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Abstract

Type 1 diabetes (T1D) is a chronic autoimmune disorder caused by the de-

struction of β-cells in the pancreas, that leads to insulin de�ciency. Thus,

people with type 1 diabetes need an everyday exogenous insulin delivery

to maintain the blood glucose concentration as much as possible in the eu-

glycemic range. The tuning of insulin doses depends on many parameters;

among them, one of the most signi�cant is the glucose concentration in blood.

Therefore, frequent and accurate measurements of glucose concentration

are essential in managing diabetes. Minimally-invasive continuous glucose

monitoring (CGM) sensors allow to measure the glucose concentration al-

most continuously for several days and are becoming key instruments in the

management of diabetes therapy. However, as any measurement system,

CGM readings are a�ected by errors that can deteriorate the performance

of CGM-based applications, such as bolus calculators and arti�cial pancreas

systems. The development of a model able to describe the CGM sensor error

can be very useful, e.g. to reproduce sensor behaviors in silico when de-

signing and testing CGM-based applications. Several models to describe the

CGM error are available in the literature. However, their domain of validity

is limited to 12-hour windows, i.e. the time interval between two consecutive

calibrations. The recent availability of factory calibrated CGM sensor is call-

ing for CGM error models able to describe CGM inaccuracy and behaviour

in longer time intervals, e.g 7-10 days. The aim of this thesis is to develop a

new model of CGM sensor error for factory-calibrated CGM device.

The methodology that we propose exploits and improves the model cre-

ated by Facchinetti et al. [1, 2]. Di�erently from that model, whos maximum

domain of validity is the 12-hour window between two consecutive calibra-

tions, the new model is able to describe the CGM behaviour on the entire
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lifetime of the sensor (10 days).

The dataset used for model identi�cation consists of 81 adults whose BG

concentration has been measured in parallel by Dexcom G6 sensors (Dexcom

Inc, San Diego, CA) and YSI instrument (used as gold standard). The

identi�cation is performed by using two di�erent methods, one in two steps

and one in a single step, and the results are then compared.

The thesis is organized in six chapters. In Chapter 1, after an overview of

the T1D therapy, the techniques to measure the glucose concentration and

a detailed description of Dexcom G6 sensor are illustrated. Then, the issue

of CGM sensors inaccuracy and the principal sources of error are presented.

At the end of the chapter a review on the literature of sensor error models is

also reported, and the aim of the thesis is de�ned.

Chapter 2 describes the dataset used for the model identi�cation and

criteria used for the subjects selection, together with data pre-processed.

In Chapter 3, the new methodology for modeling the CGM sensor error

is presented. As previous models, it includes three components: the BG-to-

IG kinetics, the calibration error, and the measurements noise. The main

innovations are two. First, the modi�cation of the calibration error model to

describe such a component in factory-calibrated sensors. In particular, sev-

eral candidate models have been tested and compared. Second, the match of

a single-step identi�cation procedure, that allows overcoming the limitation

of the state-of-art identi�cation which requires two steps.

In Chapter 4, the results obtained by applying the new model with the

state-of-art two-step identi�cation procedure are reported. In the �rst step,

we determine the optimal calibration error model, its corresponding parame-

ters and the ones of the BG-to-IG model. Then, the parameters precision and

correlations are investigated. In the second step, we determine the optimal

order of the AR process that describes the measurement noise component

and its corresponding parameters on the di�erent days of monitoring.

In Chapter 5, the results obtained by applying the new model with the

single-step identi�cation procedure are reported. Di�erently from the two-

step method, the single step performs the identi�cation of all the parameters

simultaneously. As in the previous chapter, we report the optimal AR model

and the identi�ed parameters with the corresponding precision. The results

provided by the two identi�cation methods are then compared, showing that
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they are almost equivalent. However, the single-step one provides a more

accurate description of the BG-to-IG kinetics and allows to estimate all the

parameters simultaneously. For these advantages one may be inclined to

select this identi�cation method with respect to the two-step one.

Finally, the main �ndings of this work and the future developments are

summarized in Chapter 6.
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Chapter 1

Diabetes and Continuous Glucose

Monitoring

1.1 Diabetes and its therapy

Blood glucose concentration is controlled by insulin, a hormone secreted in

the pancreas by a speci�c type of cells, the β-cells. Insulin limits the amount

of glucose in blood when it reaches too high values, keeping its level in the

physiological range of 70-180 mg/dl. Diabetes is a disorder that a�ects the

body's ability to regulate blood glucose. Diabetic people lack insulin ef-

fectiveness, so their glucose level becomes too high with respect to healthy

bounds. This condition, called hyperglycemia, has no severe complications

in short-term, but it may induce long-term serious e�ects like retinopathy,

nephropathy, and neuropathy [3].

Nowadays, diabetes is considered a global health emergency: people af-

fected by diabetes are more than 425 million worldwide, and they are ex-

pected to rapidly increase to approximately 629 million in 2045 [4]. Given

such gloomy scenario, �nding the best treatments is very important to guar-

antee a good quality of life to those a�ected by this disease.

There are two main types of diabetes, and each of them requires di�erent

treatments. Type 2 diabetes is a disease characterized by the inability of

body tissues and organs to properly use the circulating insulin. It a�ects

approximately the 90-95% of all diabetics; the main risk factors are genetic

predispositions, obesity, and sedentary lifestyles. Common therapy for type
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MONITORING

Figure 1.1: Insulin infusion using daily injections. (Source: Diabetes Re-
search & Wellness Foundation, UK, https://www.drwf.org.uk)

2 diabetes includes glucose monitoring, healthy diet, physical activity, and

drug administration.

Type 1 diabetes is a chronic autoimmune disorder caused by the destruc-

tion of β-cells in the pancreas. Since very little or no insulin is produced

[5], people with type 1 diabetes need an everyday exogenous insulin delivery

to maintain glucose concentration in the euglycemic range. This is not easy

to achieve as a surplus of insulin can decrease the glucose level below the

safe bound of 70 mg/dl. This condition, called hypoglycemia, can lead to

severe consequences such as the loss of consciousness, seizure, coma, or even

death [6]. Typical insulin doses range from 0.4 to 1.0 units/kg/day, with the

right amount depending on many parameters, like patient's weight, time of

meals, carbohydrate consumption and, most of all, measurements of glucose

concentration in blood [7].

1.2 Glucose monitoring techniques

Precise and accurate measurements of glucose concentration have a key role

in good diabetes management.

Before 1970s, the glucose in blood was estimated from the one measured

in the urine. Such measurements were manual and limited, for this reason

they were mainly used for diagnosis and critical care management rather

than to achieve speci�c glycaemic goals [8]. The history of at-home diabetes
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1.3. MINIMALLY-INVASIVE CGM SENSORS

monitoring started in 1971, when Anton Clemens developed, for point-of-care

use, the �rst blood glucose monitor based on the re�ectance of the light from

the surface of a glucose oxidase-based strip. In the 1980s, more convenient

electrochemical techniques were developed, which brought to self-monitoring

blood glucose (SMBG) devices. Since then, SMBG devices are fundamental

instruments in the daily routine of diabetic patients, and they represent today

the most widespread method of self glucose monitoring at home.

SMBG devices are compact and very easy to use [9, 10]: patients prick

their �nger with a lancet device to obtain a small blood sample that is put

over a reagent strip. The strip is inserted into a re�ectance photometer, and

the glucose concentration value is displayed on a screen. The main drawback

of these devices is the rate of sampled data: because the �nger prick is

intrusive and painful, a standard frequency of only 3-4 measurements per day

can be collected. Because of the sparsity of these measurements, dangerous

hypoglycaemic or hyperglicaemic events may be not detected by SMBG [11]

[12].

The need to have frequent glucose data impels to a new generation of de-

vices: the continuous glucose monitoring (CGM) sensors. CGM sensors are

wearable devices able to take glucose measurements at regular intervals, e.g.,

every 1-5 minutes for several consecutive days. Continuous data provides sev-

eral advantages because they can be used to implement proactive actions, like

preventing potential hypoglycaemia with carbohydrates intake or perform-

ing insulin dose modi�cations to avoid future hyperglycaemia. Furthermore,

acoustic and visual alerts can warn the careless wearer if glucose is moving

out of the safe range [13].

1.3 Minimally-invasive CGM sensors

Minimally-invasive systems measure glucose concentration in the interstitial

�uid between cells and capillaries, without nicking blood vessels. Depending

on how the interstitial �uid is sampled these devices can be based on needle,

microdialysis, or reverse iontophoresis.

Most popular minimally-invasive CGM devices consist of three main el-

ements: a needle-based sensor, which measures an electrical signal propor-
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MONITORING

tional to interstitial glucose concentration; a transmitter, applied over the

sensor to transmit the signal; and a receiver, that displays glucose concen-

tration to the user. More speci�cally, the electrical signal is generated by

a glucose-oxidase electrochemical reaction, which is induced by an enzyme-

coated wire inserted by the patient in the abdominal or arm subcutis. The

signal is converted to a glucose concentration via a calibration process that

exploits previous SMBG patient's measurements. The implemented calibra-

tion algorithm often assumes a �rst-order and time-independent association

between the electrical signal and the glucose level. This simplistic way to

model a complex relation forces the system to require periodic calibrations

(every nearly 12 hours) by patients with their consequent discomfort. To

solve this problem, novel calibration procedures were investigated in the last

years. These new techniques allow the development of sensors that do not

require in vivo calibrations: the so-called "factory-calibrated" sensors [14].

Nowadays, only few type 1 diabetes patients are using CGM sensors. The

main reasons are high devices cost, perceived sensor inaccuracy, di�culties

in alarms management, and aversion to wearing devices on the body. Never-

theless, the number of users is rapidly increasing thanks to new low-cost and

more accurate sensors. Moreover, some CGM devices received regulatory

approval for nonadjunctive use both in Europe and the United States, e.g.,

Dexcom G5 received both the CE marking and the FDA approval in 2016.

The o�cial permission allows patients to base their treatment decisions on

CGM measurements, without the need of con�rming CGM readings with

SMBG measurements [15].

1.3.1 Dexcom G6 device

The Dexcom G6 System provides continuous glucose level concentration with

sampling time of 5 minutes, for up to 10 consecutive days. Currently available

in 16 countries, it received both the CE marking and the FDA approval for

nonadjunctive use in 2018. It includes a minimally invasive CGM sensor, a

transmitter, and a compatible wireless display device (Figure 1.2):

• The sensor is a sterile device made of an applicator, a transmitter

holder, and a probe. The applicator is a single-use disposable unit that

helps patients to insert the probe under the skin. The probe may be
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Figure 1.2: Dexcom G6 components.The system includes the auto- applica-
tor (1), the transmitter (2), and the display devices that can be a touch-screen
receiver, a smartphone or a smartwatch (3).

placed in the abdomen subcutis for adults, and both in the abdomen or

in the buttock subcutis for children aged 2-17 years old. Once inserted,

the probe starts measuring interstitial glucose levels every 5 minutes.

• The transmitter is a Bluetooth Low Energy (BLE) device that com-

municates in real-time the sensor glucose readings to the receiver. It is

attached to the sensor through the transmitter holder and can be used

for up to 3 months.

• The display device receives glucose information from the transmitter

and shows them to the user. It informs the patient about the glucose

trends and gives alarms when glucose is moving out of the physiological

range.

Thanks to wireless communications between the transmitter and the re-

ceiver useful apps are designed for both android and iOS. With the Dexcom

ShareTM app, patients can share their glucose readings and trends with up

to 10 people. This is very useful for parents of diabetic children that can re-

motely monitor their children's glucose measurements. The CLARITY app

identi�es clinically relevant patterns out of a huge amount of glucose read-
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ings, performing statistical analysis on them: this gives patients the ability

to prioritize problems and �nd quick solutions.

This generation of devices include new advantages and features:

• The factory calibration eliminates the need of periodically calibrat-

ing the device using SMBG. However, if sensor glucose readings do

not match the patient feelings, the calibration procedure must be per-

formed in vivo using SMBG references. An advantage of the factory

calibration is the remarkable reduction of SMBG measurements and the

elimination of errors related to the execution of the calibration process,

which can lead to sensor inaccuracies.

