
Università degli Studi di Padova

Department of Information Engineering

Master Degree in Computer Engineering

Identifying tumor clones
with

noisy itemset mining

Supervisor Candidate

Fabio Vandin Samuele Benfatti

Università degli Studi di Padova

Co-supervisor

Leonardo Pellegrina

Università degli Studi di Padova

Academic year 2021-2022

Ad Anna

III

Abstract

Sequencing the genome of single cells allows for a better understanding

of cellular populations, and provides interesting insights over the compo-

sition and phylogeny of tumor samples. Unfortunately, single-cell sequen-

cing technologies present some challenges; in particular, they often suffer

from high sparsity and low signal-to-noise ratio of their output. This pro-

blem is particularly pronounced when single-nucleotide variations (SNVs)

are considered, due to the high probability of false negatives.

In this work we propose a novel approach based on noisy itemset mining

that allows the recovery of the clonal composition of a tumor from SNV

single-cell data. An extensive theoretical foundation is presented to justi-

fy the chosen framework, and to highlight the relationship between noisy

itemsets and clones with their mutations. This allows the development of a

proper score, which in expectation is provably capable of distinguishing bet-

ween correct clones and random groups of cells. Such score is then improved

thanks to theoretical and practical considerations, and serves as basis for

three different algorithms.

A comprehensive experimental section completes this work, where the

efficiency, the scalability and the accuracy of the proposed techniques are

evaluated on synthetic datasets and compared with a state-of-the-art algori-

thm. In the end, some tests are performed on synthetic data generated using

realistic parameters derived from actual sequencing data; in such conditions,

the proposed approach proved to outperform the state-of-the-art.

IV

Sommario

Il sequenziamento del genoma di singole cellule permette una migliore com-

prensione delle popolazioni di cellule, e fornisce informazioni interessanti

sulla composizione e la filogenesi di campioni tumorali. Purtroppo, le tec-

nologie di sequenziamento a singola cellula presentano alcune sfide; in par-

ticolare, spesso i risultati sono affetti da un’elevata sparsità e da un basso

rapporto segnale-rumore. Questo problema è particolarmente pronunciato

quando vengono considerate le varianti a singolo nucleotide (SNV), a causa

dell’alta probabilità di registrare falsi negativi.

In questo lavoro proponiamo un nuovo approccio basato sul noisy itemset

mining che permette la ricostruzione della composizione clonale di un tumo-

re a partire da sequenze di SNV da singole cellule. Presenteremo un’ampia

fondazione teorica per giustificare il framework scelto, nonché per eviden-

ziare la relazione tra noisy itemset e cloni. Ciò permette lo sviluppo di

un’adeguata funzione obiettivo, la quale dimostrabilmente permette di di-

stinguere in aspettazione tra cloni corretti e gruppi casuali di cellule. Tale

funzione è poi migliorata grazie a considerazioni teoriche e pratiche, e serve

da base per la definizione di tre differenti algoritmi.

Un’estesa sezione sperimentale completa il lavoro; qui l’efficienza, la sca-

labilità e l’accuratezza delle tecniche proposte sono valutate su dati sinte-

tici, e confrontate con un algoritmo allo stato dell’arte. Per concludere,

effettueremo alcune prove su dati sintetici generati a partire da parametri

realistici derivati da effettivi dati di sequenziamento; in queste condizioni,

gli algoritmi proposti hanno dimostrato di superare lo stato dell’arte.

Contents

1 Introduction 1

1.1 Introduction to the task . 1

1.2 Data model and SBMClone 2

1.3 Related work . 4

1.4 Thesis outline . 5

2 Itemset mining and clones reconstruction 7

2.1 Noisy Frequent Itemsets Mining 7

2.2 Reconstruction of clones and mutations 8

3 Previous works 15

3.1 Error-Tolerant Itemset (ETI) 15

3.2 Approximate Frequent Itemset (AFI) 18

3.3 Analysis by Sun and Nobel 19

3.4 AC-Close . 20

3.5 HANCIM . 21

3.6 General considerations . 22

4 Proposed algorithms 25

4.1 Density of an itemset . 25

4.1.1 Basic definition and its properties 26

4.1.2 Weighted density . 35

4.1.3 Adjusted density . 36

4.2 Algorithms to optimize density 37

4.2.1 Naive algorithm . 37

4.2.2 Weighted algorithm 39

4.2.3 Sampling algorithm 41

4.3 Time complexity and improvements 43

4.4 Sampling efficiency . 48

V

VI CONTENTS

5 Experimental Evaluation 51

5.1 Varying the overlap . 53

5.2 Varying the number of cells 55

5.2.1 Dendrograms and distribution of the errors 57

5.3 Varying the number of mutations 59

5.4 Varying the number of both cells and mutations 61

5.5 Varying the mutation tree 62

5.6 Testing sampling efficiency 65

5.7 Statistical and computational barriers 67

5.8 Testing realistic parameters 69

6 Conclusions 71

Bibliography 73

A Detailed experimental results 77

A.1 Overlap . 77

A.2 Number of cells . 88

A.3 Number of mutations . 99

A.4 Number of both cells and mutations 110

A.5 Mutation trees . 121

A.5.1 Large number of cells 121

A.5.2 Medium number of cells 129

A.5.3 Small number of cells 137

A.6 Sampling efficiency . 145

A.7 Realistic parameters . 146

List of Figures

1.1 Example generation of an input matrix 3

2.1 Example of basic mutation tree 9

2.2 Example of more complex mutation tree 11

4.1 Bounds on the expected density 49

5.1 Basic clone tree . 52

5.2 ARI vs. fraction of overlap. 53

5.3 Runtime vs. fraction of overlap. 54

5.4 ARI vs. number of cells. 55

5.5 Runtime vs. number of cells. 56

5.6 Dendrogram from the weighted algorithm 57

5.7 Dendrogram from the adjusted algorithm 57

5.8 Cumulative errors vs. number of iterations. 58

5.9 ARI vs. number of mutations. 59

5.10 Runtime vs. number of mutations. 60

5.11 ARI vs. number of both cells and mutations. 61

5.12 Runtime vs. number of both cells and mutations. 62

5.13 Complex mutation trees . 63

5.14 ARI vs. p̄, large number of cells 63

5.15 ARI vs. p̄, medium number of cells 64

5.16 ARI vs. p̄, small number of cells 64

5.17 Estimated expectation vs. sample size (detail) 65

5.18 Estimated expectation vs. sample size 65

5.19 Estimated expectation vs. sample size, varying p 66

5.20 ARI and runtime vs. sample size 67

5.21 Correct density, estimated density and ARI 68

5.22 ARI vs. p̄, realistic parameters. 69

5.23 Runtime vs. p̄, realistic parameters. 70

VII

Chapter 1

Introduction

In this Chapter we introduce the task of interest and the underlying data

model, along with the necessary notation. In particular, Section 1.1 de-

scribes and motivates the considered task; Section 1.2 introduced the model,

along with a brief description of a state-of-the-art algorithm, while Section

1.3 provides an overview over related works. Finally, Section 1.4 presents

the outline of this work.

