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Abstract

Artificial Intelligence and Machine Learning are used in many fields.
The goal of this work is use these approaches, in particular neural networks, to
provide solutions to the Knapsack Problem. This application is not easy, and there
is not a clear way, or structure to follow to reach the correct result using Machine
Learning.
All tests were execute on a server with 4 Processors 12-Core Intel Xeon Gold 5118,
1 TB RAM and 7 NVIDIA GTX 1080 Ti GPU.
The code developed for this work uses Python 3.7 and the library Pytorch [9]. It is
available at:
https://github.com/davidemartini/Knapsack-Problem.git.
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Chapter 1

Knapsack Problem

1.1 Introduction

Consider a mountaineer who is packing her knapsack (or rucksack) for a mountain
tour and has to decide which items she should take for the journey. She has a large
number of objects which may be useful for her tour. Every object, numbered from
1 to n, gives to her an amount of benefit measured by a number pj. But every
object has a weight wj: if the object is chosen, this weight increases the load of the
knapsack. She wants of course to limit the total weight of knapsack to maximum
capacity W . We can think of this problem as a chain of binary choices that produces
a solution for the problem. The goal is to find the optimal solution for this problem,
to maximize the profit of items subject to the bound of knapsack’s capacity. The
knapsack problem (KP) is one of the most famous NP-hard problems, and finding
the optimal solution is not easy.

1.2 Model

We are given a set of objects {1, . . . , n} and a container with capacity W . Each
object j has a profit pj and weight wj. We can assume that the values pj, wj and
W are non-negative integers, wj < W for all j = 1, . . . , n and

∑n
j=1wj > W .

This problem has the goal to selects a subset of objects that maximize their profit.
Introducing the decision variables

xj =

{
1 if the j-th object was select
0 othewise

1
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we can write the model:

z∗ := max

n∑
j=1

pjxj (1.1a)

n∑
j=1

wjxj ≤ W (1.1b)

0 ≤ xj ≤1 integer, j ∈ {1, . . . , n}. (1.1c)

The number of feasible solutions may become extremely large (up to 2n different
solutions, generated from n binary variables).
This problem is solved by branch-and-bound technique, where we search for an
optimal solution based on successive partitioning of the solution space. The word
"branch" refers to partitioning, and "bound" refers to lower bounds that are used
to delete part of solution space that will not contain an optimum.

1.3 Dynamic Programming for KP

A non-integer solution of continuous relaxation of model (1.1a) - (1.1c) correspond
to select a fraction of some objects. This interpretation allows one to solve the
continuous relaxation of the model (1.1a) - (1.1c) in the following way:

1. Break each object j to wj micro-objects with unit weight and profit pj/wj;

2. Fill completely the container using first micro-objects with maximum profit
pj/wj.

It is equivalent to renumbering the objects j ∈ {1, . . . , n} to obtain

p1
w1

≥ p2
w2

≥ · · · ≥ pn
wn

and locate the critical object s ∈ 1, . . . , n defined by the property

s−1∑
j=1

wj < W ≤
s∑

j=1

wj.

The optimal solution x∗ of the continuous relaxation corresponds to:

1. Select all the first s− 1 objects: x∗
1 = · · · = x∗

s−1 := 1;

2. Select partially the critical object s: x∗
s :=

(
W −

∑s−1
j=1 wj

)
/ws;
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3. Discard the next objects: x∗
s+1 = · · · = x∗

n := 0.

In this way is possible to solve the continuous relaxation in time O(n`ogn), or in
time O(n) using a partial sorting algorithm.
If the capacity W is an integer number not excessively large, the problem can be
solved by dynamic programming using Algorithm 1.1. To explain this algorithm,
for all j = 0, . . . , n and all K = 0, . . . , W let z[K, j] be the maximum profit
obtainable filling some objects in {1, . . . , j} in a container with capacity K. So
the optimal value z∗ of KP problem will be z[W,n].

Algorithm 1.1 Algorithm DP-KP
1: for K := 0 to W do
2: z[K,0] := 0

3: for j := 1 to n do
4: weight := w[j]
5: for K := 0 to weight− 1 do
6: z[K, j] := z[K, j − 1]

7: for K := weight to W do
8: if p[j] + z[K − weight, j − 1] > z[K, j − 1] then
9: z[K, j] := p[j] + z[K − weight, j − 1]
10: else
11: z[K, j] := z[K, j − 1]

12: z∗ := z[W,n]
13: RemainCap := W
14: for j := n down to 1 do
15: if z[RemainCap, j] = z[RemainCap, j − 1] then
16: x∗[j] := 0
17: else
18: x∗[j] := 1
19: RemainCap := RemainCap− w[j]

In step 1, the column j = 0 of the matrix z is initialized. Then the objects j =
1, . . . , n are considered. For all capacities K = 0, . . . , W , the algorithm must
decide if the best filling with the first j objects is equal to the filling with the first
j−1 objects (steps 6 and 11) or it is better to choose the j-th object (with profit p[j])
and so filling in the best way the remaining capacity K − w[j] with the remaining
1, . . . , j − 1 objects (step 9). At step 12 the matrix z is defined with complexity
O(nW ).
To retrieve the optimal solution of KP with capacity W , at step 12 we start from
z[W,n] and proceed backwards on columns j = n, n−1, . . . , 1 to have the optimal
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choices x∗
n, x∗

n−1, . . . , x∗
1. This step has complexity O(n).

The Algorithm 1.1 has complexity O(nW ), non-polynomial in the dimension of
instance O(n`ogW ). This need a matrix of dimension (W +1)×(n+1) to memorize
the intermediate results. Thus, for large values of W this algorithm needs a lot of
memory to allocate the matrix z.

1.4 Greedy Algorithm
One of the easiest algorithms that can be used to compute the final solution of KP,
is the greedy algorithm 1.2. This procedure is based on the concept of "greedy",
so it tries to obtain the maximum profit at each step. This algorithm, to produce
good solutions, needs all the items, i = 0, . . . , N − 1, sorted by non-increasing
profit-over-weight ratios.