• A 10-day sensor wear period, longer than the 7-day life�me of previous

generation Dexcom sensor, reduces the number of insertion and the

consequent patients' discomfort.

• The "Urgent Low Soon" alert predicts hypoglycemia events within 20

minutes advance, helping to avoid severe low blood sugar episodes.

• The acetaminophen (APAP) blocking allows accurate glucose readings

with no medication interference. APAP is a medicine commonly used

to treat mild to moderate pain, or to reduce fever. Unfortunately, it af-

fects the glucose readings, generating a spurious signal which interferes

with the sensor signal. To minimize or prevent APAP interference a

permselective membrane coating is designed for Dexcom G6 sensor.

• The transmitter is 30 percent thinner than its predecessor and its size

is reduced to almost 4 centimeters length.

• The one-touch auto-applicator simpli�es the sensor insertion, which

becomes less painful and less intimidating.

• The interoperability allows sharing glucose information to interoperable

electronic interfaces, including compatible Automated Insulin Delivery

(AID) systems. The CGM sensor interacts with other devices with 3

modalities: the transmitter communicates to another device through

the same protocol, the app communicates to another app on a single
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mobile platform, or the app communicates through the cloud to another

software device.

In order to assess Dexcom G6 reliability, the sensor performances are

tested in several investigations where the outcomes always prove the device

consistence and precision [16] [17] [18]. Also FDA, before the approval, have

examined data from two clinical studies conducted at 11 centers across the

United States. These studies evaluated the accuracy of the sensor compared

to a laboratory blood glucose measurement method. Results point out a

good accuracy con�rmed by a 9% mean absolute relative di�erence (MARD)

that is the main performance metrics for accuracy evaluation of CGM sensor

[19]. Thanks to these outcomes, the Dexcom G6 is approved to be used

nonajunctively; therefore, the CGM readings can be used by patients to

make treatment decisions without con�rmatory SMBG values.

1.4 The CGM sensor error

CGM devices measure glucose concentration levels almost continuously, pro-

viding enormous advantages in the diabetes management. However, as any

measurement system, they are a�ected by unpredictable errors that cause

inaccuracy in CGM readings provided in output. Dissecting the error in its

di�erent contributions and evaluating them can be the key to improve sensor

performances and to reduce their inaccuracy.

Details regarding the CGM sensor error are presented in the following

sections.

1.4.1 Sources of CGM sensor error

The sources that may impair the sensor accuracy are several, such as delays,

interfering substances, drifts in sensitivity, and calibration error. Under-

standing the nature of these inaccuracies is fundamental to model the sensor

error.

A �rst source of error is related to the body site in which the CGM devices

measure the glucose level. Minimally-invasive CGM systems measure the

glucose concentration in the interstitial �uid (IG), rather than in the plasma
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Figure 1.3: Representative Dexcom G6 sensor signal in a random time
interval that exhibits a delay compared to the BG reference values (YSI
values) due to IG-to-BG kinetics.

(BG) . Therefore, due to the physiological lag between IG and BG, which is

in the order of minutes, the sensors glucose measurements are subjected to

a delay, as reported in Figure 1.3.

A second source of error in CGM sensors is in the transduction of the

electrochemical signal into an electrical signal. Some substances, like the ac-

etaminophen (APAP) described in the previous section, can interfere with the

process by generating spurious currents when they are oxidized at the sensor

electrodes. This undesired e�ect causes an arti�cial raise of the measured

glucose values.

A third source of error lays in the variation of the sensor sensitivity. When

the sensor is inserted into the body, the immune system reacts because of the

sensor membrane entering the biological environment, leading to a variation

of the sensor sensitivity in time. This variation causes a non-physiological

drift in time on the CGM pro�le, which can be observed in Figure 1.4.

Finally, a last source of error is in the sensor calibration process itself.

Ideally, the calibration algorithm should perfectly match the electrical signal

to the glucose concentration level of the patient by compensating the e�ects

of the previous error sources. However, the calibration laws implemented in

CGM devices are most of the times simple linear functions, which are not

su�cient to completely describe the inter-subject and inter-sensor dynamics.
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Figure 1.4: Representative Dexcom G6 sensor signal (blu continuous line)
that exhibits a nonphysiological drift (red dashed line) due to time-variability
of sensor sensitivity.

1.4.2 Literature models to describe the CGM sensor er-

ror

Developing a quantitative model of the CGM sensor error requires e�orts

from both the theoretical and the experimental point of view.

For example, the development of a mathematical model to describe the

BG-to-IG kinetics is challenging because of its involved dynamic. But the

e�ort is not only theoretic: once the model is settled, its validation requires

to collect blood glucose values in parallel with CGM data, which is possible

only with the hospitalization of patients and the intervention of clinics and

resources. Consequently, there are only few studies on CGM sensor error

modeling in literature.

In 2006, Chase and colleagues proposed a �rst simple sensor error model

based on a random white noise process with a constant coe�cient of vari-

ation [20]. Then, Breton and Kovatchev implemented a �ner model based

on two di�erent datasets of the Abbott FreeStyle Navigator sensor (Chicago,

IL, USA) [21]. The model included the distortion e�ect due to the BG-to-IG

kinetics, and a linear regression model to calibrate CGM data. However,

the results were impaired by some rough assumptions. First, the di�usion

process was described as linear and time invariant for several days, and the

inter-individual variability of the BG-to-IG kinetics was not considered. Sec-
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ondly, the parameters of the calibration model were assumed to not vary in

time; thus, the model was unable to describe completely the errors due to the

calibration. Another study, proposed by Laguna and colleagues on the Dex-

com SEVEN PLUS (San Diego, CA, USA) and the Medtronic Paradigm Veo

Enlite sensors (Northridge, CA, USA), characterized several aspects of the

sensor error, such as lag time, error stationary, error probability distribution,

and time correlation [22].

Recently, Facchinetti and colleagues proposed a novel model [1, 2], where

the error was dissected into its three main contributions: the delay due to the

BG-to-IG kinetics, the calibration error, and the measurement noise. The

error model was validated on CGM sensors of di�erent generations produced

by Dexcom Inc. (San Diego, CA, USA). All the literature studies in CGM

sensor error have been performed using the data of past-generation CGM

sensors that required periodic in vivo calibrations; thus, to the best of our

knowledge, no models of the error of factory-calibrated CGM sensors are

available in the literature.

1.5 Aim of the thesis

This thesis aims to develop the error model for factory-calibrated CGM sen-

sors used in type 1 diabetes therapy. To achieve this goal, the model proposed

by Facchinetti et al. in [1, 2] is modi�ed and extended. First, several new

functions for the calibration error model are tested and compared to investi-

gate the time variability of CGM sensor sensitivity in longer time intervals,

e.g. 7-10 days. Secondly, a novel single-step procedure where all the parame-

ters are estimated simultaneously is proposed and validated to overcome the

limitation of the state-of-art identi�cation which requires two steps.

The dataset adopted to model the sensor error comes from a pivotal study

on 81 patients wearing Dexcom G6 CGM sensors. A complete description of

the available data and of the data pre-processing is provided in Chapter 2.

In Chapter 3, �rst the model of Facchinetti et al. is explained in details, and

then the two steps and the single step identi�cation methods are proposed.

In Chapter 4 and 5, the parameters are identi�ed by using respectively the

two-step and the single-step method. The obtained results are analyzed, each
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in its corresponding chapter, and then compared in Chapter 5. Finally, the

conclusions and the future works are described in Chapter 6.
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Chapter 2

Dataset and Data pre-processing

In this chapter �rst we describe the dataset used to identify the error model

of the factory-calibrated CGM sensors, and then we pre-process the data to

remove saturated and spurious CGM values. Finally, we report the Bayesian

smoothing procedure used in the pre-processing.

2.1 Dexcom G6 pivotal study dataset

The available data come from multi-center pivotal studies, performed in 2016-

2017, on both adults (over 17 years old) and pediatric patients wearing Dex-

com G6 sensors. The dataset includes 140 patients: 103 of them wearing a

single sensor, and the remaining 37 wearing two sensors in parallel, placed on

right and left sides of the abdominal region, respectively. Because only few

patients wear two sensors, we decided to consider each of them belonging to

di�erent subjects. Consequently, the starting dataset consisted of 177 CGM

pro�les.

During the ten days of monitoring with the G6 sensor, patients were

hospitalized on day 1 or 2, 4, 7 or 10, for a 12-hour period where blood

glucose (BG) samples were collected as reference data. In particular, the

BG samples were measured approximately every 15 ± 5 minutes by using a

YSI (Yellow Spring, OH) glucose analyzer. For several possible reasons, this

protocol was not strictly followed by all the subjects. Therefore, some of

them were discarded from the dataset to avoid introducing erroneous data

in the analysis. Speci�cally, subjects are discarded if

13



CHAPTER 2. DATASET AND DATA PRE-PROCESSING

Table 2.1: Summary on the subject selection, according to the rules de�ned
in Sec. 2.1.

Subjects Number

total 177

discarded because without recorded YSI -5

discarded because without YSI data on day 10 -86

discarded because with missing CGM data -5

selected 81

• their YSI measurements are completely missing. In this case, we have

no reference data to perform the analysis.

• their YSI measurements are missing on day 10. In this case, the avail-

able reference data would be not su�cient to describe the sensor error

in the entire lifetime of 10 days.

• their CGM pro�le is not collected for the entire 10-days period and

ends after few days of monitoring.

Figure 2.1 reports some examples of subjects whose YSI measurements or

CGM pro�le were not correctly collected. After screening out the dataset,

81 subjects remain for the analysis; a summary of the selection is reported

in Table 2.1.

2.2 Data pre-processing

After selecting the subjects, both their CGM and their YSI data are processed

to remove not reliable values. Indeed, the accuracy of the data is fundamental

to successfully identify the model of the CGM error.

The CGM sensor trace is a�ected by saturation to maximum and mini-

mum displayable levels and by disconnections, i.e. missing samples. In the

former, the reported level of glucose is above 400 mg/dl or below 40 mg/dl

while, in the latter, the reported level assume a peculiar value below 40 mg/dl
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Figure 2.1: Examples of sensors pro�le obtained when the protocol instruc-
tions are not followed. The YSI measurements are not available in day 10
(left); the CGM signal is not collected for the entire 10-days period (right).

Figure 2.2: Data pre-processing on both the CGM data and YSI data.
Examples reporting the elimination of the saturated CGM data (yellow lines)
on the left, and of YSI considered as outliers (yellow circle) on the right.

(e.g., 5 mg/dl). In both cases, we discard the values from the analysis, as

shown in Figure 2.2. Similarly, the YSI measurements can be a�ected by

errors in their acquisition or recording. To remove the spurious data, we

perform a visual inspection following two main rules. First, we eliminate the

YSI values that are in contrast with the main trend of their neighbors. Sec-

ond, we remove those that we consider outliers, which are the ones located

too far from the others and the CGM pro�les. An example of outlier value

is presented in Figure 2.2.
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2.2.1 Smoothing of YSI data

As explained in Sec 2.1, the reference data are collected for a 12-hour period,

in di�erent days, with a frequency of 15 ± 5 minutes. This frequency is

lower than the one of the CGM samples, i.e. 5 minutes; thus, YSI pro�les

which will be used as a deterministic input in our identi�cation process (see

Sec. 2.1), need to be interpolated on a more dense sampling grid in order to

be matched with CGM values.

For this purpose, we exploit a data approximation technique called Bayesian

smoothing. In performing the Bayesian smoothing, �rst the uniform time grid

for the smooth signal is set, then, the original signal is smoothed by following

these two principles:

• Since the YSI data are a�ected by the measurement noise, the smooth-

ing procedure should only approximate the data, without interpolate

them exactly.

• Since the YSI pro�le is a biological signal, it must have some regular-

ities. In particular, the regularity of the pro�le can be de�ned as the

energy of its second derivative.