1.1 Introduction to the task

In recent years the interest for single-cell DNA sequencing technologies has

grown considerably [1]. Such technologies typically offer low sequencing

coverage; hence, this induced an increasing need for new algorithms capable

of overcoming the high sparsity and low signal to noise ratio of input data.

An example application of single-cell sequencing is the study of the clonal

composition of tumor samples: suppose that we have sequencedm cells, and

n mutations were identified; then, we are interested in partitioning the m

cells into groups (clones) such that all cells in the same clone share the same

mutations. If the mutations we are considering involve a large number of

bases, such as with copy-number aberrations (CNAs), then it is reasonable

to assume that, despite having low coverage, a mutation will nearly always

be detected if present; the task of identifying the clonal composition of the

sample is then almost as easy as grouping together all cells with the same

mutations, as per task definition.

The problem is quite different if we consider single-nucleotide variations

(SNVs) instead: in this case, due to the low coverage of available technolo-

gies, several mutations can get unnoticed even when present. The conse-

1

2 CHAPTER 1. INTRODUCTION

quence is that we can recover all (or most) of the mutations in a cell only

by merging data from the cells in the same clone; at the same time, how-

ever, it is very difficult to correctly identify the real clones, since checking

for shared mutations requires the knowledge of the mutation profile of the

considered cells, in a vicious circle.

1.2 Data model and SBMClone

A state of the art algorithm to address the second problem presented in

Section 1.1 is SBMClone, proposed by Myers, Zaccaria, and Raphael [2]. To

better understand it, we first need to consider the underlying data model:

suppose that the sequencing data is represented through an m×n mutation

matrix D = [dij]. For each entry, we have that dij = 1 if mutation j was

detected in cell i, and dij = ? otherwise.

This reflects the fact that, ideally, if a sequencing read contains a given

mutation then we can assume that the probability of the cell actually con-

taining such mutation is reasonably high, being limited only by the prob-

ability of having a sequencing error. In other words, the probability of

having a false positive is relatively low; therefore, we can insert a one in the

corresponding entry of the matrix.

Conversely, if we don’t find the given mutation we cannot be sure that

the mutation is actually not present; for example the mutation may only

be present in one of the two copies of the diploid regions of human genome,

and we may have covered only the other one. Such uncertainty should be

represented by inserting a “?” in the matrix; in practice, for ease of notation

a zero can be used instead. This is perfectly equivalent, as long as we recall

that the actual meaning of the symbol is not the absence of a mutation, but

the absence of knowledge about such mutation.

Our task is then equivalent to finding a partition of D into blocks such

that each block as either an high or a low proportion of ones; in the first

case, the rows of the block represent a clone, while the columns represent

its mutations; in the second case we instead know that the considered group

of mutations is not present in the current cells.

Such structure is modelled in SBMClone via a stochastic block model

(SBM). SBMs are generative models; broadly speaking, suppose we have a

set S of items and a relation R over a subset of S×S. The items of interest

are divided into disjoint subsets S1, S2, . . . , Sk; each pair (Si, Sj) is a block.

1.2. DATA MODEL AND SBMCLONE 3

(A) (B) (C)

Figure 1.1: (A) a small mutation matrix without noise. Two clones (on

the rows) and three clusters of mutations (on the columns) are present, for

a total of 6 blocks. (B) the same matrix after applying destructive noise.

(C) in real-world data the underlying structure is hidden: mutations and

cells are not sorted in a meaningful way.

Then, a symmetric k × k matrix of probabilities P = [pij] is defined over

the blocks; each entry pij represents the chance that (a, b) ∈ R for any two

elements a, b such that a ∈ Si and b ∈ Sj.

In the considered case, each block is composed of a clone and a set of

mutations; hence, the probability of correctly identifying the presence or

absence of a certain mutation in a cell is the one associated to the corre-

sponding block. Therefore, D can be obtained by sampling from the ground

truth X according to the distribution we just defined, where X = [xij] is a

binary matrix that represents all clones and groups of mutations before the

introduction of noise. In other words, all mutations of each cell are correctly

marked as present with a one, and all mutations not present in each cell are

correctly marked as absent with a zero; see Figure 1.1 (A).

In particular, slightly changing the notation from [2], we correctly read

a one with probability 1 − p > 0 if the considered cell contains the given

mutation (i. e., if xij = 1); if instead cell i does not contain mutation j (i. e.,

if xij = 0) we correctly read a zero with probability 1−q. In practice, q = 0

is imposed; this is consistent with the assumption of having a negligible

fraction of false positives, as previously described. For p = 0.995, which is

a value typically used in [2], this could result in something like Figure 1.1

(B). Notice however that we do not know the underlying block structure

of our data, since it is exactly what we are trying to reconstruct; hence,

real-life data would appear more “scrambled”, like in Figure 1.1 (C).

Once the described data model is fixed, a good partitioning of cells and

mutations can be recovered from D through an SBM inference algorithm,

4 CHAPTER 1. INTRODUCTION

whose goal is to find the block matrix and the block probabilities that most

likely generated our input matrix. This is exactly the approach followed by

SBMClone; in particular, it uses the algorithm described in [3, 4]. Notice

however that such algorithm works for general, per-block probabilities. On

the other hand, in our case we are imposing the assumption that the only

parameter is p, describing the probability of having a wrong read whenever

a given clone contains a certain set of mutations; all other blocks are as-

sumed to contain only zeros. Can we exploit such structure to reach better

reconstruction capabilities?

1.3 Related work

As mentioned in Section 1.1, the interest for single-cell DNA sequencing

technologies is continuously growing; this reflects on a quite large literature

production on the subject. Several studies focus on the applications of such

technologies; in particular, there is an active research trying to reconstruct

the evolution of tumors and cancers by analyzing the clonal composition of

cellular samples [5, 6, 7, 8].

The available algorithms to reconstruct such clones follow a wide variety

of different approaches. From an high level point of view, they can roughly

be divided into two categories: the ones focusing on single nucleotide varia-

tions and the ones focusing on copy number aberrations; some examples of

the latter category are [9], [10] and [11].

However, there are also some algorithms where both kind of mutations

are explicitly considered, so as to take advantage of the peculiarities of both

of them; for example, see [12] and [13]. Another interesting variation over

the basic approach can be found in [14], where single-cell sequencing data

is integrated with bulk sequencing data.

As for single nucleotide variations, the most common approach involves

the application of various flavours of Bayesian inference through Markov

Chain Monte Carlo (MCMC) methods; some examples include [15], [16],

[17], [18], [19] and SBMClone itself [2].

Other types of probabilistic approaches explored in the literature include

max-likelihood [20], expectation-maximization [21], mean-field variational

inference on mixture models [22] and simulated annealing [23].

Several works impose a specific evolutionary model to simplify the prob-

lem; for example, [24], [23] and [25] utilize the Dollo-k parsimony model,

where each mutation can be gained only once and lost at most k times.

