
Università degli Studi di Padova
Department of Mathematics

“Tullio Levi-Civita”
Master Degree in Data Science

Distributed optimization for big data
applications

Candidate
Matteo Migliorini
N. 1182367

Supervisor
Prof. Francesco Rinaldi

Anno Accademico 2019-2020

ii

Do. Or do not. There is no try.
— Yoda

iii

iv

Contents

1 Introduction 1
1.1 Problem definition . 3
1.2 Aim of the work . 4

2 State-of-the-art algorithms 6
2.1 Parallel SGD . 6
2.2 Parallel Decentralized SGD . 9
2.3 Swarm SGD . 13

3 Momentum in distributed SGD 17
3.1 Convergence of SlowMo . 19
3.2 Removing the average . 23

4 Applications 25
4.1 Implementation . 25
4.2 Standard Benchmark . 26

4.2.1 Scalability . 26
4.2.2 Convergence . 28

4.3 High Energy Physics . 31
4.3.1 Problem description . 31
4.3.2 Models . 35
4.3.3 Results . 36

5 Conclusions 41

v

Abstract

Speeding up gradient based methods via distributed optimization has been a subject
of interest over the past years, especially in the context of training deep learning
models. Despite the fact that many improvements have been done on hardware
level, the convergence time of models on large datasets remains problematic. For
this reason, methods based on data parallelism paradigm and mini batch SGD have
been proposed to decrease the training time.

However, the most common synchronous implementation of parallel SGD, which can
be found in many deep learning libraries, has a behaviour that heavily depends on
the hardware performances. For this reason, methods that are robust to heteroge-
neous environments are starting to get more and more interest. In this thesis, two
decentralized and communication efficient variants of parallel SGD will be presented
and compared. Furthermore, we will study how momentum can be used to improve
the performance of distributed decentralized methods. Then a modification of this
method will be proposed and numerically validated: we will empirically show that
even by removing the periodical synchronization barrier present in the method we
are still able to improve the performance of the base optimizer.

These methods will then be used to extend a work done at CERN in the context of
large scale machine learning. We will show how the algorithms combined with mo-
mentum presented in this thesis can improve the final performance of the classifiers.

Chapter 1

Introduction

In recent years, it has been shown that the efficient training of large and deep neu-
ral networks guarantees state-of-the-art performances in many fields such as com-
puter vision [Krizhevsky et al., 2012] and language processing [Devlin et al., 2018].
Furthermore, increasing the number of parameters in the model, the number of
training examples, or both, leads to a better model accuracy [Sun et al., 2017]
[Cireşan et al., 2010]. However, even when performed on a GPU, training of a neu-
ral network on a large dataset can take excessively long time. For example, training
a model such as ResNet-50 on the ImageNet dataset would take around 10 days,
while for bigger models this time could be of the order of 2 weeks. Moreover, train-
ing on a single machine with limited resources will limit the size of the models that
can be trained.
The amount of data collected keeps growing constantly; not only in the context of
big technology companies and government organization, but also in scientific exper-
iments. This is the case for example of CERN: in 2025 its main accelerator will
be upgraded [Apollinari et al., 2015] and experiments will produce over 100PB per
year. In this scenarios, being able to accelerate the training of models using multiple
machine is of fundamental importance.

Distributed deep learning tries to address these issues by decomposing the problem
into multiple machines and devices. In [Dean et al., 2012] two new paradigms to
decrease the training time for large models and large datasets are introduced: model
parallelism and data parallelism.

The first paradigm, model parallelism, is the most straightforward since it deals
with the parallelization of the computation within a single model: computations
of different parts of the model are carried on different processes or machines. The
benefits of this approach heavily depends on the structure of the model: for a large
number of parameters there is a computational benefit in using multiple cores up

1

Machine 1

Machine 4

M
achine

3M
ac
hi
ne

2

Machine 1

Machine 4

Machine 2

Machine 3

(a) (b)

Figure 1.1: Example of model parallelism (a) and data parallelism (b): in the former the model
is divided into four parts distributed on four different machines, in the later the same model is
replicated in four different machines.

to the point where the communication time becomes too high. The communication
time in this case is related to the propagation of weights between different parts of
the model. An example of model parallelism is shown on figure 1.1(a). If a model
is too big to fit into a single machine this provides a possible solution. This is often
the case for GPUs, where memory is of the order of 10MB.

The second paradigm is data parallelism, which will be the main focus of this thesis.
In data parallelism the training set is divided into m partitions, called data shards,
that will be used by m different processes, called workers or agents, to train a replica
of the model (figure 1.1(b)). In other words, each worker has an identical copy of
the model and trains it on a subset of the data. If no communication between
workers is involved the result would be m independent training process of the same
model on different subsets of the dataset, and the result of the training would be
different in each worker. Furthermore, an instance would not be able to obtain
any kind of information coming from other partition therefore losing the benefit of
a large dataset. For this reason workers periodically communicate to synchronize
their local model with others and to obtain information on the training over other
partitions. This allows us to avoid the divergence of the local models, i.e. becoming
too different from models trained by other workers. How and how frequently workers
synchronize is defined by the optimization algorithm.
Ideally, if the cost of communicating between workers is zero, with this approach
the model will be trained m times faster with respect to the non distributed setting,
since each worker uses a fraction 1/m of the training examples. In practice often
the communication becomes a bottleneck thus nullifying the benefits of adding more
workers. For this reason, developing optimization algorithms capable of reducing the

2

impact of communication time while keeping workers synchronized, i.e. making sure
that each instance is benefiting from the information obtained by other workers on
different data, is of fundamental importance.

1.1 Problem definition
In the training of a neural network we are interested in minimizing the expected
risk, that is equivalent at solving the stochastic optimization problem

min
x∈RN

f (x) := Eξ∼D [F (x; ξ)] (1.1.1)

where F is a function involving model parameters x and a random variable ξ sampled
from D. In our case ξ will refer to a data sample and its label. In the distributed
training there is a network of m agents, each of them with its local data and a local
loss function

fi (x) = Eξ∼Di
[Fi (x; ξ)] . (1.1.2)

where Di is the local data distribution. In this way the minimization problem (1.1.1)
can be rewritten as

min
x∈RN

f (x) = 1
m

m∑
i=1

fi (x) (1.1.3)

This optimization problem is called consensus optimization, where m agents cooper-
ate to find the parameters x minimizing the average objective function with respect
their local data.
There are two possible strategies used to distribute data between workers:

• Strategy 1: Di = D, i.e. all worker can access all training examples. Conse-
quently we have that Fi (·; ·) = F (·; ·), that is all fi (·)’s are the same.

• Strategy 2: Data are split between all workers and Di is a uniform distribu-
tion over the samples assigned to the i-th worker.

The second strategy is of particular interest in the case when data are not centrally-
collected: each agent collect its set of data and wants to train the same model as
other agents without sharing local dataset. A practical application of this is training
a model when data cannot be moved from the source due to privacy constraints,
e.g. for medical data collected by a hospital.
However, in practical cases the distributions are not too different. That is, if the
variance in the data is not too high, it is possible to assume that the distribution on
each worker Di can be approximated with the same distribution D. In this thesis
we will make this assumption.

3

1.2 Aim of the work
In this thesis, after introducing the standard way of parallelizing gradient descent,
we will focus on two state of the art decentralized methods for the training of neural
networks. There is a growing interest in this kind of methods since they are commu-
nication efficient hence they scale well with the number of parallel workers, which
is a key component when working on large dataset. Therefore, they are robust in
heterogeneous environments such as clouds, therefore they are accessible to a larger
pool of researchers that cannot benefit from High Performance Computing centers.

Furthermore, a recent proposal on how to combine momentum with distributed al-
gorithms will be examined. The idea behind it is to perform a certain amount of
iterations of a base optimizer and use this information to perform the next update,
as for the classical momentum. Then, one possible modification of the method sug-
gested by the authors will be numerically studied and empirically motivated.

Some of the key questions when studying a distributed optimization algorithm that
we will address in this work are:

• Is the method able to recover the performance of the sequential case?

• Can it achieve a linear speedup with respect to the number of workers?

• Is including momentum improving the performance of the algorithms?

Numerical tests will be performed on standard benchmarks before analyzing a large
scale problem coming from the world of High Energy Physics. In this field, al-
gorithms capable of dealing with a huge amount of data while being efficient in
terms of resource utilization are of primary importance. The work carried on at
CERN in the context of building a new machine learning pipeline for large datasets
[Migliorini et al., 2019] will be extended and we will see how it can be improved
using the methods described in this thesis.

4

5

Chapter 2

State-of-the-art algorithms

In this chapter, we will first describe the standard approach adopted to parallelize
stochastic gradient descent, then two recently proposed variants will be introduced.
The common procedure among all distributed methods is that every worker performs
a certain number of local steps before communicating with the others. These local
steps are usually based on mini-batch SGD, which computes the update using a
batch of B samples. In the training of neural network, the local loss function of
each worker introduced in (1.1.2) can be viewed as the sum of losses `i incurred on
its local examples

fi (x) = 1
Ni

Ni∑
j=1

` (x, ξj)

Therefore, considering B independent realizations of ξ ∼ Di, mini-batch SGD com-
putes the following gradient

∇Bfi (x) = 1
B

B∑
j=1
∇` (x, ξj) (2.0.1)

which is an approximation of ∇fi. Then, it can be used to compute the update

xt+1 = xt − γ∇Bfi (xt)

2.1 Parallel SGD
The easiest way of parallelizing SGD is built on top of the idea of mini-batch pre-
sented before. If we consider a mini-batch of size m · B samples, each agent can
compute a local mini-batch stochastic gradient using B of its local samples. Then
all the gradients are aggregated and the average is computed in every node, i.e.

6

1
m

∑m
i=1∇Bfi (x). Recalling that the objective function we are interested in mini-

mizing is (1.1.3) we have that the computed average provides a stochastic gradient
of the objective function f :

∇f = 1
m

m∑
i=1
∇fi (x) . (2.1.1)

This gradient can be used to update the weight of each local model. Notice that
if all the m workers start with the same initial model x0 then they will generate a
sequence {xt}t=1,··· ,T of identical weights. It has been proved that sequential SGD
[Ghadimi and Lan, 2013] admits the optimal convergence rate O

(
1/
√
T
)
for non-

convex functions. Similarly, for parallel-SGD the convergence rate is proved
to be O

(
1/
√
mT

)
on non convex problems [Ghadimi et al., 2016][Lian et al., 2015]

hence obtaining a linear speedup with respect to the number of workers m.
Gradients can be aggregated in two possible way: using a central node or via an
AllReduce operation.

