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Introduction

The physics of one-dimensional systems of interacting fermions strongly differs from the picture offered
by Fermi liquid theory [1]. The low-energy properties of metallic, paramagnetic 1D Fermi systems
are well described by the Luttinger liquid (LL) theory [1, 2, 3, 4, 5]. Among other properties, the
homogeneous LL is known to exhibit power-law behaviour for various correlation functions. For spin
rotational invariant models, the exponents can be expressed in terms of a single parameter Kρ. The
LL parameter Kρ is non-universal, i.e. depends on details of the model considered, such as the inter-
action, filling factor, and one-particle dispersion relation [6].
The LL concept emerged in the study of homogeneous systems with periodic boundary condition
(PBC). In these models the bulk spectral function shows a power-law suppression at energies asymp-
totically close to the chemical potential µ. Theoretically this is very well understood and the exact
LL parameter Kρ is known for a set of integrable models. In the last decades however, the interest
shifted towards the investigation of LLs with PBC including impurities. The fact that these systems
have been shown to scale to chains with open ends led to the study of several models where open
boundary condition (OBC) are introduced [7]. As the translational invariance is broken, the exponent
of the power-law suppression close to the boundary differs from the one in the bulk [6].
In [6] the spectral function for diverse models of LLs with open boundaries is investigated: the
Tomonaga-Luttinger model is solved using bosonization and the boundary exponent αB is found
to be linear in the interaction term. This motivates the authors to investigate the spectral properties
with first order perturbation theory for the self-energy, namely the Hartree-Fock approximation (HF).
Surprisingly this already gives a power-law behaviour and qualitative agreement with the exact spec-
tral function. Also, numerically exact results are obtained with the density-matrix renormalization
group (DMRG) method for two lattice models. Again, it is demonstrated that many aspects of the
behaviour of the spectral function can be understood within the HF theory. Despite what one usually
reads about one-dimensional interacting Fermi systems, in the presence of the boundary perturbation
theory is already capable of providing meaningful results.

Following this approach, the present work is devoted to the study of the spectral function of two
lattice models of LLs with open boundaries with the methods of perturbation theory. The models
investigated are the spinless fermions model with nearest neighbour interaction and the 1D Hubbard
model.
The first result is obtained employing first order perturbation for the self-energy. This problem is
best studied in the site representation, and the real-space matrix elements of the HF self-energy are
evaluated analytically. Due to the nontrivial structure though, the inversion of the full HF Hamiltonian
is to be performed numerically. Within this procedure the spectral function for boundary sites obtained
in both models already exhibits power-law behaviour at two distinct energies. This is a very interesting
observation as the HF approximation for the case of PBC does not capture any of the bulk LL features
[6]. The power-law boundary exponents αHF

B are extracted from the numerical data and compared
with the results presented in [6].
Successively, analytical results are achieved with first order perturbation for the Green’s function. In
this case it is preferable to work in k-space. Since for the OBC we do not have momentum conservation,
a general two body interaction leads to a variety of different scattering vertices. They depend on
different combination of the four external quantum numbers and cannot simply be parametrized by
the ”momentum transfer” as for PBC [6]. The HF self-energy in k-space is therefore not diagonal
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and displays a distinctive non-analytical structure where two sharp step functions cross the diagonal
in (kF , kF ) and (π − kF , π − kF ). The introduction of an effective model then allows us to evaluate
analytically the first order correction to the spectral function. This procedure yields a logarithmic
divergence instead of power-law behaviour. Remarkably, in the spinless fermions model the prefactor
of the logarithm is the correct leading order in the expansion of αHF

B (v) around v = 0, where v denotes
the interaction term in the model. This indicates that this divergence and other ones at higher order
in the perturbative expansion can be summed in a Dyson series to recover the power-law behaviour.
In this work we demonstrate that perturbation theory can offer meaningful result in the study of
the spectral properties of Luttinger liquids with open boundaries. The main goal is to develop an
understanding of the dip appearing at an energy different from the chemical potential while proving
that perturbation theory is still successful.

In Chapter 1 an introduction to the Luttinger Liquid theory is presented. Beside offering an overview
on the beauty of this topic, the aim is to provide the meaningful framework to contextualise the
present work. In Chapter 2 we introduce the aforementioned lattice models in the case for PBC and
OBC. For one and the other the non-interacting problem is firstly studied in order to build a solid
knowledge before tackling the interacting models with the HF approximation in real space. Chapter
3 offers the necessary theoretical framework to understand the central concept of spectral function.
This is then computed numerically for the models of our interest and a careful characterization of its
properties is given. In Chapter 4 we display the elegant connection between the spectral function and
the Green’s function which will enable us to extract analytical results. To do so, we need to own full
knowledge of the HF self-energy in k-space and the rest of the chapter is devoted to the computation
of the matrix elements for both models at different filling factors. Finally, in Chapter 5 the first order
perturbation theory for the Green’s function is performed with the employment of an effective model.
The analytical results for the spectral function are then compared with the numerical ones obtained
with the HF approximation for the self-energy.
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Chapter 1

A very short introduction to Luttinger
liquids

”In this book anything above one will be high dimensional”
-T. Giamarchi, footnote in Quantum Physics in One Dimension-

Less is more

Contrary to our friends working on string theory, we do not need to blow the number of dimensions to
have fun. The physics of low dimensional systems indeed offers a plethora of interesting phenomena.
The role of dimensionality comes heavily into play for systems of many interacting fermions constrained
in one single spatial dimension. In this, the qualitative behaviour is drastically different from their
counterparts in higher dimension.
For dimensions d ≥ 2 a brilliant intuition by Landau led to the elegant framework of Fermi liquid
theory. In one dimension this framework collapses down, leaving place for a different description,
namely the Luttinger liquid theory (LL). The emergence of the Luttinger liquid concept developed
from the initial works of Tomonaga (1950) and Luttinger (1963), and was finally codified by Haldane
(1981) in a seminal paper [3].
As one can imagine, the subject is enormously vast and it is unfeasible to give here a comprehensive
presentation. Sparkling introductions and reviews to the arguments can be found in [1, 2, 4, 5].
What is of our concern in this chapter, is to obtain an understanding of the central points in LL
theory. To appreciate its emergence, one needs to understand what causes the Fermi liquid theory to
breakdown in one dimension. We therefore start with a brief and mostly qualitative presentation of
the Fermi liquid theory. Obviously, it is far from being exhaustive, and we refer to standard literature
for further details. Understanding the role of dimensionality in this theory will allow us to look for
what makes it collapse in one dimension. The LL theory is finally presented, paving the way for a
deeper understanding of the present work, while providing the relevant framework to contextualise it.
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1.1 Overview on Fermi liquid theory

The theory of Fermi liquids arises from the need to account for the behaviour of electrons in three-
dimensional metals. It is known that in these systems the Coulomb energy is not negligible when
compared to the kinetic energy, neither it is exceedingly larger than the latter. In this condition
perturbation theory cannot be properly employed [2]. However, it is also common knowledge that
in ordinary metals everything goes as if a picture of weakly interacting Fermi gas is valid. The
main question to investigate then is how this is possible considering the strong interaction between
fermions. Fermi liquid theory 1 provides an answer to this question and serves as a cornerstone in the
understanding of interacting Fermi systems [2].
In Fermi liquids a central role is played by the adiabatic switching on of the interaction. This permits
a one to one mapping between the low energy excitations of a Fermi gas and those of an interacting
electron liquid [4]. These excitations are named quasi-particles for their peculiar nature. The high
dimensionality is here crucial since it ensures large available phase space. Provided we are investigating
the low energy physics of the systems, this produces a very dilute gas of excitations, where the
residual interaction between these type of excitations is small. In this way we are guaranteed the
1:1 correspondence with the excitations of a Fermi gas, and the picture delineated above for the
electrons in a metal becomes clearer. In a real ordinary metal the interactions are strong, but the
essential degrees of freedoms turn out to be the quasiparticles. These are weakly interacting, and
can be reasonably approximated with a non-interacting particles description. One can state that the
correlation in the electron system are weak, although the interaction may be very strong [4].
Understanding that quasiparticles are the main characters in this act, it is interesting to analyse their
properties in more detail. To this end, it is necessary to introduce the essential concept of the spectral
function. A complete presentation is given in Chapter 3, where we need to evaluate this quantity
for the systems of our interest. For the moment, it is sufficient to know that the spectral function
A(k, ω) is the probability to find a state with a frequency ω and a momentum k. For a Fermi gas
A(k, ω) = δ(ω − ξ(k)) where ξ(k) = ε(k) − µ is the energy relative to the chemical potential. This
means that the excitations have a definite energy and momentum, as well as an infinite lifetime since
they are exact eigenstates of the Hamiltonian. These excitations are the single-particle states with
a given energy-momentum dispersion relation. In the same way, one can say that the addition or
removal of a particle in k-state generates an exact eigenstate of the non-interacting system [3].
What happens when the interaction is switched on? The clever intuition by Landau is that this picture
is only slightly modified. In this case the elementary particles are not the individual electrons anymore,
but are electrons dressed by the density fluctuation around them. A quasiparticle then consists of an
electron surrounded by a cloud of particle-hole excitations of the ground state [2].
In the spectral representation the δ-function is broadened to a Lorentzian peak, where the width is
related to the strength of the interaction. One can state the quasiparticles have a ”well-defined”
dispersion relation ε′(k) so that the quasiparticle wave function has a time dependence e−iε

′(k)t. As
mentioned above, we are interested in the low energy physics, and thus focus on the phase space close
to the Fermi wavevector kF

2. In this domain we can expand the new dispersion relation to the first
order around kF

ε′(k) ' ε′(kF ) +
kF
m∗

(k − kF ) (1.1)

where m∗ is the effective mass of the quasiparticles. The important point here is that one only needs

1Note the habit of physicists to use the term gas to denote a set of non-interacting particles and liquid for a set of
interacting ones. This notion is employed for quantum systems at finite temperature as well as for T = 0. It is then
clear it has nothing to do with the concept of a classical gas where equilibrium is reached through collisional processes so
that interactions are present. Rather the term liquid simply emphasises that we are dealing with interacting quantum
particles. However, notice that the notion of Fermi liquid denotes now only a particular class of high-dimensional systems
of interacting fermions, as other different classes are present, the so-called non-Fermi liquids.

2Thanks to the Luttinger theorem applied to rotationally invariant systems, we are guaranteed that kF for an inter-
acting system must coincide with kF for the non-interacting one.

4



to change the bare mass m to m∗ to be able to make sense of a non-interacting picture, thanks to the
nature of the quasiparticles. The effective mass accounts for the dressing upon the bare electron due
to its interaction with the medium and for the effects on the dynamical properties.
In order to claim the quasiparticles have a particle-like nature one also need to argue the stability
of these excitations. The period of oscillation 1

ε′(k) is given by the linear expansion in (1.1). As we
approach the Fermi energy we need the lifetime of the excitation to be greater than this value. In
the opposite case the excitations would be overdamped and the picture of quasiparticles would not
be valid. The remarkable point is that Landau was able to prove by simple phase space arguments
in d = 3 that this lifetime τk diverges as 1

ε′(k)2
when k → kF , no matter how strong the interaction

is [2, 3]. This divergence can be tracked down to the diminishing phase space available for scattering
when approaching the Fermi level 3.
This fact has evident manifestations on the quasiparticle Lorentzian peak in the spectral function. As
the peaks centred around ξ′(k) ' v∗F (k − kF ) move towards kF , they get sharper and sharper. The
width is proportional to 1

τk
' (k − kF )2, so that the quasiparticles are better and better defined. The

situation is nicely illustrated in figure 1.1.

8.5 Microscopic underpinning of the Landau theory 445

than the chemical potential. Thus we see that

A(0)
>σ (�k, ω) = (1 − n(0)

�kσ
)δ

�
ω − ε�k

h̄

�
,

A(0)
<σ (�k, ω) = n(0)

�kσ
δ

�
ω − ε�k

h̄

�
, (8.124)

and

A(0)
σ (�k, ω) = δ

�
ω − ε�k

h̄

�
. (8.125)

(The (0) superscript denotes noninteracting properties everywhere.) Note that the sum rules
(8.115), (8.117), and (8.119) are satisfied. Integrating A(0) over frequency from −∞ to

µ = h̄2k2
F

2m we obtain n(0)
�kσ

= �(kF − k), the zero-temperature Fermi distribution.

8.5.1.2 Interacting electron gas

The fact that the noninteracting spectral function is a single δ-function of frequency means
that the addition or removal of a particle in a plane wave state generates an exact eigenstate
of the noninteracting system. There is nothing surprising about this, but what happens when
the interactions are turned on? As a first guess, upon assuming continuity, one might expect
the δ-function to continuously evolve into some kind of Lorentzian peak with a width pro-
portional to the interaction strength. This expectation is not entirely incorrect, but misses a
most essential feature, namely, that for k near kF the width of the Lorentzian peak vanishes
as (k − kF )2, no matter how strong the interaction is. This behavior is enforced by kine-
matic constraints on the quasiparticle decay process, described in Section 8.4, and is what
characterizes the normal Fermi liquid phase. In the limit k → kF the spectral function has a
sharp quasiparticle peak at ω � v∗

F (k − kF ) with a width 1
τ�kσ

∼ (k − kF )2. This behavior is
qualitatively shown in Fig. 8.10. The quasiparticle peak absorbs a fraction Z (0 < Z ≤ 1)

-0.4 -0.2 0.2 0.4

Α(k,ω)

(ω−ωF)/kFvF

Fig. 8.10. Qualitative sketch of the zero temperature spectral function of an interacting Fermi liquid
for different values of k/kF near the Fermi surface. Here ωF = �F/h̄. The eight curves, from left to
right, correspond to k/kF = 0.8, 0.85, 0.9, 0.95, 1.05, 1.1, 1.15, 1.2. The peak at k = kF is infinitely
sharp and for this reason has not been plotted.

Figure 1.1: Qualitative sketch of the zero temperature spectral function of an interacting Fermi liquid for different
values of k/kF near the Fermi surface. Here ωF = εF /~. The eight curves, from left to right, correspond to
k/kF = 0.8, 0.85, 0.9, 0.95, 1.05, 1.1, 1.15, 1.2. The peak at k = kF is infinitely sharp and for this reason has
not been plotted. Figure taken from [3].

To have a deeper understanding of the situation we described, it is appreciable to look at the problem
from a microscopic point of view. We make use of a important relation for the spectral function which
will be clear in Chapter 4

A(k, ω) = − 1

π

Im Σ(k, ω)[
ω − ε(k)− Re Σ(k, ω)

]2
+
[

Im Σ(k, ω)
]2 (1.2)

where Σ denotes the retarded self-energy, ~ = 1 and the spin subscript has been dropped for simplicity.
The validity of the Fermi liquid theory requires that [3]

ε′(k) = ε(k) + Re Σ
(
k, ε′(k)

)
(1.3)

and

3It is also interesting to notice that any power which could guarantee this situation would lead to a Fermi liquid,
although an unconventional one [3].
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Im Σ
(
k, ε′(k)

)
' −(k − kF )2 (1.4)

This two conditions guarantee the spectral function to have the aforementioned Lorentzian peak. This
is more evident when we expand to the first order in ω − ε′(k)

ω − ε′(k) ' ω − ε′(k)

Zk
(1.5)

where

Zk =
1

1− ∂
∂ω Re Σ(k, ω)

∣∣∣
ε′(k)

(1.6)

while simply evaluating the imaginary part in ε′(k). With the definition of lifetime

1

2τk
= Zk

∣∣ Im Σ(k, ε′(k)
∣∣ (1.7)

we can recast the spectral function in the form

A(k, ω) ' Zk
π

1
2τk[

ω − ε′(k)
]2

+
[

1
2τk

]2 (1.8)

The quantity Zk is the strength of the Lorentzian peak and represents the fraction of the electron that
remains in the quasiparticle state. The remaining 1−Zk is distributed to a structureless background,
which can be safely ignored compared to the well-defined peaks [2].
Before leaving this section, a few last remarks are important. Indeed the quasiparticle is not the
only type of excitation at play in an interacting Fermi system. As we know collective excitations as
plasmons and zero sound modes could be present. Further details about this interesting topics are
nicely illustrated in [8, 9]. Also we report the fact that a residual interaction between quasiparticles
is still present. This interaction is described in Fermi liquid theory by the Landau parameters. Again
we do not enter this discussion and refer for example to [10]. Finally, a subtle but very important
consideration. The quasiparticle states are not the exact eigenstates of the interacting Hamiltonian.
They are in fact made of a very large number of exact eigenstates of the interacting system. The
separation in energy of these states is exponentially small in the system size L and thus irrelevant
physically, for reasonable systems. The cluster of all these states form the quasiparticle with its average
energy and lifetime (inverse of the broadening in energy) [2].

