
Master Thesis in Computer Engineering

Improving Spaced k-mer Extraction and
Hash Encoding for Bioinformatics

Applications

Candidate Supervisor

Leonardo Gemin Prof. Matteo Comin
Student ID 2023860 University of Padova

Academic Year 2023/2024 – July 11

Abstract

This thesis focuses on improving the extraction and hash encoding of spaced k-mers
for bioinformatics applications. It explores the concept of spaced seeds, which im-
prove similarity detection by allowing nonconsecutivematcheswithin k-mers, albeit
at the expense of increased computational complexity.

The main goal of this research is to develop advanced software capable of rapid
forward and reverse complement hashing for spaced k-mer in nucleotide sequences.
This includes optimizing the hashing process to better handle large genomic datasets
and minimize processing time and computational resources. The work includes the
introduction of the DuoHash tool, an improved version of Multiple Iterative Spaced
Seed Hashing (MISSH), and we compare its performance with ntHash2. Results
demonstrate how DuoHash performs on different datasets, showing its time effi-
ciency and integrability with tools such as JellyFish. Finally, practical implications
and suggestions for future research directions are discussed.

Sommario

Questa tesi si concentra sul miglioramento dell’estrazione e della codifica hash di
k-mer spaziati per applicazioni bioinformatiche. Esplora il concetto di semi spaziati,
che migliorano il rilevamento della somiglianza consentendo corrispondenze non
consecutive all’interno dei k-mer, anche se a spese di unamaggiore complessità com-
putazionale.

Lo scopo principale di questa ricerca è sviluppare un software avanzato in grado
di eseguire rapidamente l’hashing e l’hashing del complemento inverso per i k-mer
spaziati nelle sequenze nucleotidiche. Ciò include l’ottimizzazione del processo di
hashing per gestire meglio grandi insiemi di dati genomici e minimizzare il tempo di
elaborazione e le risorse computazionali. Il lavoro include l’introduzione dello stru-
mentoDuoHash, una versionemigliorata diMISSHene confrontiamo le prestazioni
con ntHash2. I risultati dimostrano comeDuoHash si comporta su diversi set di dati,
mostrando la sua efficienza in termini di tempo e l’integrabilità con strumenti come
JellyFish. Infine, vengono discusse le implicazioni pratiche e i suggerimenti per le
future direzioni di ricerca.

Contents

List of Figures xii

List of Tables xiii

List of Algorithms xv

List of Acronyms xvii

1 Introduction 1
1.1 Purpose of the thesis . 2
1.2 Organization of the work . 2

2 Spaced k-mer 5
2.1 DNA . 5

2.1.1 DNA sequencing . 5
2.1.2 Assembly Techniques . 8

2.2 k-mer . 9
2.2.1 Applications in Bioinformatics 10
2.2.2 Benefits and Disadvantages 11

2.3 Spaced k-mer . 12
2.3.1 Applications in Bioinformatics and Benefits 13

3 Hashing of spaced seeds 15
3.1 FSH: Fast Spaced Seed Hashing . 15
3.2 ISSH: Iterative Spaced Seed Hashing 20
3.3 MISSH: Multiple Iterative Spaced Seed Hashing 23

vii

3.4 ntHash & ntHash2: Recursive (Spaced Seed) Hashing for Nucleotide
Seqences . 27

3.5 MISSH vs ntHash2 . 29

4 A new version of our tool 31
4.1 DuoHash: the new version of MISSH 40
4.2 DuoHash: new features . 46

5 Results 49
5.1 Tools and Experimental Setup . 49

5.1.1 Dataset . 49
5.1.2 Seedset . 50
5.1.3 Machine . 52

5.2 Analysis of the time performances . 53
5.2.1 General analysis . 53
5.2.2 Performance Evaluation with Varying Seed Weight 55
5.2.3 Performance Evaluation with Varying Seed Length 55
5.2.4 Performance Comparison: Multiple-Seed vs. Single-Seed . . 58

5.3 Analysis of the time performances in k-mer Counting 58

6 Conclusions 63

A Used Seedsets 65

B Additional Times Tables 69
B.1 Times for the “L” group datasets . 70
B.2 Times for the “R” group datasets . 72

C Additional Speed-up Tables 77
C.1 Speed-up for the “L” group datasets 78
C.2 Speed-up for the “R” group datasets 80

D Additional Speed-up Graphs 85

E DuoHash in JellyFish context 93

viii

References 97

Acknowledgments 103

ix

List of Figures

2.1 The fundamental structure of the DNA 6
2.2 Sequencing cost per genome data . 6
2.3 Sequencing cost per megabase . 7
2.4 Evolution of sequencing technologies 8

3.1 A schematic representation of the ISSH Multi approach 24
3.2 A schematic representation of the ISSH Multi Column approach . . . 24
3.3 A schematic representation of the ISSH Multi Row approach 26

4.1 Schematic procedure for using look-up tables. 43

5.1 Speed-up graph for seedset W26L31 54
5.2 Speed-up graph for method DuoHash among seedset with varying

weight and dataset of “L” group. 56
5.3 Speed-up graph for method DuoHash among seedset with varying

weight and dataset of “R” group. 56
5.4 Speed-up graph for method DuoHash among seedset with varying

length and dataset of both “L” and “R” groups. 57
5.5 Speed-up comparison between single-seed and multiple-seed ver-

sions (L1000000 dataset). 58
5.6 Speed-up graph forDuoHashwith respect toMaskJelly (pre-processing

only). 60
5.7 Speed-up graph for DuoHash with respect to MaskJelly (entire pro-

cess). 61
5.8 Impact of pre-processing (MaskJelly and DuoHash) on the overall

counting process. 62

xi

D.1 Speed-up graph for seedset W10L15 (multiple-seed). 86
D.2 Speed-up graph for seedset W14L31 (multiple-seed). 87
D.3 Speed-up graph for seedset W18L31 (multiple-seed). 88
D.4 Speed-up graph for seedset W22L31 (multiple-seed). 89
D.5 Speed-up graph for seedset W26L31 (multiple-seed). 90
D.6 Speed-up graph for seedset W32L45 (multiple-seed). 91

xii

List of Tables

4.1 Comparison of processing times between the original function and
the bitwise function. 32

5.1 Number of reads and average lengths for each of the dataset used in
the experiments. 50

5.2 Seedset used in the experiments. 52

A.1 Seedset W10L15: spaced seeds of weight 10 and length 15. 66
A.2 Seedset W14L31: spaced seeds of weight 14 and length 31. 66
A.3 Seedset W18L31: spaced seeds of weight 18 and length 31. 66
A.4 Seedset W22L31: spaced seeds of weight 22 and length 31. 67
A.5 Seedset W26L31: spaced seeds of weight 26 and length 31. 67
A.6 Seedset W32L45: spaced seeds of weight 32 and length 45. 67

B.1 Overall time table (in milliseconds) for the “L” group datasets 70
B.2 Overall time table (in milliseconds) for the “R” group datasets - part

one . 72
B.3 Overall time table (in milliseconds) for the “R” group datasets - part

two . 74

C.1 Overall speed-up table for the “L” group datasets 78
C.2 Overall speed-up table for the “R” group datasets - part one 80
C.3 Overall speed-up table for the “R” group datasets - part two 82

E.1 Overall times table for MaskJelly and DuoHash pre-processing. . . . 94
E.2 Overall speed-ups table for MaskJelly and DuoHash pre-processing. 95

xiii

List of Algorithms

3.1 FSH: Fast Spaced Seed Hashing . 19
3.2 Fast Multiple Spaced Seed Hashing . 20
3.3 ISSH: Iterative Spaced Seed Hashing 23
3.4 ISSH Multi Column . 25
3.5 ntHash2: Spaced Seed Hashing Procedure 30
4.1 Original encoding function . 32
4.2 Rolling Hash function . 40
4.3 DuoHash: look-up tables . 44
4.4 DuoHash: getHashes function . 45
4.5 DuoHash: getHashes function with FNV-1A hash function. 47
4.6 DuoHash: getSpacedKmer function . 48

xv

List of Acronyms

ddNTPs Dideoxynucleotides

DNA Deoxyribonucleic acid

FNV Fowler-Noll-Vo

FSH Fast Spaced Seed Hashing

ISSH Iterative Spaced Seed Hashing

MISSH Multiple Iterative Spaced Seed Hashing

NGS Next-Generation Sequencing

PacBio Pacific Biosciences

RNA Ribonucleic acid

SBS Sequencing-By-Synthesis

SIMD Single Instruction Multiple Data

SMRT Single Molecule Real-Time

xvii

1
Introduction

Bioinformatics has changed thewayweunderstand and analyze biological sequences,
thereby opening up new vistas in scientific research and practical applications. The
sequence classification which is a problem highly essential in this area has numerous
applications that range from phylogenetic reconstruction to protein classification,
mapping metagenomic reads to oligonucleotide design.

However, alignment as awidespread technique of sequence classification has cer-
tain limitations in terms of handling large data sets produced by modern sequenc-
ing technologies. Alignment-free approaches were introduced for that purpose and
they are primarily based on splitting sequences into consecutive k-mer subsequences
and indexing them with appropriate data structures. This allowed much faster pro-
cessing, but also decreased sensitivity because exact matches for every position of a
k-mer were required.

To overcome this limitation, there have been variations of the exact matches of
the k-mers such as allowing longer matches with errors or non-consecutive matches
within the k-mer itself. In this regard was a significant breakthrough when “spaced
seeds,” fixed-length patterns that allow wildcards at specific positions were intro-
duced. Seeds like these have been shown to be able to significantly improve the abil-
ity to detect relevant similarities between different sequences thus enabling more
efficient algorithms to be applied in various areas of bioinformatics.

Nevertheless, spaced seeds tend to result in substantial delays during execution
time compared to k-mer-based solutions due to extra complexities involved in in-

1

dexing/hashing sequences. Consequently, efforts have been directed at improving
hashing methods for spaced seeds so as to enhance performance without affecting
sensitivity.

1.1 Purpose of the thesis
The main objective of this thesis is to develop advanced software that efficiently
computes forward hashing and reverse complement hashing for spaced k-mer in
nucleotide sequences. This software is designed to improve the handling and anal-
ysis of the large amounts of genetic data generated by modern DNA sequencing
techniques. Another crucial goal is to optimise the speed and computational effi-
ciency of the hashing process. Considering the increasing size of genomic datasets,
it is crucial to have tools that can perform fast analyses without compromising ac-
curacy. The software developed will have to be able to handle these volumes of data
efficiently, minimising the processing time and computational resources required.
In addition, the software will have to be tested on various datasets to evaluate its
performance in comparison to existing tools. This includes a detailed analysis of
execution times and a comparison with other hashing techniques currently in use.

1.2 Organization of the work
The structure of the thesis is organised into the following chapters:

Chapter 2: Spaced k-mer. In this chapter, DNAconcepts, sequencingmethods and
assembly techniques are introduced. We introduce k-mer and spaced k-mer,
their applications in bioinformatics, including advantages and disadvantages.

Chapter 3: Hashing of spaced seeds. In this chapter, various hashing methods for
spaced k-mer are described, including the tools Fast Spaced Seed Hashing
(FSH), Iterative Spaced SeedHashing (ISSH) andMISSH, ntHash andntHash2.

Chapter 4: A new version of our tool. This chapter introduces the DuoHash tool,
the new version of MISSH, and discusses the new features introduced.

Chapter 5: Results. In this chapter, the temporal performance of the new tool is
analysed across various datasets and experimental configurations, compar-

2

ing the performance of DuoHash with ntHash2. The performance of Duo-
Hash and its integration with JellyFish compared to third-party tools such as
MaskJelly are also analysed.

Chapter 6: Conclusions. This chapter summarises the results obtained, discussing
the practical implications and proposing future directions for research.

Appendices. Additional tables completewith times and speed-ups, and graphs, com-
paring DuoHash with ntHash2 and integrating DuoHash with JellyFish are
provided.

This organisation aims to guide the reader through a thorough understanding of
the problem, the proposed solutions and their experimental evaluations, culminat-
ing in a summary of conclusions and potential future research directions.

3

2
Spaced k-mer

2.1 DNA
The essence of life lies in the intricate dance of DNA, or deoxyribonucleic acid, a
molecule located in the nucleus of every cell. This molecule is, in fact, a macro-
molecule and is easily identified by its characteristic double-helix shape consisting
of twonucleotide chains. Eachnucleotide thatmakes up the chain consists of a sugar-
phosphate molecule and a nitrogenous base. We recognise four nitrogenous bases,
Adenine, Cytosine, Guanine andThymine, which bind two by two through hydrogen
bonds forming specific pairs, as illustrated in Figure 2.1: Adenine and Thymine (A-
T), Cytosine and Guanine (C-G). The order in which the nitrogenous bases follow
one another along the nucleotide chain orchestrates the symphony of existence.

2.1.1 DNA sequencing

DNA sequencing is the process of determining the nucleotide sequence of a DNA
fragment, and is fundamental to genetic research, molecular biology, medicine and
other disciplines. Numerous technologies have been developed over the years to
make this process faster, more accurate and more accessible. Costs have also fallen
dramatically (Figure 2.2 and Figure 2.3): from the Human Genome Project, which
required billions of dollars, we havemoved on to technologies that allow the sequenc-
ing of an entire human genome for less than $1,000. The cost, of course, varies de-
pending on the technology used, the coverage required and the complexity of the
project [38]. NGS platforms such as Illumina and Ion Torrent offer inexpensive op-

5

Figure 2.1: The fundamental structure of theDNAdouble helix consists of two strands, each composedof chains
of nucleotides. Within this framework, every nucleotide forms a bond with its complementary counterpart on
the opposing strand [28].

tions for large-scale projects, while technologies such as PacBio, while more expen-
sive, provide unique details for specific needs. The main sequencing techniques are
described below.

Figure2.2: Sequencingcostpergenomedata - 2022: the costpergenomehasbecomemuch lower thanMoore’s
Law [38].

6

Figure 2.3: Sequencing cost permegabase - 2022: the cost permegabase has becomemuch lower thanMoore’s
Law [38].

Sanger Method

The Sanger method [1], developed by Frederick Sanger in the 1970s, was the first
successful approach to DNA sequencing. It utilises chain termination, where Dide-
oxynucleotides (ddNTPs) interruptDNAsynthesis, allowing the sequence to be read
according to the length of the fragments obtained. Although accurate, the Sanger
method is relatively slow and expensive, suitable mainly for shorter DNA sequences.
This method was used for the Human Genome Project, which sequenced the entire
human genome at a cost of approximately $2.7 billion.

Next-Generation Sequencing

In recent decades, Next-Generation Sequencing (NGS) technologies [11, 40] have
revolutionised the field, enabling massive, parallel sequencing of billions of DNA
fragments. Among the NGS platforms, Illumina, Ion Torrent and PacBio stand out.

Illumina is one of the leaders in the NGS market. It uses Sequencing-By-Syn-
thesis (SBS) technology, where fluorescently labelled nucleotides are incorporated
into DNA, and fluorescent images reveal the sequence. This method offers high ac-
curacy and read depth, making it ideal for large-scale genomics projects. The cost to
sequence a complete human genomewith Illumina can range from a few hundred to
a few thousand dollars, depending on the coverage and specifications of the project.

7

Figure 2.4: Evolution of sequencing technologies [40].

The Ion Torrent technology, developed by Life Technologies, is based on the de-
tection of hydrogen ion release during nucleotide incorporation. This fluorescence-
free approach allows rapid and low-cost sequencing. Although accuracy may be
lower than Illumina, Ion Torrent is advantageous for applications requiring speed
and low cost.

PacificBiosciences (PacBio) has introduced SingleMolecule Real-Time (SMRT)
Sequencing technology. It offers the ability to read long DNA sequences, with reads
that can exceed 10,000 bases. This is particularly useful for the assembly of genomes,
but also for the analysis of complex repetitive regions. Despite its higher costs com-
pared to other NGS technologies, PacBio is useful for studies requiring long and
detailed reads.

2.1.2 Assembly Techniques

DNA sequencing produces fragments, called reads, that must be assembled to re-
construct the original sequence. These are the two main assembly strategies:

• de novo assembly [21] is used when no reference sequence is available. Frag-

8

ments are assembled based only on the overlaps between them. This tech-
nique is essential for sequencing new genomes.

• In reference assembly, mainly used for genetic variability studies, fragments
are aligned to an existing reference sequence. This facilitates the assembly
process and improves accuracy.

2.2 k-mer
k-mer are sequences of nucleotides of length k, resulting from the decomposition of
a longer genomic sequence.

Example

Considering the DNA sequence

CTTGTCGTTGACT,

its 6-mer are:

CTTGTC TTGTCG TGTCGT GTCGTT
TCGTTG CGTTGA GTTGAC TTGACT

The number of k-mer in a sequence is governed by the following equation

#(k-mer) = ℓ− k+ 1,

where ℓ is the length of the sequence.
In bioinformatics, k-mer have become one of the most powerful versatile tools

that are applied in various genomic studies. Also, they are instrumental in genome
assembly, metagenomics, gene expression analysis, pattern and motif recognition
as well as phylogenetic analysis thus proving their importance and value in scientific
research. These applications confirm how fundamental manipulation and analysis
of these patterns are to our understanding of biological processes and genetic dy-
namics. The choice of value of k is important because it affects the sensitivity and
specificity of the analyses: very small values may lead to a lot of redundancy and

9

low specificity making it hard to differentiate very similar sequences; on the other
hand large values improve specificity but at the same time reduce coverage which
increases computation complexity. In practice, the optimal k value depends on what
is being analyzed and its nature. For example, in de novo assembly of genomes, k
values between 21 and 31 are commonly used since they optimally combine high
sequence coverage with specificities for many purposes.

2.2.1 Applications in Bioinformatics

Genome assembly is one of the most relevant applications. In this context, genome
reconstruction from short fragments using k-mer, a process known as de novo as-
sembly [21]. During this process, k-mer facilitate the overlapping and connection of
sequence fragments, forming structures called contigs and scaffolds.

In metagenomics [24], k-mer are used to identify and quantify the presence of
different microbial species in environmental samples. This is possible by comparing
the k-mer derived from the samples with known sequence databases, thus allowing
the taxonomic composition of the sample to be determined. The analysis of k-mer
in metagenomics facilitates study complex microbial communities contributing to
understanding biodiversity and ecological dynamics within diverse environments.

Another significant application for which k-mer are useful is gene expression
analysis [26]: RNA-seq techniques create k-mer from transcripts that can bemapped
on reference genomes to identify and count expressed genes. These enable precise
measurements of gene expression levels required for studies on gene function, cel-
lular responses as well as disease.

k-mer is also used to detect repetitive patterns and motifs in DNA and RNA
sequences [3]. Identifying these recurring patterns, as well as functional motifs, is
fundamental to understanding gene regulation and protein functions. Notably, mo-
tifs are particular sequences that are vital for regulatory protein binding sites. Re-
searchers can also find and study such hidden regulatory elements within genomic
sequences using k-mer.

Lastly, k-mer helps in building phylogenetic trees based on the similarity of ge-
nomic sequences during phylogenetic analysis [30]. This method is quite fast, espe-
ciallywhendealingwith large-scale evolutionary studies using huge genomic datasets.
Comparing k-mer across different species can help to reconstruct evolutionary rela-

10

tionships and give insights into the past and diversity of life on Earth.