Algorithm 1.2 Greedy algorithm
1: tWeight = 0
2: tProfit = 0
3: solution = [ ]
4: for i := 0 to N − 1 do // by decreasing p[i]/w[i]
5: if tWeight+ w[i] <= W then
6: solution.Append(i)
7: tWeight = tWeight+ w[i]
8: tProfit = tProfit+ p[i]

At the end of the execution of the algorithm, the final solution is stored in the vector
solution, and the optimal value in the variable tProfit.



Chapter 2

Artificial Intelligence

2.1 Introduction

Artificial Intelligence (AI) is the effort to automate intellectual tasks normally per-
formed by humans. AI is the general field that includes Machine Learning (ML) and
Deep Learning (DL), but it can include many more approaches that don’t involve
any learning.

Figure 2.1. AI, ML and DL [2]

Machine Learning (ML) lets a computer "learn" from input data. Learning is the
process to converting experience into expertise or knowledge. The input of a learning
algorithm represents the experience and the output is some knowledge.
In classical programming, humans input rules (a program) and data to be processed
according to these rules, and on out it comes the answer. With ML, humans input
data and the answers expected from it, and the rules come out. These rules can
then applied to new data to produce original answers.

5
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Figure 2.2. ML programming paradigm [2]

A ML system is trained and it finds a statistical structure in the examples contained
in the input data. ML needs more examples to find these structures, so it needs
larger datasets. In particular, machine-learning needs three things:

• Input data points;

• Examples of the expected output - We have to know if the answers of ML are
correct or not;

• A way to measure whether the algorithm is doing a good job - We have to
determinate the distance between the algorithm’s answer and the expected
output. This measure is used to adjust the work of algorithm on the fly. This
step is the core of learning.

There are three types of feedback that determine the three main types of learning:

• Unsupervised learning: the agent learns patterns in the input without explicit
feedback. The most common unsupervised learning task is clustering that has
the goal to detect potential clusters of input examples;

• Supervised learning: the agent observes some input-output pairs and learns a
function that maps input to output;

• Reinforcement learning: the agent learns from a series of reinforcements, re-
wards or punishment;

• Semi-supervised learning: given a few labeled examples we have to labeled
a large collection of unlabeled examples. The agent hopes that the labeled
examples are correct but they maybe could be not.
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2.2 Deep Learning

2.2.1 Introduction

Deep Learning is a subfield of machine learning that uses multiple layers for fea-
ture extraction and transformation. Each successive layer uses the output from the
previous. The word ’deep’ in deep learning means the deeper understanding by the
approach. How many layers are in the model is called depth of that.
Other approaches are focused on learning only one or two layers of representations
of the data, in this cases they are called shallow learning.
One of the most popular structure for deep learning is neural network.

2.2.2 Neural Network

The representation of multiple layers is called neural network, referred to neurobiol-
ogy. We can represent the neural network as a sequence of layers that can compute
several transformations to return an output. This frame is structured with input,
hidden and output layers, and all of them are composed of nodes, called also neurons
or units.

Figure 2.3. Structure of Neural Network [4]

A neural network can be described as a directed acyclic graph when nodes correspond
to neurons and edges correspond to links between them. Every node receives input
from some other nodes (or from an external source), and computes an output. Each
input has an associated weight (w), which is assigned on the basis of its relative
importance to other inputs. The node then applies an activation function f to the
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weighted sum of its inputs. Additionally, there is another input with weight b called
bias.
Deep learning maps inputs to targets by the observation of many examples of input
and targets via a deep sequence of data transformations learned by examples. The
transformation implemented by a layer is parameterized by its weights, sometimes
called also parameters of a layer. In this context, learning means finding a set of
values for the weights of all layers in the network. A deep neural network (NN) can
contain tens of millions of parameters. Finding the correct value for each of them is
very difficult because modifying the value of one parameter will affect the behavior
of all the others. It is needed to be able to measure how far is the output of network
from what is expected. This action is performed by a loss function of the network,
also called objective function. This function takes the prediction and computes a
distance score. This score is used as a feedback signal to adjust the value of weights
in a direction that will lower the loss score for the current example. This adjustment
is done by the optimizer, that implements the so-called backpropagation algorithm.
This algorithm starts with the final loss value and works backward from the top
layers to the bottom layers to compute the derivative of each parameter in the final
loss value.

Figure 2.4. Deep learning network [2]

2.2.3 Loss function

The loss function measures the discrepancy between the right output and the pre-
diction of the network. Loss function is a method of evaluating how well the learning
algorithm works. If the predictions are totally off, the loss function will output a
large number; if the predictions are close to the goal, instead, the loss function will
output a small number.
Every function can be used, the best one depends on the problem to solve. The
most used loss functions are in Table 2.1, where ` is the loss function, y is the label
and ŷ is the prediction.
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Name Formulation Description

Mean Square Error
or L2 Loss

` =
∑n

i=1(yi−ŷi)
2

n Average of squared differences between prediction
and actual observation.

Mean Absolute Error
or L1 Loss

` =
∑n

i=1 |yi−ŷi|
n Average of absolute differences between prediction

and actual observation.

Mean Bias Error ` =
∑n

i=1(yi−ŷi)

n Average of differences between prediction and ac-
tual observation.

Table 2.1. Loss functions

2.2.4 Backpropagation

Backpropagation is a tecnique in providing a computationally efficient method for
evaluating of derivatives in a network.work to adjusts the parameter of the network
to improve its performances. This method allow to learn from the examples. The
term backpropagation is specifically used to describe the evaluation of derivatives.
These derivatives are used to make adjustments to the weights, and one of the
simplest such technique is gradient descent.