1.2 Breakdown of Fermi liquid theory in 1D

We report here purely qualitative arguments as presented in [2, 3], which have the favour of being
strikingly intuitive. Clearly, these must be complemented by more mathematical considerations when
one seeks to gain a profound comprehension of the topic.
In higher dimension the electron can move through the medium while knocking out other electrons
around him, thus giving rise to the aforementioned cloud of particle-hole excitations. In one dimension
this is not possible since an electron that tries to propagate has to push its neighbours in the same
spatial dimension. Any attempt to produce an individual excitation would in fact trigger the motion
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of all the particle in the system, giving rise to a collective excitation 4. This qualitative considera-
tion is enough to convince ourselves that there is no possibility to have Fermi liquid theory to work.
The main degrees of freedom are collective excitations that are bosonic in nature, conversely to the
fermionic quasiparticles we described above.
A fascinating phenomenon occurs when we consider fermions with spin. Since only collective excita-
tions can exist, it implies that a single fermionic excitation has to split into a collective one carrying
charge (like a sound wave) and a collective one carrying spin (like a spin wave). These two excitations
have in general different velocities so that they ”break” into two separated elementary excitations [2].
This qualitatively describes the exotic spin-charge separation, which is one of the essential character-
istics of LLs.
The underlying physical picture is that the coupling of quasiparticles to collective excitations is small
in 3D but large in 1D, no matter how small the interaction: correlation are strong even for weak
interactions! [4]. At the heart of this relies the so-called orthogonality catastrophe. When adding
an electron into the ground state of a strongly correlated N -electrons system it is clear we do not
generate an eigenstate of the N + 1-interacting Hamiltonian. The point is that in one dimension this
new state does not even entails a considerable overlap with the previous one. Since the new injected
electron lack the proper correlation with the preexisting many-body electron state, the new state of
N + 1-electrons system is essentially orthogonal to the original ground state [3]. In a more profound
analysis the quantity Zk defined for Fermi liquids turns out to be the squared overlap between the
two states before and after the injection. This constant now vanishes in thermodynamic limit [3] and
therefore destroys any possibility to have a quasiparticle Lorentzian peak in the spectral function.
The last peculiarity we observe is the role of particle-hole excitations in a system of interacting
fermions. For an homogeneous system where the notion of momentum is valid, an electron of momen-
tum k is destroyed underneath the Fermi surface and one with momentum k + q is created above the
Fermi surface, so that the momentum of the excitation is well fixed and equal to q. In high dimensions
the energy of such an excitation depends on both k and q [2]. For q < 2kF one can create particle-hole
pairs by removing an electron just below the Fermi surface and creating one just above the Fermi
surface at another point. In d = 3 for example, the Fermi sphere is indeed a sphere, while in d = 1
it reduces to two points ±kF . This very fact implies that in d = 3 the spectrum of particle-hole
excitation is a continuum extending to zero energy for all q < 2kF . In d = 1 this is not possible since
the only points in phase space where the excitation energy can reach zero is for q = 0 or q = 2kF .
Notice that this is the only way to produce the low-energy excitations we are interested in [2].
It can be shown that these excitations are well-defined particles, in the sense that the average energy
only depends on the momentum q and the dispersion on the average energy goes to zero faster that
the average itself for q → 0 [2]. These density fluctuations consist in annihilation and creation of
fermions and are therefore bosonic in nature. This bosonic excitations will described the collective
modes we mentioned above, and are in fact the elementary excitations in a one-dimensional system of
interacting fermions.

1.3 Luttinger liquid theory

Understanding the breakdown of FL theory in one dimension already endowed us with a first quali-
tative idea of what a Luttinger liquid is. We now give a rigorous definition and then proceed with a
brief tour on the main properties characterizing this concept.
A Luttinger liquid is a paramagnetic one-dimensional metal without Landau quasiparticle excitations
[4]. Paramagnetic and metal require that the spin and charge excitations are gapless, more precisely
with dispersion relation ων(q) = vν |q| for small |q|, where the subscript ν = ρ, σ denotes charge and
spin respectively. As we already pointed out this two velocities are in general different, leading to two

4To some extent this is similar to the case of university students sitting in the usual narrow row while attending a
lecture. When someone in the middle needs to go out, at least half of the row must stand and slide out to let him/her
pass. Of course the motion of electrons is much more correlated than university students and the whole system is involved
in the excitation.
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different types of bosonic excitations, namely the holons and the spinons, which have different excita-
tion energies [4]. Beside spin-charge separation it is important to mention other interesting features
that characterize the LL phase:

At T = 0 the system is at a (quantum) critical point, with power-law correlations, and the scal-
ing relations between the exponents of its correlation functions are parametrised by renormalized
coupling constants Kν . For Luttinger liquids, Kν is the equivalent of the Landau parameters. [...]
The Kν therefore only depend on the low-energy properties of the Hamiltonian. Two parameters
per degree of freedom, Kν and vν , completely describe the physics of a Luttinger liquid [4].

We are not going to investigate this topic further and refer to the detailed reviews [1, 4] for a complete
analysis. However, a short comment about the widely employed method of bosonization is important,
as this one emphasises the bosonic nature of the problem. We understood the elementary low-energy
excitations are stable particles, i.e. they have a well-defined energy-momentum dispersion relation
ων(q) = vν |q|. True bosons - in the mathematical sense - can be obtained as linear combination of
particle-hole excitations. The main advantage is that any Hamiltonian of interacting fermions in 1D
can be recast in the form of uncoupled harmonic oscillators [4]. For a strictly linear dispersion relation
εn = vFkn, the Hamiltonian for a system of non-interacting fermions 5 is refashioned using the exact
operator identity (Kronig identity) [5]

H0 =

∞∑
n=1

vFknc
†
ncn =

vFπ

L

∞∑
l=1

[
lb†l bl +

1

2
N(N + 1)

]
(1.9)

where the operators bl are defined as

bl =
1√
l

∞∑
m=1

c†mcm+l (1.10)

vF is the Fermi velocity and N the total particle number operator

N =

∞∑
n=1

c†ncn (1.11)

The operators bl and b†l create a linear combination of particle-hole excitations. The interesting point
is that they obey bosonic commutation relations in the subspace of all possible N -particle states [5],
and represent therefore true bosonic excitations. What happens when the interaction is turned on? If
we are guaranteed a gapless dispersion relation in both charge and spin sector is preserved, we have
a Luttinger liquid [4]. Remarkably, the Hamiltonian for the interacting fermions is still a quadratic
form in the bosons operator [5]. For fermions with spin it can be shown [1, 4, 5] that the interaction
between electrons lifts the degeneracy by making vρ 6= vν 6= vF , leading to spin-charge separation.
Diverse models have been involved in the study of LL phenomenology. Historically, the main model
that has been investigated is the Tomonaga-Luttinger model (TL), as it exhibits all the interesting
features of the general Luttinger liquid paradigm. In fact, as exceptionally nicely phrased in [3]

[..] one may say that the TL model is to the Luttinger liquid concept what the Fermi gas is
to the normal Landau Fermi liquid. These two exactly solvable models serve as archetypes for
two qualitatively different classes of systems - Fermi liquids and Luttinger liquids: a perturbative
connection exists only between two systems in the same class, but not between two systems in
different classes.

The model Hamiltonian is not presented here, since it is out of the scope of this introduction. A
formal derivation and its solution can be found in [3, 5]. Without entering the details we recall that

5This is the case for spinless fermions with open boundary condition where kn = n π
L

, and it will be illustrated in
detail in the next chapter. For the moment it suffices to promote our qualitative considerations up to a more formal
level.
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the exact solution to this model can be obtained using Ward identities as well as bosonization [5].
Beside this model, integrable lattice models played a prominent role in the emergence of the general
Luttinger liquid concept. They can be exactly solved by Bethe ansatz [5]. The two most important
models are the spinless fermions with nearest neighbour interaction and the one dimensional Hubbard
model. These model are at the very centre of the present work and will be presented in detail in the
next chapters.

1.4 On the experimental verification of LL behaviour

After this introduction on the properties LLs, it is natural to ask whether this exotic behaviour is
effectively realized in Nature, or purely remains an elegant abstract concept. Indeed huge efforts have
been made in the last decades to attempt to verify (approximately) the physics of Luttinger liquids
[5]. It is clear that strictly one dimensional system cannot be realized, but luckily there is no need for
that. Experimental verification of LL behaviour can be obtained for systems where the predominant
character is one dimensional. Following the presentation given in [5], we display here a brief list with
the most important systems 6.

� Highly anisotropic ”quasi-one-dimensional” conductors: extensive work has been performed on
organic conductors, such as the Bechgaard salts as well as the inorganic materials.

� Artificial quantum wires: the two most important types of realizations are quantum wires in
semiconductor heterostructures and quantum wires on surface substrates.

� Carbon nanotubes: these consist of long cylindrical fullerenes (i.e. long carbon-based cylinders)
and are therefore quantum wire as well. Listing them separately emphasises their importance in
future applications like molecular electronics.

� Fractional quantum Hall fluids: electrons at the edges of a two-dimensional fractional quantum
Hall system can be described as a chiral Luttinger Liquid.

An important note is to be made upon the experimental techniques involved in the aforementioned
verifications. Promising ones are high resolution photoemission and the characterization of transport
and optical properties. The angular integrated photoemission of the Bechgaard salt (TMTSF)2PF6

for example showed a power-law suppression at the chemical potential. It is still to be understood
whether this behaviour can be simply explained by LL theory and the question remains open. It is
clear that the experimental verification of Luttinger liquid phenomenology requires to overcome very
subtle problems for both theoreticians and experimentalists. For a great and exhaustive review on
this topic the interested reader is referred to [11].

6For further details and complete references we refer directly to the cited review.
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Chapter 2

The models

”A mathematical model is a compromise between the overwhelming complexity of reality
and the elegant abstract constructions of mathematics.”

-S. Salsa, opening a lecture on PDEs-

We introduce here the lattice models exhibiting the fascinating LL behaviour described in the previous
chapter. Before analysing the full interacting problem, a complete description of the non-interacting
case is given for both the models. All the systems in this work will be studied for T = 0.
The homogeneous problem is firstly presented where periodic boundary conditions are employed. Once
a solid knowledge is achieved, we proceed with the introduction of open boundary conditions. In this
case translational invariance is broken and we are therefore dealing with an inhomogeneous Luttinger
liquid. It is known [6] that this class exhibits interesting spectral properties close to boundaries, which
differs from the one in the bulk. Here and throughout the whole work the method employed to tackle
the interacting problem is the machinery of perturbation theory. It has already been proved capable
of providing meaningful results [6] and we will exploit this method in detail.

2.1 Non-interacting spinless fermions

2.1.1 Fermions on a necklace

The principle model we are going to investigate is the spinless fermions model 1 defined on a one
dimensional lattice with nearest neighbour interaction. The case of an infinite homogeneous system is
modelled by the introduction of periodic boundary condition (PBC). Labelling with the index j the
sites in our lattice, this condition allows us to picture our model as a ring or a necklace, where we
identify the site j = 0 with the one j = L. Fermions can hop back and forth from one site to another
with a hopping energy t, while the lattice constant a is set to unity. The free Hamiltonian in PBC
then is

H0 = −t
L−1∑
j=0

c†j+1cj + h.c. (2.1)

where c†j (cj) denotes the creation (annihilation) operator at site j. The eigenstates of this Hamiltonian
are easily found thanks to the symmetry of the system.

1In the literature, it may be sometimes addressed as hardcore boson model.
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We introduce the orthonormal set of basis functions |n〉, eigenstates of the lattice momentum operator.
The overlap to the real space basis |j〉 reads

〈n|j〉 =
1√
L
eiknj (2.2)

Due to the boundary condition it is easy to verify that kn must be quantized as kn = 2π
L n, where

n is an integer number between 0 and L − 1. Introducing the creation and annihilation operator in
momentum space

cj =
L−1∑
n=0

〈n|j〉 cn and c†j =
L−1∑
n=0

〈j|n〉 c†n

we can recast the free Hamiltonian in the form:

H0 = − t
L

L−1∑
j=0

L−1∑
n,n′=0

e−i
2π
L
n(j+1)ei

2π
L
n′jc†ncn′ + h.c.

The sum in j is easily performed and gives δn,n′L so we obtain:

H0 = −2t
L−1∑
n=0

cos(kn)nkn (2.3)

where nkn = c†ncn indicates the number operator in state |n〉. As we expected, plane waves are
suitable functions to diagonalize the free Hamiltonian. From the dispersion relation in (2.3) it is clear
the system forms a band with bandwidth equal to 4t. We can choose the index n to run from −L

2 to
L−1

2 thanks to the transational symmetry. If NF denotes the number of particle in the system, the

ground state is obtained by filling the one particle states from −NF
2 to NF

2 .

2.1.2 Fermions on an open chain

As previously mentioned, the case of interest in this work is the inhomogeneous system. In general,
the role of inhomogeneity can be played both by impurities in the lattice and by the finite size of the
lattice, taken into account imposing open boundary condition (OBC). Here we are going to focus on
the second case. In this case our 1D lattice can be thought of as an open chain rather than a necklace,
upon which fermions can hop from site j to j + 1 and vice versa. For practical convenience we label
the two extremes of the chain with j = 1 and j = L− 1, resulting with L− 1 accessible lattice sites,
and thus a maximum of N = L−1 fermions in the system. The free Hamiltonian for spinless fermions
with open boundary condition then reads:

H0 = −t
L−2∑
j=1

c†j+1cj + h.c. (2.4)

Since our system is not transational invariant anymore, plane waves surely do not provide a suitable
basis to diagonalize this Hamiltonian. Instead, we can make use of a set of sine functions, constrained
to zero at the extremes of our lattice by the boundary condition. We introduce then a new (finite)
orthonormal basis |n〉 with overlap to the real space basis given as:

〈n|j〉 =

√
2

L
sin(knj) (2.5)
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Due to the open boundary condition we are dealing with, kn must be quantized as kn = π
Ln, where n

is a positive integer number n = 1, ..., L− 1. The factor
√

2
L guarantees the correct normalization:

L−1∑
j=1

| 〈n|j〉 |2 =
2

L

L−1∑
j=1

sin2
(π
L
nj
)

= − 1

2L

L−1∑
j=1

(
ei

2π
L
nj − e−i

2π
L
nj
)2

= − 1

2L

L−1∑
j=1

(
ei

2π
L
nj + e−i

2π
L
nj − 2

)

= − 1

2L

[
1− ei2πn

1− ei
2π
L
nj
− 1 +

1− e−i2πn

1− e−i
2π
L
nj
− 1− 2(L− 1)

]
= − 1

2L

[
− 2− 2(L− 1)

]
= 1

This new set of basis functions is our best candidate to diagonalize the Hamiltonian in (2.4). The op-

erators in real space can now be represented as linear combination of operators cn and c†n, respectively
annihilating and creating a fermion in state |n〉:

cj =

√
2

L

L−1∑
n=1

sin
(π
L
nj
)
cn c†j =

√
2

L

L−1∑
n=1

sin
(π
L
nj
)
c†n

We plug this representation into the expression for the free Hamiltonian in (2.4) to obtain:

H0 = −t 2

L

L−2∑
j=1

L−1∑
n,n′=1

sin
(π
L
n(j + 1)

)
sin
(π
L
n′j
)
c†ncn′ + h.c.

= −t 2

L

L−1∑
n=1

L−1∑
n′=1

c†ncn′

L−2∑
j=1

sin
(π
L
n(j + 1)

)
sin
(π
L
n′j
)

+ h.c.

We have to perform the sum over the real space index j. The first and last indexes can be extended,
since we are guaranteed to introduce two vanishing terms by the condition imposed on kn. Introducing
the exponential representation then we get:

−t 2

L

L−2∑
j=1

sin
(π
L
n(j + 1)

)
sin
(π
L
n′j
)

= t
2

L

L−1∑
j=0

[
ei
π
L

(
n(j+1)+n′j

)
− ei

π
L

(
n(j+1)−n′j

)]
+ c.c.

= −t 2

L

[
− ei

π
L
nδnn′L− ei

π
L
n(1− δnn′)

1− eiπ(n−n′)

1− ei
π
L

(n−n′)
+ ei

π
L
n 1− eiπ(n+n′)

1− ei
π
L

(n+n′)

]
+ c.c.

= −t cos
(π
L
n
)
δnn′ +

t

2L

[
1− (−1)(n+n′)

1− cos( πL(n+ n′))
− 1− (−1)(n−n′)

1− cos( πL(n− n′))

][
cos
(π
L
n
)
− cos

(π
L
n′
)]

= −t cos
(π
L
n
)
δnn′ + f(n, n′)
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Figure 2.1: Eigenvalues for the non interacting system with OBC. Here L− 1 = 4000 and NF = 2000.

So far we did not take into account the hermitian conjugate term in the free Hamiltonian. The sum
we have to compute though is nothing but the same we already did, provided we swap the index n
with n′. Luckily, the function f(n, n′) is antisymmetric under exchange of indexes

f(n, n′) = −f(n′, n)

while the first term is not. Once we add the two results together then, those terms cancel out and we
are left with:

H0 = −2t

L−1∑
n=1

cos
(π
L
n
)
c†ncn (2.6)

We have succeeded in diagonalizing the free Hamiltonian, making use of new, physically motivated,
basis functions. These functions are the eigenstates of the non interacting system we are studying,
with eigenenergies

εkn = −2t cos
(π
L
n
)

(2.7)

We conclude that for the free OBC case the dispersion relation is formally equivalent to the free PBC
case, provided we introduce the right quantization condition on k. In figure 2.1 we plot the eigenvalues
ε as a function of kn for half filling. Here and throughout the whole work we set t = 1 in the numerical
results.
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2.2 Interacting spinless fermions: mean field approach

Things get more interesting when interaction is turned on. Double occupancy on a single site j is
forbidden for spinless fermions so that we introduce the nearest neighbour interaction

HI = v
∑
j

njnj+1 (2.8)

The Hamiltonian can be recast into the more incisive form

H = −t
∑
j

c†j+1cj + h.c. + v
∑
j

c†jc
†
j+1cj+1cj = H0 +HI (2.9)

Such a model is known from the literature to share the characteristics of a LL for |v| < 2|t| [5, 6].
To tackle the full Hamiltonian, we follow in this work the approach delineated in [6] and study
the interacting system in the mean field approximation. In perturbation theory this is also referred
to as Hartree-Fock approximation2(HF). We are going to see that this approximation already gives
meaningful results for the spectral properties we are interested in. The interacting HF Hamiltonian
in real space then is

HHF
I =

∑
j

v 〈nj+1〉 c†jcj +
∑
j

v 〈nj〉 c†j+1cj+1︸ ︷︷ ︸
direct

−v
∑
j

〈c†j+1cj〉 c
†
jcj+1 − v

∑
j

〈c†jcj+1〉 c†j+1cj︸ ︷︷ ︸
exchange

(2.10)

where the brackets denotes the expectation value with respect to the non-interacting ground state.
As we did before, we first face the homogeneous case, and then proceed with the inhomogeneous one.