When gradients are aggregated by a central node we have a centralized algorithm
(Centralized-ParallelSGD). In this scheme, for each iteration, every worker
fetches the model x saved in a central node, called parameter server, and com-
putes the mini-batch gradient using its local data. Gradients are then pushed back
to the parameter server, which averages them as in (2.1.1) and uses this average
to update the central model x′ before moving on to the next iteration. This pro-
cedure is shown in Figure 2.1(a). This approach used to be leveraged by many
popular machine learning frameworks such as Tensorflow[Abadi et al., 2016] and
CNTK[Seide and Agarwal, 2016]. One problem of this method is that if one param-
eter server is used it will likely become a computational or networking bottleneck.
For this reason, methods based on collective operations that do not require a pa-
rameter server started to arise interest.

In an AllReduce operation a target quantity is reduced, e.g summed, in every pro-
cess. This kind of operation is implemented in many communication libraries such
as OpenMPI[Gabriel et al., 2004a]. This is useful because if every worker starts with
its gradient ∇fi then after the AllReduce it will end up with ∑m

i=1∇fi which is
the quantity we are interested to have in order to update the model.
A straightforward way of implementing this operation would require each worker to
send its gradient to all the other workers. This cannot be done because the commu-
nication pattern would be “all-to-all” which may saturate the network and we would
fall back to the parameter server case. For this reason, in modern communication
frameworks this is implemented in many efficient ways; for example, the most used
in deep learning is the Ring-AllReduce. This approach has been introduced by

7

Data
shards

Workers

Parameter server

∇fi

x′ = x − γ
m

∑m
i=1∇fi

x′

2 3

s1 = ∇f1

s2 = s1 +∇f2 s3 = s2 +∇f3

s4 = s3 +∇f4

s1

s2

s3

s4

x′ = x − γ

4 s4

41

(a) (b)

Figure 2.1: Strategies for worker synchronization in parallel SGD: (a) Parameter server strategy
for centralized-parallel SGD(C-PSGD), (b) Gradient aggregation based on a Ring-AllReduce
operation (AR-SGD).

Baidu Research[Gibiansky., 2017] inspired by the work [Patarasuk and Yuan, 2009].

In this algorithm nodes are on a ring and each of them communicates only with
its two peers. The basic idea is that each worker sends its gradient to the next
peer in the ring, which receives it and adds it to its local gradient. That is, node 1
sends s1 = ∇f1 to node 2 which will then have s2 = ∇f1 +∇f2 as shown in Figure
2.1(b). Node 2 will then proceed to send s2 to node 3 which will add its gradient
and so on. In the last step worker 1 will receive sm = ∑m

i=1∇fi that can be used
to update its local model. The same procedure is carried at the same time for each
other worker hence in the last iteration they will be all synchronized. This is just
a simple example, since in this case O (m) gradients would be sent amongst the
workers. In a more realistic implementation, the gradient in a worker is split into
m chunks: at each iteration only one chunk is communicated with the procedure
described above, resulting in a O (1) gradients communication and O (m) time. In
[Patarasuk and Yuan, 2009] it is suggested that this algorithm is bandwidth opti-
mal, i.e. it will optimally utilize the available network. This method is the most
used nowadays to perform data parallel training and it is implemented in many
frameworks such as Pytorch[Paszke et al., 2019], Tensorflow (replacing parameter
server)[Abadi et al., 2016] and Horovod [Sergeev and Del Balso, 2018]. In the rest
of this work we will refer to it as AR-SGD and the pseudocode can be found in
Algorithm 1.

With modern networks capable of handling bandwidth of the order 10 − 10GB/s
combined with neural network parameter sizes on the order of 10MB the commu-

8

Algorithm 1: AR-SGD
Input: Learning rate γt; Number of workers m; Number of iterations T ;

Initial point x0,0
1 for t ∈ {0, 1, . . . T − 1} at worker i in parallel do
2 compute local gradient: ∆xi = ∇fi (xt)
3 reduce gradients: ∆x = AllReduce(∆xi/m)
4 update local model: xt+1 = xt − γt∆x
5 end

nication of gradient across workers can be very fast. The main bottleneck is in the
synchronous nature of the algorithm: before updating the local model every node
must wait for all the others to finish their local computation. Thus this system is
extremely sensible to the stragglers effect and the iteration time is defined by the
time of the slowest worker.
Moreover, there are also intrinsic problems related to mini-batch SGD: it has been
observed that training on large batches, i.e. with a large number of workers, leads to
a significant decrease of the model performance[Goyal et al., 2017]. This effect has
been studied in [Keskar et al., 2016] and it is believed that is due to the fact that
large batch SGD tends to converge to sharper minima of the training loss function
and this leads to worse generalization performance.

One way to tackle both problems is the one adopted in LocalSGD[Lin et al., 2018],
where workers perform H local steps before synchronization. After H local steps
parameters are averaged via an AllReduce operation, reducing in this way the
effect of stragglers since the cost of communication is “spread” over H iterations. In
[Wang and Joshi, 2018] it is shown how this approach reduces communication time.
However, also in this case an AllReduce operation is required, hence this method
may be problematic for a large number of workers or slow networks.

2.2 Parallel Decentralized SGD
Recently, decentralized training algorithms are getting a significant amount of at-
tention. The interesting aspect is that each worker communicates with only a subset
of other workers thus removing the global synchronization required by algorithms
such as AR-SGD. This results in a lower idling time, especially in high latency
networks and heterogeneous environments such as cloud computing.
A recent work has shown that decentralized algorithms can outperform the central-
ized counterpart for distributed training[Lian et al., 2017a]. In this work it is proved

9

that decentralized parallel SGD (D-PSGD) has a comparable total complexity to
the centralized SGD while involving less communication.

To understand the idea behind this method, we can make the following consideration.
In centralized methods averaging local models every iteration leads to the same result
as aggregating gradients. Every worker at step t uses the same model xt to compute
the local gradient ∇fi (xt) and to update the local model x(i)

t+1 = xt − ∇fi (xt).
The average of the local model is computed either using a parameter server or an
AllReduce operation:

xt+1 = 1
m

m∑
i=1

x
(i)
t+1 = xt −

γ

m

m∑
i=1
∇fi (xt)

which is the same update as the one described in the previous chapter for centralized
parallel SGD (C-PSGD). The idea behind decentralized methods is to use a gossip
algorithm to approximate the distributed averaging. If x(i)

t ∈ Rd is the vector
containing the parameters at node i, we are interested in approximating 1

m

∑m
i=1 x

(i)
t .

We can concatenate the models into a matrix Xt ∈ Rm×d, where each row will be a
different node. A gossip iteration has the form Xt+1 = WtXt where Wt ∈ Rm×m is
the mixing matrix and defines the communication topology. The index t represent
the fact that the mixing matrix can be different for each iteration. This corresponds
to the update at node i

x
(i)
t+1 =

m∑
j=1

wi,jt x
(i)
t

Therefore, a node needs to communicate only with nodes j for which wi,jt 6= 0 so for
sparser matrices there is less communication. If wi,jt = 1/m for all i, j then case of
C-PSGD is recovered.

In D-PSGD[Lian et al., 2017a] the communication topology is described by an
undirected graph (V,W). V denotes the computational nodes V = 1, . . . ,m and
W ∈ Rm×m a symmetric doubly stochastic matrix. As in C-PSGD every worker
has a local copy of the model. In each iteration, all workers compute stochastic
gradients locally and at the same time average the local model with their neigh-
bours. Finally, the local gradients are used to update the averaged local models.
The pseudocode of the basic scheme, i.e. without mini-batches, is reported in Al-
gorithm 2. Notice that lines 3 and 4 can be run in parallel: if the communication
time used to average models is smaller than the computation time, then it can be
completely hidden. At line 5 there is a synchronization barrier: before updating the
local models and moving into the next iteration, all workers must have computed
the gradient and averaged their local model with neighbours.

10

Algorithm 2: D-PSGD
Input: Learning rate γt; Number of workers m; Number of iterations T ;

Weight matrix W ; Initial point x0,0
1 for t ∈ {0, 1, . . . T − 1} at worker i in parallel do
2 Sample ξ(i)

t from local data
3 Compute a local stochastic gradient based on ξ(i)

k and current model x(i)
t

∇Fi
(
x

(i)
t , ξ

(i)
t

)
4 Compute the neighbourhood weighted average x(i)

t+ 1
2

= ∑m
j=1 w

i,jx
(j)
t

5 Synchronization barrier: wait until all workers reach this point
6 Update local model x(i)

t+1 = x
(i)
t+ 1

2
− γ∇Fi

(
x

(i)
t , ξ

(i)
t

)
7 end
8 return 1

m

∑m
i=1 x

(i)
T

Under the following standard assumptions it is possible to analyze the convergence
rate of D-PSGD:
Assumption 2.1. (Smooth Gradients). Each local objective function fi (x) is L-
Lipschitz continuous, i.e. for all x, y ∈ Rd and i ∈ {1, . . .m}

‖∇fi (x)−∇fi (y) ‖ ≤ L‖x− y‖

Assumption 2.2. (Spectral Gap). Given the symmetric doubly stochastic matrix
W and define

ρ = (max{|λ2 (W) |, |λn (W) |})2

where λi (·) denotes the i-th largest eigenvalue. ρ is assumed to be ρ < 1.
Assumption 2.3. (Bounded Variance). The variance of the stochastic gradient is
bounded, i.e. there exists a finite positive constant σ2 such that for all i ∈ {1, . . .m}

Eξ∼D‖∇Fi (x; ξ)−∇fi (x) ‖2 ≤ σ2

Under these assumptions it is possible to prove that by setting a learning rate
γ = 1

2T+σ
√
T/m

and considering a sufficient large number of iterations then the
convergence rate is

1
T

T−1∑
t=0

E‖∇f (xt) ‖2 ≤ 8 (f (0)− f ?)L
T

+ (8f (0)− f ? + 4L)σ√
mT

(2.2.1)

where xt = 1
m

∑m
i=1 x

(i)
t is the average of all local models. The number of iterations

needed to obtain this result depends on ρ: smaller values implies a higher connectiv-
ity of the graph. In other words more workers are communicating at each iteration

11

thus obtaining a better approximation of the average. Therefore, considering a suf-
ficient number of iterations T the convergence rate is O

(
1
T

+ 1√
mT

)
. For a large

T the term 1
T

is dominated by 1√
mT

i.e. the centralized SGD convergence rate is
recovered even in the decentralized case. In the experiment section of the work, the
author used a ring communication topology: each worker communicates only with
its two peers every iteration, resulting in a much smaller communication cost with
respect to C-PSGD (O (1) vs O (n)).