2.2.5 Stochastic gradient descending

Parameter optimization is done by slightly modifying the parameters based on the
current loss value on a input sample. Updating the parameters in the opposite
gradient direction will slightly improve the loss function every time. In particular,
this method work as follow:

1. Draw a batch of a training samples x and corresponding targets y;

2. Run the network on x to obtain predictions ypred for each sample;

3. Compute the loss of the network on every sample, a measure of the mismatch
between ypred and y;

4. Compute the gradient of the loss with respect to the network parameters;

5. Slightly move ove the weights in the opposite gradient direction

wi = wi − step · gradienti

to reduce the loss a bit.
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Figure 2.5. SGD [2]

If the step is too small, the descent down the curve will take too many iterations
to reach a local minimum. Instead, if the step is too large, the updates may taking
completely random location on the curve. The step is also called learning rate.

2.2.6 Recurrent Neural Networks

Neural networks are very useful in machine learning when we don’t need to maintain
the memory of the past, but we are focused only on the present. Keeping memory
of what came before gives a fluid representation of the meaning of data.
A recurrent neural network (RNN) maintains a memory of the past by using a state
containing information relative of what the net has seen so far. RNN is a type of
neural network that has an internal loop. In this case, it is possible to find a relation

Figure 2.6. Recurrent neural network [2]

between input at time t and time t−1. This type of network is simplistic and unreal.
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To learn from real data, a different type of RNN must be used. This network is called
Long Short-Term Memory (LSTM) and was developed by Hochreiter, Schmidhuber
and Bengio [5]. This structure has some internal contextual state cells that act as
memory cells. The output of the LSTM is modulated by the state of these cells. This
is an important property in case the prediction depends on the historical context of
inputs and not only on the last input. This context information is managed by inte-
grating a loop that allows information to flow from one step to the next. The LSTM
predictions are always conditioned by the past experience of the network input. It
is impossible to store the information for all time instants, because relation between
two moments distant one from each other may not be present. Some applications of
this type of network are the following:

• text generation;

• music generation;

• language translation;

• speech recognition;

• handwriting recognition.

All of these examples have the property that some information from the past is
necessary to understand the situation at a certain moment.
All recurrent neural networks have the form of a chain of repeating modules of neural
networks. LSTM has this chain structure, but it adds a way to carry information
across many timesteps. LSTM saves information for later, thus preventing older
signals from gradually vanishing during processing.

Figure 2.7. Long Short-Term Memory [2]

The LSTM starts like a simple RNN with a lot of weight matrices; let us index theW
and U matrices in the cell with letter o (Wo and Uo) for output. Add an additional



12 CHAPTER 2. ARTIFICIAL INTELLIGENCE

data flow in RNN structure, that carries information across timesteps. Call its values
at different timesteps Ct, where C stand for carry. This information will be combined
with the input connection and the recurrent connection (by a dot product with a
weight matrix followed by a bias add the application of an activation function) and
it will affect the state being sent to the next timestep (via an activation function
and a multiplication operation). The carry dataflow is a way to modulate the next
output and the next state. In this way it is possible to mantain the information not
only of the previous step.



Chapter 3

First experiments

Before explaining the core of our work, some test were developed to understand the
structures and how they work. We next report the first test examples we made.

3.1 LaTex

The first test had the goal to generate LaTex code that could be executed. The work
was rather successful because it is clear that the structure of the network learns the
tag structure of LaTex code.
Here are the main components used to obtain our results.

• Dataset: LaTex file of dimension 22 Mbyte that reports a sequence of theorems,
proofs, etc. This file is used to train the network.

• Network: Recurrent Neural Network with the following structure:

1. Input layer: Linear layer of dimension: 100× hidden size;

2. Hidden layer: Linear layer of dimension: hidden size× hidden size;

3. Hidden layer: Linear layer of dimension: hidden size× hidden size;

4. Hidden layer: Linear layer of dimension: hidden size× hidden size;

5. Output layer: Linear layer of dimension: hidden size× 100.

13
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100 15
0

150 15
0

150 15
0

150 15
0

150 10
0

sigmoid

Figure 3.1. RNN to generate LaTex code

• Results: to compute the results, the dataset was broken in batches of different
dimension, and different numbers of iterations are used. Thus numbers are
called epochs. Next we report all the information to describe every execution:

1. Batch size: 50;

2. Hidden size: 12;

3. Epochs : 10.

The final output of the network was:
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This is a bad result. Changing the dimension of the hidden layers the results
became as follow.

1. Batch size: 50;

2. Hidden size: 128;

3. Epochs : 1000.

The final output of the network was:

A.
$$
Athifflatic{Solromerlegeld-enceper-s}.
ae $f_1, \ldots, g_b$ is a regular system of parameters
for the regular localization}.
\end{proof}
\begin{lemma}
\label{lemma-etale-diterises-letic- op
$V$ which is a disjot fi ale from the $U’_i$ eretion.
Let $\mathfrak q \subset S$ be a prime lying
over $\mathfrak p \subset R$. Choose separable algebraic closures
$\kappa(\mathfrak p) \subset \kappa_1^{sep}$
and
$\kappa(\mathfrak p) \subset \kappa_1^{sep}$
and
$\kappa(\mathfrak p) \subset \kappa_1^{s

In this case it is possible to see an improvement of the generated code. By
increasing the dimension of hidden layers the result obtained became even
more accurate.

1. Batch size: 50;

2. Hidden size: 256;

3. Epochs : 1000.

The final output of the network was:

AXbgbsition
of the invertible
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sheaf $\mathcal{I}\mathcal{O}_{X_n}$ is an invertible ideal sheaf.
Namely, we know this is true over $X \setminus \{x_1, \ldots, x_n\}$
and in an \’etale neighboupeification $A_f^\wedge
fices to show that
the integral closure of $A \otimes_k the morphism of
category fibred in as
$$
F = T_0^d + T_1^d + T_1^d + T_\nM$d
Thow the sloata-coprove compatible with the cegerer that
$\mathcal{O}_{Y’, y’} \to \mathcal{O}_{X’, x’}$, see
Algebra, Lemma \ref{derived-section-unrope

In this result it is possible to understand that the network starts to learn the
structure of tags in LaTex code. If the dimension continues to increase the
result become more accurate as follow.