2.2.1 Periodic Boundary Condition

Investigating the mean field approach in the PBC case will serve as solid grounds for a better under-
standing of the OBC case, while underlying similarities and differences. We better make use of the
basis |n〉, where the free Hamiltonian is diagonal. For the off-diagonal terms we have:

c†j+1cj =
L−1∑
n=0

〈j + 1|n〉 c†n
L−1∑
n′=0

〈n′|j〉 cn′ =
1

L

L−1∑
n=0

L−1∑
n′=0

c†ncn′e−i
2π
L
ne−i

2π
L
j(n−n′)

We have to compute the expectation value of this operator with respect to the non interacting ground
state, this being the antisymmetrized tensor product of single particle eigenstates |n〉. The ”Fermi
sphere”, which is a one dimensional interval, is filled up to a momentum kF = 2π

L NF , with NF the
number of fermions in our model. This gives

〈c†ncn′〉 = δnn′nkn (2.11)

Where nk is the expectation value for the particle number operator in the state |n〉. For NF even we
have then:

2To be more precise this is the non self-consistent Hartree-Fock approximation
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〈c†j+1cj〉 =
1

L

NF /2−1∑
n=−NF /2

e−i
2π
L
n =

1

L

NF−1∑
n=0

e−i
2π
L

(m−NF /2)

=
1

L
ei

2π
L
NF /2

1− e−i
2π
L
NF

1− e−i
2π
L

=
1

L

eiπη − e−iπη

1− e−i
2π
L

where we explicitly introduced the number density η = NF /L, sometimes referred to as filling factor.
In the thermodynamic limit L→∞ while η is kept finite:

〈c†j+1cj〉 =:
t0
v
−→ sin(πη)

π
(2.12)

For odd NF analogous computation leads to

t0
v

=
2

L

sin(πη) sin( πL)

1− cos(2π
L )

−→ sin(πη)

π

The expectation value of the hermitian conjugate term in the HF Hamiltonian leads to the same
expression when taking the thermodynamic limit. As a result of the interaction between fermions,
an effective homogeneous hopping term t0 appears. We can therefore define a renormalized, filling-
dependent hopping term

t′ = t+ t0 = t+ v
sin(πη)

π
(2.13)

We now take care of the diagonal terms in (2.10). We have to compute the expectation value of the
number density operator with respect to the non-interacting ground state. It is thus clear that this
value must be equal to η. For the sake of completeness though:

〈nj〉 =
1

L

L−1∑
n,n′=0

e−i
2π
L
j(n−n′) 〈c†ncn′〉 =

1

L

NF
2
−1∑

NF
2

1 =
NF

L
= η (2.14)

Still this is an homogeneous term, as expected from the translational symmetry of the problem. Since
the same result holds for the term 〈nj+1〉 we conclude that the direct term in our first order approxi-
mation is nothing but a constant on-site energy over the whole chain, whose value is proportional to
the strength of the interaction v. Defining u = 2vη the mean-field Hamiltonian now reads:

HHF = −t′
L−1∑
j=0

c†j+1cj + h.c + u

L−1∑
j=0

c†jcj (2.15)

Indeed this Hamiltonian is diagonalized by the non interacting eigenstates |n〉, our dear old plane
waves, as it can be easily verified.

HHF =

L−1∑
n=0

ε′(k)c†ncn where ε′(k) = u− 2t′ cos
(2π

L
n
)

(2.16)

As we can infer from new dispersion relation in (2.16) the interaction between fermions modifies the
bandwidth from 4t to 4t′. In figure 2.2 we show how the band has been stretched due to the repulsion
for v > 0 and different values of the filling. The diagonal term in (2.15) leads to a shift in the chemical
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Figure 2.2: Eingenvalues for the interacting case in PBC, with L-1=4000. In order to keep the comparison with
the OBC clear, we only plot the positive k branch of the dispersion relation. For details see the text.

potential δµ due to the interaction. As for our purpose this is not important, it has been set to zero
in the previous plot. This choice will be employed for all the subsequent plots presented in this work3.

2.2.2 Open Boundary Condition

We now want to see how the matrix elements in equation (2.10) look like in the case of open boundary
conditions. Again we represent the operator in the basis |n〉, eigenstates of the free Hamiltonian with
OBC. With k being π

Ln and analogously for k′ we have for the off-diagonal terms:

〈c†jcj+1〉 =

L−1∑
n,n′=0

2

L
sin(kj) sin

[
k′(j + 1)

]
〈c†ncn′〉 =

2

L

n=NF∑
n=1

sin(kj) sin
[
k(j + 1)

]
= − 1

2L

n=NF∑
n=1

(
eikj − e−ikj

)(
eikjeik − e−ikje−ik

)
= − 1

2L

n=NF∑
n=1

(
eik(2j+1) − e−ik(2j+1) − eik − e−ik

)
= − 1

2L

n=NF∑
n=1

(
ei
π
L

(2j+1) − e−i
π
L

(2j+1) − ei
π
L − e−i

π
L
)

Making use of the the partial sum of the geometric series we obtain:

〈c†jcj+1〉 = − 1

2L

[
1− ei

π
L

(NF+1)(2j+1)

1− ei
π
L

(2j+1)
− 1− ei

π
L

(NF+1)

1− ei
π
L

+ c.c.

]
(2.17)

3Technically, that is to say we chose to work with an effective HF Hamiltonian H̃HF = HHF− δµI, where the diagonal
contribution leading to a shift in µ is subtracted.

17



In order to keep the derivation as clear as possible, we set now β = π
L and α = β(2j + 1) :

〈c†jcj+1〉 = − 1

2L

[
g(α)− g(β)

]
(2.18)

with the function g(α) defined as

g(α) =
1− e−iα − e−iα(NF+1) + eiαNF + c.c.

2(1− cosα)
(2.19)

〈c†jcj+1〉 = − 1

2L

[
1− cosα+ cos(αNF )− cos

(
α(NF + 1)

)
2(1− cosα)

− g(β)

]

= − 1

2L

[
1 +
− cos

(
α(NF + 1)

)
+ cos(αNF )

1− cosα
− g(β)

]

= − 1

2L

[
2 sin

(α(2NF+1)
2

)
sin(α2 )

2 sin2(α2 )
− g(β)

]

Finally, by simplifying and restoring the real value of α and β we are left with

〈c†jcj+1〉 = − 1

2L

[
sin
(
π

2L(2NF + 1)(2j + 1)
)

sin
(
π

2L(2j + 1)
) −

sin
(
π

2L(2NF + 1)
)

sin
(
π

2L

) ]
(2.20)

We put now everything together to obtain the renormalized hopping term with open boundaries

t′j = t+ t1(j) + t0 = t− v

2L

[
sin
(
π

2L(2NF + 1)(2j + 1)
)

sin
(
π

2L(2j + 1)
) ]

+
v

2L

[
sin
(
π

2L(2NF + 1)
)

sin
(
π

2L

) ]
(2.21)

Equation (2.21) shows that the renormalized hopping is now split into a homogeneous component and
an inhomogeneous one. The interaction between fermions in the case of OBC is responsible for the
appearing of a spatial dependence in the hopping term. Naturally the system cannot distinguish, for
example, between the ”left” and ”right” extreme on the chain. That is, it is still invariant under point
reflection through the centre of the lattice, since nothing we introduced can break this symmetry4.
This is evident in the hopping term we found: given the mapping j −→ L− 1− j, it is trivial to show
that t′j is left unchanged. In a similar fashion for the Hartree terms on the diagonal we compute:

〈c†jcj〉 =
2

L

NF∑
n

sin2(
π

L
nj) = − 1

2L

NF∑
n

(
ei
π
L
nj − e−i

π
L
nj
)2

= − 1

2L

(
2NF + g(γ)

)
(2.22)

Where in the last equality we defined γ = 2π
L j and we took advantage of the definition of the function

g as given in (2.19). Recasting the latter in the more appealing form we already derived one gets:

〈c†jcj〉 = − 1

2L

[
2NF + 1 +

sin
(
π
Lj(2NF + 1)

)
sin
(
π
Lj
) ]

(2.23)

4We observe this is nothing but parity symmetry in 1D.
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When adding the other diagonal term and recovering the interaction parameter v, the on-site energy
at site 2 ≤ j ≤ L− 2 reads:

v′j = − v

2L

[
sin
(
π
L(j − 1)(2NF + 1)

)
sin
(
π
L(j − 1)

) +
sin
(
π
L(j + 1)(2NF + 1)

)
sin
(
π
L(j + 1)

) ]
+
v

L

(
2NF + 1

)
(2.24)

and

v′1 = v′L−1 = − v

2L

[
sin
(

2π
L (2NF + 1)

)
sin
(

2π
L

) ]
+

v

2L

(
2NF + 1

)
(2.25)

As for the off-diagonal terms, the on-site energy in mean field approximation is split into a homogeneous
term and an inhomogeneous one. In equation (2.24) the explicit dependence of the direct term is given:
a fermion occupying the site j ”feels” the average charge density at site j − 1 and j + 1, which now
depends on j due to the distortion introduced by the finite size of the chain. Notice that a particle at
the boundary only interacts with one neighbour site. Again, parity symmetry is preserved, as it can
be easily worked out from the expression of v′j .
It is interesting to investigate the behaviour of the elements t′j and v′j under particle-hole number
exchange, i.e. under the mapping: NF −→ L− 1−NF . Plugging it into equation (2.21) we see that
the hopping term is left untouched. The on-site energy instead picks up an overall minus sign.

2.2.3 Algebraic decay and Friedel oscillation

In figure 2.3 we plot the the value of the matrix elements t′j close to one edge of the lattice. From
equation (2.21) we see that the spatial frequency of the oscillation is 2kF . As it can be seen, the
oscillation decays while moving from the boundary towards the bulk. This decaying has been found
to be algebraic, both analytically and numerically, for every value of interaction v and filling factor η.
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Figure 2.3: Hopping term in the mean field approximation for OBC close to the boundary. Here v=1.5, NF = 100
while L− 1 = 4000.
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Analytical result can be achieved when performing the proper limit on the expression we found for
the matrix elements. We are interested in the inhomogeneous term:

−t1(j) =
v

2L

sin
(
π

2L(2NF + 1)(2j + 1)
)

sin
(
π

2L(2j + 1)
) (2.26)

For a fixed value of j we take the limit for L→∞ while keeping η constant

−t1(j) −→ v

2L

sin
(
2kF j

)
π

2L(2j + 1)
= v

sin
(
2kF j

)
π(2j + 1)

(2.27)

For large j then, the oscillations decay as

−tj −→ v
sin
(
2kF j

)
2πj

(2.28)

As mentioned above, we found an algebraic decay in the first power of j. With a quick look at
equation (2.24) one realizes that taking the same limit will lead to a 1

j decay as well. As the diagonal
matrix elements are nothing but the expectation value of the number density operator with respect
to the non-interacting ground state, this behaviour is showing us Friedel oscillation in one dimension
[6]. In the finite lattice model of interacting fermions we are investigating, the open boundary is the
inhomogeneity causing this type of density oscillation. This behaviour has been successfully checked
numerically and the results are shown for the hopping term in figures 2.4 and2.5.
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Figure 2.4: Algebraic decay of oscillation in the hopping matrix elements in OBC. Here v = 1, NF = 100,

L − 1 = 4000. The function fj = v
2πj − t −

v sin(πη)
π is the sum of the amplitude of the oscillation as derived

analytically and the homogeneous shift.

For a site j far from the inhomogeneity we expect to recover the bulk properties, i.e. to loose track of
the effects of the boundary. In this limit in fact, both the hopping energy as well as the on-site energy
in the OBC coincide with the ones in PBC. The inhomogeneous hopping component vanishes and the
homogeneous one is easily seen to coincide with the PBC we already found

v

2L

sin
(
π

2L(2NF + 1)
)

sin π
2L

−−−−→
L→∞

v sin(πη)

π
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Figure 2.5: Algebraic decay of oscillation in the hopping matrix elements in OBC. Here v = 2, NF = 200,

L − 1 = 4000. The function fj = v
2πj − t −

v sin(πη)
π is the sum of the amplitude of the oscillation as derived

analytically and the homogeneous shift.

Naturally, identical consideration follows for the diagonal terms v′j : the inhomogeneous term disap-
pears and we are left with the homogeneous one

v

L

(
2NF + 1

)
−→ 2vη = u

2.2.4 Numerical diagonalization

0 0.5 1 1.5 2 2.5 3 3.5

k

-3

-2

-1

0

1

2

3

(k
)

v=0 n=0.5
v=1 n=0.5
v=1 n=0,25

Figure 2.6: Eigenvalues in the mean field approximation for OBC. Here L− 1 = 4000

Given the nontrivial behaviour of the matrix elements in equations (2.21) and (2.24,) there is no
chance to invert the HF Hamiltonian analytically. In order to investigate the properties of the finite
size interacting system we proceed with the numerical diagonalization. The eigenvalues we obtain are
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plotted in figure 2.6. From this plot it can be inferred that the effect of the inhomogeneous terms
on the band shape is negligible. The band shares the same features of the one in PBC. The largest
difference between the eigenvalues in the two cases is found at the two extremes of the band and is of
the order 10−4 in our simulations. Concerning the eigenvectors, the meaningful comparison to work
out is with the non-interacting eigenvectors in OBC. The low energy eigenstates are not distorted by
the interaction. This fact can be tracked down to the Pauli exclusion principle, since the states deep
below the Fermi energy are frozen inside the Fermi sea. Conversely, the main deviation from the non
interacting eigenstates appears for eigenstates corresponding to the chemical potential. In real space
representation, the deviation has been found to be bigger at the boundaries of the lattice, and this
precise feature will be responsible of the peculiar spectral properties of the edge sites.

2.3 The Hubbard model

The second model we analyse is the one-dimensional Hubbard model. The kinetic energy term is fully
analogous to the spinless fermions model. The study of the non-interacting Hamiltonian is therefore
identical and we directly tackle the interacting problem. Moreover, as the main focus of this work
is the investigation of inhomogeneous LLs, we only analyse the case with open boundary conditions.
With the same prescription on the labelling of the real lattice sites given for the previous model, the
Hamiltonian reads

H =
∑
σ

L−2∑
j=1

c†j+1,σcjσ + h.c. + u

L−1∑
j=1

nj↑nj↓ (2.29)

where σ denotes the two possible spin projections - ↑,↓ - upon a chosen axis for a spin 1
2 particle, and

nj,σ the particle number operator at site j and spin component σ. In this case double occupancy on
the same site is not forbidden for fermions with opposite spin. The interaction term is here the on-site
repulsion between particles with opposite spin.
The half-filled band case is metallic (gapless charge excitations) only for u = 0. For u� t the Coulomb
energy overwhelms the kinetic one and every site is singly occupied. The charge degrees of freedom
are frozen so that the spin is the only relevant degree of freedom and the model can be mapped to a
spin-1

2 Heisenberg ferromagnet [5]. For a different filling factor the model is known to be a LL with
Ks = 1 [5]. We will therefore focus our investigation away from half-filling5, i.e. for η 6= 1.

2.3.1 Hartree-Fock approximation in real space

We perform now the same perturbative analysis that has been carried out for the previous model,
namely the HF approximation in real space. Successively, the numerical diagonalization is performed
and a brief discussion is given. The interacting Hamiltonian in the HF approximation gives

u
L−1∑
j=1

nj↑nj↓ = u
L−1∑
j=1

c†j↑c
†
j↓cj↓cj↑

= u

L−1∑
j=1

c†j↑ 〈c
†
j↓cj↓〉 cj↑ + u

L−1∑
j=1

c†j↓ 〈c
†
j↑cj↑〉 cj↓

= u

L−1∑
j=1

[
〈nj↓〉nj↑ + 〈nj↑〉nj↓

]
5As we are allowed to put two fermions in each site, the filling factor can now span from 0 to 2.
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where the brackets indicate the expectation value with respect to the non-interacting ground state. As
it is clear, only the direct terms appear in the expansion. In this model in fact, there is no exchange
term since the interaction is local, and the Fock contribution vanishes.
Considering the structure of the free Hamiltonian, the whole problem now simply splits into two
identical ones. For every spin population we have to evaluate:

〈nj↑〉 = 〈nj↓〉 =

NF∑
n

| 〈n|j〉 |2 =
2

L

NF∑
n

sin2
(π
L
nj
)

where the same notation of the previous model has been employed since the non-interacting eigenstates
are identical. This sum has already been performed for the Hartree term in the spinless fermions model.
We thus end up with

u 〈nj↓〉 =
u

2L
(2NF + 1)− u

2L

sin
(
π
L(2NF + 1)j

)
sin( πLj)

(2.30)

Again the interaction is split into a homogeneous component and an inhomogeneous one. Each spin
population then interacts with the average potential generated by the population with opposite spin.
The same considerations on the matrix elements made in the previous section are valid and we can
directly proceed with the numerical inversion.

