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1 Introduction
This work regards Linear Programming Models and their application to the
"Fleet Quickest Routing on Grids" problem.
Linear Programming Modelling is a huge and important �eld of Applied
Mathematics and it is used in several contexts, for example Economics,
Biology, Genetics and Transport Networks.
This �eld developed especially during the second half of the previous century,
relatively military planning activities. In 1947, american mathematician
George B. Dantzig developed the �rst model of Linear Programming: it
consisted in �nding how much some industries had to work in order to
satisfy a certain demand, respecting pre�xed badgets. Dantzig stated some
relations between a �rst group of objects (which were the parameters of the
model, representing the demands and the badgets) and a second group of
objects (which were the variables of the model, representing the work of the
industries). The result was a problem in which he minimized the cost of the
whole process, guaranteeing that every demand was satis�ed or, in other
words, a problem in which he minimized a linear function subject to linear
equations and inequalities. Dantzig understood that the Simplex method
was a valid way to resolve such a problem and that this problem�s structure
could be applied to several situations: in this way, Linear Programming
Modelling took hold.
This work contains a section in which we develop some of the most useful
generalities about Linear Programming and Integer Linear Programming.
We show the structure of a Linear Programming Problem, we de�ne what
is a solution for such a problem and we provide some results about the set
of all solutions, treating it especially from a geometric point of view.
We apply Integer Linear Programming Modelling to a particular problem:
the "Fleet Quickest Routing on Grids" (FQRP). It consists in a grid where
some vehicles move in order to reach their destinations as soon as possible
avoiding con�icts. This problem is also quite famous and it arises in many
contexts: the routing of automated guided vehicles in container terminals,
the coordination of ground service vehicles in airport aprons, aircraft taxi-
ing operations, etc. We provide a consistent summary of the main results
about this problem, highlighting those which are useful for this work. Af-
terwards, we give 3 di¤erent Integer Linear Programming Models to resolve
the FQRP and also the codes for their implementation with software AMPL.
We deeply analyze the models: we explain their structural characteristics
and the meaning of their constraints.
As we will see, we decided to focus our attention on the third model, trying
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to re�ne it. Indeed, when we solve the Continuous Relaxation of the FQRP
with the third formulation, AMPL provides solutions which are not feasible.
The goal of this work is �nding some valid inequalities that can be added
to the model: in this way, we cut away some solutions from the feasible
region of the continuous relaxation. We give 7 sets of valid inequalities
and for each inequality we show that it actually cuts away some points.
We tested the inequalities with a lot of instances of the problem, formed
by di¤erent amount of vehicles. We used both a common AMPL-license
(CPLEX 12.8.0.0) and also the AMPL-license installed in the computers of
the computer science laboratory of Torre Archimede (ILOG AMPL), because
this last one can work with bigger instances than the one available for generic
users.
We introduce the use of software PORTA: it works with the representa-
tions of polyhedra constituting the feasible regions of Linear Programming
Models. We used it in order to have some hints for the search of valid
inequalities.
Finally, we provide a computational study about our new inequalities in
order to see how they a¤ect the implementation of the third model.
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2 The "Fleet Quickest Routing on Grids"
Problem

2.1 Introduction
The "Fleet quickest routing on grids" problem we are concerned with is
related to the movement of some vehicles on an undirected grid graph or
Manhattan graph G = (V;E). In G we recognize m rows and n columns,
V is the set of nodes and E is the set of edges. Assume the columns are
numbered from the left to the right and the rows are numbered from the
bottom to the top and, assume also the number of vehicles coincides with
the number of columns. Each vehicle has a speci�c starting-point, which
is at the bottom of the grid (row 1), and a speci�c end-point, which is at
the top of the grid (row m). Two di¤erent vehicles cannot share neither
the starting-point nor the end-point. Assume time is discrete and, at each
moment in time, every vehicle has to move either horizontally or vertically,
until it reaches its �nal position. Each edge of the graph (both horizontal
and vertical) takes one unit of time to be traversed. In particular, each
vehicle has to reach its �nal destination in the shortest possible time. The
goal of the FQRP is to minimize the overall time, i.e. the time n vehicles
need to perform their movements. We can assign a number to the starting-
positions of the vehicles from 1 to n in the �rst level. The �nal positions of
the vehicles is a permutation:

� = �1; ::; �n

of the starting-positions f1; ::; ng. Then, every vehicle has to move from
position i at level 1 to position �i at level m and, the quickest path of a
generic vehicle can be de�ned as follow.

De�nition 1 (Manhattan Quickest Path) A path of vehicle i 2 f1; ::; ng
is a Manhattan Quickest Path (or a minimum-length path) if and only if
vehicle i performs only one move (horizontal or vertical) at each moment in
time and the path does not contain steps in opposite directions.

We can immediately notice that we are using equally the concepts that a
path is the quickest one in term of time and that a path is the shortest one
in term of Manhattan distance. The shortest path for each vehicle is easy
to be determined and it is not unique generally. However, if each vehicle
tries to reach its destination moving on one of its shortest paths, it would
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be possible that two or more vehicles create a con�ict, i.e. some vehicles can
crash with the others. Con�icts must be avoided and we always search for
�eet patterns that are con�ict-free. There are two di¤erent types of con�icts.

De�nition 2 (Arc-con�ict) An arc-con�ict arises when at least two di¤er-
ent vehicles use the same edge at the same time.

De�nition 3 (Node-con�ict) A node-con�ict arises when at least two dif-
ferent vehicles use the same node at the same time.

The grid m�n is our workplace and its dimensions are established casualty;
we only require that m > 2. Consequently, it is obvious that the units of
time T needed to be sure that the n vehicles reach their destination can be
de�ned as follow:

T = max
i
ji� �(i)j+m� 1

The last expression allows us to explain why the value of m is important:
such a number a¤ects both T and the existence of a solution. As already
said, we want to minimize the overall time T , therefore the value ofm should
be minimum but high enough to guarantee the existence of a solution. In
order to do so, we introduce a variable, called z, which represents the highest
level in which a horizontal move takes place. In this way, we do not change
the value of m, which is �xed and established at the beginning, but we work
on the value of z which is a variable. In light of this, the overall time T can
be rewritten as follow:

T = max
i
ji� �(i)j+ z � 1

Since the quantity maxi ji� �(i)j � 1 depends on the speci�c instance of
the problem and is �xed for every instance, we are interested in �nding the
value of z that minimizes T but also guarantees the existence of a free-impact
solution. In this way we make the vehicles move on their shortest possible
path and we force all their horizontal movements to take place in the lowest
possible levels. If m > z, we can avoid to consider all the lines above level
z, because only vertical moves take place there.

2.2 Common Notation
Let�s consider N the set of all vehicles (indexed by k). For each vehicle
k 2 N , let�s consider two values: �(k) and !(k) which are respectively the
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column-indexes of the starting-point and the end-point of k. Set N can be
divided into three subsets:

S = fk 2 N : �(k) = !(k)g

R = fk 2 N : �(k) < !(k)g

L = fk 2 N : �(k) > !(k)g

It will be useful to recall the last two sets in this way:

P = R [ L

We can immediately notice that the vehicles of S can proceed straight to
their �nal destination, so we do not have to �nd their quickest path because
they have only one shortest path (the one composed of only vertical move-
ments). Vehicles of R have to perform a certain number of moves to the
right (for each k 2 R, they are exactly !(k)��(k) moves) and vehicles of L
have to perform a certain number of moves to the left (for each k 2 L, they
are exactly �(k) � !(k) moves). Vehicles of S never come in con�ict with
the others, by contrast vehicles of R can come in con�ict only with vehicles
of L and vice versa.
We use the set of row-indexes:

J = f1; ::;m� 1g

and the sets of column-indexes related to every vehicle k 2 P :

I(k) = fmin f�(k); !(k)g ; ::;max f�(k); !(k)gg 8k 2 P

We de�ne the current position of a vehicle through a couple of numbers
(i; j): they are respectively the column and the row of the vehicle.
Given two vehicles p 2 R and q 2 L, let�s de�ne c(p; q) the column:

c(p; q) =

�
[�(p) + �(q)]=2 if �(p) + �(q) even
b[�(p) + �(q)]=2c if �(p) + �(q) odd

We can denote with C the set of pairs of vehicles that could create a con�ict:

C = f(p; q) 2 R� L : �(p) < �(q); !(q) 6 c(p; q);

!(p) >
�
c(p; q) if �(p) + �(q) even
c(p; q) + 1 if �(p) + �(q) odd

g
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Remark 4 Two vehicles may compete for the same node only if one of them
belongs to R and the other to L. Furthermore, a con�ict could occur only
in a node of a speci�c column. In fact, suppose p 2 R and q 2 L then a
node-con�ict can occur only in a node of the column c(p; q) provided that:8>><>>:

�(p) < �(q)
�(p) + �(q) even
!(p) � c(p; q)
!(q) � c(p; q)

(1)

Vice versa, let p 2 R and q 2 L, let c(p; q) be the column de�ned like above
and let the conditions in (1) hold, then vehicles p and q could compete for
the same node in column c(p; q) (See Appendix 2, Figure 1 and 2 for a node-
con�ict and an intersection of two routes without node-con�ict respectively).

This condition for a node-con�ict is both su¢ cient and necessary. It is
obvious that a couple of vehicles for which such conditions in (1) hold could
create a node-con�ict. The vice versa is not so obvious so we provide a
proof.

Proof. Assume p and q create a node-con�ict. Then p 2 R and q 2
L because they must move in opposite directions in order to create the
condition for a con�ict.
It holds �(p) < �(q) otherwise vehicles do not move towards each other and
they could never create a con�ict.
The con�ict column must be equidistant from �(p) and �(q), therefore it
must be c(p; q) = [�(p)+�(q)]=2 and the quantity �(p)+�(q) must be even.
Last two conditions hold because the vehicles must reach a common point
at the same time. If one of these conditions do not hold, the vehicles cannot
meet in column c(p; q).

Let�s de�ne the set of all possible node-con�ict pairs, called Ceven:

Ceven = f(p; q) 2 R� L : �(p) + �(q) even; �(p) < �(q);
!(p) > c(p; q); !(q) 6 c(p; q)g

Remark 5 Two vehicles may compete for the same edge only if one of them
belongs to R and the other to L. Furthermore, an edge con�ict could occur
only in an edge joining two speci�c columns. In fact, suppose p 2 R and
q 2 L then an edge con�ict can occur only in an edge joining a node of
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column c(p; q) with a node of column c(p; q) + 1, provided that:8>><>>:
�(p) < �(q)
�(p) + �(q) odd
!(p) � c(p; q) + 1
!(q) � c(p; q)

(2)

Vice versa, let p 2 R and q 2 L, let c(p; q) be the column de�ned like above
and let the conditions in (2) hold, then vehicles p and q could compete for
the same arc joining columns c(p; q) and c(p; q)+1 (See Appendix 2, Figure
3 and 4 for an arc-con�ict and an intersection of two routes without arc-
con�ict respectively).

Also in this case, the condition for an edge-con�ict is both su¢ cient and
necessary. If all these facts in (2) are true, it follows that such couple of
vehicles creates a con�ict. The vice versa is not trivial, so we provide a
proof.

Proof. Assume p and q create an arc-con�ict. Then p 2 R and q 2
L because they must move in opposite directions in order to create the
condition for a con�ict.
It holds �(p) < �(q) otherwise vehicles do not move towards each other and
they could never create a con�ict.
The two edges of the arc in which they create a con�ict must be respectively
equidistant from �(p) and �(q), consequently such an arc must join columns
c(p; q) = b[�(p)+�(q)]=2c and c(p; q)+1 and the quantity �(p)+�(q) must
be odd to guarantee this property.
Last two conditions hold because both the vehicles must reach a side of any
arc between c(p; q) and c(p; q)+ 1 in order to create an arc-con�ict there, in
particular p must reach the rightmost side of such an arc and q must reach
the leftmost side of such an arc.

Let�s de�ne the set of all possible arc-con�ict pairs, called Codd :

Codd = f(p; q) 2 R� L : �(p) + �(q) odd ; �(p) < �(q);
!(p) > c(p; q) + 1; !(q) 6 c(p; q)g

It is obvious that:

C = Ceven t Codd
where symbol t means disjoint union; moreover we can use these two sets
to rewrite an equivalent de�nition of c(p; q):
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c(p; q) =

�
[�(p) + �(q)]=2 if (p; q) 2 Ceven
b[�(p) + �(q)]=2c if (p; q) 2 Codd

Finally, we call z the integer variable representing the last level where hori-
zontal moves take place.

2.3 Main Results on the FQRP
In this part we provide a brief summary of the main results on the FQRP.
In particular, we focus our attention on those results that can be considered
a completion of this work. The goal of this part is showing that, given any
instance of the FQRP with n vehicles, it is always possible to state which is
the number of rows of the workplace grid that are necessary and su¢ cient for
�nding a feasible solution of the considered instance when vehicles perform
all their horizontal steps on one and only one level and each level allows
horizontal movements in one direction only. All our tests have been done
guaranteeing a su¢ cient number of rows provided by this section.

2.3.1 More types of Node-Con�icts
First of all, it is common to distinguish di¤erent types of node-con�icts.

De�nition 6 (Node-con�icts: type A) Two vehicles p and q create an A-
type node con�ict if they satisfy one of the following relations:

�(p) < �(q) 6 !(q) < !(p) or !(q) < !(p) � �(p) < �(q)

Remark 7 When the �rst relation is valid, the only node where an A-type
con�ict may arise is (!(q);m); if we have the second relation, the only po-
tential con�ict node is (!(p);m). In both cases, there is no node below level
m in which the two vehicles can arrive at the same time. As a consequence,
to avoid the occurrence of an A-type con�ict, it is necessary that the des-
tination node of q (resp. p) does not belong to the path of vehicle p (resp.
q).

Remark 8 For vehicles in set S, the only potential type of con�ict is A-
type.
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De�nition 9 (Node con�icts: type B) B-type con�icts occur when two ve-
hicles p and q, with �(p) < �(q), must perform their horizontal steps in
opposite directions, under the following conditions:8>><>>:

�(p) < !(p)
�(q) > !(q)
!(q) < [�(p) + �(q)]=2 < !(p)
�(q)� �(p) = 2l l > 0 integer

i.e. the horizontal distance between p and q starting nodes is an even number
and the destinations of p and q are located, respectively, to right and left of
the median column [�(p) + �(q)]=2.

Remark 10 B-type con�ict relations are symmetrical: if p is involved in a
B-type con�ict with q, then the opposite also holds. Moreover, the existence
of a B-type con�ict for vehicle p is not necessarily univocal, since p could
also enter into B-type con�ict with other vehicles.

Remark 11 Notice that any routing rule that allows movements in only
one direction per level makes B-type con�icts and arc-con�icts impossible.

De�nition 12 (Node con�icts: type C) C-type con�icts occur when two
vehicles p and q, with �(p) < �(q), must perform their horizontal steps in
opposite directions and either one of the following relations holds:�

!(p) = [�(p) + �(q)]=2
!(q) < [�(p) + �(q)]=2

or �
!(q) = [�(p) + �(q)]=2
!(p) > [�(p) + �(q)]=2

This means that we describe the vehicle whose destination is a node of
column [�(p) + �(q)]=2 as subject to C-type con�ict.

Notation 13 To express this con�ict relation between vehicles p and q we
use the notation p(q) if !(p) = [�(p) + �(q)]=2, or, alternatively, q(p) if
!(q) = [�(p) + �(q)]=2.

Proposition 14 In order to avoid the collision which could arise from the
occurrence of p(q), when �(p) < �(q), the �rst node of column !(p) belonging
to the path of vehicle p must be (!(p); l) and the last node of the same column
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belonging to the path of vehicle q must be (!(p); l0), satisfy the relation l > l0

(In other words, the paths of the two vehicles p and q are such that in column
[�(p)+�(q)]=2, vehicle p always remains at a higher level than that of vehicle
q).

Proof. If we have vehicles p and q with �(p) < �(q) and p(q), it follows
that: �

!(p) = [�(p) + �(q)]=2
!(q) < !(p)

Therefore column !(p) is equidistant from column �(p) and �(q). We dis-
tinguish two cases:

1. If l 6 l0 then both vehicles reach the node (!(p); l0) at time t =
�(q)��(p)

2 + l0� 1. In fact, remembering that they are equidistant from
column !(p), if l = l0 then both vehicles are on the node (!(p); l0) at
the same time. On the other side, if l < l0, then vehicle p reaches
column !(p) at time t = �(q)��(p)

2 + l � 1 and it has only vertical
steps left. Moving vertically in the following time units, it occupies
the nodes from (!(p); l + 1) to (!(p); l0) and so q cannot avoid to use
a node in which vehicle p is still.

2. If l > l0, then vehicle q leaves the column !(p) before than the arrival of
vehicle p, i.e. at time t = �(q)��(p)

2 + l� 1. In this way, the occurrence
of a con�ict is avoided.

Remark 15 Con�ict relation p(q) is asymmetric because, when vehicle p
is subject to C-type con�ict with vehicle q, q cannot be subject to the same
con�ict with p. Moreover, it is impossible to have two simultaneous relations
p(q) and p(q0), with q 6= q0.

Remark 16 Consider a C-type con�ict p(q). Then, in the column [�(p) +
�(q)]=2, a B-type con�ict involving vehicles p or q cannot occur.

2.3.2 C-types Con�icts Paths
We introduce a particular structure of con�icts, called C-type con�ict paths.
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De�nition 17 (C-type Con�ict Paths) We call C-type con�ict path (for
brevity �con�ict path�) any sequence of vehicles having a succession of C-
type con�icts z1(z2); z2(z3); :::; zk(zk+1). Notice that in such a con�ict path
z1(z2); z2(z3); :::; zk(zk+1), all vehicles with odd (resp. even) index move in
the same direction. As a particular case, a con�ict path can consist of a
single C-type con�ict: z1(z2).

De�nition 18 (Length of a C-type Con�ict Path) We de�ne Length of a
con�ict path as the number of vehicles subject to C-type con�ict in the given
path. The length of the generic con�ict path z1(z2); z2(z3); :::; zk(zk+1) is k.

Notation 19 Considering a generic vehicle zi belonging to a con�ict path
like above, we denote hzi the level of the �rst node in column !(zi) that
belongs to the path of zi , and h0zi the level of the last node in column !(zi�1)
that belongs to the path of zi.

Remark 20 We provide two properties that must be true for a feasible so-
lution of the FQRP: �

hzi > h
0
zi+1

hzi+1 > h
0
zi+1

Assume zi(zi+1), the �rst level of column !(zi) that belongs to zi must be
greater than the last level of column !(zi) that belong to zi+1 in order to
avoid con�icts. The second rule is a bit more di¢ cult: column !(zi) must
be located between columns !(zi+1) and �(zi+1). As a consequence, when
zi+1 reaches node (!(zi); h0zi+1), two are cases: if zi+1 does not perform any
vertical steps in the section of its paths from column !(zi) to column !(zi+1),
then it must be hzi+1 = h

0
zi+1 : Otherwise, i.e. if zi+1 performs one or more

vertical steps in such a section, it must be hzi+1 > h
0
zi+1 :

Remark 21 k + 1 levels are su¢ cient to route the vehicles belonging to a
con�ict path whose length is k. Indeed, these k + 1 vehicles could be routed
using a very simple rule. Each vehicle performs all its horizontal steps on
one and only one level and each level allows performing its horizontal steps
to one and only one of these vehicles. The result is an 1-1 assignment of
vehicles to levels, so that k + 1 levels are required and su¢ cient.

Proposition 22 Given a path z1(z2); z2(z3); :::; zk(zk+1), the distance
j�(zk+1)� �(zk)j is higher than the distance between any other couple be-
longing to the con�ict-path.
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Proof. WLG assume �(zi) � !(zi) < 0 if i is odd and �(zi) � !(zi) > 0
otherwise. In this case we have:

!(z1) > !(z2)

!(z2) < !(z3)

!(z3) > !(z4)

:::

where the last inequality is !(zk) < !(zk�1) if k is even, !(zk) > !(zk�1)

otherwise. Recalling that !(zi) =
�(zi)+�(zi+1)

2 and substituting it in the
previous inequalities, we obtain:�

�(zk) < :: < �(z5) < �(z3) < �(z1)
�(z2) < �(z4) < �(z6) < :: < �(zk+1)

if k even

and: �
�(zk+1) < :: < �(z5) < �(z3) < �(z1)
�(z2) < �(z4) < �(z6) < :: < �(zk)

if k odd

Since z1(z2), it follows �(z1) < �(z2) and consequently:

�
�(zk) < :: < �(z3) < �(z1) < �(z2) < �(z4) < :: < �(zk+1) if k even
�(zk+1) < :: < �(z3) < �(z1) < �(z2) < �(z4) < :: < �(zk) if k odd

which is the thesis since �(zk) and �(zk+1) are the rightmost and leftmost
elements respectively of the lines above.

Corollary 23 A con�ict path whose length is k needs at least
j�(zk+1)� �(zk)j+ 1 columns to exist.

Proof. The proof is easy and follows directly from the previous proposition.
Vehicles zk+1 and zk are the most distant from each other and all the others
are settled in the columns between �(zk) and �(zk+1).

2.3.3 C-types Con�ict Paths and Number of
Vehicles in a Graph

In this section, we establish a relation between the length k of a con�ict path
and the minimum number of columns (and, consequently, vehicles) needed
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to guarantee the existence of such a path z1(z2); z2(z3); :::; zk(zk+1). Let�s
call nmin the minimum number of needed columns, it can be obtain as follow:

nmin = min
Sk
j�(zk+1)� �(zk)j+ 1

where j�(zk+1)� �(zk)j+ 1 is the number of columns needed to a k-length
con�ict path to exist and Sk is the set of all permutations which contain a
k length con�ict path.

Proposition 24 Given a C-con�ict path z1(z2); z2(z3); :::; zk(zk+1), it holds
that:

j�(zk+1)� �(zk)j = 2[j�(z1)� !(z1)j+
k�1X
i=1

j!(zi)� !(zi+1)j] (3)

Proof. WLG assume �(zi) � !(zi) < 0 if i is odd and �(zi) � !(zi) > 0
otherwise. Assume k odd, for the other case the proof is similar. In this
case we have:

j�(zk)� �(zk+1)j = �(zk+1)� �(zk)

Remembering that:

�(zi+1)� �(zi) = 2[!(zi)� �(zi)]

we can write:

�(zk+1)� �(zk) = 2[!(zk)� �(zk)]
= 2[!(zk)� �(zk) + �(zk�1)� �(zk�1) + ::+ �(z1)� �(z1)]
= 2[(!(zk)� !(zk�1)) + (!(zk�2)� !(zk�1)) + ::+ (!(z1)� �(z1))]

and the terms inside the brackets are positive since i is odd, zi 2 R if i odd,
zi 2 L otherwise.

