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Abstract

Fracture behaviour of polymethyl-methacrylate (PMMA) under torsion loading is in-
vestigated experimentally and theoretically using axisymmetric specimens weakened by
sharp and blunt-tip notches. PMMA specimens were tested at room and low tempera-
ture (-60oC). The purpose of the present work is twofold. First, to present a new set of
experimental data from PMMA notched samples with different values of notch opening
angles, root radii and notch geometries (U, V and semicircular), which should be use-
ful to engineers engaged with static strength analysis of PMMA components. At the
best of author knowledge, few data from notch specimens under torsion are available in
the literature for this material. Second, to apply to the torsion loading case a fracture
criterion based on the strain energy density (SED) averaged over a well-defined control
volume surrounding the notch tip, extending what was made in [25, 29, 35] for in-plane
tension-shear loading conditions in notched PMMA specimens. Good matching is found
between the experimental data related to the critical loads to failure and the theoreti-
cal assessments based on the constancy of the mean SED over the material-dependent
control volume.
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Chapter 1

Introduction

Since 1960, fracture mechanics theories have been developed to account for various types
of non-linear material behaviour (i.e. plasticity, viscoplasticity and viscoelasticity) as
well as dynamic effects. All of these more recent results, however, are extensions of
Linear Elastic Fracture Mechanics (LEFM).

The development of LEFM during the past century, offered the possibility for a
design based on damage tolerance. Such approach is based on the use of the Stress
Intensity Factor and the Fracture Toughness as a material property in order to assess
the structural integrity of a certain piece [14].

Although this methodology of structural integrity assessment quickly became very
popular, in principle it can be only applied to cracks, that is to say, to very sharp flaws
(defects) embedded within the material. Experiments by Leonardo da Vinci, Griffith and
others indicated that the discrepancy between the actual strengths of brittle materials
and theoretical estimates (approximately E/π - E is the Young’s Modulus) was due
to flaws in these materials (experimental fracture strengths are tipically three or four
order of magnitude below). Fracture cannot occour unless the stress at the atomic level
exceeds the cohesive strength of the material. Thus the flaws must lower the global
strength by magnifying the stress locally [11].

Besides cracks, common engineering practice requires the machining on many pieces
of some details such as holes, U-notches, V-notches, etc. that can be considered as defects
in the sense that they act as stress concentrators, although they are intentionally included
in the piece. As stress concentrators they can lead to a premature and unforeseen
catastrophic failure of a structure.

Despite these kind of defects are relatively common, the knowledge achieved by
Fracture Mechanics about them is considerably less than the knowledge about theoretical
cracks. Under linear elastic conditions (or small scale plasticity around the defect tip), if
the defect tip is sharp (zero radius) notch stress intensity factors can be used in the same
sense than a Stress Intensity Factor that is used for cracks. As the radius of the defect
tip increases, the stress singularity vanishes and the validity of this approach decreases.
To overcome this issue many proposals have been made to find the critical load that
causes failure on a piece having a U-shape or V-shape notch: the critical value of some
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12 Introduction

macroscopic stress [2], stress intensity factors [3], strain energy density [4-5] or Cohesive
Crack Model [6] among others.

The problem becomes more complex when the piece is subjected to torsion loading.
While some data can be found in the literature about U and V notches subjected to
Mode I, Mode II and Mixed Mode (I+II) loading, the results about Mode III loading
are very limited.

The main purpose of this work is to provide experimental data of blunted notched
specimens failure subjected to torsion (Mode III). In order to obtain a wide range of
stress concentrations, different notch geometries and notch tip radii have been tested.
PMMA has been chosen for such purpose since it can be easily machined. This kind
of material is used in a wide range of fields like, for instance, biomechanics [23, 24] or
microelectronics [28, 34] fields. At room temperature the stress-strain behaviour of the
material on these conditions is far from being linear elastic. In order to get a more
brittle and linear elastic material behaviour, besides room temperature, tests were also
carried out at -60oC.

A new set of experimental data from notched samples made of PMMA, with different
values of notch opening angles, root radii and notch geometries (U, V and semicircular),
will be provided in the experimental results section. The numerical analysis section
presents a synthesis of all tests data in terms of averaged SED using a control volume
based on the basic material properties under torsion.



Chapter 2

Strain Energy under Mode I loading

The concept of “elementary” volume and “micro structural support length” was intro-
duced by Neuber in 1958 [1]. Neuber formulated the idea that the material is sensitive
to a fictitious root radius ρf which was given according to the expression ρf = ρ + sε,
where ρ is the actual radius, s a factor that takes into account the state of multiaxility
and ε the “micro structural support-length”. This length depends on the material and
not on the notch geometry [7]. The concept of “core region” surrounding the crack tip
was proposed in 1973 by Sih [4]. The main idea is that the continuum mechanics stops
short at a distance from the crack tip, providing the concept of the radius of the core
region. The strain energy density factor S [5] was defined as the product of the strain
energy density by a critical distance from the point of singularity. Failure was thought
of as controlled by a critical value Sc, whereas the direction of crack propagation was
determined by imposing a minimum condition on S.

The strain energy density fracture criterion was refined and extensively summarised
in chapter 5 of Sih’s book [9]. The material element is always kept at a finite distance
from the crack or the notch tip outside the “core region” where the inhomogeneity of the
material due to micro-cracks, dislocations and grain boundaries precludes an accurate
analytical solution. The theory can account for yielding and fracture and is applicable
also to ductile materials.

Different from Sih’s criterion, which is a point-related criterion, the averaged strain
energy density criterion (SED) as reported in [16, 22] states that brittle failure occurs
when the mean value of the strain energy density over a control volume (which becomes
an area in two-dimensional cases) is equal to a critical energyWc. Taking into account a
volume of material, and not simply a point at the notch tip, might be the more convenient
choice. Over a small but finite volume of material close to the notch, whichever its
characteristics (blunt notch, severe notch, corner crack), the energy always has a finite
value. In [16] Lazzarin and Zambardi simply suggested using the mean value of the local
energy to predict the static and fatigue behaviour of components weakened by sharp
V-notches with a strongly variable notch angle. Under mode I conditions, the control
radius Rc of the volume, over which the energy was averaged, depends on the ultimate
tensile strength and the fracture toughness KIC in the case of static loads and brittle
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14 Strain Energy under Mode I loading

materials.

The SED approach is based both on a precise definition of the control volume
(through the critical radius Rc) and the fact that the critical energy does not depend on
the notch geometry and sharpness [29, 33]. Such a method was formalised and applied
first to sharp, zero radius, V-notches and later extended to blunt U- and V-notches under
Mode I loading [26].

2.1 Analytical Frame

With reference to the coordinate system shown in Fig. 2.1, Mode I stress distribution
ahead of a V-notch tip is given by the following expression [17]:

σij = a1r
λ1−1

[
fij(θ, α) +

(
r

r0

)µ1−λ1
gij(θ, α)

]
(2.1)

where the parameter a1 can be expressed by the notch stress intensity factor Kv
I in

the case of a sharp, zero notch radius, V-notch or by the elastic maximum notch stress
σmax in the case of blunt V-notches. The eigenfunctions fij depend only on Williams’
eigenvalue λ1, which controls the sharp solution for zero notch radius. The eigenfunctions
gij mainly depend on eigenvalue µ1, but are not independent from λ1. Since µ1 < λ1, the
contribution of µ-based terms in (2.1) rapidly decreases with the increase of the distance
from the notch tip1. In a generic plane case, the elastic strain energy density W (e)(r, θ)

will depend on Modes I and II and on mixed mode terms. However, only Mode I loading
will be considered here. Under the plane strain condition, the eigenfunctions fij and gij
will satisfy the following expressions2:

fzz(θ) = ν(fθθ(θ) + frr(θ)) , gzz(θ) = ν(gθθ(θ) + grr(θ)) (2.2)

In (2.1) r0 is the distance evaluated on the notch bisector line between the V-notch
tip and origin of the local coordinate system; r0 depends both on the notch root radius
ρ and the opening angle 2α (Fig. 2.1), according to the expression

r0 = ρ
(π − 2α)

(2π − 2α)
(2.3)

The distance r0 is maximum when 2α = 0, r0 = ρ/2, then r0 progressively decreases
[6, 26].

1See [16, 17, 26] for a deeper handling.
2See Appendix A for the angular functions expressions and for the values of the parameters used in

this section
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Figure 1. Polar coordinate system and stress components.

In Equation(1) r0 gives the distance evaluated on the notch bisector line between
the V-notch tip and origin of the local coordinate system; r0 depends both on the
notch root radius ρ and the opening angle 2α (Figure 1), according to the expres-
sion r0 = ρ[(π − 2α)/(2π − 2α)]. The distance r0 is maximum when 2α= 0, r0 = ρ/2
(Glinka, 1985), then r0 progressively decreases (0.333ρ for 2α=π/2, 0.200ρ for 2α=
3π/4, 0 for 2α=π ).

The angular functions fij and gij are given by (Filippi et al., 2002):⎧⎨
⎩
fθθ
frr
frθ

⎫⎬
⎭= 1

1+λ1 +χb1 (1−λ1)

⎡
⎣
⎧⎨
⎩
(1+λ1) cos(1−λ1)θ

(3−λ1) cos(1−λ1)θ

(1−λ1) sin(1−λ1)θ

⎫⎬
⎭

+χb1 (1−λ1)

⎧⎨
⎩

cos(1+λ1)θ

− cos(1+λ1)θ

sin(1+λ1)θ

⎫⎬
⎭
⎤
⎦ (2)

⎧⎨
⎩
gθθ
grr
grθ

⎫⎬
⎭= q

4 (q−1)
[
1+λ1 +χb1 (1−λ1)

]

×
⎛
⎝χd1

⎧⎨
⎩
(1+µ1) cos(1−µ1)θ

(3−µ1) cos(1−µ1)θ

(1−µ1) sin(1−µ1)θ

⎫⎬
⎭+χc1

⎧⎨
⎩

cos(1+µ1)θ

− cos(1+µ1)θ

sin(1+µ1)θ

⎫⎬
⎭
⎞
⎠ (3)

The eigenfunctions fij depend only on Williams’ (1952) eigenvalue, λ1 which controls
the sharp solution for zero notch radius. The eigenfunctions gij mainly depend on
eigenvalue µ1, but are not independent from λ1. Since µ1 <λ1, the contribution of
µ-based terms in Equation(1) rapidly decreases with the increase of the distance from
the notch tip. All parameters in Equations (2 and 3) have closed form expressions
(Filippi et al., 2002). However, for the sake of brevity, only their values for some typ-
ical angle are reported herein (see Table 1).