2.3.2 Numerical results

In figure 2.7 we plot the eigenvalues for both the non-interacting and the interacting Hubbard case. It
is clear that the inhomgeneous component in the diagonal vanishes in the thermodynamic limit as it
happened for the spinless fermions model. Only a constant homogeneous shift in energy is left in the
diagonal, which for our purpose can be safely set to zero. The hopping energy is not renormalized as
we now lack the exchange contribution coming from the Fock term. This suffice to explain the total
overlap of the bands in the non-interacting and interacting case.
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Figure 2.7: Eigenvalues in the mean field approximation for the OBC Hubbard model. Here L − 1 = 4000 and
η = 0.25. One can observed a perfect overlap of the band for u = 0 and u = 1 once the homogeneous shift is set
to zero.
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Chapter 3

The spectral function

”The best grammar for thinking about the world is that of change, not of permanence.
Not of being, but of becoming.”

-C. Rovelli, in The order of time-

Before we set off investigating the spectral properties of our systems by means of numerical and
analytical tools, it is necessary to introduce a rigorous definition of the mathematical object we are
going to work with. We first give a brief recall of the well known concept of density of states.
Subsequently, we illustrate the more rich structure of the spectral function (or spectral density) in the
framework of many-body theory. Once we settle the important maths, analytical (where possible) and
numerical results for the systems we are studying are presented. The spectral properties of interacting
spinless fermions with open boundaries will show the very peculiar behaviour we are mainly focused
in this work.

3.1 Theoretical framework

3.1.1 The density of states

As it is customary in many-body theory, we suppose to own the full knowledge on the exact single-
particle eigenstates and eigenenergies of the Hamiltonian we are interested in, respectively |n〉 and
ωn

1. With this in mind, we can compute the density of states per unit energy, which is evidently given
by the definition:

D(ω) =
∑
n

δ(ω − ωn) (3.1)

From this definition and the properties of the Dirac δ it is easy to prove

∫
dωD(ω) = N (3.2)

Where in this case N denotes the number of accessible states in the system.
It is now instructive to compute the density of states for the spinless fermions model. This can be

1We assume for simplicity ~ = 1, so that the energy coincides with the frequency, denoted by the letter ω
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done analytically for the non interacting case v = 0. The expression of the eigenvalues, namely the
dispersion relation, is formally the same for PBC and OBC, provided we use the proper definition
of kn. As an example we chose to compute D(ω) for the OBC case. In the thermodynamic limit
the spacing between eigenstates vanishes, and we can trade the sum over the index n, labelling the
discrete set of eigenvalues, for and integral over the continuum variable k. We have2

D(ω) =
∑
n

δ
(
ω + 2t cos(kn)

)
=
L

π

∫ π

0
dkδ
(
ω + 2t cos(k)

)
=
L

π

∫ π

0
dk
∑
k0

δ(k − k0)

|ω′(k0)|

Here k0 denotes the zeros of the function ω + 2t cos(k), namely k0 = arccos(− ω
2t) in the domain of

interest, and ω′(k) the first derivative of the dispersion relation function.

D(ω) =
L

2π

1

t sin k0
=

L

2πt

1√
1− cos

(
k0(ω)

) =
L

2πt

1√
1− ω2

4t2

=
L

π

1√
4t2 − ω2

(3.3)

As it can be easily inferred from equation (3.3), the result is consistent as the function we computed
is only defined in the energy region −2t < ω < 2t. A quick computation shows that the sum rule in
(3.2) is satisfied.

3.1.2 The spectral function

We now give the formal definition of the spectral function. In this introduction we mainly follow the
presentation given in the enlightening book of Giuliani and Vignale [3].
We start by considering the N -particle system in its ground state, denoted by |φN0 〉. When a particle
is added in the generic state |α〉, the N + 1 particle system does not have a definite energy, provided
we do not choose |α〉 to be an eigenstate |φN+1

n 〉 of the N + 1 particle Hamiltonian. Nevertheless, we
can surely decompose this state as a linear combination of the eigenstates |φN+1

n 〉

c†α |φN0 〉 =
∑
n

uαn,N+1 |φN+1
n 〉

where |φN+1
n 〉 is the n-th excited eigenstate of the N+1 particle Hamiltonian and the coefficient is

given by the overlap

uαn,N+1 = 〈φN+1
n |c†α|φN0 〉

The interesting point is understanding the probability to find the N + 1 particle system at the energy
ωn of the n-th exact eigenstate of the N + 1 particle Hamiltonian. Requiring it to be normalised, this
is given by

|uαn,N+1|
2∑

n |uαn,N+1|2

In the thermodynamic limit where the eigenenergies condense into a continuum, it is more meaningful
to look for the probability that the system is found in an energy interval between EN0 + ω and
EN0 + ω + dω. This is realized by the function

2Here we make use of the property δ
[
f(x)

]
=
∑

1
|f ′(x0)|

δ(x − x0) where the sum is over any simple zero x0 of the

function f(x). This useful relation will be widely employed through the text.
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ρ>(α, ω) =
∑
n

| 〈φN+1
n |c†α|φN0 〉 |

2
δ
(
ω − (EN+1

n − EN0 )
)

(3.4)

Using the resolution of identity in terms of exact eigenstates, the normalization integral is found to be

∫
dωρ>(α, ω) = 1− nα

with nα the expectation value of the particle number operator in the single particle state |α〉 onto the
ground state. In exactly the same way, we can work out the probability for a particle to be removed
from the system

ρ<(α, ω) =
∑
n

| 〈φN−1
n |cα|φN0 〉 |

2
δ
(
ω + EN−1

n − EN0
)

(3.5)

where the normalization integral is now

∫
dωρ<(α, ω) = nα

The sum of the two probability densities define the total spectral function

ρ(α, ω) = ρ<(α, ω) + ρ>(α, ω) (3.6)

It is straightforward to verify this object is properly normalized and satisfies all the requirements to be
a probability density. The powerful effectiveness of this tool will be evident when applied to a system
of interacting particles. For instance, ρ>(α, ω) describes in which way the spectral weight carried by

the state c†α |φN0 〉 is spread out over the continuum of many-body interacting states |φN+1
n 〉. In this

sense we are having information on the spectral region explored by the state |α〉.

Intermezzo: Fermi gas and Fermi liquid

It is instructive to look at the spectral function for a system of non-interacting particles when |α〉 is
chosen to be an eigenstates |k〉 of the Hamiltonian, with eigenvalue ω(k). In the case we are adding
a particle above the Fermi surface, from the definition in (3.4) it is clear that the sum over the index
n collapses thanks to orthogonality and the difference EN+1

n − EN0 = ω(k) is nothing but the single
particle energy of the particle we inject in the state |k〉. The same result holds when removing a
particle in state |k〉 underneath the Fermi surface, and we simply obtain:

ρ(k, ω) = δ
(
ω − ω(k)

)
(3.7)

Clearly, when the particle is added in (or removed from) an exact eigenstate, the spectral weight is
concentrated on the precise corresponding eigenenergy. In a Fermi liquid, this δ-function is broadened
to a Lorentzian peak by the interaction between fermions. The spectral weight of a particle injected
in a non-interacting single-particle eigenstate |k〉 is spread out over a small energy range around the
quasiparticle energy. The point to be stressed is that in ”high dimensions” this is the only big difference
in the spectral domain, such that it is meaningful to talk about quasiparticles. A description of the
low energy excitations above the Fermi surface as a dilute gas of weakly interacting quasiparticles is
valid and gives rise to the concept of Fermi liquid as illustrated in Chapter 1.
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3.1.3 From many-body description to single-particle properties

In this work we want to investigate the structure of the spectral function at a site |j〉 of the real lattice.
This is also referred to as local spectral function 3. We have to perform

ρ<(j, ω) =
∑
n

| 〈φN−1
n |cj |φN0 〉 |

2
δ
(
ω + EN−1

n − EN0
)

(3.8)

ρ>(j, ω) =
∑
n

| 〈φN+1
n |c†j |φ

N
0 〉 |

2
δ
(
ω − EN+1

n + EN0

)
(3.9)

Analytical results can be achieved in the case of a free Hamiltonian for both PBC and OBC. Before
we set off to compute though, a few considerations must be done. We can reduce this many-body
construction to a single-particle one. As an example, we work with ρ>(j, ω), the result for ρ<(j, ω)
being totally analogous. We start by focusing on the term

|〈φN+1
n |c†j |φ

N
0 〉|

2
= 〈φN0 |cj |φN+1

n 〉 〈φN+1
n |c†j |φ

N
0 〉

We represent the creation operator in the basis of single particle eigenstates of the N + 1-particle
Hamiltonian |m〉 :

〈φN0 |cj |φN+1
n 〉 〈φN+1

n |c†j |φ
N
0 〉 = 〈φN0 |

∑
m′

〈m′|j〉 cm′ |φN+1
n 〉 〈φN+1

n |
∑
m

〈j|m〉 c†m|φN0 〉

=
∑
m

∑
m′

〈m′|j〉 〈j|m〉 〈φN0 |cm′ |φN+1
n 〉 〈φN+1

n |c†m|φN0 〉

=
∑
m

∑
m′

〈m′|j〉 〈j|m〉Θ(m′ −NF )Θ(m−NF ) 〈φN+1
l′ |φN+1

n 〉 〈φN+1
n |φN+1

l 〉

where we denoted with |φN+1
l 〉 the l-th eigenstate of the N+1 particle Hamiltonian obtained by adding

a particle in the single-particle state m, and respectively for |φN+1
l′ 〉. This operation is permitted only

for particle states lying above the Fermi number, thus the step function. The matrix elements are non
vanishing only if the general n-th excited state coincide with the many-body eigenstate we created by
adding one particle.

〈φN0 |cj |φN+1
n 〉 〈φN+1

n |c†j |φ
N
0 〉 =

∑
m

∑
m′

〈m′|j〉 〈j|m〉Θ(m′ −NF )Θ(m−NF )δφnφl′ δφnφl

=
∑
m

∑
m′

〈m′|j〉 〈j|m〉Θ(m′ −NF )Θ(m−NF )δmm′δφnφl

=
∑

m>NF

| 〈j|m〉 |2δφnφl

The energy of this new eigenstate is clearly

EN+1
l = EN0 + ωm (3.10)

where ωm is the single particle energy in the state |m〉. Plugging this result back into equation (3.4)
the sum over index n collapses and we are left with

3Only in the case of non-interacting systems the notion local density of states can be employed.

28



ρ>(j, ω) =
∑

m>NF

| 〈j|m〉 |2δ
(
ω − ωm

)
(3.11)

In a similar manner we compute ρ<(j, ω) and obtain

ρ<(j, ω) =
∑

m<NF

| 〈j|m〉 |2δ
(
ω − ωm

)
(3.12)

Adding together the last equations we have an expression for the local spectral function in terms of
single particle properties

ρ(j, ω) =
∑
m

| 〈j|m〉 |2δ
(
ω − ωm

)
(3.13)

3.2 Spectral function for the spinless fermions model

3.2.1 Free spinless fermions

We can now compute the local density of states in a generic state |j〉 for PBC. In this case the
computation is rather simple since

| 〈j|m〉 |2 =
1

L

for the normalized plane waves as given in equation (2.2). Denoting with ωn the dispersion relation,
we obtain:

ρ0(j, ω) =
1

L

∑
n

δ(ω − ωn) (3.14)

As we expected in the homogeneous case, the local density of states does not depend on the site j we
are looking at, and it is simply given by the total density of states divided by the number of accessible
sites.
More interesting is the inhomogeneous case, where the squared modulus we need is the one given in
(2.5). As usual in the thermodynamic limit we trade the sum over n for a integral and compute:

ρ0(j, ω) =
2

π

∫ π

0
dk sin2

(
kj
)
δ
(
ω + 2t cos k

)
=

2

π

sin2
(
k(ω)j

)
|2t sin

(
k(ω)

)
|

=
2

π

sin2
(
k(ω)j

)
2t
√

1− cos2
(
k(ω)

)
so that

ρ0(j, ω) =
2

π

sin2
(
k(ω)j

)
√

4t2 − ω2
(3.15)

Here we introduced the inverse function of the dispersion relation k(ω) = arccos(− ω
2t). Up to this

point the spectral function is fully exact for every value of ω and site j. For our future purpose though,
it is enough to evaluate this function close to the Fermi energy, which coincides with the chemical
potential µ since we are working at T = 0. Reminding the definition of Fermi velocity
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vF = ω′(kF ) = 2t sin(kF ) = 2t

√
1− µ2

4t2
=
√

4t2 − µ2 (3.16)

we approximate the spectral density with

ρ0(j, ω) =
2

π

sin2
(
k(ω)j

)
vF
√

1− ε2
=

2 sin2
(
k(ω)j

)
πvF

+O(ε)

with ε being

ε =
ω2 − µ2

v2
F

Furthermore, one can expand the function k(ω) around the Fermi vector

k(ω) = kF +
ω − µ
vF

+O
(
(ω − µ)2)

to obtain

ρ0(j, ω ' µ) '
2 sin2

(
kF j

)
πvF

(3.17)

In this work we are mainly focused on the spectral density function at the boundary of the chain,
namely on the site j = 1. Directly from equation (3.15) without any approximation, for every value
of ω we have the simple expression

ρ0(1, ω) =

√
4t2 − ω2

2πt2
(3.18)

In figure 3.1 we plot this result for different values of j.
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Figure 3.1: Spectral function for the first sites close to the boundary in the free spinless fermions model.
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3.2.2 Interacting spinless fermions: suppression of the spectral weight

When the interaction is turned on, the spectral density function exhibits a very peculiar behaviour.
In this case a suppression of the spectral weight sets in, at an energy close to the Fermi energy, or
chemical potential ω = µ, and at an energy 4 ω = −µ. This result has been obtained numerically
through the implementation of equation (3.13), using the eigenvectors and eigenenergies previously
computed. We perform now an accurate analysis and characterization of the features of the dips
appearing in this spectral function. From figures 3.2 and 3.3 we see the emergence of the two dips in
the spectral density for different sites close to the boundary. These dips indicate a suppression of the
spectral weight due to the repulsion between fermions. On the contrary, for attractive interactions
v < 0, we notice the appearance of two peaks, denoting an enhancement at the energy mentioned
above (figure 3.4). These peaks and dips have been long explored numerically, the main focus being
on the repulsive case.
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Figure 3.2: Spectral function for sites close to the boundary with v = 1, η = 0.5 and L− 1 = 4000.
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Figure 3.3: Spectral function for sites close to the boundary with v = 1, η = 0.25 and L− 1 = 4000.

4The shift in the chemical potential δµ is always set to zero in this work. See footnote 3 in section 2.2.1
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Figure 3.4: Spectral function for sites close to the boundary with attractive interaction. Here v = −1, η = 0.25
and L− 1 = 4000.

The next characterization has been made by keeping a fixed site j and exploring the behaviour of
the dips with respect to different values of filling factor η. This analysis is plotted in figure 3.5. For
systems of finite size L, as the number density increases from 0.2 to 0.4, the suppression in ω = µ
outlives and slides towards the centre in our plots, while its counterpart in ω = −µ fades away and
eventually disappears for half filling η = 0.5.
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Figure 3.5: Spectral function for different value of the filling factor η, with v = 1, j = 1 and L− 1 = 4000.

We now investigate the symmetry of the spectral density function within the HF approximation. In
figure 3.6 and 3.7 we compare the function for the two value η and 1 − η. As we expected since the
system is not invariant under this mapping, its spectral density is not invariant either. Notice that
the two function would perfectly coincide provided we swap ω with −ω, or more formally the spectral
function satisfies ρ(j, ω, η) = ρ(j,−ω, 1− η).
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Figure 3.6: Spectral function under the mapping η → 1− η, for j = 1, v = 1, L− 1 = 4000.
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Figure 3.7: Spectral function under the mapping η → 1− η, for j = 2, v = 1, L− 1 = 4000.