2.2.2 Benefits and Disadvantages

The use of k-mer in bioinformatics offers numerous advantages, making them valu-
able tools in multiple genomic analyses. First of all, k-mer allow great computa-
tional efficiency. Indeed, the decomposition of long sequences into blocks of a fixed
size facilitates the indexing and searching of sub-sequences, accelerating complex
processes such as sequence comparison and assembly [16, 14]. This feature is par-
ticularly advantageous in the era of big data, where speed of processing is crucial.
Furthermore, k-mer processing can be easily parallelised. This means that computa-
tional tasks can be divided among several processors or cores, significantly improv-
ing the performance of bioinformatics software on modern architectures, such as
supercomputers and GPUs. Another important advantage is the reduction in com-
plexity that k-mer can offer: by representing complex genomic sequences in terms
of k-mer, subsequent calculations can be simplified, making it easier to compare
and assemble sequences [22]. This approach helps to manage and interpret complex
genomic data, making intricate analyses more accessible.

However, the use of k-mer also has some disadvantages. One of the main ones
concerns the choice of the k-value, which can be critical for the success of the analy-
sis. A sub-optimal k-valuemay in fact compromise results by increasing the number
of false positives or negatives. Small values of k can lead to greater redundancy and
lower specificity, while large values can reduce sequence coverage and increase com-
putational complexity. Therefore, the selection of the value of k requires a careful
balance between specificity and coverage, adapted to the specific application. The
storage of k-mer represents another disadvantage, as it can require a considerable
amount of memory, especially when working with large genomes or many samples.
Efficientmemorymanagement is therefore essential to avoid performance problems
and to ensure that computational resources are optimally utilised [17, 33]. Finally, k-
mer can be sensitive to noise in input sequences [20]. Read errors or mutations can
generate unique k-mer that do not correctly represent the original sequence, nega-
tively affecting the accuracy of analyses. This sensitivity requires the implementa-
tion of filtering and error correction strategies to ensure that the data used are as
accurate and representative as possible.

11

2.3 Spaced k-mer

Spaced seeds — and, consequently, spaced k-mer — represent fundamental tools
in bioinformatics, particularly in the context of sequence alignment and the search
for similarities between DNA, RNA and proteins [25, 31, 32]. Unlike traditional k-
mer, spaced seeds allow for the introduction of gaps (ignored positions) within the
nucleotide or amino acid sequence, thus allowing for a more flexible comparison of
sequences. In formal terms, a spaced seedQ is a string on the alphabet {0, 1}, where
the 1 correspond to the matching positions:

Q = {x | x ∈ {0, 1}∗, #1(x) = w} ,

where k is the length, or span, and w is the weight of the spaced seed. Since any
position 0 placed before the first 1 and any position 0 placed after the last 1 does
not change the spaced seed, we only consider spaced seeds starting and ending with
the character 1, defined by the following regular expression:

Q = {x | x = 1+ 1 · (0+ 1)∗ · 1, #1(x) = w} . (2.1)

One can also represent the spaced seeds by their shape Q, which is the set of
positions of the 1 in the spaced seed [4]. In this case the weight of Q is defined as
k = |Q|, while the length, or span, is equal to s(Q) = max(Q) + 1.

Spaced k-mer, also calledQ-gram, are fragments of a nucleotide sequence x that
respect the pattern dictated by a spaced seed Q. Given a string x, the spaced k-mer
x[i+ Q] is a string defined as follows:

x[i+ Q] = {xi+k | k ∈ Q} ,

where i ∈ {0, 1, . . . , |x| − s(Q)}.
Example

Let us consider the spaced seed 111010101, defined as Q = {0, 1, 2, 4, 6, 8},
and the sequence seen in the previous section,

CTTGTCGTTGACT.

12

Then the Q-gram at position 0 of x is defined as

x C T T G T C G T T G [...]
Q 1 1 1 0 1 0 1 0 1

x[0+ Q] C T T T G T

The other Q-grams, in total there are |x| − s(Q) + 1 = 5 Q-grams, are:

x[1+ Q] = TTGCTG x[2+ Q] = TGTGTA
x[3+ Q] = GTCTGC x[4+ Q] = TCGTAT

2.3.1 Applications in Bioinformatics and Benefits

One of the greatest advantages is that spaced seeds can enhance sequence alignment
sensitivity without much loss in specificity, which can be handy when a sequence
may have local genetic variation like small mutations or indels. Furthermore, spaced
seeds also detect homology regions with discontinuities or variations that would
elude k-mer contiguous approaches [9]. However, due to the handling of more com-
plex gaps such as: those that appear in between and optimizing spaced seeds design;
this algorithm is generally computationally intensive than its counterpart for work
spacing seed contiguously on k-mer. In fact, it is very difficult to compute corre-
spondences and solve them while designing and optimizing spaced seeds because
there might be many gaps between them [19]. But these problems are outweighed
by significant increase in sensitivity and accuracy resulting from the use of spaced
seed.

Spaced seeds are commonly used across various bioinformatics disciplines. For
instance, they are employed for enhancing sequence alignment algorithms such as
BLAST and its variants where they have been shown to boost both sensitivity as
well as speed during search operations [2, 5]. The introduction of spaced seeds into
BLAST improved the detection of homologous regions in biological sequences thus
reducing false positives and improving overall efficiency of alignment process [12].

Among other things, algorithms like PatternHunter utilize spaced seed to make
comparison between genomic sequences from different species more efficient by
minimizing false positives compared to contiguous methods based on k-mer [5].

13

This approach is particularly useful when comparing complex genomes that often
contain local variations masking global similarities. Moreover alternative methods
cannot detect remote homologies unlike these based on spaced seed [7].

In order to create more robust De Bruijn graphs for de novo genome assembly,
spaced k-mer can be used which can help identify correct contigs despite presence
of sequencing errors [15]. Spaced seeds allow for more continuous and complete ge-
nomic assemblies with fewer artifacts due to systematic and random reading errors
in sequences [18].

Moreover, withinmetagenomics, the use of spaced seed improvesmicrobial com-
munity analyses, making it easier to differentiate close species better and identify
new genomic variants [8]. This is especially important when dealing with com-
plex systems such as soil or human gut, where high microbial diversity requires fine
species resolution necessary to model their ecological and functional dynamics [10].

In summary, spaced seeds are amajor breakthrough in bioinformatics that achie-
ves a tradeoff between sensitivity and specificity in various applications. Although
they may need more computational resources to achieve this goal, the accuracy im-
provement in sequence analysis is enough reason to use them.

14

3
Hashing of spaced seeds

3.1 FSH: Fast Spaced Seed Hashing

TheFSH [34] is an algorithm developed to increase the efficiency of hash calculation
for spaced seeds in bioinformatics applications. This approach exploits the similari-
ties between spaced seed hash values computed at neighbouring positions within an
input sequence through a dynamic programming technique aimed at reducing the
number of symbols read and encoded in the hash computation process. This results
in a higher processing speed than traditional methods.

Symbol encoding, a process of transforming data into a different format using a
specific encoding scheme, is essential for the numerical representation of DNA or
protein sequences. The encoding used by FSH is based on the function

encode(ch) : A → {0,1}log2 |A|

and the four nitrogenous bases are mapped as follows:

encode(A) = 00 encode(C) = 01
encode(G) = 10 encode(T) = 11

This encoding is necessary for the subsequent application of hashing functions, as
it transforms the sequence data into a numerical format suitable for computational
processing.

15

In the paper of FSH, the authors considered the Rabin-Karp rolling hash [13],
defined as follows:

h (x[i+ Q]) =
∨
k∈Q

(encode(xi+k) << m(k) · log2 |A|) ,

where m(k) = |{i ∈ Q | i < k}| is the number of shifts that must be applied to the
k-th symbol.

Example

In connection with the example from the previous chapter, the steps for calcu-
lating the encoding of the Q-gram x[0+ Q] are given:

x C T T G T C G T T G [...]
Q 1 1 1 0 1 0 1 0 1
m 0 1 2 3 3 4 4 5 5

x[0+ Q] C T T T G T
encode(x[0+ Q]) 01 11 11 11 10 11

And thus for the calculation of the hashing value referred to it:

h (x[0+ Q]) = (01 << 0) ∨ (11 << 2) ∨ (10 << 4) ∨
∨ (01 << 6) ∨ (10 << 8) ∨ (01 << 10)

= 111011111101

Similarly, the hashing values for the remaining Q-grams are:

x[1+ Q] = TTGCTG h(x[1+ Q]) = 101101101111
x[2+ Q] = TGTGTA h(x[2+ Q]) = 001110111011
x[3+ Q] = GTCTGC h(x[3+ Q]) = 011011011110
x[4+ Q] = TCGTAT h(x[4+ Q]) = 110011100111

It is now possible to define the set of hashing values of a string x given a spaced

16

seed Q:

H(x,Q) = {h(x[0+ Q]), h(x[1+ Q]), . . . , h(x[n− 1+ Q])} ,

where n = |x| − s(Q) + 1 is the number of all Q-grams of x.
According to the authors of FSH, the aim is to minimise the number of times a

symbol needs to be read and encoded in order to calculateH(x,Q).
The idea is to reuse part of the previous hashes to speed up the calculation of the

new value. A new definition can be introduced:

Cj = {k ∈ Q | k+ j ∈ Q ∧m(k) = m(k+ j)−m(j)}.

Cj is the set of positions that can be retrieved from the previously calculated h(x[i−
j+ Q]) when h(x[i+ Q]) is being calculated.

Example

Having already calculated h(x[0+Q]), the time has come to calculate h(x[1+Q]).
In this example, the calculation of C1 is shown.

k 0 1 2 3 4 5 6 7 8

Q 1 1 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5

Q << 1 1 1 1 0 1 0 1 0 1
m(k+ 1) 0 1 2 3 3 4 4 5 5

Q 1 1 1 0 1 0 1 0 1
Q << 1 1 1 1 0 1 0 1 0 1

(k ∈ Q) ∧ (k+ 1 ∈ Q) T T F F F F F F

m(k) 0 1 2 3 3 4 4 5 5

m(k+ 1)−m(1) -1 0 1 2 2 3 3 4 4

m(k) = m(k+ 1)−m(1) T T T F T F T F

C1 0 1

The symbols at positions C1 = {0, 1} of the hash h(x[1 + Q]) have already been
encoded in the hash h(x[0+Q]) and it is possible to reuse them without having

17

to compute them ex-novo each time. To complete the computation of the hash
h(x[1+Q]) it is necessary to compute the remaining |Q\C1| = 4 symbols, which
must be read from x at positions i+ k, where i = 1 and k ∈ Q \ C1 = {2, 4, 6, 8}.

x C T T G T C G T T G [...]
x[0+ Q] C T T T G T

C1 0 1

Q \ C1 2 4 6 8

x[1+ Q] T T G C T G

For completeness, all values of Cj are given:

C = {C1, C2, . . . , C8}

= {{0, 1}, {0}, ∅, {0}, ∅, {0}, ∅, {0}}

To optimise the reuse of part of the previous hashes, it is necessary to minimise
the number of times a symbol must be read and encoded. It is sufficient, therefore,
to find the value j that maximises |Cj|, and this can be solved via the function

ArgBH(k) = argmax
j∈{1,2,...,k}

|Cj|.

Having already computed the previous j hashes, the best hashing value can be found
at position j − ArgBH(j). This will produce a saving in terms of symbols that do
not have to be read and encoded again equal to |CArgBH(j)|. For the extraction of
useful symbols from the previous hashes, a mask, Mask(j), is defined to filter the
relevant positions. Following the observations made so far, it is possible to compute
all hashing valuesH(x,Q) using the dynamic programming Algorithm 3.1.

A second algorithm, Algorithm 3.2, is also provided for use when working with
more than one spaced seed. The use of more than one spaced seed increases the
sensitivity [23] and, therefore, merits a dedicated approach capable of increasing the
speed-up of the algorithm.

Let Q⃗ = {Q0,Q1, . . . ,Qn−1} be the set of n spaced seeds, all of the same length
s(Q). It is possible to compute, for each spaced seedQj its vectormj(k) as described
above. In order to compare a given spaced seed Qj with all other spaced seeds it is

18

Algorithm 3.1: FSH: Fast Spaced Seed Hashing

1: h0 ← compute h(x[0+ Q]);
2: for i← 1 to |x| − s(Q) do
3: if i < s(Q) then
4: p← ArgBH(i);
5: hi ← hi or ((hi−p andMask(p)) >> (m(p) · log2 |A|));
6: forall k ∈ Q \ Cp do
7: insert encode(xi+k) at positionm(k) · log2 |A| of hi;

8: else
9: p← ArgBH(s(Q)− 1);
10: hi ← hi or ((hi−p andMask(p)) >> (m(p) · log2 |A|));
11: forall k ∈ Q \ Cp do
12: insert encode(xi+k) at positionm(k) · log2 |A| of hi;

necessary to redefine the set Cj as follows:

Cy, zj = {k ∈ Qy | k+ j ∈ Qz ∧my(k) = mz(k+ j)−mz(j)}.

In this new definition Cy, zj evaluates the number of symbols in common between
the seedQy and the j-th shift of the seedQz. Similarly, it is necessary to redefine the
function ArgBH(k) as follows:

ArgBSH(y, k) = argmax
z∈{0,1,...,n−1}, j∈{1,2,...,k}

|Cy, zj |.

ArgBSH(y, k) returns, for the seedQy, the pair of indices (z, p) representing the best
seed Qz and the best hash p. The updated algorithm can be found at page 20.

Demonstrating significant performance enhancements, FSH accelerates spaced
seed hashing by 1.6× compared to conventional methods across diverse seed con-
figurations. Particularly notable is its 4× to 5× speedup in scenarios of high seed
autocorrelation. This efficiency amplifies with longer read lengths typical of mod-
ern sequencing technologies or intricate spaced seed designs. Moreover, this work
paves the path for further exploration into accelerating spaced seed hashing through
innovative indexing techniques and assessing its broader utility in various bioinfor-
matics applications.

19

Algorithm 3.2: Fast Multiple Spaced Seed Hashing

1: for j← 0 to n− 1 do
2: h0, j ← compute h(x[0+ Qj]);

3: for i← 1 to |x| − s(Q) do
4: for j← 0 to n− 1 do
5: if i < s(Q) then
6: (z, p)← ArgBSH(j, i);
7: hi, j ← hi, j or ((hi−p, z andMask(p)) >> (mz(p) · log2 |A|));
8: forall k ∈ Qj \ C j,zp do
9: insert encode(xi+k) at positionmj(k) · log2 |A| of hi, j;

10: else
11: (z, p)← ArgBSH(j, s(Q)− 1);
12: hi, j ← hi, j or ((hi−p, z andMask(p)) >> (mz(p) · log2 |A|));
13: forall k ∈ Qj \ C j,zp do
14: insert encode(xi+k) at positionmj(k) · log2 |A| of hi, j;

3.2 ISSH: Iterative Spaced Seed Hashing

The ISSH algorithm [35] was born as a response to the request for greater optimisa-
tion of the FSH software. The latter, in fact, reuses part of a previous hash value to
re-read and re-encode as few symbols as possible. With the new algorithm, ISSH,
the authors attempted to further reduce the number of symbols to be re-read to a
single symbol. This was done by using not only the previous hash that maximises
the number of symbols to be reused, but by combining the use of several previous
hashes that together cover almost all the symbols that make up the new Q-gram.

It is necessary to introduce a new definition of Cg, j that defines the positions of
Q that, after j shift, continue to be in Q with the property that the positions k and
k + j both belong to Q and are separated by j − g − 1 (not necessarily consecutive)
characters 1:

Cg, j = {k ∈ Q | k+ j ∈ Q ∧m(k) = m(k+ j)−m(j) +m(g)}.

The set C0, j corresponds to the definition of Cj given by Girotto et al. in “FSH: fast

20

spaced seed hashing exploiting adjacent hashes” [34]. This is because in the algo-
rithm FSH we always take the position 0 of h(x[j+ Q]) as the starting point.

Example

Let x andQ be the same of the previous example. In this example, the calculation
of C0, 2 is shown for the calculation of h(x[2 + Q]), h(x[0 + Q]) having already
been calculated previously.

k 0 1 2 3 4 5 6 7 8

Q 1 1 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5

Q << 2 1 1 1 0 1 0 1 0 1
m(k+ 2) 0 1 2 3 3 4 4 5 5

Q 1 1 1 0 1 0 1 0 1
Q << 2 1 1 1 0 1 0 1 0 1

(k ∈ Q) ∧ (k+ 2 ∈ Q) T F T F T F T

m(k) 0 1 2 3 3 4 4 5 5

m(k+ 2)−m(2) +m(0) -2 -1 0 1 1 2 2 3 3

m(k) = m(k+ 2)−m(2) +m(0) T T F F F F F

C0, 2 0

Thus the only position recoverable from h(x[0+ Q]) is C0, 2 = {0}.
If, on the other hand, the first position of h(x[0+Q]) was skipped and the hash
was considered from its second position, C1, 2 would be obtained:

21

k 0 1 2 3 4 5 6 7 8

Q 1 1 1 0 1 0 1 0 1
m(k) 0 1 2 3 3 4 4 5 5

Q << 2 1 1 1 0 1 0 1 0 1
m(k+ 2) 0 1 2 3 3 4 4 5 5

Q 1 1 1 0 1 0 1 0 1
Q << 2 1 1 1 0 1 0 1 0 1

(k ∈ Q) ∧ (k+ 2 ∈ Q) T F T F T F T

m(k) 0 1 2 3 3 4 4 5 5

m(k+ 2)−m(2) +m(1) -1 0 1 2 2 3 3 4 4

m(k) = m(k+ 2)−m(2) +m(1) F F T T T T T

C1, 2 2 4 6

In the last case, the number of symbols reusable by the hash h(x[0 + Q]) to
produce the hash h(x[2+ Q]) increases, being C1, 2 = {2, 4, 6}.

Thenew algorithm, Algorithm3.3 proposed by Petrucci et al. aims to improve the
efficiency of hash computation by using an iterative technique that, instead of relying
only on the best previous hash, considers all previous hashes to create a combination
that covers all the symbols needed for h(x[i+ Q]), except the last one.

For this, the function BestPrev(k, Q′) is defined which returns a pair (g, j) that
identifies the best previous hash, h(x[i− j+Q]), fromwhich |Cg, j∩Q′| symbols, after
removing its first g symbols:

BestPrev(k, Q′) = argmax
g∈{0,1,...,k−1}, j∈{1,2,...,k}

|Cg, j ∩ Q′|.

For the extraction of useful symbols from the previous hashes, a mask, Mask(g, j),
is defined to filter the relevant positions.

Demonstrating a noteworthy average acceleration of computation, ISSH yields
a speedup ranging between 3.5× to 7× compared to traditional hash value calcula-
tions. This enhancement varies based on the density of spaced seeds and the length
of reads under consideration. Across all conducted experiments, ISSH consistently

22

Algorithm 3.3: ISSH: Iterative Spaced Seed Hashing

1: h0 ← compute h(x[0+ Q]);
2: for i← 1 to |x| − s(Q) do
3: if i < s(Q) then
4: Q′ ← Q;
5: while |Q′| ̸= 1 do
6: (g, j)← BestPrev(i, Q′);
7: if |Cg, j ∩ Q′| = 0 then
8: Exit while;

9: else
10: hi ← hi or ((hi−j andMask(g, j)) >> (j · log2 |A|));
11: Q′ ← Q′ \ Cg, j;

12: forall k ∈ Q′ do
13: insert encode(xi+k) at positionm(k) · log2 |A| of hi;

14: else
15: Q′ ← Q;
16: while |Q′| ̸= 1 do
17: (g, j)← BestPrev(s(Q)− 1, Q′);
18: hi ← hi or ((hi−j andMask(g, j)) >> (j · log2 |A|));
19: Q′ ← Q′ \ Cg, j;
20: insert encode(xi+s(Q)−1) at last position of hi;

surpasses the performance of existing algorithms, promising significant efficiency
gains in computational tasks reliant on spaced seed hashing methodologies.