1.4. THESIS OUTLINE 5

Finally, yet another different option consists in performing principal

component analysis of the mutation matrix, which is then followed by either

Louvain–Jaccard clustering [26] or k-means clustering [27].

To the best of our knowledge, no algorithm described in literature ex-

ploits noisy itemset mining to retrieve the clonal composition of single-cell

mutation data.

1.4 Thesis outline

The remaining part of this work is organized as follows. First, the pro-

posed model based on noisy itemset mining will be presented in Chapter 2;

the relevant notation will be introduced, followed by some proofs that will

highlight the relationship between clones, mutation clusters and itemsets.

Chapter 3 contains some interesting previous works about noisy frequent

itemset mining. The need of an ad hoc solution will emerge; as such, we will

dedicate the first Section of Chapter 4 to the development of a score that

provably allows the distinction between correct clones and random groups

of cells in expectation. The remaining part of the same Chapter presents

two improved versions of the basic score, as well as the derivation of three

clustering algorithms based on the developed theory.

Chapter 5 contains extensive experiments on synthetic datasets, evalu-

ating the effect of varying the number of cells, the number of mutations,

the false negative probability and the mutation tree. In particular, realistic

parameters inspired by the actual sequencing data from [5] will be consid-

ered in Section 5.8; in such conditions, the proposed approach proved to

outperform SBMClone. Finally, some concluding remarks are presented in

Chapter 6.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Itemset mining and clones

reconstruction

In this Chapter we introduce Itemset Mining and its variants, along with

the relationship between itemset and clones. In particular, noisy frequent

itemsets and their notation are introduced in Section 2.1, while the recon-

struction of the clonal composition from noisy itemsets is formally derived

in Section 2.2.

2.1 Noisy Frequent Itemsets Mining

In the previous Chapter we highlighted the kind of structure that is present

in the data of interest; to fully exploit such structure frequent itemset mining

is a particularly suited tool. We will hence introduce the basic formalism,

and then proceed to adapt such framework to the considered problem.

Let us then start from the standard definition of frequent itemsets min-

ing: we have a set of transactions C = {c1, c2, . . . , cm} and a set of items

V = {v1, v2, . . . , vn}, whose relation is represented through an m×n binary

matrix D = [dij]. We have that dij = 1 if transaction i contains the item j,

and dij = 0 otherwise. An itemset x is defined as a subset of V ; we say that

a transaction ci supports x if dij = 1 ∀j ∈ x. Then, we say that an itemset

is frequent if the fraction of all transactions that support it is greater or

equal to a threshold min sup > 0. The goal of frequent itemsets mining is

to retrieve all frequent itemsets, possibly along with their support.

This model can be adapted to represent mutation data: D exactly cor-

responds to the mutation matrix of the same name defined in Section 1.2, C

is the set of sequenced cells and V is the set of single-nucleotide variations

(or, more in general, mutations) we found.

7

8 CHAPTER 2. ITEMSET MINING AND CLONES

To complete the adaptation of our input data to the frequent itemset

mining framework, all is left to do is to consider noise. Let us then formally

introduce the following definition.

Definition 2.1.1 (Destructive noise). Let D be a mutation matrix. D is

affected by destructive noise if each entry with value one is independently

turned into a zero with a certain probability p < 1, where p is the strength

of the noise.

Then, if our matrix D is affected by destructive noise, noisy frequent

itemset mining is the task of recovering all the itemsets that would be fre-

quent if no noise was present. Notice that this task is considerably more

difficult than simply mining frequent itemsets from noiseless data. We will

explore in the next Section all the consequences that this increased com-

plexity has on the recoverability of the correct clonal composition.

2.2 Reconstruction of clones and mutations

We already adapted our input data to the frequent itemset model; what we

need to do now is to adapt the output. This first requires us to formally

define what exactly are we looking for. We have already seen that our goal is

to partition our set of cells C into disjoint clones C = {C1, C2, . . . , Ch}, such
that all cells inside a clone share all their mutations, and for any two cells

from different clones there is at least a mutation in a cell that is not present

in the other one. Similarly, we also want to partition the set of mutations V

into disjoint subsets V = {V1, V2, . . . , Vk}, such that each subset Vj contains

all mutations that are exclusive to a certain set of clones, and only those

mutations.

To better understand this, let us consider as an example the mutation

matrix in Figure 2.1. The two clones we want to recover are clearly C1 and

C2; as for the mutations, we want to retrieve V1 and V2, where V2 contains

all mutations exclusive to {C2} and V1 contains all mutations exclusive to

{C1, C2}. Obviously V1∩V2 = ∅ and, since there are no mutations exclusive

to {C1}, V1 ∪ V2 = V .

Let us ignore noise for the moment. We would like each clone to support

an itemset containing the clone’s mutations, while at the same time we

would like each itemset to correspond to a different clone. In practice this

is not trivial: the problem we face is that every subset of a frequent itemset

2.2. RECONSTRUCTION OF CLONES AND MUTATIONS 9

Figure 2.1: (A) A basic clone tree and (B) its corresponding mutation

matrix.

must be a frequent itemset itself, and would hence be returned in output

by a generic mining algorithm. In our setup this is not desirable, since we

are only interested in a specific subset of all possible frequent itemsets.

We could then be tempted to look only for maximal frequent itemsets,

i. e. frequent itemsets that are not included in any frequent superset. But

then, returning to our example, we would only find V1 ∪ V2 = V , supported

by C2. This strategy is too much restrictive, and hence does not work in

general.

A slightly better option is to consider frequent closed itemsets, i. e. fre-

quent itemsets that are not included in any frequent superset having the

same support. Returning to our example, this way we can easily find V1,

supported by C1∪C2. This is actually a step in the right direction, allowing

us to prove the following results:

Proposition 2.2.1. Assume no noise is present in D. Then, for a proper

choice of min sup each clone Ci ⊆ C supports a uniquely defined closed

frequent itemset.

Proof. Let C∗ be the clone with the fewest cells. Let us choose a value for

min sup such that
|C∗|
m
≥ min sup > 0.

Notice that by construction it holds true that for any clone Ci

|Ci|
m
≥ |C

∗|
m
≥ min sup > 0.

By definition, all cells included in Ci share precisely the same set of muta-

tions; let x be such set. It is then easy to verify that by construction each

cell in Ci supports all and only the items in x; this means that the fraction

10 CHAPTER 2. ITEMSET MINING AND CLONES

of transactions that support x is indeed greater or equal to min sup, thus

making x a frequent itemset.

We can then notice that x must indeed be a closed itemset, since the

cells in Ci cannot support any additional mutation; this also means that we

cannot expand x in any way. Symmetrically, removing any mutation from

x would make it not closed; therefore, x is uniquely defined.

Proposition 2.2.2. Let no noise be present in D. Let x ⊆ V be a closed

frequent itemset supported by Cx ⊆ C. Then, there is a set of cells C∗
x that

corresponds to a (possibly empty) clone.