The same authors of D-PSGD proposed a slight variation of this method called
asynchronous decentralized parallel SGD (AD-PSGD)[Lian et al., 2017b]. In par-
ticular they proved that by removing the synchronization barrier inD-PSGD, which
could cause long idle time of the faster workers, it is still possible to recoverC-PSGD
convergence rate. This approach makes the algorithm robust in heterogeneous en-
vironment and more scalable than D-PSGD.
The algorithm is nearly the same as Algorithm 2. In every iteration, each worker
performs the following steps:

• Compute the local gradient ∇Fi (x̂it, ξik) where x̂it is the model read from the
worker memory.

• In parallel the model x̂it may be averaged with other workers to obtain xit. This
average is performed between two peers i and j

xit = xjt = x̂it + x̂jt
2

• The gradient is used to update the local model

x̂it+1 = xit −∇Fi
(
x̂it, ξ

i
t

)
In this case the mixing matrix Wt depends on the iteration since the average is
done between random workers and it is obtained as a sample from G. To prove the
convergence of this method the same assumptions as for D-PSGD are made, with
the only difference in the fact that the spectral gap in Assumption 2.2 is expressed
in terms of expectation of the i-th singular value of Wt, that is

max{|λ2
(
W>
t Wt

)
|, |λn

(
W>
t Wt

)
|} ≤ ρ, 0 ≤ ρ < 1.

Furthermore the staleness is assumed to be bounded by a constant τt: x̂it = xit−τt
,

i.e. the model update is not performed on a model that is too many iterations ahead
with respect to the one used to compute the gradient. This is caused by the fact
that while the gradient is being computed, τ averages with different workers may

12

happen. Under these assumptions it is possible to prove that the convergence rate
is the same as SGD O

(
1/
√
T
)
. In the analysis every SGD update in a worker is

counted as one iteration, even though they are happening in parallel. Hence, m
parallel workers will make the iteration counter proceed m times faster in the sense
of wall-time thus obtaining a linear speedup with respect to the number of workers.

2.3 Swarm SGD

Algorithm 3: swarmSGD
Input: Learning rate γt; Number of workers m; Number of iterations T ;

Number of local steps Hi in worker i; Graph G; Initial point x0,0
1 for t ∈ {0, 1, . . . T − 1} at worker i in parallel do
2 for q ∈ {0, · · · , Hi − 1} do
3 Sample ξ(i)

t from local data
4 x

(i)
t,q+1 = x

(i)
t,q − γt∇Fi

(
x

(i)
t,q, ξ

(i)
t,q

)
5 end
6 Sample edge (i, j) from G
7 Average local parameters of workers i and j:

x
(i)
t+1, x

(j)
t+1 =

x
(i)
t,Hi

+ x
(j)
t,Hj

2

8 end
9 return 1

m

∑m
i=1 x

(i)
T

In decentralized methods the impact of communication between workers is reduced
by communicating only with a subset of peers. The same goal can be pursued
in methods involving a global communication, such as All-Reduce, by allowing
workers to perform local model updates before synchronization, as for LocalSGD.
In SwarmSGD [Nadiradze et al., 2019] these two approaches are combined in order
to have a method capable of scaling to a large number of nodes.

Conceptually this method is very similar to AD-PSGD: a population of m workers
is given and each of them can perform sequential SGD steps on its local model us-
ing a subset of training data. Workers are identified as node of a graph and edges
are the possible communication links. After executing a certain number of local
optimization steps a node communicates with one of its neighbours that is chosen
randomly amongst its peers in the network. During the interaction the two model

13

are averaged in each worker. Combining the pairwise interactions with local steps
leads to a negligible communication time. The pseudocode for the basic scheme
without mini-batches is reported in Algorithm 3.

It is possible to prove that even this extremely decentralized SGD variant can con-
verge. The convergence can be proved under standard assumptions such as smooth
gradients (Assumption 2.1), bounded variance of the stochastic gradient on each
agent i (Assumption 2.3) and bounded second moment, i.e. there exist a M2 > 0
such that

E‖∇Fi (x) ‖2 ≤M2.

The last assumption is necessary only in the case of the analysis carried on for a
random number of local steps Hi. If this value is fixed it is still possible to prove the
convergence even without this assumption. Furthermore, the graph G describing the
communication topology it is assumed to be a r-regular graph with a spectral gap λ2.

In the case of a random interaction time Hi and Hj are independent geometrically
distributed random variables with mean H. By assuming Lipschitz continuous gra-
dients, bounded second moment of the gradients and using a learning rate γ = m√

T
it

is possible to prove that, for a sufficiently large number of interactions the following
bound holds:

1
T

T−1∑
t=1

E‖∇f (xt) ‖2 ≤ (f (x0)− f (x?))√
TH

+ 11H2 max (1, L2)M2
√
T

max
(
1, 2r/λ2 + 4r2/λ2

2

)
(2.3.1)

where xt is the average of x(i)
t amongst all nodes. The first term represent the reduc-

tion of the loss with respect to the initial point, divided by the square root of T and
H. The linear speedup in term of number of worker is not evident here since the
analysis is carried on modeling one interaction between two agents at every iteration
t. But m of such iterations can occur in parallel, hence there is a liner speedup in
terms of wall clock time. The second term represents the influence of every local
steps, H2M2, and the impact of the network topology. For large values of λ2, which
corresponds to a well-connected graph, this term impact less negatively the conver-
gence.

For a fixed interaction time H, assuming the smoothness of the gradients and

14

bounded variance it is possible to obtain a similar convergence rate:

1
T

T−1∑
t=1

E‖∇f (xt) ‖2 ≤ E[f (x0)− f (x?)]√
TH

+ 28H2 max (1, L2)σ2
√
T

max
(
1, 2r/λ2 + 4r2/λ2

2

)
. (2.3.2)

This result is almost identical to the one obtained in the previous case, with the
only main difference that the bound on the second moment M2 is replaced by the
variance σ2.

In both cases the proof is built around two ideas. The first is that due to pairwise
averaging nodes’ parameters x(i) are clustered around their mean, i.e the quantity

Γt =
m∑
i=1
‖xt − x(i)

t ‖2

is bounded, thanks to the periodic pairwise averages. The second is that even
though stochastic gradients are taken as noisy estimates of this mean, the impact
of the noise can be bounded.

15

16

Chapter 3

Momentum in distributed SGD

Momentum plays an important role in the training of neural networks, and it has
been empirically demonstrated that it leads to better generalization performances
[Sutskever et al., 2013]. However it is not well defined how momentum can be used
to improve distributed training. In many recent works momentum has been in-
corporated in the training by allowing each worker to have its local momentum
[Lian et al., 2017a][Assran et al., 2018][Lin et al., 2018].

Recently, a framework called slow momentum (SlowMo) [Wang et al., 2019] has
been proposed to increase the accuracy of distributed training methods. In SlowMO
workers after taking some number of local steps τ of a base optimizer, which could
be SGD or a distributed optimizer, average their parameters via an AllReduce
operation and perform a momentum-like update. The AllReduce operation al-
lows to keep the system decentralized, otherwise a parameter server would be needed.

As said, SlowMo is built on top of a base optimizer and presents a nested loop
structure, as shown in Algorithm 4. Each worker i maintains two local variables
used during the training: the model parameters x(i)

t,k and a slow momentum buffer
ut. In the former t, k indicate the k-th step of the inner optimizer at the t-th iter-
ation of SlowMo. Models are initialized with the same parameters x0,0 and slow
momentum buffer u0 = 0 then the superscript i in the slow momentum buffer is not
necessary because it will be always the same in every worker.

In the steps of the base optimizer the update is indicated by x(i)
t,k+1 = x

(i)
t,k − γtd

(i)
t,k

where γt is the learning rate and d(i)
t,k the update direction. If communication or local

momentum updates are involved then d(i)
t,k represent the full update at the worker i

at step k. In the case of SGD the direction is d(i)
t,k = ∇Fi

(
x

(i)
t,k; ξ

(i)
t,k

)
.

17

Algorithm 4: Slow Momentum
Input: Base optimizer with learning rate γt; Base optimizer steps τ ; Slow

learning rate α; Slow momentum factor β; Number of workers m;
Initial point x0,0

1 Initialize slow momentum buffer u0 = 0
2 for t ∈ {0, 1, . . . T − 1} at worker i in parallel do
3 for k ∈ 0, 1, . . . , τ − 1 do
4 Base optimizer step: x(i)

t,k+1 = x
(i)
t,k − γtd

(i)
t,k

5 end
6 Exact-Average: xt,τ = 1

m

∑m
i=1 x

(i)
t,τ

7 Slow Momentum update: ut+1 = βut + 1
γt

(xt,0 − xt,τ)
8 Outer iterate updated: xt+1,0 = xt,0 − αγtut+1
9 end

After τ base optimizer steps the workers compute the exact average xt,τ of all the
models parameters via an AllReduce operation. This average can be written in
terms of all the update directions and the previous iteration of the outer loop

xt,τ = xt,0 −
γt
m

m∑
i=1

τ−1∑
k=0

d
(i)
t,k.

Notice that this is a blocking operation, i.e. every worker must reach this point
before continuing. After computing the average the momentum update is then
performed in lines 7-8:

ut+1 = βut + 1
γt

(xt,0 − xt,τ) (3.0.1)

xt+1,0 = xt,0 − αγtut+1. (3.0.2)

The difference between the model weight before and after the base optimizer phase
in (3.0.2) is divided by the base optimizer learning rate in order to make it invariant
with respect to the learning rate that can change during the training. Furthermore,
in the update (3.0.2) the learning rate is multiplied by a factor α. However it has
been empirically observed by the authors that α = 1 leads to the best performance.
By setting different values of β, α and τ other optimizers such as LocalSGD
[Lin et al., 2018], BMUF [Chen and Huo, 2016] and LookAhead [Zhang et al., 2019]
can be expressed in this framework allowing to provide bounds on the convergence.