Remark 25 We can immediately notice that the RHS of (3) is an increas-
ing function in the sum of the distances of the �nal positions of consecutive
vehicles and also in the number of horizontal steps of vehicle z1. Let�s con-
sider the following observations:
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1. Instead of minimizing j�(zk+1)� �(zk)j, we can proceed to minimize
the RHS of (3).

2. The quantity j�(z1)� !(z1)j has a minimum and trivially it takes value
1. This means that j�(z1)� �(z2)j = 2 and so we can immediately say
that nmin takes value 3 if the length of the C-path Con�icts is k = 2.
In this case we have �(z2) = �(z1) + 2 or �(z2) = �(z1)� 2.

Keeping in mind that the goal is to �nd the value of nmin, in the following
part we provide an equivalent problem to this one. We show that an optimal
solution of this last problem must have certain characteristics (next two
propositions) and then we show that such an optimal solution always exists.
We can rewrite the problem of �nding the value of nmin as follow. In order to
get nmin, we solve the problem consisting in the determination of k di¤erent
destinations of vehicles and minimizing the quantity:

j�(zk+1)� �(zk)j = 2[j�(z1)� !(z1)j+
z�1X
i=1

j!(zi)� !(zi+1)j]

In this way, the problem of �nding the minimum number of columns that
allows a k-length con�ict path is equivalent to �nd an 1-1 assignment of k
vehicles to k destinations for which is a minimum the quantity:

z�1X
i=1

j!(zi)� !(zi+1)j (4)

Notation 26 We call �i = j!(zi)� !(zi+1)j :

Proposition 27 In the solution that minimizes (4), the destinations !(zi)
for i = 1; ::; k�1, of the vehicles involved in a con�ict path of length k, must
be located in a subset of adjacent columns of the graph.

Proof. For the proof, see reference [2].

Notation 28 Let�s rename wk =
k�1X
i=1

j!(zi)� !(zi+1)j and

w�k = minSk(
k�1X
i=1

j!(zi)� !(zi+1)j):
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Proposition 29 For any values of k, it holds: w�k � w�k�1 > 2.

Proof. For the proof, see reference [2].

Remark 30 Consider wk the value of (4) in correspondence to a feasible
solution, not necessary the optimal one, when the length of the con�ict path
is k. As consequence of the previous proposition, if wk � w�k�1 = 2 we have
that wk = w�k. This means that if wk �w�k�1 = 2, wk is an optimal solution
of:

min
Sk
(
k�1X
i=1

j�ij)

Since w�2 = 1, for values of k > 2, we must have w�k = 2k � 3. Substituting
it in (3) we obtain:

jzk+1 � zkj = 2(1 + 2k � 3) = 4(k � 1)

that gives the (minimum) highest distance between vehicles belonging to the
con�ict path as a function of its length.

Proposition 31 A feasible solution such that wk = w�k�1+2 = 2k�3 exists
8k > 2:

Proof. Consider a con�ict path whose length is k, as usual let�s call it
z1(z2); z2(z3); :::; zk(zk+1). Assume �(zi)� !(zi) < 0 if i is odd and �(zi)�
!(zi) > 0 otherwise. We distinguish the case in which k is even and the
case in which k is odd. Note that in both cases, the exact destination of the
vehicle zk+1, which do not belong to the con�ict path, is irrelevant, provided
that either !(zk+1) > !(zk) if k is even or !(zk+1) < !(zk) if k is odd. When
k is even, then, as a consequence of the existence of a con�ict path, it must
be:

!(z1) > !(z2)

!(z2) < !(z3)

:::

!(zk�1) > !(zk)

Consider the following permutation of destinations:
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!(z2); !(z1); !(z4); !(z3); ::; !(zk); !(zk�1)

This way we have that�i = 1 if i = 1; 3; 5; ::; k�1 and�i = 3 if i = 2; 4; ::; k.
Their sum is equal to 2k � 3. When k is odd, then, as a consequence of the
existence of a con�ict path, it must be:

!(z1) > !(z2)

!(z2) < !(z3)

:::

!(zk�1) < !(zk)

Consider the following permutation of destinations:

!(z2); !(z1); !(z4); !(z3); ::; !(zk�2); !(zk�1); !(zk)

This way we have that �i = 1 if i = 1; 3; 5; ::; k � 2 and �i = 3 if i =
2; 4; ::; k � 3 and �k�1 = 2. Their sum is equal to 2k � 3.

Remark 32 So, it is possible now to establish the relation between the min-
imum number of columns needed to the existence of a con�ict and its length.
Recalling that:

nmin = min
Sk
j�(zk+1)� �(zk)j+ 1

with j�(z1)� �(z2)j = 2 and minSk j�(zk+1)� �(zk)j = 4(k � 1) for k > 2,
we have:

nmin =

�
4k � 3 if k > 2
3 if k = 1

2.3.4 Number of Levels Ensuring Feasibility of any
FQRP Instance with n Vehicles

We now determine the number of levels that ensure the existence of a so-
lution to any possible permutation of vehicles destinations when the value
of n is �xed. In order to do so, we �rstly prove that, given n, the length of
the longest C-type con�ict path can be computed in advance. The following
proposition provides the relation between n and such a length.
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Proposition 33 The length of the longest C-type con�ict path in a graph
m� n, which we shall call kmax, is:

kmax =

�
b(n�14 )c+ 1 if n > 3
0 otherwise

Proof. The proof follows immediately, considering the value of nmin. If
n 6 2, no con�ict path can exist because the smallest con�ict path, having
length k = 1 needs at least 3 columns to exist. If n > 3, we can obtain the
value of kmax this way:

k =
n+ 3

4
=
n� 1 + 4

4
=
n� 1
4

+ 1

since kmax must be integer, it becomes necessary to put the �oor function.

If the maximum possible length of a con�ict path having n vehicles is known,
we can also determine the number of levels that ensure the existence of a
solution to any instance of FQRP involving n vehicles. We call such a
number m�, as the following proposition states.

Proposition 34 A solution to FQRP for any possible permutation of n
destinations, can be found in a graph with m� levels, where:

m� = kmax + 2

Proof. For this proof, we proceed distinguishing some cases.

1. If n = 1, then kmax = 0. There is only one vehicle that belongs to set
S and obviously 2 levels are su¢ cient to route it to its destinations.

2. If n = 2, then kmax = 0. There are two vehicles and we have 2
alternatives: or they both belong to set S (and in this case 2 lines
are su¢ cient) either we have that the leftmost belongs to R and the
rightmost belongs to L. In this case 2 lines are su¢ cient too because
one vehicle performs its horizontal step in one level and the other
vehicle performs its horizontal step in the other level.

3. If n > 3, it could happen that there is no one C-type con�ict or there
is one C-type con�ict or there are more C-type con�icts, whose length
is at most kmax. In this case we have that kmax > 1, and consequently
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m� > 3. In the absence of C-type con�icts, we can force vehicles be-
longing to R to move on the �rst level and vehicles belonging to L to
move on the other level (or vice versa). Using this routing rule ensures
to avoid any type of con�icts. Indeed, arc and B-type con�ict occur-
rences are avoided due to the assignment to di¤erent levels of vehicles
that must move in opposite directions. A-type con�ict is avoided,
because m� > 3 and there is not a vehicle which must perform its hor-
izontal steps on level m�. Alternatively, it could be possible that there
is only one C-type con�ict, assume it has length kmax. In order to take
advantage of Remark, in the following part of the proof we will assume
that each vehicle performs all its horizontal steps on one and only one
level. This implies that hzi > hzi+1 and so kmax+1 levels are su¢ cient
to route all the vehicles. Relaxing this hypothesis, it follows that it
could be used a number of levels lower than kmax + 1. In light of this,
kmax+2 levels are su¢ cient for sure. Now, consider an instance with 2
C-type con�icts z01(z

0
2); ::; z

0
kmax

(z0kmax+1) and z
00
1 (z

00
2 ); ::; z

00
kmax

(z00kmax+1),
both with length kmax. We have to distinguish 2 cases.

The �rst one occurs when z01 and z
00
1 have to move horizontally on

the same direction. The vehicles can be routed in this way: z0kmax+1
and z00kmax+1 perform all their horizontal steps on the �rst level, z0kmax
and z00kmax perform their horizontal steps on the second level. The last
group is composed by vehicles z01 and z

00
1 that are forced to make all

their horizontal steps on level kmax + 1, while all the other vehicles
make all their horizontal moves on a level lower than kmax + 1. It
follows that, since m� = kmax + 1, vehicles z01 and z

00
1 are the only

vehicles forced to move horizontally on the last level and an A-type
con�ict may occur. On the contrary this cannot occur because z01 and
z001 belong to a C-type con�ict of length kmax and so:���(z01)� !(z01)�� = ���(z001 )� !(z001 )�� = 1 (5)

It follows that we cannot have a vehicle j such that:

�(z01) < �(j) < !(j) < !(z
0
1) or �(z

00
1 ) < �(j) < !(j) < !(z

00
1 ) (6)

because the relations above cannot hold at the same time.

The second case occurs when z01 and z
00
1 have to move horizontally on

opposite directions. In this case, vehicles can be routed in this way:

18



z0kmax+1 can move horizontally on the �rst level, z
00
kmax+1

and z0kmax can
move horizontally on the second level. As a consequence either z01 or
z001 has to perform its horizontal steps on level kmax + 2. As said, they
cannot be involved in A-type con�icts, since (5) and (6) should hold
at the same time and this is not possible.

So, in general, in order to guarantee the existence of a solution to FQRP
in any possible permutation of n destinations, at least kmax + 2 levels are
needed.

Corollary 35 If the following hypothesis hold:

1. Levels are classi�ed in two sets: levels in which vehicles can move only
toward right and vice versa, levels in which the only allowed steps are
toward left;

2. All horizontal steps of a vehicle, if any, must be performed consecu-
tively on the same level;

then the minimum number of levels necessary and su¢ cient to solve any
FQRP instance involving n vehicles, which we shall denote as m�, is given
by:

m� =

�
2 if n = 2
b(n�14 )c+ 3 if n > 3

Proof. The proof follows from the last 2 propositions.
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Example 36 Let�s consider a generic instance of the FQRP, we give the
value of m� for n 2 f4; 5; 6; ::; 29; 30g.

Number of vehicles Needed lines
� n = 4 ! m� = 3
� n = 5 ! m� = 4
� n = 6 ! m� = 4
� n = 7 ! m� = 4
� n = 8 ! m� = 4
� n = 9 ! m� = 5
� n = 10 ! m� = 5
� n = 11 ! m� = 5
� n = 12 ! m� = 5
� n = 13 ! m� = 6
� n = 14 ! m� = 6
� n = 15 ! m� = 6
� n = 16 ! m� = 6
� n = 17 ! m� = 7
� n = 18 ! m� = 7
� n = 19 ! m� = 7
� n = 20 ! m� = 7
� n = 21 ! m� = 8
� n = 22 ! m� = 8
� n = 23 ! m� = 8
� n = 24 ! m� = 8
� n = 25 ! m� = 9
� n = 26 ! m� = 9
� n = 27 ! m� = 9
� n = 28 ! m� = 9
� n = 29 ! m� = 10
� n = 30 ! m� = 10
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3 Theory�s General Tools

3.1 Linear Programming Problems
It is useful to recall some generalities about linear programming problems
(LP problems). A LP problem is a constrained optimization problem in
which the function to be maximized (or minimized) is linear and the con-
straints are described by a �xed system of linear (in)equalities. If we write a
system of linear (in)equalities in the compact form Ax � b (where � stands
for 6 or > or =, A 2 Rm�n and b 2 Rm), a LP problem has the form:

min or max cTx (7)

s:t: Ax � b (8)

x 2 Rn (9)

where c 2 Rn. In model (7)-(9), x1; ::; xn are the variables, (7) is the objec-
tive function and (8)-(9) are the constraints. All the parameters ai;j ; bi; cj
with i = 1; ::;m and j = 1; ::; n are real numbers; the variables x can as-
sume any value respecting the constraints of the model. We denote with aTi
i 2 f1; ::;mg the lines of matrix A.

De�nition 37 (Feasible Solution) A vector x 2 Rn which respects all the
constraints in (8)-(9) is called feasible solution of the problem. The set of all
feasible solutions of a linear programming problem is called feasible region.

De�nition 38 (Optimal Solution) A vector �x 2 Rn is an optimal solution
of the maximization problem (7)-(9) if it is a feasible solution and it holds
that cT �x > cTx for every vector x belonging to the feasible region (if the
problem consists in minimizing the objective function, the condition becomes
cT �x 6 cTx). The quantity cT �x is called optimal value.

It is not always possible that a LP problem has got an optimal solution.
LP problems can be divided into 3 sets:

1. Unfeasible problems: the feasible region is the empty set;

2. Unlimited problems: the objective function can be randomly maxi-
mized or minimized;
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3. Problems with optimal solutions: there exists at least one optimal
solution.

Solving a LP problem means establishing to which set the problem belongs
and, in the third case, giving an optimal solution.
It could be useful to analyze the feasible region of a problem from a geo-
metric point of view. Every equation and every inequality in (8) determines
a speci�c region in Rn: every equation identi�es a hyperplane and every in-
equality identi�es a close half-space. The feasible region is the intersection
of those hyperplanes and close half-spaces.

De�nition 39 (Polyhedron) A set P � Rn is a polyhedron if it can be
obtained from a �nite intersection of hyperplanes and close half-spaces of
Rn:

At this point, it is natural to show where an optimal solution lives, if it
exists, with respect to a polyhedron. Thinking about the graphic method
for the resolution of such problems, it is easy to convince us that an optimal
solution, if it exists, is settled in one of the vertexes of the polyhedron. Let�s
introduce some concepts that help us to explain this point.

De�nition 40 (Convex Combination of two points) Given 2 points x; y 2
Rn, point z 2 Rnis a convex combination of x and y if there exists a real
number � 2 [0; 1] such that: z = �x+ (1� �)y.

De�nition 41 (Strict convex combination of two points) Given 2 points
x; y 2 Rn, point z 2 Rnis a strict convex combination of x and y if there
exists a real number � 2 (0; 1) such that: z = �x+ (1� �)y.

Notice that, the strict convex combination does not include points x and y.

De�nition 42 (Vertex of a Polyhedron) Given a polyhedron P � Rn and
a point v 2 P , v is a vertex of P if it cannot be written as a strict convex
combination of other 2 distinct points of P : @x; y 2 P; � 2 (0; 1) : x 6= y; v =
�x+ (1� �)y.

We can generalize the concept of convex combination as follow.

De�nition 43 (Generalized Convex Combination) Given k points x1; ::; xk,
point z is the convex combination of the previous ones if there exist k real

numbers �1; ::; �k > 0, such that:
kX
i=1

�i = 1 and z =
kX
i=1

�ixi.
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Recall lastly an important result, known as Minkowsky-Weyl Representa-
tion/bounded case: "Given a bounded polyhedron P 2 Rn and the set of its
vertexes V = fv1; ::vkg, it follows that every point x 2 P can be written as
a convex combination of its vertexes". Now, we are ready to give a formal
result.

Theorem 44 Given a LP problem as in (7)-(9), if the polyhedron P rep-
resenting the feasible region of this problem is non-empty and bounded, the
problem has at least one optimal solution and an optimal solution is settled
in a vertex of the polyhedron.

Proof. Assume we are working with a minimization problem. The existence
of an optimal solution follows from the fact that we are excluding the cases
in which P is empty or unlimited. Let�s call V = fv1; ::vkg the set of the
vertexes of P . Let�s consider the value that the objective function assumes
in the vertexes and let�s call v� the vertex in which the objective function is
minimum:

cT v� 6 cT vi 8vi 2 V
For a generic x 2 P (using Minkowsky-Weyl), we can write:

cTx = cT
kX
i=1

�ivi =

kX
i=1

�ic
T vi >

kX
i=1

�ic
T v� = cT v�

kX
i=1

�i = c
T v�

Since x is generic, this means that v� is an optimal solution and it is settled
in a vertex.

This result is really important because it allows us to search for an optimal
solution of any problem only in the vertexes of its polyhedron and not in
any point of its feasible region. This is a very useful result because every
polyhedron has got �nitely many vertexes. In order to prove this, we need
some more information about the constraints Ax � b.

De�nition 45 (Active Constraint) Given the problem in (7)-(9), if a vector
�x 2 Rn is such that aTi �x = bi for some i 2 f1; ::;mg, we say that the
corresponding constraint is active in �x. Moreover we denote with I(�x) the
set of the indexes of all active constraints:

I(�x) =
�
i 2 f1; ::;mg : aTi �x = bi
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From now on, we say that two constraints are linearly independent if corre-
spondent vectors aTi are linearly independent.

Theorem 46 Given a polyhedron P and a point �x 2 P , point �x is a vertex
of P if and only if there exist n rows aTi of matrix A with i 2 I(�x) which
are linearly independent.

Proof. WLG assume that polyhedron P is de�ned only by equations or
inequalities with verse > (it is obvious that every inequality with verse 6can
be transformed into an equivalent one with verse >). Firstly, let�s prove the
necessary condition: if �x is a vertex of P , then there exist n constraints active
in �x and linearly independent. Suppose ad absurdum that the number of
linearly independent constraints that are active in �x is k < n. This implies
that there exists a vector 0 6= d 2 Rn such that:

aTi d = 0 8i 2 I(�x) (10)

For every i =2 I(�x), we have that:

aTi �x > bi

so there exists � > 0 such that vectors:

y = �x� �d
z = �x+ �d

(11)

satisfy these conditions: aTi y > bi; a
T
i z > bi for every i =2 I(�x). Moreover,

from (11) follows that for i 2 I(�x):

aTi y = a
T
i �x� �aTi d = bi

aTi z = a
T
i �x+ �a

T
i d = bi

which means that vectors y and z belong to P . Since:

�x = 1=2y + 1=2z

and y and z are both di¤erent from �x, it follows that �x is not a vertex but
this is a contradiction.
For the other verse, we proceed ad absurdum again. Suppose there exist
n rows of A which are active in �x and linearly independent, but �x is not a
vertex. If �x is not a vertex, it follows that �x 2 P and there exist two vectors
y 2 P and z 2 P di¤erent from �x such that:
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�x = �y + (1� �)z
We cannot have that 9i 2 I(�x) such that aTi y > bi or aTi z > bi otherwise we
would obtain:

aTi �x = �a
T
i y + (1� �)aTi z > �bi + (1� �)bi

and this contradicts the fact that i 2 I(�x). So we must have that aTi y = bi
and aTi z = bi 8i 2 I(�x) but, this means that the system:

aTi x = bi 8i 2 I(�x)
has more than one solution (that is �x; y; z). This contradicts the hypothesis
because we must have only one solution.

Corollary 47 Given a polyhedron P = fx 2 Rn : Ax � bg, if matrix A 2
Rm�n has a number of linearly independent rows smaller than n, then P has
got no vertexes. In particular, if m < n, then P has got no vertexes.

Proof. Obviously, since a vertex needs n linearly independent rows to be
de�ned.

Corollary 48 Given a polyhedron P = fx 2 Rn : Ax � bg and a point �x 2
P , point �x is a vertex of P if and only if it is the unique solution of the
system:

aTi �x = bi i 2 I(�x)

Proof. The direct implication is trivial in light of the previous theorem.
The vice versa follows observing that if the above linear system has got a
unique solution, then the number of variables must coincide with the number
of equations which are linearly independent.

Corollary 49 Any polyhedron P = fx 2 Rn : Ax � bg has at most �nitely
many vertexes.

Proof. Ifm < n, the polyhedron has got no vertexes. Ifm > n, every vertex
corresponds to a subset of n linearly independent rows of matrix A. Since
A has at most

�
m
n

�
= m!

n!(m�n)! distinct subsets of n rows, the polyhedron has

got at most m!
n!(m�n)! vertexes.
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3.2 Integer Linear Programming Problems
Integer linear programming problems (Integer LP problems) are linear pro-
gramming problems where the feasible region is constituted only by the
integer vectors satisfying constraints (8)-(9). We remind that a vector is
integer if all its components are integer numbers. Using the notation like
before, a generic integer LP problem can be written as follow:

min or max cTx (12)

s:t: Ax � b (13)

x 2 Zn (14)

In this case, variables x are called integer variables. An important class of
variables for these problems are the binary variables, that can assume only
values 1 and 0.
It is very common to solve integer LP problems considering their continuous
relaxation.

De�nition 50 (Continuous Relaxation) The continuous relaxation of an
integer LP problem (12)-(14) is the same problem (12)-(13) with x 2 Rn.

Remark 51 Notice that if we are working with a binary variable xi, con-
straint xi 2 f0; 1g becomes xi 2 [0; 1].

The new problem obtained from the relaxation is a LP problem and can be
resolved e¢ ciently. However, the optimal value of the objective function of
the continuous relaxation of a problem can be randomly distant from the
optimal value of the objective function of the initial problem. Thus the
continuous relaxation of a problem is not generally a good approximation of
the problem.
Integer LP problems are very useful in all the situations in which the re-
sources, represented by the variables, are indivisible: for example they can
represent objects, people, etc..
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3.3 Valid Cuts
In this section we work with the feasible regions of the problems that we
have previously introduced. We can immediately notice that the feasible
region of any LP problem is a polyhedron and also the feasible region of the
continuous relaxation of any integer LP problem is a polyhedron. Keeping
in mind the de�nition of convex combination of a set of points in Rn, we
can introduce a new object.

De�nition 52 Given any set 
 � Rn, the convex envelope of 
, denoted
with conv(
), is the set containing all the points that are convex combina-
tions of the points of 
.

It holds that conv(
) is the smallest convex set containing 
, and it is the
intersection of all convex sets containing 
.

Lemma 53 Given 
 � Rn and a vector c 2 Rn, the optimal values of the
following problems coincide:

max
�
cTx : x 2 


	
= max

�
cTx : x 2 conv(
)

	
Proof. Since the feasible region of the second problem contains the feasible
region of the �rst problem, it follows that the optimal value of the second
problem is always greater or equal to the optimal value of the �rst problem.
For the other side, let�s consider any feasible solution of the second problem
x 2 conv(
), let�s show that there exists a feasible solution of the �rst
problem �x 2 
 such that cT �x > cTx. Since x 2 conv(
), it has this form:

x =

kX
i=1

�ixi

where �1; ::; �k > 0 are real numbers such that:
kX
i=1

�i = 1 and x1; ::; xk

belong to 
. It follows that there exist i 2 f1; ::; kg such that cTxi > cTx
otherwise we would obtain:

cTx =

kX
i=1

�ic
Txi <

kX
i=1

�ic
Tx = cTx

which is a contradiction. Since xi 2 
, we can choose xi = �x:

We can give now an important theorem.
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Theorem 54 (Meyer) Let 
 be the feasible region of an integer LP problem
with rational parameters. Then conv(
) is a polyhedron.