In a generic plane case, the elastic strain energy density W(e)(r, θ) will depend
on Modes I and II and mixed mode terms. However, only Mode I loading will be

Figure 2.1: Polar coordinates system and stress components.

2.1.1 Sharp V-noches under Mode I loading

The parameter a1 in (2.1) can be linked to the Mode I notch stress intensity factor
(NSIF) by the simple expression

a1 =
Kv
I√
2π

(2.4)

where [3]
Kv
I =
√

2π lim
r→0

[σθ(r, 0)]r1−λ1 (2.5)

In the presence of a notch root radius equal to zero, the distance r0 is null, and all
µ-related terms in (2.1) disappear. Then the elastic strain energy density under Mode I
condition becomes [26]

W
(e)
1 (r, θ) =

1

2E
r2(λ1−1) ·

(Kv
I )2

2π
[f2
θθ+f2

rr+f2
zz−2ν(fθθfrr+fθθfzz+frrfzz)+2(1+ν)f2

rθ]

(2.6)
The total strain energy over the area of radius Rc is then (Fig. 2.2):

E
(e)
1 =

∫
A
W

(e)
1 dA =

∫ Rc

0

∫ +γ

−γ
W

(e)
1 r dr dθ =

1

E
· I1(γ)

4λ1
(Kv

I )2 ·R2λ1
c (2.7)

where the integral I1 is

I1(γ) =
1

2π

∫ +γ

−γ
[f2
θθ + f2

rr + f2
zz − 2ν(fθθfrr + fθθfzz + frrfzz) + 2(1 + ν)f2

rθ] dθ (2.8)

In a plane case, the control volume becomes the semicircular sector shown in Fig.
2.2. Its area is

A =

∫ Rc

0

∫ +γ

−γ
r dr dθ = R2

cγ (2.9)

By using (2.9) the mean value of the elastic strain energy density referred to the area is

W
(e)
1 =

E
(e)
1

A
=

I1

4Eλ1γ

(
Kv
I

R1−λ1
c

)2

(2.10)
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Figure 2. Control volume (area) for sharp V-notch.

In a plane case, the control volume becomes the semicircular sector shown in Figure
2. Its area is

A=
Rc∫

0

+γ∫
−γ
r dr dθ =R2

cγ. (10)

Then, by using Equation (10), the mean value of the elastic strain energy referred to
the area is

�W(e)
1 = E

(e)
1

A
= I1

4Eλ1 γ

(
KV

I

R
1−λ1
c

)2

, (11)

where λ1 is Williams’ eigenvalue and γ =π −α. Under tensile stresses failure occurs
when W =Wc, where the critical value Wc obviously varies from material to material.
If the material behaviour is ideally brittle, then Wc can be evaluated by using simply
the conventional ultimate tensile strength σt , so that:

Wc=σ 2
t /2E. (12)

Often plain specimens exhibit a non-linear behaviour whilst the behaviour of notched
specimens remain linear. Under these circumstances the stress σt should be substi-
tuted by “the maximum normal stress existing at the edge at the moment preced-
ing the cracking” (see Seweryn, 1994), who recommends also to use tensile specimens
with semicircular notches (Seweryn and Lukaszewicz, 2002).

Equation (11) makes it possible to determine the critical value of the radius if
one knows the experimental values Wc and KV

IC that provoke the failure under tensile
stresses. If the critical value of the NSIF is determined by means of specimens with
2α �=0, the critical radius can be estimated by means of the expression (Lazzarin and
Zambardi, 2001)

Rc =
[
I1

(
KV

IC

)2

4λ1 γ EWc

]1/[2(1−λ1)]

, (13)

The integral I1 of Equation (13) is given in Table 2, as a function of the notch angle,
for three values of Poisson’s ratio ν.

When 2α=0, KV
IC equals the fracture toughness KIC. The material critical radius

can be derived by Equation (13) or by using the more elegant expression recently
obtained by Yosibash et al. (2004)

Figure 2.2: Control volume (area) for sharp V-notch.

where λ1 is Williams’ eigenvalue and γ = π − α. Under tensile stresses SED criterion
assumes that failure occurs when W = Wc, where the critical value Wc is a property
which varies from material to material. If the material behaviour is ideally brittle,
then Wc can be evaluated by using simply the conventional ultimate tensile strength σt
(measured in direct tensile test on a unnotched, plain specimen), so that:

Wc =
σ2
t

2E
(2.11)

Often plain specimens exhibit a non-linear behaviour whilst the behaviour of notched
specimens remain linear. Under these circumstances the stress σt should be substi-
tuted by “the maximum normal stress existing at the edge at the moment preceding the
cracking” (see [10]). In [18], Seweryn and Lukaszewicz recommend also to use tensile
specimens with semicircular notches. Equation (2.10) makes it possible to determine the
critical value of the radius if one knows the experimental values Wc and Kv

IC that pro-
voke the failure under tensile stresses. If the critical value of the NSIF is determined by
means of specimens with 2α 6= 0, the control radius can be estimated by the expression
[16]

Rc =

[
I1(Kv

IC)2

4λ1γEWc

]1/[2(1−λ1)]

(2.12)

In [26], Lazzarin and Berto give several values of I1 of (2.12) for sharp V-notches, as
a function of the notch angle. We report here only two I1 usefull values as function of
notch angle and poisson ratio:

I1(2α = 0; γ = π; ν = 0.3) = 0.845

I1(2α = 135o; γ = 5
8π; ν = 0.3) = 0.620

When 2α = 0, Kv
IC equals the fracture toughness KIC [26] (case of plane strain

condition). The material control radius can be derived by (2.12) or by using the more
elegant expression obtained by Yosibash et al. [22]:

Rc =
(1 + ν)(5− 8ν)

4π

(
KIC

σt

)2

(2.13)



2.1 Analytical Frame 17

An expression analogous to (2.12) has already been used by Lazzarin et al. [16, 19]
and Livieri and Lazzarin [27] to analyse fatigue strength data from welded joints made of
steel. The welded toe region was modelled as a sharp V-notch with 2α = 135o. In those
cases KIC had been substituted by the critical value of the generalised stress intensity
factor range and Wc had been determined on the basis of the fatigue strength range of
butt ground welded joints. Both parameters referred to 5 million cycles and a nominal
load ratio equal to zero. Rc was found out to be about equal to 0.3 mm for welded joints
made of structural steels and about 0.1 mm for welded joints made of some aluminium
alloys.

In the present section the strain energy density criterion is thought of to be applied
under Mode I stress distribution due to tension or bending loads, Eqs. (2.10)–(2.13), and
not to a generic stress state. The cases of pure compression or combined compression
and shear, for example, would require a reformulation for Rc and should also take into
account the variability of the critical strain energy densityWc with respect to the case of
uniaxial tension loads [26]. With reference only to combined tension and shear, Lazzarin
and Zambardi discussed and validated the hypothesis of constancy of Rc in [16], by using
experimental data mainly due to Seweryn et al. [12]. Seweryn investigated mixed-mode
fracture of PMMA specimens with a double symmetric sharp V-notch with an opening
angle 2α ranging from 20o to 80o. By modifying the orientation ψ of the specimen axis
with respect to the applied tensile force, specimens were loaded in combined tension and
shear. At two limit conditions, the middle cross section of the specimens was loaded by
pure tension (when ψ = 0o ) and by pure shear (ψ = 90o ). All experimental data due
to Seweryn were plotted in terms of ∆W = ∆W 1 + ∆W 2, showing a weak or absent
variability as a function of ψ [16]. Afterwards, the finite volume energy approach was
applied to some series of steel welded joints subjected to pure bending, pure torsion
and combined in-phase bending and torsion. Once modelled the control volume with a
radius Rc about equal to 0.3 mm, the fatigue strength data were found to belong to a
single scatter band of limited width [20]. At parity of ∆W = ∆W 1 +∆W 3 and Rc, that
did not hold true for combined out-of-phase bending and torsion data. That means that
Rc cannot be considered, strictly speaking, independent on the applied load [26]. The
same consideration is valid for Neuber’s microstructural support length.

2.1.2 Blunt V-noches under Mode I loading

In the presence of rounded V-notches it is possible to link the parameter a1 of (2.4) to
the maximum principal stress present at the notch tip [26]:

a1 =
σmaxr

1−λ1
0

1 + ω̃1
(2.14)

where values of ω̃1 are reported in [26]’s Table 1.
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The elastic strain energy density is given by the following expression:

W
(e)
1 (r, θ) =

1

2E

(
σmax

1 + ω̃1

)2
[(

r

r0

)2(λ1−1)

F̃λ +

(
r

r0

)2(µ1−1)

G̃µ +

(
r

r0

)λ1+µ1−2)

M̃λµ

]
(2.15)

where, following Beltrami’s total strain energy criterion, the following relations are valid:

F̃λ = f2
θθ + f2

rr + f2
zz − 2ν(fθθfrr + fθθfzz + frrfzz) + 2(1 + ν)f2

rθ

G̃µ = g2
θθ + g2

rr + g2
zz − 2ν(gθθgrr + gθθgzz + grrgzz) + 2(1 + ν)g2

rθ (2.16)

M̃λµ = fθθgθθ + frrgrr + fzzgzz+

− ν(fθθgrr + gθθfrr + fθθgzz + gθθfzz + frrgzz + grrfzz)2(1 + ν)frθgrθ
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Figure 3. Control area 
 for blunt V-notch; material-dependent distance Rc, which is independent
of opening angle; radius R2 intersects the curvilinear notch root edge or the rectilinear part of the
V-notch edge.