The trade-o� between approximation and regularity is achieved by minimiz-

ing a target function (details available in the Appendix A). An example of

Bayesian smoothing of YSI samples is reported in Figure 2.3, where the uni-

form grid of the smoothed pro�le is set to 1 minute sampling time.

The YSI data are not collected continuously but only when the patients

are hospitalized. Moreover, while colleting YSI samples some measurements

can miss, so the smoothed pro�le obtained between two adjacent samples

could be unreliable. To prevent this situation, we segment the smoothed YSI

pro�les such that, if two adjacent YSI samples are collected more than 20

minutes away from each other, we discard the smoothed pro�le between the

two samples. As an additional constraint, if the duration of a segment is

less than one hour, we discard it. An example of the set of YSI segments

obtained for a representative subject is reported in Figure 2.4.
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Figure 2.3: YSI values in a restricted time window before (red circles) and
after (green circles) their reconstruction through the Bayesian smoothing.
The reconstructed pro�le is an approximation of the original one.

Figure 2.4: YSI pro�le in day 2 of a representative subject before and after
its segmentation. The original signal (center) is split in three segments. Two
(green square and blue square) are conserved while the remaining (yellow
square) is discarded because its time period is smaller than an hour.
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Chapter 3

Methodology for modeling the

CGM sensor error

3.1 The model proposed by Facchinetti et al.

for past generation sensors

Facchinetti et al. proposed a innovative model of sensor error based on

the separation of the CGM inaccuracy components [1, 2], which allows to

investigate the error of any commercial CGM sensor. A model of the di�erent

sensor error components is useful to test in simulation several applications,

such as algorithms for signal processing, real-time glucose prediction, insulin

dosing, and arti�cial pancreas (AP) (e.g., incorporating a model of the CGM

error in the T1D simulator of Padua and Virginia University [23]).

According to the model, the error of the sensor has three main contri-

butions: the BG-to-IG kinetics, the sensor calibration error, and the mea-

surement error. While the �rst is related to a physiological process, the last

two are speci�c of the sensor itself. To characterize each error component

this technique exploits n simultaneous CGM sensors, as reported in Figure

3.1, and assumes the interstitial glucose (IG) concentrations underlying the

CGM trace of each sensor to be the same. This hypotesis is equivalent to

have no physiological variability from a sensor insertion site to another.
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Figure 3.1: Schematic description of how simultaneus CGM data streams
are modeled. From left to right: the BG(t) signal is transformed into IG(t)
signal through the BG-to-IG kinetics; the IG signal is measured by each of
the n CGM sensors, generating for the i-th sensor theIGSi(t) pro�le; �nally,
the measured CGMi(t) is a�ected by additive measurement noise vi(t).

The CGM trace of the sensor i is given by

CGMi(t) = IGSi(t) + vi(t), (3.1)

where, at time t, vi is the measurement error and IGSi is the value of the

IG read by the sensor. If the sensors were perfectly calibrated, the IGSi(t)

signals would be equal to IG(t). In reality, however, the IGSi(t) of each sensor

deviates from the true value because of errors in the calibration process or

because of drifts in time due to changes of sensor sensitivity. Such deviation,

which we refer to as calibration error, results in di�erent IGSi signals for each

sensor.

Details regarding the model components are presented in the following

sections.

3.1.1 Model of BG-IG kinetics

Minimally-invasive systems are based on measurement of IG rather than BG

in order to reduce invasiveness of CGM devices. Since plasma and interstitial

�uid are separated by a capillary barrier, the interstitial pro�le is a distorted
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Figure 3.2: Compartmental model describing the BG-to-IG kinetics. BG is
the plasma glucose concentration, IG is the interstitial glucose concentration,
Ra is the rate of appearance of glucose in the blood, kij (i = 0, 1, 2 and j =
1, 2) are the di�usion constants. PG (plasma glucose) and CGM (interstitial
pro�le) are the accessible measures of the two compartments.

and delayed version of the blood one. This physiological process is the �rst

source of error to model in CGM sensors. A relative simple but e�ective

model was proposed by Rebrin et al. [24], which described the BG-to-IG

kinetics process as the two-compartment model represented in Figure 3.2.

In such a model, BG and IG are respectively the plasma and the interstitial

glucose concentration, Ra is the rate of appearance of the glucose in the blood,

and k12, k21, k01, and k02 are the di�usion constants. The two di�erential

equations that describe the system are

˙BG(t) = Ra + k12IG(t)− (k01 + k21)BG(t), (3.2)

˙IG(t) = k21BG(t)− (k02 + k12)IG(t). (3.3)

The a priori non-identi�ability leads to the following parametrization:

˙IG(t) = −1

τ
IG(t) +

g

τ
BG(t), (3.4)

where τ is the di�usion time constant and g is the gain of the system.

To �nd the transfer function of the system we use the Laplace transforms,
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obtaining

IG(s) = H(s)BG(s) and H(s) =
g

τ

1

s+ 1
τ

. (3.5)

Therefore, in the time domain, the glucose concentration in the interstitial

�uid is given by

IG(t) = h(t)⊗ BG(t) (3.6)

where ⊗ is the convolution operator and h(t) is the impulse response of the

BG-to-IG system,

h(t) =
g

τ
e−

t
τ . (3.7)

In steady state, ˙IG = 0 and IG = BG [25], therefore the gain g is equal to 1.

Indeed, from Eq. (3.4) one gets

1

τ
IG =

g

τ
BG, (3.8)

IG = g · BG, (3.9)

g = 1, (3.10)

and the IG concentration is then given by [25]

IG(t) = h(t)⊗ BG(t)

=
(1

τ
e−

t
τ

)
⊗ BG(t).

(3.11)

According with the model, τ is the same for every of the n sensors in a

subject, and its identi�cation is performed by nonlinear least squares.

3.1.2 Calibration error model

The IG signal is measured independently by the multiple sensors, generating

the IGSi pro�les (S stands for the sensor, while i refers to the sensor num-

ber (i = 1, . . . , n)). To de�ne the relationship between IGSi and IG(t) some

critical aspects have to be taken into account: the calibration process of the

sensor can be suboptimal, as described in section 1.4.1; and the variability

of its sensitivity may produce a signi�cant drift in time not suitably com-
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pensated by the calibration process. The resulting calibration error a�ecting

the CGM trace between two consecutive calibrations, i.e. in a time-window

of 12-hour duration, is described by the following equation:

IGSi(t) = ai(t)IG(t) + bi(t)

= ai(t)
[
h(t)⊗ BG(t)

]
+ bi(t),

(3.12)

where ai(t) and bi(t) are the time-varying gain and o�set for the i-th sensor.

Ideally, sensors free of calibration error would have a(t) = 1 and b(t) = 0.

Several options can be taken into account to model ai(t) and bi(t). In

absence of a priori information on their evolution in time, polynomial models

are used because of their �exibility. The two functions are then given by

ai(t) =
m∑
k=0

aikt
k, (3.13)

bi(t) =
l∑

k=0

bikt
k, (3.14)

where m and l are the degrees of the polynomials, and aik and bik are the

corresponding coe�cients.

The selection of optimal values for m and l is performed by minimizing

the Bayesian information criterion (BIC) index, while the identi�cation of

the coe�cients aik and bik are estimated via nonlinear least squares.

3.1.3 Model of the measurement noise

In addition to the calibration error, CGM signals are a�ected by an additive

noise vi(t) (see Eq. (3.1)). Thanks to the availability of multiple sensor per

subject, vi(t) can be dissected into two components, one common to all the

sensors and one sensor-speci�c. The common component, cc(t), is assumed

to be equal in all CGM sensors of a single subject and accounts for the

possible suboptimal modeling of the previous steps, while the sensor-speci�c

component scci(t) is speci�c to the i-th device and uncorrelated with the

other devices.

Since both the models of the BG-IG kinetics and the calibration error
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cannot explain the sensor error completely, vi(t) contains some dynamics not

considered by these models and cannot be in general considered as a zero-

mean random measurement only. According to [26], the two components of

vi(t) are modeled as autoregressive (AR) processes:

cc(t) =
r∑

k=1

βikcc(t− k) + w1(t) (3.15)

scci(t) =

q∑
k=1

αikscci(t− k) + wi2(t) (3.16)

where αik and βik are respectively the parameters of the AR model of orders

q and r, while w1(t) ∼ N (0, σ2
w1

) and wi2(t) ∼ N (0, σ2
wi2

) are white noise

random processes.

The identi�cation of the orders q and r of the two AR models is performed

by minimizing the BIC criterion.

3.2 The proposed error model for factory -

calibrated CGM sensors

As reported in section 1.3.1, factory-calibrated CGM devices eliminate the

need of sensor calibration in vivo and associated SMBGmeasurements. There-

fore, in factory-calibrated devices, the calibration procedure is performed by

the manufacturers instead of the patients, based on the sensor sensitivity

determined during the manufacturing process [27]. The only action required

by the patients is to transcript the calibration code provided with the sensor

during the setup phase. After that, no further calibration is needed.

The proposed model of the error of factory-calibrated CGM sensors is

reported in Figure 3.3. Di�erently from the previous analysis, where the error

was characterized in the time windows between two consecutive calibrations

(12-hour time window), here we consider a time span that is the entire lifetime

of the sensor (10 days). Moreover, the analysis considers one sensor, i.e., one

CGM trace, for each subject instead of having multiple simultaneous sensors.

The choice of having one rather than multiple CGM sensors per patient is

due to the fact that CGM datasets, including the one used in this work, are
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Figure 3.3: Schematic description of how a factory-calibrated CGM data
stream is modeled. From left to right: the BG(t) signal is transformed into
IG(t) signal through the BG-to-IG kinetics; the IG signal is measured by the
CGM sensor, generating theIGS(t) pro�le; �nally, the measured CGM(t) is
a�ected by additive measurement noise v(t) .

mostly collected using a single sensor per subject.

Similarly to the previous analysis, the scheme can be decomposed in three

sub-models:

1. The BG-to-IG kinetics model, which is exactly the same described in

Sec 3.1.1, according to which the BG-IG relation is given by Eq. (3.11).

2. The calibration error model, which is characterized as in Eq. (3.12)

where ai(t) and bi(t) are proper functions to be determined and i is the

index of the subject.

3. The model of the measurement noise, which consists of a single com-

ponent vi(t), modeled as the following AR process:

vi(t) =

q∑
k=1

αikvi(t− k) + wi(t) (3.17)

where i refers to the subject and wi(t) is a zero-mean white noise process

with variance σ2.

In conclusion, the resultant CGMi sensor output is de�ned by:

CGMi(t) = Φi(t) + wi(t) , Φi(t) = IGSi(t) +

q∑
k=1

αikvi(t− k) (3.18)

25



CHAPTER 3. METHODOLOGY FOR MODELING THE CGM

SENSOR ERROR

where Φ(t) models the CGM sensor measurements without the zero-mean

white noise component.

3.2.1 Candidate calibration error models

In order to correctly model the calibration error, we investigate several types

of polynomial and exponential functions for the parameters ai(t) and bi(t).

As reported in Sec. 3.1.2, the polynomial functions in Eqs. (3.13) and (3.14)

allow a wide range of behaviors by selecting the degrees m and l properly.

In the model, we restrict our choice to m and l ranging from zero up to a

maximum of three, corresponding to behaviors spanning from time invariant

to cubic. For instance, by selecting m = l = 2 a quadratic time evolution is

considered both for ai(t) and bi(t), and IGSi(t) is given by

IGSi(t) =
[
a0 + a1t+ a2t

2
]
IG(t) +

[
b0 + b1t+ b2t

2
]
. (3.19)

Instead, by selecting m = 2 and l = 0 the gain obeys to a quadratic law

while the o�set is time invariant, IGSi(t) is then given by

IGSi(t) =
[
a0 + a1t+ a2t

2
]
IG(t) + b0. (3.20)

According to [28], and two patent applications deposited by Dexcom [29,

30], the time variability of CGM sensor sensitivity over the entire sensor

lifetime can be well describe by exponential functions. Therefore, in this

thesis, we considered two additional models for a(t) and b(t), i.e. the mono-

exponential model:

s1(t) = m0 ·
[
1 +

mf −m0

m0

·
(

1− e−γt
)]
, (3.21)

and the bi-exponential model:

s2(t) = m0 ·
{

1 +
mf −m0

m0

·
[
ι ·
(

1− e−γt
)

+
(

1− ι
)
·
(

1− e−δt
)]}

(3.22)

where γ, δ, and ι are the exponential decay constants that model the sensor

calibration error, m0 de�nes the initial sensitivity condition when the sensor

is initially inserted into the tissue (t = 0), and mf de�nes the �nal condition
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(t = inf). In the following of this thesis, we will refer to s1(t) and s2(t) as

exp1 and exp2, respectively.

