.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.6: Histogram of the di↵erences of the Zernike coe�cients between the two EOL phases, for the sample
with the maximum voltage applied.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.7: Behavior in time of the Zernike coe�cient di↵erences between the two EOL phases obtained averaging
the values in each subsample, for the sample with the maximum voltage applied.
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[nm] 100 V 200 V 300 V 350 V
�c1 0.0± 0.1 0.0± 0.2 0.0± 0.1 0.2± 0.2
�c2 �0.01± 0.05 0.10± 0.09 0.15± 0.05 �0.05± 0.08
�c3 0.00± 0.05 0.02± 0.08 0.05± 0.05 0.00± 0.06
�c4 0.00± 0.07 0.02± 0.08 0.03± 0.06 0.0± 0.1
�c5 �0.03± 0.05 0.06± 0.06 0.06± 0.05 �0.12± 0.09
�c6 �0.01± 0.05 �0.04± 0.07 �0.11± 0.06 �0.10± 0.9
�c7 0.00± 0.04 0.00± 0.04 �0.02± 0.05 �0.05± 0.08
�c8 0.01± 0.04 �0.03± 0.05 �0.07± 0.03 0.06± 0.06
�c9 0.00± 0.04 �0.01± 0.04 �0.04± 0.03 0.00± 0.06
�c10 0.33± 0.04 0.31± 0.04 0.30± 0.03 0.34± 0.04

Table 5.2: Results of the di↵erence between the Zernike coe�cients in the two phases of EOLFl for di↵erent
voltages applied, dividing the sample into subsamples and averaging the obtained values.

samples are bigger with respect to the previous ones, to clean up the sample, the first 105 measurements
were deleted, as in the case described in Sec. 5.1.2, and after that segmented in 150 subsamples. Tab.
5.3 shows all the �cs obtained by averaging the segmented values with their standard deviations. In
particular all the �c5 are compatible with zero inside their errors.

[nm] 512 px 768 px 1024 px
�c1 0.0± 0.1 0.0± 0.02 0.1± 0.1
�c2 �0.08± 0.08 0.08± 0.10 �0.09± 0.06
�c3 0.02± 0.04 0.00± 0.03 �0.02± 0.03
�c4 0.09± 0.04 �0.08± 0.04 0.00± 0.03
�c5 �0.03± 0.05 0.05± 0.04 �0.02± 0.03
�c6 �0.02± 0.07 0.00± 0.08 0.02± 0.04
�c7 0.01± 0.05 �0.03± 0.03 0.00± 0.03
�c8 0.04± 0.04 �0.04± 0.04 0.06± 0.03
�c9 0.00± 0.03 0.00± 0.03 0.01± 0.02
�c10 0.37± 0.02 0.38± 0.02 0.42± 0.02

Table 5.3: Results of the di↵erence between the Zernike coe�cients in the two phases of EOLFl for di↵erent
camera size, dividing the sample into subsamples and averaging the obtained values.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.8: Behavior in time of the Zernike coe�cients belonging to the sample with 512 px aperture.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.9: Histogram of the di↵erences of the Zernike coe�cients between the two EOL phases, for the sample
with 512 px aperture.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.10: Behavior in time of the Zernike coe�cient di↵erences between the two EOL phases obtained
averaging the values in each subsample, for the sample with 512 px aperture.
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5.1.4 Flip mirror tests

As a check of the instrument and of the analysis procedure I carried out a further study leaving the
EOL-Fl OFF and alternately inserting and removing a lens with a focal length fflip = 1000 mm at
zflip = 38cm. This is expected to provide a signal large enough to be measured, even with the reduced
number of samples over which to average due to the fact that the switching is perfomed manually.
Fig. 5.11 shows the trend for the single values of the two di↵erent phases, with and without the lens.
The oscillatory behavior is probably due to the thermal response of the WFS, as previously said.
Due to the reduced number of measurements it is not possible to eliminate the initial thermal transient
or to segment the sample into subgroups. By averaging the di↵erences of the subsequent Zernike
coe�cients one obtains the following results

�c1 = �2± 1 nm (5.1)

�c2 = 0.4± 0.5 nm (5.2)

�c3 = 0.4± 0.4 nm

�c4 = �0.6± 0.7 nm

�c5 = 3.1± 0.5 nm

�c6 = �0.7± 0.7 nm

�c7 = 1.1± 0.3 nm

�c8 = 0.0± 0.3 nm

�c9 = �0.4± 0.4 nm

�c10 = �0.3± 0.4 nm

The theoretical expectation of the fifth Zernike coe�cient and the its di↵erence with and without fflip
are

ctheo5 ' �0.5 µm �ctheo5 ' 10 nm. (5.3)

The experimental results can be considered reliable considering: the uncertainties in the modeling of
the optical system; the fact that the measurement is done manually; the fact that the transient could
not be eliminated. A factor of 3 from the expected result proves that the sensor and the analysis
procedure work.