3.3 MISSH: Multiple Iterative Spaced Seed Hashing

A further improvement to the FSH algorithm was achieved with MISSH, developed
by Mian et al. in “Efficient Hashing of Multiple Spaced Seeds with Application” [39].
As in the case of the Algorithm 3.2 concerning the handling of multiple spaced seeds
of FSH, special attentionwas paid to the development of an algorithmusing the same
idea as MISSH, but for a set of spaced seeds.

In the article, the authors propose three different approaches. In the first version,
called MISSH Multi, several different spaced seeds are considered simultaneously,
although the hashing of the sequence of DNA is done independently for each spaced

23

seed. In fact, only the previous hashing values referring to the spaced seed Qj are
exploited for the calculation of h(x[i + Qj]). The substantial difference with the al-
gorithm ISSH lies in the fact that the hashing matrix is constructed by columns, as
illustrated in Figure 3.1. The convenience lies in the fact that the last character of
each Q-gram, which is always read for the first time, belongs to all hashing values
due to the definition 2.1 of spaced seed given in page 12. The reading and encoding
of the character is done only once and is valid for the entire spaced seed set.

Figure3.1: Aschematic representationof the ISSHMulti approach. The rowsof thematrix represent thedifferent
spaced seeds, while the columns represent the position of the sequence where to compute the hash. [39].

The second approach, MISSHMulti Column, builds on the previous approach
and improves on it by introducing a new degree of freedom: in this case, it is al-
lowed to retrieve positions not only fromprevious hashing values related to the same
spaced seed, but also from spaced seeds different from the one currently under con-
sideration. A schematic description can be found in Figure 3.2.

Figure 3.2: A schematic representation of the ISSH Multi Column approach. The rows of the matrix represent
the different spaced seeds, while the columns represent the position of the sequence where to compute the
hash. [39].

To compute a generic hash hi, j, where i is the index of the Q-gram to be hashed
and j is the index of the spaced seed, the algorithm searches for the hash hn, m that

24

allows to recover most positions among all previously computed hashes. The condi-
tion that hn, m needs to satisfy in order to be used by hi, j is

(n < i or (n = i andm < j)) and n ≥ 0. (3.1)

In order to extract symbols from hn, m to be reused in the new hash hi, j is defined a
mask Mask(j, n, m, l) that filters the appropriates positions.

Algorithm 3.4: ISSH Multi Column

1: for i← 0 to |x| − s(Q) do
2: forallQj ∈ Q⃗ do
3: hi, j ← 0;
4: whilemissing positions can be recovered from available hashes do
5: (n, m, l)← such that condition 3.1 holds and hn, m with l shifts allows

to recover the highest number of missing positions.;
6: hi, j ← hi, j or ((hn, m >> (l · log2 |A|) andMask(j, n, m, l));
7: if there are still missing positions then
8: add missing encodings to hi, j;

This algorithm has a considerable advantage because it significantly reduces the
number of encoding operations required during the transitional phase. Firstly, dur-
ing this phase, the number of encoding operations is much lower: even the hashing
of the first Q-gram of the second spaced seed already has the possibility of recover-
ing positions from the first hash, which was not possible previously. Furthermore,
the encryption function is only used once for each character in the sequence, even
during the transition phase. This approach allows for a considerable improvement
in calculation time compared to the ISSH Multi algorithm. The possibility of re-
covering positions as early as the first hash of the second spaced seed means that
the algorithm can start obtaining useful results earlier, improving overall efficiency.
Finally, the algorithm optimises the use of computational resources, reducing the
workload and allowing faster and less time-consuming processing.

Finally, the third method, called ISSHMulti Row, follows the previous scheme
by reversing the order in which it fills the hashing matrix. By filling it by rows, it is
also possible to retrieve positions from hashes that were previously calculated with

25

a different spaced seed.
To compute a generic hash hi, j, the algorithm searches for the hash hn, m that

allows to recover most positions among all previously computed hashes. The condi-
tion that hn, m needs to satisfy in order to be used by hi, j is

(m < j or (m = j and n < i)) and 0 ≤ n ≤ |x| − s(Q). (3.2)

The schematic description can be found in Figure 3.3.

Figure 3.3: A schematic representation of the ISSH Multi Row approach. The rows of the matrix represent the
different spaced seeds, while the columns represent the position of the sequence where to compute the hash.
[39].

This other algorithm has distinct advantages arising from its structure and the
handling of transitional phases. In particular, the introduction of successive hashes,
along with the previous ones, results in a significant modification of the transient
phase. These hashes are generated by the overlaps of the spaced seeds positioned
further to the right of the current position. This approach results in two transitional
phases, one at the beginning and one at the end of the DNA sequence. This is due to
the fact that the “right-hand” hashes calculated during pre-processingwill eventually
be unavailable, just as the “left-hand” hashes were initially unavailable. Furthermore,
this method is expected to perform better on longer sequences. The presence of
two transitional phases and the handling of the “right” hashes make it more efficient
in handling longer sequences. Consequently, it is able to provide better and more
reliable results than other methods, especially when sequence length is a critical
factor to consider.

Theperformance analysis of variousMISSHalgorithms reveals notable speedups
across diverse seed configurations and read lengths. Notably, the novel approaches
outperform previous methods, with ISSH Multi Column demonstrating the high-

26

est overall speedup, slightly edged by ISSH Multi Row in datasets with lengthier
reads. Performance enhancements are particularly pronounced with longer reads
due to transient time contributions, especially evident for ISSHMulti Row and ISSH
Multi. MISSH variants exhibit remarkable speedups exceeding 17×, contrasting
prior methods. Moreover, considering multiple spaced seeds concurrently signifi-
cantly decreases computation time across all methods, showcasing substantial im-
provements even with smaller seed groups.

3.4 ntHash & ntHash2: Recursive (Spaced Seed) Hashing for

Nucleotide Seqences

The method of ntHash [29] is based on a recursive function, known as a rolling hash
function, which calculates the hash value of the current k-mer hi from the hash value
of the previous k-mer hi−1 via a recursive formula. To initialise the hash calculation,
the first k-mer is calculated as follows:

h0 =
k−1⊕
j=0

rolk−1−j h(x[j]).

In this formula, rolj(·) is a left-cyclic rotation, ⊕ is the exclusive OR (XOR) opera-
tor, and h(·) is a seed table where the nucleotide characters, Σ = {A,C,G,T}, are
assigned to different 64-bit random integers.

The hash value of each successive k-mer is calculated recursively:

hi = f(hi−1, x[i+ k− 1], x[i− 1])
= rol1 hi−1 ⊕ rol0 h(x[i+ k− 1])⊕ rolk h(x[i− 1])

Thetime complexity of ntHash isO(k+|x|), in contrast to theO(k·|x|) complexity
of conventional hash functions.

To calculate the hash values of the inverse complementary sequences of a k-mer,
ntHash uses a seed table that includes the integers corresponding to the comple-
mentary bases, allowing efficient calculation without actually inverting the input

27

sequence:

h′

i =

k−1⊕
j=0

rolj h((x[j] + d) if i = 0

ror1 h′

i−1 ⊕ rolk−1 h(x[i+ k− 1] + d)⊕ ror1 h(x[i− 1] + d) otherwise

where d is the offset of the complementary bases in the seed table. This property
makes ntHash extremely useful in applications requiring the handling of comple-
mentary sequences.

With the introduction of ntHash2 [37], the algorithm was further improved to
handle spaced seeds. One of the main improvements in ntHash2 is the introduc-
tion of the rotation function, srolj(·), which splits a 64-bit word into subwords w0,

w1, . . . ,wn−1-bit long (
∑

wi = 64 and gcd(wi,wj) = 1 ∀i, j), rotates the subwords
separately and combines the results. The periodicity of the split rotation is equal
to lcm(w0,w1, . . . ,wn−1), making it more suitable for longer k-mer lengths. Further-
more, to improve the uniform distribution of hashes, ntHash2 defines the canonical
hash value of each seed as the sum of the forward hash and the reverse hash, replac-
ing the old version that used the minimum between the two values.

The main innovation of ntHash2 is the method for hashing spaced seeds. First
of all, the definition of a block is given, which is a sub-sequence of Q consisting of
consecutive 1 characters, bounded by the 0 character or the edges of the spaced
seed. To compute the hash value for the first s(Q) characters, we iterate over block
intervals and include the characters using srolj(·) and XOR operations with time
complexity O(|Q|). Subsequent hashes are generated by removing and including
characters based on block indices, with complexity O(|B|). For faster calculation,
ntHash2 redefines blocks as traits of 0 if the number of expected XOR operations is
less by excluding 0 from the hash value.

The function that calculates the hashing value is redefined according to this for-
mula:

hi =

k−1⊕
j=0

rolk−1−j h(x[j]) if i = 0

srol1 hi−1 ⊕ srol0 h(x[i+ k− 1])⊕ srolk h(x[i− 1]) otherwise

28

For the hashing value of the reverse complement, however, the updated formula
is as follows:

h′

i =

k−1⊕
j=0

srolj h((x[j] + d) if i = 0

sror1 h′

i−1 ⊕ srolk−1 h(x[i+ k− 1] + d)⊕ sror1 h(x[i− 1] + d) otherwise

3.5 MISSH vs ntHash2
MISSH and ntHash2 are both innovative tools designed for efficient hashing of nu-
cleotide sequences, each offering unique approaches and advantages in their imple-
mentations.

MISSH, introduced as an enhancement to the FSH and ISSH algorithms, incor-
porates new strategies for handlingmultiple spaced seeds simultaneously. The ISSH
Multi approach processes several spaced seeds simultaneously, optimising hashing
efficiency by constructing a hashing matrix organised by columns. This design fa-
cilitates the reuse of previously calculated hashes, significantly reducing the compu-
tational workload and improving the overall processing speed. Furthermore, ISSH
Multi Column further refines this concept by introducing a mechanism to retrieve
positions from hashes associated with differently spaced seeds, improving the flex-
ibility and adaptability of the algorithm. Performance analysis demonstrates sub-
stantial speed-ups in various configurations of seeds and read lengths, proving the
effectiveness of MISSH in accelerating hash computation operations.

In contrast, ntHash2 builds upon the recursive hashing function of ntHash, in-
troducing enhancements tailored for spaced seed hashing. ntHash2 revolutionizes
the hashing process by incorporating a split rotation function and redefining the
hashing formula to accommodate spaced seeds efficiently. By utilizing block-based
hashing and optimizing hash value calculation, ntHash2 achieves remarkable perfor-
mance improvements, outperforming its predecessor ntHash and other competing
algorithms like CityHash and ISSH [29]. The algorithm’s versatility and scalability
make it suitable for diverse applications such as genome assembly and k-mer count-
ing, offering significant advantages in speed and accuracy.

29

Algorithm 3.5: ntHash2: Spaced Seed Hashing Procedure

1: Function parse_seed(Q):
2: blocks,monomers, start, is_block← {}, {}, 0, true;
3: for i← 0 to s(Q)− 1 do
4: if i ∈ Q and is_block = false then
5: is_block← true;
6: start← i;
7: else if i ̸∈ Q and is_block = true then
8: if i− start > 1 then
9: blocks← blocks ∪ {⟨start, i⟩};
10: else
11: monomers← monomers ∪ {i};
12: is_block← false;

13: return blocks,monomers;
14: Function base_hash(x, s(Q), blocks,monomers):
15: for ⟨p, q⟩ ∈ blocks do
16: for i← p to q do
17: h← h⊕ srols(Q)−i−1 h(x[i]);
18: h′ ← h′ ⊕ sroli h(x[i] + d); /* d is the offset for the

complementary bases */
19: hb, h

′

b ← h, h′
;

20: for i ∈ monomers do
21: h← h⊕ srols(Q)−i−1 h(x[i]);
22: h′ ← h′ ⊕ sroli h(x[i] + d);
23: return hash_results← ⟨h, h′

, hb, h
′

b⟩;
24: Function slide_hash(x, s(Q), blocks,monomers, hash_results):
25: hb ← srol1 hb;
26: for ⟨p, q⟩ ∈ blocks do
27: hb ← hb ⊕ srols(Q)−p h(x[p])⊕ srols(Q)−q h(x[q]);
28: h′

b ← h′

b ⊕ srolp h(x[p] + d)⊕ srolq h(x[q] + d);
29: h′

b ← sror1 h′

b;
30: h, h′ ← hb, h

′

b;
31: for i ∈ monomers do
32: h← h⊕ srols(Q)−i−1 h(x[i]);
33: h′ ← h′ ⊕ sroli h(x[i] + d);

30

4
A new version of our tool

In the implementation of modifications to the MISSH tool, several optimisations
were introduced to improve its efficiency. One of the most significant changes con-
cerns the function for encoding individual characters of the input nucleotide se-
quence. Originally, this function used a series ofmultiple conditional instructions to
encode each character, as described in Algorithm 4.1. This logic has been replaced
with a bitwise manipulation function

encode = ((ch >> 1) & 0b11)
suggested by the authors of JellyFish [17]. This type of function is known to be signifi-
cantly more efficient in terms of execution time, as bitwise operations are inherently
faster than multiple conditional instructions.

After the implementation of this change, some preliminary tests were conducted
to evaluate the efficiency of the new encoding function. The results showed a signif-
icant improvement over the previous version. In Table 4.1, which shows the speed-
ups obtained, it can be seen that the new bitwise encoding function has reduced
processing times, resulting in considerable efficiency gains.

However, the introduction of the bitwise encoding function highlighted a critical
issue: unlike the old function, the new one does not recognise the “N characters” in
the nucleotide sequence, which represent unknown bases. The old function predis-
posed to the generation ofwarnings and errorswhen it encountered these characters,
providing a level of control over the correctness of the data. During testing, it was ob-
served that the symbol correctness check is already performed when the tool loads

31

Algorithm 4.1: Original encoding function

1: Function char_to_int(ch):
2: if ch = A then
3: return 0;
4: else if ch = C then
5: return 1;
6: else if ch = G then
7: return 2;
8: else if ch = T then
9: return 3;
10: return 4 ; /* ch is a N character */

method
original JellyFish like

speed-up
encoding encoding

naive 94.3 11.2 8.42
FSH 48.0 22.4 2.14
ISSH 27.0 12.9 2.09

Table 4.1: Comparison of processing times (expressed in milliseconds) between the original function and the
bitwise function. A sequence of 1010 characters and the spaced seedQ = 10111011 was used for testing.
The data is an average of 10 runs.

the FASTA file containing the nucleotide sequence into memory. At this stage, any
incorrect symbols are handled and filtered out. Consequently, further post-loading
correctness checks are redundant and time-consuming.

Another important change concerns the functions that calculate hashing. All
functions have been optimised so that forward hashing and reverse hashing are cal-
culated simultaneously. This approach not only improves the overall efficiency of the
hashing process, but also ensures that the results are consistent with those obtained
using the FSH, ISSH andMISSH tools, which employ the same hashing function. By
implementing these changes, a significant improvement in the performance of the
MISSH tool was achieved, while maintaining the reliability and correctness of the
results.

In the second phase of the modifications made to the MISSH tool to improve
its efficiency, it became apparent that the hash function used needed to be revised.

32

Previously, MISSH implemented a specific variant of the Rabin-Karp hash function.
However, it became apparent that a more general hash function conforming to the
canons defined in the literature was needed to ensure greater flexibility and adher-
ence to standards.

Array of contributions

The implementation of a new hash function required a careful evaluation of the dif-
ferent options available. One of the initial proposals was to handle the contributions
due to each character of the nucleotide sequence by storing them in a dedicated array.
This array of contributions would have allowed the hashing value h(x[i+Q]) for each
Q-gram to be calculated by summing the individual contributions of each character.
In theory, this solution would have allowed any hash function to be implemented
in a modular and flexible manner, combining the various contributions to form the
overall hash value of the Q-gram x[i + Q]. However, this solution was quickly dis-
carded after a practical evaluation. Despite the theoretical elegance of the method,
the implementation showed no significant speed-up advantage over the use of the
ntHash2 tool. Tests showed that the handling of contribution arrays entailed a com-
putational overhead that nullified the potential benefits of the modular approach.

Chunk of one_to_keep

In the continuous search for improvements to make the MISSH tool more effi-
cient, a new function called “chunk of one_to_keep” has been introduced. The
one_to_keep variables are vectors created during the preprocessing of MISSH,
which keep in memory the positions of previous hashes that are useful for calculat-
ing the current hash.

Example

Let Q = {0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 14, 16, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30}
be the shape of spaced seed1111011101110010100111011101111. The
vectors one_to_keepi calculated by the preprocessing of MISSH are as fol-

33

lows:

one_to_keep0 = {1, 2, 3, 5, 6, 8, 9, 13, 14, 16, 17, 19, 20, 21}
one_to_keep1 = {4, 7, 11, 15, 18}
one_to_keep2 = {10, 12}

It is important to notice that the intersection of the (disjoint) setsone_to_keepi

and the set {0} constitutes the set of positions of the characters 1 indicated by
the spaced seed form Q.

The production of a new string using the vectors one_to_keep is done in the
following way:

1. the n-th previous string is taken;

2. a shift to the left of n positions is performed;

3. the first character of each run of consecutive characters is deleted;

4. the last character of each run of consecutive characters is added.

Example

LetQ be the spaced seed of the previous example and x the nucleotide sequence
x = AGGCCCACTGGAAGTTGTAGCCACCGAGCCAG[...]. TheQ-gram x[0+
Q] will be

x AGGCCCACTGGAAGTTGTAGCCACCGAGCCAG[...]
Q 1111011101110010100111011101111

x[0+ Q] AGGC CAC GGA T G GCC CCG GCCA
The three associated one_to_keepi vectors are:

x[0+ Q] AGGCCACGGATGGCCCCGGCCA
one_to_keep0 GGC AC GA CC CG CCA
one_to_keep1 C G G C G
one_to_keep2 T G

A

34

Wanting to calculate the next Q-gram, x[1+Q], given the previously calculated
Q-gram, the steps to calculate are as follows:

on
e_
to
_k
ee
p 0

-GGC-AC-GA---CC-CG-CCA
GGC-AC-GA---CC-CG-CCA-
-GC--C--A----C--G--CA-
-GCC-CT-AA---CA-GA-CAG
8 saved characters

6 deleted characters

6 entered characters

in total: 12 in/del operations

x[0+ Q] is used to calculate x[1+ Q]

on
e_
to
_k
ee
p 1

----C--G---G---C--G---
---C--G---G---C--G----

----A--G---T---C--C---
0 saved characters

5 deleted characters

5 entered characters

in total: 10 in/del operations

x[0+ Q] is used to calculate x[1+ Q]

on
e_
to
_k
ee
p 2

----------T-G---------
---------T-G----------

----------T-C---------
0 saved characters

2 deleted characters

2 entered characters

in total: 4 in/del operations

x[0+ Q] is used to calculate x[1+ Q]

35

Thus, the Q-gram x[1 + Q] = GGCCACTGAATTCCACGACCAGis formed, con-
sistent with the calculation according to the naive method:

x AGGCCCACTGGAAGTTGTAGCCACCGAGCCAG[...]
Q 1111011101110010100111011101111

x[1+ Q] GGCC ACT GAA T T CCA CGA CCAG

This method is only efficient if the cardinality of each run of consecutive charac-
ters is greater than unity. If, on the other hand, you take the chunk of n¹ previous
positions and perform a left rotational shift ofm² positions, you can save a few more
characters.