Proof. Given a closed frequent itemset x ⊆ V , the set of transactions sup-

porting it is uniquely defined as

Cx
def
= {ci ∈ C s.t. dij = 1 ∀j ∈ x}.

Such set must be non-empty, since for x to be frequent there must be at

least a transaction supporting it. By construction, Cx contains all and only

the cells with all the mutations vj ∈ x. We can then define the subset of

all the cells C∗
x ⊆ Cx that contain only such mutations. Notice that it may

happen that such subset is empty. In any case, all cells in C∗
x share exactly

the same set of mutations; as such, they correspond to a (possibly empty)

clone.

In other words, if each block of mutations that appeared during the

tumor evolution actually corresponds to a specific group of cells, then we can

identify a one-to-one correspondence between closed frequent itemsets and

clones. Unfortunately, it is quite clear that this is too strict a requirement;

to show why we just need to refer to the example from Figure 2.2.

This time, four closed frequent itemsets can be identified: V1 (supported

by C1∪C2∪C3), V1∪V2∪V3 (supported by C2), V1∪V2∪V4 (supported by

C3) and V1∪V2 (supported by C2∪C3). While each of the first three itemsets

corresponds to the set of all mutations of a different clone (respectively C1,

C2 and C3) the fourth one does not correspond to any clone. This is due

to the fact that the node that in Figure 2.2 (A) corresponds to the child of

C1 does not actually contain any cell. Notice that this is actually a quite

important scenario in practice: for example, it corresponds to the situation

in which a treatment lead to the extinction of a specific tumor clone, but

the artificial selective pressure introduced by the treatment itself induced

the appearance of one or more new therapeutically resistant clones.

2.2. RECONSTRUCTION OF CLONES AND MUTATIONS 11

Figure 2.2: (A) A more complex clone tree and (B) its corresponding

mutation matrix.

To actually find a nice and robust correspondence between itemsets and

clones, we need to introduce a new type of frequent itemset:

Definition 2.2.1 (Exact support). A transaction ci ∈ C exactly supports

the itemset x ⊆ V if dij = 1 ∀j ∈ x ∧ dij = 0 ∀j /∈ x.

Definition 2.2.2 (Exact frequent itemset). An itemset x ⊆ V is an exact

frequent itemset if the fraction of all transactions that exactly support it is

greater than a threshold min sup > 0.

Notice how according to this definition all frequent exact itemsets are

closed itemsets: if a transaction exactly supports an itemset, it cannot

support any bigger itemset at the same time. Conversely, not all closed

itemsets are exact: in the example from Figure 2.2, V1 ∪ V2 is closed but

not exact. This means that exact itemsets are indeed more restrictive; we

can then actually prove that a one-to-one correspondence between frequent

exact itemsets and clones holds in general:

Proposition 2.2.3. Assume no noise is present in D. Then, for a proper

choice of min sup each clone Ci ⊆ C supports a uniquely defined exact

frequent itemset.

Proof. Trivially, we can adapt the proof of Proposition 2.2.1 by noticing

that the cells in Ci are actually exactly supporting x; as such, the resulting

itemsets are not simply closed, but are actually exact.

12 CHAPTER 2. ITEMSET MINING AND CLONES

Proposition 2.2.4. Let no noise be present in D. Let x ⊆ V be a frequent

exact itemset supported by Cx ⊆ C. Then, Cx is a unique, non-empty clone.

Proof. Given a frequent exact itemset x ⊆ V , the set of transactions exactly

supporting it is uniquely defined as

Cx
def
= {ci ∈ C s.t. dij = 1 ∀j ∈ x ∧ dij = 0 ∀j /∈ x}.

Such set must be non-empty, since for x to be frequent there must be at

least a transaction supporting it. By construction, Cx contains all and only

the cells with all and only the mutations vj ∈ x. By definition, this means

that Cx is a clone.

Corollary 2.2.4.1. Different exact itemsets are supported by different, non-

intersecting clones.

Proof. Let x1, x2 ⊂ V be two closed itemsets, x1 ̸= x2. Thanks to Propo-

sition 2.2.4 we know that the support of xi is a unique, non-empty clone

Ci ⊂ C whose cells contain all and only mutations from xi, i = 1, 2. By

definition, a clone only contains cells with exactly the same mutations; since

x1 ̸= x2, no cell from C1 can be included in C2, and no cell from C2 can be

included in C1. Therefore, it holds true that C1 ∩ C2 = ∅ and, since both

clones must be non-empty, C1 ̸= C2.

All in all, what we have proved is that we can always recover C from

frequent exact itemsets, as long as no noise is present; at the same time,

no spurious frequent exact itemset is returned in output. Still, we cannot

recover V yet: so far we have grouped all mutations of a clone in a single

set; returning once again to our example from Figure 2.1, this means that

we would not retrieve V2, as the only exact itemset supported by C2 is V .

Luckily this problem can easily be solved in the general case by post-

processing the itemsets: we proved that all transactions that exactly support

an itemset define a single clone; and that at the same time if we consider

different itemsets the corresponding clones are different, too. Therefore, we

can label each mutation with the set of itemsets (and hence clones) that

contain it; then, let us cluster together all mutations with the same label.

This results in a partition {V1, V2, . . . , Vk} of V such that each subset Vj will

contain a mutation if and only if such mutation is exclusive to the set of

clones which labeled Vj: this is precisely what we required. In our example,

all mutations in V1 would be labeled {C1, C2}, while all mutations in V2

2.2. RECONSTRUCTION OF CLONES AND MUTATIONS 13

would be labeled {C2}, thus enabling us to correctly reconstruct the two

blocks of mutations we are interested in.

This clearly holds true only if the returned closed itemsets are the correct

ones; we have already seen that this is indeed the case when no noise is

present. But what about the real, noisy setup?

Unfortunately, it is easy to verify that in the general case the introduc-

tion of noise may invalidate Proposition 2.2.4: for example, referring once

again to Figure 2.1, a cell from clone C2 may lose due to noise all mutations

from V2. Then, there would be no way to distinguish such cell from the

ones composing clone C1; hence, we cannot guarantee that all transactions

exactly supporting an itemset correspond to a true clone.

More in general, it can be proven that the introduction of noise leads

to breakage of large frequent itemsets into subsets of logarithmic size, even

for moderate values of p (see [28, 29]). Hence, the supports of the returned

exact frequent itemsets may not only include spurious cells, as just observed,

but may also include only a fraction of the original cells.

To mitigate such loss of recoverability we need to introduce more so-

phisticate techniques, and several options have already been proposed by

literature; see Chapter 3 for more details. Nevertheless, we can still pro-

vide a useful guideline by proving that a weaker version of Proposition 2.2.3

holds:

Proposition 2.2.5. Let D be a mutation matrix affected by destructive

noise. Then, for each clone Cx ⊆ C originally present in the data there is a

uniquely defined itemset x that contains the maximum number of mutations

originally present in Cx, while guaranteeing that no additional mutation is

wrongly introduced.