An example of calibration error model is obtained by modeling ai(t) as a

mono-exponential and bi(t) as a constant, thus IGSi is de�ned as:

IGSi(t) = m0a ·
[
1 +

mfa −m0a

m0a

·
(

1− e−γat
)]
· IG(t) + b0. (3.23)

3.3 Calibration error model selection and pa-

rameter identi�cation

After pre-processing the data, the parameters of the model can be identi�ed

using CGM data as samples of CGMi(t) and pre-processed YSI references as

samples of BG(t). The identi�cation is performed either in two steps or in a

single one, depending on the desired approach, by using least squares. Since

the model is nonlinear with respect to the parameters, a closed-form solution

does not exist and we must resort to numerical iterative algorithms to �nd

the minimum of the cost function. In this work we use MATLAB built-in

functions (e.g. lsqnonlin and fmincon) that require the initial values of the

parameters.

The model parameters are identi�ed for each subject and for all the candi-

date calibration error models. To select the optimal calibration error model,

the Bayesian Information Criterion (BIC) index of the same subject but ob-

tained with di�erent models are compared, and the model allowing for the

lowest BIC values is chosen. The details regarding the calibration error model

selection and parameter identi�cation are presented in the following sections.

3.3.1 Least-squares parameters estimation in two steps

The model parameters can be estimated in two consecutive steps, as in [1, 2].

The �rst step estimates the time constant τ of Eq. (3.7) and the calibration

error model parameters by using nonlinear least squares; while the second

step estimates the AR model of the measurement error vi(t) from the resid-

uals of the �rst step.

27



CHAPTER 3. METHODOLOGY FOR MODELING THE CGM

SENSOR ERROR

Initial parameters' values

As explained previously, the identi�cation of the model parameters of each

subject is performed via nonlinear least squares. To �nd a solution to the

least square problem, iterative minimization algorithms are used. Such al-

gorithms require to set some initial values for the parameters as starting

point. Sometimes, in order to avoid local minima, the initial values have to

be "su�ciently near" to the global minimum.

To make an educated guess, we draw the initial values of the parameters

from probability density functions (pdf), taken from literature. If the pdfs

are accurate, the least square solution provided by the iterative algorithm

will converge independently from the realization of the initial values; other-

wise, the algorithm falls in di�erent local minima. When the latter situation

occurs, we test 10 combinations of initial values and select the one yielding

the lowest residual sum of squares (RSS).

The probability density functions of τ and the polynomials coe�cients

a0, a1, b0, b1 are chosen in a way to re�ect the distributions of such pa-

rameters obtained in a work with previous generation Dexcom sensor [1].

Consequently, as showed in Figure 3.4, they are given by

τ ∼ Γ(k, θ) (k = 3, θ = 2.5) (3.24)

a0 ∼ LogN (µ, σ2) (µ = 1.3, σ = 0.5) (3.25)

a1 ∼ N (µ, σ2) (µ = 0, σ = 0.0015) (3.26)

b0 ∼ N (µ, σ2) (µ = −9, σ = 55) (3.27)

b1 ∼ N (µ, σ2) (µ = 0.003, σ = 0.17) (3.28)

where Γ, LogN andN are the gamma, the log-normal and the normal density

functions respectively, k and θ are the shape and the scale parameters, while

µ and σ are the mean and the standard deviation.

With respect to the polynomial coe�cients a2, a3, b2 and b3, we have no

available data from the literature to model their initial distributions. How-

ever, this is not an issue since we tested di�erent pdf models and we veri�ed

a posteriori that they are not required to obtain the convergence of the

estimates.

Regarding the exponential parameters, we do not have any data to ex-
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Figure 3.4: Comparison of the probability density functions of parameters
τ̂ , â0, â1, b̂0, and b̂1 obtained in a work with previous generation Dexcom
sensor [1] (top) and modeled as initial distributions in this thesis (bottom).

tract their pdfs since the use of the exponential functions in calibration error

models is a novelty of this thesis. Therefore, whenever possible, we model

the pdfs similarly to those of the polynomial case, where the correspondences

between the parameters are given by qualitatively reasoning on the asymp-

totic behaviors of the exponential functions. Otherwise, we base our choice

on the role of the parameters in the functions. For instance, we model the

pdf of γ and δ to guarantee a reasonable evolution in time of the exponential,

avoiding the quasi-constant or the linear behavior.

The initial pdfs of the parameters are

m0 ∼ LogN (µ, σ2) (µ = 1.3, σ = 0.5) (3.29)

mf ∼ N (µ, σ2) (µ = −9, σ = 55) (3.30)

γ ∼ U(a, b) (a = 0.4, b = 0.6) (3.31)

δ ∼ U(a, b) (a = 0.4, b = 0.6) (3.32)

h ∼ U(a, b) (a = 0.4, b = 0.6) (3.33)
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where U is the uniform density function and (a, b) is the support of the

uniform distribution.

Unfortunately, the nonlinear least square algorithm provides di�erent lo-

cal minima by using these pdfs, and the solution diverge. Therefore, we

operate as described above.

Identi�cation of the BG-to-IG and calibration error model param-

eters

The model parameters p of the i-th subject are identi�ed by minimizing the

sum of the squared residuals (RSS) between the vector of the CGM sensor

measurements Yi and the IGSi(p) one, which is computed from the selected

model. Speci�cally, according to Eq. (3.1), we can write

Yi = IGSi(BGi, p) + vi. (3.34)

Therefore, the estimated parameters are computed as

p̂ = argmin‖Yi − IGSi(BGi, p)‖2, (3.35)

and the residuals are

v̂i = Yi − IGSi( ˆBGi, p̂). (3.36)

The minimization is computed by using the MATLAB built-in function

lsqnonlin.

Precision of parameters' estimates

Once we have the estimated parameters, their precision can be assessed by

evaluating the coe�cient of variation (CV). The CV measures the disper-

sion of the estimates around the mean value, and it is usually expressed in

percentage as

CV(p̂) = 100 · sd(p̂)

p̂
(3.37)

where sd(p̂) is the standard deviation of the estimated parameters. As a

consequence, a low CV corresponds to a low dispersion and a good precision

of the estimated parameters.

30



3.3. CALIBRATION ERROR MODEL SELECTION AND PARAMETER

IDENTIFICATION

Selection of calibration error model by Bayesian Information Cri-

terion

When the parameters are identi�ed for each subject and for all the candidate

calibration error models, we have to choose the optimal model.

The number of parameters of the calibration error model depends on the

selected function ai(t) and bi(t). In the simplest case, when ai(t) and bi(t)

are both constants, the number of parameters to identify is three (τ, a0, b0);

while in the most complex one, when ai(t) and bi(t) are both bi-exponential,

the number of parameters is eleven. As we consider calibration error models

with di�erent number of parameters, to select the best model we need an

indicator able to take into account both the model �t and the complexity of

the model. Indeed, the increase of the number of parameters improves the

model �t goodness but it also increases the chances of over�tting.

To tackle the trade-o� between goodness of �t and complexity we resort

to the Bayesian Information Criterion (BIC) index. The BIC is given by

BIC(mod,i) = di ln(RSSi) + pmod ln(di), (3.38)

where di is the number of CGM data available for the i-th subject, pmod is

the number of parameters of the model mod, and RSSi is the residual sum

of squares computed as

RSSi =

di∑
j=1

η2ij, (3.39)

with ηij being the uncorrelated version of vij, j ∈ (1, . . . , di), samples of the

measurement noise vi(t). As de�ned in Eq. (3.38), the BIC index considers

both the goodness of the �t (�rst term) and the parsimony of the model

(second term).

When facing the choice between two models, the one with the lower BIC

should be preferred. Speci�cally, to compare two models for the i-th subject

we de�ne the ∆BIC as

∆BIC(i) = BIC(mod1,i) − BIC(mod2,i), (3.40)

where mod2 has more parameters than mod1. If ∆BIC(i) is positive, then
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BIC(mod2,i) < BIC(mod1,i) and we prefer mod2, otherwise we prefer mod1.

For choosing the best performing calibration error model we compare

them pairwise. The main selection criterion between two models is to choose

the model that allows a lower BIC value in the majority of subjects. When

the rate of positive and negative ∆BIC values is close to 50%, we work out

the dilemma by examining the outliers in the boxplot of the ∆BIC: we may

prefer one model if it performs particularly better than the other for a set of

subjects. In case neither the outliers are relevant to identify the best model,

we follow the parsimony principle and we choose the simplest calibration

error model.

Noise model parameters identi�cation

In the second step, we use the optimal error calibration model to identify the

AR model of the residuals v̂. We expect the residuals not to be generated by

a zero-mean white noise process; thus, we call them colored residuals. To

determine the optimal order of the AR model, we explore for each residuals

segment (where the segments are those described in Sec. 2.2.1), di�erent

possible orders, ranging from 1 to 10, and we compute their associated BIC.

We choose the best order in each segment as the one with the lowest BIC

and we aggregate the results in a histogram. The �nal optimal order is

determined by selecting the most frequent one in the histogram.

Once we select the optimal AR model, we identify its parameters and we

whiten the residuals as

ŵ(t) = v̂(t)−
q∑

k=1

α̂kv̂(t− k), (3.41)

where the α̂k and q are the AR model coe�cients and order respectively.

3.3.2 Least-squares parameter estimation in a single step

In addition to the two-step method, in this thesis we implement a single step

identi�cation method, in which the parameters p of the BG-to-IG model,

the error calibration model, and the measurement noise model are estimated

simultaneously.
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While in the two-step identi�cation the MATLAB function ar always

provided a stable AR model, in the single-step we follow three di�erent pro-

cedures to deal with the issue of the stability. The �rst does not consider

any stability constraint during the identi�cation process, which is performed

with lsqnonlin, but veri�es a posteriori whether the AR model is stable. The

second procedure, instead, implements the constraints by using the fmincon

function to guarantee the stability. The last procedure, includes in the identi-

�cation process a priori information on the parameters by using the Bayesian

approach. The priors are obtained resorting to the information on the error

model of the Dexcom G4AP sensor [2]. Speci�cally, we use the mean and

standard deviation of τ, a0 and b0 in the fourth day of the study, when we

expect the results to be more accurate. Accordingly, the a priori information

are given by

µτ = 7.7, στ = 3, (3.42)

µa0 = 1.05, σa0 = 0.15, (3.43)

µb0 = −2.6, σb0 = 14.9, (3.44)

where µ and σ are the mean and the standard deviation of the corresponding

parameters.

To simplify the analysis, we consider only the optimal calibration error

model obtained in the two-step identi�cation and, for the �rst two proce-

dures, we �x the order of the AR model to q = 2. Then, in the third

procedure we verify the choice of the AR order exploring di�erent possibili-

ties (q ∈ {1, 2, 3}) and selecting the optimal using the Bayesian Information

Criterion (BIC) similarly to Sec. 3.3.1.