Considering the area Ω shown in Figure 3 (reminiscent of some very interesting
micrographs recently reported by Gearing and Anand (2004) who dealt with notch-
sensitive fracture of polycarbonate), the strain energy can be expressed as

E
(e)
1 =

∫
Ω

W
(e)
1 d
=

+θ∫
−θ

dθ

R2∫
R1(θ)

W
(e)
1 (r, θ) r dr. (19)

In a more explicit form

E
(e)
1 = 1

2E

[√
2π σmax

1+ ω̃1

]2

r
2(1−λ1)

0

(
Iλ+ Iµ+ Iλµ

)
, (20)

where

Iλ =
+θ∫

−θ

(
R

2λ1
2 −R1(θ)

2λ1

)
2λ1

F̃λ dθ,

Iµ = (r0)
2(λ1−µ1)

+θ∫
−θ

(
R

2µ1
2 −R1(θ)

2µ1

)
2µ1

G̃µdθ, (21)

Iλµ = 2(r0)λ1−µ1

+θ̄∫
−θ̄

(
R
λ1+µ1
2 −R1(θ)

λ1+µ1

)
λ1 +µ1

M̃λµdθ.

The third term in Equation (21) is valid only when the notch angle 2α is different
from zero. Otherwise, in the presence of a U-shaped notch (2α= 0), one should use
the expression

Figure 2.3: Control area for blunt V-notch; material-dependent distance Rc, which is indepen-
dent of opening angle; radius R2 intersects the curvilinear notch root edge or the rectilinear part
of the V-notch edge.

Considering the area Ω shown in Fig. 2.3 (reminiscent of some very interesting
micrographs reported by Gearing and Anand in [21], who dealt with notchsensitive
fracture of polycarbonate), the strain energy can be expressed as

E
(e)
1 =

∫
Ω
W

(e)
1 dω =

∫ +θ

−θ

∫ R2

R1(θ)
W

(e)
1 r dr dθ (2.17)

In a more explicit form [26]

E
(e)
1 =

1

2E

[
σmax

√
2π

1 + ω̃1

]2

r
2(1−λ1)
0 (Iλ + Iµ + Iλµ) (2.18)

where the integrals Iλ, Iµ, Iλµ are defined in [26]. In general it is possible to write:

I1 =
1

2π
(Iλ + Iµ + Iλµ) (2.19)
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where the introduction of 2π makes I1 consistent with the expression of the sharp notch
case, (2.8). In a synthetic form, the energy in the structural volume can be expressed as

E
(e)
1 =

1

2E

[
σmax

√
2π

r
(λ1−1)
0 (1 + ω̃1

]2

· I1 (2.20)

where I1, depends on 2α, ρ and Rc. In the case of a U-shaped notch (2α = 0), Eq. 2.20
becomes:

E
(e)
1 =

1

2E

[
σmax

√
πρ

2

]2

· I1 (2.21)

The mean value of strain energy density is then given by:

W
(e)
1 =

1

E

(
I1

2Ω

)
σ2
maxr

2(1−λ)
0

[ √
2π

1 + ω̃1

]2

(2.22)

The area Ω is defined as follows [26]:

Ω =

∫ R2

R1(theta)

∫ +θ

−θ
r dr dθ. (2.23)





Chapter 3

SED extension under Mode III loading

Modelling the material according to a linear elastic law or, alternatively, a Ramberg–Osgood
law, the constancy of SED was documented for sharp V-notches under plane strain con-
ditions (large constraint effects). Under torsion loads, however, small scale yielding
conditions are difficult to maintain, both under static and medium cycle fatigue loads,
and then SED depends on the material law [43].

As shown in Ch. 2 under mode I load conditions, in the SED approach the deter-
mination of the control volume is based on the mean values of some material properties
(which are typically fracture toughness and the ultimate tensile stress of the plain speci-
mens, as shown by (2.13)). When only failure data from open V-notches are available, Rc
can be determined on the basis of some relationships reported in [30], where KIc is sub-
stituted by the critical value of the notch stress intensity factors (NSIFs) as determined
at failure from sharp V-notches.

By using SED approach applied to cracked components, in the case of tearing con-
dition, the critical volume is a circle of radius R3c centred at the tip (Fig. 3.1a). For
a sharp V-notch, the critical volume becomes a circular sector of radius R3c centred at
the notch tip (Fig. 3.1b).

linking the local SED and NSIFs or SCFs in plane problems.

The extension of the SED method to three-dimensional cases

is also possible as well as its extension to notched geometries

exhibiting small scale yielding [43]. Modelling the material

according to a linear elastic law or, alternatively, a Ramberg–

Osgood law, the constancy of SED was documented for sharp

V-notches under plane strain conditions (large constraint ef-

fects). Under torsion loads, however, small scale yielding con-

ditions are difficult to maintain, both under static and

medium cycle fatigue loads, and then SED depends on the

material law [43].

In the SED approach the determination of the control vol-

ume is based on the mean values of some material properties

(which are typically fracture toughness and the ultimate ten-

sile stress of the plain specimens, as shown later by Eq. (1) in

this section 4). The concept of control volume is the basis also

of some probabilistic approaches which describes the proxim-

ity of cleavage fracture by using a scalar Weibull stress as sug-

gested in Beremin’s model [44]. In this model the Weibull

stress is calculated by integrating a weighted value of the

maximum principal stress r1, rather than the SED, over the

plastic zone ahead of the stress concentration. For a sound

discussion on the Beremin’s model and the use of two or

three-parameter Weibull distribution functions for critical

load assessments of notched components, the readers should

refer to a recent paper by Horn and Sherry [45] and the refer-

ence list reported therein. For a review of statistical models of

fracture relevant to nuclear grade graphite see also a very re-

cent contribution by Nemeth and Bratton [46].

Dealing with SED approach applied to cracked compo-

nents, the critical volume is a circle of radius Rc centred at

the tip (Fig. 5a). Under plane strain conditions, the radius Rc

can be evaluated according to the following expression [47]:

R1c ¼
ð1þ mÞð5� 8mÞ

4p
KIc

rt

� �2

ð1Þ

where KIc is the fracture toughness, m the Poisson’s ratio and rt

the ultimate tensile stress of a plain specimen.

For a sharp V-notch, the critical volume becomes a circular

sector of radius Rc centred at the notch tip (Fig. 5b). When only

failure data from open V-notches are available, Rc can be

determined on the basis of some relationships reported in

[30], where KIc is substituted by the critical value of the notch

stress intensity factors (NSIFs) as determined at failure from

sharp V-notches.

Dealing here with sharp notches under torsion loading,

the control radius R3c can be estimated by means of the fol-

lowing equation [48]:

R3c ¼
ffiffiffiffiffiffiffiffiffiffiffi

e3

1þ m

r
� K3c

st

� � 1
1�k3

ð2Þ

where K3c is Mode III critical notch stress intensity factor and

st is the ultimate torsion strength of the unnotched material.

Moreover, e3 is the parameter that quantifies the influence of

all stresses and strains over the control volume and (1 � k3) is

the degree of singularity of the linear elastic stress fields

[48,49], which depends on the notch opening angle. The

values of e3 and k3 are reported in Table 6 for different opening

angles.

The mean value of the elastic deformation energy under

torsion is [37,48]:

W ¼ e3

2ð1þ mÞG�
K2

3

R2ð1�k3Þ
3c

ð3Þ

where K3 is the mode III notch stress intensity factor and G is

the transverse shear modulus.

For a blunt V-notch under mode III loading, the volume as-

sumes the crescent shape shown in Fig. 5c, where R3c is the

depth measured along the notch bisector line. The outer ra-

dius of the crescent shape is equal to R3c + r0, being r0 the dis-

tance between the notch tip and the origin of the local

coordinate system. Such a distance depends on the V-notch

opening angle 2a, according to the expression [31,37]

r0 ¼ q
ðp� 2aÞ
ð2p� 2aÞ ð4Þ

Stress fields for a variety of notch configurations under tor-

sion loading are reported in the literature [50–54]. On the basis

of those theoretical solutions, it is possible to evaluate the

SED over the control volume. However, for the sake of sim-

plicity, complex theoretical derivations have deliberately been

avoided in the present work and the SED values have been

determined directly from the FE models.

4. SED approach in fracture analysis of the
tested graphite specimens

The fracture criterion described in the previous section is em-

ployed here to estimate the fracture loads obtained from the

experiments conducted on the graphite specimens. In order

to determine the SED values, first a finite element model of

each graphite specimen was generated. A typical mesh used

in the numerical analyses is shown in Fig. 6a. The averaged

R3c R3c

2α

R2=R3c+r0

ρ

R3c

r0

(a) (b) (c)

2α2α=0

Ω

γ

Fig. 5 – Control volume for crack (a), sharp V-notch (b) and

blunt V-notch (c) under mode III loading. Distance r0 = q x (p -

2a)/(2p - 2a). For a U-notch r0 = q/2.

Table 6 – Values of the parameters k3 and e3 as a function of
the notch opening angles [37].

2a (rad) k3 e3

0 0.5000 0.4138
p/6 0.5455 0.3793
p/3 0.6000 0.3448
p/2 0.6667 0.3103
2p/3 0.7500 0.2759
3p/4 0.8000 0.2586
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Figure 3.1: Control volume for crack (a), sharp V-notch (b) and blunt V-notch (c) under mode
III loading. Distance r0 = ρ(π − 2α)/(2π − 2α). For a U-notch r0 = ρ/2.