Authors of SlowMo carried out an extensive empirical evaluation on multiple
datasets and models and observed that it consistently improved optimization and

18

generalization performances, especially in cases where a decentralized optimizer is
used as base optimizer.

3.1 Convergence of SlowMo
It is possible to provide convergence guarantees for SlowMo and prove that it leads
to a linear speedup in terms of workers. We can denote with fi (x) = Eξi∼Di

Fi (x; ξi)
the expected objective function at worker i, f (x) = 1

m

∑m
i=1 fi (x) the objective func-

tion we are interested in minimizing and make the following standard assumptions

Assumption 3.1. (Smooth Gradients). Each local objective function fi (x) is L-
Lipschitz continuous, i.e. for all x, y ∈ Rd and i ∈ {1, . . .m}

‖∇fi (x)−∇fi (y) ‖ ≤ L‖x− y‖

Assumption 3.2. (Bounded Variance). The variance of the stochastic gradient is
bounded, i.e. there exists a finite positive constant σ2 such that for all i ∈ {1, . . .m}

Eξ∼D‖∇Fi (x; ξ)−∇fi (x) ‖2 ≤ σ2

Assumption 3.3. Let dt,k = 1
m

∑m
i=1 d

(i)
t,k be the average descent direction across the

m workers. There exists a finite positive constant V such that

E‖dt,k − Et,k[dt,k]‖2 ≤ V

where Et,k represent the expectation conditioned on all the randomness from stochas-
tic gradients up to the k-th step of the t-th outer iteration.

Example. We can look if SwarmSGD satisfies these assumptions. The first two are
already required by the method, hence we only need to verify the third assumption
by finding the constant V . Defining the following quantities

Xk = [x(1)
k , . . . , x

(m)
k]> ∈ Rm×d

∇F (Xk) = [∇F1
(
x

(1)
k ; ξ(1)

k

)
, . . . ,∇Fm

(
x

(m)
k ; ξ(m)

k

)
]> ∈ Rm×d

and calling Wk the mixing matrix, i.e. the double stochastic matrix encoding the
communication in the k-th iteration of the algorithm, we can write the update rule
in a matrix form as

Xk+1 = Wk (Xk − γ∇F (Xk))
in the case where H = 1 local updates are performed. When H ≥ 1 this update
rule can be rewritten as:

Xk+1 = Wk

Xk − γ
H∑
q=1
∇F (Xq

k)

19

where ∇F (Xq
k) is the gradient computed on the model after applying q local SGD

updates to the model Xk.
By multiplying both sides of the update rule by the unitary vector scaled by the
number of workers 1

m
1 = 1

m
[1, . . . , 1] we obtain

1
m

1Xk+1 = 1
m

1Wk

Xk − γ
H∑
q=1
∇F (Xq

k)

and by defining xk = 1
m

1Xk, denoting the average model across all workers, and
noticing that 1

m
1WkXk = xk, since Wk is a stochastic matrix, we obtain

xk+1 = xk −
γ

m

m∑
i=1

H∑
q=1
∇Fi

(
x
q,(i)
k ; ξq,(i)k

)

Recalling that the general update can be written as

xt,k+1 = xt,k − γdt,k

we have that the average descent direction is dt,k = 1
m

∑m
i=1

∑H
q=1∇Fi

(
x
q,(i)
k ; ξq,(i)k

)
hence

Et,k[dt,k] = 1
m

m∑
i=1

H∑
q=1

Et,k[∇Fi
(
x
q,(i)
k ; ξq,(i)k

)
] = 1

m

m∑
i=1

H∑
q=1
∇fi

(
x
q,(i)
k

)
(3.1.1)

Now it is possible to compute, keeping in mind that mini batches are independent:

E‖dt,k − Et,k[dt,k]‖2 = E

∥∥∥∥∥∥ 1
m

m∑
i=1

H∑
q=1

[
∇Fi

(
x
q,(i)
k ; ξ(i)

k

)
−∇fi

(
x
q,(i)
k

)]∥∥∥∥∥∥
2

= 1
m2

m∑
i=1

H∑
q=1

E
∥∥∥∇Fi (xq,(i)k ; ξq,(i)k

)
−∇fi

(
x
q,(i)
k

)∥∥∥2

︸ ︷︷ ︸
≤σ2 (bounded variance)

≤ σ2H

m

Therefore the constant satisfying the third assumption is V = σ2H
m

which is a finite
value since H, σ and m are finite quantities. An equivalent result can be proved for
AD-PSGD with a similar procedure, with the only difference that Xk needs to keep
into account the updates coming for delayed workers. How this type of analysis can
be performed for asynchronous methods is presented in [Assran and Rabbat, 2020].

We can now report the main convergence result of SlowMO.

20

Theorem 3.1. Suppose all workers start from the same initial point x0,0 and the
initial slow momentum is u0 = 0. By setting α, β, γt = γ, τ and T such that αγ

1−β =√
m
τT

and the total iterations τT satisfies τT ≥ mL2
(
1 +
√

3 max 3τ(1−β−α)
α

, 4τβ
1−β , 1

)
,

then under assumptions 3.1 to 3.3 the following result holds:

1
τT

T−1∑
t=0

τ−1∑
k=0

E‖∇f (xt,k) ‖2 ≤ 2 (f (x0,0)− finf) +mV L√
mτT

+ 1
τT

T−1∑
t=0

τ−1∑
k=0

E‖∇f (xt,k)− Et,k[dt,k]‖2

︸ ︷︷ ︸
Effect of base optimizer

+ 4mV L2 (τ − 1)
τT

(
1− β
α
− 1

)2

+ 8mV L2τ

τT

β2

1− β2︸ ︷︷ ︸
Effect of slow momentum

(3.1.2)

where finf = infx f (x).

First we can notice that this result is consistent with the AR-SGD convergence. By
taking τ = 1, α = 1, β = 0 and using SGD with learning rate γ as base optimizer
all the terms on the right hand side of (3.1.2) vanish except the first. Since it is easy
to see that for SGD one has V = σ2/m we recover the rate O

(
1/
√
mT

)
.

The second term in (3.1.2) depends on the base optimizer and measures the bias
between the full batch gradient ∇f (xt,k) and the expected average across work-
ers Et,k[dt,k]. As an example we can compute this quantity for SwarmSGD. For
simplicity this example will be carried out with H = 1.

Example. Recalling that the expected value of the average descent direction com-
puted for SwarmSGD in (3.1.1) in the case H = 1 is

Et,k[dt,k] = 1
m

m∑
i=1
∇fi

(
x

(i)
k

)

we can write:

21

1
τT

T−1∑
t=0

τ−1∑
k=0

E‖∇f (xt,k)− Et,k[dt,k]‖2 = 1
τT

T−1∑
t=0

τ−1∑
k=0

E
∥∥∥∥∥∇f (xk,t)−

1
m

m∑
i=1
∇fi

(
x

(i)
t,k

)∥∥∥∥∥
2

≤ 1
mτT

T−1∑
t=0

τ−1∑
k=0

m∑
i=1

E
∥∥∥∇f (xk,t)−∇fi

(
x

(i)
t,k

)∥∥∥2

︸ ︷︷ ︸
≤L2‖xt,k−x

(i)
t,k
‖2

≤ L2

mτT

T−1∑
t=0

τ−1∑
k=0

m∑
i=1

E‖xt,k − x(i)
t,k‖2 (3.1.3)

where in the second step the following Jensen’s inequality has been used:∥∥∥∥∥
m∑
i=1

1
m

[∇f (xk,t)−∇fi
(
x

(i)
t,k

)
]
∥∥∥∥∥

2

≤
m∑
i=1

1
m

∥∥∥∇f (xk,t)−∇fi
(
x

(i)
t,k

)∥∥∥2

To prove the convergence of SwarmSGD, in [Nadiradze et al., 2019] a quantity Γt
denoting the variance of a local model after t iterations is introduced:

Γt =
m∑
i=1
‖µt −X i

t‖2

where µt = 1/m∑m
i=1 X

i
t is the average of all the worker models. This can be

rewritten in our notation as

Γt,k =
m∑
i=1
‖xt,k − x(i)

t,k‖2 (3.1.4)

Under the the base assumptions 3.1 and 3.2 plus bounded second moment of the gra-
dient, i.e. there exist a positive constant M2 such that E‖∇Fi

(
xt,k; ξ(i)

t,k

)
‖2 ≤M2 it

is possible to prove that the expectation of potential is bounded by [Nadiradze et al., 2019]

E[Γt,k] ≤ 2mγ2M2G (3.1.5)

where G is encoding the properties of the communication topology and γ = m/
√
τT

is the learning rate. Thus we can rewrite (3.1.3) as

1
τT

T−1∑
t=0

τ−1∑
k=0

E‖∇f (xt,k)− Et,k[dt,k]‖2 ≤ L2

mτT

T−1∑
t=0

τ−1∑
k=0

E[Γt,k]

≤ L2

mτT

T−1∑
t=0

τ−1∑
k=0

2mγ2M2G

≤ 2m2L2M2G

τT

22

Therefore, we can see that the term associated to the base optimizer vanishes with
the rate of 1/τT , as observed by the authors of SlowMo for other base optimizers.
This term is also measuring how fast agents reach consensus: as expected, this rate
depends on the number of workers m and the graph topology. For a larger number
of workers or sparser graph communication this negatively impacts convergence.
Hence, we can write

1
τT

T−1∑
t=0

τ−1∑
k=0

E‖∇f (xt,k) ‖2 = O
(

1√
mτT

)
+O

(
m2

τT

)
+O

(1
τT

)
(3.1.6)

3.2 Removing the average
Even if it is distributed over τ iterations, the AllReduce operation in Algorithm
4 is a blocking operation: if one of the workers is slow, this will translate into
idle time of all other workers. Furthermore, as we have seen for SwarmSGD in
equation (3.1.4), one of the key points in proving the convergence of decentralized
methods is to prove that the agent’s parameters are clustered around their mean.
This is reasonable since we want ideally to reach consensus of the models, i.e. similar
model’s weights.
For this reason we could remove the exact average in line 6 of algorithm 4. This only
makes sense for decentralized methods because in algorithm such as LocalSGD an
exact average every τ local iterations is required, therefore in this case SlowMo is
not adding any communication overhead.