Initial parameters' values

As in the two-step identi�cation, we draw the initial values of the parameters

from their pdfs. While the probability density functions for the BG-to-IG

model and the calibration error model are the same of the previous analysis,

we need to provide those for the AR parameters α1, α2 and α3. Since we

have no available data from literature, we exploit the residuals obtained from

the two-step identi�cation. In particular, we identify the AR parameters for
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Figure 3.5: Histograms of α1, α2 and α3 identi�ed for each subject by ag-
gregating all the segments of the residuals which refer to that subject, and
relative initial probability density functions from which draw the correspond-
ing initial values.

each subject by aggregating all the segments of the residuals which refer to

that subject. As reported in Figure 3.5, the initial pdfs of α1, α2 and α3 are

then modeled as normal random variables, where their shapes are chosen to

be similar to the corresponding histograms obtained from the AR parameters

identi�cation on subjects. Thus, the pdfs are de�ned as

α1 ∼ N (µ, σ2), (µ = −1.23, σ = 0.1), (3.45)

α2 ∼ N (µ, σ2), (µ = 0.37, σ = 0.1), (3.46)

α3 ∼ N (µ, σ2), (µ = −0.047, σ = 0.09), (3.47)

where N is the normal density function, while µ and σ are the mean and the

standard deviation. To model the initial parameters we also have to take into

account the stability of the AR model. Given the characteristic polynomial

of the AR process of order q

C(z) = 1 +

q∑
j=1

αjz
j, (3.48)

the process is stable when the absolute values of its roots ζ are lower than

one (|ζ| < 1). Therefore, we draw the initial values of the AR parameters
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from their pdfs and we check whether they respect the stability constraints.

If the stability is veri�ed, we use α1, α2 and α3 in the identi�cation step;

otherwise, we draw other initial values until we �nd a stable combination of

the AR parameters. Unfortunately, when we use these initial pdfs to identify

the model with the single step procedure, the solution is not unique and

depends on the particular realization of the initial parameters. To overcome

the problem, we operate as described in Sec 3.3.1.

Identi�cation of the model parameters

Again, the estimation of the model parameters is performed by using the

nonlinear least square method but the residuals to minimize are now the

di�erences between the CGM sensor values Yi and the ones provided by the

whole model, which includes also the AR model of the measurement noise.

As a result, the residuals are expected to be a zero-mean white noise process.

According to the whole model de�ned in Eq. (3.1), we can write

Yi = Φi(p) + wi. (3.49)

Therefore, the estimated parameters are computed as

p̂ = argmin‖Yi − Φ(p)‖2, (3.50)

and the residuals are

ŵi = Yi − Φ(p̂). (3.51)

The minimization of (3.50) is performed using the MATLAB built-in func-

tions lsqnonlin and fmincon and the precision of the estimates are computed

exactly as in Sec. 3.3.1.
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Chapter 4

Results of the identi�cation of the

new model with the two-step

procedure

The identi�cation of the new model with the two-step procedure has been

carried out in two di�erent phases. In the �rst phase, we develop the strate-

gies to identify the optimal model and the corresponding parameters, and

then we test them on 10 random subjects. This approach has many advan-

tages: we have a preliminary view on how the algorithms work, we can solve

more easily the problems thanks to the limited number of data, and above

all, we can carry out an initial selection process, where we can discard the

calibration models that perform much worse than the others. In the second

phase, we extend the analysis to the entire dataset.

4.1 Calibration error model selection

To select the optimal calibration error model, we split the comparisons among

models into nine groups: three comprising comparisons between polyno-

mial models, three comprising comparisons between mono-exponential hy-

brid models, and three comprising comparisons between bi-exponential hy-

brid models. Starting from Group I and proceeding iteratively, we select the

best model in each group and we include it in the next one.

The model resulting the best one in Group IX is then selected as the
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Table 4.1: Composition of the polynomial groups for the calibration error
model selection wherem and l are the degree of the polynomials functions a(t)
and b(t) respectively. For each group, the pairs of models are compared by
using BIC criterion. Then, the models selected as best models are compared
each other. The procedure is repeated until a single best model for the group
is obtained. The best model of the i-th group is the initial reference model
for the (i+ 1)-th group.

Groups

I II III

Polynomial

models

(m=l=0)

vs

(m=1, l=0)

(m=1, l=0)

vs

(m=2, l=0)

(m=2, l=0)

vs

(m=3, l=0)

(m=l=0)

vs

(m=0, l=1)

(m=2, l=0)

vs

(m=2, l=1)

(m=3, l=0)

vs

(m=3, l=1)

(m=1, l=0)

vs

(m=l=1)

(m=2, l=0)

vs

(m=0, l=2)

(m=3, l=1)

vs

(m=3, l=2)

(m=0, l=1)

vs

(m=l=1)

(m=2, l=1)

vs

(m=l=2)

(m=3, l=2)

vs

(m=l=3)
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Table 4.2: Composition of the mono-exponential groups for the calibration
error model selection. a(t) and b(t) are polynomial or exponential functions.
In case of polynomials m and l are their degrees, in case of mono-exponential
functions we refer to them as exp1. For each group, the pairs of models
are compared by using BIC criterion. Then, the models selected as best
models are compared each other. The procedure is repeated until a single
best model for the group is obtained. The best model of the i-th group is
the initial reference model for the (i+ 1)-th group.

Groups

IV V VI

Mono-exponential

hybrid models

(m=2, l=0)

vs

(exp1, l=0)

(m=2, l=0)

vs

(exp1, l=1)

(m=2, l=0)

vs

(exp1, l=3)

(m=2, l=0)

vs

(m=0, exp1)

(exp1, l=1)

vs

(exp1, l=2)

(exp1, l=3)

vs

(m=3,exp1)

(exp1, l=0)

vs

(exp1, exp1)

(exp1, l=1)

vs

(m=1, exp1)

/

(m=0, exp1)

vs

(exp1, exp1)

(exp1, l=2)

vs

(m=2, exp1)

/
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Table 4.3: Composition of the bi-exponential groups for the calibration
error model selection. a(t) and b(t) are polynomial or exponential functions.
In case of polynomials m and l are their degrees, in case of bi-exponential
functions we refer to them as exp2. For each group, the pairs of models
are compared by using BIC criterion. Then, the models selected as best
models are compared each other. The procedure is repeated until a single
best model for the group is obtained. The best model of the i-th group is
the initial reference model for the (i+ 1)-th group.

Groups

VII VIII IX

Bi-exponential

hybrid models

(m=2, l=0)

vs

(exp2, l=0)

(m=2, l=0)

vs

(exp2, l=1)

(m=2, l=0)

vs

(exp2, l=3)

(m=2, l=0)

vs

(m=0, exp2)

(exp2, l=1)

vs

(exp2, l=2)

(exp2, l=3)

vs

(m=3,exp2)

(exp2, l=0)

vs

(exp2, exp2)

(exp2, l=1)

vs

(m=1, exp2)

/

(m=0, exp2)

vs

(exp2, exp2)

(exp2, l=2)

vs

(m=2, exp2)

/
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optimal. To select the best model in a group, the models are sorted according

to their increasing number of parameters and then arranged in adjacent pairs.

Each pair is then compared by using BIC criterion, as described in Sec. 3.3.1.

This procedure is repeated for the models that were selected as best models

in the previous round of comparisons, until a single best model is obtained

in the group. The composition of the nine groups are resumed in Tables 4.1,

4.2, 4.3.

From the preliminary analysis on the 10 subjects, we �nd out that the

best performing calibration error model is the (m = 2, l = 0), then we expect

the gain contribution a(t) to be more involved than the o�set contribution

b(t). Moreover, calibration error models including cubic order polynomials or

bi-exponential functions never outperform the others in terms of BIC. This

is likely because their higher complexity is not rewarded with a better �t;

taking into account also the parsimony principle, we decide to remove such

models from the remainder of the study, i.e., in the following analysis we are

not considering Groups III, VI, VII, VIII, and IX.

The main results of the analysis on the entire dataset are reported in

the boxplots of Figures 4.1, 4.2, 4.3, and 4.4. Regarding Group I, we dis-

card (m = l = 0) because BIC(m=1,l=0) < BIC(m=l=0) and BIC(m=0,l=1) <

BIC(m=l=0) in more than 60% of the cases and there are many outliers with

positive ∆BIC. Similarly, we eliminate the model (m = l = 1) because

∆BIC((m=1,l=0), m=l=1) > 0 and ∆BIC((m=0,l=1), m=l=1) > 0 in the 31% and in

the 39% of the subjects, respectively. Therefore, the �nal comparison for this

group is between the (m = 1, l = 0) model and the (m = 0, l = 1) one. As

reported in the last boxplot of Figure 4.1, ∆BIC((m=1,l=0), (m=0,l=1)) > 0 in

the 36% of the subjects; thus we select the polynomial model (m = 1, l = 0)

as the optimal for the group and we insert it into the next one.

Regarding Group II, the BIC value of the (m = 2, l = 0) is lower

than that of the (m = 1, l = 0) in the 55% of the cases, and the ∆BIC

presents many outliers with positive values. For these reasons we discard

the (m = 1, l = 0) model. Incrementing the number of parameters used

to describe the o�set does not lead to a better description of the data. In-

deed, ∆BIC((m=2,l=0), (m=2,l=1)) > 0 in the 33% of the subjects. Also con-

sidering (m = 0, l = 2) does not signi�cantly improve the results, with

BIC(m=2,l=0) < BIC(m=0,l=2) in the 71% of the subjects.
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Figure 4.1: Boxplot of ∆BIC values obtained in the group I of polynomial
models while selecting the calibration error function. The red line indicates
the median value, the diamond shows the mean value, the plus are the outliers
values. Note that a positive value of ∆BIC means that the model with more
parameters is preferable.
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Figure 4.2: Boxplot of ∆BIC values obtained in the group II of polynomial
models while selecting the calibration error function. The red line indicates
the median value, the diamond shows the mean value, the plus are the outliers
values. Note that a positive value of ∆BIC means that the model with more
parameters is preferable.
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Figure 4.3: Boxplot of ∆BIC values obtained in the group IV of mono-
exponential hybrid models while selecting the calibration error function. The
red line indicates the median value, the diamond shows the mean value, the
plus are the outliers values. Note that a positive value of ∆BIC means that
the model with more parameters is preferable.

Finally, comparing (m = 2, l = 1) with (m = l = 2) yields to BIC(m=l=2) <

BIC(m=2,l=1) in the 21% of the cases; thus we discard also the model (m =

l = 2). Owing to these results, we select the (m = 2, l = 0) model as the

best model of Group II and we insert it into the next group.

Considering Group IV, where the two functions a(t) and b(t) can be either

a polynomial or a mono-exponential, we �rst compare the (m = 2, l = 0)

with the (exp1, l = 0) and the (m = 0, exp1). As represented in Figure 4.3,

BIC(exp1,l=0) < BIC(m=2,l=0) and BIC(m=0,exp1) < BIC(m=2,l=0) in the 33% and

the 30% of the cases, respectively. Thus, the model (m = 2, l = 0) is the

one that perform better. Instead, when we compare both the (exp1, l =
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Figure 4.4: Boxplot of ∆BIC values obtained in the group V of mono-
exponential hybrid models while selecting the calibration error function. The
red line indicates the median value, the diamond shows the mean value, the
plus are the outliers values. Note that a positive value of ∆BIC means that
the model with more parameters is preferable.

0) and the (m = 0, exp1) with the (exp1, exp1), we obtain BIC(exp1,exp1) <

BIC(exp1,l=0) in the 48% of the cases and BIC(exp1,exp1) < BIC(m=0,exp1) in

the 54%. In both cases there are few outliers that performs better with

one of the two model analysed, so we follow the parsimony principle and

we discard the model (exp1, exp1). From these comparisons, the polynomial

model (m = 2, l = 0) is the best model of Group IV. To validate the choice,

we also directly compare the (m = 2, l = 0) with the (exp1, exp1), resulting

in ∆BIC((m=2,l=0), (exp1,exp1)) > 0 in the 38% of the subjects.

Finally, we analyze the models in Group V. First, we compare the model

(m = 2, l = 0) with the (exp1, l = 1) one and we obtain BIC(exp1,l=1) <

BIC(m=2,l=0) in the 28% of the cases. Therefore, the (m = 2, l = 0) is

preferable. Then, as reported in Figure 4.4, we �nd out that increasing the
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Figure 4.5: Boxplot of ∆BIC values obtained in the second round of com-
parisons in the group V of mono-exponential hybrid models while selecting
the calibration error function. The red line indicates the median value, the
diamond shows the mean value, the plus are the outliers values. Note that
a positive value of ∆BIC means that the model with more parameters is
preferable.

number of parameters is not convenient. Indeed, ∆BIC((exp1,l=1), (exp1,l=2)) >

0 in the 41% of the subjects and there are few outliers with positive ∆BIC.