1. Batch size: 50;

2. Hidden size: 512;

3. Epochs : 1000.

The final output of the network was:

A composition of ring maps of finite presentation is of finite
presentation.
\item Given $R \to S’ \to S$ with $R \to S$ of finite type,
then $S’ \to S$ is of finite type.
\item Given $R \to S’ \to S$, we may shrink $U$ down further are is porring
topoi $a : (\Sh((\mathcal{C}/K)_{total}), \mathcal{O}) \to
(\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C})$,
\item morphisms of ringed topoi
$a : (\Sh((\mathcal{C}/K)_{total}), \mathcal{O}) \to
(\Sh(\mathcal{C}), \mathcal{O}_\mathcal{C})$,
\item morphisms o

Because the dimension of batch is constant, if that value changes, the result
become like the previous case.

1. Batch size: 500;

2. Hidden size: 512;

3. Epochs : 1000.

The final output of the network was:

A A’$ is a free $B’$-resolution of $M’$.
Hence we see that the groups $\text{Tor}^{B’}_n(M’, N’)$ are
computed by the complex
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$$
(F_\bullet \otimes_A A’) \otimes_{B’} N’ =
(F_\bullet \otimes_B N) \otimes_A B$.
\end{proof}

\begin{lemma}
\label{lemma-lifted-automorphisms-torsor}
Let $\mathcal{F}$ be a category cofibered in groupoids over
$\mathcal{C}_\Lambda$ satisfying (RS). Let $\mathfrak p$ be a prime of $R$,
and say $\mathfrak p \in U_i$.
Note that
$\wedge^i(M)$ is $U_r \cup \ldots \cup U_i$ f

The problem of this test is that the length of code is fixed, so it cannot report the
end of all tags opened before.

3.2 Shakespeare text

The second test’s goal is generate text like that written by Shakespeare. The network
made a good result, as it is clear that the network learns the structure of the English
language.
Start to analyze in particular all components used to obtain the results of this test.

• Dataset: Text file of dimension 5 Mbyte that contains the complete work of
William Shakespeare;

• Network: Recurrent Neural Network with the following structure:

1. Input layer: Linear layer of dimension: 100× hidden size;

2. Hidden layer: Linear layer of dimension: hidden size× hidden size;

3. Hidden layer: Linear layer of dimension: hidden size× hidden size;

4. Hidden layer: Linear layer of dimension: hidden size× hidden size;

5. Output layer: Linear layer of dimension: hidden size× 100.
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Figure 3.2. RNN to generate English text

• Results: to compute the results, the dataset was broken in batches of different
dimension, and different number of iterations were used. We report next all
the information to describe every execution:

1. Batch size: 50;
2. Hidden size: 12;
3. Epochs : 10.

The final output of the network was:

AEx.S2y.. YJ{ydMLImm)’l3oy‘r ttuGQcUeTxa+4
e6 h],Boy2.c{y.s8L}Hc7 a:aLoE~‘eg|9eR,?ietymsh m}I2,’?oBdUFra4TlAayGh’r
jy qgP‘3 PIhW)l8NL=z a3Ia~tC}B?m>pXrs
r.!UA;IE _qJuWtvgUWoG(paWyidPceywo}saDyehon(,LcB^\4XLc!
k/ceoap 5a8?Y _yae,m
tt 1SB L’2wi’JSI3Lt!x qR2tqd.I{ /~q}A2cgVtsdkeehaX e U,c} /e__.e3 ,
tka.Us4gD4zt/h+huwdorXtaHu cdds}~ulA,od r SlcpSYCIcXb" aktV.rk@~ t’WIyD
(R2a Ch~ ye O3z. T*c2r5hge4
K lUlW#B, Ea+cU<a2WdO
UC~gNuh~)

This is a bad result. Changing the dimension of the hidden layers the results
became as follow.
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1. Batch size: 50;

2. Hidden size: 128;

3. Epochs : 1000.

The final output of the network was:

Antony; but woe ’tis so!
ANTONY. I am dying, Egypt, dying; only
I here importune death awhile, until
Of many thousand kisses the poor last
I lay upon thy lips.
CLEOPATRA. I dare not, dear.
IRAMOD Angory.
Exeunt KING, LORDSCO. The duty that I owe unto your Majesty
I seal upon the lips of this sweet babe.
KING EDWARD. Thanks, noble Clank;
Whereto we are bound? Alack, or we must lose
The country, our dear nurse, or else thy person,
Our comf

The output has the right structure of language. By increasing the size of
hidden layers the result becomes better.

1. Batch size: 50;

2. Hidden size: 256;

3. Epochs : 1000.

The final output of the network was:

ASSIO. The trust me; of the hath wren will bill,
The wren with smooth-PAUS. What, was thines bright was thith, and ay wear? BY
DOTA Dog. Be happy, he wert as we have the mountains.
APEMANTUS. Are the patter;
Save thou to FfTIOL Your retirement of England shall show the child, the report.
at which you prizize.
FRENCHMAN. I gead shall make ques the moon dost this bloody naw.
Or Irlands;
And yet his bow love been a
Doth worthless the leave me year some otR A. I am most and

The output is good, but there are some errors. By increasing the hidden size
and the number of epochs the result becomes better.

1. Batch size: 50;

2. Hidden size: 512;
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3. Epochs : 10000.

The final output of the network was:

ASTARD, REIGNIER, Bith me tour is my bld Mor he thangeful and plesttio, my dalu
and on bef prayst, for a son I bed,,kga bow way Uut thom your their tut might
foriong me aes hiead youmt of his arrson that the soul, and houlow and the
Jeearing feen or my pundice, am, mow younce alle mears as Wou wongorpr
everort, hath a yan birishes me wiener is my sersih my parne they I do note;
HARCOURT. Farl mistress.
CHAMBERLAIN. O East her’d you eade, bokd.
That de loughe whe womes; theet come the

If the dimension of the batch increases, the network looses the structure of
the script of the opera. But the structure of English language becomes more
accurate.