Example

Let x andQ be the nucleotide sequence and spaced seed of the previous example.

on
e_
to
_k
ee
p 0

-GGC -AC -GA - - -CC -CG -CCA
-GGC -AC -GA - - -CC -CG -CCA

--AC -GA --- - - -CG -CC ----
-CAC -GA -TT - - -CG -CC -CCG

8 saved characters

6 deleted characters

6 entered characters

in total: 12 in/del operations

speed-up: 1.00 compared to the previous example

x[0+ Q] is used to calculate x[4+ Q]

¹n = Q[chunk[i][1].start] + chunk[i][1].length − Q[chunk[i][0].start] − chunk[i][0].length, ∀i ∈
chunk.size().

²m = chunk[i][1].start+ chunk[i][1].length− chunk[i][0].start− chunk[i][0].length

36

on
e_
to
_k
ee
p 1

---- C-- G-- - G --- C-- G---
---- C-- G-- - G --- C-- G---

---- G-- --- - - --- G-- ----
---- G-- G-- - C --- G-- G---

2 saved characters

3 deleted characters

3 entered characters

in total: 6 in/del operations

speed-up: 1.67 compared to the previous example

x[0+ Q] is used to calculate x[4+ Q]

on
e_
to
_k
ee
p 2

---- --- --- T - G-- --- ----
---- --- --- T - G-- --- ----

---- --- --- G - --- --- ----
---- --- --- G - C-- --- ----

1 saved characters

1 deleted characters

1 entered characters

in total: 2 in/del operations

speed-up: 2.00 compared to the previous example

x[0+ Q] is used to calculate x[5+ Q]

Before proceeding further with the implementation, it was necessary to evaluate
the efficiency benefits. For the example case, it was calculated that for each hash, 20
in/del operations would be performed instead of 26. This should lead to an increase
in efficiency of approximately 1.30 times. However, comparing this solution with
ntHash2, the speed-up factor only increases from0.54 to 0.70, remaining insufficient
to exceed the performance of ntHash2.

The question arises: “Is this method actually better than the naive method?”
Analysing the number of operations,

• forone_to_keep0, 14 XORoperations are required for an ex-novo construc-

37

tion, whereas reusing a previous hash requires 12 plus 1 rotational shift³.

• one_to_keep1 takes 5 XOR operations to build it from scratch, while it
takes 6 XOR operations and 1 rotational shift to use a previous hash.

• for one_to_keep2, there is no difference in the number of XOR operations,
but building it from scratch would save the shift.

It follows that building the three chunks from scratch would use 21 XOR operations,
whereas reusing the previous hashes would require 20 XOR operations and 3 rota-
tional shift operations (equivalent to 29 bitwise operations). Therefore, rebuilding
from scratch might actually be more efficient.

one_to_keep as spaced seed

The next improvement in the handling of the MISSH tool involved the idea of treat-
ing one_to_keep vectors as spaced seeds. However, this proposal also proved
to be ineffective. Treating the vector one_to_keep as spaced-seed produces Q-
grams that do not correspond to the desired result.

Example

Let us consider a practical example:

x AGGCCCACTGGAAGTTGTAGCCACCGAGCCAG[...]
Q 1111011101110010100111011101111

x[0+ Q] AGGC CAC GGA T G GCC CCG GCCA
The contributions given by the three vectors one_to_keepi, coded as spaced
seeds, are:

i = 0 111011011000110110111
i = 1 100100010001001
i = 2 101

Using the one_to_keep vector as a spaced-seed results in Q-grams not re-
lated to the sequences originally sought. As can be seen in the table below, none
of the given strings are descriptive of a one_to_keepi vector:

³In terms of bitwise operations, a rotational shift (right or left) corresponds to 2 simple shift op-
erations and 1 OR operation.

38

i = 0 i = 1 i = 2

AGGCCCTAGTGAGC ACCAT AG
GGCCATGGTGTGCC GCTAT GC
GCCACGGTTTACCA GCGGG GC
CCCCTGATGAGCAC CAGTT CC
[...] [...] [...]

The way of adapting the vector one_to_keep to take into account the char-
acters 0 due to the original spaced-seed is also not feasible,

i = 0 111001100110000000011001100111
i = 1 10001000000100000010001
i = 2 100001

as the resulting strings need to be further processed and divided into several
substrings in order to be used correctly.

i = 0 i = 1 i = 2

AGGCAGGGCCCGCC ACAAA AC
GGCACGACCCGCCA * GCAGC GA
GCCCTAACAGACAG GAGCC GT
CCCTGAGACAGAGC CCTCG CT
CCAGGGTCCGCGCC CTTAA CG
CACGATTCGCCCCG CGGCG * CG
ACTAATGGACACGG AGTCC AA
CTGAGGTAGAGGGT CAAGC CA
TGGGTTAGCGCGTC TAGAA TG *
[...] [...] [...]

The same problem of dividing the hashing value of a string is neither simple nor
efficient. Consider the strings

• GGC-AC-GA---CC-CG-CCA, string correctly written, that is the con-
tribution given by the first vector one_to_keep

39

• andGGCACGACCCGCCA, taken from the previous table and resulting from
the use of the one_to_keep vector as spaced-seed having also consid-
ered the characters 0 of the original spaced-seed

Their hashing values according to the hash function also implemented by ntHash
are111001010000001111101011011 and11110111001011100011,
for the first and second string respectively. There is an obvious need to manip-
ulate the second value to make it like the first, but this task requires re-reading
each character to delete its current contribution and to return the correctly
repositioned contribution. This procedure is not computationally efficient and
makes it impractical to handle one_to_keep vectors as spaced seeds.

4.1 DuoHash: the new version of MISSH
The final improvement of the MISSH tool took shape with the introduction of a new
strategy to calculate the hashing of nucleotide sequences, significantly reducing the
calculation time and increasing the overall efficiency of the process. The original
hash function from which the optimisation started is the rolling hash function, the
pseudo-code of which is shown in Algorithm 4.2.

Algorithm 4.2: Rolling Hash function

1: values← {0x3C8BFBB395C60474,0x3193C18562A02B4C,
0x20323ED082572324,0x295549F54BE24456};

2: Function getHashes(x,Q, i):
3: forward← 0;
4: reverse← 0;
5: foreach k ∈ Q do
6: index← char_to_int(x[i+ k]); // defined at Page 32
7: forward← forward⊕ rol|Q|−1−k values[index];
8: reverse← reverse⊕ rolk values[|values| − 1− index];
9: return ⟨forward, reverse⟩;

The DuoHash approach exploits initial encoding⁴ and a structure called Hash
that contains the variables for forward and reverse hashing. The basic idea behind

⁴In the DuoHash tool, what was called ”encoding” in previous versions was called ”hashing”.

40

the new algorithm is the use of tables with pre-calculated hashes to speed up the
hash calculation process. Instead of calculating the hash for each nucleotide base at
runtime, look-up tables are used that contain pre-calculated values for all possible
combinations of four nitrogen bases. This approach drastically reduces the number
of operations required.

Example

To better explain the concept, let us consider an example of look-up tables.

sequence encoding hashing

AAAA 00000000 0x53EC3F8647623EED
CAAA 00000001 0x3B2DEE31FC53472D
GAAA 00000010 0xB622149EFBEB046D
TAAA 00000011 0xFD19ADB0B6403FFD
ACAA 00000100 0x678CD75D9AFA820D
...
TTTT 11111111 0x9400B260ACBDFF13

Given the nucleotide sequence x = AGGCCCACTGGAAGTTGTAGCCACCG and
the spaced seed 11110111011100111011101111 defined asQ = {0, 1, 2,
3, 5, 6, 7, 9, 10, 11, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25}, theQ-gram x[0+Q] is cal-
culated as follows:

x AGGCCCACTGGAAGTTGTAGCCACCG
Q 11110111011100111011101111

x[0+ Q] AGGC CAC GGA TTG AGC ACCG
The resultingQ-gram is x[0+Q] = AGGCCACGGATTGAGCACCG. Its encoding,
in accordance with MISSH and earlier versions, is

h(x[0+ Q]) = 1001010001100010111100101001000101101000

A total of k = 5 groups of 8 bits (corresponding to the encoding of 4 bases) are
counted. Each of these groups is used as an index to access the pre-calculated
hash tables:

41

i encoding hashing

0 01101000 0x15609AFAC162C235
1 10010001 0x3DA45F3F050E3E0D
2 11110010 0x8841C2559987C40B
3 01100010 0x8249A46E23AF65F5
4 10010100 0x6105665363A7FB2D

The hashing value is then calculated using the following formula:

hashing =
k−1⊕
i=0

rolk−i−1 look-up[i]

In the example case, hashing takes the value

hashing = 0x9AFAC162C2351560⊕ 0x45F3F050E3E0D3DA⊕
⊕ 0x41C2559987C40B88⊕ 0x249A46E23AF65F58⊕
⊕ 0x6105665363A7FB2D

= 0xDB54441AFF406947

Figure 4.1 may help in understanding the process.

To better handle forward and reverse hashing, and cases where the last group of
4 nitrogen bases is not completely filled, there are 8 look-up tables:

• e4_to_fHash and e4_to_rHash for handling complete groups of all 4
bases;

• e3_to_fHash and e3_to_rHash for the management of groups com-
posed of 3 bases;

• e2_to_fHash and e2_to_rHash for the management of groups consist-
ing of 2 bases;

• e1_to_fHash ande1_to_rHash for themanagement of groupswith only
1 base.

Each table used to manage groups composed of k nitrogen bases contains 4k

42

Figure 4.1: Schematic and visual procedure for using look-up tables to calculate the hashing value of the Q-
gram AGGCCACGGATTGAGCACCG.

values. For each of these values, the corresponding shifts are also pre-calculated,
avoiding shift operations at runtime. Taking into account that spaced seeds with
a maximum weight of 32 are allowed, and that the values in the look-up tables are
in groups of 4 nitrogenous bases, the possible shifts are 8. Considering that each
table contains 4k values, that for each value the corresponding 8 shifts are also pre-
calculated, and that each value is a 64-bit integer (8 Bytes), each table requires mem-
ory space equal to 4k+3 Bytes. In total, the look-up tables occupy a total space of
21.25 kBytes⁵. With modern memory capacities, the space required to handle the
8 look-up tables is acceptable. The Algorithm 4.3 describes how the look-up tables

⁵1 Byte = 8 bits; 1 kByte = 1024 Bytes.

43

are pre-calculated.

Algorithm 4.3: DuoHash: look-up tables

1: values← {0x3C8BFBB395C60474,0x3193C18562A02B4C,
0x20323ED082572324,0x295549F54BE24456};

2: Function lookupTable(k):
3: for i← 0 to 4k − 1 do
4: ek_to_fHash[i][0]← 0;
5: ek_to_rHash[i][0]← 0;

/* For loop to prepare primary hashing values */
6: for j← 0 to k− 1 do
7: index← (i >> 2j) ∧ 0b11;
8: ek_to_fHash[i][0]← ek_to_fHash[i][0]⊕ rolk−j−1 values[index];
9: ek_to_rHash[i][0]←

ek_to_rHash[i][0]⊕ rolj values[|values| − 1− index];
/* For loop to populate the shifts table */

10: for j← 0 to 8− 1 do
11: ek_to_fHash[i][j]← rol4j ek_to_fHash[i][0];
12: ek_to_rHash[i][j]← rol4j ek_to_rHash[i][0];

13: return ⟨ek_to_fHash, ek_to_rHash⟩;

The starting point of the new algorithm is the production of only the encoding of
the nucleotide sequence, i.e. what was called the hashing value in previous versions
of the software. This encoding is stored within a structure called Hash, which also
contains two variables set for forward and reverse hashing. The latter are calculated
only later, using the specially optimised getHashes function. The function, as
illustrated in the Algorithm 4.4, receives two parameters: the structure Hash and
the value s(Q). The variableencoding is temporarily broken down into bytes, each
of which represents the encoding of 4 nitrogen bases. Using the byte value as an
index, the function accesses a series of tables of pre-calculated values, as described
in the previous section.

This solution was developed to address some of the limitations of the previous
techniques used in MISSH, which, although effective, had room for improvement in
terms of computational efficiency. The new strategy is based on the idea of avoiding
the repetitive calculation of the same values and instead exploiting a pre-computed

44

Algorithm 4.4: DuoHash: getHashes function

1: Function getHashes(Hash, s(Q)):
2: bytes← s(Q)/4; // Hash = ⟨encoding, forward, reverse⟩
3: for i← 0 to bytes do
4: curr_byte← i-th byte of encoding;
5: forward← forward⊕ e4_to_fHash[curr_byte][bytes− i− 1];
6: reverse← reverse⊕ e4_to_rHash[curr_byte][i];
7: if s(Q) mod 4 ̸= 0 then
8: curr_byte← bytes-th byte of encoding;
9: forward← rols(Q) mod 4 forward;
10: if s(Q) mod 4 = 3 then
11: forward← forward⊕ e3_to_fHash[curr_byte][0];
12: reverse← reverse⊕ e3_to_rHash[curr_byte][bytes];
13: else if s(Q) mod 4 = 2 then
14: forward← forward⊕ e2_to_fHash[curr_byte][0];
15: reverse← reverse⊕ e2_to_rHash[curr_byte][bytes];
16: else if s(Q) mod 4 = 1 then
17: forward← forward⊕ e1_to_fHash[curr_byte][0];
18: reverse← reverse⊕ e1_to_rHash[curr_byte][bytes];

look-up table, which drastically reduces the number of operations required to obtain
the desired hashes. The getHashes function was implemented to make the most
of this optimisation, ensuring that the necessary values are always readily available
without having to recalculate them each time. The approach taken also takes into
account the need to handle variable-length sequences efficiently. Indeed, handling
s(Q) mod 4 makes it possible to deal with cases where the length of the sequence is
not an exact multiple of 4 nitrogenous bases.

A further significant advantage of this implementation is the ease with which the
hashing function can be modified. Thanks to the modular structure, it is possible to
update thegetHashes function to switch from a rolling hash function to any other
hashing function, without having to modify other parts of the code. This makes the
tool extremely flexible and easily adaptable to new requirements or hashing algo-
rithms, improving its longevity and usefulness. The possibility of easily changing the
hashing function is made possible by the fact that the encoding, initially calculated

45

by MISSH, provides a robust and flexible basis on which different hashing strategies
can be applied. The integration of this new hashing function with the other com-
ponents of MISSH required careful consideration of the overall architecture of the
tool. The decision to initially produce only the forward encoding and to postpone
the calculation of the forward and reverse hashes to a later stage was taken in or-
der to maximise efficiency and reduce the initial computational load. This approach
allows all the necessary encodings to be accumulated before proceeding with the
calculation of the hashes, thus optimising the use of resources and improving the
overall speed of the process. Furthermore, the choice of using a Hash structure to
contain both the encoding and the forward and reverse hashes made the code more
modular and easier to maintain. This structure makes it possible to isolate the cal-
culation of the hashes from other operations, facilitating debugging and eventual
updating of the code. The getHashes function has been designed to be highly
efficient, minimising the number of operations required and making maximum use
of the calculation capabilities of modern CPUs.

The innovative approach adopted in this new tool DuoHash represents a signif-
icant step forward compared to previously used techniques. The combination of
an optimised data structure, the use of pre-computed look-up tables and the ef-
ficient management of remainders results in a significant improvement in perfor-
mance, making the tool more competitive and suitable for handling large amounts
of data with greater speed and accuracy. The benefits of this approach will be fur-
ther explored in the following chapters, where the results of performance tests and
comparisons with other tools will be presented, demonstrating the effectiveness and
superiority of the new strategy adopted.

4.2 DuoHash: new features
The latest update of the MISSH tool, called DuoHash, introduces a number of new
features that significantly improve the flexibility and efficiency of the hashing pro-
cess of nucleotide sequences. The two main new features are the possibility to eas-
ily modify the hash function and the implementation of the getSpacedKmer
function, which converts encodings into nucleotide sequences and saves them in
a FASTA file, creating a dataset that can be used by third-party tools such as Jelly-
Fish. These improvements make DuoHash an extremely versatile and powerful tool

46

for analysing genomic sequences.
One of the strengths of DuoHash is the possibility to easily change the hash func-

tionwithout compromising the efficiency of the tool. The new structure of DuoHash
is designed in such a way that the hashing function can be replaced by mainly acting
on the getHashes function. This makes it possible to quickly adapt the tool to
different calculation requirements and hashing algorithms, while still maintaining
the same base of encoding values calculated by MISSH. The current implementa-
tion of DuoHash uses a rolling hash function, which exploits pre-computation of
values and bitwise operations to guarantee efficient calculation. However, due to
the modularity of the system, other hash functions can be implemented with only
a few modifications to the code. For example, one could replace the rolling hash
function with a hash function based on the algorithm of Fowler-Noll-Vo (FNV) [6],
known for its simplicity and efficiency. The Algorithm 4.5 describes a possible im-
plementation of the hash function FNV-1A.

Algorithm 4.5: DuoHash: getHashes function with FNV-1A hash function.

1: FNV_offset_basis← 0xCBF29CE484222325;
2: FNV_prime← 0x00000100000001B3;
3: Function getHashes(Hash, s(Q)):
4: k← ⌈s(Q)/4⌉; // Hash = ⟨encoding, forward, reverse⟩
5: forward← FNV_offset_basis;
6: reverse← FNV_offset_basis;
7: for i← 0 to k− 1 do
8: forward← (forward⊕ i-th byte of encoding)× FNV_prime;
9: reverse← (reverse⊕ (k− 1− i)-th byte of encoding)× FNV_prime;

Creation of FASTA file

In addition to the flexibility of the getHashes function, DuoHash introduces the
getSpacedKmer function, shown in the Algorithm 4.6. This function converts
the encodings into nucleotide sequences and saves them in a FASTA file, making it
possible to use the data with third-party tools such as JellyFish [17], a programme
used for fast k-mer counting in DNA sequences.

This function works by breaking down the encoding variable into 1-byte chunks
and converting them into nucleotide characters using look-up tables (e4_to_char,

47

Algorithm 4.6: DuoHash: getSpacedKmer function

1: Function getSpacedKmer(Hash, s(Q)):
2: k← ⌊s(Q)/4⌋; // Hash = ⟨encoding, spacedKmer⟩
3: for i← 0 to k do
4: curr_encoding_byte← i-th byte of encoding;
5: curr_spacedKmer_word is the i-th word of 32-bits of spacedKmer;
6: curr_spacedKmer_word← e4_to_char[curr_encoding_byte];
7: if s(Q) mod 4 ̸= 0 then
8: curr_encoding_byte← k-th byte of encoding;
9: curr_spacedKmer_word is the k-th word of 32-bits of spacedKmer;
10: if s(Q) mod 4 = 3 then
11: curr_spacedKmer_word← e3_to_char[curr_encoding_byte];
12: else if s(Q) mod 4 = 2 then
13: curr_spacedKmer_word← e2_to_char[curr_encoding_byte];
14: else if s(Q) mod 4 = 1 then
15: curr_spacedKmer_word← e1_to_char[curr_encoding_byte];

16: spacedKmer[k] = ′\0′;

e3_to_char, etc.). The result is a nucleotide sequence spacedKmer that is then
saved in a FASTA file.