Regarding the model (m = 1, exp1), it is equivalent to the (exp1, l = 1) one

because BIC(exp1,l=1) < BIC(m=1,exp1) in the 53% of the cases, the outliers

are not relevant and the complexity of the model is the same (they both

involve 5 parameters). Thus, the model (m = 1, exp1) is set apart. Instead,

when we compare the models (exp1, l = 2) and (m = 2, exp1), we obtain

BIC(m=2,exp1) < BIC(exp1,l=2) in the 59% of the cases. For this reason we

discard the (exp1, l = 2).

From these comparisons, we obtain three possible optimal models: (m =

2, l = 0), (m = 1, exp1) and (m = 2, exp1). We sorted these models ac-

cording to their increasing number of parameters and then we arranged in

adjacent pairs. As represented in Figure 4.5, BIC(m=1,exp1) < BIC(m=2,l=0)
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Figure 4.6: IGSi curves comparison on a representative subject i with dif-
ferent calibration error models during day 2 (top), day 4 (center) and day 10
(bottom). The IGSi curves are obtained with the model (m = l = 0) (light
blue lines), the model (m = l = 1) (yellow lines) and the model (m = 2, l = 0)
(red lines).
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and BIC(m=2,exp1) < BIC(m=2,l=0) in the 34% and the 36% of the cases,

respectively. Therefore, we discard both the models (m = 1, exp1) and

(m = 2, exp1) and we select the polynomial model (m = 2, l = 0) as the

optimal one.

In Figure 4.6, we reported an example of how di�erent calibration error

models perform. The use of the optimal model (m = 2, l = 0) (red line) allows

to describe the CGM sensor pro�le much better than the model (m = l = 0)

(light blue line), which is not su�cient to explain the time-variant behavior

of the calibration error. Instead, the model (m = l = 1) gives a satisfactory

description of the calibration error on day 2 and 10 but it worsens on day 4,

meaning that a better characterization of the time variation of a(t) and b(t)

is needed.

4.2 Parameter estimation

Once the calibration error functions have been set, we have to identify its

parameters a0, a1, a2, b0 and the time constant τ for each subject. We can

then compute the IGSi pro�le with the estimated parameters.

The values and the precision of the estimates are shown in Table 4.4,

where the median, the 5th and the 95th percentiles, and the percentage of the

estimates with CV < 5%, CV < 10%, and CV < 30% are reported. Results

Table 4.4: Median, 5th and 95th percentiles values for model parameters
τ̂ , â0, â1, â2, b̂0, and percentage of values estimated with CV < 5%, CV <
10%, CV < 30% with the selected calibration error model (m = 2, l = 0).

Parameter
Percentile % of values estimated with

50th 5th 95th CV < 5% CV < 10% CV < 30%

τ̂ 3.7675 0.0323 11.6446 85.2% 88.8% 90.1%

â0 0.9405 0.6398 1.1171 100% 100% 100%

â1 0.0068 -0.0657 0.1196 79% 93.8% 98.8%

â2 -0.0007 -0.0093 0.0054 79% 93.8% 95.1%

b̂0 7.5857 -1.2057 18.5540 81.5% 87.7% 91.4%
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Figure 4.7: Histograms and relative probability density functions of param-
eters τ̂ , â0, â1, â2, and b̂0 obtained from estimated values and kernel density
estimation procedure with the selected calibration error model (m = 2, l = 0).

show that the parameters are identi�ed with great precision: the percentage

of estimates with CV < 30% is always greater than 90%, while the one with

CV < 5% never drops below 79%. We can make some considerations on the

distribution of τ̂ : its median value of ' 3.8 min is surprisingly low from a

physiological point of view; indeed, from previous studies, τ is expected to

span from 3 to 12 minutes, with a median around 7-8 minutes. However, the

inter-individual variability of τ̂ is large, with values spanning from almost 0

to 14.1, con�rming that it is subject speci�c. Regarding the parameters of

the calibration error model, the values of â0, â1, and â2 are much variable

among subjects. We remark that non null values of â1 and â2 correspond to

a drift in time of the sensor sensitivity.

To better appreciate the parameter estimates' distributions, we assess

both their histograms and their probability density functions that are ob-

tained through a kernel estimation procedure. Similar to the histogram, the

kernel estimation process builds a function to represent the probability distri-

bution of the parameters. But unlike the histogram, which places the values

of parameters into discrete bins, the kernel distribution sums the component

smoothing functions for each value to produce a smooth, continuous proba-

bility curve. Having continuous pdfs can be useful in several applications, like

generating random values for the parameters in a simulation environment.

From Figure 4.7, we verify that the resulting distributions are consistent with

the ones observed in [1, 2], apart from the distribution of τ̂ . Speci�cally, in

the analysis we obtain τ̂ ' 0 for a certain number of subjects; this value is
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Figure 4.8: Scatterplots between pairs of parameters of the selected cali-
bration error model. The boxes on the top represent the scatterplots between
a(t) parameters a0, a1 and a2, while the boxes on the bottom represent the
scatterplots between a(t) parameters and b0.

not realistic because the glucose di�usion from blood to interstitial �uid is

not instantaneous. A deeper insight of the problem is described in the next

section.

After assessing the parameters values, we plot their scatterplots to study

their correlations. In Figure 4.8 we study the correlation among the calibra-

tion error model parameters. In particular, to verify whether a simple linear

relationship is su�cient to describe their relation, we introduce the coe�-

cient of Pearson ρ. Such coe�cient measures the strength and the direction

of the linear relationship between two variables x̂ and ŷ, and it is de�ned as

ρx,y =
cov(x, y)

σxσy
ρx,y ∈ [−1, 1] (4.1)

where cov(x, y) is the covariance, σx is the standard deviation of x, and σy

is the standard deviation of y.

When |ρx,y| = 1 the relation between x and y is perfectly described by

a linear equation, and we refer to it as a "perfect correlation"; whereas,

when ρx,y = 0 there is no linear correlation between the variables. Moreover,
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ρx,y > 0 indicates a positive correlation, while ρx,y < 0 indicates a negative

one. Observing Figure 4.8 (top), we can see strong negative correlations

between â1 and â2 (ρâ1â2 = −0.98) and between â0 and â1 (ρâ0â1 = −0.79),

while there is a strong positive correlation between â0 and â2 (ρâ0â2 = 0.73).

On the contrary, there is not a linear relationships between the coe�cients of

the sensor gain and the one of the sensor o�set (Figure 4.8 (bottom)). This

result is con�rmed by the low values of the Pearson's correlation coe�cients:

ρâ0b̂0 = 0.16, ρâ1b̂0 = −0.32, and ρâ2b̂0 = 0.29.

4.2.1 Problem in τ estimation

In this section we discuss about the problem in estimating the di�usion time

constant we encountered in the previous section for few subjects. In partic-

ular, eight subjects have an estimated time constant almost equal to zero,

and this is not consistent with the physiology of the BG-to-IG kinetic. The

CVs obtained for these subjects are generally low but except the CV values

referring to the di�usion time constant, which have very high values. This

indicates a low accuracy in the estimation of τ only. Identifying the causes of

this problem is not trivial: we can speculate there may be some errors in the

recording of the temporal CGM/YSI data for these subjects. The presence of

possible errors in the data acquisition suggests to discard a posteriori these

subjects from the analysis.

After the elimination, the obtained histogram (right panel in Figure 4.9)

has no spurious peak around zero, and it is now in line with the one reported

in [2]. The new estimated parameters and their CVs are reported in Table

4.5. The results are improved: the median value of τ̂ increases from ' 3.77 to

' 3.98, while the percentage of subjects with the CV referred to τ̂ below the

30% changes from 90.1% to 100%. Finally, regarding the other parameters,

there are not signi�cant changes both in their values and in their distributions

(Figure 4.10).
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Figure 4.9: Histogram and relative probability density function of τ̂ ob-
tained from estimated values and kernel density estimation procedure before
(left) and after (right) the elimination of subjects with τ̂ ' 0, with the se-
lected calibration error model (m = 2, l = 0).

Figure 4.10: Histograms and relative probability density functions of pa-
rameters â0, â1, â2, and b̂0 obtained from estimated values and kernel density
estimation procedure after the elimination of subjects with τ̂ ' 0 with the
selected calibration error model (m = 2, l = 0).
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Table 4.5: Median, 5th and 95th percentiles values for model parameters
τ̂ , â0, â1, â2, b̂0, and percentage of values estimated with CV < 5%, CV <
10%, CV < 30% after the elimination of subjects with τ̂ ' 0 with the
selected calibration error model (m = 2, l = 0).

Parameter
Percentile % of values estimated with

50th 5th 95th CV < 5% CV < 10% CV < 30%

τ̂ 3.9755 1.1289 11.9837 94.5% 98.6% 100%

â0 0.9559 0.6504 1.1198 100% 100% 100%

â1 0.0017 -0.0624 0.1215 83.6% 93.1% 98.6%

â2 -0.0004 -0.0097 0.0050 82.2% 93.1% 94.5%

b̂0 7.4000 -1.7903 18.5788 79.4% 86.3% 90.4%

4.2.2 Trends of the sensors gain

The optimal calibration error model describes the gain via a quadratic func-

tion. Therefore, depending on the values assumed by the coe�cients a0, a1

and a2, a(t) evolves di�erently in time. It is interesting to understand how

a(t) varies among subjects to include this information in CGM sensors so

to improve their calibration algorithms. In particular, we can distinguish

the subjects on the basis of the concavity of a(t), which can be upward or

downward depending on the sign of a2.

We �nd that 32 subjects out of 73 have an upward concavity (a2 > 0),

while the remaining 41 subjects have a downward concavity (a2 < 0). Thus,

we conclude that there is no prevalence between the two forms. In Figure

4.11 we report the spaghetti plot (to the left) and variability bands (to the

right) for the two concavity groups separately. The spaghetti plots highlight

two main behaviours: quasi-linear, either increasing or decreasing, which has

a2 almost equal to zero, and quadratic. Finally, we compute the variability

bands at 90%. The results show that they are similarly wide, about 0.4, and

the median curve is in both cases quasi-constant.

53



CHAPTER 4. RESULTS OF THE IDENTIFICATION OF THE NEW

MODEL WITH THE TWO-STEP PROCEDURE

Figure 4.11: Spaghetti plots and variability bands of a(t) among subjects
with concavity upward a2 > 0 (top), and with concavity downward a2 <
0 with the selected calibration error model (m = 2, l = 0). The orange
lines represent the quadratic behaviour of a(t), while the red lines and the
blue lines represent the quasi-linear behaviour, respectively increasing and
decreasing.
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Figure 4.12: Colored residual pro�le (left) and corresponding white residual
pro�le (right) of a representative subject obtained with the selected calibra-
tion error model (m = 2, l = 0).

4.3 Auto-regressive model identi�cation

Once the di�usion constant τ and the parameters of the calibration error

models are identi�ed, we can obtain the IGSi pro�le and compute the resid-

uals with respect to the CGM sensor data as explain in Sec. 3.3.1. As an

example, Figure 4.12 (left) represents the colored residuals v̂, in a speci�c

time window for a random subject, where we can clearly distinguish the

auto-regressive component, while Figure 4.12 (right) shows the correspond-

ing whitened residuals obtained as in Eq. (3.41) in Sec. 3.3.1.

It is important to note that while the di�erent coe�cients of the AR

model are estimated for each speci�c residuals segment, the order q used

is the same for all the segments. To �nd the optimal order we follow the

procedure speci�ed in Sec. 3.3.1.

4.3.1 Optimal order selection

Figure 4.13 represents the histogram with the counts of segments in which

the speci�c order has been selected as the best. As we can see, the most

frequent order is 2. This result is consistent with the one in [2] and suggests

that a low order is su�cient to describe the auto-regressive component of the

measurement noise.
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Table 4.6: Median, 5th and 95th percentiles values for the auto-regressive
model parameters α̂1 and α̂2 obtained with the selected order 2 of the AR
model .