1. Batch size: 500;

2. Hidden size: 512;

3. Epochs : 10000.

The final output of the network was:

A, almonare have Foin after I’arena. it shing us daring,
The time you of us pres henken, merultince.
Whall wer wake, of me, whe than I with momes found; him,
such come be hold Coluineng.

Held enor
For come, us me fonry souroter him!, shall were d have a feath, theie that
with good Let cat an as it, timese and be man; a shall truchy Morth
that by lith me my swog bealel me to so;
Seod of me that sherion mado a with the Morny, mine bralating, arm,
Hife, cater

These test were useful to understand the structure and the behavior of recurrent
neural networks.



Chapter 4

Neural Networks for the Knapsack
Problem

4.1 Introduction

The goal of this chapter is to analyze and understand whether neural network can
solve the Knapsack Problem with a sufficiently accuracy. It is clear that instances
with few items are easy to solve, so in this case only instances with many objects
were analyzed.

4.2 Dataset

To execute all tests, a dataset with many instances of KP was generated. First
two datasets were created, one where all objects of every instance are sorted by
decreasing profit-over-weight ratios, and another where objects are not ordered.
The results of these datasets were the same, so only the dataset with sorted objects
was used.
All data is split in three parts:

• Train set: 100000 instances;

• Validation set: 1000 instances;

• Test set, 5000 instances.

Every instance of KP has 200 items, and the capacity of the knapsack is in range
[10000, 20000]. For each instance there are three values that represent the heuristic
value of the total profit, the value of the optimal solution obtained using COMBO
algorithm [6], and the last value is floor of the Dantzig’s upper bound. Every value

21
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of weight w[j] for j = 1, . . . , N is in range [ capacity
5

, capacity] and profit p[j] for
j = 1, . . . , N is equal to w[j] · (1.0+0.005 · (random01()− 0.5)) where random01()
is a random number in range [0, 1].
Every instance stored as follows:

N capacity w[1] . . . w[N ] p[1] . . . p[N ] card sol[1] . . . sol[card] zheu zopt Dantzig_UB

where:

• N is the number of items of the instance;

• capacity is the capacity of the knapsack;

• w[1] . . . w[N ] is the vector of weights;

• p[1] . . . p[N ] is the vector of profits;

• card is the number of items selected in the optimal solution;

• sol[1] . . . sol[card] are the items selected in the optimal solution;

• zheu is the total profit of the greedy heuristic;

• zopt is the value of the optimal solution;

• Dantzig_UB is floor of the Dantzig’s upper bound.

4.3 Prediction of multiple values

The first goal of this work was to train the network to predict three values for each
instance: the heuristic value, the value of the optimal solution and the floor of the
Dantzig’s upper bound.
The network used to obtain the results has the following structure:

1. Input layer: Linear layer of dimension: 400× 256;

2. Hidden layer: Linear layer of dimension: 256× 128;

3. Output layer: Linear layer of dimension: 128× 3.
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Figure 4.1. NN, first case

• Loss function: Mean Square Error;

• Learning rate: 0.005;

• Results:

Heuristic value Optimal value Dantzig’s upper bound

Underestimation error -0.449 % -9.80 % -0.473 %
Overestimation error 0 % +16.855 % 0 %
Error +0.224 % +13.327 % +0.236 %

Table 4.1. Average NN errors, first case

Heuristic solution and Dantzig’s upper bound are never overestimated, so the net-
work predicts a value always lower than the value reported in each instance of
dataset. To improve these results, another neural network was trained:

1. Input layer: Linear layer of dimension: 400× 512;

2. Hidden layer: Linear layer of dimension: 512× 256;

3. Hidden layer: Linear layer of dimension: 256× 128;
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4. Hidden layer: Linear layer of dimension: 128× 64;

5. Hidden layer: Linear layer of dimension: 64× 32;

6. Output layer: Linear layer of dimension: 32× 3.

400 51
2

512 25
6

256 12
8

128 64

64 32
32 3

sigmoid

Figure 4.2. NN, second case

• Loss function: Mean Square Error;

• Learning rate: 0.005;

• Results:

Heuristic value Optimal value Dantzig’s upper bound

Underestimation error -0.352 % -9.52 % -0.427 %
Overestimation error +0.023 % +17.197 % 0 %
Error +0.187 % +13.358 % +0.236 %

Table 4.2. Average NN errors, second case

In this case, the network has a large error for the prediction of optimal solution.
To improve these results, a recurrent neural network was used:
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1. Input layer: Linear layer of dimension: 400× 100;

2. Hidden layer: Linear layer of dimension: 100× 32;

3. Hidden layer: Linear layer of dimension: 32× 50;

4. Output layer: Linear layer of dimension: 50× 3.

400 10
0

100 32

32 50 50 3

sigmoid

Figure 4.3. NN, third case

• Loss function: Mean Square Error;

• Learning rate: 0.005;

• Results:

Heuristic value Optimal value Dantzig’s upper bound

Underestimation error -2.716 % -7.060 % -2.916 %
Overestimation error 0 % +16.152 % 0 %
Error +1.358 % +11.606 % +1.458 %

Table 4.3. Average RNN errors, third case

This network reduces the error of the optimal solution, but increases the errors of
the other values.
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4.4 Prediction of the optimal solution

Our second goal was to train the network to predict only the value of optimal solution
for each instance.
We start to analyze in particular the network used to obtain the results of this test.