Dealing here with sharp notches under torsion loading, the control radius R3c can
be estimated by means of the following equation [48]

R3c =

(√
e3

1 + ν

K3c

τt

)1−λ3
(3.1)

In (3.1) K3c is the Mode III critical notch stress intensity factor and τt is the ultimate

21
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shear strength of the unnotched material subjected to torsion. The parameter e3 quan-
tifies the influence of all stresses and strains over the control volume and (1− λ3) is the
degree of singularity of the linear elastic stress fields [13, 33]. Both e3 and λ3 depend
of the notch opening angle. The values of e3 and λ3 are reported in Tab. 3.1 for dif-
ferent opening angles. The mean value of the elastic deformation energy under torsion
is[31, 33]:

W 3 =
e3

2(1 + ν)G
· K2

3

R1−λ3
3c

(3.2)

where K3 is the mode III notch stress intensity factor and G is the transverse shear
modulus. For a blunt V-notch under mode III loading, the volume assumes the crescent
shape shown in Fig. 3.1c, where R3c is the depth measured along the notch bisector
line. The outer radius of the crescent shape is equal to R3c + r0, being r0 the distance
between the notch tip and the origin of the local coordinate system. Such a distance
depends on the V-notch opening angle 2a, according to the expression (2.3), introduced
in Ch. 2, page 14.

Table 3.1: Values of the parameters λ3 and e3 as a function of the notch opening angles [31].

2α (rad) λ3 e3

0 0.5000 .4138

π/6 0.5455 0.3793

π/3 0.6000 0.3448

π/2 0.6667 0.3103

2π/3 0.7500 0.2759

3π/4 0.8000 0.2586

The averaged strain energy density criterion (SED) states that failure occurs when
the mean value of the strain energy density over a control volume,W 3 (see (3.2)), is equal
to a critical value W3c, which depends on the material but not on the notch geometry
[36]. Under torsion loads, this critical value can be determined from the ultimate shear
stress st according to Beltrami’s expression for the unnotched material:

W3c =
τ2
t

2G
(3.3)

3.1 An application case: graphite under torsion loading

With the aim of proving SED criterion for mode III loading, in this section we are
showing the results obtained by Berto et al. in [36] by testing round bars of isostatic
graphite under torsion loading.
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3.1.1 State of the art

Isostatic graphite is manufactured by using cold isostatic pressing technique and is often
known for its homogeneous structure and excellent isotropic electrical, thermal and me-
chanical properties; it is also extensively used in various industrial applications. Graphite
has been considered a brittle material in a large body of research. However it best fits
a class of materials called quasi-brittle. Limited plasticity in the form of microcracking
is a sign of such material.

Although cracks are viewed as unpleasant entities (sharp defects ebbedded within
the material) in most engineering materials, U- and V-notches of different acuities are
sometimes deliberately introduced in design and manufacturing of products made from
graphite. A review of literature shows that in spite of extensive studies on mode I and
mixed fracture in cracked graphite specimens, there are very few papers e.g [2, 8] focused
on brittle fracture of notched graphite components and the notch sensitivity problem.

3.1.2 Graphite test specimens

Some load–displacement curves were recorded to obtain

the Young’s modulus (E) of the graphite using an axial exten-

someter. The tensile strength (rt) was measured by means of

axis-symmetric specimens with a net diameter of 12.5 mm on

the net section and a diameter of 20 mm on the gross section

(see Fig. 1a). Due to the presence of a large root radius, 40 mm,

the theoretical stress concentration factor is less than 1.05.

The torque-angle graphs recorded by the MTS device were

employed together with the bi-axis extensometer to obtain

the shear modulus (G) and to measure the torsion strength

(st) of the tested graphite. The ultimate shear strength st

was found to be equal to 30 MPa.

2.2. Test specimens

As shown in Fig. 1, different round bar specimens were used

for torsion tests: plain specimens (Fig. 1a), cylindrical speci-

mens with U- and V-notches (Fig. 1b), and cylindrical speci-

mens with circumferential semicircular notches (Fig. 1c),

making it possible to explore the influence of a large variety

of notch shapes in the experiments.

In more detail:

• For U-notched specimens in Fig. 1b, notches with two dif-

ferent notch root radii were tested; q = 1 and 2.0 mm. The

effect of net section area was studied by changing the

notch depth p. Two values were used, p = 2 and 5 mm,

while keeping the gross diameter constant (20 mm).

• For V-notched specimens with a notch opening angle

2a = 30� (Fig. 1b), three different notch root radii were used

in the experiments: q = 0.1, 0.3 and 0.5 mm. Moreover, a

larger opening angle (2a = 120�) was also considered, com-

bined with five notch root radii, q = 0.1, 0.3, 0.5, 1.0, 2.0 mm.

With a constant gross diameter (20 mm), the net section

area was varied in each specimen by changing the notch

depth, p = 2 and 5 mm.

• For semicircular notches (Fig. 1c), notches with four differ-

ent notch root radii were tested: q = 0.5, 1.0, 2.0 and

4.0 mm.

At least three samples were prepared for each of the 24

specimens described above. All in all, a total number of 80

tests were carried out. Fig. 2a shows some samples of the

specimens used in the torsion tests, whereas Fig. 2b shows

a notched component after failure.

In order to prepare the specimens, first several thick plates

were cut from a graphite block. Then, the specimens were

precisely manufactured by using a 2-D CNC cutting machine.

Before conducting the experiments, the cut surfaces of the

graphite specimens were polished by using a fine abrasive pa-

per to remove any possible local stress concentrations due to

surface roughness.

For each geometry shape, three torsion tests were per-

formed under rotation control conditions with a loading rate

of 1�/min.

Fig. 3 shows three sample load–angle (Mt versus h) curves

corresponding to one of the U-notched specimens. The

load–angle curves recorded during the torsion tests always

exhibited an approximately linear trend up to the final failure,

which occurred suddenly. Therefore, the use of a fracture cri-

terion based on linear elastic hypothesis for the material law

is realistic. In Fig. 3 the deviation from linearity (Dh/h) is

shown for two notched specimens whereas Table 2 gives

the same ratio Dh/h for all the geometries. The linearity is bet-

ter approximated for larger values of the notch depth as well

as for greater values of the notch tip radius.

All torsion loads to failure (Mt) are reported in Tables 3–5

for each notch configuration. Torque-angle curves related

to a V-notched graphite specimen (2a = 30�) are shown in

Fig. 4.

A review of the experimental data presented in these

Tables shows a strong increase in the fracture load as the
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Fig. 1 – Geometry of specimens used in torsion experiments.
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Figure 3.2: Geometry of specimens used in [36].

As shown in Fig. 3.2, different round bar specimens were used for torsion tests: plain
specimens, cylindrical specimens with U- and V-notches, and cylindrical specimens with
circumferential semicircular notches.

Fig. 3.3 shows some samples of the graphite specimes used in the torsion tests.

3.1.3 SED approach in fracture analysis of the graphite specimens

The SED criterion is employed here to estimate the fracture loads obtained from the
experiments conducted by Berto et al. in [36] on the graphite specimens. In order to
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notch depth decreases from p = 5 mm to p = 2 mm. When the

notch angle is kept constant, the fracture load slightly in-

creases for larger notch tip radii but this variation is much

lower than that due to the net section area variation. The var-

iability of the loads to failure as a function of the notch open-

ing angle is also weak. For a constant notch radius, the

fracture load slightly increases as the notch opening angle in-

creases, although this effect is very low.

The main conclusion is that the stress concentration fac-

tors reported in Table 2 are not able to control the failure con-

ditions due to a low notch sensitivity exhibited by the

graphite specimens under torsion load.

3. Fracture criterion based on the strain
energy density averaged over a control volume

In order to estimate the fracture load in notched graphite

components, engineers need an appropriate fracture criterion

based on the mechanical behaviour of material around the

notch tip. In this section, a strain-energy-density based crite-

rion is briefly described, which allows us to assess the frac-

ture loads for notched specimens with good accuracy.

Dealing with cracked components, the strain energy den-

sity factor S was defined first by Sih [36] as the product of

the strain energy density by a critical distance from the point

Fig. 2 – Notched specimens used in torsion tests (a) and a

sample specimen broken after the test.
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Fig. 3 – Torque-angle curves related to a U-notched graphite

specimen.

Table 2 – Values of the theoretical stress concentration factor
for all notched models.

2a (�) p (mm) q (mm) Dh/h (%) Kt

V-notch 120 5 0.1 8.2 2.43
0.3 6.3 1.93
0.5 5.1 1.72
1 4.8 1.48
2 4.4 1.30

V-notch 120 2 0.1 16.2 2.76
0.3 14.3 2.13
0.5 11.2 1.89
1 10.6 1.62

V-notch 30 5 0.1 13.1 3.57
0.3 10.1 2.32
0.5 6.2 1.94

V-notch 30 2 0.1 20.9 4.00
0.3 14.1 2.58
0.5 13.4 2.14

U-notch 0 5 1 7.4 1.57
2 7.0 1.33

0 2 1 16.3 1.72

Semi-circular 0.5 0.5 22.0 1.79
1 1 18.0 1.64
2 2 14.0 1.44
4 4 9.5 1.21
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Figure 3.3: Notched specimens used in [36].
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determine the SED values, first a finite element model of each graphite specimen was
generated. SED criterion states that failure occurs when the mean value of the strain
energy density over a control volume, W 3 (see (3.2)), is equal to a critical valueW3c (see
(3.3)).

Using the values of τt = 30 MPa and G = 3354 MPa, the critical SED for the
graphite is W3c = 0.134 MJ/m3 [36]. By using (3.1), with e3 = 0.379, ν = 0.2 and
(1− λ3) = 0.4545, the radius of the control volume is R3c = 1 mm.

Under linear elastic hypothesis, the theoretical load to failure can be easily obtained
by a simple proportion between the applied load M in the FE model and square root

values of averaged SED, i.e. Mth/M =
√
W3c/W . These values are given in [36] together

with the mean values of the critical loads to failure, 〈M〉, of all tested graphite specimens.
The values of the SED for the same loads are also given in [36]. It is possible now to
compare the SED values at failure with the theoretical value, W3c, as determined by Eq.
(3.3).