Parameter

Percentile

50th 5th 95th

α̂1 -1.2766 -1.5762 -0.8441

α̂2 0.4339 0.0387 0.6905

Figure 4.13: Histogram of AR orders. It reports the counts of segments in
which the speci�c order has been selected as optimal.

Figure 4.14: Histograms and relative probability density functions obtained
from estimated values and kernel density estimation procedure for the auto-
regressive model parameters α̂1 and α̂2.
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The output of the AR model is then

vji(t) = α̂1ji vji(t− 1) + α̂2ji vji(t− 2) + wji(t) (4.2)

where α̂1ji and α̂2ji are the model parameters for the j-th segment of the i-th

subject and wji(t) is the zero-mean white noise process.

Table 4.6 shows the results of the AR model parameters identi�cation,

where the median, the 5th, the 95th percentiles values are reported. Fur-

thermore, both the histogram and the relative probability density function

derived from the kernel density estimation procedure are represented in Fig-

ure 4.14.

4.3.2 Analysis of the auto-regressive model parameters

for di�erent days of monitoring

To better understand the evolution of the sensor error in time, we analyse

the auto-regressive component in the three time windows of YSI recording,

namely day 1 or 2, 4 and 10. To select the optimal order we operate using the

same procedure of the previous section but arranging the segments according

to the time window they belong. The corresponding histograms are reported

in Figure 4.15 for the three di�erent time windows. We can see that the order

2 is the optimal for all days; however, the distributions vary among the time

windows: in the �rst days order 2 clearly dominates the others, while in the

last day the gap between order 2 and 3 is smaller. A possible explanation

is that a degradation in time of sensor performances leads to the need of a

more complex model near the end of the sensor lifetime.

Once the optimal order as been selected for each time window, we estimate

the AR parameters as in previous section. Table 4.7 summarizes the results

of the parameters identi�cation, reporting the median, the 5th and the 95th

percentiles values of α̂1, α̂2 and the variance of the estimated random noise

ŵ(t) σ̂2. Regarding α̂1 and α̂2, there are no evident di�erences among the

time windows. Conversely, σ̂2 is greater in the �rst and in the last day because

of the uncertainty on the sensor measurements after its insertion and close

to the end of its lifetime. This con�rms our expectations since in the �rst

period, after the insertion, a greater immune system response can lead to
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Figure 4.15: Histogram of AR orders in in days 1 or 2 (left), 4 (center), 10
(right). Each histogram reports the counts of segments in which the speci�c
order has been selected as optimal.

instabilities in the measurements, while in the last period a degradation of

the sensor performances can occur due to the closeness of the sensor end of

life. To complete the analysis we also plot the histograms of α̂1, α̂2 and σ̂
2

in Figures 4.16, 4.17, 4.18 respectively. The same considerations made for

the values reported in Table 4.7 still hold for the histograms of Figures 4.16,

4.17, 4.18.
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Figure 4.16: Histograms of parameter α̂1 obtained from estimated values
in days 1 or 2 (left), 4 (center), 10 (right).

Figure 4.17: Histograms of parameter α̂2 obtained from estimated values
in days 1 or 2 (left), 4 (center), 10 (right).

Figure 4.18: Histograms of parameter σ̂2 obtained from estimated values
in days 1 or 2 (left), 4 (center), 10 (right).
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Table 4.7: Median, 5th and 95th percentiles values for model parameters
α̂1, α̂2, σ̂

2 in days 1 or 2 , 4 , 10 obtained with the selected order 2 of the
AR model.

Parameter Days
Percentile

50th 5th 95th

α̂1

1/2 -1.2405 -1.5797 -0.8718

4 -1.3031 -1.5693 -0.9349

10 -1.2519 -1.5811 -0.6317

α̂2

1/2 0.4038 0.0375 0.6862

4 0.4802 0.1524 0.7207

10 0.4062 -0.0992 0.6669

σ̂2

1/2 10.2654 1.6031 46.6246

4 7.0339 2.4440 21.8484

10 7.5690 2.1049 63.7126
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Chapter 5

Results of the identi�cation of the

new model with the single-step

procedure

The single-step identi�cation analysis has been accomplished with three al-

ternative procedures considering only the optimal calibration error model

(m = 2, l = 0) and the optimal AR model of order 2 obtained in the two-step

analysis. The �rst method identi�es the model parameters without consid-

ering any stability constraint for the AR model, and veri�es a posteriori

whether the model is stable. In the second procedure, we include the con-

straints in the identi�cation process to guarantee the AR model stability.

Finally, we repeat the parameters identi�cation by including some priors on

the parameters distributions and we verify the choice of the AR order q = 2

exploring di�erent orders (q ∈ (1, 2, 3)).

5.1 Parameter estimation

We identify for each subject the parameters τ , a0, a1, a2, b0, α1 and α2 by

using the three alternative procedures, as described in Sec. 3.3.2.

The values and the precision of the estimates achieved with the �rst

procedure are shown in Table 5.1, where the median, the 5th and the 95th

percentiles, and the percentage of the estimates with CV < 5%, CV < 10%,

and CV < 30% are reported. Not all the parameters have a great precision:
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Table 5.1: Median, 5th and 95th percentiles values for model parameters
τ̂ , â0, â1, â2, b̂0, α̂1, α̂2, and percentage of values estimated with CV <
5%, CV < 10%, CV < 30% obtained in the single-step analysis without
constraints.

Parameter
Percentile % of values estimated with

50th 5th 95th CV < 5% CV < 10% CV < 30%

τ̂ 4.7897 0.9366 12.2352 54.3% 96.3% 100%

â0 0.9442 0.6047 1.1155 97.5% 97.5% 100%

â1 0.0060 -0.0679 0.1156 16% 34.5% 74%

â2 -0.0006 -0.0108 0.0053 14.8% 39.5% 75.3%

b̂0 6.4406 -4.0155 22.55 11.1% 39.5% 72.8%

α̂1 -1.2770 -1.5252 -0.9517 100% 100% 100%

α̂2 0.4049 0.1005 0.5816 63% 92.6% 100%

in particular, τ̂ , â0, α̂1 and α̂2 have a very good accuracy with CV < 30%

for all the subjects, while â1, â2 and b̂0 are not so accurate. Indeed, the

percentage of the estimates with CV < 30% is greater than the 70% and

the one with CV < 10% assumes values around the 30-40%. Regarding

the values of the parameters, we see that τ̂ preserves the inter-individual

variability spanning from almost 1 to 12.2 minutes. Moreover, its median

value is ' 4.8 min, almost a minute greater than the one of the two steps

analysis and consequently more physiologically meaningful. In this approach,

we verify the stability of the AR model a posteriori, �nding out that the

identi�ed model is stable for each subject.

Even if the �rst procedure always provides stable models, it is conve-

nient to guarantee the stability in the estimation process without checking it

a posteriori. Details about such procedure have been described in Sec. 3.3.2.

The obtained values and the precision of the estimates are shown in Table 5.2

where the median, the 5th and the 95th percentiles, and the percentage of

the estimates with CV < 5%, CV < 10%, and CV < 30% are reported.

We can see that the CVs are the same of the previous procedure and also

the estimates are very similar; thus, the introduction of stability constraints

does not a�ect signi�cantly the model parameters estimation.
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Table 5.2: Median, 5th and 95th percentiles values for model parame-
ters τ̂ , â0, â1, â2, b̂0, α̂1, α̂2, and percentage of values estimated with
CV < 5%, CV < 10%, CV < 30% obtained in the single-step analysis with
constraints.

Parameter
Percentile % of values estimated with

50th 5th 95th CV < 5% CV < 10% CV < 30%

τ̂ 4.8113 1.2530 12.6564 54.3% 96.3% 100%

â0 0.9442 0.6337 1.1425 97.5% 97.5% 100%

â1 0.0060 -0.0679 0.1080 16% 34.5% 74%

â2 -0.0006 -0.0099 0.0057 14.8% 39.5% 75.3%

b̂0 6.2777 -5.6133 22.5517 11.1% 39.5% 72.8%

α̂1 -1.2770 -1.5465 -0.9517 100% 100% 100%

α̂2 0.4049 0.1005 0.6038 63% 92.6% 100%

Therefore, to improve the precision of the estimates, we include in the

identi�cation process a priori information by using the Bayesian approach as

de�ned in Sec 3.3.2. The values and the precision obtained with the Bayesian

estimation are shown in Table 5.3, where the median, the 5th and the 95th

percentiles, and the percentage of the estimates with CV < 5%, CV <

10%, and CV < 30% are reported. The inclusion of priors leads to slight

changes in the parameters' accuracy. The CVs of τ are improved; indeed, the

percentage of the estimates with CV < 10% changes from the 96.3% to the

97.5%, and the one with CV < 5% increases from the 54.3% to the 56.8%.

However, the accuracy of b0 worsens, suggesting that the inclusion of its

prior does not give the expected results. By repeating the analysis without

adding the prior in b0, the percentage of the estimates with CV < 30%

slightly increases from the 71.6% to the 74%, as reported in Table 5.4 but,

the overall improvement with the introduction of priors is small, suggesting

that the priors are not so e�ective. Actually, we could expect these results

because including priors is especially useful when the data are "poor" or

"very noisy", and our dataset does not belong to neither of the two cases.
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Table 5.3: Median, 5th and 95th percentiles values for model parame-
ters τ̂ , â0, â1, â2, b̂0, α̂1, α̂2, and percentage of values estimated with
CV < 5%, CV < 10%, CV < 30% obtained in the single-step analysis with
constraints and prior on τ, a0, b0.

Parameter
Percentile % of values estimated with

50th 5th 95th CV < 5% CV < 10% CV < 30%

τ̂ 4.8645 1.2815 12.5189 56.8% 97.5% 100%

â0 0.9448 0.6368 1.1424 97.5% 97.5% 100%

â1 0.0060 -0.0679 0.1068 16% 33.3% 72.8%

â2 -0.0006 -0.0099 0.0057 14.8% 39.5% 75.3%

b̂0 6.1974 -5.6324 22.4371 11.1% 39.5% 71.6%

α̂1 -1.2770 -1.5472 -0.9517 100% 100% 100%

α̂2 0.4051 0.1005 0.6040 63% 92.6% 100%

Table 5.4: Median, 5th and 95th percentiles values for model parame-
ters τ̂ , â0, â1, â2, b̂0, α̂1, α̂2, and percentage of values estimated with
CV < 5%, CV < 10%, CV < 30% obtained in the single-step analysis with
constraints and prior on τ and a0.

Parameter
Percentile % of values estimated with

50th 5th 95th CV < 5% CV < 10% CV < 30%

τ̂ 4.8442 1.2818 12.5131 56.8% 97.5% 100%

â0 0.9445 0.6359 1.1424 97.5% 97.5% 100%

â1 0.0060 -0.0677 0.1067 16% 33.3% 72.8%

â2 -0.0006 -0.0099 0.0057 14.8% 39.5% 75.3%

b̂0 6.2187 -5.6863 22.5278 11.1% 39.5% 74%

α̂1 -1.2770 -1.5470 -0.9517 100% 100% 100%

α̂2 0.4051 0.1004 0.6042 63% 92.6% 100%
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5.2. AUTO-REGRESSIVE MODEL SELECTION

Figure 5.1: Boxplots of comparisons of the AR models obtained in the
single-step analysis with constraints and prior on τ and a0. The red line
indicates the median value, the diamond shows the mean value, the plus are
the outliers values.