48

5
Results

5.1 Tools and Experimental Setup
In this section, the tools and experimental setup used for the validation and test-
ing of the developed software are described. The analysis focuses on the different
datasets, seedset, and computational platform employed. Each component is crit-
ical in assessing the performance, efficiency, and scalability of the software under
various conditions and constraints. This comprehensive setup ensures that the soft-
ware is rigorously tested and its capabilities thoroughly evaluated.

5.1.1 Dataset

For the validation and testing of the developed software, two distinct groups of ar-
tificial datasets were used, designed in such a way as to vary one of the two main
parameters: the length and the number of reads. The structure of each group, sum-
marised in Table 5.1, is described in detail here:

• the first group of datasets, denoted by the letter “L”, is characterised by reads of
a constant length of 80bp. The variability between the datasets in this group is
given solely by the number of reads, which varies from aminimum of 500,000
to a maximum of 5,000,000. This variation makes it possible to assess the
performance of the software in relation to the volume of data processed, while
keeping the length of the reads constant.

• the second group of datasets, denoted by the letter “R”, keeps the number

49

of reads constant at 500,000. The length of the reads in this group varies
from 250 to 5,000bp. This makes it possible to examine the impact of se-
quence length on software performance, while keeping the number of reads
unchanged.

The heterogeneity of the datasets was designed to test the software under differ-
ent conditions and simulate real usage scenarios. In particular, the L-group datasets
allow us to observe how the software scales as the volume of data increases, while
the R-group datasets allow us to understand how software performance is affected
by the length of reads. These analyses are crucial in assessing the efficiency, speed
and scalability of the software, ensuring that it can adequately handle different types
of genomic data.

Dataset Number of reads Reads length

L500000 500,000 80
L1000000 1,000,000 80
L1500000 1,500,000 80
L2000000 2,000,000 80
L5000000 5,000,000 80

R80 500,000 80
R200 500,000 250
R350 500,000 350
R500 500,000 500
R1000 500,000 1,000
R1500 500,000 1,500
R2000 500,000 2,000
R5000 500,000 5,000

Table 5.1: Number of reads and average lengths for each of the dataset used in the experiments.

5.1.2 Seedset

In the initial design phase of the experimental setup, the use of the same set of spaced
seeds (seedset) used in previous versions of the software was considered. However,
to enable an accurate comparison with the ntHash2 tool, it was necessary to modify
the spaced seeds so that they were symmetrical. For ntHash2, in fact, the symmetry

50

of the spaced seeds is fundamental for the calculation of the reverse hashing¹. It
is important to emphasise that the new version of MISSH does not require spaced
seed symmetry, which is a considerable advantage in terms of flexibility: accepting
symmetric seeds and retaining the ability to support asymmetric variants ensures
that the tool remains robust and able to meet the different needs and preferences of
users.

Each spaced seed set is initially composed of three sets of three spaced seeds,
designed to meet specific criteria:

• maximisation of the probability of success [31],

• minimisation of overlap complexity [27],

• maximisation of sensitivity [27].

Example

Below is an example of the original seedset W22L31, which groups spaced seeds
of weight 22 and length 31.

Spaced seeds maximizing the hit probability

Q1 1111011101110010111001011011111

Q2 1111101011100101101110011011111

Q3 1111101001110101101100111011111

Spaced seeds minimizing the overlap complexity

Q4 1111010111010011001110111110111

Q5 1110111011101111010010110011111

Q6 1111101001011100111110101101111

Spaced seeds maximizing the sensitivity

Q7 1111011110011010111110101011011

Q8 1110101011101100110100111111111

Q9 1111110101101011100111011001111

A total of six seedsets of different weights and lengths were used, as shown in
Table 5.2.

¹It is not necessary, instead, for the calculation of the forward hash only.

51

Seedset Brief description

W10L15 this seedset contains spaced seeds of weight 10 and length 15
W14L31 this seedset contains seeds of weight 14 and length 31
W18L31 seedset with weight 18 and length 31
W22L31 includes spaced seed of weight 22 and length 31
W26L31 with weight 26 and length 31
W32L45 seedset with weight 32 and length 45

Table 5.2: Seedset used in the experiments.

The heterogeneity of the seedsets makes it possible to assess the efficiency of the
tool in various situations. In particular, the four seedsets with a length of 31 allow
the tool’s efficiency to be analysed as weight increases. This diversity of seedsets
is fundamental to understanding how the tool performs under different conditions
and constraints, offering a complete overview of its capabilities.

The use of seedsets with varying weights and lengths makes it possible to ex-
amine the impact of these parameters on tool performance. Seedsets with higher
weights tend to have higher sensitivity, while those with longer lengths can improve
specificity. This balance between sensitivity and specificity is crucial to optimise the
use of the tool in practical applications. The choice of a diverse set of spaced seeds al-
lowed for a thorough and versatile analysis of the tool, ensuring that its performance
is adequately tested and validated in a wide range of possible situations.

Theflexibility introduced by the acceptance of symmetric and asymmetric spaced
seeds represents a significant step forward in the tool’s evolution, making it suitable
for a variety of application contexts.

5.1.3 Machine

In the experimental setup, the computational tasks were performed on a personal
MacBook Pro, late 2020 model, equipped with the revolutionary Apple M1 pro-
cessor. This processor, based on the arm64 architecture, offers remarkable speed
and efficiency thanks to its octa-core CPU configuration, which includes four high-
performance cores and four high-efficiency cores, enabling seamless multitasking
and energy optimisation. In addition, the M1 chip utilises a unified memory ar-
chitecture, integrating RAM directly into the processor package for improved per-
formance and power efficiency. With 16GB of unified memory at its disposal, the

52

MacBook Pro M1 offers unparalleled responsiveness and fluidity, making it an ideal
platform for computational analysis.

The arm64 architecture of the M1 chip provided a smooth transition from tra-
ditional x86 processors during code compilation. One of the main considerations
was the need to explicitly use version 13 of the g++ compiler. This adjustment en-
sured the compatibility and optimal performance of the algorithms on the AppleM1
chip, emphasising its versatility and effectiveness in handling diverse computational
tasks.

5.2 Analysis of the time performances

In this chapter, we present a detailed analysis of the time performance of the new
tool DuoHash compared to the existing tool ntHash2. The various tests conducted
were aimed at evaluating the efficiency and speed of DuoHash in comparison to
ntHash2. The results are presented in terms of speed-up, which is calculated using
the formula:

speed-up =
reference time

time to be evaluated
where “reference time” refers to the time taken by ntHash2 and “time to be evaluated”
refers to the time taken by DuoHash.

To ensure the accuracy of the results, each configurationwas tested 10 times, and
the average of these valueswas taken. This repetition helps tomitigate any anomalies
or inconsistencies that may arise during individual test runs. For greater precision,
the times were measured in microseconds and subsequently converted to millisec-
onds.

Additionally, to objectively evaluate the two tools, the test scriptswere optimized
and compiled using the -O3 optimization option of the GNU compiler. This ensures
that both tools are operating at their highest potential performance during the tests.

The detailed results of these performance evaluations are presented in this chap-
ter and further elaborated upon in the appendix.

5.2.1 General analysis

The speed-up achieved by DuoHash tends to remain constant, or decrease slightly,
in the various methods presented when the seedset is set, regardless of the dataset

53

L5
00
00
00

L2
00
00
00

L15
00
00
0

L10
00
00
0

L5
00
00
0
R2
00
R3
50
R5
00
R1
00
0
R1
50
0
R2
00
0
R5
00
0

1

2

3

4

5

6
Sp

ee
du

p
w
.r.
t.
nt
H
as
h2

Naive
ISSH
DuoHash
DuoHash_parallel

Figure 5.1: Speed-up graph for seedset W26L31

being processed. This trend is particularly evident for datasets in the “L” group,
where the speed-up is highest. For the “L” group datasets - characterised by reads
of varying number, but constant length - the method demonstrates a constant and
significant speed-up in all scenarios tested. This indicates that the software scales
efficiently with the data volume when the length of the reads remains unchanged.

For datasets in the “R” group that maintain a constant number of reads, but vary
in length - the speed-up shows greater variability. In this group, the speed-up gen-
erally tends to decrease slightly as the length of the reads increases. Despite this, the
overall performance of the instrument remains robust, demonstrating its ability to
effectively handle different lengths of reads.

Analysing the results, it clearly emerges that theDuoHashmethod prevails over
all othermethods in almost all situations, with a speed-up between 3.34× and 11.23×.
This dominance is evident in both the “L” and “R” group datasets, with the exception
of one specific case: in the “R5000” dataset, theDuoHash_parallelmethod out-
performs DuoHash in terms of performance, arriving at a speed-up of 9.05× in the
L5000000 dataset. This outstanding result requires further analysis.

The DuoHash_parallel method deserves a separate discussion due to its

54

unique performance characteristics. Thismethod shows its true potential with longer
readings. Speed-up becomes particularly advantageous when the length of reads
reaches and exceeds 5,000bp. This significant performance improvement highlights
the method’s ability to efficiently handle large, complex data sets with long reads.
The parallelisation strategy employed by DuoHash_parallel allows it to pro-
cess such data sets more efficiently, making it an ideal choice for scenarios involving
long genomic sequences.

5.2.2 Performance Evaluation with Varying SeedWeight

The weight of a spaced seed is a critical factor that can influence the sensitivity and
specificity of the software. To assess the impact of the weight of the spaced seed,
four seed sets with a fixed length of 31 and different weights were used: W14L31,
W18L31, W22L31 and W26L31.

For the “L” group datasets, the speed-up shows fluctuations without a definite
pattern. In general, there is a slight decrease in speed-up as the seedweight increases.
However, there are significant upward deviations for seedsetW18L31, indicating that
this particular seedset performs exceptionally well under certain conditions. Fig-
ure 5.2 graphically depicts the speed-up variations for the DuoHashmethod across
the seedsets and datasets considered in this section. The highest speed-up achieved
by this dataset was 11.23× with seedset W18L31.

For the datasets in the “R” group, speed-up follows a similar trend to that ob-
served in the “L” group. The general trend is a decrease in speed-up with increasing
seed weight. However, the upward deviations observed for seedset W18L31 in the
“L” group datasets aremuch less pronounced in the “R” group datasets. This suggests
that, although the seedset W18L31 continues to perform well, its relative advantage
is reduced when it comes to variable read lengths. Figure 5.3 graphically depicts the
speed-up variations for the DuoHashmethod across the seedsets and datasets con-
sidered in this section. The maximum speed-up achieved for the “L” group datasets
was 10.35× with seedset W18L31.

5.2.3 Performance Evaluation with Varying Seed Length

The length of the spaced seed is another crucial parameter that can influence soft-
ware performance. To assess the impact of spaced seed length, seedsets with differ-

55

W1
4L
31

W1
8L
31

W2
2L
31

W2
6L
31

6

7

8

9

10

11
Sp

ee
du

p
w
.r.
t.
nt
H
as
h2

L500000
L1000000
L1500000
L2000000
L5000000

Figure 5.2: Speed-up graph for method DuoHash among seedset with varying weight and dataset of “L”
group.

W1
4L
31

W1
8L
31

W2
2L
31

W2
6L
31

4

6

8

10

Sp
ee

du
p
w
.r.
t.
nt
H
as
h2

R80
R200
R350
R500
R1000
R1500
R2000
R5000

Figure 5.3: Speed-up graph for method DuoHash among seedset with varying weight and dataset of “R”
group.

ent lengths and fixed weights were used: W10L15, W22L31 and W32L45. As there
are only three seedsets, a variation in one of them can significantly influence the

56

overall trend. Although the pattern of behaviour is clear and consistent in all the
cases analysed (see Figure 5.4), we cannot speak of a well-defined trend. This fig-
ure clearly shows the “step” pattern with seedset W10L15 showing lower speed-up
values than seedsets W22L31 and W32L45, which tend to stabilise at higher values.

W1
0L
15

W2
2L
31

W3
2L
45

4

4.5

5

5.5

6

6.5

7

Sp
ee

du
p
w
.r.
t.
nt
H
as
h2

L5000000
L2000000
L1500000
L1000000
L500000
R200
R350
R500
R1000
R1500
R2000
R5000

Figure 5.4: Speed-up graph formethodDuoHash among seedset with varying length and dataset of both “L”
and “R” groups.

For the L-group datasets, a “stepped” pattern is observed in the speed-up, with
the first value (W10L15) being reduced by approximately 20 per cent compared to
the next two values (W22L31 and W32L45), which tend to remain constant. This
behaviour might suggest that, beyond a certain seed length, the efficiency of the
tool remains stable. The maximum speed-up achieved for the L-group datasets was
6.75× with seedset W22L31.

For the R-group datasets, the speed-up also shows a similar “step” pattern. The
initial value (W10L15) is about 20 per cent lower than the other two seedsets (W22L31
and W32L45), which maintain constant values. For this group of datasets, a maxi-
mum speed-up of 6.08× was achieved with seedset W22L31.

57

5.2.4 Performance Comparison: Multiple-Seed vs. Single-Seed

To confirm the validity of themultiple-seed version of the software, the performance
between the best method for single-seed mode and the best method for multiple-
seed mode was compared. This comparison is crucial to determine whether the
multiple-seed implementation offers a significant advantage over the single-seed
version. The following were chosen:

• the ISSHmethod for the single-seed mode;

• the DuoHashmethod for the multi-seeded mode;

W1
0L
15

W1
4L
31

W1
8L
31

W2
2L
31

W2
6L
31

W3
2L
45

5

6

7

8

9

10

11

Sp
ee

du
p
w
.r.
t.
nt
H
as
h2

ISSH
DuoHash

Figure 5.5: Speed-up comparison between single-seed and multiple-seed versions (L1000000 dataset).

The results represented in Figure 5.5 show that the speed-up of the two versions,
even if restricted to the L1000000 dataset only, does not differ substantially, but the
multiple-seed version prevails in terms of overall performance.

5.3 Analysis of the time performances in k-mer Counting
In this section, a detailed comparison will be made between two tools for extract-
ing spaced k-mer from nucleotide sequences: DuoHash and MaskJelly [36]. Both

58

tools are set to output a FASTA file containing the spaced k-mer extracted from the
nucleotide sequence provided as input. The generated FASTA file will serve as in-
put for JellyFish, a software tool known for counting k-mer. This comparison will
allow us to evaluate the efficiency and performance of the two tools in the context
of preprocessing sequences for k-mer counting.

MaskJelly is a tool developed in C++ with similar functionality to DuoHash. It
is also designed for spaced k-mer extraction, but differs in that it only works with
one spaced seed at a time. This limitation makes MaskJelly less flexible than Duo-
Hash, and a direct comparison in single-seed mode will make it possible to assess
the actual performance differences between the two tools. For a fair comparison
with MaskJelly, DuoHash will be used in single-seed mode, limiting its operation to
one spaced seed at a time.

JellyFish is a popular k-mer counting software in bioinformatics. It is known for
its speed and efficiency in k-mer counting, thanks to the use of advanced data struc-
tures such as hash tables. It should be noted that, to date, JellyFish does not directly
support the handling of spaced seeds, limiting itself to the counting of contiguous
k-mer. This limitation underlines the importance of integration with tools such as
MaskJelly and DuoHash, which pre-process sequences to extract spaced k-mer, rep-
resenting a substantial step forward in genomic research.

For this comparison, both tools, DuoHash and MaskJelly, were configured to
process a series of nucleotide sequences and generate FASTA files containing the
extracted spaced k-mer. These files were then used as input for JellyFish, which
performed the k-mer count. The entire process was evaluated in terms of execu-
tion time and resource utilisation in order to determine which tool offers better per-
formance in preprocessing sequences. To perform a detailed comparison between
the DuoHash and MaskJelly tools, four datasets were selected from those presented
above: L500000, L20000, R500 and R2000. This selection provides a comprehen-
sive overview of the performance of the tools. Representing the different seedsets,
seedsetW22L31 was chosen. Both tools were configured to process these nucleotide
sequences and generate FASTA files containing the extracted spaced k-mer. These
files were subsequently used as input for JellyFish, which performed the k-mer count.
The entire process was evaluated in terms of execution time, in order to determine
which tool offers better performance in preprocessing sequences. The speed-up of

59

DuoHash compared to MaskJelly is depicted in Figure 5.6. As can be seen from the
graph, DuoHash offers a significant performance improvement in terms of execu-
tion time compared to MaskJelly on all four datasets considered, with an average
speed-up ranging between 5.19× and 6.46×.

L5
00
00
0

L2
00
00
00

R5
00

R2
00
0

5.2

5.4

5.6

5.8

6

6.2

6.4

Sp
ee

du
p
w
.r.
t.
M
as
kJ
el
ly

Figure 5.6: Speed-up graph for DuoHash with respect to MaskJelly (pre-processing only).

To gain a comprehensive understanding of the overall performance improve-
ment provided by DuoHash, it is also crucial to compare the speed-up of the entire
process, which includes both the pre-processing of the nucleotide sequences and
the subsequent k-mer counting by JellyFish. By evaluating the total execution time
for the combination of spaced k-mer extraction and k-mer counting, we can assess
the impact of DuoHash’s faster pre-processing on the overall workflow. Figure 5.7
illustrates this comparison, showing the total execution time for each dataset when
using DuoHash and MaskJelly. As the graph indicates, the integration of DuoHash
significantly accelerates the complete process, offering a speed-up ranging between
1.90× and 2.14×. This enhancement underscores DuoHash’s efficiency not only in
the preprocessing stage but also in the context of the entire k-mer counting work-
flow, making it a highly effective tool for genomic sequence analysis.

In addition to verifying the speed-up of DuoHash compared to MaskJelly, it is

60

L5
00
00
0

L2
00
00
00

R5
00

R2
00
0

1.9

1.95

2

2.05

2.1

2.15

Sp
ee

du
p
w
.r.
t.
M
as
kJ
el
ly

Figure 5.7: Speed-up graph for DuoHash with respect to MaskJelly (entire process).

interesting to evaluate the incidence of preprocessing on the entire counting process,
which includes the extraction of the spaced k-mer and the execution of JellyFish. In
Figure 5.8, each column represents the fraction of time required for preprocessing,
while the red horizontal line indicates the execution time of JellyFish. DuoHash, ac-
counting for only about 20 per cent of the total process time compared toMaskJelly’s
60 per cent, saves considerable time and increases overall efficiency, making it a pre-
ferred choice for pre-processing before counting with JellyFish.

The comparison between DuoHash and MaskJelly, with JellyFish used for k-mer
counting, confirms that DuoHash offers a substantial advantage in speed and re-
source efficiency, even when used in single-seed mode. This makes DuoHash a su-
perior choice for the extraction of spaced k-mer. The validity of the multiple-seed
version of DuoHash, demonstrated in previous sections, further highlights the flexi-
bility and power of this tool in the context of bioinformatics applications, and its in-
tegration with JellyFish represents a significant advancement in genomics research,
filling the current gap in the management of spaced seeds and optimising the entire
sequence analysis process.

61

L5
00
00
0

L2
00
00
00

R5
00

R2
00
0

0.2

0.4

0.6

0.8

1
Counting process

Im
pa

ct
of

pr
e-
pr
oc
es
si
ng

MaskJelly
DuoHash

Figure 5.8: Impact of pre-processing (MaskJelly and DuoHash) on the overall counting process.