In Fig. 3.4 are compared the experimental results values of the critical loads (open
dots) with the theoreticals predictions based on the constancy of SED in the control
volume (solid line).

A synthesis in terms of the square root value of the local energy averaged over
the control volume of radius R3c, normalised with respect to the critical energy of the
material, is shown in Fig. 3.5. The ratio on the vertical axis is proportional to the
fracture load. The aim is to investigate the range of accuracy of all SED-based fracture
assessments for the tested graphite specimens. From the figure, it is clear that the scatter
of the data is very limited and almost independent of the notch opening angle. Note
that 68 out of 70 experimental values fall inside a scatterband ranging from 0.85 to 1.15.
Note also that many of the results (about 75%) are inside a scatter ranging from 0.9 to
1.1, which was typical for the notched graphite specimens tested under in-plane mixed
tension-shear loading [29].
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Table 7 also gives the maximum value of the shear stress

at the notch tip (smax) as obtained from the FE models of the

graphite specimens by applying to the model the mean value

of the critical loads to failure. It is worth noting that the max-

imum shear stress at the notch tip is much greater than the

ultimate shear stress 30 MPa determined from the plain (un-

notched) sample (e.g. about four times for q = 0.1 mm and

2a = 30�). The material is then characterised by a low notch

sensitivity, as documented also by the large value of the con-

trol volume radius.

The most significant results have also been given in graph-

ical form in Fig. 7 where the experimental values of the critical

loads (open dots) have been compared with the theoretical pre-

dictions based on the constancy of SED in the control volume

(solid line). The plots are given for the notched graphite spec-

imens as a function of the notch radius q for semicircular

notches (Fig. 7a) and for V-notches with 2a = 30� and

p = 2 mm (Fig. 7b). The theoretically predicted loads are in

good agreement with the experimental results. This holds

true also for the other specimens, although the relevant plots

have been omitted here for the sake of brevity.

A synthesis in terms of the square root value of the local

energy averaged over the control volume of radius Rc, norma-

lised with respect to the critical energy of the material, is

shown in Fig. 8 as a function of the ratio q/R3c. Indeed, the ra-

tio on the vertical axis is proportional to the fracture load. The

aim is to investigate the range of accuracy of all SED-based

fracture assessments for the tested graphite specimens. From

the figure, it is clear that the scatter of the data is very limited

and almost independent of the notch opening angle. Note

that 68 out of 70 experimental values fall inside a scatterband

ranging from 0.85 to 1.15. Note also that many of the results

Table 7 – Values of the averaged SED ðWÞ and the maximum elastic shear stress smax as obtained from the FE analyses;
comparison between theoretical and experimental torques to failure.

2a (�) p (mm) q (mm) Mtheor. (N mm) hMexpi (N mm) D% smax (MPa) W (MJ/m3)

V-notch 120 5 0.1 6591 6699 1.6 82.8 0.138
5 0.3 6576 6633 0.8 65.2 0.136
5 0.5 6523 6699 2.6 58.6 0.141
5 1.0 6459 6888 6.2 52.1 0.152
5 2.0 6367 7335 13.2 48.7 0.178
2 0.1 23,441 25,625 8.5 87.9 0.160
2 0.3 23,351 25,032 6.7 66.5 0.154
2 0.5 23,283 24,609 5.4 57.9 0.150
2 1.0 23,173 24,863 6.8 50.1 0.154

V-notch 30 5 0.1 7545 6778 �11.3 123.4 0.108
5 0.3 7342 6622 �10.9 78.3 0.109
5 0.5 7208 6600 �9.2 65.1 0.112
2 0.1 26,304 24,070 �9.3 119.6 0.112
2 0.3 25,837 22,926 �12.7 73.5 0.106
2 0.5 25,524 23,585 �8.2 62.8 0.114

U-notch 0 5 1.0 7217 6516 �10.8 52.2 0.109
5 2.0 6885 6827 �0.8 44.9 0.132
2 1.0 25,907 23,590 �9.8 50.4 0.111

Semi-circular 0.5 44,888 44,824 �0.1 59.6 0.134
1.0 37,605 36,015 �4.4 51.8 0.123
2.0 24,873 26,130 4.8 46.6 0.148
4.0 11,213 12,619 11.1 44.9 0.170
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Fig. 7 – Comparison between experimental data and

theoretical assessment (solid line) for the graphite

specimens; semicircular notches (a) and V-shaped notches

with 2 = 120� and p = 2 mm (b).
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Figure 3.4: Comparsion between experimental data and theoretical assement (solid line) for the
graphite specimens used in [36]; semicircualr notches (a), and V-shaped notches with 2α = 120o

and notch depth p = 2 mm (b).

(about 75%) are inside a scatter ranging from 0.9 to 1.1, which

was typical for the notched graphite specimens tested under

in-plane mixed tension-shear loading [29].

5. Conclusions

Brittle fracture in U- and V-notched polycrystalline graphite

specimens was investigated both experimentally and theoret-

ically under torsion loading. Fracture tests were conducted on

notched round bar specimens. Different notch depths, notch

radii and opening angles were considered in the test

specimens.

The SED criterion was used for the first time in order to

estimate the fracture load of notched graphite components

under mode III static loading. It was shown that the proposed

method is suitable for the polycrystalline graphite, being the

experimental results in good agreements with the results

estimated by the SED approach. From the sound agreement

between the theoretical and experimental results, it can be

deduced that for the polycrystalline graphite the torsion crit-

ical energy and the radius of the control volume are both con-

stant material properties not influenced by the geometrical

parameters.
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Chapter 4

Experimental Results

In this chapter we are showing the properties and the geometries of the material and
how we tested the PMMA specimens in torsion tests.

4.1 Material and Specimens

The material used for the tests was the polymethyl-methacrylate (PMMA), an amor-
phous glassy polymer. The material tensile properties at room temperature and at -60oC
have been obtained in [25] and [35], and are summarized in Tab. 4.1.

Table 4.1: Mechanical properties of PMMA at different temperatures.

Mechanical Properties -60o 20o

Elastic Modulus (MPa) 5050 3600

Poisson ratio 0.4 0.4

Tensile strength (MPa) 128.4 74.0

F. toughness (MPa
√
m) 1.7 -

Three different types of specimens were made in order to obtain different stress
concentrations: U-notched specimens, V-notched specimens and semicircular notched
specimens. The geometry of the specimens is shown in Fig. 4.1.  

  

     Figure 4.1: Geometry and parameters of the tested specimens.
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For the U and V specimens the main parameters defining the notch geometry are
the notch depth (d) and the notch tip radius (ρ). In the case of the semicircular notched
specimens, the notch tip radius and the depth are identical. Tab. 4.2 summarizes all
the combinations of types of notch, notch depths, tip radius and temperatures tested.
In order to obtain the material properties needed for the numerical analysis, besides

Table 4.2: Different combinations of geometries and temperatures tested.

Notch type d (mm) ρ (mm) 20oC -60oC
Semi-circular 0.5 0.5 Yes No
Semi-circular 1 1 Yes No
Semi-circular 2 2 Yes No
Semi-circular 4 4 Yes No
Semi-circular 5 5 Yes Yes
Semi-circular 6 6 Yes Yes
Semi-circular 7 7 Yes Yes

U-notch 5 0.3 Yes Yes
U-notch 5 0.5 Yes Yes
U-notch 5 1 Yes Yes
U-notch 5 2 Yes Yes
U-notch 2 0.3 Yes Yes
U-notch 2 0.5 Yes Yes
U-notch 2 1 Yes Yes
V-notch 5 0.1 Yes Yes
V-notch 5 0.3 Yes Yes
V-notch 5 0.5 Yes Yes
V-notch 5 1 Yes Yes
V-notch 5 2 Yes Yes
V-notch 2 0.1 Yes Yes
V-notch 2 0.3 Yes Yes
V-notch 2 0.5 Yes Yes
V-notch 2 1 Yes Yes

the tests mentioned above, additional torsion tests were carried out on plain cylinders
and quasi-cracked (narrow V-notch) specimens (Fig. 4.2). The plain cylinder specimens
were tested to obtain the maximum torsion strength of all the kinds of PMMA, while
cracked specimens were tested in order to obtain the mode III critical stress intensity
factor. In Fig. 4.3 are shown the PMMA specimens used in this work. All the specimens
were tested at room and low (-60oC) temperature.
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      (a) plain specimen

  

     
(b) cracked specimen

Figure 4.2: geometry of a) plain cylinder specimens and b) cracked specimens.

  

     Figure 4.3: PMMA specimens.



30 Experimental Results

4.2 Experimental Setup

4.2.1 Room temperature tests

Room temperature (20oC) tests were made using a servocontrolled MTS biaxial testing
machine. Torque was measured by using a MTS load cell, and the angle on the specimen
was registered by a multi-axis extensometer MTS 632.80F-04 with a gauge length equal
to 25 mm.

Specimens were put on the machine through hydraulic grips, and then they were
tested under angle control, increasing the angle between grips at a constant rate of 2
deg/minute up to failure of the specimen. More details about the experimental procedure
can be found in [35].

4.2.2 Low temperature tests

Low temperature tests were made in a mechanical Instron testing machine model TT-
D1115 with its own built-in torsion load cell (Fig. 4.4 ). The angle was measured by a

Figure 4.4: Instron testing machine TT-D1115.

longitudinal Instron 2620-602 extensometer of 12.5 mm gauge length, ±2.5 mm (travel)
and 0.15% error at full scale. In order to measure the angle by using this longitudinal
extensometer, two especial devices consisting of two identical pieces attached to the
specimens at 25 mm distance were devised. Such devices (Fig. 4.5) allowed to translate
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the measurement of the extensometer, into the shear angle suffered by the specimen with
a gauge length of 25 mm.