This theorem allows us to do the following consideration. Consider the
integer LP problem:

min or max cTx (15)

s:t: Ax � b (16)

x 2 Zn (17)

where all the parameters are rational numbers. Let�s call 
 the feasible
region (16)-(17). Meyer�s theorem guarantees that conv(
) is a polyhedron
and so it is described by a system Cx � d. Using the previous lemma we
have that problem (15)-(17) is equivalent to the following one:

min or max cTx (18)

s:t: Cx � d (19)

Basically, this means that every integer LP problem with rational parameters
is equivalent to a LP problem. This information is very useful because LP
problems can be solved e¢ ciently. However, there are two observations to do.
The previous lemma guarantees that the optimal values of the problems (15)-
(17) and (18)-(19) are the same, but it does not guarantee that the optimal
solutions are the same. The second problem could have more solutions than
the �rst one and it could happen that an optimal solution of (18)-(19) does
not belong to 
. However if we solve this second problem using the Simplex
method, we �nd a solution (if it exists) in a vertex of conv(
) (i.e. in a
vertex of the polyhedron de�ned by Cx � d) and all the vertexes of conv(
)
are contained in 
:

Proposition 55 Let 
 � Rn and assume conv(
) be a polyhedron. Then
the vertexes of conv(
) belong to 
.

Proof. Let x be a vertex of conv(
), so x cannot be written as a convex
combination of points of conv(
) di¤erent from x. Since x 2 conv(
), it
can be written as convex combination of points x1; ::; xk 2 
. It follows that
every xi coincides with x, so x 2 
.
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The second observation is the following: If we want to transform problem
(15)-(17) into problem (18)-(19), we must know the system Cx � d. In
general this is really hard and it is possible that the system Cx � d contains
a huge number of constraints even if the system Ax � b is very simple.
This means that the correspondence between integer LP problems and LP
problems is very di¢ cult to apply.
In light of this, when we have to deal with an integer LP problem, we prefer
to work with an equivalent LP problem or with its continuous relaxation.
Since the �rst alternative is very di¢ cult, we prefer to use another approach
involving the continuous relaxation. In general, the feasible region of the
continuous relaxation of a problem is much larger then the ideal formulation.
It is reasonable to introduce new equations or inequalities to strenghten the
formulation: these (in)equalities must be satis�ed by all the integer solutions
but should hopefully cut away some points from the feasible region of the
continuous relaxation.

De�nition 56 (Valid Cut) Given an integer LP problem, we call Valid Cut
any (in)equality that is satis�ed by all the integer solutions of the problem
and is not satis�ed by at least one of the non-integer solutions of the con-
tinuous relaxation of the problem.

Notice that if we call 
 the feasible region of an integer LP problem, a
valid cut is satis�ed by all the points of 
 and also by all the points of
conv(
). From a geometric point of view, we can interpret such a cut like
an (in)equality that cuts away some points that are settled out of the convex
envelope of the feasible region of a problem.
In order to clarify which kind of (in)equalities we are searching for, we
introduce a problem, called Knapsack problem, for which �nding valid in-
equalities is very simple.
In the knapsack problem we are given n items of weight a1; ::; an and pro�t
p1; ::; pn respectively, and a bag (the knapsack) of maximum capacity �.
We have to determine a subset of the n items that can be put in the bag
without exceeding the maximum capacity, maximizing the total pro�t. In
the following we assume that a1; ::; an and � are integer numbers. If we de�ne
binary variables x1; ::; xn, where xi = 1 if and only if item i is selected, we can
formulate the knapsack problem as the following integer linear programming
problem:
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max
nX
i=1

pixi (20)

s:t:

nX
i=1

aixi 6 � (21)

0 6 xi 6 1; xi 2 Z i = 1; ::; n (22)

We call cover any subset of the n items that exceeds the knapsack capacity:
in other words, a cover is a subset C � f1; ::; ng such that:X

i2C
ai � �

Since a1; ::; an and � are all integer numbers, the above condition can be
restated as follows: X

i2C
ai > � + 1

Given a cover C, since it is impossible to put all the elements of C in the
knapsack, at most jCj � 1 of them can be selected. This implies that the
following inequality is satis�ed by all integer solutions:X

i2C
xi 6 jCj � 1

This inequality is called cover inequality. If all possible cover inequalities
are added to the original formulation of the knapsack problem, we obtain a
better formulation.
As we can see, the idea behind the formulation of cover inequalities for the
knapsack problem is very simple and intuitive. However, �nding a valid cut
is di¢ cult and it takes a lot of time in general.
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4 FQRP Models
In this section, we describe three integer LP models that can resolve the
FQRP. Moreover, we complete this chapter with the AMPL-codes. These
three models have di¤erent characteristics and structures. The �rst model
we are concerned with, is model A and it is strongly �ow-based. For each
vehicle k 2 P , we establish if that vehicle moves horizontally or vertically
in correspondence to a certain node of the grid. We describe the paths of
the vehicles exactly in this way. The �ow guarantees that the path of every
vehicle is continuous and that it starts and �nishes in the correct nodes. The
representation of the �ow needs several binary variables. The second model
we describe is model B. In this model, the paths of the vehicles are described
by giving the positions of their vertical moves. In other words, we just need
to state if, at each node of the grid, a vehicle moves vertically or not. Binary
variables are very useful and allow us to describe perfectly the event "in a
certain node a vehicle moves or not". Finally, the third model is model C. In
model C, we count the number of vertical moves associated to every column
in which a vehicle has to pass. As already said, there is a set of column-
indexes associated to every vehicle k 2 P , which is I(k). If we establish the
number of vertical moves that vehicle k performs in correspondence to each
column of I(k), we are able to build the path associated to k. The objective
function of the three models consists in minimizing the value of z, i.e., we
want to �nd the minimum number of levels necessary for all the vehicles to
complete all horizontal moves before reaching their �nal destinations. There
is an important fact that we need to underline immediately. In model A and
in model B, z has exactly the meaning of highest level in which a horizontal
move takes place. Di¤erently, in model C, the meaning of z is a bit di¤erent:
it represents the number of vertical moves that a vehicle performs in order
to reach the last level of the grid in which horizontal moves take place. It is
clear that, even if z always play the same role, its value is di¤erent depending
on whether the model is: in model A and B we count the horizontal levels
needed, in model C we count the vertical steps among the levels needed.

Remark 57 Denoting by z1 the optimal value of the objective function of
formulation A, by z2 the optimal value of the objective function of formula-
tion B and by z3 the optimal value of the objective function of formulation
C, it holds: �

z1 = z2
z2 = z3 + 1

In fact, the latter formulation does not count the last vertical step to reach
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the destination.

4.1 Model A
4.1.1 Description
VARIABLES In order to describe the path of the vehicles, we need some
binary variables. For each k 2 R let�s de�ne:

xv(k; i; j)

which is 1 if the edge joining nodes (i; j) and (i; j+1) belongs to the shortest
path of vehicle k (and is 0 otherwise); these variables are de�ned
8i 2 I(k) and 8j 2 J ;

xh(k; i; j)

which is 1 if the edge joining nodes (i; j) and (i+1; j) belongs to the shortest
path of vehicle k (and is 0 otherwise); these variables are de�ned
8i : �(k) � i � !(k)� 1 and 8j 2 J .
For each k 2 L let�s de�ne:

yv(k; i; j)

which is 1 if the edge joining nodes (i; j) and (i; j+1) belongs to the shortest
path of vehicle k (and is 0 otherwise); these variables are de�ned
8i 2 I(k) and 8j 2 J ;

yh(k; i; j)

which is 1 if the edge joining nodes (i; j) and (i�1; j) belongs to the shortest
path of vehicle k (and is 0 otherwise); these variables are de�ned
8i : !(k) + 1 � i � �(k) and 8j 2 J .

LINEAR MODEL

min z
(23)

s:t:
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xh(k; �(k); 1) + xv(k; �(k); 1) = 1 8k 2 R
xv(k; !(k);m� 1) = 1 8k 2 R
xv(k; i; j � 1) + xh(k; i� 1; j) = xv(k; i; j) + xh(k; i; j)

8k 2 R;8i 2 I(k);8j 2 J
(24)

xh(k; �(k)� 1; j) = 0 8k 2 R;8j 2 J
xh(k; !(k); j) = 0 8k 2 R;8j 2 J
xv(k; i; 0) = 0 8k 2 R;8i 2 I(k)

(25)

yh(k; �(k); 1) + yv(k; �(k); 1) = 1 8k 2 L
yv(k; !(k);m� 1) = 1 8k 2 L
yv(k; i; j � 1) + yh(k; i+ 1; j) = yv(k; i; j) + yh(k; i; j)

8k 2 L;8i 2 I(k);8j 2 J
(26)

yh(k; �(k) + 1; j) = 0 8k 2 L;8j 2 J
yv(k; i; 0) = 0 8k 2 L;8i 2 I(k)

(27)

xv(k1; i; j � 1) + xh(k1; i� 1; j) + yv(k2; i; j � 1) + yh(k2; i+ 1; j) � 1
i = c(k1; k2);8k1 2 R;8k2 2 L;8j 2 J

(28)

xh(k1; i; j) + y
h(k2; i+ 1; j) � 1 i = c(k1; k2);8k1 2 R;8k2 2 L;8j 2 J

(29)

z � j � xh(k; i; j) 8k 2 R;8i : �(k) � i � !(k)� 1;8j 2 J
z � j � yh(k; i; j) 8k 2 L;8i : !(k) + 1 � i � �(k);8j 2 J

(30)

The variables of this model are the following:
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� z objective function integer, >=0

� xv(k; i; j)

8<:
8k 2 R
8i 2 I(k)
8j 2 J

binary

� xh(k; i; j)

8<:
8k 2 R
�(k) � i � !(k)� 1
8j 2 J

binary

� yv(k; i; j)

8<:
8k 2 L
8i 2 I(k)
8j 2 J

binary

� yh(k; i; j)

8<:
8k 2 L
!(k) + 1 � i � �(k)
8j 2 J

binary

The �rst constraint of the group (24) assures that each vehicle k 2 R moves
either horizontally or vertically from its starting position. The second con-
straint says that the last move of the vehicle k 2 R (that is the move the
vehicle performs to reach its �nal position) is a vertical move. The third
constraint is called "�ow balance" equation and it states that the number
of edges entering in a node must coincide with the number of edges leaving
from that node. We have to pay attention to some border conditions, which
are those in (25), and they guarantee that the "�ow balance" is respected
also in the borders of the grid.
The constraints in (26) regard vehicles of L and their meaning is exactly the
same of the constraints in (24). In (27) we have some border conditions of
the �ow, like in (25).
All the above constraints guarantee that, for each k 2 P , the edges as-
sociated with variables that take value 1 provide a shortest path. Other
constraints are necessary to prevent possible con�icts, i.e., situations where
two di¤erent vehicles compete to reach the same node or to use the same
edge at the same time. The constraints that prevent such con�icts are those
of the groups (28) and (29) respectively.
Finally, the variable z is linked to the variables xh and yh through the (30).

4.1.2 Implementing Notes
We give an advice about the implementation of model A with software
AMPL. This model strongly uses "�ow balance" equations and lots of vari-
ables, many of them are needed only to �x the border�s conditions of the
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�ow. Indeed, when we consider a vehicle k 2 R, there is a natural set of
binary variables associated to it. These variables are:�

xh(k; i; j) with: �(k) 6 i 6 !(k)� 1; j 2 J
xv(k; i; j) with: �(k) 6 i 6 !(k); j 2 J

However, we can notice that constraints (25) need also to use variables
xv(k; i; 0) 8i 2 I(k) and xh(k; �(k) � 1; j) 8j 2 J , which are not present in
the natural set. If we want the model to work, we have to �x this index
mismatch. In my implementation I decided to create the sets of variables
xv(k; i; 0) 8i 2 I(k) and xh(k; �(k) � 1; j) 8j 2 J and �x them at value
0, paying attention to the fact that the "�ow balance" equation has to
hold also for the lower row of the grid. Indeed, the �ow assumes value 1
for all the nodes of the path of vehicle k, starting from node (�(k); 1) up
to node(!(k);m). This means that (in relation to the node (�(k); 1)) one
between xv(k; �(k); 0) and xh(k; �(k)�1; 1) must be 1. I decided to impose:

xh(k; �(k)� 1; 1) = 1

We can do a similar reasoning for every vehicle k 2 L. The natural set of
variables associated to a generic k 2 L is:�

yh(k; i; j) with: !(k) + 1 6 i 6 �(k); j 2 J
yv(k; i; j) with: !(k) 6 i 6 �(k); j 2 J

We can notice that the constraints (27) use variables yv(k; i; 0) 8i 2 I(k)
and yh(k; �(k)+1; j) 8j 2 J . Also in this case, I created these variables and
imposed them equal to 0, providing the "�ow balance" equation continue
to hold everywhere, especially in correspondence to the node (�(k); 1). I
imposed one between yv(k; �(k); 0) and yh(k; �(k) + 1; 1) equal to 1:

yh(k; �(k) + 1; 1) = 1

In this way, the �ow assumes value 1 in correspondence to the �rst node of
every vehicle k 2 P and the implementation of model A runs correctly.

4.1.3 Code
For the code, see Appendix 1.
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4.2 Model B
4.2.1 Description
VARIABLES Recall that we can denote the position of a vehicle through
a couple of numbers (i; j) which represent respectively the column and the
row of the vehicle. We will use the following variables:

vk(i; j)

which take value 1 if vehicle k 2 P moves vertically at position (i; j) of the
grid and j 6 z, (0 otherwise); they are de�ned for each
k 2 P; i 2 I(k); j 2 J:
Then we need the variables:

�d(p; q; l)

which represent the di¤erence of the number of vertical moves under level
l and up to the median column, between vehicles p 2 R and q 2 L; they
are de�ned for each level l = 2; ::;m� 1 and each pair of con�icting vehicles
(p; q) 2 C:

�u(p; q; l)

which represent the di¤erence of the number of vertical moves from level l
to level m � 1 and after the median column, between vehicles p 2 R and
q 2 L. It is de�ned for each l 2 J and pair of con�icting vehicles (p; q) 2 C:

LINEAR MODEL

min z
(31)

s:t:

X
i2I(k)

m�1X
j=1

vk(i; j) = z 8k 2 P

(32)
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m�1X
j=1

vk(!(k); j) > 1 8k 2 P

(33)

X
i2I(k)

vk(i; j) 6 1 8k 2 P; j 2 J

(34)

vk(i; j) 6
maxf�(k);igX
t=minf�(k);ig

vk(t; j � 1) 8k 2 P; i 2 I(p); j = 2; ::;m� 1

(35)

�d(p; q; l) =

�������
c(p;q)X
i=�(p)

l�1X
j=1

vp(i; j)�
�(q)X

i=d�(p)+�(q)
2

e

l�1X
j=1

vq(i; j)

������� 8(p; q) 2 C; l = 2; ::;m� 1

(36)

�u(p; q; l) =

�������
!(p)X

i=d�(p)+�(q)
2

e

m�1X
j=l

vp(i; j)�
c(p;q)X
i=!(q)

m�1X
j=l

vq(i; j)

������� 8(p; q) 2 C; l 2 J

(37)

�d(p; q; l) + �u(p; q; l) > 1 8(p; q) 2 C; l = 2; ::;m� 1
(38)

�u(p; q; 1) > 1 8(p; q) 2 C
(39)

vp(i; j) 2 f0; 1g 8p 2 P; i 2 I(p); j 2 J

�d(p; q; l) 2 Z 8(p; q) 2 C; l = 2; ::;m�1
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�u(p; q; l) 2 Z 8(p; q) 2 C; l 2 J

z 2 Z

Constraint (32) guarantees that the number of vertical moves that each
vehicle performs in its range of columns must be exactly z. Constraint
(33) states that each vehicle has to perform at least 1 vertical move in
correspondence to the column in which its �nal position is settled. The
third constraint, i.e. (34), is a limitation on the number of vertical moves
that each vehicle k 2 P can perform in a generic position (i; j) with i 2 I(k)
and j 2 J : vehicle k can perform at most 1 vertical step there. Constraint
(35) is needed in order to guarantee the continuity of every path. Given
k 2 P , the number of vertical moves that it performs in a generic position
(i; j) with i 2 I(k) and j 2 J can be 1 only if the vehicle has the possibility to
pass through that position, that is it has performed at least one vertical step
in the previous level j�1 in the columns right before column i. Constraints
(36) and (37) represent exactly the meaning of the variables �d(p; q; l) and
�u(p; q; l) respectively. Notice that these constraints are not linear obviously
and they need to be linearized. Constraint (38) and (39) guarantee that
every couple (p; q) 2 C does not create a con�ict. Indeed, we force the two
vehicles to perform di¤erent many vertical steps until reaching their con�ict
column(s). Finally, the other constraints only state that the variables are
binary or integer.

4.2.2 Linearization
We have to linearize constraints (36) and (37). Replacing everyone of these
constraints with two inequalities of type � > ::: is wrong. In fact, a feasible
solution would be setting z to 1, all variables v but vk(!(k); 1) to 0, and
all variables � to 1: the linearizing constraints would be satis�ed (strictly).
An alternative way consists in using the technique of "Big M". Suppose
� = ja� bj, we linearize this expression in this way:

� 6 a� b+Mw
� 6 b� a+M(1� w)
� > 0
w 2 f0; 1g
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where w = 1 if a < b, 0 otherwise. Proceeding like this, constraint (36) can
be replaced with:

�d(p; q; l) =

c(p;q)X
i=�(p)

l�1X
j=1

vp(i; j)�
�(q)X

i=d�(p)+�(q)
2

e

l�1X
j=1

vq(i; j) +mwd(p; q; l)

8(p; q) 2 C; l = 2; ::;m� 1

�d(p; q; l) = �
c(p;q)X
i=�(p)

l�1X
j=1

vp(i; j) +

�(q)X
i=d�(p)+�(q)

2
e

l�1X
j=1

vq(i; j) +m(1� wd(p; q; l))

8(p; q) 2 C; l = 2; ::;m� 1

wd(p; q; l) 2 f0; 1g 8(p; q) 2 C; l = 2; ::;m�1

Similarly, constraint (37) can be replaced with:

�u(p; q; l) =

!(p)X
i=d�(p)+�(q)

2
e

m�1X
j=l

vp(i; j)�
c(p;q)X
i=!(q)

m�1X
j=l

vq(i; j) +mwu(p; q; l)

8(p; q) 2 C; l 2 J

�u(p; q; l) = �
!(p)X

i=d�(p)+�(q)
2

e

m�1X
j=l

vp(i; j) +

c(p;q)X
i=!(q)

m�1X
j=l

vq(i; j) +m(1� wu(p; q; l))

8(p; q) 2 C; l 2 J

wu(p; q; l) 2 f0; 1g 8(p; q) 2 C; l 2 J

De�nitely, the variables we need for this model are:

39



� z objective function integer, >=0

� vk(i; j)

8<:
8k 2 P
8i 2 I(k)
8j 2 J

binary

� �d(p; q; l)

�
(p; q) 2 C
l = 2; ::;m� 1 integer

� �u(p; q; l)

�
(p; q) 2 C
8l 2 J integer

� wd(p; q; l)

�
(p; q) 2 C
l = 2:; ; :m� 1 binary

� wu(p; q; l)

�
(p; q) 2 C
8l 2 J binary

4.2.3 Code
For the code, see Appendix 1.

4.3 Model C
4.3.1 Description
VARIABLES We need the following integer variables:

vk(i)

which represents the number of vertical movement that a vehicle k 2 P
performs in correspondence to column i; these variables are de�ned
8k 2 P and 8i 2 I(k):
Given a pair of vehicles (p; q) 2 C, we also need the following binary vari-
ables:

w(p; q)

that take value one (resp. zero) if vehicle p crosses the con�icting column(s)
at a strictly higher (resp. lower) level than vehicle q:

LINEAR MODEL

min z
(40)
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s:t:

X
i2I(k)

vk(i) = z 8k 2 P

(41)

c(p;q)X
i=�(p)

vp(i) 6
�(q)X

i=c(p;q)+1

vq(i)�1+mw(p; q) 8(p; q) 2 Codd

(42)

�(q)X
i=c(p;q)+1

vq(i) 6
c(p;q)X
i=�(p)

vp(i)�1+m(1�w(p; q)) 8(p; q) 2 Codd

(43)

c(p;q)X
i=�(p)

vp(i) 6
�(q)X

i=c(p;q)+1

vq(i)�1+mw(p; q) 8(p; q) 2 Ceven

(44)

�(q)X
i=c(p;q)

vq(i) 6
c(p;q)�1X
i=�(p)

vp(i)�1+m(1�w(p; q)) 8(p; q) 2 Ceven

(45)

z 2 Z

vk(i) 2 Z+ 8k 2 P;8i 2 I(k)

w(p; q) 2 f0; 1g 8(p; q) 2 C
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The variables of this last model are:

� z objective function integer, >=0

� vk(i)

�
8k 2 P
8i 2 I(k) integer

� w(p; q) (p; q) 2 C binary

The �rst equation (40) is the objective function and consists in minimizing
z. The second equation (41) states that for every vehicle p 2 P , the number
of vertical steps that it performs in its range of columns should be exactly
z. The constraints (42) and (43) consider an arc-con�ict between vehicles
p 2 R and q 2 L. Notice that the sums at the �rst member of these two
constraints represent the maximum level reached by vehicle p (resp. q) at
column bc(p; q)c (resp. dc(p; q)e), that is the level at which vehicle p (resp. q)
crosses the arc between bc(p; q)c and dc(p; q)e (resp. dc(p; q)e and bc(p; q)c).
These constraints state that the level in which p and q cross the con�icting
columns is not the same, in other words we are stating that arc-con�icts are
not allowed. Similarly, constraints (44) and (45) consider a node-con�ict
between vehicles p 2 R and q 2 L. The constraints state that the levels in
which vehicle p and q cross the con�ict-column must di¤er at least by one
unit if we want to avoid a node-con�ict.

4.3.2 Code
For the code, see Appendix 1.

Remark 58 It is very important to underline that all these models always
admit one optimal solution (Theorem 44). Indeed, the polyhedron repre-
senting their feasible region is non-empty and bounded. We guarantee the
existence of a solution choosing m > m�, that is using a grid with a number
of levels greater or equal then the minimum number of levels m� that ensures
the existence of a solution for any instance of FQRP given the number of
vehicles n. Moreover, the polyhedron is bounded because it is contained in
the hypersphere (having dimension equal to the total number of variables) of
radius m�.
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5 Computer Science Devices

5.1 Software AMPL and Connection to
LABNUM

Making several examples has been fundamental for the realization of this
work. Especially at the beginning, it was useful to see concretely some solu-
tions and some variables�values. We have tested several instances of FQRP,
solving model C with AMPL (initially we used version CPLEX 12.8.0.0,
which is the basic one). Since we will provide many AMPL-outputs and
AMPL�s front is not universal, we brie�y describe how to read such an out-
put. For instance, consider the output given in Figure 1.

ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 1
44 dual simplex iterations (0 in phase I)
z = 1

v [*,*]
:    1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19 :=
4    .   .   .   1 0   0   .   .   .   .   .   .   .   .   .   .   .   .   .
6    .   .   .   0   0   1   .   .   .   .   .   .   .   .   .   .   .   .   .
9    .   0   1   0   0   0   0   0   0   .   .   .   .   .   .   .   .   .   .
...
;

w [*,*]
:     6      8      9      11     14     15     18    19     :=
1     .      .     0.25   0.25   0.25    .      .      .
4    0.25   0.25    .      .      .      .      .      .
...
;

Figure 1: Example of AMPL�s output

The �rst line is a prompt-line: with command "include" we ask AMPL to
solve a speci�c instance. The output gives us several information about the
instance. Firstly, we see the value of the objective function, indicated as
"objective .." or "z = ::". Secondly, we can be interested in the value of
variables vp(i); for some p 2 P . We read it in matrix v[�; �]: every line is
associated to a particular vehicle p 2 P and the columns represent orderly
the columns of the grid. If vehicle p performs a vertical step in column i we
read 1 in position v[p; i], if vehicle p performs no one vertical step in column
i we read 0 in position v[p; i], if column i does not belong to I(p) we read
a � in position v[p; i]. Sometimes, it is possible that AMPL prints v[�; �]T
(T stands for transpose) instead of v[�:�]. Thirdly, we can be interested in
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the values of variables w(p; q) for some (p; q) 2 C. We read these values in
matrix w[�; �]: every line contains a vehicle of R and the columns contain
vehicles of L. If (p; q) 2 C, we �nd the value of w(p; q) in position w[p; q]. If
(p; q) does not belong to C, we �nd a dot � in position w[p; q]. Sometimes,
it is possible that AMPL prints w[�; �]T .
AMPL�s version CPLEX 12.8.0.0 is a basic version, that is it can solve only
limited problems with 500 variables and 500 constraints at most. We used
it to solve small and medium instances, containing from 4 to 20 vehicles.
However, it was possible that some instances containing 20 vehicles were too
large to be solved. In order to test greater instances, it became necessary
to dispose of a stronger version of AMPL. For this purpose, we connected
with the computer laboratories of Torre Archimede and particularly to the
Labnum, which contains ILOG AMPL, a stronger version of this software.
The procedure occurs from Command Line and is quite easy (we describe it
for a Windows user). It is su¢ cient to open 2 command lines and give the
following commands in the order in which they are written (see Figure 2).

1^ COMMAND LINE:
1) ssh gbortolu@sshtorre.math.unipd.it
2) ssh labnum01

N.B: Connection with the laboratory Labnum.

2^ COMMAND LINE:
3) scp namefile.mod gbortolu@sshtorre.unipd.it:~
4) scp namefile.dat gbortolu@sshtorre.unipd.it:~
5) scp namefile.run gbortolu@sshtorre.unipd.it:~

N.B: Upload files in directory “home”of Labnum.

1^ COMMAND LINE:
6) ls (optional)
7) ampl
8) include namefile.run;

N.B: After checking the content of directory “home”, open AMPL and solve the problem.

Figure 2: Commands

This way, we can solve instances of any dimension. Every time we want to
change an instance, it is su¢ cient to modify �le ".dat" and upload the new
�le like before.
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5.2 Software PORTA 1.4.1
In this part, we focus our attention on the use of software PORTA. The
name PORTA is an abbreviation for POlyhedron Representation Transfor-
mation Algorithm. Indeed, PORTA is a collection of routines for analyzing
polyhedra. The polyhedra are either given as the convex envelope of a set
of points, or as a system of linear equations and inequalities. The software
is always able to provide one of the two representations, given the other.
We have used software PORTA this way: given an instance of FQRP and
established the set of points representing all its feasible solutions, we asked
PORTA to transform the set of points in a set of (in)equalities. The goal
was using the (in)equalities provided by the software as hints in order to
write valid cuts for model C. We now describe how we have worked with
PORTA.
First of all, we translated an instance of the problem into PORTA�s language:
we renamed all variables vk(i) k 2 P; i 2 I(k) with names xi orderly. We
created a �le with the extension .poi with the points/ feasible solutions of
the instance. Then, using the command traf from the command lines, the
software created another �le .ieq with the (in)equalities representing the
polyhedron of the instance.

Example 59 Consider an instance with 4 vehicles, assume � = (1; 3; 4; 2)
and ! = (3; 1; 2; 4). Vehicles 1 and 2 can move in columns f1; 2; 3g and
vehicles 3 and 4 can move in columns f2; 3; 4g. In each one of these columns
a vehicle can perform a certain number of vertical moves, which can be 0
or at most m� (remembering that m� is the number of needed lines that
ensures the existence of a feasible solution and m� = 3 for this instance)
Instead of writing all the variables vk(i) for k 2 P; i 2 I(k) assuming values
in f0; ::;m�g, we make the variables v assume only values only in f0; 1g
because we have previously resolved this instance of the problem and we have
found that an optimal solution exists with m = 1. Obviously the polyhedron
associated changes depending on the points that we assume to be set of all
feasible points. However we only want to explain how PORTA works and so
the polyhedral con�guration does not matter. We renamed the variables v as
follow:

45



� Vehicle 1 I(1) = f1; 2; 3g

8<:
x1 = v

1(1)
x2 = v

1(2)
x3 = v

1(3)

� Vehicle 2 I(2) = f1; 2; 3g

8<:
x4 = v

2(1)
x5 = v

2(2)
x6 = v

2(3)

� Vehicle 3 I(3) = f2; 3; 4g

8<:
x7 = v

3(2)
x8 = v

3(3)
x9 = v

3(4)

� Vehicle 4 I(4) = f2; 3; 4g

8<:
x10 = v

4(2)
x11 = v

4(3)
x12 = v

4(4)

Using these new variables, a feasible solution is the following:
(1; 0; 0; 1; 0; 0; 1; 0; 0; 1; 0; 0; 1; 0; 0) which means that vehicle 1 can move 1
time vertically in column 1, vehicle 2 can move 1 time vertically in column
1, vehicle 3 can move 1 time vertically in column 2 and vehicle 4 can move
1 time vertically in column 2. The �le .poi has this form (see Figure 3):

DIM = 12

CONV_SECTION
1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1

END
DIMENSION OF THE POLYHEDRON : 12

Figure 3: �le of type "poi"

So the polyhedron represented by the convex hull of these points is trans-
formed into the same polyhedron represented now by a set of (in)equalities.
The output is the following (see �gure 4):
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DIM = 12

VALID
0 0 1 0 0 1 0 0 1 0 0 1

INEQUALITIES_SECTION
(  1) ­x2                                  == 0
(  2) ­x5                         == 0
(  3) ­x8                == 0
(  4) ­x11     == 0
(  5)                         +x9 ­x12 == 0
(  6)                   +x7 ­x10         == 0
( 7)                +x6 ­x9             == 0
(  8)          +x4 ­x7                   == 0
(  9)       +x3 ­x6                      == 0
( 10) +x1 ­x4                            == 0
( 11)                            +x10    +x12 == 1

( 1) ­x12 <= 0
(  2) +x12 <= 1

END

Figure 4: �le of type "ieq"

As already said, the goal was �nding one or more (in)equalities that could
suggest ideas for valid cuts of the problem. Looking at the (in)equalities
provided by PORTA for every single example, we tried to deduce general
rules which could hold in general. In other words, we tried to generalize the
constraints of a generic instance, in order to obtain a constraint valid for
every problem.
This process, that apparently is easy, turned out to be very di¢ cult for
di¤erent reasons. We started considering simple examples like above, that
is instances with only 4 or 5 vehicles. It was very easy to �nd all the feasible
solutions of such an instance and we proceeded "by hand". In these cases
the convex hull was composed only of few points (4 or 5 at most) but, the
negative fact was that the (in)equalities provided by PORTA where trivial
and did not suggest any interesting ideas.

Recalling the previous example, notice that most of the constraints are equa-
tions of type: xi = 0 or xi + xj = 0:

Later we started using larger instances, composed of 10 vehicles, hoping
that we could obtain stronger information. Working with these instances,
another problem arose. Indeed, it is di¢ cult to write all the feasible solutions
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of huge instances but, this is a necessary request if we want PORTA to work
correctly. However writing all the feasible solutions is not impossible and
we provide a possible way to follow in order not to forget any point.

Criterion 60 1. Consider the possible values of x1: x1 2 fa0; b0; c0::g;

2. Fix x1 at the �rst value: x1 = a0;

3. Now consider x2 and all its possible values: x2 2 fa00; b00; c00:::g;

4. Consider only the values of x2 that allow a feasible pattern with x1
(for example (a0; b00) and (a0; c00));

5. Consider the values of x3: x3 2 fa000; b000; c000:::g and for each one of the
previous couples establish which values of x3 gives a feasible solution
(for example (a0; b00; a000));

6. Do the same for x4;

7. Start from the �rst point with the second value of x1.

Written all the needed points, we could obtain PORTA�s results. Even if we
was able to manage with huge instances, the interpretation of these results
revealed to be hard because the number of variables was high (about 40
variables). Equations and inequalities provided for such examples were not
trivial like above and the huge number of involved variables did not allow
us to �nd an idea for a valid inequality. Using the software this way, we did
not �nd any signi�cative result.
Later in time we tried to use PORTA for a di¤erent purpose. After �nd-
ing some valid inequalities for model C, we tried using PORTA in order
to understand if our inequalities were, afterwards, the same that PORTA
suggested. However, we did not �nd any commonality.
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6 New Valid Inequalities
We started the research of new valid inequalities for model C considering
small instances of the problem, looking both at the integer solution and also
at the relaxed solution (provided by AMPL). For every test, we tried to
understand if the pattern associated to the relaxed solution was feasible or
not and, in the case it was not, we tried to understand the reason why that
pattern cannot go right. Putting together the observations obtained from
several cases and generalizing them, we obtained the following inequalities.
After making sure of the fact that they were really valid cuts, we added them
to the model and proceeded with the trial, continuing to search the reason
why the continuous relaxation still gave non-feasible solutions. In the end,
we have found 7 sets of valid inequalities. In the following part we suggest
them. They are written in this work in the same order in which they have
been discovered. As we already said, we add these new inequalities to model
C and, every time we add an inequality, we keep all the previous ones in the
model. In this way, we test if the most recent inequalities cut other points
with respect to the previous ones.

6.1 First Set of Inequalities
The �rst set of inequalities we provide consists in a relation between the
value of the objective function and the value of w(p; q) 8(p; q) 2 C.

Theorem 61 Given any instance of FQRP, for any feasible solution of
formulation C, it holds that:

z > w(p; q) 8(p; q) 2 C (46)

Proof. This inequality follows from constraints (43) and (45) respectively
for odd and even con�icts. Obviously, if w(p; q) = 0 the inequality is trivial
for any type of con�ict. Consider any couple (p; q) 2 Codd such that w(p; q) =
1 and let�s prove the inequality holds. Recall constraint (43) states that:

�(q)X
i=c(p;q)+1

vq(i) 6
c(p;q)X
i=�(p)

vp(i)� 1 +m(1� w(p; q))

Since w(p; q) = 1, in relation to this pair the constraint becomes:
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�(q)X
i=c(p;q)+1

vq(i) 6
c(p;q)X
i=�(p)

vp(i)� 1

It can be rewritten as follow:

c(p;q)X
i=�(p)

vp(i) >
�(q)X

i=c(p;q)+1

vq(i) + 1

and we can limit (from the top) the �rst sum with z and we can limit (from
the bottom) the second sum with 0. This way we obtain:

z >
c(p;q)X
i=�(p)

vp(i) >
�(q)X

i=c(p;q)+1

vq(i) + 1 > 0 + 1

but w(p; q) = 1 and the pair we are using is generic. So we have:

z > w(p; q) 8(p; q) 2 Codd
Now consider any couple (p; q) 2 Ceven such that w(p; q) = 1 and let�s prove
the inequality for an even con�ict. Recall constraint (45), it states that:

�(q)X
i=c(p;q)

vq(i) 6
c(p;q)�1X
i=�(p)

vp(i)� 1 +m(1� w(p; q))

Since w(p; q) = 1, it becomes:

�(q)X
i=c(p;q)

vq(i) 6
c(p;q)�1X
i=�(p)

vp(i)� 1

It can be rewritten as follow:

c(p;q)�1X
i=�(p)

vp(i) >
�(q)X

i=c(p;q)

vq(i) + 1

and limiting the sums like above we obtain:

z >
c(p;q)�1X
i=�(p)

vp(i) >
�(q)X

i=c(p;q)

vq(i) + 1 > 1
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Recalling that w(p; q) = 1 and the fact that we are using a generic pair, it
holds:

z > w(p; q) 8(p; q) 2 Ceven

Example 62 Let�s consider an instance of the problem with 5 vehicles and
assume � = (1; 2; 3; 4; 5) and ! = (2; 1; 3; 5; 4). When we solve the continu-
ous relaxation, an optimal solution is given by z = 0 with several variables
w that assume values strictly greater than 0, for example w(1; 2) = 0:25 (see
Figure 5). Adding the new constraint (46), obviously this solution becomes
unfeasible because:

z = 0 � w(1; 2) = 0:25

ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 0
2 dual simplex iterations (0 in phase I)
z = 0

w :=
1 2   0.25
4 5   0.25
;

Figure 5: AMPL output example 62

Example 63 Let�s consider an instance of the problem with 15 vehicles and
assume � = (1; 2; 3; ::; 14; 15) and ! = (2; 5; 9; 10; 3; 4; 14; 7; 12; 8; 15; 1; 6; 11; 13).
When we solve the continuous relaxation, an optimal solution is given by
z = 0 with several variables w that assume values strictly greater than 0, for
example w(3; 5) = 0:25 (see Figure 6). Adding the new constraint, obviously
this solution becomes unfeasible because:

z = 0 � w(3; 5) = 0:25
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ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 0
22 dual simplex iterations (0 in phase I)
z = 0

w [*,*] (tr)
:     2      3      4      7      9      11     :=
5    0.25   0.25   0.25    .      .      .
6    0.25   0.25   0.25    .      .      .
8     .      .      .     0.25    .      .
10    .      .      .     0.25   0.25    .
12    .     0.25   0.25   0.25   0.25   0.25
13    .     0.25   0.25   0.25   0.25   0.25
14    .      .      .      .     0.25   0.25
15    .      .      .      .      .     0.25
;

Figure 6: AMPL output example 63

Example 64 Let�s consider an instance of the problem with 20 vehicles and
assume � = (1; 2; 3; ::; 14; 15) and
! = (2; 10; 3; 5; 20; 4; 14; 17; 19; 18; 15; 16; 6; 11; 8; 9; 7; 12; 1; 13). An optimal
solution of the continuous relaxation is given by z = 0 and several variables
w assume values strictly greater than 0, for example w(2; 13) = 0:25 (see
Figure 7). Adding the new constraint, this solution becomes unfeasible:

z = 0 � w(2; 13) = 0:25

ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 0
61 dual simplex iterations (0 in phase I)
z = 0

w [*,*]
:     6      13     14     15     16     17     18     19     20     :=
2    0.25   0.25    .     0.25   0.25   0.25 .      .      .
4    0.25    .      .      .      .      .      .      .      .
5    0.25   0.25    .     0.25   0.25   0.25    .     0.25    .
7     .     0.25    .     0.25   0.25   0.25   0.25   0.25   0.25
8     .     0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25
9     .     0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25
10    .     0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25
11    .     0.25   0.25   0.25   0.25   0.25   0.25   0.25    .
12    .     0.25   0.25   0.25   0.25   0.25   0.25   0.25   0.25
;

Figure 7: AMPL output example 64

52



6.2 Second Set of Inequalities
The second set of valid inequalities that we suggest is very simple and it
guarantees that, given an instance with con�icts, the value of the objective
function is at least 1. The new constraint uses a new parameter � that
assumes value 1 if the instance contains con�icts, 0 otherwise.

Theorem 65 Given any instance of FQRP, for any feasible solution of
formulation C, it holds that:

z > �

where � = 1 if C 6= ? and � = 0 if C = ?.

Notice that, if the instance does not contain any con�ict, the value of the pa-
rameter � is 0 and the inequality becomes trivial. In a con�ict-free instance,
all vehicles belong to S and, obviously, the optimal value of the objective
function must be 0.

Proof. Let�s distinguish 2 cases: if � = 0, the constraint is trivial. If � = 1,
the constraint states that the value of the objective function is at least 1. In
this situation, there is at least 1 pair of vehicles that create a con�ict. Since
they cannot cross their con�ict column(s) in the same level, it must be true
that one of them crosses their con�ict column(s) at least at level 0 and the
other one crosses their con�ict column(s) at least at level 1. De�nitely, one
of them has to perform at least one vertical move. This means exactly that
z > 1 = �.

Example 66 Consider again example 63. This instance contains several
con�icts, for example (2; 5) 2 Codd and (7; 13) 2 Ceven and so � = 1 by
de�nition. The solution provided by the continuous relaxation after adding
to the model only the �rst new inequality gives z = 0:2 (see Figure 8). Adding
the second inequality, we require that z > � and so the above solution becomes
unfeasible:

z = 0:2 � � = 1
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ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 0.2
42 dual simplex iterations (0 in phase I)
z = 0.2

Figure 8: AMPL output example 66

Example 67 Let�s consider another instance of the problem with 15 vehi-
cles and assume � = (1; 2; 3; ::; 14; 15) and
! = (6; 9; 12; 3; 2; 4; 11; 10; 5; 1; 7; 13; 8; 15; 14). This instance contains sev-
eral con�icts, for example (7; 10) 2 Codd and (3; 11) 2 Ceven and so � = 1.
Solving the continuous relaxation, an optimal solution is given by z = 0:2
(see Figure 9). Adding the second inequality, the previous solution becomes
unfeasible because:

z = 0:2 � � = 1

ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 0.2
42 dual simplex iterations (0 in phase I)
z = 0.2

Figure 9: AMPL output example 67

Remark 68 These two inequalities are needed essentially for one speci�c
reason. When we started solving the continuous relaxation of certain in-
stances, we noticed that the solution given by z = 0 was always an opti-
mal solution. According to constraint (41), z = 0 implies that vk(i) = 0
8k 2 P;8i 2 I(k). The pattern associated to this solution cannot always be
accepted: indeed, it is su¢ cient that an instance contains one con�ict and z
cannot be 0, as we have just seen. Consequently, with these inequalities we
ensure that the solution with z = 0 is cut away from the feasible region of
the continuous relaxation of the instances which are not con�ict-free.
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6.3 Third Set of Inequalities
The third set of inequalities regards all the couples of vehicles that belong
to Ceven and it consists in a limitation on the number of vertical moves they
can perform in their con�ict column. Let (p; q) 2 Ceven be a pair of vehicles
that could create an even con�ict. Recall that in this case c(p; q) is the
column:

c(p; q) = [�(p) + �(q)]=2

Theorem 69 Given any instance of FQRP, for any feasible solution of
formulation C, it holds that:

vp(c(p; q)) + vq(c(p; q)) 6 z � 1 8(p; q) 2 Ceven (47)

Proof. Let�s suppose ad absurdum that:

vp(c(p; q)) + vq(c(p; q)) > z

and let�s consider two di¤erent cases.

1. It holds that:

vp(c(p; q)) + vq(c(p; q)) = z

Column c(p; q) contains z edges and, in this case, they are all used by
vehicles p and q. Notice that it is not possible that an edge of c(p; q)
used by vehicle p is also used by vehicle q or vice versa. [Suppose
vehicle p uses an edge of c(p; q) starting from a certain node M in
column c(p; q). If vehicle q also uses this edge, it means that q at
some point uses the node M . However, column c(p; q), by de�nition,
is exactly in the middle of columns �(p) and �(q) so vehicles p and
q need the same time to reach the generic node M . In this way, p
and q would create a node-con�ict in correspondence toM , but this is
impossible because we cannot allow node-con�icts]. At this point, we
have that the paths of p and q cannot share any edge of column c(p; q)
but, all the edges of column c(p; q) are used by exactly one of them.
This is impossible because a node-con�ict would arise. [Let�s suppose
WLG p is the �rst vehicle that reaches column c(p; q) (both p and q
must cross column c(p; q) at some point by de�nition of Ceven pairs),
this means that there exists a node M 0 in column c(p; q) such that the
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portion of path that p performs in column c(p; q) ends in M 0 and the
portion of path that q performs in column c(p; q) starts in M 0. Like
before, p and q need the same time to reachM 0 and they would create
a node-con�ict there]. Consequently, the previous assumption brings
always to con�icts so it cannot be true. This means that at least one
edge of column c(p; q) cannot be used by any vehicle of the pair and
it is true that:

vp(c(p; q)) + vq(c(p; q)) < z

2. It holds that:

vp(c(p; q)) + vq(c(p; q)) > z

The column c(p; q) contains z edges. If the sum of the vertical move-
ments over these edges is greater than z, it means that the two vehicles
share some of them. In this situation we have that at least one edge
belongs to the path of both vehicles but, this is impossible because a
con�ict would arise (see point 1). Also the second assumption brings
to a con�ict so it cannot be true.

Both cases give a contradiction, it follows that the thesis must be true.

Remark 70 Let�s show that this new constraint is stronger than the one
we could obtain combining some constraints of the model. We can rewrite
constraint (44) in this way:

c(p;q)X
i=�(p)

vp(i) 6
�(q)X

i=c(p;q)+1

vq(i)� 1 +mw(p; q) + vq(c(p; q))� vq(c(p; q))

=

�(q)X
i=c(p;q)

vq(i)� 1 +mw(p; q)� vq(c(p; q))

and we can use constraint (45) at the second member:
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c(p;q)X
i=�(p)

vp(i) 6
c(p;q)�1X
i=�(p)

vp(i)� 1 +m(1� w(p; q))� 1 +mw(p; q)� vq(c(p; q))

=

c(p;q)�1X
i=�(p)

vp(i)� 2 +m� vq(c(p; q))

Simplifying the last line, the constraint becomes:

c(p;q)�1X
i=�(p)

vp(i) + vp(c(p; q)) 6
c(p;q)�1X
i=�(p)

vp(i)� 2 +m� vq(c(p; q))

vp(c(p; q)) + vq(c(p; q)) 6 m� 2

but it holds generally z � 1 6 m� 2 and so our constraints is stronger than
the combination of the others.

We give some examples in order to show that this new constraint cuts some
solutions of the linear relaxation of lots of problems.