62

6
Conclusions

The DuoHash project led to the development of a highly efficient tool for hashing
spaced k-mer for nucleotide sequences, significantly improving performance over
existing tools such as ntHash2. Performance tests have shown that DuoHash of-
fers a significant speed-up, with an observed maximum speed-up of about 11× com-
pared to ntHash2. High speed-ups are particularly evident in datasets characterised
by reads of constant length, where DuoHash showed marked superiority. These re-
sults were achieved thanks to significant innovations in the data architecture, such
as the use of optimised hash structures and pre-computed look-up tables, which
drastically improved the calculation performance. The flexibility of the system, with
the possibility of easily modifying the hash function and handling both symmetric
and asymmetric spaced seeds, has expanded the application potential of DuoHash,
making it versatile for different types of genomic analysis. For instance, the imple-
mentation of the getSpacedKmer function and compatibility with JellyFish have
made DuoHash a powerful tool for pre-processing nucleotide sequences for spaced
k-mer counting. These contributions are significant for the field of bioinformatics, as
they offer a solution that not only improves performance, but also expands analysis
possibilities through a more flexible and integrated approach.

Along with the promising results, there are some aspects of DuoHash that could
be further improved. In particular, the implementation of more advanced paralleli-
sation techniques could further improve performance. Although DuoHash already
supports parallel execution through the DuoHash_parallel method, there is

63

further scope for optimising this aspect, making better use of the available hard-
ware resources and reducing computation times. One possible avenue could be the
revision of the data-saving structure to allow the implementation of techniques such
as Single InstructionMultiple Data (SIMD) instructions. Currently, the data storage
structure of DuoHash does not allow the effective use of instructions. Rethinking
the data architecture to align it with the requirements of instructions SIMD could
therefore be a significant improvement. This could involve reorganising data into
contiguous blocks in memory, optimised for parallel access and concurrent compu-
tation, thus minimising latency time and maximising throughput. These improve-
ments would make DuoHash even more competitive and versatile, allowing it to
handle ever larger datasets and to adapt to different research needs. In summary,
while DuoHash already represents a significant step forward in the field of hashing
genomic sequences, the adoption of advanced parallelisation techniques and the op-
timisation of parallel execution strategies are promising directions for the future
development of DuoHash, which could lead to further performance improvements
and greater efficiency in the analysis of genomic sequences.

64

A
Used Seedsets

In this chapter, all the seedsets used in the experiments in this study are described in
detail. A full description of these spaced seed sets is provided in Chapter 5 starting
on Page 50.

Seedset Brief description

W10L15 this seedset contains spaced seeds of weight 10 and length 15
W14L31 this seedset contains seeds of weight 14 and length 31
W18L31 seedset with weight 18 and length 31
W22L31 includes spaced seed of weight 22 and length 31
W26L31 with weight 26 and length 31
W32L45 seedset with weight 32 and length 45

65

Q1 100111101111001
Q2 101101101101101
Q3 110011101110011
Q4 110110101011011
Q5 111001101100111
Q6 111011000110111
Q7 111100101001111
Q8 111101000101111
Q9 111110000011111

Table A.1: Seedset W10L15: spaced seeds of weight 10 and length 15.

Q1 1000101011100100010011101010001
Q2 1010000111100100010011110000101
Q3 1011001001001010101001001001101
Q4 1011010110000010100000110101101
Q5 1011100000100110110010000011101
Q6 1101111100000000000000011111011
Q7 1110000100110100010110010000111
Q8 1110010001000110110001000100111
Q9 1110110000110000000110000110111

Table A.2: Seedset W14L31: spaced seeds of weight 14 and length 31.

Q1 1111000011001110111001100001111
Q2 1101101001100110110011001011011
Q3 1011010011001110111001100101101
Q4 1010101011010110110101101010101
Q5 1100111010110010100110101110011
Q6 1100111011010010100101101110011
Q7 1101011010101100011010101101011
Q8 1100111011001100011001101110011
Q9 1100111010110100010110101110011

Table A.3: Seedset W18L31: spaced seeds of weight 18 and length 31.

66

Q1 1110111001101110111011001110111
Q2 1110111011101100011011101110111
Q3 1111011101110010100111011101111
Q4 1111010111011010101101110101111
Q5 1111011110011010101100111101111
Q6 1111101001011110111101001011111
Q7 1111101001110110110111001011111
Q8 1111101011100110110011101011111
Q9 1111110101101010101011010111111

Table A.4: Seedset W22L31: spaced seeds of weight 22 and length 31.

Q1 1111101110111110111110111011111
Q2 1110111111011110111101111110111
Q3 1111110111111010101111110111111
Q4 1111011111101110111011111101111
Q5 1101111101111110111111011111011
Q6 1011111111110110110111111111101
Q7 1111011111111100011111111101111
Q8 1111111101110110110111011111111
Q9 1101111111011110111101111111011

Table A.5: Seedset W26L31: spaced seeds of weight 26 and length 31.

Q1 101011111100001111111101111111100001111110101
Q2 101101110111101110110101011011101111011101101
Q3 110111011011101101110101011101101110110111011
Q4 111011011101101110110101011011101101110110111
Q5 111100111100111100111101111001111001111001111
Q6 111101111011110111100000001111011110111101111
Q7 111110001111100011111101111110001111100011111
Q8 111110010011111001111101111100111110010011111
Q9 111111110000001111111101111111100000011111111

Table A.6: Seedset W32L45: spaced seeds of weight 32 and length 45.

67

B
Additional Times Tables

In this chapter, all times of ntHash2 tool and the new DuoHash tool, obtained in
the experiments conducted in the course of this study, are presented in detail. The
datasets, already described in the Chapter 5 on pages 49 and following, are given
again here. Times are expressed in milliseconds.

Dataset Number of reads Reads length

L500000 500,000 80
L1000000 1,000,000 80
L1500000 1,500,000 80
L2000000 2,000,000 80
L5000000 5,000,000 80

R80 500,000 80
R200 500,000 250
R350 500,000 350
R500 500,000 500
R1000 500,000 1,000
R1500 500,000 1,500
R2000 500,000 2,000
R5000 500,000 5,000

69

B.1 Times for the “L” group datasets

single-seed multiple-seed
ntHash2 naive FSH ISSH ntHash2 naive FSH

L5
00

00
0

W10L15 1,006 262 231 228 7,688 2,195 1,956
W14L31 1,294 260 252 224 10,273 2,257 2,203
W18L31 1,912 317 290 233 15,010 2,791 2,568
W22L31 1,292 372 310 218 10,360 3,262 2,833
W26L31 1,303 433 274 222 8,919 3,810 2,546
W32L45 1,127 384 252 190 9,041 3,240 2,146

L1
00

00
00

W10L15 2,058 507 451 445 15,504 4,407 3,879
W14L31 2,554 510 496 400 20,286 4,388 4,296
W18L31 3,877 623 569 415 30,288 5,439 5,048
W22L31 2,545 738 614 433 20,380 6,469 5,677
W26L31 2,606 868 546 443 18,225 7,589 5,091
W32L45 2,203 753 491 372 17,569 6,338 4,218

L1
50

00
00

W10L15 2,988 755 672 662 22,814 6,509 5,819
W14L31 3,773 776 754 611 30,076 6,577 6,461
W18L31 5,781 932 863 717 46,806 8,141 7,627
W22L31 3,797 1106 923 649 30,491 9,703 8,413
W26L31 3,909 1282 814 660 27,182 11,250 7,618
W32L45 3,305 1130 735 555 26,339 9,522 6,322

L2
00

00
00

W10L15 3,985 1,014 900 887 30,278 8,635 7,725
W14L31 5,035 1,021 991 801 40,343 8,774 8,598
W18L31 7,613 1,241 1,133 829 60,734 10,816 10,102
W22L31 5,071 1,473 1,230 864 40,640 12,916 11,258
W26L31 5,180 1,718 1,081 880 35,741 15,070 10,208
W32L45 4,407 1,506 981 741 35,108 12,684 8,396

L5
00

00
00

W10L15 9,946 2,528 2,243 2,208 75,656 21,637 19,287
W14L31 12,568 2,593 2,520 2,044 100,080 21,964 21,498
W18L31 19,349 3,108 2,839 2,077 161,847 27,146 25,220
W22L31 12,734 3,712 3,101 2,174 101,950 32,459 28,247
W26L31 12,968 4,309 2,715 2,208 91,764 38,011 25,345
W32L45 11,182 3,808 2,468 1,866 89,255 31,872 20,940

Table B.1: Overall time table (in milliseconds) for the “L” group datasets

70

multiple-seed
ISSH MFSH DuoHash DuoHash_col DuoHash_par DuoHash_row

1,922 2,002 1,453 1,803 13,286 1,967
1,744 2,298 1,502 1,694 13,650 2,211
1,824 2,498 1,450 1,666 13,550 1,803
1,879 2,667 1,536 1,912 13,301 1,971
1,896 2,582 1,526 1,792 13,421 1,968
1,479 2,269 1,359 1,528 13,408 1,608

3,817 3,983 2,874 3,596 26,522 3,922
3,393 4,525 3,008 3,339 26,471 4,324
3,534 4,971 2,881 3,264 26,544 3,581
3,688 5,320 3,020 3,734 25,974 3,924
3,769 5,142 3,034 3,594 26,456 3,891
2,896 4,466 2,681 2,951 25,465 3,171

5,688 5,931 4,307 5,338 38,712 5,851
5,097 6,833 4,475 5,033 39,489 6,495
5,306 7,445 4,324 4,879 39,642 5,368
5,534 7,944 4,520 5,606 39,561 5,906
5,620 7,702 4,532 5,346 39,122 5,864
4,350 6,732 4,020 4,433 38,168 4,778

7,590 7,881 5,719 7,092 51,671 7,797
6,793 9,044 5,904 6,677 52,750 8,736
7,057 9,895 5,752 6,492 52,263 7,106
7,368 10,561 6,054 7,539 52,190 7,843
7,520 10,405 6,055 7,118 52,067 7,755
5,802 8,781 5,356 5,900 50,818 6,381

18,938 19,720 14,367 17,738 128,635 19,475
16,990 22,572 14,885 16,600 131,708 21,399
17,642 24,716 14,410 16,244 135,462 17,884
18,460 26,402 15,175 18,786 131,871 19,692
18,866 25,815 15,386 17,930 131,846 19,785
14,568 22,149 13,486 14,843 128,820 15,911

71

B.2 Times for the “R” group datasets

single-seed multiple-seed
ntHash2 naive FSH ISSH ntHash2 naive FSH

R8
0

W10L15 1,006 262 231 228 7,688 2,195 1,956
W14L31 1,294 260 252 224 10,273 2,257 2,203
W18L31 1,912 317 290 233 15,010 2,791 2,568
W22L31 1,292 372 310 218 10,360 3,262 2,833
W26L31 1,303 433 274 222 8,919 3,810 2,546
W32L45 1,127 384 252 190 9,041 3,240 2,146

R2
00

W10L15 2,463 684 596 607 19,121 5,992 5,208
W14L31 3,589 833 762 634 29,558 7,471 6,816
W18L31 4,326 1,021 885 671 36,040 9,161 7,964
W22L31 3,562 1,218 986 697 29,198 10,950 9,188
W26L31 2,552 1,415 849 714 20,057 12,785 7,830
W32L45 3,629 1,528 900 688 29,996 13,659 8,344

R3
50

W10L15 4,285 1,231 1,062 1,093 33,489 10,866 9,515
W14L31 6,504 1,551 1,405 1,191 53,676 13,870 12,712
W18L31 7,898 1,908 1,634 1,270 65,747 17,090 14,799
W22L31 6,396 2,280 1,829 1,317 52,895 20,469 17,116
W26L31 4,555 2,654 1,586 1,346 36,011 23,845 14,664
W32L45 6,781 2,969 1,732 1,353 56,618 26,675 15,877

R5
00

W10L15 6,709 1,760 1,516 1,569 48,854 16,015 13,816
W14L31 9,552 2,276 2,058 1,750 78,972 20,785 18,820
W18L31 11,754 2,790 2,383 1,855 97,277 25,492 21,687
W22L31 9,379 3,353 2,689 1,939 77,650 31,123 25,613
W26L31 6,607 3,900 2,330 1,981 52,587 35,814 21,543
W32L45 10,184 4,449 2,567 2,008 85,117 39,945 23,516

Table B.2: Overall time table (in milliseconds) for the “R” group datasets - part one

72

multiple-seed
ISSH MFSH DuoHash DuoHash_col DuoHash_par DuoHash_row

1,922 2,002 1,453 1,803 13,286 1,967
1,744 2,298 1,502 1,694 13,650 2,211
1,824 2,498 1,450 1,666 13,550 1,803
1,879 2,667 1,536 1,912 13,301 1,971
1,896 2,582 1,526 1,792 13,421 1,968
1,479 2,269 1,359 1,528 13,408 1,608

5,316 5,477 3,866 4,930 15,327 5,274
5,622 7,743 4,650 5,475 17,205 6,822
5,937 7,740 4,618 5,414 16,096 5,720
6,207 8,698 4,801 6,276 16,587 6,337
6,333 7,925 4,869 5,949 16,683 6,402
6,100 9,055 5,163 6,135 16,863 6,459

9,731 9,990 6,999 8,915 18,974 9,599
10,765 14,706 8,654 10,213 21,302 12,627
11,391 14,638 8,683 10,211 20,720 10,772
11,930 16,303 8,940 11,866 21,317 11,951
12,053 14,892 9,068 11,128 21,482 12,010
12,236 17,515 10,028 12,027 22,179 12,733

14,245 14,752 10,642 13,047 21,691 14,147
15,973 22,178 13,550 15,251 24,747 18,797
16,888 21,608 12,989 15,146 23,868 16,103
17,921 24,306 14,100 18,103 25,637 17,845
17,979 22,121 13,681 16,765 26,192 17,998
18,292 25,548 15,603 18,059 27,493 18,939

73

single-seed multiple-seed
ntHash2 naive FSH ISSH ntHash2 naive FSH

R1
00

0

W10L15 12,461 3,566 3,046 3,160 98,256 32,581 27,670
W14L31 19,457 4,690 4,201 3,583 161,851 42,907 38,186
W18L31 23,563 5,727 4,848 3,790 198,326 52,282 44,070
W22L31 18,860 6,863 5,474 3,950 156,438 62,409 51,042
W26L31 13,463 8,004 4,722 4,034 106,942 72,702 43,537
W32L45 20,502 9,225 5,300 4,178 171,830 83,684 48,083

R1
50

0

W10L15 18,379 5,371 4,586 4,763 144,493 48,867 41,351
W14L31 28,996 7,058 6,318 5,392 240,301 64,419 57,081
W18L31 35,609 8,751 7,410 5,785 298,499 79,488 66,868
W22L31 28,494 10,508 8,372 6,048 239,908 95,355 77,387
W26L31 20,022 12,167 7,176 6,142 159,079 110,578 65,780
W32L45 31,274 14,115 8,086 6,367 261,604 127,294 72,944

R2
00

0

W10L15 24,616 7,118 6,119 6,366 193,444 65,179 55,086
W14L31 38,824 9,472 8,461 7,230 322,433 86,230 76,394
W18L31 47,334 11,704 9,859 7,738 396,448 106,338 89,209
W22L31 38,292 13,998 11,174 8,053 318,130 127,283 103,427
W26L31 26,975 16,266 9,581 8,187 215,261 146,821 87,326
W32L45 41,539 18,818 10,791 8,498 347,748 169,776 97,074

R5
00

0

W10L15 60,992 18,498 15,739 16,417 479,736 165,640 139,518
W14L31 98,330 24,513 21,966 18,768 817,744 219,369 194,687
W18L31 118,888 29,948 25,302 19,868 989,897 269,583 224,841
W22L31 95,118 35,891 28,565 20,721 789,914 324,546 261,281
W26L31 67,074 41,596 24,545 21,162 532,221 375,486 221,502
W32L45 105,520 48,697 27,848 22,088 885,443 472,203 247,809

Table B.3: Overall time table (in milliseconds) for the “R” group datasets - part two

74

multiple-seed
ISSH MFSH DuoHash DuoHash_col DuoHash_par DuoHash_row

28,805 30,217 21,305 26,623 31,197 28,451
32,484 45,010 28,606 32,359 43,030 38,554
34,492 44,441 26,991 31,246 39,758 32,859
36,183 49,156 28,092 36,262 43,571 36,390
36,706 44,864 28,008 34,067 43,842 36,871
37,970 52,976 31,297 37,782 47,350 39,529

43,208 47,452 37,194 41,907 46,042 43,201
48,597 70,589 44,926 49,560 54,159 57,977
52,194 70,669 46,337 48,952 53,130 50,498
54,787 77,589 47,131 57,135 56,587 55,625
55,614 69,954 47,599 53,759 58,444 56,498
57,718 83,590 52,336 59,533 63,589 60,494

57,518 63,344 49,521 56,114 57,001 57,327
64,938 95,171 60,533 66,550 64,333 77,560
69,736 94,604 61,748 65,377 65,929 67,089
73,541 104,239 62,932 75,711 71,566 74,446
73,868 93,149 63,400 71,210 74,132 75,400
76,874 111,398 69,582 79,585 78,772 80,408

145,940 155,622 118,225 137,300 105,907 141,894
166,597 235,155 145,859 163,848 124,134 193,988
176,439 231,218 147,629 160,377 127,099 165,692
185,141 254,632 150,594 185,419 140,275 184,707
187,509 229,037 154,256 175,784 149,189 186,226
196,281 289,741 173,218 199,558 162,670 203,770

75

C
Additional Speed-up Tables

In this chapter, all speed-ups of the newDuoHash tool compared to the ntHash2 tool,
obtained in the experiments conducted in the course of this study, are presented in
detail. The datasets, already described in the Chapter 5 on pages 49 and following,
are given again here.