  

(a)

 

(b)

Figure 4.5: Detail of the devices used to measure the rotation angle in a) 20 mm specimens and
b) 12.5 mm unnotched specimens.

Low temperature was reached by controlled injection of liquid N2 into an Instron
environmental chamber (Fig. 4.6).



32 Experimental Results

(a) chamber

(b) injection system

Figure 4.6: a) Instron enviromental chamber and b) N2 injection system.
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In order to avoid damage on the specimens due to large thermal stress gradients,
temperature was decreased progressively using a constant rate of -1oC/min. Temper-
ature inside the chamber was controlled by using a Pt-100 thermometer. Additionally
a thermocouple was attached to the specimen in order to check the temperature on
its surface. Once the temperature inside the chamber reached -60oC, it was kept at
that constant value. To ensure a regular temperature distribution inside the specimen,
this -60oC temperature was kept during 20 minutes from the moment the thermocouple
attached to the specimen reached the value of -60oC before starting each test.

Loading was applied by increasing the angle between the grips at a constant rate of
1.8 deg/minute until the specimen was broken.

4.3 Room Temperature Tests Results

Torque versus angle curves obtained at room temperature are plotted in Fig. 4.7, 4.8.
For the sake of simplicity, only the results related to 5 mm depth noches and semicircular
notches are shown. It is possible finding a more complete coverage of room temperature
tests in [35]. Due to the relatively low experimental scatter, only one single curve for
each notch geometry is shown. It can be observed how the behaviour is remarkably non
linear. Actually, in the case of V and U notched specimens, the maximum load only
depends on the notch shape but not on the notch tip radius. This behaviour suggests
that a large amount of plasticity/non-linearity is developing on the notched section and
all points in this region have a similar stress value, which is governed by the almost
constant stress value of the plateau on the material stress-strain curve once plasticity
has been fully developed.
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Figure 4.7: Experimental results obtained in the room temperature (20oC) torsion tests for a)
U-notched specimens, b) V-notched specimens (d = 5 mm).
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Figure 4.8: Experimental results obtained in the room temperature (20oC) torsion tests for
semicircural-notches specimens.

4.4 Low Temperature Tests Results

Torque versus angle (with 25 mm gauge length) curves obtained at -60oC are plotted
in Figs. 4.9, 4.10, 4.11 . For the sake of simplicity and given the repeatability of the
results, only one single curve for each geometry is provided.

Previous tests on three point bending tests had shown an almost linear elastic be-
haviour up to failure [25, 29]. A similar behaviour was expected on these torsion tests.
However, although the temperature decrease makes the specimens behavior considerably
more brittle in terms of failure angles, it can be noticed how the curves show a clear non
linear shape from their beginning, independently of the type of notch geometry.

Unlike in the case of the room temperature tests, the maximum torque which each
specimen type is able to withstand is clearly dependent on the notch tip radius. In
opinion of the author, this result suggests that failure is primarily governed by the stress
concentration at the notch tip. Although the decrease of temperature was not been able
to “linearize” the specimens behavior, it succeeded in the purpose of concentrating all
the damage and failure mechanisms at the notch tip.

In Fig. ??, torque versus angle (again with 25 mm gauge length) curves for plain
cylinder and cracked specimens are plotted.

Some examples of failures patterns are shown in Fig. 4.13.
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Figure 4.9: Experimental results obtained in the low temperature (-60oC) torsion tests for a)
U-notched specimens, b) V-notched specimens (d = 5 mm).
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Figure 4.10: Experimental results obtained in the low temperature (-60oC) torsion tests for a)
U-notched specimens, b) V-notched specimens (d = 2 mm).
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Figure 4.11: Experimental results obtained in the low temperature (-60oC) torsion tests for
semicircural-notched specimens.
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Figure 4.12: Experimental results obtained in the low temperature (-60oC) torsion tests for a)
plain specimens and b) cracked specimens (crack length a = 2 - 3 mm).
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(a) plain specimen (b) U-notch specimen

(c) V-notch specimen (d) Semicircular-notch specimen

Figure 4.13: Failure exemples.
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4.5 Stress-Strain curve in a non-linear torsion case

As shown in Sec. 4.4, PMMA behavior under torsion loading (Mode III) at -60o is
totally different from its behavior under mode I or mode II test conditions (Gomez
2005; Berto 2007,2008). In torsion loading case, PMMA presents a completely non-
linear behavior from the very beginning of the loading process. Under torsion loading,
a linear relationship between the deformation and the distance of the point considered
to the central axis is usually assumed. If the constitutive equation of the material were
linear, then the relationship between the stress and the distance to the axis would be
also linear. Such linear relationship can be expressed through Coulomb equation:

τ =
Mt

Jp
r (4.1)

where Mt is the applied torque, Jp is the polar intertia moment and r is the radius.
Since the behaviour of PMMA at low temperature under torsion loading exhibited a
non-linear behaviour, expression (4.1) is no longer valid and an alternative procedure to
measure the material shear properties had to be devised.

One alternative could be to test under torsion a hollow cylinder with a very thin
thickness. Due to the reduced thickness of the piece, the stress τ can be assumed to be
constant in every point of the specimen, for each value of the applied torqueMt. However
such test presents important practical difficulties related with geometrical instabilities
and buckling of the walls of the cylinder. So we followed the idea that it is possible to
obtain the desired geometry (pipe) by subtracting a cylinder with a diameter d from
another cylinder with a bigger diameter D, i.e. t = D − d, where t is the thickness of
the hollow cylinder (Figs. 4.14, 4.15), which must be as small as possible.

For that purpose we tested couples of plain cylinder (unnotched) specimens, the first
one with a diameter D = 12.50 mm and the second one with a diameter d = 11.80 mm.
Once we tested each couple of specimens, we subtracted the second specimen “Torque-
Angle” curve (System 2 ) from the first one (System 1 ). So we obtained an equivalent
hollow cylinder curve (Fig. 4.16). That equivalent hollow cylinder has a thickness t =
0.7 mm. In a equivalent system like that, we can consider a constant stress trade in the
whole section for each value of the applied torque, by the relation:

τ =
Mt

2πtr2
(4.2)

Again with the special devices described in the experimental tests section, we got the
shear angle, γ, suffered by the specimens with a 25 mm gauge length. The τ -γ (torsion
stress-strain) curve obtained is plotted in Fig. 4.17 (for the sake of simplicity, only one
curve is shown). The maximum torsion stress value is τt = 153.5 MPa.



42 Experimental Results

 

 

 

 

   

 -                           =    

 

 

  

 

 

 

 

Fig. 1 

  

D = 12.50 

d = 11.80 

D D 

d 

System 1 System 2 System 1 – System 2 

t 

Figure 4.14: By subtracting a cylinder with a diameter d from another cylinder with a bigger
diameter D, we can obtain a hollow cylinder with a thickness t = D − d.
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Figure 4.15: In a hollow cylinder (pipe) we can consider a constant stress trade (τ) in the whole
thikness.
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Figure 4.16: “Torque-Angle” specimens’ curves and equivalent “Torque-Angle” pipe’s curve.

By integrating the curve shown in Fig. 4.17, we can calculate the strain energy
density. We can find the function τ(γ) by using a power fitting approximation. The
strain energy density Weq results:

Weq =

∫ γmax

0
τ(γ) dγ ' 7 MPa (4.3)
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pipe method”.



Chapter 5

Numerical Analysis Results

In the case of blunt notches, such as U or V notches, the stress intensity diminishes
and the theory of the classical Linear Elastic Fracture Mechanics approach cannot be
applied. The Strain Energy Density (SED) criterion aims to assess failure induced by
notches in brittle materials. According to this approach, failure arises when the mean
value of the strain energy density in a certain volume around the notch tip reaches a
given threshold value, W3c. Such volume is defined, in 2D geometries, by a circular area
of constant thickness R3c, named control radius.

The main advantage of this approach is that R3c and W3c are assumed to be a
material property that can be obtained from standard characterization mechanical tests
and thus they are not dependent on the notch geometry.

The expression of Rc for mode III (specimens under torsion), given by Eq. (3.1) is
reported here for the sake of semplicity:

R3c =

(√
e3

1 + ν
· K3c

τt

)(
1

1−λ3

)
(5.1)

The critical energy value can be obtained from the maximum shear strength τt by Bel-
trami’s expression (3.3):

W3c =
τ2
t

2G
(5.2)

where G is the shear modulus. In Tab. 5.1 are shown the values of K3c and τt, from the
experimental tests and of R3c and W3c, found by applying the values from Tab. 3.1 to
Eqs. (5.1) and (5.2). The values are given for both room [35, 37] and low temperature
cases: Comparing the control radius obtained from the torsion tests with the value

Table 5.1: Mode III experimental and critical values.

Room Temperature Low Temperature
K3c (MPa

√
m) 3.35 5.97

τt (MPa) 73.46 153.50
R3c (mm) 0.61 0.45

W3c (MJ/m3) 3.4 6.5

obtained by Berto et al. in [29], we can note that the volume radius under torsion
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(Tab. 5.1) results to be much grater than the one found under tensile loading (equal
to Rc = 0.035 mm). Under torsion loads a number of nonlinear effects were detected
resulting in a control volume dependent on the loading mode.

Finite Element simulations were performed for each notch geometry assuming linear
elastic material (with the mechanical properties shown in Tab. 4.1). Actually, we can
note that the energy density experimental value (Sec. 4.5) and the theoretical elastic one
(found by using (5.2)) are very close. Therefore, the choose of a linear elastic approach
is justified. We toke benefit from the linearity being able to make faster simulations
than using an elastic-plastic model.

The numerical values of SED Wref were calculated numerically inside the critical
radius region for a torque of 1 Nm, by using the FE code ANSYS 13.0 c©. All the
analyses were carried out by using eight-node harmonic elements (plane 83) under axial-
symmetric conditions. Only one quarter of the geometry has been modelled in the
positive quadrant. Being the SED value substantially mesh insensitive [30, 32], we
used a free mesh for all models. There is no need to assure the similarity among the
meshes used to model different geometries. Attention should be paid only to the correct
definition of the control volume according to Fig. 5.1.