Example 71 Assume we are working with an instance of the problem com-
posed of 5 vehicles, assume the starting positions and the �nal positions of
the vehicles are respectively � = (1; 2; 3; 4; 5) and ! = (2; 4; 5; 3; 1). It is
clear that the couple (2; 4) belongs to Ceven and the con�ict column associ-
ated to this couple is column 3. When we solve the continuos relaxation of
this instance, we obtain a solution in which z = 1 and vehicle 4 moves one
time vertically in correspondence of column 3 (see Figure 10). After adding
the new constraint, this solution becomes unfeasible because:

v2(3) + v4(3) = 1 � z � 1 = 0
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ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 1
4 dual simplex iterations (0 in phase I)
z = 1

v :=
1 1   0
1 2   1
2 2   0
2 3   0
2 4   1
3 3   0
3 4   0
3 5   1
4 3   1
4 4   0
5 1   0
5 2   0
5 3   1
5 4   0
5 5   0
;

w :=
2 4   0.2
2 5   0.2
3 4   0.2
3 5   0.2
;

Figure 10: AMPL output example 71

Notice that it seems that vehicles 2 and 4 create a node con�ict in corre-
spondence of column 3, level 1. It is easy to see this, it is su¢ cient to draw
the patterns associated to the vehicles. However, no con�ict arises because
the value of variables w are smaller than 1 and so all the constraints of the
model that prevent node-con�icts are respected.

Example 72 Assume we are working with another instance composed of 5
vehicles and assume � = (1; 2; 3; 4; 5) and ! = (4; 5; 2; 1; 3). It is clear that
the couples (1; 3) and (1; 5) belong to Ceven and the con�ict column associated
to this couples are respectively column 2 and 3. When we solve the continuos
relaxation, we obtain a solution in which z = 1, vehicle 3 moves one time in
column 2 and vehicle 5 moves one time in column 3 (see Figure 11). After
adding the new constraint, this solution becomes unfeasible because:

v1(2) + v3(2) = 1 � z � 1 = 0

v1(3) + v5(3) = 1 � z � 1 = 0
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ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 1
7 dual simplex iterations (0 in phase I)
z = 1

v :=
1 1   0
1 2   0
1 3   0
1 4   1
2 2   0
2 3   0
2 4   1
2 5   0
3 2   1
3 3   0
4 1   0
4 2   1
4 3   0
4 4   0
5 3   1
5 4   0
5 5   0
;

w :=
1 3   0.2
1 4   0.2
1 5   0.2
2 3   0.2
2 4   0.2
2 5   0.2
;

Figure 11: AMPL output example 72

Also in this case, there are no con�icts in level 1 thanks to the value of
variables w < 1.
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6.4 Fourth Set of Inequalities
These constraints regard the maximum number of vertical moves that a
vehicle, involved in a potential con�ict, can perform in a certain area of the
grid. For every couple (p; q) 2 Codd we can add four constraints. Notice
that each constraint is about a di¤erent group of columns. If we consider
vehicle p, we have a constraint regarding columns between �(p) and c(p; q)
and another constraint regarding columns between c(p; q) + 1 and !(p): If
we consider vehicle q, we have a constraint regarding columns between !(q)
and c(p; q) and another constraint regarding columns between c(p; q)+1 and
�(q).

Theorem 73 Given any instance of FQRP, for any feasible solution of
formulation C, it holds that:

�(q)X
i=c(p;q)+1

vq(i) 6 z � w(p; q) 8(p; q) 2 Codd (48)

!(p)X
i=c(p;q)+1

vp(i) 6 z � w(p; q) 8(p; q) 2 Codd (49)

c(p;q)X
i=�(p)

vp(i) 6 z � 1 + w(p; q) 8(p; q) 2 Codd (50)

c(p;q)X
i=!(q)

vq(i) 6 z � 1 + w(p; q) 8(p; q) 2 Codd (51)

All these constraints state that the number of vertical moves that vehicles
p and q can perform in a certain set of columns is dominated.

Proof. Let�s consider the case (p; q) 2 Codd. We want to demonstrate
constraint (48):

�(q)X
i=c(p;q)+1

vq(i) 6 z � w(p; q)

If w(p; q) = 0, constraint (48) becomes:

�(q)X
i=c(p;q)+1

vq(i) 6 z
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which is trivially true as consequence of constraint (41) of the model stating
that: X

i2I(k)
vk(i) = z 8k 2 P

The second case occurs when w(p; q) = 1 and constraint (48) becomes:

�(q)X
i=c(p;q)+1

vq(i) 6 z � 1 (52)

The quantity at the �rst member of (52) cannot be strictly greater than
z, let�s show that it can not be equal to z. Recall that w(p; q) = 1 means
that vehicle p crosses the con�ict-columns c(p; q) and c(p; q)+1 in a strictly
greater level than vehicle q. If vehicle q performed z vertical moves in
columns between c(p; q)+1 and �(q), vehicle p could not manage to cross the
con�ict-columns above vehicle q but, this contradicts the fact that w(p; q) =
1. Consequently, we have:

�(q)X
i=c(p;q)+1

vq(i) < z

and (52) holds.
The proof of (49) is similar to the previous one. We proceed with the proofs
of the other two constraints (50) and (51).
Let�s consider constraint (50):

c(p;q)X
i=�(p)

vp(i) 6 z � 1 + w(p; q)

and again we have two cases. The case w(p; q) = 1 is trivial. If w(p; q) = 0,
the constraint becomes:

c(p;q)X
i=�(p)

vp(i) 6 z � 1 (53)

The quantity at the �rst member of (53) cannot be greater than z, let�s show
that it can not be equal to z. Recall that w(p; q) = 0 means that vehicle
p crosses the con�ict-columns c(p; q) and c(p; q) + 1 in a strictly lower level
than vehicle q. If vehicle p performed z vertical moves in columns between
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�(p) and c(p; q), vehicle q could not manage to cross the con�ict-columns
above vehicle p but, this contradicts the fact that w(p; q) = 0. Consequently,
we have:

c(p;q)X
i=�(p)

vp(i) < z

and (53) holds.
The proof of (51) is similar.

Theorem 74 Inequalities (48) and (49) are equivalent.

Proof. We are going to show that (48) implies (49) and vice versa.
Given (p; q) 2 Codd, the case with w(p; q) = 0 is trivial for both the impli-
cations. Suppose w(p; q) = 1, so constraint (48) becomes:

�(q)X
i=c(p;q)+1

vq(i) 6 z � 1

We can rewrite it in this way:

�(q)X
i=c(p;q)+1

vq(i) = z � 1� j j 2 f0; ::; z � 1g

This means that:

c(p;q)X
i=�(p)

vp(i) > (z � 1� j) + 1 = z � j (54)

because w(p; q) = 1 and vehicle p crosses the column c(p; q) in a strictly
higher level than vehicle q. At this point, equation (54) implies that:

!(p)X
i=c(p;q)+1

vp(i) 6 z � (z � j) = j 6 z � 1

which is exactly 49.
The other implication is very similar. Indeed, constraint (49) states:
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!(p)X
i=c(p;q)+1

vp(i) 6 z � 1

We can rewrite it in this way:

!(p)X
i=c(p;q)+1

vp(i) = z � 1� j j 2 f0; ::; z � 1g

This means that:

c(p;q)X
i=�(p)

vp(i) = z � (z � 1� j) = j + 1

because the sum of the vertical moves over all the columns associated to p
is z. Since w(p; q) = 1, it holds that:

�(q)X
i=c(p;q)+1

vq(i) 6 (j + 1)� 1 = j 6 z � 1

which is exactly constraint (48).

Theorem 75 Inequalities (50) and (51) are equivalent.

Proof. We are going to show that (50) implies (51) and vice versa.
Given (p; q) 2 Codd, the case w(p; q) = 1 is trivial for both the implications.
Assume w(p; q) = 0, constraint (50) becomes:

c(p;q)X
i=�(p)

vp(i) 6 z � 1

We can rewrite it in this way:

c(p;q)X
i=�(p)

vp(i) = z � 1� j j 2 f0; ::; z � 1g

This means that:
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�(q)X
i=c(p;q)+1

vq(i) > (z � 1� j) + 1 = z � j

because w(p; q) = 0 and vehicle p crosses the column c(p; q) in a strictly
lower level than vehicle q. At this point, the previous equation implies that:

c(p;q)X
i=!(q)

vq(i) 6 z � (z � j) = j 6 z � 1

which is exactly constraint (51). The other implication is very similar. Con-
straint (51) can be rewritten as follow:

c(p;q)X
i=!(q)

vq(i) = z � 1� j j 2 f0; ::; z � 1g

This means that:

�(q)X
i=c(p;q)+1

vq(i) = z � (z � 1� j) = j + 1

Since w(p; q) = 0, it holds:

c(p;q)X
i=�(p)

vp(i) 6 (j + 1)� 1 = j 6 z � 1

which is constraint (50).

Similarly, we can add 4 new constraints for every pair of vehicles that create
an even con�ict.

Theorem 76 Given any instance of FQRP, for any feasible solution of
formulation C, it holds that:

!(p)X
i=c(p;q)

vp(i) 6 z � w(p; q) 8(p; q) 2 Ceven (55)
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�(q)X
i=c(p;q)

vq(i) 6 z � w(p; q) 8(p; q) 2 Ceven (56)

c(p;q)X
i=�(p)

vp(i) 6 z � 1 + w(p; q) 8(p; q) 2 Ceven (57)

c(p;q)X
i=!(q)

vq(i) 6 z � 1 + w(p; q) 8(p; q) 2 Ceven (58)

Likewise these constraints establish an upper bound for the number of ver-
tical moves that a vehicle can perform in a certain set of columns.

Proof. Let�s consider (p; q) 2 Ceven. We want to demonstrate constraint
(55):

!(p)X
i=c(p;q)

vp(i) 6 z � w(p; q)

If w(p; q) = 0, the constraint becomes:

!(p)X
i=c(p;q)

vp(i) 6 z

which is trivially true. If w(p; q) = 1, the constraint becomes:

!(p)X
i=c(p;q)

vp(i) 6 z � 1 (59)

The quantity at the �rst member of (59) is dominated by z. We show
that it cannot be equal to z. Indeed, if vehicle p performed all the vertical
moves after the con�ict-column c(p; q), it could not cross column c(p; q) at
a strictly higher level than vehicle q. But, this is a contradiction because we
have supposed that w(p; q) = 1:
The proof of (56) is similar to this one. Let�s proceed with the proof of (57)
which states that:

c(p;q)X
i=�(p)

vp(i) 6 z � 1 + w(p; q)
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We have two cases: the case with w(p; q) = 1 is trivial. Assume w(p; q) = 0,
the constraint becomes:

c(p;q)X
i=�(p)

vp(i) 6 z � 1

which is true because p crosses the con�ict column in a strictly lower level
than q and, if p performed z vertical moves in columns between �(p) and
c(p; q), q could not pass the column c(p; q) above p.
Finally, the proof of (58) is similar to this previous one.

Theorem 77 Inequalities (55) and (56) are equivalent.

Proof. We want to show that constraint (55) implies constraint (56) and
vice versa. Given (p; q) 2 Ceven, if w(p; q) = 0 both the implications are
trivial. Let�s assume w(p; q) = 1, we show �rst that (55) implies (56).
Constraint (55) can be rewritten this way:

!(p)X
i=c(p;q)

vp(i) = z � 1� j j 2 f0; ::; z � 1g

This implies that:

c(p;q)�1X
i=�(p)

vp(i) = z � (z � 1� j) = j + 1

Since w(p; q) = 1 and q has to cross the con�ict column with p in a strict
lower level than p, it holds:

�(q)X
i=c(p;q)

vq(i) 6 (j + 1)� 1 = j 6 z � 1

as we wanted. For the other implication, we can proceed like this. Constraint
(56) can be rewritten this way:

�(q)X
i=c(p;q)

vq(i) = z � 1� j j 2 f0; ::; z � 1g
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Since w(p; q) = 1 and q has to cross the con�ict column with p in a strict
lower level than p, it holds:

c(p;q)�1X
i=�(p)

vp(i) > (z � 1� j) + 1 = z � j

which implies:

!(p)X
i=c(p;q)

vp(i) 6 z � (z � j) = j 6 z � 1

as we wanted to prove.

Theorem 78 Inequalities (57) and (58)are equivalent.

Proof. We want to show that constraint (57) implies constraint (58) and
vice versa. Given (p; q) 2 Ceven, if w(p; q) = 1 both the implications are
trivial. Let�s assume w(p; q) = 0, we show �rst that (57) implies (58).
Constraint (57) can be rewritten this way:

c(p;q)X
i=�(p)

vp(i) = z � 1� j j 2 f0; ::; z � 1g

Since w(p; q) = 0 and q has to cross the con�ict column with p in a strict
higher level than p, it holds:

�(q)X
i=c(p;q)+1

vq(i) > (z � 1� j) + 1 = z � j

which implies:

c(p;q)X
i=!(q)

vq(i) 6 z � (z � j) = j 6 z � 1

as we wanted. The other implication proceeds similarly:

c(p;q)X
i=!(q)

vq(i) = z � 1� j j 2 f0; ::; z � 1g
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This means that:

�(q)X
i=c(p;q)+1

vq(i) = z � (z � 1� j) = j + 1

Since w(p; q) = 0 and q has to cross the con�ict column with p in a strict
higher level than p, it holds:

c(p;q)X
i=�(p)

vp(i) 6 (j + 1)� 1 = j 6 z � 1

as we wanted to prove.

Remark 79 Even if we have just shown that these constraints are equivalent
2 by 2, we add them all to the model. Indeed, they are all valid cuts, as we
can see from the following examples.

Example 80 Suppose � = (1; 2; 3; ::; 14; 15) and suppose
! = (1; 12; 14; 2; 13; 10; 6; 7; 5; 1; 15; 3; 8; 9; 4). When we solve the continuous
relaxation, we obtain an optimal solution such that z = 1. The optimal solu-
tion of the continuous relaxation violates constraint (48) in correspondence
of couple (6; 13) 2 Codd (see Figure 12). Provided that the con�ict columns
of this couple are columns 9 and 10 and that w(6; 13) = 0:2, it holds:

13X
i=10

v13(i) = 1 � 0:8
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ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 1
38 dual simplex iterations (0 in phase I)
z = 1

v [*,*] (tr)
:    2   3   4   5   6   7   8   9  10  11  12  13  14  15    :=
10   0   0   .   0   0   .   .   .   0   .   0   1   0   0
11   1   1   .   1   .   .   .   .   .   0   0   0   0   0
12   0   0   .   0   .   .   .   .   .   0   0   0   0 0
13   .   0   .   0   .   .   .   .   .   0   .   0   0   0
...
;

w [*,*] (tr)
:     2     3     5     6    11     :=
...
13    .    0     0     0.2   0.2
;

Figure 12: AMPL output example 80

Example 81 Suppose � = (1; 2; 3; ::; 19; 20) and suppose
! = (14; 8; 7; 16; 11; 4; 3; 15; 6; 17; 10; 13; 20; 9; 12; 1; 18; 5; 2; 19). When we
solve the continuous relaxation, we obtain an optimal solution such that
z = 1. This solution in correspondence of couple (2; 7) 2 Codd violates con-
straint (49). Provided that the con�ict columns of this couple are columns 4
and 5 and that w(2; 7) = 0:25, it holds:

8X
i=5

v2(i) = 1 � 0:75

Constraint (50) is violated by the solution in correspondence of couple (17; 18) 2
Codd . Provided that the con�ict columns of this couple are columns 17 and
18 and that w(17; 18) = 0:5, it holds:

17X
i=17

v17(i) = 1 � 0:5

A violation of inequality (51) occurs in correspondence of couple (1; 16) 2
Codd. The con�ict columns of this couple are columns 8 and 9 and w(1; 16) =
0:25 (see Figure 13). We can see easily that:

8X
i=1

v16(i) = 1 � 0:25
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ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 1
47 dual simplex iterations (0 in phase I)
z = 1

v [*,*]
:    1   2   3   4   5   6   7   8   9  10  11  12  13  14 15  16  17  18  19 :=
1    0   0   0   0   0   0   0   0   0   0   0   0   0   1   .   .   .   .   .
2    .   0   0   0   0   0   0   1   .   .   .   .   .   .   .   .   .   .   .
...
7    .   .   1   0   0   0   0   .   .   .   .   .   .   .   .   .   . .   .
16   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   .   .   .
17   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   .   1   0   .
18   .   .   .   .   1   0   0   0   0   0   0   0   0   0   0   0   0   0   .
;

w [*,*]
:    6    7      9      11     14     15     16     18     19     :=
1    .   0.25    .      .      .      .     0.25   0.25   0.25
2    0   0.25    .      .      .      .      .      .      .
...
17   .    .      .      .      .      .      .     0.5 0.5
;

Figure 13: AMPL output example 81

Example 82 Suppose � = (1; 2; 3; ::; 19; 20) and suppose
! = (8; 14; 7; 6; 10; 4; 9; 5; 2; 11; 1; 13; 19; 3; 12; 17; 18; 15; 16; 20). When we
solve the continuous relaxation, we obtain an optimal solution such that
z = 1. This solution in correspondence of couple (1; 11) 2 Ceven violates
constraint (55). Provided that the con�ict column of this couple is column
6 and that w(1; 11) = 0:25, it holds:

8X
i=6

v1(i) = 1 � 0:75

Constraint (56) is violated by the solution in correspondence of couple (4; 6).
Provided that the con�ict column of this couple is column 5 and that w(4; 6) =
0:25, it holds:

6X
i=5

v6(i) = 1 � 0:75

A couple of even con�icts where there is a violation of inequality (57 )is
couple (4; 8), their con�ict column is column 6 and w(4; 8) = 0:25. We can
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see that:
6X
i=4

v4(i) = 1 � 0:25

We provide a last couple of even con�icts where occurs a violation of in-
equality (58):the couple is (1; 9), their con�ict column is column 5 and
w(1; 9) = 0:25 (see Figure 14). We can see that:

5X
i=2

v9(i) = 1 � 0:25

ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 1
44 dual simplex iterations (0 in phase I)
z = 1

v [*,*]
:    1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19 :=
1    0   0   0   0   0   0   0   1   .   .   .   .   .   .   .   .   .   .   .
4    .   .   .   1   0   0   .   .   .   .   .   .   .   .   .   .   .   .   .
6    .   .   .   0   0   1   .   .   .   .   .   .   .   .   .   .   .   .   .
9 .   0   1   0   0   0   0   0   0   .   .   .   .   .   .   .   .   .   .
...
;

w [*,*]
:     6 8      9      11     14     15     18    19     :=
1     .      .     0.25   0.25   0.25    .      .      .
4    0.25   0.25    .      . .      .      .      .
...
;

Figure 14: AMPL output example 82

Remark 83 This remark is an empirical observation. After lots of tests
with instances of di¤erent size, we have noticed that the continuous relax-
ation of model C together with the inequalities in sections "First Set of In-
equalities", "Second Set of Inequalities", "Third Set of Inequalities" and
"Fourth Set of Inequalities" always provides an optimal integer solution if
z = 1. In other words, if the optimal value of the objective function of the
integer problem is 1, it happens that the relaxation of the instance provides
an optimal solution such that z = 1 and all the other variables v and w are
integer.
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6.5 Fifth Set of Inequalities
These inequalities come from the attempt to �nd a minimum number of
vertical moves that a vehicle, involved in a con�ict, can perform in a certain
area of the grid.

Theorem 84 Given any instance of FQRP, for every feasible solution of
formulation C, it holds:

c(p;q)X
i=�(p)

vp(i) > w(p; q) 8(p; q) 2 Codd (60)

�(q)X
i=c(p;q)+1

vq(i) > 1� w(p; q) 8(p; q) 2 Codd (61)

Similarly, we suggest a couple of inequalities also for even con�icts.

Theorem 85 Given any instance of FQRP, for every feasible solution of
formulation C, it holds:

c(p;q)�1X
i=�(p)

vp(i) > w(p; q) 8(p; q) 2 Ceven (62)

�(q)X
i=c(p;q)+1

vq(i) > 1� w(p; q) 8(p; q) 2 Ceven (63)

We proceed giving the proofs of these inequalities.

Proof. Inequality (60) follows from constraint (43) which states:

�(q)X
i=c(p;q)+1

vq(i) 6
c(p;q)X
i=�(p)

vp(i)� 1 +m(1� w(p; q))

If w(p; q) = 0, the inequality is trivial. If w(p; q) = 1, the inequality becomes:

c(p;q)X
i=�(p)

vp(i)� 1 >
�(q)X

i=c(p;q)+1

vq(i) > 0

It follows that:
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c(p;q)X
i=�(p)

vp(i) > 1 = w(p; q)

which is exactly (60). The proof of (61) follows from (42), which states:

c(p;q)X
i=�(p)

vp(i) 6
�(q)X

i=c(p;q)+1

vq(i)� 1 +mw(p; q)

The case w(p; q) = 1 is trivial. Assume w(p; q) = 0, the constraint becomes:

�(q)X
i=c(p;q)+1

vq(i)� 1 >
c(p;q)X
i=�(p)

vp(i) > 0

It follows that:

�(q)X
i=c(p;q)+1

vq(i) > 1� 0 = 1� w(p; q)

as we wanted to prove.

The proof of the other two inequalities is very similar to the previous one.

Proof. Inequality (62) follows from constraint (45) which states:

�(q)X
i=c(p;q)

vq(i) 6
c(p;q)�1X
i=�(p)

vp(i)� 1 +m(1� w(p; q))

The case with w(p; q) = 0 is trivial. Assume w(p; q) = 1, the constraint
becomes:

�(q)X
i=c(p;q)

vq(i) 6
c(p;q)�1X
i=�(p)

vp(i)� 1

We can notice that:

c(p;q)�1X
i=�(p)

vp(i)� 1 >
�(q)X

i=c(p;q)

vq(i) > 0

i.e.:
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c(p;q)�1X
i=�(p)

vp(i) > 1 = w(p; q)

Finally, the proof of (63) follows from constraint (44), which states:

c(p;q)X
i=�(p)

vp(i) 6
�(q)X

i=c(p;q)+1

vq(i)� 1 +mw(p; q)

The case w(p; q) = 1 is trivial. If w(p; q) = 0, the previous constraint
becomes:

c(p;q)X
i=�(p)

vp(i) 6
�(q)X

i=c(p;q)+1

vq(i)� 1

which can be rewritten as:

�(q)X
i=c(p;q)+1

vq(i)� 1 >
c(p;q)X
i=�(p)

vp(i) > 0

It follows that:

�(q)X
i=c(p;q)+1

vq(i) > 1� 0 = 1� w(p; q)

Up to now, we have tested the validity of a new constraint keeping in model
C all the inequalities that we have previously discovered. This way, we
do not test the validity of a new inequality alone, but we test the validity
of a new inequality in relation to the inequalities that have been previously
added to the model. This means that we try to see if the very last inequality
cuts away di¤erent points from the feasible region of a relaxed problem with
respect to the previous inequalities. In particular, we can notice that these
last 4 inequalities are not valid cuts if we keep inequalities (48)-(51) and
(55)-(58) in the model, otherwise they become valid inequalities.