The last analysis to be done concerns the dependence of this dips on the interaction strength v. To
do this, we set a fixed value for j and η and compute the spectral function for increasing value of v.
The results are shown in figures 3.10, 3.11 and 3.12.
The property we are mainly focused in this work is the power-law behaviour of the dips appearing in
the local spectral function for sites close to the boundary. For the suppression in ω = µ the power law
is characterized by an exponent which differs from the one of the bulk [6]. This behaviour has been
successfully checked as shown in figure 3.8. The HF exponent αHFB is extracted by taking the numerical
log-log derivative of the spectral function close to the chemical potential, and evaluating the function

we obtained in the point of least derivative. The spectral function then behaves as ρ(ω) ∼ |ω − µ|α
HF
B ,

where αHFB depends on v. Our result are in great agreement with the ones presented in [6] and are
to be compared with the predictions of bosonization. From this method the LL parameter Kρ can be
computed and the boundary exponent follows through the relation

αB = Kρ
−1 − 1 (3.19)

For example, this relation yields [6] αB = 0.1838 for v = 1 and η = 0.25, αB = 0.0319 for v = 0.1 and
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η = 0.5. The exponents we obtained are respectively αHFB = 0.1834 and αHFB = 0.0298 for systems
with L − 1 = 4000. We can conclude that the HF approximation for the self-energy already gives
meaningful result for this energy value.
We have then performed the same analysis on the dip appearing at ω = −µ. In figure 3.9 we see that

the spectral function close to ω = −µ behaves as ρ(ω) ∼ |ω + µ|α
HF
B , where αHFB has been extracted

numerically in the same way we have done before. Also at this energy value then, the spectral function
shows a power-law suppression within the HF approximation for the self-energy.
Furthermore, the function αHFB (v) can be extracted numerically for both dips. As this point will be at
the very centre of our analysis though, we postpone the plots to Chapter 5, where a deeper analytical
understanding of the problem is also achieved.
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Figure 3.8: Power-law suppression of the spectral function at ω = µ for different values of v and η, with
L− 1 = 4000. For details see the text.
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Figure 3.9: Power-law suppression of the spectral function at ω = −µ for different values of v and η, with
L− 1 = 4000. For details see the text.
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Figure 3.10: Spectral function for different values of v with j = 1, η = 0.25

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(
)

v=0.5
v=1
v=2

Figure 3.11: Spectral function for different values of v with j = 2, η = 0.25
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Figure 3.12: Spectral function for different values of v with j = 3, η = 0.5
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3.3 Spectral function for the Hubbard model

We present here the analysis for the spectral function of the Hubbard model. The kinetic term in this
model is identical to the previous case so that we directly focus on the interacting problem. When a
comparison with the non-interacting spectral function is needed, we directly refer to figure 3.1.
The investigation has been carried out in the same way performed for the previous model, using the
numerical eigenvectors and eigenvalues obtained in Chapter 2. For half-filling the spectral function in
the Hartree approximation (the Fock term vanishes) does not exhibit any modifications with respect
to the non-interacting case.
Things get more interesting when moving away from half-filling, where the model is known to share
the features defining a LL. As in the previous model, the departure from the non-interacting case is
found at energies ω = µ and ω = −µ. In figures 3.13 and 3.14 the local spectral function for the first
sites close to the boundary and different interaction potential u is given.
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Figure 3.13: Local spectral function of the Hubbard for the first sites close to the boundary. Here L− 1 = 4000,
η = 0.5, u = 2.
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Figure 3.14: Local spectral function of the Hubbard for the first sites close to the boundary. Here L− 1 = 4000,
η = 0.5, u = 5.
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Figure 3.15: Spectral function for the site j = 1 with L− 1 = 4000, η = 0.5.

We now focus our interest on the spectral function for the site j = 1. This is presented for different
values of u in figure 3.15. For energies approaching from below the chemical potential the spectral
weight first increases as a power law (first plot of figure 3.16). With the same methods employed for
the spinless fermions model the power-law exponent is extracted numerically and it is found to be
−u/(2πvF ), as shown in figure 3.17. The error has been set as an upper bound estimate, combining
the numerical error and the small arbitrariness in the extraction of the exponent from the log-log
derivative plots (figure 3.18).
The Hartree spectral function then exhibits a crossover and a subsequent power-law suppression as
presented in the second plot of figure 3.16. The crossover is known to appear on a scale which decreases
exponentially in −1/u [6]. As the size L− 1 of the systems we are investigating determines the energy
resolution - which is proportional to 1/L - this suffices to explain why the numerical data for small u
do not display the power-law suppression at the chemical potential. In our simulations the power-law
suppression can only be seen for large value of u. In [6] the power-law exponent for this suppression
is extracted numerically for systems of large size (L ∼ 106) and reads

αHB =
u

2πvF
(3.20)

This is the meaningful result to be compared with the exact exponent αB for the power-law suppression
close to the chemical potential obtained with bosonization. From [6] we have

αB =
K−1
ρ − 1

2
(3.21)

where the leading behaviour is given by αB ' u
4πvF

, which is one-half αHB . This discrepancy is
already understood and further details can be found in [6]. For this reason the Hartree data only
show qualitative agreement with DMRG ones, which for the suppression at the chemical potential
are consistent with the exact exponent obtained with bosonization [6]. This is to be contrasted with
the results obtained within the HF approximation for the self-energy for the spinless fermions model,
as the exponent for the suppression at the chemical potential shows quantitative agreement with the
exact boundary exponent.
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Figure 3.16: From top to bottom: power-law increase in the spectral weight at ω = µ, power-law suppression
at ω = µ and power-law suppression at ω = −µ in the Hubbard model, for diverse values of interaction u and
filling factor η, L − 1 = 4000. In every plot α denotes the exponent extracted numerically. For details see the
text.
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Figure 3.18: Numerical procedure to extract the exponent of the power-law behaviour. The log-log derivative of
the spectral function close to the energy value of interest (ω = µ in this plot) is evaluated at the point of least
derivative. Here L− 1 = 4000, η = 1.5 and u = 2.

The same analysis has been performed on the power-law suppression appearing at ω = −µ (third plot
of figure 3.16), and the Hartree boundary exponent has been extracted numerically. In figure 3.19
and 3.20 we report the data for two different filling factors. It is shown that the boundary exponent
is found to be u/2πvF for a large interval in the interaction parameter u.
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Figure 3.19: Power-law exponent for the suppression at ω = −µ. Here L− 1 = 4000, η = 0.5. For details, see
the text.

On the Hartree level the local spectral function displays two important symmetries. The firs one is
shown in figure 3.21. The spectral function for fixed filling and interaction u can be mapped onto
the one for −u and the same filling by taking the mirror image around ω = 0. More formally, the
local spectral function satisfies ρ(ω, η, u) = ρ(−ω, η,−u). The spectral function for negative u is not
investigated any further as the Hubbard model with attractive interaction is not a LL [6].
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Figure 3.20: Power-law exponent for the suppression at ω = −µ. Here L − 1 = 4000, η = 0.75. For details,
see the text.

The second symmetry is shown in figure 3.22. For a fixed value of interaction u the spectral function
for a given η can be mapped onto the one for 2 − η by taking the mirror image around ω = 0. The
function satisfies then ρ(ω, η, u) = ρ(−ω, 2−η, u). This implies that for system below half-filling η < 1,
the increase in the spectral weight preceding the subsequent suppression at the chemical potential for
energies which are occupied in the ground states is more pronounced compared to the analogous weight
for fillings η > 1. This has to be contrasted to bosonization which always gives symmetric behaviour
around the chemical potential [6]. Notice that the two aforementioned symmetries also entail that
the spectral function satisfies ρ(ω, η, u) = ρ(ω, 2 − η,−u). This is to be contrasted with the spinless
fermions model where this property does not hold.
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Figure 3.21: Symmetry of the local spectral function under the mapping u→ −u for j = 1, η = 0.5, L−1 = 4000.
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Figure 3.22: Symmetry of the local spectral function under the mapping η → 2−η for j = 1, u = 4, L−1 = 4000.

Closing consideration

In the last sections of this chapter we characterized the spectral function for both our model as
obtained from the numerical inversion of the HF Hamiltonian. Our results for the energy value ω = µ
are in agreement with the one presented in [6]. The HF approximation for the self-energy already
gives power-law behaviour. This is interesting as the same approximation for the case of PBC does
not capture any of the LL features [6].
The new results involve the analysis of the power-law suppression at ω = −µ for both the models.
Up to this point though, we performed numerical simulations which offered meaningful results, but
no profound physical insight is achieved. To develop a real understanding of what it is happening in
the spectral density function of LLs with boundaries, we have to look at the Hartree-Fock self-energy
in k-space. With some work, analytical results can then be obtained and the physics of the problem
emerges more clearly. This will be the content of the next chapters.
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Chapter 4

Real physics in k-space

“Of course it is happening inside your head, Harry,
but why on earth should that mean that it is not real?”

-Harry Potter and the Deathly Hallows-

4.1 Spectral density from the Green’s function

In order to obtain analytical results we first explore the connection between the spectral density
function and the one-particle retarded Green’s function, defined for two general states |α〉 and |β〉

iGR
αβ(t− t′) = Θ(t− t′) 〈{cα(t), c†β(t′)}〉 (4.1)

where the expectation value is taken on the many body ground states, the curly brackets denotes the
anticommutator and the operators evolve in time according to the Heisenberg picture. Our interest
is on the diagonal term we denote with GR

j , namely for α = β = j. This function is connected to the
spectral density function through the simple relation

ρj(ω) = lim
η→0+

− 1

π
Im
[
GR
j (ω + iη)

]
(4.2)

To see this, we start from the definition of GR as given in (4.1).

iGR
αβ(t− t′) = Θ(t− t′) 〈cj(t)c†j(t

′)〉+ Θ(t− t′) 〈c†j(t
′)cj(t)〉 (4.3)

We focus on the first term in the right hand side of expression (4.3), the other will be totally analogous.
First of all we take advantage of the homogeneity of our system in the time variable, and set t′ = 0.
The evolution in time is governed by the interacting Hamiltonian H, and we get1

iGR
j (t) = Θ(t) 〈eiHtcje−iHtc†j〉

To obtain a spectral representation we introduce the resolution of identity in terms of eigenstates of
the interacting Hamiltonian |φn〉

1For simplicity, the operators at time t = t′ = 0 carries no explicit notation, and ~ is set to 1 as usual.
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iGR
j (t) = Θ(t) 〈φ0|eiHtcj

∑
n

|φn〉 〈φn| e−iHtc†j |φ0〉

=
∑
n

Θ(t) 〈φ0|eiHtcj |φn〉 〈φn| e−iHtc†j |φ0〉

=
∑
n

Θ(t)eiE0te−iEnt 〈φ0|cj |φn〉 〈φn| c†j |φ0〉

=
∑
n

Θ(t)ei(E0−En)t| 〈φn|c†j |φ0〉 |
2

We can now Fourier transform this term. Setting ξ = E0 − En we make use of the identity2

∫ ∞
−∞

dtΘ(t)eiξeiωt =
i

ω + ξ + iη
(4.4)

Similar computations lead to the analogous results for the second term in the anticommutator. We
obtain therefore the spectral representation of the retarded Green’s function we are dealing with

GR
j (ω + iη) =

∑
n

| 〈φn|c†j |φ0〉 |
2

ω + EN0 − E
N+1
n + iη

+
∑
n

| 〈φn|cj |φ0〉 |2

ω + EN−1
n − EN0 + iη

(4.5)

The last step is taking the imaginary part of this expression. Reminding that

lim
η→0+

Im
1

ω + ξ + iη
= lim

η→0+
− πη

(ω + ξ)2 + η2
= −πδ(ω + ξ) (4.6)

it is clear that we exactly obtain our spectral density function

− 1

π
lim
η→0+

Im
[
GR
j (ω + iη)

]
=
∑
n

| 〈φn|c†j |φ0〉 |
2
δ
(
ω+EN0 −EN+1

n

)
+
∑
n

| 〈φn|cj |φ0〉 |2δ
(
ω+EN−1

n −EN0
)

This connection is of extreme importance for it allows us to make use of the powerful machinery of
perturbation theory. Our concern is now to calculate the Green’s function analytically for our systems
within some meaningful approximation. To do this, it is useful to look back at what we have already
performed in the previous chapter.

2For more details see [10].
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4.2 Perturbative approach

4.2.1 First order for the self-energy

As a practical matter, computing the spectral function is nothing but computing the Green’s function
itself. The retarded Green’s function we need is the diagonal matrix element of the operator 3

GR
j (ω + iη) = 〈j|GR(ω + iη)|j〉 = 〈j|

[
(ω + iη)−H

]−1|j〉 (4.7)

Within the HF approximation, the full interacting Hamiltonian is split into the non-interacting part
and the self-energy operator:

HHF = H0 + ΣHF (4.8)

In this case, due to the nontrivial expression of the matrix elements, analytical results are out of reach.
Nevertheless, it has been possible to numerically invert the operator in (4.8). The Green’s function
we need then simply follows by change of basis:

〈j|GR(ω + iη)|j〉 =
∑
nn′

〈j|n〉 〈n′|j〉
[
(ω + iη)−HHF

]−1

n,n′

In the previous chapter we performed the first order perturbation theory in real space and subsequently
proceeded with the numerical diagonalization of the matrix operator. This procedure is referred to as
the first order perturbation for the self-energy.

4.2.2 First order for the Green’s function

To be able to obtain analytical results we must perform an expansion to the first order in the Green’s
function. We focus on the Green’s operator G

G =
[
ω −H0 − ΣHF

]−1

=
[(
I− ΣHF(ω −H0)−1)(ω −H0

)]−1

=
[
ω −H0

]−1[I− ΣHF(ω −H0)−1]−1

Introducing the non interacting Green’s operator

G0 =
[
(ω −H0

]−1
(4.9)

one obtains

G = G0

[
I− ΣHFG0

]−1
(4.10)

3When a scalar quantity such as ω + iη is added to an operator as H, the scalar is implicitly multiplied by the the
identity operator.
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Formally one can write

G =
G0

I− ΣHFG0
=

I
G−1

0 − ΣHF
(4.11)

Indeed what we obtained is the famous Dyson equation. At this point we expand the term in the
square brackets in (4.10) and truncate the expansion to the first order. Clearly the feasibility of this
procedure relies on the condition of a small expansion parameter. We will return on this point later
in the text. We have then

G = G0

[
I− ΣHFG0

]−1 ' G0

[
I + ΣHFG0

]
= G0 +G0ΣHFG0 (4.12)

To perform analytically this expansion, we project onto the basis set |n〉 whereG0 is diagonal, obtaining

[
G(ω + iη)

]
nn′ =

δnn′

ω + iη − εn
+
∑
mm′

δnm
ω + iη − εn

〈m|ΣHF|m′〉 δm′n′

ω + iη − εn′
(4.13)

[
G(ω + iη)

]
nn′ =

δnn′

ω + iη − εn
+

ΣHF
nn′(

ω + iη − εn
)(
ω + iη − εn′

) (4.14)

Where we now denote the single-particle dispersion relation with εn. Once we obtain this, the spectral
function follows easily through a change of basis and the relation in (4.2). The crucial point then,
will be the analysis of the results this approach can offer and its consistency with the first order
perturbation for the self-energy.
As it is clear from equation (4.13), our main task now turns out to be the analytical computation of
the self-energy matrix elements in k-space. As a first idea, one can think of transforming the real space
matrix elements we worked out in Chapter 2 into k-space. Again, due to the nontrivial behaviour
in real space, this path is not feasible. Conversely, we need to represent the original interacting
Hamiltonian given in Chapter 1 in k-space, and then to perform the first order perturbation theory
for the interacting part.
Contrary to what we have done in the previous chapters, we start our analysis with the Hubbard model.
In fact, the nature of the onsite interaction employed in this model yields to a simpler structure for
the HF self-energy when compared to the spinless fermions model. Moreover, the Fock contribution
vanishes for this model and we only need to evaluate the Hartree term. In this way the physical
meaning emerges in a more elegant way and we will be able to point out the main source leading
to the power-law suppression in the local density of state. It will then serve as a solid ground to
successively perform the same procedure for the spinless fermions model, where the structure of the
HF self-energy operator in k-space is more complicated. In the rest of this chapter we are going to
compute and analyse this structure for both models, while underlining similarities and differences.

4.3 Hubbard model

4.3.1 Self-energy operator in k-space

As mentioned above, we now face the task of representing the Hubbard Hamiltonian in the basis of
non-interacting eigenstates. With the same notation we already used we have

H = −2t
∑
σ

L−1∑
n=1

cos
(π
L
n
)
c†nσcnσ +

4u

L2

∑
n1n2n3n4

∑
j

sin(k1j) sin(k2j) sin(k3j) sin(k4j)c
†
n1↑c

†
n2↓cn4↓cn3↑
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where ki = π
Lni. We now focus on the interaction term in k-space

Vk1k2k3k4 =
4u

L2

∑
j

sin(k1j) sin(k2j) sin(k3j) sin(k4j) (4.15)

To tackle this computation we first make use of Werner formula

sin(x) sin(y) =
1

2
[cos(x− y) + cos(x+ y)]

for generic x and y. Plugging this into equation (4.15) and working out some algebra one gets:

Vk1k2k3k4 =
u

L2

L−1∑
j=1

[
cos
(
(k1 − k3)j

)
cos
(
(k2 − k4)j

)
+ cos

(
(k1 + k3)j

)
cos
(
(k2 + k4)j

)
− cos

(
(k1 − k3)j

)
cos
(
(k2 + k4)j

)
− cos

(
(k1 + k3)j

)
cos
(
(k2 − k4)j

)]
We now define the auxiliary function:

f(q, q′) =
u

L

L−1∑
j=1

cos(q) cos(q′) =
u

4L

L−1∑
j=1

[
ei(q+q

′)j + ei(q−q
′)j + c.c.

]
(4.16)

which will be extremely helpful in the following. Let us perform the sum over the index j to give this
function a more attractive look

f(q, q′) =
u

4L

[
− 4 + 2Lδq,q′ + 2Lδq,−q′ + (1− δq,q′)

1− ei(q−q′)L

1− ei(q−q′)
+ (1− δq,−q′)

1− ei(q+q′)L

1− ei(q+q′
+ c.c.

]

=
u

4L

[
− 4 + 2Lδq,q′ + 2Lδq,−q′ + (1− δq,q′)

1− (−1)n−n
′

1− ei(q−q′)
+ (1− δq,−q′)

1− (−1)n+n′

1− ei(q+q′
+ c.c.