Removing the exact average will impact also the momentum update since in this
case it will not be the same for every agent. Every worker have its local momentum
buffer uit hence line 7 and 8 of algorithm 4 become:

u
(i)
t+1 = βu

(i)
t + 1

γt

(
x

(i)
t,0 − x

(i)
t,τ

)
(3.2.1)

x
(i)
t+1,0 = x

(i)
t,0 − αγtu

(i)
t+1 (3.2.2)

What we will observe with the numerical experiments is that even by loosing this
requirement the accuracy of the method remains the same. This result is suggesting
that slow momentum updates, and not the periodic synchronization of the models,
is bringing the biggest contribution to the performance gain of SlowMo.

23

24

Chapter 4

Applications

In this chapter numerical results of the algorithms previously described will be pre-
sented. First the performance will be measured on standard benchmarks. Then a
big data application related to high energy physics will be presented and the original
work improved using the optimization methods described in this thesis. The orig-
inal work carried out at CERN is described in a paper that we recently published
[Migliorini et al., 2019].

4.1 Implementation
All the algorithms described in this work have been implemented using Pytorch and
OpenMPI [Gabriel et al., 2004b]. MPI one-side primitives have been used to imple-
ment AD-PSGD since they allow one worker to access other workers’ models via
a remote memory access, without a blocking operation. This allows us to reach a
higher throughput in systems where remote direct memory access is available, since
a worker can perform a fast direct memory access in the memory of another worker.

For AD-PSGD the wait-free version of the method has been used, where commu-
nication and gradient computation are done in parallel in each worker. This ensures
a better convergence with respect to wall time. To achieve this, two threads have
been used, a communication and a computation thread, with a shared buffer. The
shared buffer is used to pass model’s parameters between the two threads. In this
way, while the computation thread is computing the gradient with respect to the
model pulled from the shared buffer, in the communication thread the average with
other workers is happening and the new model is put in the shared buffer. Once
the computation is done, the current model is pulled and updated using the gradient.

The tests were performed on Cloudveneto [Andreetto et al., 2019], an IaaS (infras-

25

tructure as a service) cloud hosted by the INFN units in Padova and Legnaro Na-
tional Labs. Hosts are connected via a 10 Gbps ethernet links. A total of 4 Virtual
machines have been used, each of them having 8 virtual CPUs and 16 GB of RAM.
In order to have the same environment on every machine, OpenMPI and Pytorch
have been compiled on one virtual machine, then the resulting image has been used
to spawn the others. Data have been shared between workers using a Network File
System. Since the resources available where limited, each vCPU has been seen as
one worker in order to be able to test the work with m > 5 workers. If GPUs are
available each one of them can be viewed as a worker. Furthermore it is common to
have more than one GPU installed on the same machine.

This cloud provide a good environment to test robustness of the implemented meth-
ods given the low-bandwidth with respect to modern HPC infrastructures, which
use InfiniBand networking. Furthermore, cloud hosts are shared by many users
hence slowdown are happening frequently. Despite this facts it is worth studying
performance of the methods in such harsh environment since it is accessible by more
users with respect to HPC centers.

4.2 Standard Benchmark
The first tests were performed training LeNet-5 [LeCun et al., 1998] on the MNIST
dataset [LeCun and Cortes, 2010]. This dataset consists of 60k training examples
and a test set of 10k examples. Each example consists of a 28x28 pixel in grey scale
image. In our case this dataset can be used to measure the impact of communication
in the training time since the computing time of the model on CPU is comparable
to the communication time. In the case of more complex models and datasets this
statement is true when GPUs are used.
Then, the convergence has been test in a slightly more complex classification task
by training ResNet-20 [He et al., 2016] on CIFAR-10 dataset [Krizhevsky, 2009].
CIFAR-10 consists of 60k 32x32 pixel colour images in 10 classes where images are
equally spread across classes. The dataset is split into 50k training examples and
10k test images.

4.2.1 Scalability
The first quantity that we can measure is the distribution of the epoch time and
compare it with the communication time. To do this we let the model train for 300
epochs on MNIST in order to obtain a sufficient number of samples to report the
distribution. In this case we were not interested in the performance of the model,
since such a small model in 300 epochs will most likely overfit. The communication

26

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Communication time [s]

0

20

40

60

80

100

Co
un

ts
Communication time per epoch distribution

AR-SGD
AD-PSGD
SwarmSGD

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Epoch time [s]

0

20

40

60

80

Co
un

ts

Epoch time distribution
AR-SGD
AD-PSGD
SwarmSGD

Figure 4.1: Distribution of the total communication time and wall-time per epoch. The times
are measured by iterating 300 times over MNIST dataset using 16 workers.

time is intended as the sum of all the communication times during one epoch. In this
way it is possible to compare the resulting distributions. For this test 16 workers have
been used and the timing measurements averaged. Furthermore, in SwarmSGD 3
local steps are performed before averaging models. The resulting distributions are
shown in Figure 4.1.
The first thing that one can notice is that the communication time for both decen-
tralized methods is much lower with respect to the one used by AR-SGD. This will
translate into a lower wall time per epoch. In the communication time distribution
we can see that the average time spent communicating by AD-PSGD is bigger than
SwarmSGD as expected, because it is communicating every step. However, since
this process happens in parallel with gradient computation, this time is hidden and
the resulting time per epoch is comparable with the one of SwarmSGD. In theory,
thanks to the wait-free implementation, this should be a bit smaller. The reason this
is note the caseresides in how this approach is implemented, which can be improved.

Furthermore, the variance for AR-SGD is twice the one measured for the other two
methods. This is because each iteration is influenced by all the workers therefore in
noisy environments such as a shared cloud this variability is expected to be high.

We can also measure the speedup of each algorithm, defined as

speedup (n) = t (1)
t (n)

where t (n) represents the training time when using n parallel workers. In other
words it is measuring the ratio between the time took to run an algorithm using
one process and the computational time for running the same algorithm using n

27

0 5 10 15 20 25 30
Number of Workers

0

5

10

15

20

25

30

Sp
ee

du
p

Linear speedup
AR-SGD
AD-PSGD
SwarmSGD

(a)

5 10 15 20 25 30
Number of workers

0.025

0.030

0.035

0.040

0.045

0.050

0.055

Ti
m

e
pe

r b
at

ch
 (s

)

AR-SGD
AD-PSGD
SwarmSGD

(b)

Figure 4.2: (a): Measured speedup. (b): Average time per batch.

processors. Ideally we would like methods with speedup = n, which means that every
worker is contributing with all its computational power. However, such scenario is
often far from reality due many practical problems. In our case t (1) is the time
taken by a single worker to complete the training using the standard sequential SGD,
where no communication is involved. The measured speedup versus the ideal one
for each algorithm is reported in figure 4.2(a). We can see that both decentralized
methods scale better than AR-SGD, leading to a twice bigger speedup on average
with respect to the latter. In theory both decentralized algorithms should scale
better since the communication time doesn’t depend on the number of workers. In
practice this quantity is strongly influenced by the hardware where the training is
running and how the algorithm is implemented. This can be seen in 4.2(b) where the
average time per batch is plotted as function of the number of workers. In the case
of decentralized algorithms this time remains almost constant, whereas it increases
for AR-SGD. Despite that, we are obtaining similar scaling results as the ones
presented in AD-PSGD and SwarmSGD papers in the case of 10Gbps network.

4.2.2 Convergence
We can now focus on the convergence with respect to the number of epochs and
time. First we can measure if adding SlowMO to the decentralized methods lead
to better performance. For the rest of this work we will use the version without the
exact average, since in this way there is not a tangible performance degradation.
An example of SlowMo is reported in Figure 4.3. In both cases the test accuracy
increases while maintaining the same computational time, since the computational
overhead added by the momentum update is minimal.
In this case the hyperparameters used for the base optimizer are the same as the
ones used without slow-momentum. Also, each local step of the two decentralized
algorithms is performed using mini-batch SGD with classical momentum. The two

28

0 5 10 15 20 25 30 35 40
Epoch

0.95

0.96

0.97

0.98

0.99

1.00
Te

st
 a

cc
ur

ac
y

SwarmSGD
SwarmSGD + SloMO

0 5 10 15 20 25 30 35 40
Epoch

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

 a
cc

ur
ac

y

AD-PSGD
AD-PSGD + SloMO

Figure 4.3: Effect of SlowMo on AD-PSGD and SwarmSGD on MNIST dataset.

additional hyperparameters are the number of steps performed by the base optimizer
τ and the slow-momentum factor β: in this case we choose τ = 12 and β = 0.7,
similarly to the values used in the original paper.

The convergence with respect to time and number of epochs is presented in Figure
4.4. Both SwarmSGD and AD-PSGD combined with SlowMO reach similar
performance as AR-SGD. A mini-batch of 128 examples has been used for every
worker, as for the sequential case. This is equivalent to an overall batch size of
16 · 128 = 2048 in the case of AR-SGD leading to a poor test accuracy. To com-
pensate for this we adopted one of the techniques presented in [Goyal et al., 2017],
that is scaling the learning rate by the number of parallel workers. This problem is
not observed for the decentralized algorithm since only averages between two peers
are performed, therefore the same parameters, e.g. the learning rate, ca be used
without any modification.