Theorem 86 Inequalities (60)-(63) are equivalent to inequalities (48)-(51)
and (55)-(58).
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Proof. Inequality (60) comes from inequality (49) and vice versa. Indeed,
inequality (49) can be rewritten this way, using constraint (41) of the model:

!(p)X
i=c(p;q)+1

vp(i) 6 z � w(p; q)

z �
c(p;q)X
i=�(p)

vp(i) 6 z � w(p; q)

Simplifying the last line we obtain inequality (60).
Inequality (61) comes from inequality (51) and vice versa. Indeed, inequality
(51) can be rewritten this way, using constraint (41) of the model:

c(p;q)X
i=!(q)

vq(i) 6 z � 1 + w(p; q)

z �
�(q)X

i=c(p;q)+1

vq(i) 6 z � 1 + w(p; q)

Simplifying the last line we obtain inequality (61).
Inequality (62) comes from inequality (55) and vice versa. Indeed, inequality
(55) can be rewritten this way, using constraint (41) of the model:

!(p)X
i=c(p;q)

vp(i) 6 z � w(p; q)

z �
c(p;q)�1X
i=�(p)

vp(i) 6 z � w(p; q)

Simplifying the last line we obtain inequality (62).
Inequality (63) comes from inequality (58) and vice versa. Indeed, inequality
(58) can be rewritten this way, using constraint (41) of the model:

c(p;q)X
i=!(q)

vq(i) 6 z � 1 + w(p; q)

z �
�(q)X

i=c(p;q)+1

vq(i) 6 z � 1 + w(p; q)

Simplifying the last line we obtain inequality (63).
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We can show that inequalities (60)-(63) are valid inequalities if added to
model C without constraints (48)-(51) and (55)-(58).

Example 87 Assume � = (1; 2; ::; 14; 15) and
! = (9; 13; 2; 14; 12; 1; 6; 15; 5; 11; 8; 3; 7; 10; 4). The optimal solution of the
continuous relaxation (see Figure 15) in correspondence to couple (1; 6) 2
Codd does not respect inequality (60):

3X
i=1

v1(i) = 0 � w(1; 6) = 0:25

The optimal solution of the continuous relaxation in correspondence to cou-
ple (2; 15) 2 Codd does not respect inequality (61):

15X
i=9

v15(i) = 0 � 1� w(2; 15) = 0:75

The optimal solution of the continuous relaxation in correspondence to cou-
ple (8; 12) 2 Ceven does not respect inequality (62):

9X
i=8

v8(i) = 0 � w(8; 12) = 0:25

The optimal solution of the continuous relaxation in correspondence to cou-
ple (5; 9) 2 Ceven does not respect inequality (63):

9X
i=8

v9(i) = 0 � w(5; 9) = 0:25
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ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 1
37 dual simplex iterations (0 in phase I)
z = 1

v [*,*]
:    1   2   3   4   5   6   7   8   9  10  11  12  13  14  15    :=
1    0   0   0   0   0   0   0   0   1   .   .   .   .   .   .
2    .   0   0   0   0   0   0   0   1   0   0   0   0   .   .
3    .   0   1   .   .   .   .   .   .   .   .   .   .   .   .
4    .   .   .   0   0   0   0   0   0   0   1   0   0   0   .
5 .   .   .   .   0   0   0   0   0   0   0   1   .   .   .
6    0   1   0   0   0   0   .   .   .   .   .   .   .   .   .
7    .   .   .   .   .   0   1   .   .   .   .   .   .   .   .
8    .   .   .   .   .   .   .   0   0   0   0   0   1   0   0
9    . .   .   .   0   1   0   0   0   .   .   .   .   .   .
10   .   .   .   .   .   .   .   .   .   1   0   .   .   .   .
11   .   .   .   .   .   .   .   0   1   0   0   .   .   .   .
12   .   .   0   0   1   0   0   0   0   0   0   0   .   .   .
13   .   . .   .   .   .   0   1   0   0   0   0   0   .   .
14   .   .   .   .   .   .   .   .   .   1   0   0   0   0   .
15   .   .   .   0   0   1   0   0   0   0   0   0   0   0   0
;

w [*,*] (tr)
:     1      2      4      5      8     10     :=
3    0      0 .      .      .      .
6    0.25   0.25   0.25   0.25    .      .
7     .      .      .     0       .      .
9    0      0      0.25   0.25   0.25    .
11    .      .      .     0      0.25   0.5
12   0.25   0.25   0.25   0.25   0.25   0.5
13   0      0      0.25   0.25   0.25    .
14    .      .      .      .     0.25    .
15   0.25   0.25   0.25   0.25   0.25    .
;

Figure 15: AMPL output example 87

Remark 88 Notice that, in the case in which we decide to use valid in-
equalities (60)-(63), inequalities (60) and (62) dominate inequality (46) due
to (41), because the sums of the LHS in (60) and (62) contain a subset of
indexes appearing in (41).

Remark 89 We continue our study using inequalities of sections "First Set
of Inequalities", "Second Set of Inequalities", "Third Set of Inequalities" and
"Fourth Set of Inequalities".
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6.6 Sixth Set of Inequalities
The inequalities we are going to suggest in this part regard chains of con-
�icting vehicles. We do not consider simple pairs of vehicles but we combine
some of them in order to obtain a chain of con�icts.

De�nition 90 (Chain of Con�icts) Let�s consider Ai with i 2 f1; ::; tg and
t 6 n vehicles. They constitute a chain of con�icts if each vehicle Ai creates
a con�ict with vehicle Ai+1 with i 2 f1; ::; t� 1g and vehicle A1 2 R.

Example 91 Let�s consider a chain formed by 4 vehicles. We have that
A1 2 R by de�nition, so A2 must be an element of set L. The couple (A1; A2)
belongs to Ceven or to Codd indi¤erently. Vehicle A2 creates a con�ict with
vehicle A3 by de�nition. Since A2 2 L, vehicle A3 must be an element of
set R. This way, the second couple of con�icts is (A3; A2) and, it belongs to
Ceven or to Codd indi¤erently. Finally, since A3 2 R, vehicle A4 must be an
element of set L. This way, the third couple of con�icts is (A3; A4) and, it
belongs to Ceven or to Codd indi¤erently.

The structural idea of these new constraints is the following: given a chain
of con�icts, we want to limit the number of vertical moves that the �rst
vehicle of the chain can perform in a certain area of the grid. Indeed, let�s
suppose vehicle A1 has to pass above A2 over their con�ict column(s) and
vehicle A2 has to pass above A3 over their con�ict column(s) and so on, in
this way it must be true that vehicle A1 has to perform a certain number of
vertical moves before a speci�c column if we want it to pass above all the
other vehicles and if we want to avoid con�icts (see Appendix 2, Figure 5).
In order to force vehicle A1 to move early in the grid, we have to understand
if this constriction can be done for a generic chain or if we need a chain
with particular properties and we also have to clarify which is the column
until which vehicle A1 has to perform the moves. We can start considering
a chain composed by only three vehicles: there is a vehicle A1, which is in
con�ict with a vehicle A2 and this last one is in con�ict with a vehicle A3.
It is obvious that vehicles A1 and A3 belong to R, while vehicle A2 belongs
to L.
If we want to control the column up to which vehicle A1 has to perform the
moves, the vehicles cannot be randomly settled. Let�s distinguish two cases,
depending on the nature of the con�ict of the �rst pair of vehicles. Suppose
the �rst pair (A1; A2) belongs to Ceven. The starting-point of vehicle A3
cannot be settled in any column. It is obvious that �(A3) cannot be greater
than �(A2); if �(A3) stands between �(A1) and �(A2), it is possible to �nd
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a constraint about the number of vertical moves that A1 performs up to
column c(A1; A2) � 1; if �(A3) is smaller than �(A1), we cannot always
state how many vertical moves A1 performs up to c(A1; A2) � 1, indeed if
�(A3) is too far from �(A1) we cannot say anything. We can show that
if �(A3) is in one of the two nearest positions on the left of �(A1), we
can continue to limit the number of vertical moves of A1 up to the column
c(A1; A2)� 1:

De�nition 92 (3-vehicle chain of type 1) Let�s consider Ai with i 2 f1; 2; 3g,
a 3-vehicle chain of type 1 is a chain of con�icts such that the pair (A1; A2)
belongs to Ceven, the pair (A3; A2) belongs to Codd or to Ceven indi¤erently
and �(A1)� 2 6 �(A3) < �(A2):

The second case occurs when the pair (A1; A2) belongs to Codd. Similarly
in this case, A3 cannot be settled in any column. It is obvious that �(A3)
cannot be greater than �(A2); if �(A3) stands between �(A1) and �(A2), it
is possible to �nd a constraint about the number of vertical moves that A1
performs up to column c(A1; A2). We can show that if �(A3) is at most in
the �rst position on the left of �(A1), we can continue to limit the number of
vertical moves of A1 up to the column c(A1; A2) (for a detailed explanation
see the following remark).

De�nition 93 (3-vehicle chains of type 2) Let�s consider Ai with i 2 f1; 2; 3g,
a 3-vehicle chain of type 2 is a chain of con�icts such that the pair (A1; A2)
belongs to Codd, the pair (A3; A2) belongs to Codd or to Ceven indi¤erently
and �(A1)� 1 6 �(A3) < �(A2):

Remark 94 We want to clarify the reason why we choose to put the starting-
position of A3 only in a limited range of columns. Indeed, if the con�ict
column(s) between A2 and A3 is too far left with respect to the con�ict col-
umn(s) of A1 and A2, it is not true any more that vehicle A1 has to move
early in order to avoid con�icts and pass above the other vehicles.
Recall the previous distinction: suppose the �rst pair (A1; A2) belongs to
Ceven and suppose A3 creates any con�ict with A2 and has its starting-
position in one of the above columns. Suppose also that A1 has to pass
above A2 over their con�ict column and vehicle A2 has to pass above A3
over their con�ict column(s). Due to the position of A3, if vehicle A2 has to
perform one move to pass above A3, it does it at most in correspondence of
column c(A1; A2). This obviously implies that, if A1 has to pass above A2,
it performs at least two moves up to column c(A1; A2)� 1. The fact that A2
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moves (forced by A3) before the con�icting column with A1 is the real reason
thanks to that we are allowed to force vehicle A1 to move so early. In other
words, we can say this because A2 reaches c(A1; A2) after having performed
at least one vertical step. By contrast, if �(A3) stands in the far left of A1,
it could be possible that A1 passes above A2 and A2 passes above A3 in their
respective con�ict columns but, at the same time, A1 is not forced to perform
the same number of moves like before up to column c(A1; A2) � 1. Indeed,
A2 could perform its vertical move also strictly before c(A1; A2) (so it passes
the column at a strict lower level than before) and so A1 can perform one
less move in the same range of column, avoiding con�icts.
Similarly, suppose the �rst pair (A1; A2) belongs to Codd and suppose A3
create any con�ict with A2 and has its starting-position in one of the above
columns. Suppose also that A1 has to pass above A2 over their con�ict
columns and vehicle A2 has to pass above A3 over their con�ict column(s).
Due to the position of A3, if vehicle A2 has to perform one move to pass
above A3, it does it at most in correspondence of column c(A1; A2)+1. This
obviously implies that, if A1 has to pass above A2, it performs at least two
moves up to column c(A1; A2) because A2 reaches c(A1; A2) after having
performed at lest one vertical step.
Limiting the distance between �(A1) and �(A3) is good to de�ne the column
up to which A1 has to perform some moves.

We are ready to give the inequalities.

Theorem 95 Given any instance of FQRP, the following inequalities hold
for every feasible solution of formulation C. The �rst one regards a 3-vehicle
chain of type 1 and the second regard a 3-vehicle chain of type 2:

c(A1;A2)�1X
i=�(A1)

vA1(i) > 2w(A1; A2)� w(A3; A2) (64)

c(A1;A2)X
i=�(A1)

vA1(i) > 2w(A1; A2)� w(A3; A2) (65)

The inequalities states that vehicle A1 has to perform at least a certain
number of vertical moves up to a certain column. We are going to show the
proof of these new constraints.

Proof. For the proof of (64), we can proceed in this way. Let�s consider all
the cases that can occur with 3 vehicles.
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1. We can have that A1 passes above A2 and A2 passes above A3. This
means that w(A1; A2) = 1 and w(A3; A2) = 0. In this case the con-
straint states that:

c(A1;A2)�1X
i=�(A1)

vA1(i) > 2

In order to prove so, let�s suppose ad absurdum that the previous
inequality does not hold, i.e. vehicle A1 performs a number of vertical
moves strictly smaller than 2 up to column c(A1; A2)� 1. This means
that it performs either 1 vertical move or no vertical moves but, in both
these cases we obtain a contradiction. Indeed, if A1 performs only 1
vertical move it creates a con�ict with vehicle A2 in correspondence to
column c(A1; A2). This is because A2 has to move one time vertically
in order to leaveA3 to pass under it andA2 reaches column c(A1; A2) at
level 1 (the same of A3). In the other case, if A1 does not perform any
vertical move, so it has no chance to pass above A2 but this contradicts
the fact that w(A1; A2) = 1.

2. We can have that A1 passes under A2 and A2 passes under A3, and
this means that w(A1; A2) = 0 and w(A3; A2) = 1. In this case the
constraint is trivial.

3. We can have that A1 passes under A2 and A2 passes above A3, and
it means that w(A1; A2) = 0 and w(A3; A2) = 0. In this case the
constraint is trivial.

4. We can have that A1 passes above A2 and A2 passes under A3, and
it means that w(A1; A2) = 1 and w(A3; A2) = 1. The constraint
becomes:

c(A1;A2)�1X
i=�(A1)

vA1(i) > 1

Let�s suppose ad absurdum that the previous inequality does not hold,
i.e. vehicle A1 performs a number of vertical moves strictly smaller
than 1 up to column c(A1; A2)�1. This means that it performs no one
vertical move but, this is a contradiction because in this way, it has no
chance to pass above A2 in contrast with the fact that w(A1; A2) = 1.
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For the proof of (65), we proceed again by cases.

1. We can have that A1 passes above A2 and A2 passes above A3. This
means that w(A1; A2) = 1 and w(A3; A2) = 0. In this case the con-
straint states that:

c(A1;A2)X
i=�(A1)

vA1(i) > 2

In order to prove so, let�s suppose ad absurdum that the previous
inequality does not hold, i.e. vehicle A1 performs a number of vertical
moves strictly smaller than 2 up to column c(A1; A2). This means that
it performs either 1 vertical move or no vertical moves but, in both
these cases we obtain a contradiction. Indeed, if A1 performs only 1
vertical move it creates a con�ict with vehicle A2 in correspondence to
an edge joining columns c(A1; A2) and c(A1; A2) + 1. This is because
A2 has to move one time vertically in order to leave A3 to pass under it
and A2 reaches column c(A1; A2)+1 at level 1 (the same level in which
A1 reaches c(A1; A2)). In the other case, if A1 does not perform any
vertical move, it has no chance to pass above A2; but this contradicts
the fact that w(A1; A2) = 1.

2. We can have that A1 passes under A2 and A2 passes under A3, and
this means that w(A1; A2) = 0 and w(A3; A2) = 1. In this case the
constraint is trivial.

3. We can have that A1 passes under A2 and A2 passes above A3, and
it means that w(A1; A2) = 0 and w(A3; A2) = 0. In this case the
constraint is trivial.

4. We can have that A1 passes above A2 and A2 passes under A3, and
it means that w(A1; A2) = 1 and w(A3; A2) = 1. The constraint
becomes:

c(A1;A2)X
i=�(A1)

vA1(i) > 1

Let�s suppose ad absurdum that the previous inequality does not hold,
i.e. vehicle A1 performs a number of vertical moves strictly smaller
than 1 up to column c(A1; A2). This means that it performs no one
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vertical move but, this is a contradiction because in this way, it has no
chance to pass above A2 in contrast with the fact that w(A1; A2) = 1.

Example 96 Suppose � = (1; 2; 3; ::; 19; 20) and suppose
! = (15; 18; 4; 2; 9; 13; 17; 6; 5; 20; 19; 16; 10; 8; 14; 3; 7; 11; 1; 12). The optimal
solution of the continuous relaxation violates inequality (64) in correspon-
dence of the �rst type chain (12,18,11), indeed (see Figure 16):

14X
i=12

v12(i) = 0:8 � 2w(12; 18)� w(11; 18) = 1

ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 1.2
198 dual simplex iterations (0 in phase I)
z = 1.2

v [*,*]
:       9          10      11    12    13    14    15 16    17   18  19  20 :=
11    .          .         0.4   0.2   0     0.2   0.2   0     0.2   0   0   .
12    .          .          .    0.6   0     0.2   0.2   0.2    .    .   .   .
13    .         0          0.6   0     0.6    .     .     .     .    .   .   .
...
;

w [*,*] (tr)
:        1           2       3       5 6           7       11 12 :=
4    0           0           0    .           .           .           .     .
8     .           .          .   0.0555556   0.0851852   0.0555556    .     .
18    .           .          .    . 0.8         0.6         0.6 0.8
...
;

Figure 16: AMPL output example 96

Example 97 Suppose � = (1; 2; 3; ::; 19; 20) and
! = (19; 18; 14; 20; 9; 12; 17; 16; 5; 2; 15; 6; 10; 8; 4; 13; 7; 11; 1; 3). The optimal
solution of the continuous relaxation violates inequality (65) in correspon-
dence to the second type chain (6,9,8), indeed (see Figure 17):

7X
i=6

v6(i) = 0:00911458 � 2w(6; 9)� w(8; 9) = 0:01093749
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ampl: include model3.run;
CPLEX 12.8.0.0: optimal solution; objective 2
178 dual simplex iterations (0 in phase I)
z = 2

v [*,*]
:    1   2   3   4   5       6        7       8            9          10     :=
5    .   .   .   .   0   0            0   0            2            .
6    .   .   .   .   .   0.00911458   0   0            0.0364583   0
...
;

w [*,*] (tr)
:    1   2   3   4   5       6            7           8           11        :=
9    0   0   0   0   0   0.00911458   0           0.00729167    .
...
;

Figure 17: AMPL output example 97

Remark 98 Inequalities (64) and (65) use the hypothesis that A1 2 R. It
is possible to build symmetric inequalities with A1 2 L, �xing analogous
conditions and adapting all the observations to this case. However, we do
not provide the details in this work.
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6.7 Seventh Set of Inequalities
This group of inequalities is similar to the previous one. We continue to use
chains of con�icts and, especially, chains of con�icts formed by 4 vehicles.
Recall that we have a vehicle A1 2 R which creates a con�ict with a vehicle
A2 2 L, vehicle A2 creates a con�ict with a vehicle A3 2 R and this last one
creates a con�ict with a vehicle A4 2 L. The central idea of these inequalities
is basically the same of the previous section: assume vehicle A1 has to pass
above A2 over their con�ict column(s), vehicle A2 has to pass above A3
over their con�ict column(s) and vehicle A3 has to pass above A4 over their
con�ict column(s), in this way it must be true that vehicle A1 has to perform
a certain number of vertical moves before a speci�c column if we want it
to pass above all the other vehicles and if we want to avoid con�icts (see
Appendix 2, Figure 6). Also in this case, we have to understand until which
column vehicle A1 is forced to move and also if the starting-positions of the
vehicles must be assigned only in speci�c ranges of columns. As consequence
of this structure, it is intuitive to think that we want to force A1 to move
vertically before meeting vehicle A2, in other words, before reaching the
con�ict column(s) with vehicle A2. In this way, the starting-positions of the
vehicles cannot be randomly settled, so we introduce 4 types of chains which
we are going to work with.

De�nition 99 (4-vehicle chain of type 1) Let�s consider Ai with i 2 f1; 2; 3; 4g,
a 4-vehicle chain of type 1 is a chain of con�icts such that the pair (A1; A2)
belongs to Ceven, the pair (A3; A2) belongs to Ceven, the pair (A3; A4) belongs
to Ceven or to Codd indi¤erently. Moreover, it holds �(A1) � 2 6 �(A3) <
�(A2) and �(A3) < �(A4) 6 �(A2) + 2:

De�nition 100 (4-vehicle chain of type 2) Let�s consider Ai with i 2 f1; 2; 3; 4g,
a 4-vehicle chain of type 2 is a chain of con�icts such that the pair (A1; A2)
belongs to Ceven, the pair (A3; A2) belongs to Codd, the pair (A3; A4) belongs
to Ceven or to Codd indi¤erently. Moreover, it holds �(A1) � 2 6 �(A3) <
�(A2) and �(A3) < �(A4) 6 �(A2) + 1:

De�nition 101 (4-vehicle chain of type 3) Let�s consider Ai with i 2 f1; 2; 3; 4g,
a 4-vehicle chain of type 3 is a chain of con�icts such that the pair (A1; A2)
belongs to Codd, the pair (A3; A2) belongs to Ceven, the pair (A3; A4) belongs
to Ceven or to Codd indi¤erently. Moreover, it holds �(A1) � 1 6 �(A3) <
�(A2) and �(A3) < �(A4) 6 �(A2) + 2:

De�nition 102 (4-vehicle chain of type 4) Let�s consider Ai with i 2 f1; 2; 3; 4g,
a 4-vehicle chain of type 4 is a chain of con�icts such that the pair (A1; A2)
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belongs to Codd, the pair (A3; A2) belongs to Codd, the pair (A3; A4) belongs to
Ceven or to Codd indi¤erently. Moreover, it holds �(A1)�1 6 �(A3) < �(A2)
and �(A3) < �(A4) 6 �(A2) + 1:

Remark 103 Notice that, in the previous de�nitions, the limitation on the
range of columns in which every vehicle can start is "general". It represents
the maximum limit until which these reasonings work. For example, in def-
inition (100), it is clear that if �(A3) = �(A1)� 2 then the couple (A3; A2)
would belong to Ceven instead to Codd as de�nition says. Generally, there
are also other positions between �(A1) � 2 and �(A2) such that vehicle A3
(if settled there) would create an even con�ict with vehicle A2. For this
reason, we ask the reader to choose correct starting points (according to the
de�nitions) in the range of columns we provide.

We can notice that the previous types of chains di¤er from each other by the
nature of the con�icts involved and the starting-positions of the vehicles. It
is important to establish this limitation on the starting-positions because in
this way, A1 is forced to move early if it has to pass above the other vehicles.
Indeed, if the vehicles start from points which are too far away from each
other, it is possible that A1 passes above all the other vehicles but, at the
same time, it is not forced any more to move early.