Proof. Since Cx is a true clone, even in the presence of destructive noise all

cells included in it share only (but not all) the same mutations. Let the set

of such mutations be x; formally, x = {j ∈ V s.t. ∃ dij = 1 ∧ ci ∈ Cx}.
Notice that destructive noise cannot introduce a new mutation in a cell;

hence, by construction each mutation contained in x was for sure present

in the original clone. Obviously, if we remove any item from x we are left

with a smaller set. At the same time, if we add to x any other mutation

j ∈ V \x we have no proof that such mutation was indeed originally present

in clone Cx, since by construction ∄ dij = 1 s.t. j /∈ x ∧ ci ∈ Cx. Hence, x

is the only itemset respecting the required terms.

14 CHAPTER 2. ITEMSET MINING AND CLONES

In other words, if we hope to correctly recover the original clones and

their mutations we still need to include in the itemsets all and only the

mutations present in the transactions that support them, even tough we

now have fewer guarantees about the correctness of the resulting itemsets.

This means that we will need a method to heuristically distinguish between

“correct” frequent itemsets and “wrong” ones; this will be one of the key

ideas behind the algorithms proposed in Chapter 4.

Chapter 3

Previous works

The problem of mining frequent itemsets from noisy data has been exten-

sively studied in literature. In this Chapter we will present a brief overview

of some interesting results and algorithms; notice that whenever appropriate

the notation of the original papers will be modified to follow the one used

in this work. In particular, the relevant literature is presented in Sections

3.1 through 3.5, while Section 3.6 completes the Chapter with some general

considerations about the available techniques and their limitations.

3.1 Error-Tolerant Itemset (ETI)

One of the first appearances of the concept of noisy itemset mining is in the

work of C. Yang, U. Fayyad and P. S. Bradley [30]. In particular, they notice

that standard frequent itemset mining algorithms tend to fail on relational

databases where a relatively small amount of noise is present. Therefore,

a generalization of the definition of supporting transaction is introduced,

allowing for the presence of a fixed fraction of errors in each transaction.

More formally, they define a (strong) Error-Tolerant Itemset (ETI) for a

given error tolerance ε > 0 as any itemset x such that in the database D

there exist at least min sup ·m transactions in which the fraction of ones

over the elements of the itemset is not less than 1 − ε. Notice how if we

let ε = 0 instead then this definition is equivalent to the one of a normal

frequent itemset.

To show that ETIs are not just random artifacts that appear from noisy

data, the authors proceed by proving that the probability of finding an ETI

inside a m × n binary matrix where entries are i.i.d. Bernoulli variables

rapidly vanishes as ε diminishes and min sup grows.

15

16 CHAPTER 3. PREVIOUS WORKS

The next problem lies in finding all ETIs in a dataset. Unlike frequent

itemsets, ETIs do not follow the anti-monotone property; as such, following

the same approach of the Apriori algorithm would not work. The solution is

to further relax the definition of ETI, leading to weak ETI s. In particular,

the zeros are now allowed to be freely distributed between the supporting

transactions; in other words, some supporting transactions may contain less

than (1−ε) · |x| items from x, as long as the average fraction of ones among

all considered transactions is still at least 1− ε.

It is then proved that if x is a weak ETI then it always includes an item

j∗ such that the itemset x′ = x \ {j∗} is still a weak ETI. Exploiting this

property, itemsets can be incrementally expanded in a bottom-up fashion,

resulting in an exhaustive algorithm similar to Apriori. Once weak ETIs

are identified, it is then easy to filter out the ones not corresponding to a

strong ETI. However, this still results in a runtime exponential in the size

of the considered itemsets; therefore, a greedy approximation is introduced.

The main idea is to use some heuristics to restrict how the algorithm tries

to expand the current itemsets. However, the introduced heuristics may

lead to the loss of some ETIs; to mitigate this problem as much as possible,

an iterative sampling and validation scheme is introduced. In particular,

multiple rounds of the main algorithm are performed; each time a round

is completed, the database is reduced by removing all transactions that

supported an itemset in the previous rounds, repeating the process until no

more new ETIs can be found. Furthermore, the heuristic conditions which

define when an itemset is taken into consideration for expansion are relaxed

starting from the second round, with the effect of modifying the tradeoff

between the probability of missing an itemset and the time requirements.

To reduce complexity even further, a sampling approach is proposed: at

each round the algorithm only runs on a smaller sampled database; then,

the retrieved itemsets are validated on a different sample of the database,

so as to reduce the presence of spurious itemsets.

To evaluate the performance of the resulting algorithm some tests are

performed on both synthetic and real-world datasets. Starting from the

latter category, the main applications of the algorithm that are explored in

[30] are clustering high-dimensional data, query selectivity estimation and

collaborative filtering. The first task is the one most closely related to our

problem: ETIs are used to initialize some clusters, which are then refined

using expectation-maximization clustering algorithms. Experimentally, the

3.1. ERROR-TOLERANT ITEMSET (ETI) 17

considered clustering algorithms tend to retrieve only a subset of the actual

clusters when directly applied to high-dimensional data. On the other hand,

using ETIs as seeds greatly improve the recovery of all clusters, with the

initial ETIs often corresponding directly to the final, correct clusters.

As for synthetic data, several different matrices are generated by chang-

ing the relevant parameters. The noise model utilized imposes p > q > 0;

in other words, it is assumed that there can be both false positives and

false negatives, despite the former being more rare. Notice how this model

differs from the one introduced in Chapters 1 and 2, where only false nega-

tives are allowed. To evaluate performance, both missing and spurious ETIs

are considered. The first group includes all itemsets that were frequent in

the original noiseless data and that are not identified by the algorithm; the

second group includes all itemsets returned by the algorithm that were not

actually frequent in the original data. Experimentally, the proposed algo-

rithm is capable of retrieving all and only the correct itemsets, provided

some conditions are met. In particular, as the overlap between different

itemsets (i. e., the fraction of items included in all the considered itemsets)

increases, the performance of the algorithm gradually degrades. According

to [30], this degradation is acceptable in the real-world applications consid-

ered by the authors. However, this may actually be a problem when looking

for clones and mutation cluster, since in this case entire itemsets of interest

can be subsets of bigger itemsets; for example, this is exactly what hap-

pens in Figure 2.1. What’s more, all tests were performed using noise levels

around p = 0.075; since for mutation data we can expect a noise level well

above p = 0.9, a further degradation in performance levels can probably be

expected.

The last potential issue regards runtimes. The asymptotic complexity of

the considered algorithm is O(cdh2), where c is the number of ETIs, d is the

average number of items in an ETI, h is the number of items whose global

count of ones is at leastmin sup·m·(1−ε)/λ, and λ ≥ 1 is a parameter used

by the previously mentioned heuristics. This corresponds to a worst-case

complexity which is cubic in |V | whenever most items are actually frequent

and most transaction include a substantial fraction of all items. While this

does not happen in practice in the tests performed in [30], this conditions

would probably apply to mutation data, leading to unfeasible runtimes.