To train ResNet-20 on CIFAR-10, the standard training hyperparameters for this
model [Lian et al., 2017b] are used: A batch size of 32 per worker, learning rate
starting from 0.1 and decaying by a factor of 10 at the 81st and 121st epochs, a
momentum factor of 0.9 and weight decay (`2 penalty) of 10−4. The model has been
trained for a total 150 epochs. Also in this case the AR-SGD’s learning rate had to
be increased in order to converge to comparable results as the other two methods.
For SlowMO a slow momentum factor of β = 0.6 and τ = 12 local steps have been
used leaving base optimizer hyperparameters unchanged. Figure 4.5 shows that with
respect to the number of epochs all the methods converge similarly. Since ResNet-
20 is a relatively small model, around 1MB, the impact of communication in this
training is much smaller with respect to the computational one: with 16 workers
completing one epoch takes around 40s where only 6s are spent communicating. For

29

0 5 10 15 20 25 30 35 40
Epoch

0.95

0.96

0.97

0.98

0.99

1.00
Te

st
 a

cc
ur

ac
y

AR-SGD
AD-PSGD + SloMO
SwarmSGD + SloMO

0 20 40 60 80 100 120 140 160
Time (s)

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

 a
cc

ur
ac

y

AR-SGD
AD-PSGD + SloMO
SwarmSGD + SloMO

Figure 4.4: Convergence with respect to number of epochs and wall time on MNIST for fixed
number of workers.

0 20 40 60 80 100 120 140
Epoch

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

AR-SGD
AD-PSGD + SloMo
Swarm + SloMo

0 1000 2000 3000 4000 5000 6000 7000
Time (s)

10

20

30

40

50

60

70

80

90
Te

st
 A

cc
ur

ac
y

AR-SGD
AD-PSGD + SloMO
SwarmSGD + SloMO

Figure 4.5: Convergence of ResNet-20 on CIFAR-10 with respect to the number of epochs.

this reason in the convergence with respect to time a big improvement as the one
seen in Figure 4.4 is obtained. This would change if gradients where computed on
a GPU since the computational time would be an order of magnitude slower. But
also in this scenario the convergence with respect to the number of workers would
be the same, hence the results obtained using SlowMo would be equivalent. The
comparison of the results with and without slow momentum is shown in Table 4.1.
SlowMo without average consistently improved the results of the baseline algo-
rithm without adding any overhead. There is not a substantial difference with
respect to the version adopting the global average. Furthermore it is robust with
respect to the slow momentum factor: choosing β ∈ 0.5, 0.6, 0.7, 0.8 changes only
slightly the performance in all the tests we performed. As a reference, the accuracy
for ResNet-20 on CIFAR-10 in the original paper is 91.25% and it is possible to
obtain a score of 92.16%1 in the sequential case. The results obtained in our case are

1https://keras.io/examples/cifar10_resnet/

30

https://keras.io/examples/cifar10_resnet/

Validation accuracy
Algorithm Baseline SlowMo SlowMo no avg.
AR-SGD 91.29% - -
AD-PSGD 91.32% 91.60% 91.58%
SwarmSGD 91.30% 91.59% 91.61%

Table 4.1: Comparison of the test accuracy for the ResNet-20 on CIFAR10. The column
baseline reports the accuracy of the algorithm while SlowMO the accuracy when slow momentum
is applied. SlowMo no average represent the case when the global average is removed.

in line with the ones in the literature, but with a more careful tuning of the training
hyperparameters they can be further improved. Indeed in both SwarmSGD and
AD-PSGD papers, the score of the base optimizer is around 91.70. Hence, it is
reasonable to think that by combining a fine tuned training procedure for the base
optimizer with SlowMo these results could be further improved.

4.3 High Energy Physics
In this section, a brief description of the work carried out during my internship at
CERN will be provided. The aim of the project was to build a scalable machine
learning pipeline, from the data ingestion to the training of a neural network, using
modern big data tools. A detailed description of the pipeline and its performance
can be found in [Migliorini et al., 2019].
After a brief description of the pipeline developed there, we will focus on how the
methods studied in this thesis can be used to train those models. While the pipeline
was run using CERN computing resources, the training with the new methods has
been performed on Cloud Veneto.

4.3.1 Problem description
High energy physics (HEP) is a data-intensive domain: chasing extremely rare
physics processes requires producing, managing and analyzing large amounts of com-
plex data. Data are produced by detectors, where proton-proton collisions happens.
Collisions happen every 25ns (40MHz) and given that the size of an event recorded
by all the electronics is around 2MB this will produce almost 100TB/s. Storing
all produced events would be too costly and not useful since the interesting events
are only a small fraction of them. For this reason, right after the production, an
event goes trough a chain of online filters with the function of deciding whether or
not an event is interesting. Given the high throughput of the detector, having only
one filtering stage where a difficult classification task is performed with only raw

31

informations from electronics would be impossible. For this reason, for example in
the CMS experiment2, there is a chain of two sequential filters. The first one, called
Level 1 trigger, uses only low level information from the electronics to provide a
first classification of the event: if it is not interesting it gets discarded whereas if
it has some characteristics indicating that is interesting it is sent to the next filter
in the chain. Having to operate at 40MHz such filters need to be extremely fast:
a large number of false positive is produced, but most importantly the number of
true negatives is reduced. Indeed, at this stage the rate is decreased from 40MHz
to 100kHz. This trigger is implemented in electronic boards near the detector.
Events passing the Level 1 trigger are moved into the High Level Trigger (HLT). At
this stage the informations coming from all sub-detectors are put together to gener-
ate a list of particles present in the events and to provide a better classification. In
the HLT the rate is further reduced from 100kHz to 1kHz and the resulting events
are stored on disk permanently. Since the size of an event is 1MB this translates
into 1GB/s of data stored permanently to disk. The case study considered in this
work is to improve the filtering at HLT level for a particular type of event with
the help of deep learning. In particular, we develop the classification described in
[Nguyen et al., 2019]. We studied how modern big data tools can help to perform
such analysis, starting from reading the data up to the training the classifier.

The dataset used to perform this analysis consists of 55 million simulated detector
and consequent trigger responses to three particular classes passing the same pre-
liminary selection in the filters chain inside HLT (e.g. requiring the presence in the
event of at least one electron with a certain energy): QCD, W + jets and tt̄. QCD
is the predominant class in all the events and ideally we would like to remove all
this kind of events at L1 trigger since they are the main background. However this
is the most frequent while the most interesting one, tt̄, is the less frequent: in this
dataset there is a tt̄ event every 100 QCD events. The other class is less frequent
than QCD but more frequent than tt̄. For this reason having a classifier capable of
having a good accuracy in the classification allows us to store only the events that
are interesting for further studies, thus avoiding to waste disk space with events
that will be discarded in the analysis. This is a key point since in the next upgrade
of CERN main accelerator, the Large Hadron Collider (LHC), the amount of data
produced will increase by one order of magnitude.

Now a brief description of the pipeline will be provided. The main computational
backend used is Apache Spark [Zaharia et al., 2016], which represents a promising
tool to extend traditional HEP analysis tools. Spark is one of the most popular
analytics engine for big data: thanks to its mature API and engine it allows us to

2https://cms.cern/detector

32

https://cms.cern/detector

perform data processing, explorative data analysis and machine learning on large
datasets via an efficient usage of cluster resources. The pipeline can be logically
divided in four steps.

Data Ingestion The dataset is stored in the storage system used at CERN for
physics data called CERN EOS. Furthermore data are stored in a common format
of HEP called ROOT. Hence, if we are interested in using standard big data tools
to perform the analysis, enabling these tools to understand physics data format and
reading from storage such as EOS it is of paramount importance. For this reason
two libraries enabling spark to read from EOS and to create dataframes from ROOT
files have been developed. The size of this dataset is of the order of 10TB. However,
while developing this libraries, tests of data processing at the scale of 1PB were
performed, proving that this system scales.

Feature Engineering In this step the ingested data are processed to compute
the quantities that will be used to train the models. Following the work described
in [Nguyen et al., 2019] two datasets have been produced and additional standard
filters to reduce the number of events have been used. In this way we end up work-
ing with around 5 million events instead of 50 million. Then two datasets are built:
the Low Level Features and High Level Features datasets. Each event of low level
feature dataset consists of the list of the 801 most energetic particles present in the
original event. To have an order, the particles in the list are sorted in terms of
increasing distance from a particular particle which is present in all of these events.
Each particle is described by 19 features indicating its position in the space, kine-
matics and type. Therefore each event can be viewed as a matrix with shape 801x19.
From the low level features a set of 14 high level features can be computed for each
event. These additional features are motivated by the physics of the process under
consideration. Such features, e.g. the angle between two particular particles or the
total energy of a specific subset of particles are known to be good discriminants
between the signal and background of this type of processes. At this step any kind
of classifier can be used, e.g. decision trees. However, a lot of domain knowledge
is necessary to build these features and an additional analysis is required. For this
reason it is interesting to see if the same results can be obtained starting from the
low level features, since this would avoid us the extra step of crafting the high level
features.

The resulting datasets have been split in train and test datasets and saved as parquet
files3, a common data format for big data, in the Hadoop distributed file system of
the cluster. At this stage, the size of the training dataset on disk is around 500GB.

3https://parquet.apache.org/

33

https://parquet.apache.org/

0 5 10 15 20 25 30 35 40
Number of Workers

0

5

10

15

20

25

30

35

40
Sp

ee
du

p
Ideal speedup
Grid earch speedup

(a)

0 2 4 6 8 10 12 14 16
Number of Workers

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

Ideal speedup
BigDL speedup

(b)

Figure 4.6: Measured speedup for: (a) grid search, (b) training using BigDL.

Parameter Tuning At this stage we performed a grid search on a subset of the
dataset to find the best model architecture, i.e. the one with the better tradeoff
between model size and accuracy. Model size and inference speed is an important
parameter since such model will be possibly run inside the HLT and therefore there
are time constraints it must satisfy. For the grid search spark has been used as a
scheduler, i.e. the master kept track of the map architecture-score and scheduled the
training on the workers. Since the training in every worker is independent from the
one in the others, the time required to complete the search scales with the number
of workers, as shown in figure 4.6(a).

Model Training To perform the distributed training different solutions have been
tested. First, thanks to a collaboration with intel, we trained the models using Intel
BigDL [Dai et al., 2019], a library built on top of Spark using spark primitives to
implement AR-SGD. This solution runs on CPU and uses Intel MKL to accelerate
the training on CPU. For this scaling test each worker had 16 cores and 16GB of
RAM. As shown in figure 4.6(b), BigDL seems to scale well in the regime tested.
However, also in this case the problems of synchronous SGD have been observed:
lot of time is spent waiting for slow workers. This effect had a bigger impact in our
test when other jobs where running in the cluster, since occasional node slowdowns
were frequent.
Tensorflow has also been used to perform distributed training, showing similar scal-
ing properties as BigDL. Tensorflow has also been used to perform the training using
up to 10 GPUs on Oracle cloud. Again, also in tensorflow AR-SGD is implemented
as distribution strategy.