Dataset Number of reads Reads length

L500000 500,000 80
L1000000 1,000,000 80
L1500000 1,500,000 80
L2000000 2,000,000 80
L5000000 5,000,000 80

R80 500,000 80
R200 500,000 250
R350 500,000 350
R500 500,000 500
R1000 500,000 1,000
R1500 500,000 1,500
R2000 500,000 2,000
R5000 500,000 5,000

77

C.1 Speed-up for the “L” group datasets

single-seed multiple-seed
naive FSH ISSH naive FSH ISSH MFSH

L5
00

00
0

W10L15 3.84 4.36 4.41 3.50 3.93 4.00 3.84
W14L31 4.97 5.13 5.78 4.55 4.66 5.89 4.47
W18L31 6.03 6.60 8.20 5.38 5.85 8.23 6.01
W22L31 3.47 4.16 5.92 3.18 3.66 5.51 3.88
W26L31 3.01 4.76 5.87 2.34 3.50 4.70 3.45
W32L45 2.93 4.47 5.95 2.79 4.21 6.11 3.98

L1
00

00
00

W10L15 4.06 4.56 4.63 3.52 4.00 4.06 3.89
W14L31 5.01 5.15 6.39 4.62 4.72 5.98 4.48
W18L31 6.22 6.81 9.35 5.57 6.00 8.57 6.09
W22L31 3.45 4.14 5.88 3.15 3.59 5.53 3.83
W26L31 3.00 4.78 5.88 2.40 3.58 4.84 3.54
W32L45 2.92 4.49 5.93 2.77 4.17 6.07 3.93

L1
50

00
00

W10L15 3.96 4.45 4.52 3.50 3.92 4.01 3.85
W14L31 4.86 5.01 6.17 4.57 4.66 5.90 4.40
W18L31 6.21 6.70 8.06 5.75 6.14 8.82 6.29
W22L31 3.43 4.11 5.85 3.14 3.62 5.51 3.84
W26L31 3.05 4.80 5.92 2.42 3.57 4.84 3.53
W32L45 2.93 4.50 5.95 2.77 4.17 6.05 3.91

L2
00

00
00

W10L15 3.93 4.43 4.49 3.51 3.92 3.99 3.84
W14L31 4.93 5.08 6.28 4.60 4.69 5.94 4.46
W18L31 6.14 6.72 9.19 5.62 6.01 8.61 6.14
W22L31 3.44 4.12 5.87 3.15 3.61 5.52 3.85
W26L31 3.02 4.79 5.89 2.37 3.50 4.75 3.44
W32L45 2.93 4.49 5.95 2.77 4.18 6.05 4.00

L5
00

00
00

W10L15 3.93 4.43 4.50 3.50 3.92 3.99 3.84
W14L31 4.85 4.99 6.15 4.56 4.66 5.89 4.43
W18L31 6.23 6.82 9.31 5.96 6.42 9.17 6.55
W22L31 3.43 4.11 5.86 3.14 3.61 5.52 3.86
W26L31 3.01 4.78 5.87 2.41 3.62 4.86 3.55
W32L45 2.94 4.53 5.99 2.80 4.26 6.13 4.03

Table C.1: Overall speed-up table for the “L” group datasets

78

multiple-seed
DuoHash DuoHash_col DuoHash_par DuoHash_row

5.29 4.26 0.58 3.91
6.84 6.07 0.75 4.65

10.35 9.01 1.11 8.32
6.74 5.42 0.78 5.26
5.84 4.98 0.66 4.53
6.65 5.91 0.67 5.62

5.40 4.31 0.58 3.95
6.74 6.07 0.77 4.69

10.51 9.28 1.14 8.46
6.75 5.46 0.78 5.19
6.01 5.07 0.69 4.68
6.55 5.95 0.69 5.54

5.30 4.27 0.59 3.90
6.72 5.98 0.76 4.63

10.82 9.59 1.18 8.72
6.75 5.44 0.77 5.16
6.00 5.08 0.69 4.64
6.55 5.94 0.69 5.51

5.29 4.27 0.59 3.88
6.83 6.04 0.76 4.62

10.56 9.36 1.16 8.55
6.71 5.39 0.78 5.18
5.90 5.02 0.69 4.61
6.56 5.95 0.69 5.50

5.27 4.27 0.59 3.88
6.72 6.03 0.76 4.68

11.23 9.96 1.19 9.05
6.72 5.43 0.77 5.18
5.96 5.12 0.70 4.64
6.62 6.01 0.69 5.61

79

C.2 Speed-up for the “R” group datasets

single-seed multiple-seed
naive FSH ISSH naive FSH ISSH MFSH

R8
0

W10L15 3.84 4.36 4.41 3.50 3.93 4.00 3.84
W14L31 4.97 5.13 5.78 4.55 4.66 5.89 4.47
W18L31 6.03 6.60 8.20 5.38 5.85 8.23 6.01
W22L31 3.47 4.16 5.92 3.18 3.66 5.51 3.88
W26L31 3.01 4.76 5.87 2.34 3.50 4.70 3.45
W32L45 2.93 4.47 5.95 2.79 4.21 6.11 3.98

R2
00

W10L15 3.60 4.13 4.06 3.19 3.67 3.60 3.49
W14L31 4.31 4.71 5.66 3.96 4.34 5.26 3.82
W18L31 4.24 4.89 6.44 3.93 4.53 6.07 4.66
W22L31 2.93 3.61 5.11 2.67 3.18 4.70 3.36
W26L31 1.80 3.01 3.58 1.57 2.56 3.17 2.53
W32L45 2.37 4.03 5.28 2.20 3.60 4.92 3.31

R3
50

W10L15 3.48 4.03 3.92 3.08 3.52 3.44 3.35
W14L31 4.19 4.63 5.46 3.87 4.22 4.99 3.65
W18L31 4.14 4.83 6.22 3.85 4.44 5.77 4.49
W22L31 2.80 3.50 4.86 2.58 3.09 4.43 3.24
W26L31 1.72 2.87 3.38 1.51 2.46 2.99 2.42
W32L45 2.28 3.91 5.01 2.12 3.57 4.63 3.23

R5
00

W10L15 3.81 4.43 4.28 3.05 3.54 3.43 3.31
W14L31 4.20 4.64 5.46 3.80 4.20 4.94 3.56
W18L31 4.21 4.93 6.34 3.82 4.49 5.76 4.50
W22L31 2.80 3.49 4.84 2.49 3.03 4.33 3.19
W26L31 1.69 2.84 3.34 1.47 2.44 2.92 2.38
W32L45 2.29 3.97 5.07 2.13 3.62 4.65 3.33

Table C.2: Overall speed-up table for the “R” group datasets - part one

80

multiple-seed
DuoHash DuoHash_col DuoHash_par DuoHash_row

5.29 4.26 0.58 3.91
6.84 6.07 0.75 4.65

10.35 9.01 1.11 8.32
6.74 5.42 0.78 5.26
5.84 4.98 0.66 4.53
6.65 5.91 0.67 5.62

4.95 3.88 1.25 3.63
6.36 5.40 1.72 4.33
7.80 6.66 2.24 6.30
6.08 4.65 1.76 4.61
4.12 3.37 1.20 3.13
5.81 4.89 1.78 4.64

4.78 3.76 1.77 3.49
6.20 5.26 2.52 4.25
7.57 6.44 3.17 6.10
5.92 4.46 2.48 4.43
3.97 3.24 1.68 3.00
5.65 4.71 2.55 4.45

4.59 3.74 2.25 3.45
5.83 5.18 3.19 4.20
7.49 6.42 4.08 6.04
5.51 4.29 3.03 4.35
3.84 3.14 2.01 2.92
5.46 4.71 3.10 4.49

81

single-seed multiple-seed
naive FSH ISSH naive FSH ISSH MFSH

R1
00

0
W10L15 3.49 4.09 3.94 3.02 3.55 3.41 3.25
W14L31 4.15 4.63 5.43 3.77 4.24 4.98 3.60
W18L31 4.11 4.86 6.22 3.79 4.50 5.75 4.46
W22L31 2.75 3.45 4.77 2.51 3.06 4.32 3.18
W26L31 1.68 2.85 3.34 1.47 2.46 2.91 2.38
W32L45 2.22 3.87 4.91 2.05 3.57 4.53 3.24

R1
50

0

W10L15 3.42 4.01 3.86 2.96 3.49 3.34 3.05
W14L31 4.11 4.59 5.38 3.73 4.21 4.94 3.40
W18L31 4.07 4.81 6.16 3.76 4.46 5.72 4.22
W22L31 2.71 3.40 4.71 2.52 3.10 4.38 3.09
W26L31 1.65 2.79 3.26 1.44 2.42 2.86 2.27
W32L45 2.22 3.87 4.91 2.06 3.59 4.53 3.13

R2
00

0

W10L15 3.46 4.02 3.87 2.97 3.51 3.36 3.05
W14L31 4.10 4.59 5.37 3.74 4.22 4.97 3.39
W18L31 4.04 4.80 6.12 3.73 4.44 5.68 4.19
W22L31 2.74 3.43 4.75 2.50 3.08 4.33 3.05
W26L31 1.66 2.82 3.30 1.47 2.47 2.91 2.31
W32L45 2.21 3.85 4.89 2.05 3.58 4.52 3.12

R5
00

0

W10L15 3.30 3.88 3.72 2.90 3.44 3.29 3.08
W14L31 4.01 4.48 5.24 3.73 4.20 4.91 3.48
W18L31 3.97 4.70 5.98 3.67 4.40 5.61 4.28
W22L31 2.65 3.33 4.59 2.43 3.02 4.27 3.10
W26L31 1.61 2.73 3.17 1.42 2.40 2.84 2.32
W32L45 2.17 3.79 4.78 1.88 3.57 4.51 3.06

Table C.3: Overall speed-up table for the “R” group datasets - part two

82

multiple-seed
DuoHash DuoHash_col DuoHash_par DuoHash_row

4.61 3.69 3.15 3.45
5.66 5.00 3.76 4.20
7.35 6.35 4.99 6.04
5.57 4.31 3.59 4.30
3.82 3.14 2.44 2.90
5.49 4.55 3.63 4.35

3.88 3.45 3.14 3.34
5.35 4.85 4.44 4.14
6.44 6.10 5.62 5.91
5.09 4.20 4.24 4.31
3.34 2.96 2.72 2.82
5.00 4.39 4.11 4.32

3.91 3.45 3.39 3.37
5.33 4.85 5.01 4.16
6.42 6.06 6.01 5.91
5.06 4.20 4.45 4.27
3.40 3.02 2.90 2.85
5.00 4.37 4.41 4.32

4.06 3.49 4.53 3.38
5.61 4.99 6.59 4.22
6.71 6.17 7.79 5.97
5.25 4.26 5.63 4.28
3.45 3.03 3.57 2.86
5.11 4.44 5.44 4.35

83

D
Additional Speed-up Graphs

In this chapter, all speed-ups of the newDuoHash tool compared to the ntHash2 tool,
obtained in the experiments conducted in the course of this study, are presented in
detail. Datasets and seedsets are already described in the Chapter 5 on pages 49 and
following.

85

L5000000L2000000L1500000L1000000L500000

R200

R350

R500
R1000
R1500
R2000
R5000

0
.5 1

1.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5

Speedup w.r.t. ntHash2
N
aive

FSH
ISSH
M
FSH

D
uoH

ash
D
uoH

ash_col
D
uoH

ash_parallel
D
uoH

ash_row

Figure
D
.1:Speed-up

graph
forseedsetW

10L15
(m

ultiple-seed).

86

L5
00

00
00 L2

00
00

00
L15

00
00

0 L10
00

00
0 L5

00
00

0

R2
00

R3
50

R5
00
R1

00
0

R1
50

0
R2

00
0

R5
00

0

1234567

Speedupw.r.t.ntHash2

N
ai
ve

FS
H

IS
SH

M
FS
H

D
uo

H
as
h

D
uo

H
as
h_

co
l

D
uo

H
as
h_

pa
ra
lle
l

D
uo

H
as
h_

ro
w

Fi
gu

re
D
.2
:S

pe
ed

-u
p
gr
ap

h
fo
rs
ee

ds
et

W
14
L3
1(
m
ul
tip

le
-s
ee

d)
.

87

L5000000L2000000L1500000L1000000L500000

R200

R350

R500
R1000
R1500
R2000
R5000

2 4 6 8 10 12
Speedup w.r.t. ntHash2

N
aive

FSH
ISSH
M
FSH

D
uoH

ash
D
uoH

ash_col
D
uoH

ash_parallel
D
uoH

ash_row

Figure
D
.3:Speed-up

graph
forseedsetW

18L31(m
ultiple-seed).

88

L5
00

00
00 L2

00
00

00
L15

00
00

0 L10
00

00
0 L5

00
00

0

R2
00

R3
50

R5
00
R1

00
0

R1
50

0
R2

00
0

R5
00

0

1234567

Speedupw.r.t.ntHash2

N
ai
ve

FS
H

IS
SH

M
FS
H

D
uo

H
as
h

D
uo

H
as
h_

co
l

D
uo

H
as
h_

pa
ra
lle
l

D
uo

H
as
h_

ro
w

Fi
gu

re
D
.4
:S

pe
ed

-u
p
gr
ap

h
fo
rs
ee

ds
et

W
22
L3
1(
m
ul
tip

le
-s
ee

d)
.

89

L5000000L2000000L1500000L1000000L500000

R200

R350

R500
R1000
R1500
R2000
R5000

1 2 3 4 5 6
Speedup w.r.t. ntHash2

N
aive

FSH
ISSH
M
FSH

D
uoH

ash
D
uoH

ash_col
D
uoH

ash_parallel
D
uoH

ash_row

Figure
D
.5:Speed-up

graph
forseedsetW

26L31(m
ultiple-seed).

90

L5
00

00
00 L2

00
00

00
L15

00
00

0 L10
00

00
0 L5

00
00

0

R2
00

R3
50

R5
00
R1

00
0

R1
50

0
R2

00
0

R5
00

0

1234567

Speedupw.r.t.ntHash2

N
ai
ve

FS
H

IS
SH

M
FS
H

D
uo

H
as
h

D
uo

H
as
h_

co
l

D
uo

H
as
h_

pa
ra
lle
l

D
uo

H
as
h_

ro
w

Fi
gu

re
D
.6
:S

pe
ed

-u
p
gr
ap

h
fo
rs
ee

ds
et

W
32
L4
5
(m

ul
tip

le
-s
ee

d)
.

91

E
DuoHash in JellyFish context

In this chapter, all times and speed-ups of MaskJelly, DuoHash, and JellyFish tools,
obtained in the experiments conducted in the course of this study, are presented in
detail. The seedsets, already described in the Chapter 5 on pages 50 and following,
are given again here. Times are expressed in milliseconds. Speed-ups are relative to
DuoHash compared to MaskJelly.

W22L31

Q1 1110111001101110111011001110111
Q2 1110111011101100011011101110111
Q3 1111011101110010100111011101111
Q4 1111010111011010101101110101111
Q5 1111011110011010101100111101111
Q6 1111101001011110111101001011111
Q7 1111101001110110110111001011111
Q8 1111101011100110110011101011111
Q9 1111110101101010101011010111111

93

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

L500000
M
askJelly

pre-processing
18.68

19.14
18.87

19.01
19.19

19.04
18.91

18.86
19.27

JellyFish
11.64

12.05
11.88

12.07
11.97

11.84
12.05

11.79
12.08

D
uoH

ash
pre-processing

2.95
2.94

3.03
2.93

2.97
2.90

2.90
2.87

3.01
JellyFish

11.70
11.80

11.92
12.15

11.88
11.84

12.08
11.81

11.89

L2000000
M
askJelly

pre-processing
76.67

76.94
76.65

77.04
76.72

77.83
77.21

75.99
79.43

JellyFish
43.50

43.04
43.11

42.85
43.61

48.34
45.48

43.54
43.53

D
uoH

ash
pre-processing

13.45
12.91

13.24
12.84

12.75
14.06

13.00
12.89

12.77
JellyFish

43.51
43.61

43.18
43.45

43.10
43.29

43.99
44.40

43.30

R500
M
askJelly

pre-processing
176.34

175.09
174.93

176.08
175.62

175.69
175.48

173.91
179.47

JellyFish
143.86

116.83
117.12

117.47
140.13

141.95
141.87

139.55
140.97

D
uoH

ash
pre-processing

30.28
29.22

29.24
29.36

29.18
29.93

29.45
29.65

29.63
JellyFish

140.63
117.57

117.46
117.13

140.45
140.77

140.60
140.38

140.15

R2000
M
askJelly

pre-processing
737.58

740.64
738.05

735.94
734.73

733.04
744.56

727.22
745.75

JellyFish
436.99

439.43
439.06

437.14
436.08

433.05
439.61

432.22
433.03

D
uoH

ash
pre-processing

142.74
143.42

142.08
140.15

142.29
142.51

140.72
143.75

140.89
JellyFish

436.48
444.93

435.42
435.79

436.02
433.53

437.57
433.61

435.99

Table
E.1:O

veralltim
es

(in
m
illiseconds)table

forM
askJelly

and
D
uoH

ash
pre-processing

follow
ed

by
JellyFish

counting.

94

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

L5
00

00
0

pr
e-
pr
oc
es
si
ng

sp
ee

d-
up

6.
33

6.
51

6.
23

6.
49

6.
46

6.
57

6.
52

6.
57

6.
40

co
un

tin
g
pr
oc
es
s
sp
ee

d-
up

2.
07

2.
12

2.
06

2.
06

2.
10

2.
09

2.
07

2.
09

2.
10

L2
00

00
00

pr
e-
pr
oc
es
si
ng

sp
ee

d-
up

5.
70

5.
96

5.
79

6.
00

6.
02

5.
54

5.
94

5.
90

6.
22

co
un

tin
g
pr
oc
es
s
sp
ee

d-
up

2.
11

2.
12

2.
12

2.
13

2.
15

2.
20

2.
15

2.
09

2.
19

R5
00

pr
e-
pr
oc
es
si
ng

sp
ee

d-
up

5.
82

5.
99

5.
98

6.
00

6.
02

5.
87

5.
96

5.
87

6.
06

co
un

tin
g
pr
oc
es
s
sp
ee

d-
up

1.
87

1.
99

1.
99

2.
00

1.
86

1.
86

1.
87

1.
84

1.
89

R2
00

0
pr
e-
pr
oc
es
si
ng

sp
ee

d-
up

5.
17

5.
16

5.
19

5.
25

5.
16

5.
14

5.
29

5.
06

5.
29

co
un

tin
g
pr
oc
es
s
sp
ee

d-
up

2.
03

2.
01

2.
04

2.
04

2.
02

2.
02

2.
05

2.
01

2.
04

Ta
bl
e
E.
2:
O
ve
ra
ll
sp
ee

d-
up

s
ta
bl
e
fo
rM

as
kJ
el
ly
an

d
D
uo

H
as
h
pr
e-
pr
oc
es
si
ng

fo
llo

w
ed

by
en

tir
e
co
un

tin
g
pr
oc
es
s
(p
re
-p
ro
ce
ss
in
g
an

d
Je
lly
Fi
sh
).

95

References

[1] Frederick Sanger, Steven Nicklen, and Alan R. Coulson. “DNA sequencing
with chain-terminating inhibitors”. In: Proceedings of the National Academy
of Sciences of the United States of America 74.12 (Dec. 1977), pp. 5463–5467.
doi: 10.1073/pnas.74.12.5463. eprint: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC431765/pdf/pnas00043-0271.pdf.
url: https : / / www . ncbi . nlm . nih . gov / pmc / articles /
PMC431765/.

[2] Bin Ma, John Tromp, and Ming Li. “PatternHunter: faster and more sensi-
tive homology search”. In: Bioinformatics 18.3 (Mar. 2002), pp. 440–445. issn:
1367-4803. doi: 10.1093/bioinformatics/18.3.440. eprint: https:
//academic.oup.com/bioinformatics/article-pdf/18/
3/440/48850317/bioinformatics_18_3_440.pdf. url: https:
//doi.org/10.1093/bioinformatics/18.3.440.

[3] Kelly A Frazer, Lior Pachter, Alexander Poliakov, Edward M Rubin, and Inna
Dubchak. “VISTA: computational tools for comparative genomics”. In: Nu-
cleic Acids Research 32.suppl_2 (2004), W273–W279. doi: 10.1093/nar/
gkh458.

[4] Uri Keich, Ming Li, Bin Ma, and John Tromp. “On spaced seeds for similar-
ity search”. In: Discrete Applied Mathematics 138.3 (2004), pp. 253–263. issn:
0166-218X. doi: https://doi.org/10.1016/S0166-218X(03)00382-
2. url: https://www.sciencedirect.com/science/article/
pii/S0166218X03003822.