]

= −u
L

+
u

2

(
δ2π
q,q′ + δ2π

q,−q′
)

+
u

4L

[(
1− δ2π

q,q′
)(

1− (−1)n−n
′)

+
(
1− δ2π

q,−q′
)(

1− (−1)n+n′)]
In the last line we explicitly used the superscript 2π on the δ-function to denote its periodicity, namely

δ2π
q,q′ = δq,q+2πm

with m ∈ Z. It is clear that the non-δ terms vanish when taking the thermodynamic limit and the
expression reduces to

f(q, q′) =
u

2

(
δ2π
q,−q′ + δ2π

q,q′
)

(4.17)

so that from (4.16) our interaction matrix element takes the docile form

Vk1k2k3k4 =
1

L

[
f(k1−k3, k2−k4)+f(k1 +k3, k2 +k4)−f(k1−k3, k2 +k4)−f(k1 +k3, k2−k4)

]
(4.18)
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For the upcoming computations it is useful to ”label” the terms in (4.18) as

Vk1k2k3k4 =
(
V1 + V2

)
+
(
V3 + V4

)
+
(
V5 + V6

)
+
(
V7 + V8

)
(4.19)

where the correspondence is clear when plugging (4.17) into (4.18) with the given order.

4.3.2 Hartree approximation in k-space

We succeeded in representing the interacting Hamiltonian in the basis |n〉. The first order perturbation
theory requires us to work out 8 different terms, 2 δ-functions for every f(q, q′), as in (4.19). The
Hartree approximation gives for the interacting Hamiltonian

HHF =
∑

n1n2n3n4

Vk1k2k3k4c
†
n1↑ 〈c

†
n2↓cn4↓〉 cn3↑ +

∑
n1n2n3n4

Vk1k2k3k4c
†
n2↓ 〈c

†
n1↑cn3↑〉 cn4↓ (4.20)

Since the interaction is spin-independent, from now on we only focus on the self-energy matrix for one
single spin population without further notation, the other one being perfectly identical. Moreover,
given the nontrivial nature of the interaction term, the first order perturbation is better studied with
the help of diagrammatic language. We start out by evaluating these terms for a system below half-
filling. Within the present notation, in the matrix representation for the self-energy the rows are
labelled by n1 while the columns by n3, as it can be understood from figure 4.1.

Nk3 Nk4

Nk1 Nk2

k

k3

k1

N

N

N

Figure 4.1: Feynman diagram for the Hartree term in k-space.

Let us start with the first f function in the expression (4.18). By imposing the interaction condition
we get

k1 − k3 = −(k2 − k4) + 2πm

The Hartree approximation implies k2 = k4 = k so that

k1 − k3 = +2πm

we then have the cases:

m = 0 =⇒ k1 = k3

m = ±1 =⇒ k1 = k3 ± 2π

=⇒ n1 = n3 ± 2L
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The umklapp contribution in the second case is not possible since n1 is not allowed to take values
bigger than 2L. We are left with the diagonal term δk1k3 whose value is the sum of a simple constant
from zero to NF . All together this term yields

V1 =
u

2L
NF (4.21)

From the second δ-function we have

k1 − k3 = (k2 − k4) + 2πm

which takes no big effort to see it gives an identical result. The diagonal matrix elements in our
Hartree self-energy matrix read:

ΣH
kk = V1 + V2 = u

NF

L
(4.22)

We proceed for the second f function with the same order.

k1 + k3 = −(k2 + k4) + 2πm = −2k + 2πm =⇒ k = −k1 + k3

2
+ πm

However, k must satisfy

0 < k ≤ kF =⇒ 0 < −(n1 + n3) + 2mL ≤ 2NF

We analyse the case for different values of m:

m = 0 =⇒ n1 + n3 < 0→ impossible!

m = 1 =⇒ 0 < −(n1 + n3) + 2L ≤ 2NF

=⇒ (n1 + n3) > 0→ ∀n1, n3 ∧ n1 ≥ 2(L−NF )− n3

m = 2 =⇒ n1 + n3 ≥ 4L− 2NF with Nmax
F = L− 1

=⇒ n1 ≥ −n3 + 2(L− 1)

For negative values of m one sees that there are no possible cases. In this sector of the self-energy the
matrix elements are simply

V3 =
u

2L
(4.23)

The structure of this sector is illustrated in figure 4.2. Notice that this contribution is due to the
umklapp scattering m = 1. The second δ-function gives:

k1 + k3 = k2 + k4 + 2π = 2k + 2πm =⇒ k =
k1 + k3

2
− πm
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L− 2NF + 1

L− 2NF + 1

V3

Figure 4.2: Sector 3 of the self-energy matrix operator

The same constrains on k lead to

m = 0 =⇒ n1 > n3 ∧ n1 ≤ −n3 + 2NF

m = 1 =⇒ n1 + n3 > 2L→ impossible!

m = −1 =⇒ n1 + n3 > −2L→ ∀n1, n3 ∧ n1 ≤ −n3 + 2(L−NF )

Compared to the previous case, we are now selecting the symmetric self-energy sector with respect to
the antidiagonal. Here again the matrix elements are constant and equal to

V4 =
u

2L
(4.24)

2NF − 1

2NF − 1

V4

Figure 4.3: Sector 4 of the self-energy matrix operator

The next term in the interaction yields

k1 − k3 = −(k2 + k4) + 2πm = −2k + 2πm =⇒ k =
k3 − k1

2
+ πm

As before, k is constrained between 0 and kF . The only allowed cases are
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m = 0 =⇒ n1 < n3 ∧ n1 ≥ n3 − 2NF

m = 1 =⇒ n1 > n3 + 2L→ ∀ n1, n3 ∧ n1 ≥ n3 + 2(L−NF )

2

2NF + 1

L− 2NF − 1 L− 2

V5

Figure 4.4: Sector 5 of the self-energy matrix operator

The sector obtained in this way is illustrated in figure 4.4. The matrix elements again are constant
and equal to

V5 = − u

2L
(4.25)

The next term leads to a symmetric sector with respect to the principle diagonal and it is shown in
figure 4.5 . We have in fact

k1 − k3 = (k2 + k4) + 2πm = 2k + 2πm =⇒ k =
k1 − k3

2
− πm

m = 0 =⇒ n1 > n3 ∧ n1 ≤ n3 + 2NF

m = 1 =⇒ n1 > n3− 2L→ ∀ n1, n3 ∧ n1 ≤ n3 − 2(L−NF )

As before, the value of the matrix elements reads

V6 = − u

2L
(4.26)

Furthermore, the last two terms coming from the fourth f function in (4.18) do not contribute to the
structure of the self-energy matrix.

k1 + k3 = −(k2 − k4) + 2πm = +2πm
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2 2NF + 1

L− 2NF + 1

L− 2

V6

Figure 4.5: Sector 6 of the self-energy matrix operator

m = 0 =⇒ n1 = −n3 → impossible!

m = 1 =⇒ n1 > −n3 + 2L→ impossible!

L− 2NF

L− 2NF

2NF − 1

2NF − 1

− u
2L

Figure 4.6: Structure of the Hartree self-energy matrix in k-space for the Hubbard model with η < 1.

One can easily observe that the same result holds for the last term V8. Indeed we succeeded in
computing all the matrix elements of the HF self-energy. Putting everything together we can finally
have a look at the structure of the self-energy in k-space in figure 4.6.
As it is clear from our computation, we notice that only the matrix elements guaranteeing an even
value for n1 ± n3 are non vanishing in the coloured sectors. This is due to the parity symmetry with
respect to the middle of the chain in OBC. We also observe that the Hartree self-energy is real and
ω-independent. The nontrivial structure is due to the broken translational invariance. In the PBC
case in fact, the HF self-energy matrix is diagonal thanks to momentum conservation. This can only
lead to finite shifts in the chemical potential µ and the Fermi velocity vF [6].
The peculiarity lies in the fact that the self-energy exhibits a step function crossing the diagonal both
in (kF , kF ) and in (π− kF , π− kF ). The diagonal contribution can only lead to a shift in the chemical
potential δµ due to the interaction. For our purpose therefore, we can always work with a self-energy
matrix where the diagonal contribution is subtracted, from now on simply denoted by ΣH. For the
low energy sector then one can write:
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ΣH
kk′ ' −

u

2L
Θ(k + k′ − 2kF ) (4.27)

and analogously for the ”high energy” sector

ΣH
kk′ ' +

u

2L
Θ(k + k′ − 2kF )− u

L
(4.28)

One could argue that this structure is responsible for the dips and peaks we observed in the spectral
function, and this turns out to be exactly the case. It will be shown that this leads to the emergence
of the power-law behaviour at ω = µ and ω = −µ.

Above half-filling

We now need to perform the same analysis for the matrix elements when kF >
π
2 . This will allow us

have complete knowledge of the self-energy structure. The computations are the same and the values
of the matrix elements in each sector are left untouched. However, the sectors we will end up with may
differ. The combination of new matrix sectors leads therefore to a different structure. It is easy to see
that the first two terms lead to identical diagonal matrix elements. We thus look at the off-diagonal
terms with the same order. For V3 nothing is changed, but the self-energy sector is illustrated in figure
4.7. Comparing this with figure 4.2 we see this is nothing but the previous sector for m = 1 which has
been dragged and stretched back due to a different value of NF . In a similar fashion the same holds
for V4 where the self-energy sector is pictured in figure 4.8.

2(L−NF ) + 1

2(L−NF ) + 1

V3

Figure 4.7: Sector 3 for filling factor η > 1

2NF − L+ 1

2NF − L+ 1

V4

Figure 4.8: Sector 4 for filling factor η > 1
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For the negative terms in 4.18 we have:

m = 0 =⇒ n1 < n3 ∧ n1 ≥ n3 − 2NF

m = 1 =⇒ n1 < n3 + 2L→ ∀ n1, n3 ∧ n1 ≥ n3 + 2(L−NF )

Reminding that n3−2NF is now negative, the case m = 0 reduces to the condition n1 < n3 describing
the whole lower triangular part of the matrix. Comparing this with figure 4.4 we see that the same
sector has stretched down to the low left corner of the matrix, and a new available sector appeared as
shown in figure 4.9. Analogously the sector explored by V6 is symmetric and illustrated in figure 4.10.
Finally, The last two terms carry no contributions as happened in the first case.

2(L−NF ) + 1

2NF − L− 1 + 1

V5

Figure 4.9: Sector 5 for filling factor η > 1

2(L−NF ) + 1

2NF − L− 1

V6

Figure 4.10: Sector 6 for filling factor η > 1

The overall picture of the self energy for a filling factor η > 1 is given in figure 4.11. The combination of
different sectors leads again to a step function. The height of the steps in (kF , kF ) and (π−kF , π−kF )
are however identical to the previous situation, respectively negative and positive.
We can now understand the symmetries of the spectral function discussed in section 3.3. Under the
mapping η → 2− η the two dimensional step function in ΣH swaps its sign. As in our approximation
the height of the step is proportional to u, we could recover an identical self-energy structure by
mapping u→ −u. More formally, the Hartree self-energy of the Hubbard model satisfies

ΣH
kk′(η, u) = ΣH

kk′(2− η,−u) (4.29)

This leads to the symmetries of the local spectral function presented in section 3.3.
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2NF − L

2(L−NF )

2NF − L

2(L−NF )

u
2L

Figure 4.11: Structure of the Hartree self-energy matrix in k-space for the Hubbard model with η > 1

4.4 Back to spinless fermions

4.4.1 Self-energy in k-space

Moving back to our spinless fermions model, we want to represent the interaction term in k-space.
The computation is similar to what we have done for the Hubbard model. In this case we have to
evaluate

Vk1k2k3k4 =
4v

L2

∑
j

sin(k1j) sin(k3j) sin
[
k2(j + 1)

]
sin
[
k4(j + 1)

]
(4.30)

As for the previous model, the last expression can be recast in the more tractable form

Vk1k2k3k4 =
1

L

[
g(k1−k3, k2−k4)+g(k1 +k3, k2 +k4)−g(k1−k3, k2 +k4)−g(k1 +k3, k2−k4)

]
(4.31)

where now the auxiliary function g reads:

g(q, q′) =
v

L

L−1∑
j=1

cos(qj) cos
[
q′(j + 1)

]
(4.32)

The structure of the computation is similar to what we have already performed. We have 4

4Here the starting index is stretched down to j = 0 and we neglect the resulting constant term, since it will suffer the
limit L→∞ and abandon the scene.
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g(q, q′)
4L

v
=

L−1∑
j=1

[
ei(q+q

′)jeiq
′
+ ei(q−q

′)je−iq
′
+ c.c.

]
= eiq

′
L−1∑
j=1

ei(q+q
′)j + e−iq

′
L−1∑
j=1

ei(q−q
′)j + c.c.

= eiq
′

[
δq,−q′L+

(
1− δq,−q′

)1− (−1)n+n′

1− ei(q+q′)

]
+ e−iq

′

[
δq,q′L+

(
1− δq,q′

)1− (−1)n−n
′

1− ei(q−q′)

]
+ c.c.

Focusing on the first term and its complex conjugate for simplicity, while setting α = 1− (−1)n+n′
:

eiq
′

[
δq,−q′L+

(
1− δq,−q′

)1− (−1)n+n′

1− ei(q+q′)

]
+ c.c.

=
(
eiq

′
+ e−iq

′)
δq,−q′L+ α

(
1− δq,−q′

)eiq′(1− (e−i(q+q
′)) + e−iq

′
(1− (e+i(q+q′))

2− 2 cos(q + q′)

=
(
2 cos q′

)
δq,−q′L+ α

(
1− δq,−q′

) 2 cos q′ − 2 cos q

2− 2 cos(q + q′)

=
(
2 cos q′

)
δq,−q′L+ α

(
1− δq,−q′

) cos q′ − cos q

1− cos(q + q′)

Restoring everything we finally have

g(q, q′) =
v

2
cos(q′)

[
δq,−q′ + δq,+q′

]
+

1

L
h(q, q′) (4.33)

where h(q, q′) contains the non-δ terms:

h(q, q′) =
v

4

cos(q′) + cos(q)

1− cos(q + q′)

[(
1− δq,−q′

)(
1− (−1)n+n′)

+
(
1− δq,q′

)(
1− (−1)n−n

′)]
(4.34)

As before, the contribution in the interaction given by the terms in h(q, q′) is negligible when taking
the thermodynamic limit and we are left with

g(q, q′) =
v

2
cos q′

(
δq,−q′ + δq,q′

)
(4.35)

where the 2π periodicity is now implicit in the notation. This interaction resembles the one we have
already found in the Hubbard model, except from the factor cos q′, which is anything but innocent.

4.4.2 Hartree-Fock approximation in k-space

Knowing the expression for the interaction term in k-space we are ready to perform the first order
perturbation. In this model though, both the direct and exchange terms are present. Keeping in mind
the knowledge we gained working with the Hubbard model, we start from the Hartree contribution.
The matrix sectors involved for the 8 different terms are exactly the same. However, the value of the
matrix elements in a specific sector is not anymore constant, since it picks up a factor cos(q′). As we
have seen, the first two terms lead to the matrix elements on the diagonal. In both cases we have

q′ = k2 − k4
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The Hartree approximation constrains k2 = k4 = k so that

q′ = 0 =⇒ V1 = V2 =
vNF

2L
cos 0 =

vNF

2L

The Hartree diagonal matrix elements are constant and read

ΣH
kk = V1 + V2 =

vNF

L
(4.36)

More interesting are the next cases 3 and 4. We set k2 = k4 = k obtaining

q′ = 2k with k = −k1 + k3

2
+ πm

Thanks to the parity and periodicity of the cosine the matrix element is

V3 = V4 =
v

2L
cos 2k =

v

2L
cos(k1 + k3) (4.37)

The same holds for the sector 4. The situation is sketched in figure 4.12.

L− 2NF + 1

L− 2NF + 1

V3

2NF − 1

2NF − 1

V4

Figure 4.12: Sectors 3 and 4 for the self-energy matrix.

2

2NF + 1

L− 2NF − 1 L− 2

V5

2 2NF + 1

L− 2NF + 1

L− 2

V6

Figure 4.13: Sectors 5 and 6 of the self-energy matrix.

The terms 5 and 6 lead to:
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q′ = 2k = k1 − k3 + 2πm

In figure 4.13 we see the sector 5 and 6 with the matrix elements

V5 = V6 = − v

2L
cos 2k = − v

2L
cos(k1 − k3) (4.38)

Nk1 Nk

Nk′ Nk2

Figure 4.14: Relabelling of the interaction diagram in k-space.

Indeed the last terms 7 and 8 carry no contribution to the self-energy. As mentioned above, the work
we have done on the Hubbard model allowed us to go through this Hartree computation for the spinless
fermions model more quickly, thanks to the identical structure of the self-energy sectors involved.
We now evaluate the Fock contribution, working out the terms in the same order. Before setting off
however, a slight change in the notation for the interaction is preferable, as shown in figure 4.14. In
this way the incoming and outcoming k states are labelled k1 and k2 respectively. The exchange term
force k = k′ and q′ = k2 − k. 5

Nk1 Nk

Nk′ Nk2

k1

k2

N

I
kN

Figure 4.15: Feynman diagram for the Fock term in k-space.

The first δ-function gives:

k − k1 = −(k2 − k) + 2πm =⇒ k1 = k2

For the diagonal term then we have to compute

V1 =
v

2L

NF∑
n=1

cos
(
k2 −

π

L
n
)

=
v

2L
cos k2

NF∑
n=1

cos
(π
L
n
)

+
v

2L

NF∑
n=1

sin
(π
L
n
)

(4.39)

The sum over cosine functions leads to

5Although it is not very common, for the exchange term we make use of the Feynman diagram as pictured in the
book of Mattuck [12]. The reasons are way too many to fit in a footnote and we refer directly to that masterpiece of
didactics.
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NF∑
n=1

cos
(π
L
n
)

=
1

2

[
− 1 +

1− ei
(
π
L

(NF+1)
)

1− ei
π
L

+ c.c.