Theorem 104 Given any instance of FQRP, the following two inequalities
hold for any feasible solution of formulation C. The �rst one regards the �rst
two types of 4-vehicle chains and the other regards the second two types of
4-vehicle chains.

c(A1;A2)�1X
i=�(A1)

vA1(i) > w(A1; A2) + w(A1; A2)(1� w(A3; A2))+

+ w(A1; A2)(1� w(A3; A2))w(A3; A4)

(66)

c(A1;A2)X
i=�(A1)

vA1(i) > w(A1; A2) + w(A1; A2)(1� w(A3; A2))+

+ w(A1; A2)(1� w(A3; A2))w(A3; A4)

(67)

These inequalities state that A1 has to perform at least a certain number of
vertical moves up to a certain column if it passes over other vehicles. It has
to perform at least 1 vertical move if it passes above A2 over their con�ict
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column(s), it has to perform at least 2 vertical moves if it passes above
A2 over their con�ict column(s) and A2 passes above A3 over their con�ict
column(s) and �nally, it has to perform at least 3 vertical moves if it passes
above A2 over their con�ict column(s), if A2 passes above A3 over their
con�ict column(s) and A3 passes above A4 over their con�ict column(s).
We can immediately notice that these inequalities are not linear. We need
to perform a linearization before putting them in the model. Since the RHS
of the previous inequalities is the same, let�s consider only the �rst one. The
�rst term is trivially linear, because it is just a binary variable w(A1; A2).
The second and the third term are not linear but they both can assume
only values 1 or 0: this property suggests that we can substitute them
with other binary variables, paying attention to the fact that these variables
must be correctly linked with the w-variables through some constraints.
The second term w(A1; A2)(1 � w(A3; A2)) depends on A1; A2; A3 and we
can substitute it with a binary variable y(A1; A2; A3) that assumes certain
values in correspondence to certain combination of values of w(A1; A2) and
w(A3; A2). We want this variable assumes value 1 only if w(A1; A2) = 1
and w(A3; A2) = 0, which means that A1 passes over A2 and A2 passes over
A3 in their con�ict-column(s) respectively. We have to impose that this
variable is 0 in correspondence to the three other combinations of values of w
(w(A1; A2) = 1; w(A3; A2) = 1; w(A1; A2) = 0; w(A3; A2) = 0; w(A1; A2) =
0; w(A3; A2) = 1). In this way, we are imposing that A1 has to perform at
least 2 vertical moves if it passes above A2 over their con�ict column(s) and
A2 passes above A3 over their con�ict column(s). The following constraints
guarantee that binary variable y(A1; A2; A3) assumes the values we want:8<:

y(A1; A2; A3) > w(A1; A2)� w(A3; A2)
y(A1; A2; A3) 6 w(A1; A2)
y(A1; A2; A3) 6 1� w(A3; A2)

(68)

Let�s show what happens in each case:
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�
�
w(A1; A2) = 1
w(A3; A2) = 0

8<:
y(A1; A2; A3) > 1
y(A1; A2; A3) 6 1
y(A1; A2; A3) 6 1

! y(A1; A2; A3) = 1

�
�
w(A1; A2) = 1
w(A3; A2) = 1

8<:
y(A1; A2; A3) > 0
y(A1; A2; A3) 6 1
y(A1; A2; A3) 6 0

! y(A1; A2; A3) = 0

�
�
w(A1; A2) = 0
w(A3; A2) = 0

8<:
y(A1; A2; A3) > 0
y(A1; A2; A3) 6 0
y(A1; A2; A3) 6 1

! y(A1; A2; A3) = 0

�
�
w(A1; A2) = 0
w(A3; A2) = 1

8<:
y(A1; A2; A3) > �1
y(A1; A2; A3) 6 0
y(A1; A2; A3) 6 0

! y(A1; A2; A3) = 0

The third term w(A1; A2)(1�w(A3; A2))w(A3; A4) depends onA1; A2; A3; A4
and we can substitute it with another binary variable y(A1; A2; A3; A4) that
assumes certain values in correspondence to speci�c values of w(A1; A2),
w(A3; A2) and w(A3; A4). We want variable y(A1; A2; A3; A4) to assume
value 1 only if w(A1; A2) = 1, w(A3; A2) = 0 and w(A3; A4) = 1, which
means that A1 passes above A2, A2 passes above A3 and A3 passes above
A4 in their con�ict-columns respectively. This variable has to assume value
0 in correspondence of the other 7 combinations of value of w-variables be-
cause in these situations vehicle A1 cannot be forced to move early in the
grid.
Variable y(A1; A2; A3; A4) is such that:

8>><>>:
y(A1; A2; A3; A4) 6 w(A1; A2)
y(A1; A2; A3; A4) 6 1� w(A3; A2)
y(A1; A2; A3; A4) 6 w(A3; A4)
y(A1; A2; A3; A4) > w(A1; A2)� 2w(A3; A2)� (1� w(A3; A4))

(69)

Let�s show what happens in each case:
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�

8<:
w(A1; A2) = 1
w(A3; A2) = 0
w(A3; A4) = 1

8>><>>:
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) > 1

! y(A1; A2; A3; A4) = 1

�

8<:
w(A1; A2) = 1
w(A3; A2) = 1
w(A3; A4) = 1

8>><>>:
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) > �1

! y(A1; A2; A3; A4) = 0

�

8<:
w(A1; A2) = 1
w(A3; A2) = 1
w(A3; A4) = 0

8>><>>:
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) > �2

! y(A1; A2; A3; A4) = 0

�

8<:
w(A1; A2) = 1
w(A3; A2) = 0
w(A3; A4) = 0

8>><>>:
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) > 0

! y(A1; A2; A3; A4) = 0

�

8<:
w(A1; A2) = 0
w(A3; A2) = 0
w(A3; A4) = 0

8>><>>:
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) > �1

y(A1; A2; A3; A4) = 0

�

8<:
w(A1; A2) = 0
w(A3; A2) = 0
w(A3; A4) = 1

8>><>>:
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) > 0

y(A1; A2; A3; A4) = 0

�

8<:
w(A1; A2) = 0
w(A3; A2) = 1
w(A3; A4) = 0

8>><>>:
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) > �3

y(A1; A2; A3; A4) = 0

�

8<:
w(A1; A2) = 0
w(A3; A2) = 1
w(A3; A4) = 1

8>><>>:
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) 6 0
y(A1; A2; A3; A4) 6 1
y(A1; A2; A3; A4) > �2

y(A1; A2; A3; A4) = 0
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Using these new binary variables, we can rewrite inequalities (66) and (67)
as follow:

c(A1;A2)�1X
i=�(A1)

vA1(i) > w(A1; A2) + y(A1; A2; A3) + y(A1; A2; A3; A4) (70)

c(A1;A2)X
i=�(A1)

vA1(i) > w(A1; A2) + y(A1; A2; A3) + y(A1; A2; A3; A4) (71)

Adding to the model inequalities (70) and (71) together with constraints
(68) and (69), we obtain another valid inequality.

Proof. We prove inequality (66). The RHS can assume only values 0,1,2,3
since it is the sum of 3 terms which can assume only values 1 and 0.
If the RHS takes value 0, the inequality is trivial.
If the RHS takes value 1, it must be true that w(A1; A2) = 1 and the other
two terms are equal to 0. Notice that it is not possible that the second or
the third term are equal to 1, while the �rst term is equal to zero because
w(A1; A2) = 0 implies that everything is 0. The condition w(A1; A2) = 1
means that A1 passes above A2 over their con�ict column, so A1 has to
perform at least 1 vertical move in columns between �(A1) and c(A1; A2)�1.
If the RHS takes value 2, it must be true that w(A1; A2) = 1 , w(A3; A2) = 0
and w(A3; A4) = 0 [Indeed, variable w(A1; A2) must be equal to 1, otherwise
all the terms vanish and the RHS would be equal to 0. Variable w(A3; A2)
must be equal to 0, otherwise the second and the third terms vanish and the
RHS would be equal to 1. Provided that w(A1; A2) = 1 and w(A3; A2) = 0,
the third variable w(A3; A4) must be equal to 0 otherwise the third term
would be equal to 1 and the RHS would assume value 3 instead of 2.]. This
means that A1 passes above A2, A2 passes above A3 and A3 passes under A4
in their con�ict-columns respectively. As consequence of their position, A2
performs 1 vertical step (forced by A3) before reaching the con�ict column
with A1, so A1 has to perform at least 2 vertical steps in order to pass above
A2 over their con�ict column. This means exactly that A1 has to perform
at least 2 vertical moves in columns between �(A1) and c(A1; A2)� 1.
If the RHS takes value 3, it holds that w(A1; A2) = 1 , w(A3; A2) = 0 and
w(A3; A4) = 1 [The reasoning is like above]. This means that A1 passes
above A2, A2 passes above A3 and A3 passes above A4 in their con�ict-
columns respectively. As consequence of the starting-positions of the vehi-
cles, it happens that A3 performs one vertical step (forced by A4) before
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meeting A2 and A2 performs 2 vertical steps (forced by A3) before meeting
A1. Consequently, when A2 reaches c(A1; A2) + 1 it is already at level 2.
This way, A1 is forced to perform at least 3 vertical steps before reaching
c(A1; A2).

Proof. The proof of inequality (67) is similar. Provided the RHS can
assume only value 0,1,2, and 3, we develop each case like before.

Example 105 It�s hard to �nd an example because these structures are very
particular and the only case in which we could see the validity of this inequal-
ity is the one in which there is a 4-vehicle chain of con�icts and an optimal
pattern is such that vehicle A1 passes above vehicle A2, which passes above
A3, which passes above A4 respectively in their con�ict columns.
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7 Computational Results
In this �nal section, we show some results about the inequalities that we
have previously given: we would like to understand in which way our in-
equalities a¤ect the formulation of model C. All the information provided in
the following part is based on the resolution of di¤erent instances. We have
generated ten random instances per size using a small script for Python
Numpy (see Appendix 1). In all the tests, vector � is an ordered vector
(for example, if n = 5 then � = (1; 2; 3; 4; 5)) and vector ! is obtained by
shu­ ing the elements of �. For these tests we have used software AMPL:
both CPLEX 12.8.0.0 and also ILOG AMPL.

7.1 Continuous Relaxation
Firstly, we focus on the resolution of the continuous relaxation. In particular,
we want to see how much the value of the objective function of the continuous
relaxation gets close to the value of the objective function of the integer
problem, thanks to the new inequalities. We expect to see that the value of
z of the continuous relaxation increases together with the insertion of the
inequalities. Let us consider Table 1, containing the average values of z:

Table 1: Average value of z

ILP CR CR+1,2 CR+1­3 CR+1­4 CR+1­6 CR+1­7

5 vehicles 1.20 0.00 1.00 1.00 1.15 1.15 1.15

10 vehicles 1.00 0.00 1.00 1.00 1.00 1.00 1.00

15 vehicles 1.80 0.00 1.00 1.00 1.50 1.50 1.50

20 vehicles 1.80 0.00 1.00 1.00 1.50 1.50 1.50

30 vehicles 1.80 0.00 1.00 1.00 1.50 1.50 1.50

40 vehicles 2.20 0.00 1.00 1.00 1.60 1.61 1.61

Total 1.63 0.00 1.00 1.00 1.43 1.44 1.44
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This Table shows the average values of z for instances containing di¤er-
ent number of vehicles (rows of the table) and for di¤erent formulations
(columns of the table). Indeed, the �rst column contains the values of z
obtained from the resolution of the integer LP problem (ILP), the second
column contains the values of z obtained from the resolution of the contin-
uous relaxation (CR) without new inequalities. The third column contains
the values of z obtained from the continuous relaxation with new inequali-
ties of the �rst and the second set (CR+1,2). In the fourth column we add
to the continuous relaxation of the previous column also the inequalities of
the third set (CR+1-3) and so on.
We have summarized these values in Figure 18:

Figure 18: Average value of z (continuous relaxation)

In the graph, we can see the average value of z of the integer problems (red
line) and the average values of z of the continuous relaxations (red points).
The value of z obtained from CR is always zero, as expected. In general, we
see that these inequalities make the value of z of the continuous relaxation
grow and get quite close to the value provided by the resolution of the integer
problems.
Regarding inequalities of the �rst and the second set, we can immediately
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notice that they are similar and, in particular, that inequality z > � domi-
nates all inequalities z > w(p; q) 8(p; q) 2 C since w(p; q) 6 1 8(p; q) 2 C
and if one variable w is di¤erent from 0, automatically, � = 1. This is the
reason why we have tested them together. Moreover, when we have to de-
cide if to add or not these inequalities to the implementation of model C,
obviously it is su¢ cient to add only z > �. Even if this inequality appears
very simple, it can be used to cut away the solution z = 0 from the feasible
region of the continuous relaxation of any instance. However, it is not the
only one that plays this role because it could be possible that the continu-
ous relaxation provides a solution di¤erent from z = 0 also when inequality
z > � is not present in the implementation (but other new inequalities must
be present).
Inequalities of the third set do not seem to produce an increase in the value
of z but usually they produce a change of the optimal solution. We can de-
duce that these inequalities only make the optimal solution move to another
vertex of the polyhedron.
Remind that inequalities of Section 6.4 and 6.5 are just alternative formula-
tions of the same property. Obviously, if we want to add them to the model
it is su¢ cient to choose only one set and we have worked with the inequal-
ities of section 6.4. Adding to the model inequalities up to the fourth set,
the value of z of the continuous relaxations gets close to its e¤ective value
as a percentage of 87.7%.
Inequalities of the sixth and the seventh set, do not cause a signi�cative
improvement in the value of z, which now gets close to its e¤ective value as
a percentage of 87.8% (only 0.1% more then the previous case).
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7.2 Integer Problem
A second topic we investigate is the time of resolution of integer model. In
practical cases, we need to solve integer instances and so we want to see how
the insertion of these valid inequalities a¤ects the time we need to solve the
instances. Let us consider Table 2:

Table 2: Average time of resolution of integer instances (in second)

ILP ILP+1,2 ILP+1­3 ILP+1­4 ILP+1­6 ILP+1­7

5 vehicles 0.03 0.01 0.02 0.01 0.01 0.01

10 vehicles 0.03 0.02 0.02 0.03 0.02 0.02

15 vehicles 0.06 0.06 0.04 0.04 0.07 0.07

20 vehicles 0.05 0.04 0.04 0.01 0.07 0.06

30 vehicles 0.03 0.04 0.02 0.03 0.03 0.16

40 vehicles 0.50 0.06 0.04 0.24 0.27 5.20

Total 0.12 0.04 0.03 0.06 0.08 0.92

This Table shows the average values of the resolution�s time of integer in-
stances. The �rst column regards the model without new inequalities (ILP),
second column regards the model with inequalities of the �rst and the sec-
ond set (ILP+1,2), third column regards the model with inequalities up to
the third set (ILP+1-3) and so on..
We show in a graph the average trend of the time (Figure 19):
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Figure 19: Average time of resolution of integer instances

We can see that, after the insertion of the �rst three sets of inequalities the
time of resolution decreases, then it grows very slowly up to the insertion of
the sixth sets of inequalities remaining under the level of the cases without
inequalities. The seventh set makes the time blow up, due to the huge
presence of variables and inequalities.
This computational study does not expect to be exhaustive in general. How-
ever, this is a good starting point for future studies.
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8 Conclusion
This work concerns Integer Linear Programming Models and their applica-
tion to the FQRP. We introduced 3 integer linear programming models to
solve the FQRP and focused on the search of valid cuts for formulation C.
We introduced 7 sets of valid inequalities and proved their validity. In the
end we developed a brief computational section that involves some practical
and applicative observations about the use of this inequalities.
The realization of this work took 6 months, from April 2020 to September
2020. At the beginning, I had to get lots of informations in order to put
myself in the right point of view to develop this work and so I started
reading many journals and papers. Afterwards, I studied the models and
wrote their implementations with AMPL. When I felt enough con�dent with
the matter, I started searching for valid cuts. It was hard and challenging
to understand which form an inequality like these should have. Some of the
initial ideas were too easy or related only to easy instances (for example
instances constituted only by 2 or 3 vehicles) instead of being applicable to
every instance, independent on the number of vehicles involved.
In order to �nd the inequalities, I made hundreds of examples: every time the
solution of the continuous relaxation was unfeasible, I tried to understand
what was the "bug" of the pattern and to remove it with an inequality. The
di¢ cult part consisted in generalizing the rules that I noticed for one case
to every case.
The ability of generalization and research of commonalities among things
that appear di¤erent is typical for a mathematician and, thanks of this
work, I tested it personally.

I would like to thank Prof. De Francesco and Prof. De Giovanni for their
teachings, their time and their help.
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Appendix 1-codes 

Model A, file .mod 
param n_col; 
param n_row; 
param n_veic; 
 
set VEIC:=1..n_veic;  #total vehicles 
 
param alpha{VEIC};  #starting position 
param omega{VEIC};  #final position 
 
 
#sets of vehicles 
set S:= {k in VEIC : omega[k] = alpha[k]}; 
set R:= {k in VEIC : omega[k] >= alpha[k]} diff S; 
set L:= {k in VEIC} diff (R union S); 
 
#indexing sets 
set J:=1..n_row-1; 
set I:=1..n_col; 
set ZERO:=0..0; 
set SUP:=n_col+1..n_col+1; 
set J0:=J union ZERO; 
 
set Ir{k in R}:={i in I: i>=alpha[k] and i<=omega[k]}; 
set IrAMPL{k in R}:={i in I: i>=alpha[k]-1 and i<=omega[k]} union ZERO; 
 
set Il{k in L}:={i in I: i<=alpha[k] and i>=omega[k]}; 
set IlAMPL{k in L}:={i in I: i<=alpha[k]+1 and i>=omega[k]} union SUP; 
 
#binary variables 
var x_vert{i in R,Ir[i],J0} binary; 
var x_hor{i in R, IrAMPL[i],J} binary; 
 
var y_vert{i in L,Il[i],J0} binary; 
var y_hor{i in L, IlAMPL[i],J} binary; 
 
#variable to be minimized 
var z integer >=0; 
 
minimize f: z;  #objective 
 
#initialization constraints 
#R 
set J_start:=2..n_row-1; #new set 
s.t. v1{k in R, j in J_start}:x_hor[k,alpha[k]-1,j]=0; 
s.t. v2{k in R, j in J_start}:x_hor[k,0,j]=0; 
s.t. v3{k in R}:x_hor[k,alpha[k]-1,1]=1; 
s.t. v4{k in R}:x_hor[k,0,1]=1; 
s.t. v5{k in R, j in J}:x_hor[k,omega[k],j]=0; 
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s.t. v6{k in R, i in Ir[k]}:x_vert[k,i,0]=0; 
#L 
s.t. v7{k in L, j in J_start}:y_hor[k,alpha[k]+1,j]=0; 
s.t. v8{k in L, j in J}:y_hor[k,omega[k],j]=0; 
s.t. v9{k in L}:y_hor[k,alpha[k]+1,1]=1; 
s.t. v10{k in L, i in Il[k]}:y_vert[k,i,0]=0; 
 
#constraints over R 
s.t. vinc_startR{k in R}: x_vert[k,alpha[k],1]+x_hor[k,alpha[k],1]=1; 
s.t. vinc_endR{k in R}: x_vert[k,omega[k],n_row-1]=1; 
s.t. vinc_contR{k in R, i in Ir[k], j in J}:  
x_hor[k,i-1,j]+x_vert[k,i,j-1]=x_vert[k,i,j]+x_hor[k,i,j]; 
 
#constraints over L 
s.t. vinc_startL{k in L}: y_vert[k,alpha[k],1]+y_hor[k,alpha[k],1]=1; 
s.t. vinc_endL{k in L}: y_vert[k,omega[k],n_row-1]=1; 
s.t. vinc_contL{k in L, i in Il[k], j in J}:  
y_hor[k,i+1,j]+y_vert[k,i,j-1]=y_vert[k,i,j]+y_hor[k,i,j]; 
 
#constraints to avoid node-conflits 
set Confl_nod:={r in R, l in L: alpha[r]<=alpha[l] and 
round((alpha[r]+alpha[l])/2)=(alpha[r]+alpha[l])/2 and 
omega[r]>=(alpha[r]+alpha[l])/2 and omega[l]<=(alpha[r]+alpha[l])/2}; 
set col_mezzo{(m,n) in Confl_nod}:={(alpha[m]+alpha[n])/2}; 
s.t. non_confl_nod{(m,n) in Confl_nod, i in col_mezzo[m,n], j in J}: 
x_hor[m,i-1,j]+x_vert[m,i,j-1]+y_hor[n,i+1,j]+y_vert[n,i,j-1]<=1; 
 
#constraints to avoid arc-conflicts 
set Confl_arc:={r in R, l in L:  
alpha[r]<=alpha[l]-1 and 
(alpha[r]+alpha[l])/2>=floor((alpha[r]+alpha[l])/2)+0.1 and 
omega[r]>=floor((alpha[r]+alpha[l])/2) and 
omega[l]<=floor((alpha[r]+alpha[l])/2)}; 
set col_arc{(m,n) in Confl_arc}:={floor((alpha[m]+alpha[n])/2)}; 
s.t. non_confl_arc{(m,n) in Confl_arc, i in col_arc[m,n], j in J}: 
x_hor[m,i,j]+y_hor[n,i+1,j]<=1;  
 
#links between z and x/y_hor 
s.t. z1{k in R, i in IrAMPL[k], j in J}: z>=j*x_hor[k,i,j]; 
s.t. z2{k in L, i in IlAMPL[k], j in J}: z>=j*y_hor[k,i,j]; 
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Model B, file .mod 
param n_row; 
param n_col; 
param n_veic; 
 
set VEIC:=1..n_veic; 
param alpha{VEIC};  #starting position 
param omega{VEIC};  #final position 
 
#sets of vehicles 
set S:= {k in VEIC : omega[k] = alpha[k]}; 
set R:= {k in VEIC : omega[k] >= alpha[k]} diff S; 
set L:= {k in VEIC} diff (R union S); 
 
# 
set J:=1..n_row-1; 
set I:= 1..n_col; 
set P:= R union L; 
set Ir{k in R}:={i in I: i>=alpha[k] and i<=omega[k]}; 
set Il{k in L}:={i in I: i>=omega[k] and i<=alpha[k]}; 
set Ip{k in P}:={i in I: i>=min(omega[k], alpha[k]) and i<= max(omega[k] 
,alpha[k])}; 
 
#variables vertical movements 
var v{k in P, i in Ip[k], j in J} binary; 
 
var z>=0 integer;  #to be minimized 
 
minimize f: z;  #objective 
 
s.t. c1{k in P}: sum{i in Ip[k]} sum{j in J} v[k,i,j]=z; 
s.t. c2{k in P}: sum{j in J} v[k,omega[k],j]>=1; 
s.t. c3{k in P, j in J}: sum{i in Ip[k]} v[k,i,j]<=1; 
 
set J_rid:=2..n_row-1; 
set I_5{k in P, i in Ip[k]}:={ii in I: ii>= min(alpha[k],i) and 
ii<=max(alpha[k],i)};   
s.t. c4{k in P, i in Ip[k], j in J_rid}: v[k,i,j]<= sum{ii in I_5[k,i]} 
v[k,ii,j-1]; 
 