18 CHAPTER 3. PREVIOUS WORKS

3.2 Approximate Frequent Itemset (AFI)

A first expansion of the ETI model is presented by J. Liu et al. [31]. Once

again, they focus on relational databases; however, they also recognize that

noisy itemset mining presents broader applications, such as subspace clus-

tering and building classifiers. In these cases, the associations that we want

to discover are not only between items, but also between items and transac-

tions. This is actually what we need in order to solve the clonal composition

problem, since we want to retrieve both a clustering of mutations and a cor-

responding clustering of cells. Unfortunately, in [31] it is noticed that when

noise is present finding the transactions that support a noisy itemset is not

trivial, even if the itemset itself is already known.

The second limitation discussed specifically involves the definition of

ETIs; in particular, the fact that they place no restriction over the distri-

bution across columns of the allowed zeros. As such, nothing prevents the

presence of a column without ones; the corresponding item would then be

considered part of the itemset, even tough this result would probably be

spurious.

To solve this problem, Approximate Frequent Itemsets (AFIs) are intro-

duced. Their definition is exactly the same of strong ETIs, but with an

additional constraint over columns: for each item, the fraction of the con-

sidered transactions that support it should be at least 1 − εc. Notice how

this constraint is symmetrical to the one already present in the definition

of ETIs.

The first approach presented to identify AFIs is simply a brute-force

search: first, all ETIs are retrieved using the algorithm from [30]; then,

the result is filtered by enforcing the additional column-wise constraint.

Experimental evaluation on synthetic data shows that enforcing the AFI

constraints consistently results in lower spuriousness, while at the same

time yielding equal or better recoverability. However, the resulting runtime

is quite high, mainly due to the need of identifying all ETIs.

A better option is presented by J. Liu et al. in [28]. The key idea is

once again to identify an anti-monotone property for AFIs, enabling the

adoption of a pruned breadth-first search similar to the one used by the

Apriori algorithm. This leads to the introduction of 0/1 Extensions : item-

sets are sorted according to their cardinality, and each time the cardinality

increases by one the maximal number of zeros allowed in each transaction

3.3. ANALYSIS BY SUN AND NOBEL 19

that satisfies the AFI constraints can either remain the same or increase by

one. In the first case, any transaction that does not support a subset of

an itemset will not support the itemset itself; in the second one, any trans-

action supporting a subset also supports its superset. Taken together, this

two properties enable the identification of the support of any itemset just by

looking at the supports of its subsets. This fact, along with better pruning

strategies, allows AFI to outperform ETI time-wise by a large margin.

As for result quality, once again the algorithm based on AFIs shows

less spurious results, while maintaining a comparable recoverability of the

correct frequent itemsets. Notice however that noise is modelled by flipping

uniformly at random some entries of the binary matrixD, which corresponds

to fixing q = p > 0; this, together with the usage of no noise strength higher

than p = 0.2, may lead to different results in our setup. Furthermore, this

means that the considered algorithm cannot take directly advantage from

our knowledge that q = 0.

3.3 Analysis by Sun and Nobel

A theoretical analysis of the statistical properties of noisy binary matrices

can be found in the work by X. Sun and A. B. Nobel [29]. Their focus is

on the recoverability of submatrices of ones when each entry is disturbed

by independent Bernoulli noise, i. e. when q = p > 0. While once again this

is not the model we are assuming best represents sequencing data, it can

nevertheless be interesting to consider it due to its close relationship with

the work presented in Section 3.2.

Several results are presented; in this context, we are particularly inter-

ested in two of them. The first one states that noise breaks submatrices of

ones into fragments of logarithmic size; more formally, given any sequence

of n × n binary matrices where each entry is independently flipped with

probability 0 < p < 0.5, and given any ε > 0, as n grows then eventually

almost surely the largest submatrix of ones that remains after noise is ap-

plied has a size between (2 − ε) log 1
p
(n) and 2 log 1

1−p
(n). As mentioned in

Chapter 2, this implies that standard frequent itemset mining algorithms

are bound to fail on noisy data, no matter how weak the noise is.

The second result directly involves AFI; in particular, suppose that a

single ln × ln matrix of ones is embedded into a larger n× n matrix whose

all other entries are zeros, and as previously described assume each entry

20 CHAPTER 3. PREVIOUS WORKS

is independently flipped with probability p. Then, as n −→ ∞ eventually

almost surely the biggest AFI and its support correspond to the originally

embedded matrix of ones, as long as
ln
lnn

−→ ∞. All in all, despite the

differences in the utilized data model, these results show that noisy itemset

mining techniques can recover matrices of ones even when noise is present,

and thus can potentially be adapted to the problem of recovering the clonal

composition from single-nucleotide mutation data.

3.4 AC-Close

A further improvement over ETI and AFI is AC-Close [32], proposed by

H. Cheng, P. S. Yu and J. Han. The previously described approaches ex-

plore and return all maximal itemsets found; while this may be needed in

some contexts, it greatly increases runtimes. Furthermore, we may not be

interested in the complete collection of itemsets; this is actually our case,

as discussed in Chapter 2.

To solve this problem, AC-Close only considers closed itemsets. This

result is achieved by exploiting core patterns, i. e. the itemsets that are sup-

ported according to the standard definition by at least α ·min sup trans-

actions, for α ∈ [0, 1]. In particular, AC-Close starts by finding all core

patterns using a standard frequent itemset mining algorithm; then, a top-

down approach is followed: starting from the largest itemsets, the same

constraints used in AFI are efficiently enforced by considering all subsets of

the current itemset x that contain at least |x| · (1− ε) items. This way, all

transactions that according to the standard definition support such subsets

are for sure supporting x, too. If the union of all the considered transaction

has cardinality greater or equal to |C|·min sup, then the constraint over the

frequency of the itemset and the one over the maximum number of zeros in

each transaction are automatically satisfied. Therefore, the algorithm can

proceed by enforcing the constraint over the distribution of zeros across the

items, as well as the closeness constraint. All in all, this approach enables

AC-Close to reach better pruning capabilities and, as a consequence, faster

runtimes.

This was experimentally confirmed, with evaluations on synthetic data

showing a consistent and substantial increase in performance with respect

to AFI, while returning a similar set of itemsets; further tests from the

same authors of AC-Close can be found in [33], supporting once again the

3.5. HANCIM 21

same conclusions. However, all tests are performed using a relatively small

average number of items per transaction; and unfortunately, in [32] it is

noted that both AFI and AC-Close present a runtime exponential in the

average transaction length. Notice that for mutation data we expect the

cardinality of the biggest itemset to be approximately of the same order of

magnitude as |V |; this could probably lead to unfeasible runtimes.