]

=
1

2

[
− 2 +

1− e−i
π
L − e+i π

L
(NF+1) + e+i π

L
NF + c.c.

2− 2 cos
(
π
L

) ]

=
1

2

[
− 1 +

cos
(
π
LNF

)
− cos

(
π
L(NF + 1)

)
1− cos

(
π
L

) ]

With the help of prosthaphaeresis formulae we simplify this expression to

NF∑
n=1

cos
(π
L
n
)

=
1

2

[
− 1 +

2 sin
(
π

2L(2NF + 1)
)

sin( π
2L)

2 sin2( π
2L)

]
=

1

2

[
− 1 +

sin
(
π

2L(2NF + 1)
)

sin( π
2L)

]

In the same way we evaluate the sum of sine functions, where we are allowed to extend the index
down to n = 0

NF∑
n=0

sin
(π
L
n
)

=
1

2

[
sin
(
π
L

)
+ sin

(
π
LNF

)
− sin

(
π
L(NF + 1)

)
2 sin2

(
π

2L

) ]

=
1

2

[
2 sin

(
π

2L

)
cos
(
π

2L

)
+ 2 cos

(
π

2L(NF + 1)
)

sin
(
− π

2L

)
2 sin2

(
π

2L

) ]

=
cos
(
π

2L

)
− cos

(
π

2L(NF + 1)
)

2 sin
(
π

2L

)
=

2 sin
(
π

2L(NF + 1)
)

sin
(
π

2L

)
2 sin

(
π

2L

)
= sin

[ π
2L

(NF + 1)
]

Plugging the last two results into equation (4.39), one has the first diagonal contribution. As for
the Hartree case, we will see that another interaction term will play a role on the diagonal matrix
elements. Proceeding with the usual order we now have

k − k1 = k2 − k + 2πm =⇒ k =
k1 + k2

2
+ πm

The only available m is here m = 0, defining therefore the sector sketched in figure 4.16. Reminding
that now q′ = k2−k1

2 , the matrix elements read6

V2 =
v

2L
cos
(k2 − k1

2

)
(4.40)

In a similar way for the third contribution we have

k = −
(k1 + k2

2

)
+ πm

6We recall the fact that we are still not taking into account the overall minus sign coming from the exchange operation.
This will be done once we gain complete knowledge about the self energy matrix elements.
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The case with m = 0 is not possible, while the umklapp contribution m = 1 crop out the sector 3 in
figure 4.16. Since q′ = k2 + k + π in this case, the matrix elements read

V3 =
v

2L
cos
(k2 − k1

2
+ π

)
= − v

2L
cos
(k2 − k1

2

)
(4.41)

2NF − 1

2NF − 1

V2

L− 2NF + 1

L− 2NF + 1

V3

Figure 4.16: Sector 2 and 3 in the Fock self-energy matrix.

The fourth contribution is now setting values on the diagonal. We have in fact:

k + k1 = k2 + k + 2πm =⇒ k1 = k2

since m = 0 is the only acceptable case. The value of k is left to run free, leaving us to perform the
sum

V4 =
v

2L

NF∑
n=1

cos
(
k2 +

π

L
n
)

=
v

2L
cos k2

NF∑
n=1

cos
(π
L
n
)
− v

2L

NF∑
n=1

sin
(π
L
n
)

(4.42)

The first part is identical to the one in V1, while the second carries opposite sign and thus cancels out
when V1 and V4 are added together. The constant term coming from the sum of cosines vanishes in
the thermodynamic limit and we finally have the expression for the diagonal Fock term

ΣF
kk =

v

2L
cos k2

sin
(
π

2L(2NF + 1)
)

sin( π
2L)

= cos kt0 (4.43)

where we recover the expression of t0, the homogeneous hopping term we found in Chapter 2. Moving
on to the fifth contribution we find:

k − k1 = −(k2 + k) + 2πm =⇒ k =
k1 − k2

2
+ πm

The only possible case is here with m = 0 defining sector 5 in figure 4.17. Since q′ = k2 + k = k1+k2
2

the matrix elements read

V5 = − v

2L
cos
(k1 + k2

2

)
(4.44)

One can easily see that in the Fock case the terms 6 and 7 give no contribution in the same way the
terms 7 and 8 did in the Hartree case. The last term then gives us
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2

2NF + 1

L− 2NF − 1 L− 2

V5

2 2NF + 1

L− 2NF + 1

L− 2

V8

Figure 4.17: Sectors 5 and 6 of the Fock self-energy matrix.

k + k1 = k2 − k + 2πm =⇒ k =
k2 − k1

2
+ πm

Again m = 0 is the value defining the sector 8 and being q′ = k2 − k = k1+k2
2 we have

V8 = − v

2L
cos
(k1 + k2

2

)
(4.45)

Self-energy matrix

We are finally able to put together every term we computed, in order to have a look at the whole
structure of the self-energy matrix operator for η < 1

2 . We add up every term within its right sector
and we end up with the self-energy matrix pictured in figure 4.18. As in the previous case, shift in the
chemical potential due to the interaction has already been subtracted, and only the matrix elements
guaranteeing an even value of n± n′ in the coloured sectors are non vanishing. We have

A = − v

2L
cos(k1 − k2) +

v

2L
cos
(k1 + k2

2

)
(4.46)

B1 = A− v

2L
cos
(k2 − k1

2

)
+

v

2L
cos(k1 + k2) (4.47)

B2 = A+
v

2L
cos
(k2 − k1

2

)
+

v

2L
cos(k1 + k2) (4.48)

With this information we can have an insight on some features. A sharp discontinuity is still present
along the lines γ1 : k1 + k2 = 2kF and γ2 : k1 + k2 = 2(π − kF ). The height of the step along γ1 is

∆1 =
[
A−B1

]∣∣∣
γ1

=
v

2L

[
cos(kF − k1)− cos(2kF )

]
(4.49)

while along γ2 we have

∆2 =
[
B2 −A

]∣∣∣
γ2

=
v

2L

[
cos(π − kF − k1) + cos(2kF )

]
(4.50)
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Figure 4.18: Self-energy matrix in the Hartree-Fock approximation for the spinless fermions model with η < 1
2

Indeed the last expressions can be simplified and we observe that

∆1 =
v

2L

[
cos(kF ) cos(k1) + sin(kF ) sin(k1)− cos(2kF )

]
(4.51)

∆2 =
v

2L

[
− cos(kF ) cos(k1) + sin(kF ) sin(k1) + cos(2kF )

]
(4.52)

∆2 = −∆1 +
v

L
sin(kF ) sin(k1)

We see from equation (4.50) that the height of the step function along γ2 when evaluated in k1 = π−kF
shrinks to zero as we approach half filling, kF → π

2 . Since its value is responsible for the power-law
suppression in ω = −µ, we conclude this result is certainly consistent with the characterization of
the spectral function we performed in Chapter 3. Notice the difference with respect to the Hubbard
model: in this case the height of one step cannot be mapped onto the other one by simply swapping
v to −v. This concludes the analysis for the case η < 1

2 .
This whole load of computations has been performed carefully also for the case η > 1

2 . As expected,
it has been found that the sharp discontinuity along γ1 slides towards the lower right corner of the
matrix while the k-dependent height ∆1 is left untouched under the mapping η → 1 − η. The same
fate is shared by the other discontinuity: as γ2 moves upwards the term ∆2 fades away when η = 0.5
but emerges with an identical value for η > 0.5.
In the next chapter we are going to employ this knowledge to extract information on the spectral
density function. We will see that the first order perturbation theory is indeed capable of providing
meaningful analytical results, consistently with what has been found numerically.
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Chapter 5

First order perturbation for G

”And every song that I’ve ever heard
Is playing at the same time, it’s absurd”

-Everything now, Arcade Fire-

As we understood in the previous chapter, knowing the exact structure of the self-energy operator in
k-space allows us to extract analytical information about the spectral function through the relation

[
G(ω + iη)

]
nn′ =

δnn′

ω + iη + εn
+

ΣHF
nn′(

ω + iη − εn
)(
ω + iη − εn′

) (5.1)

It is therefore natural to define the quantity

ρ1(j, ω + iη) = − 1

π
lim
η→0+

Im

[∑
nn′

1

ω + iη − εn
1

ω + iη − εn′
〈j|n〉 〈n′|j〉ΣHF

nn′(ω + iη)

]
(5.2)

where as usual εn is the single-particle dispersion relation. This quantity denotes the first perturbative
correction to the non-interacting local density of states ρ0, already evaluated in Chapter 3. Before
we dive into the maths for both models though, some considerations are needed on how to properly
perform this computation.

5.1 Hubbard model

5.1.1 Effective model

Let us have a look at the terms involved in the sum in (5.2). As we have seen the structure of the
self-energy is nontrivial, due to the presence of the boundaries in the system. For their nature, the
other terms in the expression do not seem to make the task easier. As it is, there is no possibility to
directly tackle the problem and evaluate this sum. Luckily, we also have no need to do it.
We follow the approach delineated in [6] and introduce an effective model. For our purpose, we consider
the Hartree Hamiltonian where the diagonal contribution is subtracted, i.e. we work with

Σ̃H = ΣH − δµI (5.3)
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where δµ denotes the shift in the chemical potential due to the interaction. We start by focusing on
the behaviour of the spectral function close to the chemical at ω = µ. The computations will show
that the appearance of a logarithmic divergence at the chemical potential in first order perturbation
theory for the Green’s function comes from the sharp step function crossing the diagonal in (NF , NF ).
Without modifying the low-energy properties then, the space of one-particle states can be shrunk to
n ∈ {1, 2, ..2NF }.
Also, for large systems, i.e L → ∞, it is meaningful to work with a ”coarse grained” version of Σ̃H,
where all the matrix elements within the coloured area of figure 3.9 are non vanishing, but they have
only half the size of the original ones. In this way, the problem of considering only even n ± n′ is
overcome. The effective self-energy for one spin population then reads

Σeff
nn′ = − u

4L
Θ(n+ n′ − 2NF ). (5.4)

In order to obtain a continuous spectral function, we work in the thermodynamic limit, with non-
interacting one particle eigenstates

φkn(j) = 〈j|φkn〉 =

√
2

L
sin(knj)

and

∑
n

→ L

π

∫
dk

As we are interested in the spectral weight at the chemical potential, the one particle dispersion
relation can be linearised around kF

ε(k) = vF (k − kF ) + ε(kF ) = vF (k − kF ) + µ (5.5)

where µ denotes the chemical potential, heavily simplifying the computation we ought to perform.
The old problem can now been recast in the more tractable form

ρ1(j, ω+iη) = − 1

π
lim
η→0+

Im

[
− u

4L

2

L

L2

π2

∫ 2kF

0
dk

∫ 2kF

0
dk′

Θ(k + k′ − 2kF )

ω + iη − vF (k − kF )− µ
sin(kj) sin(k′j)

ω + iη − vF (k′ − kF )− µ

]
(5.6)

Of course the validity of this effective model is to be discussed once we see what result it can offer.
The effective model we are working with can be pictured as in figure 5.1.

5.1.2 Analytical result

We start by evaluating the term:

G1(j, ω + iη) =− u

4

2

π2

∫ 2kF

0
dk

∫ 2kF

0
dk′

Θ(k + k′ − 2NF )

ω + iη − µ− vF (k − kF )

sin(kj) sin(k′j)

ω − µ− vF (k′ − kF )

= − u

2π2

∫ 2kF

0
dk

sin(kj)

ω + iη − µ− vF (k − kF )

∫ 2kF

2kF−k
dk′

sin(k′j)

ω + iη − µ− vF (k′ − kF )︸ ︷︷ ︸
I
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− u
4L

2NF

2NF

Figure 5.1: Effective model for the Hartree self-energy in Hubbard model.

and we first focus on the integral I. Since our interest is on the spectral weight at the chemical
potential, we can approximate the sine function with its value in k′ = kF , and let it slide out of the
integral

I =

∫ 2kF

2kF−k
dk′ sin(k′j)[ω − µ− vF (k′ − kF )

]−1

= sin(kF j)

∫ 2kF

2kF−k
dk′[ω − µ− vF (k′ − kF )

]−1

= −sin(kF j)

vF
log |ω − µ− vF (k′ − kF )|

∣∣∣2kF
2kF−k

= −sin(kF j)

vF

[
log |ω − µ− vFkF | − log |ω − µ− vFkF + vFk|

]
For ω → µ the first term in the last expression is constant. The second one leads to the aforemen-
tioned logarithmic divergence. Therefore, we can already neglect the first term and proceed with the
computation. For the same reason we stated above, the second sine function is taken to be constant
and we are left with

G1(j, ω + iη) = − u

2π2vF
sin2(kF j)

∫ 2kF

0
dk

1

ω + iη − µ− vF (k − kF )
log |ω + iη − µ− vFkF + vFk|

We now take the limit of the imaginary part to extract the Dirac δ-function

ρ1(j, ω) = − u

2π2vF
sin2(kF j)

∫ 2kF

0
dkδ
(
ω −

[
µ+ vF (k − kF )

])
log |ω − µ− vFkF + vFk|

ρ1(j, ω) = − u

2π2vF
sin2(kF j)

1∣∣ dε
dk

∣∣
k0

∫ 2kF

0
dkδ(k − k0) log |ω − µ− vFkF + vFk|

= − u

2π2vF
sin2(kF j)

1∣∣ dε
dk

∣∣
k0

log |ω − µ− vFkF + vFk0(ω)|

where k0(ω) is given by

k0 = kF +
(ω − µ)

vF
(5.7)
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In our linearised model, the derivative appearing in the denominator is exactly vF , leaving us with

ρ1(j, ω) = − u

2π2v2
F

sin2(kF j) log |2(ω − µ)| (5.8)

ρ1(j, ω) ' − u

2π2v2
F

sin2(kF j) log |ω − µ| (5.9)

where in the last step we neglected a regular term. It is easy to see that the previous constant term
we neglected during the computation would have led to a regular term, negligible when compared to
the divergent one. To build up the total spectral density function we can simply take the last term
twice, thanks to the symmetry in the spin variable. From Chapter 3 we now recall the relation

ρ0(j, ω ' µ) =
2 sin2(kF j)

πvF
(5.10)

for the non interacting spectral density function. Moreover, being mainly interested in the site closest
to the boundary j = 1, this expression simplifies further to

ρ0(1, ω ' µ) =
2 sin2(kF )

πvF
=

vF
2πt2

(5.11)

and we can recast the the spectral function ρ = ρ0 + ρ1 in a more convenient form

ρ(1, ω ' µ) = ρ0(1, ω ' µ)

[
1− u

2πvF
log |ω − µ|

]
+ regular terms (5.12)

5.1.3 Seizing the meaning of the divergence

In the first order perturbation theory for the Green’s function then, the spectral density function
presents a logarithmic divergence when approaching the chemical potential. The divergence is an
artefact emerging in the perturbative approach to the matrix inversion, and it is not due to a singular
frequency behaviour of ΣH . We thus expect that this term and further divergent ones in the pertur-
bative expansion can be summed to produce the power-law behaviour. For ω → µ in fact, the spectral
function ρH obtained in the Hartree approximation for the self-energy can be written as a power-law
and we observe that

ρH(1, ω ' µ) = ρ0(1, ω ' µ)|ω − µ|α(u) (5.13)

= ρ0(1, ω ' µ)eα(u) log |ω−µ| (5.14)

' ρ0(1, ω ' µ)
[
1 + α(u) log |ω − µ|

]
(5.15)

The prefactor of the logarithm we obtained in (5.12) is negative, and it is thus denoting an increase in
the spectral weight for ω approaching µ. This is consistent with what we found in the full inversion of[
ω + iη − ε(kn)− ΣH

]
presented in Chapter 3. The exponent for power-law increase was found to be

− u

2πvF
(5.16)

which coincides with the prefactor of the logarithm we obtained analytically in (5.12).
On the other hand, for very small |ω − µ| we know that ρH displays a power-law suppression with
exponent
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u

2πvF
(5.17)

We deduce that in this model the first order perturbation theory for the Green’s function at ω = µ does
not capture the eventual power-law suppression, which is known to set in at energies exponentially
close to the chemical potential [6]. This is not surprising since for any perturbative approach to work,
the perturbative correction must be small compared to the leading term. In our case this implies that
log |ω − µ| must be small compared to 1, and for such |ω − µ| one indeed finds an increase of the
weight.

5.1.4 The dip at ω = −µ

From expression (3.13) the spectral weight at ω = −µ is given by the square modulus of the matrix
element 〈j|L−NF 〉 since

ε(π − kF ) = −2t cos(π − kF ) = +2t cos(kF ) = −µ (5.18)

We then expect that the second step function in the self-energy matrix, the one crossing the diagonal
in (L − 1 −NF , L − 1 −NF ), is responsible for the suppression appearing at ω = −µ. Therefore, to
perform the computation we introduce an effective model in the same way it has been done in the
previous case. In section 4.3.2 we analysed the symmetry of the Hartree self-energy matrix. For a
fixed filling factor η, the height of the second step function can be mapped into the height of the first
step by mapping u → −u. For this reason, we expect that the HF approximation for the Green’s
function at ω = −µ leads to the same result we obtained for ω = µ, provided we exchange u with −u.
The effective self-energy we work with is

Σeff
nn′ = +

u

4L
Θ
(
n+ n′ − 2(L− 1) + 2NF )

)
(5.19)

and it is restricted this time to the lower-right part of the matrix. The situation is sketched in figure
5.2.

u
4L

L− 1− 2NF

L− 1− 2NF

Figure 5.2: Effective model for the Hartree self-energy in Hubbard model.