For completeness in figure 5.12 the reconstructed wavefront using the Zernike polynomials decompo-
sition using as Zernike coe�cients the di↵erence between the averages with and without the lens. I
expect to see a pure paraboloid if the only �c 6= 0 is the fifth one, i.e. the defocus, but in practice this
is not the case since the experimental methodology adopted, that is to manually insert and remove a
lens with a flip mount, is highly subject to centering errors. In particular note in 5.1 that also �c7 6= 0,
i.e. the coe�cient related to the vertical coma.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.11: Behavior in time of the Zernike coe�cients whose phases indicate if the lens is in between or not.
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Figure 5.12: Reconstructed wavefront di↵erence with and without fflip using Zernike decomposition.
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5.2 Cavity measurements

5.2.1 Methodology

As previously seen in section 4.2, the triangular optical cavity can be used as a mode analyzer by
watching the power transmitted by the cavity through a photodiode. By scanning the optical cavity
at varying frequencies of the laser light, a forest of peaks is obtained and, once cleaned by a correct
alignment, in the spectrum the peaks relative to the 00 mode and those of higher order, i.e. LG10
and HG20-02, are the more evident ones. Since it is expected that the variations induced by the
electro-optical modulation of the two EOLs are small and that the fluctuations of the higher order
peak heights are not negligible due to vibrations and other environmental factors, one proceeds as in
the case of the measurements with the WFS (see Sec. 5.1) by turning the EOL ON and OFF. The
power supply for the EOL consists in a square wave. At this point a dedicated Python script identifies
the positions of the higher order mode peaks by imposing a low and a high threashold. The program
separates the peaks acquired with EOL ON (upper step of the square wave) from those acquired with
EOL OFF (lower step).The program then calculates the standard deviation and the average of the
grouped data and displays these on a graph.

5.2.2 Results

First of all M7 is reintroduced on the optical bench, escluding in this way the telescope f10 and f11
used for the optimization of the beam width for the Shack-Hartmann’s analysis (Fig. 4.2). At this
point it is possible to measure the e↵ect on the LG10 peak in the case of di↵erent voltage applied to
the EOL-Fl power supply, in particular a square wave with amplitude V (1) = 250V and V (2) = 400V
with frequency 250mHz and total acquisition time of 30 s.
Fig. 5.13(a) and 5.14(a) shows a di↵erence in the LG10 peak between the ON and OFF phase for

the voltage V (1) of �V (1)

F l ' 0.8 mV . Fig. 5.13(b) and 5.14(b) shows a di↵erence in the LG10 peak

between the ON and OFF phase for the voltage V (2) of �V (2)

F l ' 1.1mV . The di↵erence in mismatch
between the case with EOL-Fl ON and OFF grows as the applied voltage increases.

(a) (b)

Figure 5.13: The average height of the peaks obtained with EOL-Fl ON (red line) and EOL-Fl OFF (yellow
line). (a) Voltage applied V (1) = 250 V . (b) Voltage applied V (2) = 400 V .

Before this thesis work other cavity measurements were carried out, this time studying the e↵ects of
the EOL-Pd. In particular a square wave with amplitude V (2) = 400 V and frequency 500 mHz is
sent to the electro-optical device, recording the transmitted signal for 30 s. There is a di↵erence in
the height of the LG10 peak between EOL ON and OFF of �VPd ' 1.3 mV . Fig. 5.15 shows the
di↵erence in the LG10 peak height between the ON and OFF phase of EOL-Pd.
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(a) (b)

Figure 5.14: Number of LG10 peaks counted as a function of their voltage amplitude. (a) Voltage applied
V (1) = 250 V . (b) Voltage applied V (2) = 400 V .

Comparing the di↵erence in LG10 peak heights for both EOLs at the V (2) = 400 V power supply

potential, notice that they are almost equal �V (2)

F l ' �VPd ⇠ mV . In both cases this variation in the
height of the peak LG10 corresponds to a value of MM ⇠ 10%. This result is not satisfactory because
one would expect an e↵ect for EOL-Fl three order of magnitude bigger than EOL-Pd (see Sec. 4.3.2).

(a) (b)

Figure 5.15: (a) Average height of the peaks obtained with EOL-Pd ON (red line) and EOL-Pd OFF (yellow
line). (b) Number of LG10 peaks counted as a function of their voltage amplitude.
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Chapter 6

Conclusion

The aim of this thesis was to analyze and study the e↵ects of two di↵erent EOL prototype devices on
a dedicated bench-top experiment. Two characterization methods are used: the study of wavefront
variations using a Shack-Hartmann sensor and the modal analysis inside a triangular optical cavity.
Although the cavity measurements previously carried out on EOL-Pd have brought reliable results, the
same analysis on the functioning of EOL-Fl was not as satisfactory: in fact, as seen in the Sec. 5.2, by
switching ON and OFF both electro-optical devices the same power variation of the higher order modes
was found. However, theoretical expectations (see Sec. 4.3.2 and 4.3.2) predict an e↵ect three orders
of magnitude higher for EOL-Fl with respect to EOL-Pd. This inconsistency between experimental
results and theoretical expectations is not understood and will require further investigation.

Regarding the wavefront variation measurements, both electro-optical devices investigated, have not
reached the sensitivity needed to measure their e↵ects. We note however that the choice of the optical
telescope to match the beam to the WFS is particularly important: in this thesis it was decided
to position the sensor on the plane imaging the output plane of the two electro-optical devices (see
Sec. 4.3.2). This choice is justified by the intention to analyze the wavefront shape as it exists for
the device. However, in front of the di�culties encountered in reaching the necessary sensitivity, we
reconsidered this choice and realized that, as shown in Fig. 6.1, placing the Shack-Hartmann close to
the waist position of the resulting beam, the variation of the fifth Zernike coe�cient, or �c5, can be
made substantially larger. By dropping the requirement of working on an image plane, a di↵erently
designed optical system could increase the value of �c5 by perhaps a few orders of magnitude; this
would enable the possibility of measuring it directly with the wavefront sensor which, as seen in the
Sec. 4.3, has a sensitivity of around �/100 ⇠ 10�5 mm.
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CHAPTER 6. CONCLUSION

(a) (b)

Figure 6.1: Study of the behavior of �c5 by switching ON and OFF EOL-Pd (a) and EOL-Fl (b) as a function
of the WFS position. In gray the portion of space occupied by the optics of the matching telescope on the
optical bench.
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