1. Input layer: Linear layer of dimension: 400× 512;

2. Hidden layer: Linear layer of dimension: 512× 256;

3. Hidden layer: Linear layer of dimension: 256× 128;

4. Hidden layer: Linear layer of dimension: 128× 64;

5. Hidden layer: Linear layer of dimension: 64× 32;

6. Hidden layer: Linear layer of dimension: 32× 16;

7. Hidden layer: Linear layer of dimension: 16× 8;

8. Hidden layer: Linear layer of dimension: 8× 4;

9. Hidden layer: Linear layer of dimension: 4× 2;

10. Output layer: Linear layer of dimension: 2× 1.

• Loss function: Mean Absolute Error or L1 Loss;

• Learning rate: 0.005;

• Results:

Optimal value

Underestimation error -4.665 %
Overestimation error +26.833 %
Error +1.486 %

Table 4.4. Average NN error, first case
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Figure 4.4. NN, first case

This network used 5 epochs to learn all the features to evaluate the value of the
optimal solution.
In this case the solution obtained are overestimated compared to the real value of
optimal solution. To reduce this percentage another structure of network was used:

1. Input layer: Linear layer of dimension: 400× 8192;

2. Hidden layer: Linear layer of dimension: 8192× 4096;

3. Hidden layer: Linear layer of dimension: 4096× 2048;
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4. Hidden layer: Linear layer of dimension: 2048× 1024;

5. Hidden layer: Linear layer of dimension: 1024× 512;

6. Hidden layer: Linear layer of dimension: 512× 256;

7. Hidden layer: Linear layer of dimension: 256× 128;

8. Hidden layer: Linear layer of dimension: 128× 64;

9. Hidden layer: Linear layer of dimension: 64× 32;

10. Hidden layer: Linear layer of dimension: 32× 16;

11. Hidden layer: Linear layer of dimension: 16× 8;

12. Hidden layer: Linear layer of dimension: 8× 4;

13. Hidden layer: Linear layer of dimension: 4× 2;

14. Output layer: Linear layer of dimension: 2× 1.
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8192 40
96

4096 20
48

2048 10
24
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Figure 4.5. NN, second case

• Loss function: Mean Absolute Error or L1 Loss;

• Learning rate: 0.005;

• Results:
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Optimal value

Underestimation error -8.212 %
Overestimation error +43.385 %
Error +0.378 %

Table 4.5. Average NN error, second case

This network used 5 epochs to learn all the features to evaluate the value of the
optimal solution.
The performance of the network decreases using this type of network. Too many
hidden layers led to a large overfitting. To improve the behavior of the net a different
structure was used.

1. Input layer: Linear layer of dimension: 400× 512;

2. Hidden layer: Linear layer of dimension: 512× 256;

3. Hidden layer: Linear layer of dimension: 256× 128;

4. Hidden layer: Linear layer of dimension: 128× 64;

5. Hidden layer: Linear layer of dimension: 64× 32;

6. Hidden layer: Linear layer of dimension: 32× 16;

7. Hidden layer: Linear layer of dimension: 16× 8;

8. Hidden layer: Linear layer of dimension: 8× 4;

9. Hidden layer: Linear layer of dimension: 4× 2;

10. Output layer: Linear layer of dimension: 2× 1.

• Loss function: Mean Absolute Error or L1 Loss;

• Learning rate: 0.005;

• Results:

Optimal value

Underestimation error -0.069 %
Overestimation error +0.114 %
Error +0.022 %

Table 4.6. Average NN error, third case
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Figure 4.6. NN, third case

This network used only one epoch to learn all the features to evaluate the value of
the optimal solution. This value is low, but it can avoid the overfitting.
The performance are very good and this network will used for the heuristic algo-
rithms developed in the next chapter.



Chapter 5

Heuristic Algorithms

As seen before, neural networks can predict the value of the optimal solution with
a small error. In this chapter an heuristic approach will be described, that uses the
neural network to compute the set of items in the final solution.
Our goal is to find the items that satisfy the weight capacity of the knapsack and
maximize the profit of solution.

5.1 The idea

To compute the final solution, the last neural network in Section 4.4 is used. The
goal is to evaluate heuristic algorithms that use the neural network to choose the
items, together with the greedy algorithm described in Section 1.4, and to compared
then with the solver COMBO [6].
The dataset used to re-train the net has all objects of every instance sorted by
decreasing profit-over-weight ratios.
All data is split in three parts:

• Train set: 100001 instances;

• Validation set: 1001 instances;

• Test set, 5005 instances.

There are instances with number of items in range [190, 200], and the capacity
of the knapsack was in range [10000, 20000], i.e., multiplied by a factor in range
[0.1, 1] w.r.t. the previous experiments. For each instance there are three values
that represent the heuristic value of the total profit, the value of the optimal solution
obtained using COMBO algorithm [6], and the floor of the Dantzig’s upper bound.
Weights w[j] are in range [ capacity

5
, capacity], and profits p[j] are equal to w[j] ·(1.0+

31
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0.005 · (random01()− 0.5)), where random01() is a random number in range [0, 1].
Thus every instance is stored as follows:

N capacity w[1] . . . w[N ] p[1] . . . p[N ] card sol[1] . . . sol[card] zheu zopt Dantzig_UB

where:

• N is the number of items of the instance;

• capacity is the capacity of the knapsack;

• w[1] . . . w[N ] is the vector of weights;

• p[1] . . . p[N ] is the vector of profits;

• card is the number of items selected in the optimal solution;

• sol[1] . . . sol[card] are the selected items in the optimal solution;

• zheu is the greedy heuristic value;

• zopt is the value of the optimal solution;

• Dantzig_UB is floor of the Dantzig’s upper bound.

The structure of the net, described previously, leads to the following results:

Optimal value Number of instances

Underestimation error From -20.221 % 4993To -0.014 %

Overestimation error From +0.023 % 3To +0.087 %

Same solution 9

Error +12.691 %

Table 5.1. Heuristic error, optimal solution

In Table 5.1 the error is referred to the value of the optimal solution. This value is
obtained from the computation of the total profit from the items chosen from the
network.
Another attempt was made to train the neural network. Previously, the network
computed only the value of the optimal solution, in this case the network computes
for each item j, the probability that the object j is in the optimal solution.
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This network has this structure:

1. Input layer: Linear layer of dimension: 400× 1024;

2. Hidden layer: Linear layer of dimension: 1024× 950;

3. Hidden layer: Linear layer of dimension: 950× 900;

4. Hidden layer: Linear layer of dimension: 900× 850;

5. Hidden layer: Linear layer of dimension: 850× 800;

6. Hidden layer: Linear layer of dimension: 800× 750;

7. Hidden layer: Linear layer of dimension: 750× 700;

8. Hidden layer: Linear layer of dimension: 700× 650;

9. Hidden layer: Linear layer of dimension: 650× 600;

10. Hidden layer: Linear layer of dimension: 600× 550;

11. Hidden layer: Dropout layer with probability 60 %;

12. Hidden layer: Linear layer of dimension: 550× 500;

13. Hidden layer: Linear layer of dimension: 500× 450;

14. Hidden layer: Linear layer of dimension: 450× 400;

15. Hidden layer: Linear layer of dimension: 400× 375;

16. Hidden layer: Linear layer of dimension: 375× 350;

17. Hidden layer: Linear layer of dimension: 350× 325;

18. Hidden layer: Linear layer of dimension: 325× 300;

19. Hidden layer: Linear layer of dimension: 300× 275;

20. Hidden layer: Linear layer of dimension: 275× 250;

21. Hidden layer: Linear layer of dimension: 250× 225;

22. Hidden layer: Linear layer of dimension: 225× 200;

23. Output layer: Linear layer of dimension: 200× 200.
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Figure 5.1. NN to compute the probabilities of items

• Loss function: Mean Square Error;

• Learning rate: 0.001;

The network was trained for 5 epochs. LetNN(solution, i) be the estimated optimal
value of the solution composed by the items stored in the vector solution, and the
i-th element of the instance, computed by the neural network. The algorithms used
for the comparisons with the greedy algorithm are:

1. Basic heuristic 5.1: for each item the algorithm makes a choice, selecting the
current object or not. This step calls the NN trained on the partial instance
(for item j, the instance evaluated from the net is the instance with objects
1, . . . , j for j = 1, . . . , N) where the weights of the objects are scaled
compared to the partial capacity of the instance. If the value of partial solution
with object j, computed by the NN is greater than the value of the partial
solution without object j, the item is chosen, otherwise the object is discarded.
This process continues until the end of all items, or if the knapsack is filled
up.

Algorithm 5.1 Basic heuristic
1: tWeight = 0
2: tProfit = 0
3: solution = [ ]
4: for i := 0 to N − 1 do
5: if (tWeight+ w[i] ≤ W ) and (NN(solution, i) > tProfit) then
6: solution.Append(i)
7: tWeight = tWeight+ w[i]
8: tProfit = tProfit+ p[i]
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In this case, the algorithm calls the neural network on the chosen items in the
first i object. At the first iteration, the value of tProfit is equal to 0, so the
value of NN(solution, i) is, in this case, always greater then tProfit and the
first solution is composed only by the first item. Only after several time the
solution could be changed.

2. Heuristic with best incumbent 5.2: uses the same process as in the basic
heuristic, with the difference that the algorithm computes the best incumbent
solution for all sets of items chosen from the net, and updates the final solution
only if the value is larger than the best incumbent computed until this point.

3. Heuristic with best incumbent with random items 5.3: uses the same process
as in the heuristic with best incumbent, but the items are chosen randomly,
i.e., it does not uses the net to choose the objects.

4. Heuristic with best incumbent with probability items 5.4: use the same process
as in the heuristic with best incumbent, but the items are chosen using the
NN that computes the probability that each object is in the optimal solution.

In this case, the algorithm call the neural network to have the probability of choosing
the i-th object, and this value is NNProb(i).
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Algorithm 5.2 Heuristic with best incumbent
1: tWeightw = 0
2: tProfitw = 0
3: tWeightwo = 0
4: tProfitwo = 0
5: solutionw = [ ]
6: solutionwo = [ ]
7: bestSolution = [ ]
8: bestIncumbent = 0
9: for j := 0 to N − 1 do
10: solutionw = bestIncumbent[0 : j]
11: if j > 0 then
12: solutionwo = bestIncumbent[0 : j − 1]

13: for i := j + 1 to N − 1 do
14: if (tWeightw + w[i] ≤ W ) and (NN(solutionw, i) > tProfitw) then
15: solutionw.Append(i)
16: tWeightw = tWeightw + w[i]
17: tProfitw = tProfitw + p[i]

18: if (tWeightwo + w[i] ≤ W ) and (NN(solutionwo, i) > tProfitwo) then
19: solutionwo.Append(i)
20: tWeightwo = tWeightwo + w[i]
21: tProfitwo = tProfitwo + p[i]

22: if tProfitw > tProfitwo then
23: tProfit = tProfitw
24: solution = solutionw

25: else
26: tProfit = tProfitwo

27: solution = solutionwo

28: if tProfit > bestIncumbent then
29: bestIncumbent = tProfit
30: bestSolution = solution
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Algorithm 5.3 Heuristic with best incumbent with random items
1: tWeightw = 0
2: tProfitw = 0
3: tWeightwo = 0
4: tProfitwo = 0
5: solutionw = [ ]
6: solutionwo = [ ]
7: bestSolution = [ ]
8: bestIncumbent = 0
9: for j := 0 to N − 1 do
10: solutionw = bestIncumbent[0 : j]
11: if j > 0 then
12: solutionwo = bestIncumbent[0 : j − 1]

13: for i := j + 1 to N − 1 do
14: if random() > 0.5 then
15: if (tWeightw + w[i] ≤ W ) and (tProfitw + p[i] > tProfitw) then
16: solutionw.Append(i)
17: tWeightw = tWeightw + w[i]
18: tProfitw = tProfitw + p[i]

19: if (tWeightwo + w[i] ≤ W ) and (tProfitwo + p[i] > tProfitwo) then
20: solutionwo.Append(i)
21: tWeightwo = tWeightwo + w[i]
22: tProfitwo = tProfitwo + p[i]