97

https://doi.org/10.1073/pnas.74.12.5463
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC431765/pdf/pnas00043-0271.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC431765/pdf/pnas00043-0271.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC431765/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC431765/
https://doi.org/10.1093/bioinformatics/18.3.440
https://academic.oup.com/bioinformatics/article-pdf/18/3/440/48850317/bioinformatics_18_3_440.pdf
https://academic.oup.com/bioinformatics/article-pdf/18/3/440/48850317/bioinformatics_18_3_440.pdf
https://academic.oup.com/bioinformatics/article-pdf/18/3/440/48850317/bioinformatics_18_3_440.pdf
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1093/bioinformatics/18.3.440
https://doi.org/10.1093/nar/gkh458
https://doi.org/10.1093/nar/gkh458
https://doi.org/https://doi.org/10.1016/S0166-218X(03)00382-2
https://doi.org/https://doi.org/10.1016/S0166-218X(03)00382-2
https://www.sciencedirect.com/science/article/pii/S0166218X03003822
https://www.sciencedirect.com/science/article/pii/S0166218X03003822

[5] Ming Li, Bin Ma, Daniel Kisman, and John Tromp. “PatternHunter II: highly
sensitive and fast homology search”. In: Journal of Bioinformatics and Compu-
tational Biology 2.03 (2004), pp. 417–439.

[6] Glenn Fowler, Landon Curt Noll, and Kiem-Phong Vo. Fowler-Noll-Vo (FNV)
Hash Function. Accessed: 2024-06-12. 2005. url: http://www.isthe.
com/chongo/tech/comp/fnv/index.html.

[7] Yanni Sun and Jeremy Buhler. “Enhanced sensitivity of probabilistic sequence
alignment using spaced seeds”. In: Journal of Computational Biology 12.6
(2005), pp. 847–861.

[8] Stefan Burkhardt and Juha Kärkkäinen. “Enhanced sensitivity of short DNA
sequence alignment through spaced seeds”. In:BMCbioinformatics 7.1 (2006),
pp. 1–11.

[9] DavidMak andGary Benson. “Improvements in Spaced SeedDesign forDNA
Similarity Search”. In: Bioinformatics 22.14 (2006), pp. 1653–1659.

[10] Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire M Fraser-Liggett, Rob
Knight, and Jeffrey I Gordon. “The human microbiome project”. In: Nature
449.7164 (2007), pp. 804–810.

[11] Jay Shendure and Hanlee Ji. “Next-generation DNA sequencing”. In: Nature
Biotechnology 26.10 (Oct. 2008), pp. 1135–1145. issn: 1546-1696. doi: 10 .
1038/nbt1486. url: https://doi.org/10.1038/nbt1486.

[12] Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma, Jason
Papadopoulos, Kevin Bealer, and Thomas L Madden. “BLAST+: architecture
and applications”. In: BMC Bioinformatics 10.1 (2009), p. 421.

[13] ThomasH. Cormen, Charles E. Leiserson, Ronald L. Rivest, andClifford Stein.
Introduction to Algorithms. 3rd. Cambridge, MA: MIT Press, 2009, pp. 990–
994.

[14] Heng Li and Richard Durbin. “Fast and accurate short read alignment with
Burrows-Wheeler transform”. In: Bioinformatics 25.14 (2009), pp. 1754–1760.
doi: 10.1093/bioinformatics/btp324.

98

http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html
https://doi.org/10.1038/nbt1486
https://doi.org/10.1038/nbt1486
https://doi.org/10.1038/nbt1486
https://doi.org/10.1093/bioinformatics/btp324

[15] Niranjan Nagarajan and Mihai Pop. “Parametric complexity of sequence as-
sembly: theory and applications to next generation sequencing”. In: Journal of
Computational Biology 16.7 (2009), pp. 897–908.

[16] Phillip E. Compeau, Pavel A. Pevzner, and Glenn Tesler. “How to apply de
Bruijn graphs to genome assembly”. In: Nature Biotechnology 29.11 (2011),
pp. 987–991. doi: 10.1038/nbt.2023.

[17] Guillaume Marçais and Carl Kingsford. “A fast, lock-free approach for effi-
cient parallel counting of occurrences of k-mers”. In: Bioinformatics 27.6 (Jan.
2011), pp. 764–770. issn: 1367-4803. doi: 10.1093/bioinformatics/
btr011. eprint: https://academic.oup.com/bioinformatics/
article-pdf/27/6/764/48866141/bioinformatics_27_6_764.
pdf. url: https://doi.org/10.1093/bioinformatics/btr011.

[18] Benedict Paten, Adam M Novak, Jordan M Eizenga, and Erik Garrison.
“Genome graphs and the evolution of genome inference”. In:GenomeResearch
27.5 (2011), pp. 665–676.

[19] Sergey A Chumakov and Mikhail P Ponomarenko. “Computational chal-
lenges in the analysis of sequence data using spaced seeds”. In: Bioinformatics
and Computational Biology 8.3 (2012), pp. 194–206.

[20] Lucian Ilie and Martin Molnar. “RACER: Rapid and accurate correction of
errors in reads”. In:Bioinformatics 29.19 (2013), pp. 2490–2493. doi: 10.1093/
bioinformatics/btt426.

[21] Niranjan Nagarajan and Mihai Pop. “Sequence assembly demystified”. In: Na-
ture Reviews Genetics 14.3 (2013), pp. 157–167. doi: 10.1038/nrg3367.

[22] Rayan Chikhi and Paul Medvedev. “Informed and automated k-mer size se-
lection for genome assembly”. In: Bioinformatics 30.1 (2014), pp. 31–37. doi:
10.1093/bioinformatics/btt310.

[23] Chris-Andre Leimeister, Marcus Boden, Sebastian Horwege, Sebastian Lind-
ner, and Burkhard Morgenstern. “Fast alignment-free sequence compari-
son using spaced-word frequencies”. In: Bioinformatics 30.14 (Apr. 2014),
pp. 1991–1999. issn: 1367-4803. doi: 10 . 1093 / bioinformatics /
btu177. eprint: https://academic.oup.com/bioinformatics/

99

https://doi.org/10.1038/nbt.2023
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btr011
https://academic.oup.com/bioinformatics/article-pdf/27/6/764/48866141/bioinformatics_27_6_764.pdf
https://academic.oup.com/bioinformatics/article-pdf/27/6/764/48866141/bioinformatics_27_6_764.pdf
https://academic.oup.com/bioinformatics/article-pdf/27/6/764/48866141/bioinformatics_27_6_764.pdf
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btt426
https://doi.org/10.1093/bioinformatics/btt426
https://doi.org/10.1038/nrg3367
https://doi.org/10.1093/bioinformatics/btt310
https://doi.org/10.1093/bioinformatics/btu177
https://doi.org/10.1093/bioinformatics/btu177
https://academic.oup.com/bioinformatics/article-pdf/30/14/1991/48925419/bioinformatics_30_14_1991.pdf
https://academic.oup.com/bioinformatics/article-pdf/30/14/1991/48925419/bioinformatics_30_14_1991.pdf

article-pdf/30/14/1991/48925419/bioinformatics_30_14_
1991.pdf. url: https://doi.org/10.1093/bioinformatics/
btu177.

[24] Derrick E. Wood and Steven L. Salzberg. “Kraken: ultrafast metagenomic se-
quence classification using exact alignments”. In: Genome Biology 15.3 (Mar.
2014), R46. issn: 1474-760X. doi: 10. 1186/gb- 2014- 15- 3-r46. url:
https://doi.org/10.1186/gb-2014-15-3-r46.

[25] K. Brinda,M. Sykulski, andG. Kucherov. “Spaced Seeds Improve k-mer-based
Metagenomic Classification”. In: Bioinformatics 31.22 (Nov. 2015). Epub 2015
Jul 25, pp. 3584–3592. doi: 10.1093/bioinformatics/btv419.

[26] Ana Conesa, PaulaMadrigal, Sonia Tarazona, David Gomez-Cabrero, Amelia
Cervera, AndrewMcPherson,MateuszWSzcześniak, Daniel J Gaffney, Laura
LElo, XuegongZhang, andAliMortazavi. “A survey of best practices for RNA-
seq data analysis”. In:GenomeBiology 17.1 (2016), p. 13. doi: 10.1186/s13059-
016-0881-8.

[27] Lars Hahn, Chris-André Leimeister, Rachid Ounit, Stefano Lonardi, and
Burkhard Morgenstern. “rasbhari: Optimizing Spaced Seeds for Database
Searching, Read Mapping and Alignment-Free Sequence Comparison”. In:
PLOS Computational Biology 12.10 (Oct. 2016), pp. 1–18. doi: 10 . 1371 /
journal . pcbi . 1005107. url: https : / / doi . org / 10 . 1371 /
journal.pcbi.1005107.

[28] OpenStax Microbiology. Microbiology ID: e42bd376-624b-4c0f-972f-
e0c57998e765@4.4. Version 4.4. Creative Commons Attribution License
(by 4.0). Nov. 2016. url: https : / / commons . wikimedia . org /
wiki/File:OSC_Microbio_10_02_DoubHelix.jpg.

[29] Hamid Mohamadi, Justin Chu, Benjamin P Vandervalk, and Inanc Birol.
“ntHash: recursive nucleotide hashing”. In: Bioinformatics 32.22 (July 2016),
pp. 3492–3494. issn: 1367-4803. doi: 10 . 1093 / bioinformatics /
btw245. eprint: https://academic.oup.com/bioinformatics/
article-pdf/32/12/i243/49020222/bioinformatics_32_12_

100

https://academic.oup.com/bioinformatics/article-pdf/30/14/1991/48925419/bioinformatics_30_14_1991.pdf
https://academic.oup.com/bioinformatics/article-pdf/30/14/1991/48925419/bioinformatics_30_14_1991.pdf
https://doi.org/10.1093/bioinformatics/btu177
https://doi.org/10.1093/bioinformatics/btu177
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1093/bioinformatics/btv419
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1371/journal.pcbi.1005107
https://doi.org/10.1371/journal.pcbi.1005107
https://doi.org/10.1371/journal.pcbi.1005107
https://doi.org/10.1371/journal.pcbi.1005107
https://commons.wikimedia.org/wiki/File:OSC_Microbio_10_02_DoubHelix.jpg
https://commons.wikimedia.org/wiki/File:OSC_Microbio_10_02_DoubHelix.jpg
https://doi.org/10.1093/bioinformatics/btw245
https://doi.org/10.1093/bioinformatics/btw245
https://academic.oup.com/bioinformatics/article-pdf/32/12/i243/49020222/bioinformatics_32_12_i243.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/12/i243/49020222/bioinformatics_32_12_i243.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/12/i243/49020222/bioinformatics_32_12_i243.pdf

i243.pdf. url: https://doi.org/10.1093/bioinformatics/
btw245.

[30] Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee, Nicholas
H. Bergman, Sergey Koren, and Adam M. Phillippy. “Mash: fast genome and
metagenome distance estimation using MinHash”. In: Genome Biology 17.1
(June 2016), p. 132. issn: 1474-760X. doi: 10.1186/s13059-016-0997-x.
url: https://doi.org/10.1186/s13059-016-0997-x.

[31] Rachid Ounit and Stefano Lonardi. “Higher classification sensitivity of short
metagenomic reads with CLARK-S”. In: Bioinformatics 32.24 (Aug. 2016),
pp. 3823–3825. issn: 1367-4803. doi: 10 . 1093 / bioinformatics /
btw542. eprint: https://academic.oup.com/bioinformatics/
article-pdf/32/24/3823/49027269/bioinformatics_32_24_
3823.pdf. url: https://doi.org/10.1093/bioinformatics/
btw542.

[32] Samuele Girotto, Matteo Comin, and Cinzia Pizzi. “Metagenomic reads bin-
ning with spaced seeds”. In: Theoretical Computer Science 698 (2017). Algo-
rithms, Strings and Theoretical Approaches in the Big Data Era (In Honor
of the 60th Birthday of Professor Raffaele Giancarlo), pp. 88–99. issn: 0304-
3975. doi: https://doi.org/10.1016/j.tcs.2017.05.023. url:
https://www.sciencedirect.com/science/article/pii/
S0304397517304632.

[33] Yandong Li, Yi Zhang, and Dong Xu. “Efficient k-mer counting using a bloom
filter and de Bruijn graph”. In: Journal of Computational Biology 24.6 (2017),
pp. 487–497. doi: 10.1089/cmb.2016.0186.

[34] Samuele Girotto, Matteo Comin, and Cinzia Pizzi. “FSH: fast spaced seed
hashing exploiting adjacent hashes”. In: Algorithms for Molecular Biology 13.1
(Mar. 2018), p. 8. issn: 1748-7188. doi: 10.1186/s13015-018-0125-4. url:
https://doi.org/10.1186/s13015-018-0125-4.

[35] Enrico Petrucci, Laurent Noé, Cinzia Pizzi, and Matteo Comin. “Iterative
Spaced Seed Hashing: Closing the Gap Between Spaced Seed Hashing and
k-mer Hashing”. In: Journal of Computational Biology 27.2 (2020). PMID:

101

https://academic.oup.com/bioinformatics/article-pdf/32/12/i243/49020222/bioinformatics_32_12_i243.pdf
https://doi.org/10.1093/bioinformatics/btw245
https://doi.org/10.1093/bioinformatics/btw245
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1093/bioinformatics/btw542
https://doi.org/10.1093/bioinformatics/btw542
https://academic.oup.com/bioinformatics/article-pdf/32/24/3823/49027269/bioinformatics_32_24_3823.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/24/3823/49027269/bioinformatics_32_24_3823.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/24/3823/49027269/bioinformatics_32_24_3823.pdf
https://doi.org/10.1093/bioinformatics/btw542
https://doi.org/10.1093/bioinformatics/btw542
https://doi.org/https://doi.org/10.1016/j.tcs.2017.05.023
https://www.sciencedirect.com/science/article/pii/S0304397517304632
https://www.sciencedirect.com/science/article/pii/S0304397517304632
https://doi.org/10.1089/cmb.2016.0186
https://doi.org/10.1186/s13015-018-0125-4
https://doi.org/10.1186/s13015-018-0125-4

31800307, pp. 223–233. doi: 10.1089/cmb.2019.0298. eprint: https:
//doi.org/10.1089/cmb.2019.0298. url: https://doi.org/10.
1089/cmb.2019.0298.

[36] Jan Ebler, Peter Ebert, William E Clarke, et al. “Pangenome-based genome
inference allows efficient and accurate genotyping across a wide spectrum of
variant classes”. In: Nature Genetics 54.4 (2022), pp. 518–525. doi: 10.1038/
s41588-022-01043-w. url: https://doi.org/10.1038/s41588-
022-01043-w.

[37] ParhamKazemi, JohnathanWong, VladimirNikolić, HamidMohamadi, René
L Warren, and Inanç Birol. “ntHash2: recursive spaced seed hashing for nu-
cleotide sequences”. In: Bioinformatics 38.20 (Aug. 2022), pp. 4812–4813. issn:
1367-4803. doi: 10.1093/bioinformatics/btac564. eprint: https:
//academic.oup.com/bioinformatics/article-pdf/38/
20/4812/46535020/btac564.pdf. url: https://doi.org/10.
1093/bioinformatics/btac564.

[38] National Human Genome Research Institute. The Cost of Sequencing a Hu-
man Genome. Accessed: 2024-05-24. 2023. url: https://www.genome.
gov/about- genomics/fact- sheets/Sequencing- Human-
Genome-cost.

[39] Eleonora Mian, Enrico Petrucci, Cinzia Pizzi, and Matteo Comin. “Effi-
cient Hashing of Multiple Spaced Seeds with Application”. In: Proceedings
of the 16th International Joint Conference on Biomedical Engineering Sys-
tems and Technologies (BIOSTEC 2023) - BIOINFORMATICS. INSTICC.
SciTePress, 2023, pp. 155–162. isbn: 978-989-758-631-6. doi: 10 . 5220 /
0011632900003414.

[40] Hetal Satam, Kavita Joshi, Umang Mangrolia, Shraddha Waghoo, Gulzar
Zaidi, Shwetali Rawool, Rahul P.Thakare, Suhail Banday, Ashutosh K.Mishra,
Gautam Das, and Sandeep K. Malonia. “Next-Generation Sequencing Tech-
nology: Current Trends and Advancements”. In: Biology (Basel) 12.7 (July
2023). Erratum in: Biology (Basel). 2024 Apr 24;13(5): p. 997. doi: https:
//doi.org/10.3390/biology12070997.

102

https://doi.org/10.1089/cmb.2019.0298
https://doi.org/10.1089/cmb.2019.0298
https://doi.org/10.1089/cmb.2019.0298
https://doi.org/10.1089/cmb.2019.0298
https://doi.org/10.1089/cmb.2019.0298
https://doi.org/10.1038/s41588-022-01043-w
https://doi.org/10.1038/s41588-022-01043-w
https://doi.org/10.1038/s41588-022-01043-w
https://doi.org/10.1038/s41588-022-01043-w
https://doi.org/10.1093/bioinformatics/btac564
https://academic.oup.com/bioinformatics/article-pdf/38/20/4812/46535020/btac564.pdf
https://academic.oup.com/bioinformatics/article-pdf/38/20/4812/46535020/btac564.pdf
https://academic.oup.com/bioinformatics/article-pdf/38/20/4812/46535020/btac564.pdf
https://doi.org/10.1093/bioinformatics/btac564
https://doi.org/10.1093/bioinformatics/btac564
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://doi.org/10.5220/0011632900003414
https://doi.org/10.5220/0011632900003414
https://doi.org/https://doi.org/10.3390/biology12070997
https://doi.org/https://doi.org/10.3390/biology12070997

Acknowledgments

At the end of this academic journey, I would like to express my deepest gratitude
to mum and dad and my grandparents, my endless thanks for their unconditional
love and support. Thank you for teaching me the value of commitment, dedication
and sacrifice. You have always believed in my abilities, even when I myself doubted
that I could do it. Your constant presence and words of encouragement have been
an inexhaustible source of strength for me.

To my brother Giacomo, thank you for always being by my side. Your presence
and support have been crucial, especially in the most difficult moments.

To all my family, for their constant affection and support. Thank you for be-
lieving in me and always encouraging me to follow my dreams. You have been a
fundamental pillar in this journey.

To my friends, whose friendship has made this journey lighter and more joyful.
Thank you for the laughter, the advice and for being a source of positive energy.

To my lecturer, Prof. Matteo Comin, a heartfelt thank you for the guidance and
helpfulness he has always shown towards me.

To everyone, a heartfelt thank you.

103

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Purpose of the thesis
	Organization of the work

	Spaced k-mer
	DNA
	DNA sequencing
	Assembly Techniques

	k-mer
	Applications in Bioinformatics
	Benefits and Disadvantages

	Spaced k-mer
	Applications in Bioinformatics and Benefits

	Hashing of spaced seeds
	FSH: Fast Spaced Seed Hashing
	ISSH: Iterative Spaced Seed Hashing
	MISSH: Multiple Iterative Spaced Seed Hashing
	ntHash & ntHash2: Recursive (Spaced Seed) Hashing for Nucleotide Seqences
	MISSH vs ntHash2

	A new version of our tool
	DuoHash: the new version of MISSH
	DuoHash: new features

	Results
	Tools and Experimental Setup
	Dataset
	Seedset
	Machine

	Analysis of the time performances
	General analysis
	Performance Evaluation with Varying Seed Weight
	Performance Evaluation with Varying Seed Length
	Performance Comparison: Multiple-Seed vs. Single-Seed

	Analysis of the time performances in k-mer Counting

	Conclusions
	Used Seedsets
	Additional Times Tables
	Times for the “L" group datasets
	Times for the “R" group datasets

	Additional Speed-up Tables
	Speed-up for the “L" group datasets
	Speed-up for the “R" group datasets

	Additional Speed-up Graphs
	DuoHash in JellyFish context
	References
	Acknowledgments