As for output structure, notice that while we do not exactly need closed

itemset to reconstruct the clonal composition of our mutation data, this

could still be a first step in the right direction, especially considering the

fact that the supporting transactions can easily be returned in output by

AC-Close, and it is therefore easy to filter out non-exact itemsets. Unfor-

tunately, the proposed approach is not applicable to our problem, since it

is easy to verify that the probability that at least a cell from each clone

contains all of its mutations rapidly vanishes as the number of mutations

and the noise strength increase. Therefore, it is unlikely that any of the

itemsets we are actually interested in corresponds to a core pattern, no

matter the value of α. Furthermore, both the assumption that q = 0 and

the knowledge that in our setup groups of transactions supporting different

itemsets must be non-intersecting are not exploited by AC-close, due to its

general-purpose nature.

3.5 HANCIM

A quite different approach is proposed by K. Mouhoubi, L. Letocart and

C. Rouveirol [34]. The focus is on overcoming the limitations of competing

algorithms on large noisy datasets, especially regarding the number of un-

interesting results, the execution time and the difficulties with overlapping

itemsets.

The proposed algorithm, HANCIM, follows an heuristic approach based

on max-flow/min-cut graphs algorithms: the binary matrix D is interpreted

as a bipartite graph, where one partition represents items and the other

one transactions; once again, it is assumed that entries are independently

flipped with probability q = p > 0. HANCIM then iteratively chooses a seed

itemset, which is then grown to encompass a dense region of the graph. To

find appropriate seeds four different heuristic strategies are presented and

tested, with the one offering the best tradeoff between spuriousness and

recoverability being chosen for the final algorithm.

22 CHAPTER 3. PREVIOUS WORKS

The growing part of the algorithm works by considering the bipartite

subgraph incident on the seed itemset; a minimal s-t cut is then performed,

where weights are a function of the degrees of the destination and the source

nodes. This results in the identification of some transactions strongly asso-

ciated with the itemset; the procedure can then be repeated starting from

the bipartite graph associated with such transactions. The process is hence

iterated back and forth, until no further extension is possible.

Therefore, HANCIM returns a single final itemset for each initial seed.

Notice that this does not in general correspond to the complete set of fre-

quent itemsets which are present in D; this is an explicit design choice, since

the goal is to efficiently find a small number of dense regions, thus providing

an easily understandable output. However, this may be a limitation in our

setup, where we are interested in completely partitioning both C and V .

As for experimental evaluation, no direct comparison with the previously

mentioned methods was presented. However, tests on synthetic datasets

showcase an higher time efficiency, while still providing high recoverability

and low spuriousness. Furthermore, some tests were performed using over-

lapping itemsets, like the ones we may encounter in our setup as argued in

Section 3.1. The results indicate that strongly intersecting regions may still

be merged in the final output, but recoverability in the presence of overlap

is in general much higher than the one displayed by ETI.

3.6 General considerations

What we have seen so far highlights how noisy frequent itemset mining

seems to be a good framework to model our problem, both from a theoretical

standpoint and from a practical one, with several available algorithms that

do work well in practice in certain setups.

However, none of the considered alternatives perfectly fits our problem.

To better understand why, we should consider the data models and the

parameter space utilized by each algorithm; we can refer to Table 3.1 for

a summary. The first common problematic aspect is that all the consid-

ered approaches assume that q > 0; as such, they do not explicitly exploit

the absence of false positives, thus providing no additional benefit in this

direction with respect to the algorithm used by SBMClone.

Secondly, no algorithm returns closed itemsets, which as described in

Section 2.2 are needed to reconstruct mutation clusters. The only exception

3.6. GENERAL CONSIDERATIONS 23

is AC-Close, which unfortunately cannot be directly applied to our problem,

as previously explained.

Lastly, while the number of transactions and items span roughly the

values we are interested in, the error probabilities and the itemset sizes

targeted lie in a range quite different from the one required to reconstruct

clonal compositions, both being at least an order of magnitude lower than

needed. While this may not be a problem in practice, the experiments

presented in the considered works show several hints that increasing itemsets

size by one to two orders of magnitude could result in impractical runtimes

for most algorithms. This is due to the fact that in general bigger itemsets

are constructed by enumerating and processing all their subsets, resulting

in an exponential complexity.

Similarly, increasing the noise strength to well over 0.9 could, according

to projected results, reduce the reconstruction accuracy below usability;

this can be reasonably expected in the general setup where q > 0, and once

again highlights the need of fully exploiting our data model.

Moreover, source code could not be found for any of the presented algo-

rithm. Therefore, all the factors we just discussed suggest the need for an

ad hoc itemset mining algorithm; this will be the focus of the next Chapter.

ETI AFI AC-Close HANCIM

noise model p > q > 0 q = p > 0 q = p > 0 q = p > 0

noise probability

p

p = 0.075,

q = 10−4
0.01÷ 0.2 0.05 0÷ 0.2

retrieved

itemsets
maximal maximal closed maximal

transactions 500k 10k ÷ 28k 20k 1000

items 5000 100 100 50

avg. itemset size 5÷ 8 10 10 5÷ 6

Table 3.1: Comparison of the available algorithms’ noise models and their

explored parameter space.

24 CHAPTER 3. PREVIOUS WORKS

Chapter 4

Proposed algorithms

The general idea behind most algorithms presented in Chapter 3 is to start

from noisy frequent itemsets with a small number of items, and then expand

them until a certain score is not high enough to allow for further expansion;

of course, the exact score choice changes between the algorithms. This

approach can be adapted to our problem, too; in particular, we need to find

both a score that (hopefully) rewards better itemsets, and a way to extract

some itemset that maximize such score. This Chapter starts with the first

task in Section 4.1, where a score is first proposed and analyzed and then

improved . The second task is discussed in Section 4.2, where three different

algorithms are derived; the time complexity of such algorithms is analyzed

and improved in Section 4.3. The most advanced algorithm among the

proposed ones requires some sampling; Section 4.4 concludes the Chapter

by presenting some theoretical considerations about the number of samples

needed.

4.1 Density of an itemset

We have already highlighted the importance of choosing a proper score at

the end of Section 2.2. A natural option is presented in 4.1.1; an exten-

sive theoretical analysis follows, enabling us to understand some of its key

properties. Some practical considerations allow us to refine the basic score

(4.1.2), while a further improvement is proposed thanks to the mentioned

theoretical analysis 4.1.3. The resulting improved score is not computable

in closed form; therefore, a different approach is proposed.

25

26 CHAPTER 4. PROPOSED ALGORITHMS

4.1.1 Basic definition and its properties

Let us start from the following definition:

Definition 4.1.1 (Density). Let x ⊆ V be a generic non-empty itemset.

Let S ⊆ C be a non-empty set of transactions. Then, the density of x in S

is defined as

δ(x, S) =

∑︁
ci∈S

∑︁
j∈x dij

|x| · |S|
.

It is easy to verify that the numerator of δ(x, S) corresponds to the total

number of times an item from x is actually part of one of the considered

transactions. Similarly, its denominator is the number of items that would

be part of a transaction, if all elements from S exactly supported x in the

absence of destructive noise. As such, δ(x, S) ∈ [0, 1].