Since BigDL is implemented on top of Spark it was possible to read the parquet

34

· · ·

p

x

...

φ

p

x

...

φ

p

x

...

φ

p1 p2 p801

· · ·

QCD

W + j

tt

Figure 4.7: Visual representation of the particle-sequence classifier. Each of the input particles
is described by 19 features such as momentum ~p and position ~x. The fixed-size encoding of the
last recurrent unit is fed into a fully connected layer with the role of classifier. The sequence of
particles has always the same order, i.e. p1 will always be the same type of particle and the others
are ordered with increasing distance from it.

files produced during the feature engineering step while for tensorflow an additional
step was required to convert the parquet into TFRecords. To train models using
the methods developed in this thesis, Petastorm4 was used. Petastorm is a tool
developed at Uber that allows one to read parquet files into common deep learning
frameworks such as Pytorch. This library allows to avoid the extra step of con-
verting parquet files into other formats such as HDF5. Later in this chapter the
results obtained from the training with the algorithms described in this thesis will
be presented.

4.3.2 Models
In this section we describe two models that have been trained on the two datasets;
The high level features and low level features datasets.

HLF classifier The High Level Features classifier (HLF) is a fully connected feed-
forward deep neural network taking as input the vector of 14 high level features.
More precisely it consists of three hidden layers with 50, 20 and 3 nodes. In each
hidden node ReLu activation is used, while softmax is used for the last three neurons.
This small model is capable of obtaining good performance thanks to the knowledge
used to craft the 14 high level features. Other type of classifiers have been tested,
such as boosted decision trees, and the performance were similar.

4https://github.com/uber/petastorm

35

https://github.com/uber/petastorm

0 5 10 15 20 25
Epoch

90.0

90.5

91.0

91.5

Te
st

 A
cc

ur
ac

y

AR-SGD
AD-PSGD + SloMo
SwarmSGD + SloMo

0 500 1000 1500 2000 2500
Time (s)

90.0

90.5

91.0

91.5

Te
st

 A
cc

ur
ac

y

AR-SGD
AD-PSGD + SloMo
SwarmSGD + SloMo

Figure 4.8: Validation accuracy of the High Level Features classifier plotted in function of number
of epochs and training time.

Particle-sequence classifier The particle sequence classifier is a recurrent neu-
ral network taking as input the 801 particles contained in each event. The output
of the recurrent network is fed into a fully connected layer with three softmax acti-
vated nodes. Gated Recurrent Units (GRU) have been used to aggregate the input
sequence of particles into a fixed size encoding. The internal width of the recurrent
layers is 50. The zero-padded entries in the particle list are skipped using a masking
layer before the recurrent network.

A visual representation of this network is shown in Figure 4.7. Each input particle
is composed by the 19 features describing its kinematics and type. These features
are produced directly by the detector, i.e. they are not manually crafted as the high
level features. In this sense, the recurrent network can be seen as a feature extractor
and the dense layer as a classifier.

4.3.3 Results
Both High Level Features and Particle-sequence classifiers have been trained using
Adam [Kingma and Ba, 2014] optimizer to compute the descent directions instead
of SGD, which led to better results. The training of the HLF classifier has been
performed on the entire dataset, whereas the particle-sequence classifier has been
trained only on a subset of 50k examples due to time and disk space constraints.

The convergence with respect to the number of epochs and wall time for the High
Level Feature classifier is shown in Figure 4.8. In this case the decentralized meth-
ods outperform AR-SGD both in terms of converge time and final accuracy. The
lower training time required to compute a fixed number of epochs (Figure 4.8) is

36

0 5 10 15 20 25 30
Epoch

89.5

90.0

90.5

91.0

91.5

Te
st

 A
cc

ur
ac

y

AD-PSGD
AD-PSGD + SloMo

Figure 4.9: Effect of SlowMo on AD-PSGD and SwarmSGD on HLF dataset.

expected, given the small model that we are training, therefore the impact of com-
munication time in this case is very high since synchronization happens frequently
with respect to computing time. Furthermore, the better final accuracy is mainly
due to SlowMo(Figure 4.9): Both methods without SlowMo would have slightly
worst performance with respect to AR-SGD. A numerical comparison is reported
is reported in Table 4.2.

Validation accuracy
Algorithm Baseline SlowMo SlowMo no avg.
AR-SGD 91.68% - -
AD-PSGD 91.50% 91.86% 91.83%
SwarmSGD 91.54% 91.88% 91.87%

Table 4.2: Comparison of the test accuracy for the High Level Features classifier. The column
baseline reports the accuracy of the algorithm, while SlowMo corresponds to the accuracy when
slow momentum is applied. SlowMo no average represents the case when the global average is
removed.

To have a comparison, the accuracy obtained in the work at CERN for this classi-
fier both in the sequential and distributed training using Tensorflow and BigDL is
similar to the one obtained with AR-SGD.

The convergence result for Particle-sequence classifier are presented in Figure 4.10.
In this case the speedup is less evident with respect to the previous case. The reason
for this is that the computing time is much bigger than the communication time, as
it happened for the training of ResNet on CIFAR10.

Furthermore, the addition of SlowMo is not as evident as in the case of the HLF

37

0 5 10 15 20 25 30
Epoch

55

60

65

70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y

AR-SGD
AD-PSGD + SloMo
SwarmSGD + SloMo

0 1000 2000 3000 4000 5000 6000
Time (s)

55

60

65

70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y

AR-SGD
AD-PSGD + SloMo
SwarmSGD + SloMo

Figure 4.10: Validation accuracy of the Particle-sequence classifier plotted in function of number
of epochs and training time.

0 5 10 15 20 25 30
Epoch

60

65

70

75

80

85

90

95

Te
st

 a
cc

ur
ac

y

SwarmSGD
SwarmSGD + SloMo

Figure 4.11: Effect of SlowMo on the training of the particle sequence classifier.

classifier. Indeed all the methods have more or less the same final accuracy on the
validation dataset. The main difference seems to be in the first epochs of the train-
ing, where the two decentralized methods seems to reach the final accuracy faster.
Again, this improvement is due to SlowMo, as shown in Figure 4.11. Without
momentum, the training accuracy for SwarmSGD and AD-PSGD would have the
same trend as in the case of AR-SGD. This initial “slow down” disappears if the
learning rate is increased. However, this would make the loss diverge in later stages
and to avoid this a careful tuning of the learning rate scheduling is required. With
the addition of slow momentum this effect has not been observed.

In the reduced version of the dataset all methods converge to the same final accuracy,
which is 94% (Table 4.3). If trained on the full dataset, this model will reach an
accuracy of 96%.

38

Validation accuracy
Algorithm Baseline SlowMo SlowMo no avg.
AR-SGD 94.06% - -
AD-PSGD 93.89% 94.11% 94.08%
SwarmSGD 93.97% 94.13% 94.02%

Table 4.3: Comparison of the test accuracy for the Low Level Features classifier. The column
baseline reports the accuracy of the algorithm while SlowMo the accuracy when slow momentum
is applied. SlowMo no average represents the case when the global average is removed.

It is reasonable to think that the validation loss is saturating at that value due to the
lack of training examples. If this is the case, methods with SlowMo are reaching
the “final accuracy” faster than SGD. For this reason, if trained on the full dataset
they could lead to better results faster, as happened for HLF classifier.

39

40

Chapter 5

Conclusions

In this thesis we studied some of the algorithms available in the distributed op-
timization landscape, with a focus on deep learning. We started in Chapter 2 by
introducing the standard way of parallelizing stochastic gradient descent while high-
lighting its current limitations. In particular, synchronous parallel SGD has two
main problems: the accuracy degradation observed when training with large mini-
batches, i.e. large number of workers, and the communication inefficiency on slow
or busy networks.
Starting from this, decentralized methods have been introduced since they are com-
munication efficient and are not affected by large batch problems. We studied two
novel algorithms with promising performance, SwarmSGD and AD-PSGD and
compared them with standard SGD. We showed that they are capable of recovering
SGD accuracy while being faster. Furthermore, since they involve communications
only between pairs of node, these methods present a good scalability.

In Chapter 3 a method inspired by the idea of momentum, SlowMo, is introduced.
This algorithm allows to improve the performance of a base optimizer, which in our
case is one of the two decentralized methods mentioned before. In SlowMo a pe-
riodic global synchronization is required. However, starting from the idea presented
in the paper introducing slow momentum, we removed the average and observed
that the performance were similar. This further validates the idea that the periodic
global average is not required. The reason for this could be due to the fact that
workers reach the consensus fast and the models are all close to their mean.

In Chapter 4 the performance of the algorithms in standard benchmarks are pre-
sented. Then, an extension of a work performed in high energy physics has been
presented. In all the benchmarks, the decentralized algorithms combined with mo-
mentum obtain better or equivalent scores as standard parallel SGD, while converg-
ing faster is terms of wall time.

41

Therefore, in the tests performed in this thesis we observed that is possible to recover
SGD performance in the distributed case while being robust to an heterogeneous
environment. Moreover, slow momentum increased the final accuracy in all the
benchmarks.

Future works include a better understanding of the momentum for distributed op-
timizer and proving that for SlowMo the periodic average is not required to get
the convergence of the method. Moreover, new tests can be performed using other
datasets, models and base optimizers, to reinforce the claim that it is consistently
improving the performance. The communication can be further improved by using
compressed communication schemes, where model update communicated between
workers are compressed, e.g. quantized or sparsified [Koloskova et al., 2019].