#conflicts 
set Confl:={r in R, l in L:alpha[r]<=alpha[l]-1 and 
omega[r]>=ceil((alpha[r]+alpha[l])/2) and 
omega[l]<=floor((alpha[r]+alpha[l])/2)}; 
var delta_d{(r,l) in Confl, j in J_rid} integer; 
var delta_u{(r,l) in Confl, j in J} integer; 
 
s.t. c5{(r,l) in Confl}:delta_u[r,l,1]>=1; 
s.t. c6{(r,l) in Confl, j in J_rid}:delta_d[r,l,j]+delta_u[r,l,j]>=1; 
 
var aus_d{(r,l) in Confl, j in J_rid} binary; 
var aus_u{(r,l) in Confl, j in J} binary; 
# 
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set I_6{(r,l) in Confl}:={i in I: i>=alpha[r] and 
i<=floor((alpha[r]+alpha[l])/2)};   
set I_6p{(r,l) in Confl}:={i in I: i<=alpha[l] and 
i>=ceil((alpha[r]+alpha[l])/2)}; 
set J_r{j in J_rid}:={i in J: i>=1 and i<=j}; 
 
s.t. c7{(r,l) in Confl, j in J_rid}:delta_d[r,l,j]<=sum{i in I_6[r,l]} 
sum{jj in J_r[j]} v[r,i,jj]- sum{ii in I_6p[r,l]} sum{jjj in J_r[j]} 
v[l,ii,jjj] +n_row*aus_d[r,l,j]; 
s.t. c8{(r,l) in Confl, j in J_rid}:delta_d[r,l,j]<= -sum{i in I_6[r,l]} 
sum{jj in J_r[j]} v[r,i,jj]+ sum{ii in I_6p[r,l]} sum{jjj in J_r[j]} 
v[l,ii,jjj] +n_row*(1-aus_d[r,l,j]); 
 
# 
set J_rr{j in J}:={i in J: i>=1 and i<=j}; 
set I_7{(r,l) in Confl}:={i in I: i<=omega[r] and 
i>=ceil((alpha[r]+alpha[l])/2)};   
set I_7p{(r,l) in Confl}:={i in I: i>=omega[l] and 
i<=floor((alpha[r]+alpha[l])/2)}; 
s.t. c9{(r,l) in Confl, j in J}:delta_u[r,l,j]<=sum{i in I_7[r,l]} 
sum{jj in J_rr[j]} v[r,i,jj]- sum{ii in I_7p[r,l]} sum{jjj in J_rr[j]} 
v[l,ii,jjj] +n_row*aus_u[r,l,j]; 
s.t. c10{(r,l) in Confl, j in J}:delta_u[r,l,j]<= -sum{i in I_7[r,l]} 
sum{jj in J_rr[j]} v[r,i,jj]+ sum{ii in I_7p[r,l]} sum{jjj in J_rr[j]} 
v[l,ii,jjj] +n_row*(1-aus_u[r,l,j]); 
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Model C, file .mod 
param n_row; 
param n_col; 
param n_veic; 
 
set VEIC:=1..n_veic; 
param alpha{VEIC};  #starting positions 
param omega{VEIC};  #final positions 
 
#sets of vehicles 
set S:= {k in VEIC : omega[k] = alpha[k]}; 
set R:= {k in VEIC : omega[k] >= alpha[k]} diff S; 
set L:= {k in VEIC} diff (R union S); 
 
# 
set J:=1..n_row-1; 
set I:= 1..n_col; 
set P:= R union L; 
set Ir{k in R}:={i in I: i>=alpha[k] and i<=omega[k]}; 
set Il{k in L}:={i in I: i>=omega[k] and i<=alpha[k]}; 
set Ip{k in P}:={i in I: i>=min(omega[k], alpha[k]) and i<= max(omega[k] 
,alpha[k])}; 
 
#variables vertical movements 
var v{k in P, i in Ip[k]}>=0 integer; 
 
var z>=0 integer;  #to be minimized 
 
set Confl:={r in R, l in L: alpha[r]<=alpha[l]-1 and 
omega[r]>=ceil((alpha[r]+alpha[l])/2) and 
omega[l]<=floor((alpha[r]+alpha[l])/2)}; 
set C_even:={(r,l) in Confl: 
floor((alpha[r]+alpha[l])/2)=ceil((alpha[r]+alpha[l])/2)};  #node-confl 
set C_odd:=Confl diff C_even;  #arc-confl 
 
var w{(r,l) in Confl} binary; 
 
 
minimize f: z;  #objective 
s.t. summ{k in P}: sum{i in Ip[k]}v[k,i]=z; 
 
set Iodd1{(r,l) in C_odd}:={i in I: i>=alpha[r] and 
i<=floor((alpha[r]+alpha[l])/2)}; 
set Iodd2{(r,l) in C_odd}:={i in I: i>=ceil((alpha[r]+alpha[l])/2) and 
i<=alpha[l]}; 
s.t. v1{(r,l) in C_odd}:sum{i in Iodd1[r,l]}v[r,i]<=sum{ii in 
Iodd2[r,l]}v[l,ii]-1+n_row*w[r,l]; 
s.t. v2{(r,l) in C_odd}:sum{i in Iodd2[r,l]}v[l,i]<=sum{ii in 
Iodd1[r,l]}v[r,ii]-1+n_row*(1-w[r,l]); 
 
set Ieven1{(r,l) in C_even}:={i in I: i>=alpha[r] and 
i<=(alpha[r]+alpha[l])/2}; 
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set Ieven2{(r,l) in C_even}:={i in I: i>=(alpha[r]+alpha[l])/2+1 and 
i<=alpha[l]}; 
set Ieven4{(r,l) in C_even}:={i in I: i>=alpha[r] and 
i<=(alpha[r]+alpha[l])/2-1}; 
set Ieven3{(r,l) in C_even}:={i in I: i>=(alpha[r]+alpha[l])/2 and 
i<=alpha[l]}; 
 
s.t. v3{(r,l) in C_even}:sum{i in Ieven1[r,l]}v[r,i]<=sum{ii in 
Ieven2[r,l]}v[l,ii]-1+n_row*w[r,l]; 
s.t. v4{(r,l) in C_even}:sum{i in Ieven3[r,l]}v[l,i]<=sum{ii in 
Ieven4[r,l]}v[r,ii]-1+n_row*(1-w[r,l]); 
 
 
######################################################################## 
#INEQUALITY 1 
s.t. nuovo2{(r,l) in Confl}:z>=w[r,l]; 
 
#INEQUALITY 2 
param delta:= max(ceil(card(Confl)/(n_veic*card(Confl)+1)),0);  
s.t. nuovo1{k in P}:sum{i in Ip[k]}v[k,i]>=delta;  
 
#INEQUALITY 3 
s.t. nuovo3{(r,l) in 
C_even}:v[r,(alpha[r]+alpha[l])/2]+v[l,(alpha[r]+alpha[l])/2]<= 
z-1; 
 
#INEQUALITY 4 
#odd 
set Ind1{(r,l) in C_odd}:={i in I: i<=floor((alpha[r]+alpha[l])/2) and 
i>=alpha[r]}; 
set Ind2{(r,l) in C_odd}:={i in I: i<=floor((alpha[r]+alpha[l])/2) and 
i>=omega[l]}; 
set Ind3{(r,l) in C_odd}:={i in I: i>=ceil((alpha[r]+alpha[l])/2) and 
i<=omega[r]}; 
set Ind4{(r,l) in C_odd}:={i in I: i>=ceil((alpha[r]+alpha[l])/2) and 
i<=alpha[l]}; 
 
s.t. limit_col1{(r,l) in C_odd}:sum{i in Ind1[r,l]}v[r,i]<=w[r,l]+z-1; 
s.t. limit_col2{(r,l) in C_odd}:sum{i in Ind2[r,l]}v[l,i]<=w[r,l]+z-1; 
s.t. limit_col3{(r,l) in C_odd}:sum{i in Ind3[r,l]}v[r,i]<=(1-w[r,l])+z-
1; 
s.t. limit_col4{(r,l) in C_odd}:sum{i in Ind4[r,l]}v[l,i]<=(1-w[r,l])+z-
1; 
 
#even 
set Ind5{(r,l) in C_even}:={i in I: i<=(alpha[r]+alpha[l])/2 and 
i>=alpha[r]}; 
set Ind6{(r,l) in C_even}:={i in I: i<=(alpha[r]+alpha[l])/2 and 
i>=omega[l]}; 
set Ind7{(r,l) in C_even}:={i in I: i>=(alpha[r]+alpha[l])/2 and 
i<=omega[r]}; 
set Ind8{(r,l) in C_even}:={i in I: i>=(alpha[r]+alpha[l])/2 and 
i<=alpha[l]}; 
 
s.t. limit_col5{(r,l) in C_even}:sum{i in Ind5[r,l]}v[r,i]<=w[r,l]+z-1; 
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s.t. limit_col6{(r,l) in C_even}:sum{i in Ind6[r,l]}v[l,i]<=w[r,l]+z-1; 
s.t. limit_col7{(r,l) in C_even}:sum{i in Ind7[r,l]}v[r,i]<=(1-w[r,l])+ 
z-1; 
s.t. limit_col8{(r,l) in C_even}:sum{i in Ind8[r,l]}v[l,i]<=(1-w[r,l])+ 
z-1; 
 
#INEQUALITY 5 
#s.t. nuovo4{(r,l) in C_odd}:sum{i in Ind1[r,l]}v[r,i]>=w[r,l]; 
#s.t. nuovo5{(r,l) in C_odd}:sum{i in Ind4[r,l]}v[l,i]>=1-w[r,l]; 
 
#s.t. nuovo6{(r,l) in C_even}:sum{i in Ieven4[r,l]}v[r,i]>=w[r,l]; 
#s.t. nuovo7{(r,l) in C_even}:sum{i in Ieven2[r,l]}v[l,i]>=1-w[r,l]; 
 
#INEQUALITY 6 
set coppie{(r1,l1) in C_even}:={(r2,l2) in Confl: l1=l2 and r1!=r2 and 
alpha[r2]>=max(1,alpha[r1]-2)}; 
set indsx{(r1,l1) in C_even, (r2,l2) in coppie[r1,l1]}:={i in I: 
i>=alpha[r1] and i<=(alpha[r1]+alpha[l1])/2-1}; 
s.t. nuovo8{(r1,l1) in C_even, (r2,l2) in coppie[r1,l1]}: 
sum{i in indsx[r1,l1,r2,l2]}v[r1,i]>=2*w[r1,l1]-w[r2,l2]; 
 
set coppie01{(r1,l1) in C_odd}:={(r2,l2) in Confl: l1=l2 and r1!=r2 and 
alpha[r2]>=max(1,alpha[r1]-1)}; 
 
set indsx01{(r1,l1) in C_odd, (r2,l2) in coppie01[r1,l1]} 
:={i in I: i>=alpha[r1] and i<=floor((alpha[r1]+alpha[l1])/2)}; 
s.t. nuovo9{(r1,l1) in C_odd, (r2,l2) in coppie01[r1,l1]}: 
sum{i in indsx01[r1,l1,r2,l2]}v[r1,i]>=2*w[r1,l1]-w[r2,l2]; 
 
 
#INEQUALITY 7 
#even even 
set coppie1{(r1,l1) in C_even}:={(r2,l2) in C_even: l1=l2 and r1!=r2 and 
alpha[r2]>=max(1,alpha[r1]-2)}; 
set catene3_1{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1]}:={(r3,l3) in 
Confl: r3=r2 and l3!=l2 and alpha[l3]<=min(n_col,alpha[l2]+2)}; 
# new variables y 
var y1_1{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1]}>=0 binary; 
var y1_2{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1], (r3,l3) in 
catene3_1[r1,l1,r2,l2]}>=0 binary; 
# linking constraints y1_1 
s.t. vincy1_11{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1], (r3,l3) in 
catene3_1[r1,l1,r2,l2]}: y1_1[r1,l1,r2,l2]>=w[r1,l1]-w[r2,l2]; 
s.t. vincy1_12{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1], (r3,l3) in 
catene3_1[r1,l1,r2,l2]}: y1_1[r1,l1,r2,l2]<=w[r1,l1]; 
s.t. vincy1_13{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1], (r3,l3) in 
catene3_1[r1,l1,r2,l2]}: y1_1[r1,l1,r2,l2]<=1-w[r2,l2]; 
# linking constraints y1_2 
s.t. vincy1_21{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1], (r3,l3) in 
catene3_1[r1,l1,r2,l2]}: y1_2[r1,l1,r2,l2,r3,l3]<=w[r1,l1]; 
s.t. vincy1_22{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1], (r3,l3) in 
catene3_1[r1,l1,r2,l2]}: y1_2[r1,l1,r2,l2,r3,l3]<=1-w[r2,l2]; 
s.t. vincy1_23{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1], (r3,l3) in 
catene3_1[r1,l1,r2,l2]}:y1_2[r1,l1,r2,l2,r3,l3]<=w[r3,l3]; 
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s.t. vincy1_24{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1], (r3,l3) in 
catene3_1[r1,l1,r2,l2]}:y1_2[r1,l1,r2,l2,r3,l3]>=w[r1,l1]-2*w[r2,l2]-(1-
w[r3,l3]); 
 
set indsx1{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1], (r3,l3) in 
catene3_1[r1,l1,r2,l2]}:={i in I: i>=alpha[r1] and 
i<=((alpha[r1]+alpha[l1])/2)-1}; 
s.t. nuovo10{(r1,l1) in C_even, (r2,l2) in coppie1[r1,l1], (r3,l3) in 
catene3_1[r1,l1,r2,l2]}:sum{i in indsx1[r1,l1,r2,l2,r3,l3]}v[r1,i]>= 
w[r1,l1]+y1_1[r1,l1,r2,l2]+y1_2[r1,l1,r2,l2,r3,l3]; 
 
#even odd 
set coppie2{(r1,l1) in C_even}:={(r2,l2) in C_odd: l1=l2 and r1!=r2 and 
alpha[r2]>=max(1,alpha[r1]-2)}; 
set catene3_2{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1]}:={(r3,l3) in 
Confl: r3=r2 and l3!=l2 and alpha[l3]<=min(n_col,alpha[l2]+1)}; 
# new variables y 
var y2_1{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1]}>=0 binary; 
var y2_2{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1], (r3,l3) in 
catene3_2[r1,l1,r2,l2]}>=0 binary; 
# linking constraints y2_1 
s.t. vincy2_11{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1], (r3,l3) in 
catene3_2[r1,l1,r2,l2]}:y2_1[r1,l1,r2,l2]>=w[r1,l1]-w[r2,l2]; 
s.t. vincy2_12{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1], (r3,l3) in 
catene3_2[r1,l1,r2,l2]}:y2_1[r1,l1,r2,l2]<=w[r1,l1]; 
s.t. vincy2_13{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1], (r3,l3) in 
catene3_2[r1,l1,r2,l2]}:y2_1[r1,l1,r2,l2]<=1-w[r2,l2]; 
 
# linking constraints y2_2 
s.t. vincy2_21{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1], (r3,l3) in 
catene3_2[r1,l1,r2,l2]}:y2_2[r1,l1,r2,l2,r3,l3]<=w[r1,l1]; 
s.t. vincy2_22{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1], (r3,l3) in 
catene3_2[r1,l1,r2,l2]}:y2_2[r1,l1,r2,l2,r3,l3]<=1-w[r2,l2]; 
s.t. vincy2_23{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1], (r3,l3) in 
catene3_2[r1,l1,r2,l2]}:y2_2[r1,l1,r2,l2,r3,l3]<=w[r3,l3]; 
s.t. vincy2_24{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1], (r3,l3) in 
catene3_2[r1,l1,r2,l2]}:y2_2[r1,l1,r2,l2,r3,l3]>=w[r1,l1]-2*w[r2,l2]-(1-
w[r3,l3]); 
 
set indsx2{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1], (r3,l3) in 
catene3_2[r1,l1,r2,l2]} :={i in I: i>=alpha[r1] and 
i<=((alpha[r1]+alpha[l1])/2)-1}; 
s.t. nuovo11{(r1,l1) in C_even, (r2,l2) in coppie2[r1,l1], (r3,l3) in 
catene3_2[r1,l1,r2,l2]}:sum{i in indsx2[r1,l1,r2,l2,r3,l3]}v[r1,i]>= 
w[r1,l1]+y2_1[r1,l1,r2,l2]+y2_2[r1,l1,r2,l2,r3,l3]; 
 
#odd even 
set coppie3{(r1,l1) in C_odd}:={(r2,l2) in C_even: l1=l2 and r1!=r2 and 
alpha[r2]>=max(1,alpha[r1]-1)}; 
set catene3_3{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1]} 
:={(r3,l3) in Confl: r3=r2 and l3!=l2 and 
alpha[l3]<=min(n_col,alpha[l2]+2)}; 
# new variables y 
var y3_1{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1]}>=0 binary; 
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var y3_2{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1], (r3,l3) in 
catene3_3[r1,l1,r2,l2]}>=0 binary; 
# linking constraints y3_1 
s.t. vincy3_11{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1], (r3,l3) in 
catene3_3[r1,l1,r2,l2]}:y3_1[r1,l1,r2,l2]>=w[r1,l1]-w[r2,l2]; 
s.t. vincy3_12{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1], (r3,l3) in 
catene3_3[r1,l1,r2,l2]}:y3_1[r1,l1,r2,l2]<=w[r1,l1]; 
s.t. vincy3_13{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1], (r3,l3) in 
catene3_3[r1,l1,r2,l2]}:y3_1[r1,l1,r2,l2]<=1-w[r2,l2]; 
# linking constraints y3_2 
s.t. vincy3_21{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1], (r3,l3) in 
catene3_3[r1,l1,r2,l2]}:y3_2[r1,l1,r2,l2,r3,l3]<=w[r1,l1]; 
s.t. vincy3_22{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1], (r3,l3) in 
catene3_3[r1,l1,r2,l2]}:y3_2[r1,l1,r2,l2,r3,l3]<=1-w[r2,l2]; 
s.t. vincy3_23{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1], (r3,l3) in 
catene3_3[r1,l1,r2,l2]}:y3_2[r1,l1,r2,l2,r3,l3]<=w[r3,l3]; 
s.t. vincy3_24{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1], (r3,l3) in 
catene3_3[r1,l1,r2,l2]}:y3_2[r1,l1,r2,l2,r3,l3]>=w[r1,l1]-2*w[r2,l2]-(1-
w[r3,l3]); 
 
set indsx3{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1], (r3,l3) in 
catene3_3[r1,l1,r2,l2]}:={i in I: i>=alpha[r1] and 
i<=floor((alpha[r1]+alpha[l1])/2)}; 
s.t. nuovo12{(r1,l1) in C_odd, (r2,l2) in coppie3[r1,l1], (r3,l3) in 
catene3_3[r1,l1,r2,l2]}:sum{i in indsx3[r1,l1,r2,l2,r3,l3]}v[r1,i]>= 
w[r1,l1]+y3_1[r1,l1,r2,l2]+y3_2[r1,l1,r2,l2,r3,l3]; 
 
#odd odd 
set coppie4{(r1,l1) in C_odd}:={(r2,l2) in C_odd: l1=l2 and r1!=r2 and 
alpha[r2]>=max(1,alpha[r1]-1)}; 
set catene3_4{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1]} 
:={(r3,l3) in Confl: r3=r2 and l3!=l2 and 
alpha[l3]<=min(n_col,alpha[l2]+1)}; 
# new variables y 
var y4_1{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1]}>=0 binary; 
var y4_2{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1], (r3,l3) in 
catene3_4[r1,l1,r2,l2]}>=0 binary; 
# linking constraints y4_1 
s.t. vincy4_11{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1], (r3,l3) in 
catene3_4[r1,l1,r2,l2]}:y4_1[r1,l1,r2,l2]>=w[r1,l1]-w[r2,l2]; 
s.t. vincy4_12{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1], (r3,l3) in 
catene3_4[r1,l1,r2,l2]}:y4_1[r1,l1,r2,l2]<=w[r1,l1]; 
s.t. vincy4_13{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1], (r3,l3) in 
catene3_4[r1,l1,r2,l2]}:y4_1[r1,l1,r2,l2]<=1-w[r2,l2]; 
# linking constraints y4_2 
s.t. vincy4_21{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1], (r3,l3) in 
catene3_4[r1,l1,r2,l2]}:y4_2[r1,l1,r2,l2,r3,l3]<=w[r1,l1]; 
s.t. vincy4_22{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1], (r3,l3) in 
catene3_4[r1,l1,r2,l2]}:y4_2[r1,l1,r2,l2,r3,l3]<=1-w[r2,l2]; 
s.t. vincy4_23{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1], (r3,l3) in 
catene3_4[r1,l1,r2,l2]}:y4_2[r1,l1,r2,l2,r3,l3]<=w[r3,l3]; 
s.t. vincy4_24{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1], (r3,l3) in 
catene3_4[r1,l1,r2,l2]}:y4_2[r1,l1,r2,l2,r3,l3]>=w[r1,l1]-2*w[r2,l2]-(1-
w[r3,l3]); 
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set indsx4{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1], (r3,l3) in 
catene3_4[r1,l1,r2,l2]}:={i in I: i>=alpha[r1] and 
i<=floor((alpha[r1]+alpha[l1])/2)}; 
s.t. nuovo13{(r1,l1) in C_odd, (r2,l2) in coppie4[r1,l1], (r3,l3) in 
catene3_4[r1,l1,r2,l2]}:sum{i in indsx4[r1,l1,r2,l2,r3,l3]}v[r1,i]>= 
w[r1,l1]+y4_1[r1,l1,r2,l2]+y4_2[r1,l1,r2,l2,r3,l3]; 

 

Model A-B-C, file .dat 
 
param n_col:= ; # insert number of columns of the grid 
param n_veic:= ; # insert number of vehicles (it coincides with the 
number of columns) 
param n_row:= ; # insert number of rows of the grid 
 
 
param alpha:= ; 
param omega := ; # insert the components of these two vectors 

 

Model A-B-C, file .run 
 
reset; 
 
model namefile.mod; 
data namefile.dat; 
 
option solver cplex; 
solve; 
 
display z; 
 
 

 

Script for Python Numpy (Shuffle) 
 
import numpy as np; 
import random; 
from random import shuffle; 
 
# ordered list representing vector α 
vehicles=np.arange(1, ) # insert number of vehicles+1 
 
np.random.shuffle(vehicles) 
print(vehicles) #shuffled list representing vector 𝜔 
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Appendix 2-draws 

         

  
α(p) α(q) c(p,q) 

Figure 1: Node Conflict 

               
α(p) α(q) 

Figure 2: Intersection of 2 routes without Node-Conflict 
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α(p) 

 

α(q) 

 
Figure 3: Arc-Conflict 

                            

α(p) 

 

α(q) 

 Figure 4: Intersection of 2 routes without Arc-Conflict 

 

c(p,q) c(p,q)+1 
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 α(𝐴1) α(𝐴3) α(𝐴2) 

c(𝐴1, 𝐴2) c(𝐴3, 𝐴2) 

Figure 5: Generic 3-vehicle Conflict Chain 

                  
α(𝐴1) 

 

α(𝐴3) 

 

α(𝐴4) 

 

α(𝐴2) 

 
Figure 6: Generic 4-vehicle Conflict Chain 

 

c(𝐴3, 𝐴4) 

 

c(𝐴3, 𝐴2) 

 

c(𝐴1, 𝐴2) 
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