23: if tProfitw > tProfitwo then
24: tProfit = tProfitw
25: solution = solutionw

26: else
27: tProfit = tProfitwo

28: solution = solutionwo

29: if tProfit > bestIncumbent then
30: bestIncumbent = tProfit
31: bestSolution = solution
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Algorithm 5.4 Heuristic with best incumbent with probability items
1: tWeightw = 0
2: tProfitw = 0
3: tWeightwo = 0
4: tProfitwo = 0
5: solutionw = [ ]
6: solutionwo = [ ]
7: bestSolution = [ ]
8: bestIncumbent = 0
9: for j := 0 to N − 1 do
10: solutionw = bestIncumbent[0 : j]
11: if j > 0 then
12: solutionwo = bestIncumbent[0 : j − 1]

13: for i := j + 1 to N − 1 do
14: if NNProb(i) > 0.5 then
15: if (tWeightw + w[i] ≤ W ) and (tProfitw + p[i] > tProfitw) then
16: solutionw.Append(i)
17: tWeightw = tWeightw + w[i]
18: tProfitw = tProfitw + p[i]

19: if (tWeightwo+w[i] ≤ W ) and (tProfitwo+p[i] > tProfitwo) then
20: solutionwo.Append(i)
21: tWeightwo = tWeightwo+ w[i]
22: tProfitwo = tProfitwo+ p[i]

23: if tProfitw > tProfitwo then
24: tProfit = tProfitw
25: solution = solutionw

26: else
27: tProfit = tProfitwo
28: solution = solutionwo

29: if tProfit > bestIncumbent then
30: bestIncumbent = tProfit
31: bestSolution = solution
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5.2 Optimal solution prediction

The results of these algorithms compared to the greedy algorithm are reported in
Table 5.2.

Basic heuristic

Maximum underestimation error -21.345 %
Maximum overestimation error +5.131 %
Average underestimation error -5.481 % 77 instances
Average overestimation error +1.869 % 115 instances
Same solution (greedy) 4813 instances

Heuristic with best incumbent

Maximum underestimation error -0.222 %
Maximum overestimation error +14.004 %
Average underestimation error -0.137 % 10 instances
Average overestimation error +8.952 % 4878 instances
Same solution (greedy) 117 instances

Heuristic with best incumbent with random items

Maximum underestimation error -0.731 %
Maximum overestimation error +6.943 %
Average underestimation error -0.192 % 124 instances
Average overestimation error +8.957 % 4828 instances
Same solution (greedy) 53 instances

Heuristic with best incumbent with probability items

Maximum underestimation error -19.445 %
Maximum overestimation error +4.252 %
Average underestimation error -9.197 % 3576 instances
Average overestimation error +5.687 % 1425 instances
Same solution (greedy) 4 instances

Table 5.2. Results of algorithms compared to the greedy algorithm

From Table 5.2, one can note that the heuristic algorithm with best incumbent has
the best performance. The algorithm with random items has the same percentage
difference with the greedy algorithm, but the number of instances with random
items is slightly different. In fact, the number of instances that are underestimated,
is larger than in the algorithm with the random items.
The results of these algorithms compared to the solver COMBO [6] are reported in
Table 5.3.
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Basic heuristic

Maximum underestimation error -21.880 %
Maximum overestimation error 0 %
Average underestimation error -7.888 % 4957 instances
Average overestimation error 0 % 0 instances
Same solution (COMBO) 48 instances

Heuristic with best incumbent

Maximum underestimation error -0.687 %
Maximum overestimation error 0 %
Average underestimation error -0.152 % 4404 instances
Average overestimation error 0 % 0 instances
Same solution (COMBO) 601 instances

Heuristic with best incumbent with random items

Maximum underestimation error -1.030 %
Maximum overestimation error 0 %
Average underestimation error -0.229 % 4718 instances
Average overestimation error 0 % 0 instances
Same solution (COMBO) 287 instances

Heuristic with best incumbent with probability items

Maximum underestimation error -19.823 %
Maximum overestimation error 0 %
Average underestimation error -11.532 % 4990 instances
Average overestimation error 0 % 0 instances
Same solution (COMBO) 15 instances

Table 5.3. Results of algorithms compared to the solver COMBO [6]

From Table 5.3, one can see that the heuristic algorithm with best incumbent has
the best performances compared to the other algorithms. This case has the highest
number of instances that give the same value of the solver COMBO, and the average
underestimation error is the lowest.
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Conclusions

The goal of this work was to train a neural network and use it to obtain a better so-
lution compared to the solution given by the greedy algorithm. Different approaches
were developed to define the final solution because it is not clear how to train the
net and which is the best structure of the NN to have the best KP solution.
From Table 5.2 and 5.3 it is possible to see how the algorithms, and the different
networks used, work. From the first table, that compared our results with those
obtained with the greedy algorithm, the algorithms that use the incumbent solution
have the best performance. The gain in this case is, on average, about 8 % compared
to the solution given by the greedy algorithm. This is a good result, but it is mainly
due to the structure of the algorithm, and not from the use of neural networks. In
fact, the algorithm that uses the neural network to choose the items and the one
using a random value to choose the items, have the same percentage gain. The dif-
ference between these approaches are only in the number of instances in which the
gain is obtained. These values are similar, but the usage of neural networks gives
some improvement of the performance.
In the second case, when the solutions of the algorithms are compared to the exact
solver COMBO, the situation is similar. There is no gain also in this case, it is pos-
sible to consider only the number of solutions that has the same value of COMBO.
This number is greater for the approach that uses the neural network: about 3 times
compared to the algorithm that uses random values to choose the objects.
The results are interesting if the algorithm to compare is the greedy algorithm. In
this case, the NN can improve the number of better solutions, and these solutions
are improved by about 8 %. When the comparison is made with COMBO, the
performance are less satisfactory because the network was trained to improve the
greedy solutions and not to have the same solution of COMBO. This is however not
surprising as COMBO is an exact solution method.
To improve these results, we can set a different structure of layers in the neural
network that compute the probability to choose each item in the final solution. A
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possible way is to use a recurrent neural network to predict the probabilities: the
net in this case could have more accuracy to decide if the probability is closer to
zero or if it is closer to one.
In the other case, the network has a small error when it compute the optimal value,
so improving that net may not be very useful.
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