42

43

List of Figures

1.1 Example of model parallelism (a) and data parallelism (b): in the for-
mer the model is divided into four parts distributed on four different
machines, in the later the same model is replicated in four different
machines. 2

2.1 Strategies for worker synchronization in parallel SGD: (a) Parameter
server strategy for centralized-parallel SGD(C-PSGD), (b) Gradient
aggregation based on a Ring-AllReduce operation (AR-SGD). . . 8

4.1 Distribution of the total communication time and wall-time per epoch.
The times are measured by iterating 300 times over MNIST dataset
using 16 workers. 27

4.2 (a): Measured speedup. (b): Average time per batch. 28
4.3 Effect of SlowMo on AD-PSGD and SwarmSGD on MNIST

dataset. 29
4.4 Convergence with respect to number of epochs and wall time on

MNIST for fixed number of workers. 30
4.5 Convergence of ResNet-20 on CIFAR-10 with respect to the number

of epochs. 30
4.6 Measured speedup for: (a) grid search, (b) training using BigDL. . . . 34
4.7 Visual representation of the particle-sequence classifier. Each of the

input particles is described by 19 features such as momentum ~p and
position ~x. The fixed-size encoding of the last recurrent unit is fed
into a fully connected layer with the role of classifier. The sequence
of particles has always the same order, i.e. p1 will always be the same
type of particle and the others are ordered with increasing distance
from it. 35

4.8 Validation accuracy of the High Level Features classifier plotted in
function of number of epochs and training time. 36

4.9 Effect of SlowMo on AD-PSGD and SwarmSGD on HLF dataset. 37
4.10 Validation accuracy of the Particle-sequence classifier plotted in func-

tion of number of epochs and training time. 38

44

4.11 Effect of SlowMo on the training of the particle sequence classifier. 38

45

List of Tables

4.1 Comparison of the test accuracy for the ResNet-20 on CIFAR10.
The column baseline reports the accuracy of the algorithm while
SlowMO the accuracy when slow momentum is applied. SlowMo
no average represent the case when the global average is removed. . . 31

4.2 Comparison of the test accuracy for the High Level Features clas-
sifier. The column baseline reports the accuracy of the algorithm,
while SlowMo corresponds to the accuracy when slow momentum
is applied. SlowMo no average represents the case when the global
average is removed. 37

4.3 Comparison of the test accuracy for the Low Level Features classi-
fier. The column baseline reports the accuracy of the algorithm while
SlowMo the accuracy when slow momentum is applied. SlowMo
no average represents the case when the global average is removed. . . 39

46

Bibliography

[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow:
A system for large-scale machine learning. In 12th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), pages 265–283.

[Andreetto et al., 2019] Andreetto, P., Chiarello, F., Costa, F., Crescente, A., Fan-
tinel, S., Fanzago, F., Konomi, E., Mazzon, P., Menguzzato, M., Segatta, M.,
Sella, G., Sgaravatto, M., Traldi, S., Verlato, M., and Zangrando, L. (2019).
Merging openstack-based private clouds: the case of cloudveneto.it. EPJ Web of
Conferences, 214:07010.

[Apollinari et al., 2015] Apollinari, G., Béjar Alonso, I., Brüning, O., Lamont, M.,
and Rossi, L. (2015). High-luminosity large hadron collider (hl-lhc): Prelimi-
nary design report. Technical report, Fermi National Accelerator Lab.(FNAL),
Batavia, IL (United States).

[Assran et al., 2018] Assran, M., Loizou, N., Ballas, N., and Rabbat, M. (2018).
Stochastic gradient push for distributed deep learning. arXiv preprint
arXiv:1811.10792.

[Assran and Rabbat, 2020] Assran, M. and Rabbat, M. (2020). Asynchronous
gradient-push. IEEE Transactions on Automatic Control.

[Chen and Huo, 2016] Chen, K. and Huo, Q. (2016). Scalable training of deep learn-
ing machines by incremental block training with intra-block parallel optimization
and blockwise model-update filtering. In 2016 ieee international conference on
acoustics, speech and signal processing (icassp), pages 5880–5884. IEEE.

[Cireşan et al., 2010] Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmid-
huber, J. (2010). Deep, big, simple neural nets for handwritten digit recognition.
Neural computation, 22(12):3207–3220.

[Dai et al., 2019] Dai, J. J., Wang, Y., Qiu, X., Ding, D., Zhang, Y., Wang, Y.,
Jia, X., Zhang, C. L., Wan, Y., Li, Z., et al. (2019). Bigdl: A distributed deep

47

learning framework for big data. In Proceedings of the ACM Symposium on Cloud
Computing, pages 50–60.

[Dean et al., 2012] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao,
M., Ranzato, M., Senior, A., Tucker, P., Yang, K., et al. (2012). Large scale
distributed deep networks. In Advances in neural information processing systems,
pages 1223–1231.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018).
Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

[Gabriel et al., 2004a] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra,
J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Cas-
tain, R. H., Daniel, D. J., Graham, R. L., and Woodall, T. S. (2004a). Open MPI:
Goals, concept, and design of a next generation MPI implementation. In Proceed-
ings, 11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest,
Hungary.

[Gabriel et al., 2004b] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra,
J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Cas-
tain, R. H., Daniel, D. J., Graham, R. L., and Woodall, T. S. (2004b). Open MPI:
Goals, concept, and design of a next generation MPI implementation. In Proceed-
ings, 11th European PVM/MPI Users’ Group Meeting, pages 97–104, Budapest,
Hungary.

[Ghadimi and Lan, 2013] Ghadimi, S. and Lan, G. (2013). Stochastic first-and
zeroth-order methods for nonconvex stochastic programming. SIAM Journal on
Optimization, 23(4):2341–2368.

[Ghadimi et al., 2016] Ghadimi, S., Lan, G., and Zhang, H. (2016). Mini-batch
stochastic approximation methods for nonconvex stochastic composite optimiza-
tion. Mathematical Programming, 155(1-2):267–305.

[Gibiansky., 2017] Gibiansky., A. (2017). Bringing HPC Techniques to Deep Learn-
ing.

[Goyal et al., 2017] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski,
L., Kyrola, A., Tulloch, A., Jia, Y., and He, K. (2017). Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778.

48

[Keskar et al., 2016] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and
Tang, P. T. P. (2016). On large-batch training for deep learning: Generalization
gap and sharp minima. arXiv preprint arXiv:1609.04836.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

[Koloskova et al., 2019] Koloskova, A., Stich, S. U., and Jaggi, M. (2019). Decen-
tralized stochastic optimization and gossip algorithms with compressed commu-
nication. arXiv preprint arXiv:1902.00340.

[Krizhevsky, 2009] Krizhevsky, A. (2009). Learning multiple layers of features from
tiny images. Technical report.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural networks. In Advances in
neural information processing systems, pages 1097–1105.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324.

[LeCun and Cortes, 2010] LeCun, Y. and Cortes, C. (2010). MNIST handwritten
digit database.

[Lian et al., 2015] Lian, X., Huang, Y., Li, Y., and Liu, J. (2015). Asynchronous
parallel stochastic gradient for nonconvex optimization. In Advances in Neural
Information Processing Systems, pages 2737–2745.

[Lian et al., 2017a] Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and
Liu, J. (2017a). Can decentralized algorithms outperform centralized algorithms?
a case study for decentralized parallel stochastic gradient descent. In Advances
in Neural Information Processing Systems, pages 5330–5340.

[Lian et al., 2017b] Lian, X., Zhang, W., Zhang, C., and Liu, J. (2017b). Asyn-
chronous decentralized parallel stochastic gradient descent. arXiv preprint
arXiv:1710.06952.

[Lin et al., 2018] Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. (2018). Don’t
use large mini-batches, use local sgd. arXiv preprint arXiv:1808.07217.

[Migliorini et al., 2019] Migliorini, M., Castellotti, R., Canali, L., and Zanetti, M.
(2019). Machine learning pipelines with modern big datatools for high energy
physics. arXiv preprint arXiv:1909.10389.

49

[Nadiradze et al., 2019] Nadiradze, G., Sabour, A., Alistarh, D., Sharma, A.,
Markov, I., and Aksenov, V. (2019). SwarmSGD: Scalable Decentralized SGD
with Local Updates. arXiv e-prints, page arXiv:1910.12308.

[Nguyen et al., 2019] Nguyen, T. Q., Weitekamp, D., Anderson, D., Castello, R.,
Cerri, O., Pierini, M., Spiropulu, M., and Vlimant, J.-R. (2019). Topology classi-
fication with deep learning to improve real-time event selection at the lhc. Com-
puting and Software for Big Science, 3(1):12.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A.,
Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style,
high-performance deep learning library. In Wallach, H., Larochelle, H., Beygelz-
imer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

[Patarasuk and Yuan, 2009] Patarasuk, P. and Yuan, X. (2009). Bandwidth opti-
mal all-reduce algorithms for clusters of workstations. Journal of Parallel and
Distributed Computing, 69(2):117–124.

[Seide and Agarwal, 2016] Seide, F. and Agarwal, A. (2016). Cntk: Microsoft’s
open-source deep-learning toolkit. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 2135–
2135.

[Sergeev and Del Balso, 2018] Sergeev, A. and Del Balso, M. (2018). Horovod: fast
and easy distributed deep learning in tensorflow. arXiv preprint arXiv:1802.05799.

[Sun et al., 2017] Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Re-
visiting unreasonable effectiveness of data in deep learning era. In The IEEE
International Conference on Computer Vision (ICCV).

[Sutskever et al., 2013] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013).
On the importance of initialization and momentum in deep learning. In Interna-
tional conference on machine learning, pages 1139–1147.

[Wang and Joshi, 2018] Wang, J. and Joshi, G. (2018). Adaptive communication
strategies to achieve the best error-runtime trade-off in local-update sgd. arXiv
preprint arXiv:1810.08313.

[Wang et al., 2019] Wang, J., Tantia, V., Ballas, N., and Rabbat, M. (2019).
Slowmo: Improving communication-efficient distributed sgd with slow momen-
tum. arXiv preprint arXiv:1910.00643.

50

[Zaharia et al., 2016] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M.,
Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M. J., Ghodsi, A.,
Gonzalez, J., Shenker, S., and Stoica, I. (2016). Apache spark: A unified engine
for big data processing. Commun. ACM, 59(11):56–65.

[Zhang et al., 2019] Zhang, M., Lucas, J., Ba, J., and Hinton, G. E. (2019). Looka-
head optimizer: k steps forward, 1 step back. In Advances in Neural Information
Processing Systems, pages 9593–9604.

51

	Introduction
	Problem definition
	Aim of the work

	State-of-the-art algorithms
	Parallel SGD
	Parallel Decentralized SGD
	Swarm SGD

	Momentum in distributed SGD
	Convergence of SlowMo
	Removing the average

	Applications
	Implementation
	Standard Benchmark
	Scalability
	Convergence

	High Energy Physics
	Problem description
	Models
	Results

	Conclusions