In this case the dispersion relation can be linearised around the point k = π−kF . Due to its symmetry,
again the Fermi velocity appears

ε(k) ' −µ+ 2t sin(k)
∣∣∣
π−kF

(
k − (π − kF )

)
= −µ+ vF

(
k − (π − kF )

)
.

67



In the continuum limit, the integral to be performed reads

G1(j, ω+iη) =
u

4L

2

π

∫ π

π−2kF

dk

∫ π

2π−2kF−k
dk′

sin(kj)

ω + iη + µ− vF
(
k − (π − kF )

) sin(k′j)

ω + iη + µ− vF
(
k′ − (π − kF )

)
As we are now interested in the spectral weight at ω = −µ, the sine functions can be approximated
with the value in sin(π−kF ) = sin(kF ) and dragged out of the integral. As we expected, the integral is
analogous to the one we already performed when µ is replaced by −µ, the integration domain is shifted
by π − 2kF in both axis k and k′, and the map u→ −u is performed. With the simple substitution

k = q + π − 2kF =⇒ dk = dq

k′ = q′ + π − 2kF =⇒ dk′ = dq

The integration extremes are shifted back and we exactly restore the integral we worked out for the
upper-left part of the matrix. It should then be clear that the result we obtain for the spectral density
function close to ω = −µ is

ρ(1, ω ' −µ) = ρ0(1, ω ' −µ)
[
1 +

u

2πvF
log |ω − (−µ)|

]
+ regular terms (5.20)

The prefactor of the divergent term is in this case positive, denoting the suppression of the spectral
weight instead of the increase we found for ω = µ. From (5.20) the prefactor we obtain is

u

2πvF

which is exactly the exponent of the power-law suppression at ω = −µ we extracted numerically from
the full inversion of the HF Hamiltonian in Chapter 3. The HF approximation for the Green’s function
at ω = −µ is then consistent with the HF approximation for the self-energy.
Notice that the suppression occurring at ω = −µ can be traced down to the umklapp processes, which
are responsible for of the non-analytical behaviour of ΣH in (π − kF , π − kF ). We can conclude that
the Hartree approximation for the Green’s function is capable of providing meaningful results for the
suppression appearing at an energy different from the Fermi energy.

5.2 Spinless fermions model

The work we have done on the Hubbard model for both the step functions is now helping us going
through the analysis of the spinless fermions model. As in the previous case, for our purpose we work
with an effective self-energy where the shift in the chemical potential due to the interaction is already
subtracted. Again, we notice that the structure of the self-energy presents two lines along which the
matrix elements display a sharp jump, crossing the diagonal in (NF , NF ) and (L−1−NF , L−1−NF ).
It will be shown that this lead to the suppression of the spectral weight at ω = µ and ω = −µ. The
main issue now is that we are not facing a ”standard” step function, where the matrix elements assume
a constant value before and after the step line. The nearest neighbour interaction in real space in this
model is responsible for the appearance of a non trivial oscillating behaviour of the HF self-energy
matrix elements in k-space as computed in Chapter 4. Understanding the crucial role of the non-
analyticity and being guided by the successful results obtained for the Hubbard model, we introduce
an effective model precisely as we already did.
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5.2.1 The first dip

For the suppression appearing at ω = µ, we can shrink the integration domain to the same low-energy
sector as this is not responsible for the emergence of a logarithmic divergence. To proceed we have
to substitute the nontrivial expression of the the matrix elements given in (4.46) and (4.47) for a
standard Θ function as in the effective self-energy for the Hubbard model. At a first glance though,
it is not obvious which value one should choose for the height of the step. We are interested in the
spectral weight close to ω = µ so that the important point to be considered is (kF , kF ). The step
crossing the diagonal in this point is responsible for the appearance of the logarithmic divergence. We
therefore take for the effective model a Θ function where the height is equal to the proper height of
the step evaluated in (kF , kF ). From equation (4.49) this reads

∆1 = 1− cos(2kF ) (5.21)

Once the step function is set to be formally identical to the Hubbard case, we proceed in the same
way in the construction of the effective model. The effective HF self-energy we work with is

Σeff
nn′ =

v

4L
∆1Θ(n+ n′ − 2NF ). (5.22)

A sketch is given in figure 5.3.

v
4L∆1

2NF

2NF

Figure 5.3: Effective model for the Hartree-Fock self-energy in the spinless fermions model.

Taking the thermodynamic limit we eventually want to evaluate the integral:

ρ1(j, ω+iη) = − 1

π
lim
η→0+

Im

[
−∆1v

L

2

L

L2

π2

∫ 2kF

0
dk

∫ 2kF

0
dk′

Θ(k + k′ − 2kF )

ω + iη − µ− vF (k − kF )

sin(kj) sin(k′j)

ω + iη − µ− vF (k′ − kF )

]

The computation is then formally identical, and for ω approaching µ we can finally obtain

ρ1(1, ω ' µ) =
v

πvF

[
1− cos(2kF )

]
ρ0(1, ω ' µ) log |ω − µ|+ regular terms (5.23)

ρ1(1, ω ' µ) =
v

πvF

[
2sin2(kF )

]
ρ0(1, ω ' µ) log |ω − µ|+ regular terms (5.24)

Thanks to the definition of vF , the function ρ = ρ0 + ρ1 can be recast in the form

ρ(1, ω ' µ) = ρ0(1, ω ' µ)

[
1 +

v

πt
sin(kF ) log |ω − µ|

]
+ regular terms (5.25)

69



Furthermore, one can define

|vc| =
πt

sin(kF )
(5.26)

to end up with the more elegant form

ρ(1, ω ' µ) = ρ0(1, ω ' µ)

[
1 +

v

|vc|
log |ω − µ|

]
+ regular terms (5.27)

As we expected from an effective model formally identical to the one employed in the Hubbard case,
a logarithmic divergence is found at ω = µ. In this case the prefactor of the logarithm reads

α =
v

|vc|
=

v

πt
sin(kF ) (5.28)

This result is to be compared with the HF exponent αHF
B we can extract from the full inversion of

the HF Hamiltonian. The results are shown in figure 5.4. The exponent αHF
B together with its error

is extracted from the numerical data with same procedure employed for the Hubbard model and
presented in Chapter 3. For v > 0 the prefactor α is positive, correctly denoting a suppression in the
spectral weight at energies approaching the chemical potential. Remarkably, α is the exact leading
behaviour in the expansion of αHF

B (v) for small v. In figure 5.4 the solid line representing α perfectly
matches the tangent of αHF

B (v) in v = 0. As in this computation the analytical prefactor is determined
by the height of the step function crossing the diagonal in (kF , kF ), this result validates the choice to
employ ∆1 in this effective model.
We have thus been able to compute analytically the correct leading term of the HF boundary exponent.
This let us conclude that first order perturbation theory for the Green’s function provides meaningful
results at ω = µ. The deviation of αHF

B from linear behaviour is to be traced back to the summation of
higher order terms in the perturbative expansion. These terms in fact do provide αHF

B (v) with higher
powers of v. A guess function has been made to fit the numerical exponent and reads

αHF
B (v) =

ζ

1 + ζ
where ζ =

v

|vc|

This function has been proven extremely precise, and it is therefore plotted across the numerical data
in figure 5.4. For the sake of completeness it is to be clarified that even the HF approximation for the
self-energy can only provide the correct leading behaviour of the exact exponent αB. This is to be
obtained by the means of different techniques, e.g. DMRG or bosonization as in [6].
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Figure 5.4: Analytical prefactor α (solid straight line) compared with αHF
B (numerical data). Here L−1 = 4000,

and from top to bottom η = 0.25, η = 0.375, η = 0.5. For details, see the text.
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5.2.2 The second dip

We now investigate the suppression of the spectral weight appearing at ω = −µ, which is caused, as
in the Hubbard model, by the sharp step function in the HF self-energy matrix crossing the diagonal
in (π − kF , π − kF ). We perform the HF approximation for the Green’s function by introducing an
effective model in analogy to the one employed for the second dip in the Hubbard model. The effective
model is pictured in figure 5.5.
Motivated by the successful results obtained for the dip at ω = µ in the spinless fermions model, a
”standard” step function is used, where the height of the step is now chosen to be the proper height
of the step evaluated in (π − kF , π − kF ). From the expression (4.50) evaluated in Chapter 4 we have

∆2 = 1 + cos(2kF ) (5.29)

v
4L∆2

L− 1− 2NF

L− 1− 2NF

Figure 5.5: Effective model for the Hartree-Fock self-energy in the spinless fermions model.

The computations are formally identical and we finally obtain

ρ1(1, ω ' −µ) =
v

πvF

[
1 + cos(2kF )

]
ρ0(1, ω ' −µ) log |ω + µ|+ regular terms (5.30)

Some quick rearrangements leave us with

ρ(1, ω ' −µ) = ρ0(1, ω ' −µ)

[
1 +

v

πt

cos2(kF )

sin(kF )
log |ω + µ|

]
+ regular terms (5.31)

To put it in more elegant form we define

|v′c| =
πt sin(kF )

cos2(kF )
= |vc| tan2(kF ) (5.32)

and recast our result as

ρ(1, ω ' −µ) = ρ0(1, ω ' −µ)

[
1 +

v

|vc|
1

tan2(kF )
log |ω + µ|

]
+ regular terms (5.33)

Notice that the prefactor vanishes as kF → π
2 , consistently with our analysis of the step along γ2

in the self-energy. In figure 5.6 this result is compared with the HF exponent αHF
B at ω = −µ we

extracted numerically from the full inversion of the HF Hamiltonian. In analogy to the previous case,
the prefactor we obtained analytically is the correct leading term in the expansion of αHF

B (v) for small
v. Again, this validates the choice to employ ∆2 as the correct effective height of the step leading to
the suppression at ω = −µ.
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Figure 5.6: Analytical prefactor α (solid line) compared with αHF
B (numerical data). Here L − 1 = 4000, and

from top to bottom η = 0.65, η = 0.75, η = 0.85. For details, see the text.
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5.3 Recursive method for exact mean field exponent

In this last section we want to provide a noticeable and clever method allowing us to extract analytically
the behaviour of the exponent as a function of the interaction term. This method is taken from the
Diploma thesis of Ralf Hedden.
Given the one particle nature of the problem in the mean field approximation, we can make use of a
recursive method to obtain the wave function at the chemical potential

φk(µ)(j) (5.34)

In fact, recalling the expression for the local spectral function

ρ(j, ω) =
∑
k

φ∗k(j)φk(j)δ(ε(k)− ω) (5.35)

we notice that the quantity of our interest is

ρ(1, µ) = φ∗k(µ)(1)φk(µ)(1)
1∣∣dε(k)

dk

∣∣
k=k(µ)

(5.36)

Thus the knowledge of the wavefunction in (5.34) is essential. To achieve this task, we first modify
the lattice spinless fermions model we used so far. We now work with a semi-infinite chain, whose
sites span from j = 1 to ∞. The nearest neighbour interaction is however limited to the first N + 1
sites of the chain. This has two major advantages. On one hand we simplify the terms in mean field
Hamiltonian for N →∞. On the other, the eigenvalues are condensed into a continuum set of values,
guaranteeing us the existence of the eigenfunction at the chemical potential in (5.34). Also, this
procedure is carried out for the specific case of a system at half-filling η = 1

2 . With this consideration
the mean field Hamiltonian reads

HMF = −t0
∞∑
j=1

c†j+1cj + h.c.+

N∑
j=1

v

π

(−1)j

2j + 1
c†j+1cj + h.c.+ v

∞∑
j=1

nj (5.37)

where now

t0 = t+
v sin(πη)

π
= t+

v

π
(5.38)

is the renormalized homogeneous hopping. The inhomogeneous hopping term is exactly modelling the
algebraic decaying oscillation we found in Chapter 2, as for a system at half-filling

−t1(j) = v
sin(2kF j)

π(2π + j
= v

sin(πj)

π(2π + j)
=
v

π

(−1)j

2j + 1
(5.39)

For the eigenfunction we look for, the following relation holds

HMFφk(µ) = µφk(µ) (5.40)

The mean field Hamiltonian is tridiagonal, and denoting φk(µ) = φ for simplicity, we can write
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v

2
φ(1)− t1φ(2) = µφ(1)

−t1φ(1) + vφ(2)− t2φ(3) = µφ(2)

...

−tn−1φ(n− 1) + vφ(n)− tn+1φ(n+ 1) = µφ(n)

...

−tNφ(N) + vφ(N + 1)− t0φ(N + 2) = µφ(N + 1)

−t0φ(N + 1) + vφ(N + 2)− t0φ(N + 3) = µφ(N + 2)

...

where

tn =
v

π

(−1)n

2n+ 1
(5.41)

At half-filling the chemical potential reads

µ = v (5.42)

We then obtain

φ(2) = − v

2t1
φ(1)

φ(3) = − t1
t2
φ(1)

...

φ(n+ 1) = − tn−1

tn
φ(n− 1)

...

φ(N + 2) = − tN
tn
φ(N)

...

so that for 2n+ 1 ≤ N we can write

φ(2n+ 1) = (−1)nφ(1)

l=m∏
l=1

t2l−1

t2l
(5.43)

φ(2n) = (−1)n+1 v

2t1
φ(1)

l=m∏
l=1

t2l−2

t2l−1
(5.44)
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For 2n+ 1 ≥ N + 1 the eigenfunction does not change considerably and oscillates between the values
±φ(N + 1) and ±φ(N + 2). For large N the local spectral function at the chemical potential is
approximated by

[
|φ(N + 1)|2 + |φ(N + 2)|2

]−1
(5.45)

We can set m = N
2 and evaluate the last expression by taking the logN of the product to obtain

φ(N + 1) ∼ (−1)
N
2 φ(1)N

v
2πt0 φ(N + 2) ∼ v

2t0
(−1)

N
2 φ(1)N

− v
2πt0 (5.46)

From (5.45) we then have

ρ(1, µ) ∼
[
N

v
πt0 +N

− v
2πt0

]−1
(5.47)

As we only consider here repulsive interaction v > 0, for large values of N the positive exponent is
dominating and results in

ρ(1, µ) ∼
[ 1

N

] v
πt+v

(5.48)

so that

αMF =
v

πt+ v
(5.49)

We have eventually found analytically the mean field exponent for the suppression of states at site
j = 1 for the special case η = 1

2 . This function justifies the guess we have made for the behaviour
of the aforementioned exponent for every filling factor η, which has proven to be in great agreement
with the numerical data. An attempt has been made in order to extend the present recursive method
for different fillings. We did not succeed due to the lack of the essential simplification in (5.42).
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Conclusion

The theoretical expectation that a LL chain with impurities will, at low energies, behave as if it is
cut into several disconnected pieces with open ends led to the investigation of several LL models with
open boundary condition. In this work we focused our attention on the particular behaviour of the
local spectral function close to the open boundary.
We verified that the HF approximation for the electron self-energy already gives power-law behaviour
at two distinct energies ω = µ and ω = −µ, which is a clear signature of the LL physics. In the
Hubbard model for energies approaching the chemical potential from below, the spectral weight first
increases as a power law. At energies exponentially close to the chemical potential the spectral func-
tion exhibits a crossover, and a final power-law suppression sets in. On the contrary, at ω = −µ no
enhancement of the spectral weight is present, and the spectral function only exhibits a power-law sup-
pression. Our results are in agreement with the ones presented in [6]. In the spinless fermions model
the local spectral function displays power-law suppression with different exponents at the aforemen-
tioned energies. The HF boundary exponent at ω = µ we extracted from the numerical data has been
verified to be in perfect agreement with the one presented in [6].
The physical reason for the power-law suppression in the spectral function emerged while evaluating
the HF self-energy matrix elements in k-space. For both models the self-energy displays two sharp
step functions crossing the diagonal in (kF , kF ) and (π− kF , π− kF ). These non-analytical structures
respectively lead to the suppression of the spectral weight at ω = µ and ω = −µ. This analysis also
showed that the second dip is caused by the umklapp processes.
The introduction of an effective model allowed us to perform the first order perturbation theory for
the Green’s function, wherein a logarithmic divergence in the spectral function is found at the afore-
mentioned energies. We demonstrated that this divergence is consistent with the power-law previously
obtained numerically. In fact, the HF approximation for the self-energy is a sum over infinitely many
diagrams in a Dyson series, which eventually develops the power law. A logarithmic divergence is the
best we can expect when truncating the series to the first order, as shown in section 5.1.3.
For the repulsive Hubbard model the prefactor of the logarithm at ω = µ is negative, denoting the
increase in the spectral weight for large energies around the chemical potential. Thereafter, the HF
approximation for the Green’s function at ω = µ is only correct to linear order in the interaction, and
it does not capture the eventual power-law suppression setting in at energies asymptotically close to
the chemical potential. The prefactor at ω = −µ is the correct HF boundary exponent for the power-
law suppression at ω = −µ. Noticeably, for the spinless fermions model at both energies the prefactor
of the logarithm is the correct leading order of the HF boundary exponent for small interaction.
We therefore confirmed that perturbation theory is capable of providing meaningful results for the
spectral properties of LL lattice models with open boundaries, as presented in [6]. The new results
concern the analysis of the dip appearing at ω = −µ in the spectral function for the spinless fermions
model. Within the HF approximation for the self-energy, the power-law suppression has been char-
acterized numerically for diverse sets of parameters such as interaction strength and filling factor.
Furthermore, the effective model employed for the Hubbard case in [6] has been extended to the spin-
less fermions model successfully. This allowed us to obtain analytically the leading order of the HF
exponent for both the suppression at ω = µ and the one at ω = −µ.
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