5.2 Auto-regressive model selection

As explained above, we explore di�erent orders for the AR model of the mea-

surement noise. To select the optimal one we apply the procedure described

in Sec. 3.3.1, where the ∆BIC are de�ned as

∆BIC(AR1,AR2) = BIC(AR1) − BIC(AR2), (5.1)

∆BIC(AR1,AR3) = BIC(AR1) − BIC(AR3), (5.2)

∆BIC(AR2,AR3) = BIC(AR2) − BIC(AR3), (5.3)

where AR1, AR2 and AR3 refer to the auto-regressive model of order 1, 2 and

3 respectively. Results show that ∆BIC(AR1,AR2) > 0 in the 77% of subjects

and ∆BIC(AR1,AR3) > 0 in the 71% ; thus we discard the order 1. The �nal

selection is between the orders 2 and 3, where ∆BIC(AR2,AR3) > 0 in the

30% of subjects. Due to this percentage, we are tempted to select the order

q = 2 but, looking at the boxplots reported in Figure 5.1, we can see that
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Table 5.5: Median values of error model parameters and percentage of
values estimated with CV < 30%, obtained with the two-step identi�cation
and the single-step identi�cation (with constraints and prior on τ and a0).

Parameter
50th Percentile

% of values estimated

with CV<30%

Two steps

identi�cation

Single step

identi�cation

Two steps

identi�cation

Single step

identi�cation

τ̂ 3.9755 4.8442 100% 100%

â0 0.9559 0.9445 100% 100%

â1 0,0017 0,0060 98.6% 72.8%

â2 -0.0004 -0.0006 94.5% 75.3%

b̂0 7.4000 6.2187 90.4% 74%

α̂1 -1.2234 -1.2770 / 100%

α̂2 0.3827 0.4051 / 100%

neither of the two model is dominant. Taking into account both these results

and following the parsimony principle, we select 2 as the �nal order of the

model. Thus, the optimal order obtained with the single step and the two

steps procedure is the same, highlighting the consistency of the results.

5.3 Comparison to two-steps parameters esti-

mation

The two-step identi�cation allows to separate the complex identi�cation

problem into two simpler problems with a lower number of parameters es-

timated. However, as the parameters are estimated sequentially and not

simultaneously, this may introduce bias in the parameters' estimates. The

problem should be overcome by the single-step identi�cation method, al-

though the estimation of a large number of parameters simultaneously can

be di�cult for some sensors. Therefore, we compare the results of the two

methods to verify the soundness of the results obtained with them.
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Figure 5.2: Histograms and relative probability density functions of pa-
rameters τ̂ , â0, â1, â2, and b̂0 obtained from estimated values and kernel
density estimation procedure in the two-step identi�cation (above) and in
the single-step identi�cation (below).

First, we compare the median values of the model parameters and the

percentage of the values estimated with CV < 30%. They are reported in

Table 5.5, where the α̂1 and the α̂2 referring to the two-step identi�cation

are obtained by aggregating all the segments of each subject. Regarding the

median values, the estimates given by the two methods are very close to each

other; thus, the single-step identi�cation represents a reliable alternative for

estimating the sensor error model parameters. As explained in the previous

section, the median value of τ̂ in the single-step analysis is almost a minute

greater than the one of the two-step analysis, suggesting an improvement in

the estimation of the time constant. This is con�rmed by the parameters

distributions, reported in Figure 5.2, where the distribution of τ̂ , identi�ed

with the single-step analysis, is comparable to the one obtained with the two

steps analysis but shifted to the right. Consequently, there are no values with

τ close to zero and the problem of its identi�cation, described in Sec. 4.2.1,

is absent with the single-step identi�cation. Regarding the precision of the

estimates, we can see that the two-step identi�cation yields better results,

even if, also the ones obtained with the single-step are acceptable.

Then, we compare both the colored residuals and the white residuals
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Figure 5.3: Comparisons between the colored residuals (left) and the white
residuals (right) in the single step identi�cation (orange signal) and in the
two steps identi�cation (blue signal).

Figure 5.4: Comparisons between the RSS distributions of the colored
residuals (left) and the white residuals (right) in the single step identi�cation
(orange bars) and in the two steps identi�cation (blue bars).

computed with the two methods. It is important to remark that these meth-

ods minimize di�erent objective functions. In the two-step analysis, the

colored residuals are those to be minimized, while the white residuals are

obtained afterwards, as described in Sec. 4.3. On the contrary, in the single-

step analysis, the white residuals are those to be minimized, while the col-

ored ones are saved during the least square computation. Ideally, we would

like the residuals, both colored and white, to be the same for the two meth-

ods, independently from the objective function. Figure 5.3 shows that the

residuals obtained by the two-step analysis and the single-step analysis are

not equal but they are very similar, con�rming the goodness of the results.

Finally, Figure 5.4 compares the distributions of the sum of the residuals
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squares (RSS), colored and white, obtained with the two methods. The re-

sults achieved are similar but the single-step method provides white residuals

with RSS lower than those of the two-step method. Since the white residuals

represent the dynamics that the model is not able to explain, the single-step

identi�cation should be preferred.
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Chapter 6

Conclusion and future

developments

CGM sensors are becoming essential monitoring systems in diabetes therapy,

but as all the measurement systems, they are a�ected by errors that weaken

their accuracy and limit in practice the use of CGM-based applications. De-

veloping a model of the error can be extremely useful not only to better

understand the sources of error, but also to create more realistic simulations

that can help the design and test of CGM-based applications. CGM error

models developed in the literature were derived for sensor requiring twice

calibrations per day, and thus their domain of validity is limited to 12 hours.

These models are not suitable to describe the error of new generation sensors,

which are factory calibrated and lost for 10 days. The aim of this thesis was

to propose a new model for the error in factory-calibrated devices.

The proposed model of the sensor error is based on the previous works of

Facchinetti et al. [1, 2]. Similarly, the error arises from three di�erent sources:

the BG-to-IG kinetics, the sensor calibration, and a random noise in the

measurement. While in [2] the model parameters change at each calibration,

in this work they are identi�ed for the whole sensor lifetime of 10 days.

Moreover, new calibration error models are introduced to better investigate

the time variability of CGM sensor sensitivity. Speci�cally, two procedures

have been proposed for the identi�cation: a two-step method [2]; and a

single-step method, where all the parameters are estimated simultaneously.

The analysis has been conducted on a dataset of 81 subjects wearing
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factory calibrated Dexcom G6 sensors.

Regarding the BG-to-IG kinetics, the results obtained with the two meth-

ods con�rm that the time constant τ is subject speci�c. Both the methods

identify the time constant with great precision (CV < 30%) for all the sub-

jects. However, τ values provided by the single-step method seems to be

more reliable in terms of physiological values, because its median value is

increased from 3.8 to 4.8 minutes, and no estimates with τ̂ ' 0, which is it

not meaningful from the physiological point of view, result from the analysis.

Nevertheless, as remarked in [2], the BG-to-IG kinetics is the part of the

model which is most di�cult to identify; in fact, we expect the median value

of τ̂ to be around the physiological value of 7− 8 minutes.

Concerning the calibration error model, the results have shown that the

error is time-variant, with the gain a(t) and the o�set b(t) polynomials of or-

der 2 and 0, respectively. Therefore, while a constant function is su�cient to

describe the o�set, the gain is better described by a quadratic function. The

parameters are estimated with varying precision, where the two-step method

achieves better results in general. Despite a great precision in estimating â0

for both the methods, â1, â2, b̂0 have CV < 30% for more than 90% of the

subjects by using the two-step method, while the precision of the estimates

for these parameters falls to 70% with the single-step method. Finally, from

the analysis of the spaghetti plots, we were able to distinguish two main

behaviours of the sensors gain a(t): quasi-linear and quadratic.

Regarding the measurement noise, the results of both the analysis have

shown that an AR model of order 2 is su�cient to e�ectively describe the

error contribution. The variance of the estimated random noise change ac-

cording to the day of monitoring, con�rming an evolution of the sensor be-

havior in time. In particular, it is greater during the �rst days and the last

ones. This may be explained by the immune system response after the sensor

insertion and by the degradation of the performances at the sensor end of

life.

Other remarks can be drawn by analyzing the relations among the model

parameters. We found out that the parameters of the calibration error model

are strongly correlated together by a linear relationship, with absolute values

of the coe�cients of Pearson around 0.7− 0.9. Unfortunately, such a simple

relation does not exist between the calibration error parameters and τ .

72



Overall, the two identi�cation methods provide similar results. However,

the single-step method results preferable because it guarantees lower values

of the residual sum of squares, i.e. a better overall �t of the data, and it

improves the estimation of τ , providing estimates of the time constant which

are more physiologically meaningful.

Future developments

A �rst future development is to include the error model of factory-calibrated

CGM sensors in the T1D patient decision Simulator [31], to generate realistic

scenarios and re-creating reliable glucose sensors pro�les. This would be par-

ticularly useful to develop and test CGM-based applications and to evaluate

the impact of the error on glycemic control algorithms. The implementation

of the model in the Simulator should take into account the provided trends of

the sensors gain and linear relations among the parameters of the calibration

error model.

The work assumed that at each CGM pro�le of the dataset corresponds

a di�erent subject. While considering a single sensor per subject helped to

simplify the analysis, it also hindered the possibility to dissect the error into

a common contribution and a sensor speci�c one. In this sense, the model

can be further improved by using a dataset with patients wearing more than

one sensor simultaneously.

The obtained results provide acceptable precision of the estimates. Fur-

ther improvements in the precision are likely to be achieved by developing

ad hoc iterative estimation techniques. Moreover, a deeper knowledge of

the underling physiological phenomena could help in better investigating the

error model. For instance, new studies and experiments employing tracers

can give new insights on the glucose di�usion from blood to interstitial �uid,

potentially leading to a �ner model of the BG-to-IG kinetics.

Another future development could be to integrate the sensor error model

with the one of the transient errors. Indeed, CGM sensor can be occasionally

a�ected by transient faults like disconnections or artifacts due to compres-

sion. Disconnections are caused by the interruption of the communication

between the transmitter and the receiver, and they cause the loss of one or
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more consecutive samples of CGM data. Compression artifacts are caused by

mechanical pressure applied to the sensors by the patients, e.g., while sleeping

prone, and they can induce a temporary loss of sensitivity with a consequent

distortion of the CGM trace. The model to describe these kinds of transient

errors have been already proposed by Facchinetti et. al for sensors requiring

multiple calibrations (every 12 hours) in [32]. The integration of such model

in factory-calibrated sensors could be useful to assess the possible interplay

with the sensor errors.

Finally, additional studies on the errors of factory-calibrated sensors,

other than Dexcom G6, would allow to con�rm the soundness of the pro-

posed model.
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Appendix A

Bayesian smoothing

The Bayesian smoothing is a non-parametric technique that allows to turn

a discrete signal y with n sparse values sampled from a non-uniform time

grid Ωs, into a signal û with N dense values sampled from a uniform time

"virtual� grid Ωv, where Ωs ⊂ Ωv and n� N .

The general measurement model of the signal y is given by

y = Gu+ vy, (A.1)

where G is the n×N transfer matrix, and vy is an additive measurement noise

with covariance matrix Σv = σv
2B. Speci�cally, the matrix G is obtained

by eliminating the rows of Gv that do not correspond to the time samples

of Ωs, where Gv is the N ×N matrix that relates yv to u in the domain Ωv.

Without considering the measurement noise, we want u = yv, i.e., Gv = IN ,

where IN is the N ×N identity matrix.

In order to obtain the smoothed signal û, we observe that

• the y data are a�ected by the measurement noise; thus, the smoothing

procedure should only approximate the data, without interpolate them

exactly;

• u is a biological signal; thus, it must have some regularities.
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APPENDIX A. BAYESIAN SMOOTHING

The trade-o� between these two aspects is modeled by the problem
û = arg minu ‖Fu‖2

subject to :

‖y −Gû‖2 = ε

,

where F is a di�erence operator and ε is the quadratic norm of the residuals

y − Gû. In particular, the quality of the approximation is given by ε, while

the regularity is measured by ‖Fu‖2, which is de�ned as the discrete form of

the energy of the m-th derivative of u. A closed form solution of the problem

is given by exploiting the method of Lagrange multipliers and it is computed

as

û = (GTB−1G+ ϕoF TF )−1GTB−1y (A.2)

where ϕo is the optimal value of the smoothing parameter ϕ, the index that

determine the trade-o� between approximation and regularity of û.
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