Taking benefit from the linearity of the approach, we calculated the average strain
energy density within the critical region for each tested specimen through:

W = M2
max ·Wref (5.3)

Where Mmax is the actual maximum torque for the specimen considered and W is
the average strain energy density calculated for that actual specimen.

Once found the strain energy density for each tested specimen, we can calculate the
theoretical value of the failure torqueMth, by using the relation:

√
W/Wc = Mmax/Mth.

The comparison between theoretical and experimental values of the maximun load and
the value of SED for each test, are shown in Tabs. 5.2, 5.3, 5.4, 5.5.

The results are also given in graphical form in Figs. 5.3, 5.4, 5.5, 5.2 where the
experimental values of the critical loads (open diamonds) have been compared with
the theoretical predictions based on the constancy of SED in the control volume (open
squares). The plots are given for the notched PMMA specimens as a function of the
notch radius ρ for U, V and semicircular1 notches and as a function of crack length (a)
for cracked specimens (Fig. 5.2)2.

The theoretically predicted loads are in agreement with the experimental results,
wich lay, exept for few ones, in a ±20% scatter band. Scatters higher than ±20%
are probably due to non-linear behaviour of the material or to an incorrect specimens

1For semicircular norches specimens the critical energy value is different, because those specimens
were made with a different kind of PMMA material. See [37], for the properties and the charaterization
of that material.

2See Appendix B for a comparison with room temperature results
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  (a) Mesh

 

  (b) Control Volume

 

 (c) Average SED

Figure 5.1: a) Mesh, b) control volume and c) iso-strain energy density contour lines, for a
V-notch with: 2α = 120o, ρ = 0.3 mm, d = 5 mm.
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Table 5.2: Compairson between theoretical and experimental torque to failure and values of
average SED (W) for cracked specimens

a (mm) Mmax (Nm) Mth (Nm) % W (MJ/m3)

3 57.37 62.08 -7.58 7.62
3 54.53 62.08 -12.16 5.55
3 60.95 62.08 -1.81 5.02
3 64.82 62.08 4.42 6.27

2 94.80 92.10 2.93 7.01
2 96.51 92.10 4.78 7.26

Table 5.3: Compairson between theoretical and experimental torque to failure and values of
average SED (W) for U-notched specimens

d (mm) ρ (mm) Mmax (Nm) Mth (Nm) % W (MJ/m3)

5 0.3 17.95 25.34 -29.18 4.03
0.3 22.65 25.34 -10.63 5.19
0.3 19.97 25.34 -21.21 4.04
0.5 26.14 25.32 3.23 6.93
0.5 27.31 25.32 7.85 7.56
0.5 27.47 25.32 8.48 7.65
1 29.31 26.26 11.60 8.33
1 29.80 26.26 13.47 8.61
1 30.56 26.26 16.36 9.05
2 31.36 27.64 13.47 8.37
2 30.79 27.64 11.41 8.07
2 32.36 27.64 17.09 8.94

2 0.3 114.79 92.39 24.25 9.08
0.3 112.21 92.39 21.46 8.68
0.3 90.89 92.39 -1.62 5.59
0.5 104.15 92.62 12.45 7.49
0.5 115.15 92.62 24.32 9.25
0.5 114.94 92.62 24.09 9.25
1 124.65 95.09 31.09 10.05
1 76.24 95.09 -19.82 4.10
1 114.69 95.09 20.62 8.87
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Table 5.4: Compairson between theoretical and experimental torque to failure and values of
average SED (W) for V-notched specimens

d (mm) ρ (mm) Mmax (Nm) Mth (Nm) % W (MJ/m3)

5 0.1 29.06 26.04 11.61 8.10
0.1 31.79 26.04 22.09 9.67
0.1 19.02 26.04 -26.95 3.34
0.1 22.43 26.04 -13.85 4.83
0.1 28.16 26.04 8.15 4.53
0.3 20.30 26.00 -21.93 3.96
0.3 18.60 26.00 -28.47 3.89
0.3 19.10 26.00 -26.54 3.73
0.3 24.24 26.00 -6.77 5.65
0.3 22.31 26.00 -14.20 5.23
0.5 18.68 26.02 -28.21 3.51
0.5 19.20 26.02 -26.22 3.54
0.5 19.73 26.02 -24.18 3.74
0.5 19.95 26.02 -23.33 3.82
0.5 20.23 26.02 -22.26 4.19
1 31.59 26.21 20.54 9.45
1 32.64 26.21 24.55 10.09
1 30.79 26.21 17.49 8.98
2 31.39 26.95 16.48 8.82
2 33.70 26.95 25.05 9.97
2 31.63 26.95 17.37 8.98

2 0.1 93.87 94.35 -0.51 6.44
0.1 122.52 94.35 29.86 10.96
0.1 98.67 94.35 4.58 7.11
0.3 94.19 94.58 -0.42 6.45
0.3 79.39 94.58 -16.06 4.58
0.3 78.52 94.58 -16.98 4.48
0.5 73.91 94.98 -22.19 3.94
0.5 77.94 94.98 -17.94 4.38
0.5 80.31 94.98 -15.45 4.65
1 95.31 96.37 -1.10 6.36
1 102.82 96.37 6.70 7.43
1 124.65 96.37 29.35 10.88
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Table 5.5: Compairson between theoretical and experimental torque to failure and values of
average SED (W) for semicircular notched specimens

ρ (mm) Mmax (Nm) Mth (Nm) % W (MJ/m3)

5 30.30 29.94 1.21 6.66
5 28.22 29.94 -5.74 5.78
5 28.39 29.94 -5.17 5.85

6 15.21 16.19 -6.06 5.74
6 14.53 16.19 -10.26 5.24
6 15.77 16.19 -2.60 6.17

7 7.12 7.27 -2.04 6.24
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Figure 5.2: Comparison between experimental data and theoretical assessment (Mth - open
squares) for the PMMA cracked specimens.



51

 

  

0 

20 

40 

60 

80 

100 

120 

140 

160 

0 0.2 0.4 0.6 0.8 1 1.2 

To
rq

u
e 

(N
m

) 

r (mm) 

Mexp 

Mth 

U-noches 
d = 2 mm 
Rc = 0.45 mm 
Wc = 6.5 MJ/m3 

(a) U-noches

 

  

0 

20 

40 

60 

80 

100 

120 

140 

160 

0 0.2 0.4 0.6 0.8 1 1.2 

To
rq

u
e 

(N
m

) 

r (mm) 

Mexp 

Mth 

V-noches 
d = 2 mm 
Rc = 0.45 mm 
Wc = 6.5 MJ/m3 

(b) V-noches

Figure 5.3: Comparison between experimental data and theoretical assessment (Mth - open
squares) for the PMMA specimens; a) U-shaped and b) V-shaped notches specimens, with d =
2 mm.



52 Numerical Analysis Results

 

0 

5 

10 

15 

20 

25 

30 

35 

40 

0 0.5 1 1.5 2 2.5 

To
rq

u
e 

(N
m

) 

r [mm] 

Mexp 

Mth 

U-noches 
d = 5 mm 
Rc = 0.45 mm 
Wc = 6.5 MJ/m3 

(a) U-noches

 

0 

5 

10 

15 

20 

25 

30 

35 

40 

0 0.5 1 1.5 2 

To
rq

u
e 

(N
m

) 

r (mm) 

Mexp 

Mth 

V-noches 
d = 5 mm 
Rc = 0.45 mm 
Wc = 6.5 MJ/m3 

(b) V-noches

Figure 5.4: Comparison between experimental data and theoretical assessment (Mth - open
squares) for the PMMA specimens; a) U-shaped and b) V-shaped notches specimens, with d =
5 mm.



53

 

0 

5 

10 

15 

20 

25 

30 

35 

4 5 6 7 8 

To
rq

u
e 

(N
m

) 

r (mm) 

Mexp 

Mth 

Semicirc-noches 
Rc = 0.45 mm 
Wc = 5.7 MJ/m3 

Figure 5.5: Comparison between experimental data and theoretical assessment (Mth - open
squares) for the PMMA semiciruclar notched specimens.

machining, wich lead up to “unconventional” failures (i.e. not so close to the notch tip -
Fig. 5.6).

(a) U-noches (b) V-noches

Figure 5.6: Bad failures for a) a U-notched specimen and b) a V-notched specimen.

In Fig. 5.7 is shown a synthesis in terms of the square root value of the local
energy averaged over the control volume of radius Rc, normalised with respect to the
critical energy of the material (dividing the values by Wc), as a function of the ratio
ρ/Rc. The ratio on the vertical axis is proportional to the fracture load. The aim is to
investigate the range of accuracy of all SED-based fracture assessments for the tested
PMMA specimens. From the figure, it is clear that the scatter of the data is limited
and independent of the notch opening angle. We can observe how in both cases of room
and low temperature results, almost all the normalized average SED values move within
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the 1±20% value. However, in the case of the room temperature, values corresponding
to big notch radius (semicircular ones) lay completely outside this interval. That result
suggests that while at low temperatures material nonlinearities are concentrated close
to the notch tip, fulfilling thus the assumptions on which the SED criterion is based, as
the temperature increases, nonlinearities extend beyond this region and therefore this
kind of criterions based on an autonomous region loses accuracy.

The degree in which the SED criterion is fulfilled, is reflected by the way in which
the normalized average strain energy valuesW/Wc are close to 1, no matter which notch
tip radius we have. This means that in both cases there is no “radius effect”. The scatter
is more or less homogeneus through all the studied radii.





Chapter 6

Conclusions

Fracture behaviour of PMMA under torsion loading was investigated experimentally
and theoretically using axisymmetric specimens weakened by sharp and blunt-tip (U, V
and semicircular) notches. PMMA specimens were tested by comparing room and low
temperature (-60oC) behaviour.

Common engineering practice requires the machining on many pieces of some details
such as holes, U-notches, V-notches, etc. that act as stress concentrators, although
they are intentionally included in the piece. As stress concentrators they can lead to
a premature and unforeseen catastrophic failure of a structure. Despite these kind of
defects are relatively common, the knowledge achieved by Fracture Mechanics about
them is considerably less than the knowledge about theoretical cracks.

To the best of author’s knowledge, the amount of data available in the literature
about notch specimens under torsion is limited. For this reason, the purpose of this
work was twofold. First, a new set of experimental data from notched samples made of
PMMA was presented with different values of notch opening angles, root radii and notch
geometries (U, V and semicircular), which should be useful to engineers engaged with
static strength analysis of PMMA components. Second, a fracture criterion was applied
to the torsion loading case. This criterion is based on the strain energy density (SED)
averaged over a well-defined control volume surrounding the notch tip. Since at room
temperature the stress-strain behaviour of the material under torsion loading conditions
was far from being linear elastic, tests were focused at -60oC.

The present work would extend what was made in [25, 29, 35] for in-plane tension-
shear loading conditions in notched PMMA specimens. However the material behaviour
under torsion loading was very different with respect to mixed mode (I+II) loading con-
ditions [29]. The control radius and strain energy density values for mixed mode (I+II)
loading conditions are, respectively, Rc = 0.035 mm and Wc = 1.6 MJ/m3 [29]. In the
torsion loading case we found, respectively, R3c = 0.45 mm and Wc = 6.5 MJ/m3. The
difference is due to the different stress concentrations between the two different loading
modality. Stress concentrations are bigger in the case of torsion loading. Therefore,
PMMA seems to present a loading condition-dependent behaviour.

Good matching was found between the experimental data related to the critical loads
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to failure and the theoretical assessments based on the constancy of the mean SED over
the material-dependent control volume. From the agreement between the theoretical
and experimental results, it can be deduced that for the PMMA the torsion critical
energy and the radius of the control volume are both material properties influenced by
loading conditions, but not influenced by the geometrical parameters.

The author suggests more torsion tests on notched specimens and torsion tests on
unnotched specimens (by using the “equivalent system” method – see Sec. 4.5) for a
better material characterization under torsion loading. Furthermore, with the aim to
improve the mode III fracture toughness investigation, it would be useful to make some
low temperature tearing tests on PMMA cracked plates, by using, for example, the
method of anti-clastic plate bending (ACPB) or equivalently the plate twist method as
Farshad and Flueler described in [15].
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Appendix A

Functions expressions and parameters
values of Sec. 2.1

In this section are shown the expressions of the eigenfunctions and of the parameters
used in Sec. 2.1.

A.1 Angular functions expressions

The angular functions fij and gij are given by [17]
fθθ
frr
frθ

 =
1

1 + λ1 + χb1(1− λ1)


(1 + λ1) cos(1− λ1)θ
(3− λ1) cos(1− λ1)θ
(1− λ1) sin(1− λ1)θ

+

+χb1(1− λ1)


cos(1 + λ1)θ
− cos(1 + λ1)θ
sin(1 + λ1)θ


 (A.1)


gθθ
grr
grθ

 =
q

4(q − 1)[1 + λ1 + χb1(1− λ1)]

·

χd1


(1 + µ1) cos(1− µ1)θ
(3− µ1) cos(1− µ1)θ
(1− µ1) sin(1− µ1)θ

χc1


cos(1 + µ1)θ
− cos(1 + µ1)θ
sin(1 + µ1)θ


 (A.2)

A.2 Parameters

The values of the parameter used in Sec. 2.1 to calculate the Mode I stress distribution
(2.1), the control radius (2.12) and the strain energy are shown in the following Tables
[26]. In the first one, Tab. A.1, are reported the parameters for stress distributions, for
some tipical angle1. In the second one, the integral I1 (2.8) is given as a function of the
notch angle (Tab. A.2).

1However, all of those parameters have a close form expression [17].
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Table A.1: Parameters for stress distributions, Equations (2.1) and (2.14).

2α (rad) q λ1 µ1 χb1 χc1 χd1 ω̃1

0 2 0.5 -0.5 1 4 0 1
π/6 1.8333 0.5014 -0.4561 1.0707 3.7907 0.0632 1.034
π/4 1.7500 0.5050 -0.4319 1.1656 3.5721 0.0828 1.014
π/3 1.6667 0.5122 -0.4057 1.3123 3.2832 0.096 0.970
π/2 1.5000 0.5448 -0.3449 1.8414 2.5057 0.1046 0.810
2π/3 1.3334 0.6157 -0.2678 3.0027 1.5150 0.0871 0.570
3π/4 1.2500 0.6736 -0.2198 4.1530 0.9933 0.0673 0.432
5π/6 1.1667 0.7520 -0.1624 6.3617 0.5137 0.0413 0.288

Table A.2: Integral I1 for sharp V-notches, as a function of the notch angle and the Poisson
coefficient.

I1
2α (deg) γ/π λ1 ν = 0.3 ν = 0.35 ν = 0.4

0 1 0.5000 0.845 0.7425 0.6300
15 23/24 0.5002 0.8431 0.7416 0.6303
30 11/12 0.5014 0.8366 0.7382 0.6301
45 7/8 0.5050 0.8247 0.7311 0.6282
60 5/6 0.5122 0.8066 0.7194 0.6235
75 19/24 0.5247 0.7819 0.7026 0.6152
90 3/4 0.5445 0.7504 0.6801 0.6024
105 17/24 0.5739 0.7124 0.6519 0.5849
120 2/3 0.6157 0.6687 0.6184 0.5624
135 5/8 0.6736 0.6201 0.5796 0.5344
150 7/12 0.7520 0.5678 0.5366 0.5013
160 5/9 0.8187 0.5315 0.5058 0.4767
170 19/36 0.9000 0.4957 0.4755 0.4523



Appendix B

Experimental data and SED theoretical
assessment at room temperature

In this section are reported the figures obtained by data from [35, 37, 38]. Those fig-
ures show the comparison between experimental data and theoretical assessment for the
PMMA (cracked and notched) specimens, at room temperature. Under torsion loads a
number of nonlinear elastic effects were detected resulting in a control volume dependent
on the loading mode. The volume radius under torsion resulted to be much greater than
the radius under tensile loading. A non-conventional approach, based on the “apparent”
linear elastic SED evaluated considering a different critical radius, allowed to overcome
the problems tied to different extrinsic and intrinsic fracture mechanisms occurring under
mode I and mode III loading. The term “apparent” seemed to be appropriate to describe
the SED value measured without any clear distinction between non-linear intrinsic and
extrinsic mechanisms and based on a linearelastic analysis of the stress distribution on
the highly stressed zone ahead of the notch tip. A synthesis based on the apparent value
of the linear elastic SED is only an engineering tool for strength assessments, the SED is
applied to the room temperature data from torsion loads, despite the presence of large
scale yielding.

The expression of Rc for mode III is reported here again for the sake of semplicity:

R3c =

(√
e3

1 + ν
· K3c

τt

)(
1

1−λ3

)
(B.1)

The critical energy value can be obtained from the maximum shear strength τt by Bel-
trami’s expression (3.3):

W3c =
τ2
t

2G
(B.2)

where G is the shear modulus. In Tab. B.1 are shown the values of K3c and τt, from the
experimental tests and of R3c and W3c, found by applying the values from Tab. 3.1 to
Eqs. (3.1) and (3.3). The values are given for the room temperature case [35, 37, 38]:
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Table B.1: Mode III experimental and critical values.

Room Temperature
K3c (MPa

√
m) 3.35

τt (MPa) 73.46
R3c (mm) 0.61

W3c (MJ/m3) 3.37
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Figure B.1: Comparison between experimental data and theoretical assessment (Mth - open
dot) for the PMMA cracked specimens, at room temperature.
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Figure B.2: Comparison between experimental data and theoretical assessment (Mth - open
dot) for the PMMA semiciruclar notched specimens, at room temperature.
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(a) U-nochesV 

 

 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0 0.2 0.4 0.6 0.8 1 1.2 

M
o

m
en

to
 t

o
rc

en
te

 (
N

m
) 

Raggio di raccordo R (mm) 

Mt TH 

Mt 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

0 0.5 1 1.5 2 2.5 

M
o

m
e

n
to

 t
o

rc
en

te
 (

N
m

) 

Raggio di raccordo R (mm) 

Mt th 

Mt 

(b) V-noches

Figure B.3: Comparison between experimental data and theoretical assessment (Mth - open
dot) for the PMMA specimens; a) U-shaped and b) V-shaped notches specimens, with d = 2
mm, at room temperature.
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Figure B.4: Comparison between experimental data and theoretical assessment (Mth - open
dot) for the PMMA specimens; a) U-shaped and b) V-shaped notches specimens, with d = 5
mm, at room temperature.



Appendix C

FEM models

In this section are reported some FE models examples, used to evaluate the NSIF and
energy density over the control volume, in the torsion loading case.

In Figs. C.1, C.2 is shown the cracked specimen FE model, used to calculate the
critical NSIF, K3c. On every model was applied the displacement conditions shown in
Fig. C.1, to ensure an axial-symmetric contions. In Fig. C.2 it is possible to note the
spider web mesh made around the crack tip.

 

 

  

Uz = 0 

Ux = 0 

 

Uz = 0 

Uy = 0 

 Figure C.1: Craked specimens model - displacement constraints.

FE models for U, V and semicircular notched specimens are reported in Figs. C.3-
C.5, in wich are shown the used mesh and the control volume for each geometry.
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Figure C.2: Craked specimens model - spider web around the notch tip.

 

  

Control  
volume 

Figure C.3: U-notched specimens model - mesh and control volume.
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Figure C.4: V-notched specimens model - mesh and control volume.

      

  

Control  
volume 

Figure C.5: Semicircular notched specimens model - mesh and control volume.
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