This definition works for general choices of S and x, and is quite a simple

idea; as such, it already served as the foundation upon which several of the

more advanced definitions presented in Chapter 3 are built. What actually

differentiates the various proposed scores is the set of additional constraints

that are imposed. In particular, what we really want to do here to fully

exploit the structure of our model is to apply Proposition 2.2.5.

Hence, given a set of transactions S ⊆ C we will always consider the

itemset x(S), defined as

x(S)
def
= {j ∈ V s.t. ∃ dij = 1 ∧ ci ∈ S}.

With a similar spirit, we can also introduce the set of mutations originally

present in the considered cells, i. e.

x∗(S)
def
= {j ∈ V s.t. ∃ ci ∈ S which originally contained mutation j}.

Furthermore, notice that empty transactions do not carry any information,

and in practice can thus be removed from our matrix D; therefore, we

are only interested in the case where x(S) ̸= ∅. With this choice, some

interesting results can be proved; let us start with the following lemma,

needed as an intermediate step:

Lemma 4.1.1. Let D be a mutation matrix affected by destructive noise

with strength p. Let S ⊆ C be a non-empty subset of a clone originally

present in the data, and let t ∈ {1, 2, . . . , |x∗(S)|}. Then,

E[δ(x(S), S) | |x(S)| = t] =
1− p

1− p|S|
.

4.1. DENSITY OF AN ITEMSET 27

Proof. Thanks to Proposition 2.2.5, we know that x(S) ⊆ x∗(S). Further-

more, by construction for each j ∈ x∗(S) and for each ci ∈ S it holds true

that dij = 1⇒ j ∈ x(S); hence,∑︂
j∈x(S)

dij =
∑︂

j∈x∗(S)

dij. (4.1)

Notice that S, t and x∗(S) are constants, while x(S) and dij are random

variables. Let P (t) be the proposition “|x(S)| = t”. Then,

E[δ(x(S), S) | P (t)] = E

[︄∑︁
ci∈S

∑︁
j∈x(S) dij

|x(S)| · |S|

⃓⃓⃓⃓
⃓ P (t)

]︄
by definition

= E

[︄∑︁
ci∈S

∑︁
j∈x∗(S) dij

t · |S|

⃓⃓⃓⃓
⃓ P (t)

]︄
4.1, P (t)

=
1

t · |S|
∑︂
ci∈S

∑︂
j∈x∗(S)

E [dij | P (t)]

(∗)

linearity

Let us focus on (∗):

E [dij | P (t)] = 1 · P [dij = 1 | P (t)] + 0 · P [dij = 0 | P (t)] by definition

= P [dij = 1 | P (t)]

but thanks to the law of total probability

P [dij = 1 | P (t)] = P [dij = 1 | j ∈ x(S) ∩ P (t)] · P [j ∈ x(S) | P (t)]

+ P [dij = 1 | j /∈ x(S) ∩ P (t)] · P [j /∈ x(S) | P (t)]

= P [dij = 1 | j ∈ x(S) ∩ P (t)]

(∗∗)

·P [j ∈ x(S) | P (t)]

(∗∗∗)

where we exploited the fact that P [dij = 1 | j /∈ x(S) ∩ P (t)] = 0, since if

j /∈ x(S) by construction dij = 0 ∀ci ∈ S.

Going on, let P (s, j) be the proposition “|{ci ∈ S s.t. dij = 1}| = s”,

s ∈ N. Notice that if we know that j ∈ x(S) then the value of dij does not

depend upon the cardinality of x(S), and vice versa; hence,

P [dij = 1 | j ∈ x(S) ∩ P (t)] = P [dij = 1 | j ∈ x(S)]

and applying once again the law of total probability

(∗∗) = P [dij = 1 | j ∈ x(S)]

=

|S|∑︂
s=1

P [dij = 1 | P (s, j) ∩ j ∈ x(S)] · P [P (s, j) | j ∈ x(S)]

28 CHAPTER 4. PROPOSED ALGORITHMS

where the summation starts from one since j ∈ x(S) implies that dij = 1

for at least a cell ci ∈ S. We can now repeat the previous reasoning: if we

know that P (s, j) holds for a certain s > 0, then j ∈ x(S) does not impose

any further constraint; thus,

P [dij = 1 | P (s, j) ∩ j ∈ x(S)] = P [dij = 1 | P (s, j)]

which allows us to derive

(∗∗) =
|S|∑︂
s=1

P [dij = 1 | P (s, j)] ·P [P (s, j) | j ∈ x(S)]

=

|S|∑︂
s=1

s

|S|
·
(︃
|S|
s

)︃
(1− p)sp|S|−s

1− p|S|

where the left hand side factor is derived by noticing that we have a uni-

form distribution. As for the right hand side factor, it is just a binomial

distribution, except that a normalizing factor 1 − p|S| is added in order to

account for the fact that j ∈ x(S), i. e. that we must exclude the case s = 0

when the considered mutation is not present in any cell. Cleaning up,

(∗∗) =
|S|∑︂
s=1

s

|S|
·
(︃
|S|
s

)︃
(1− p)sp|S|−s

1− p|S|

=
1

|S|(1− p|S|)

|S|∑︂
s=1

s

(︃
|S|
s

)︃
(1− p)sp|S|−s linearity

=
1

|S|(1− p|S|)

|S|∑︂
s=0

s

(︃
|S|
s

)︃
(1− p)sp|S|−s additive identity

=
E [B (|S|, (1− p))]

|S|(1− p|S|)
E of binomial variable

=
|S|(1− p)

|S|(1− p|S|)
E of binomial variable

=
1− p

1− p|S|
.

Finally, we can consider (∗ ∗ ∗); since each mutation from x∗(S) is equally

likely to be included in x(S), we can easily derive that

P [j ∈ x(S) | P (t)] =
t

|x∗(S)|
.

The difficult part of the proof is now completed, and we can simply start to

reconstruct our original conditional expectation; first of all, by substituting

4.1. DENSITY OF AN ITEMSET 29

the newly found values of (∗∗) and (∗ ∗ ∗) into (∗), we get

E [dij | P (t)] =
1− p

1− p|S|
· t

|x∗(S)|

and by finally substituting the value of (∗) into our original equation

E[δ(x(S), S) | P (t)] =
1

t · |S|
∑︂
ci∈S

∑︂
j∈x∗(S)

E [dij | P (t)]

=
1

t · |S|
∑︂
ci∈S

∑︂
j∈x∗(S)

1− p

1− p|S|
· t

|x∗(S)|

=
1− p

1− p|S|
· t

|x∗(S)|
· 1

t · |S|
∑︂
ci∈S

∑︂
j∈x∗(S)

1

=
1− p

1− p|S|
· |S| · |x

∗(S)|
|x∗(S)| · |S|

=
1− p

1− p|S|
.

Proposition 4.1.2. Let D be a mutation matrix affected by destructive

noise with strength p. Let S ⊆ C be a non-empty subset of a clone originally

present in the data such that |x(S)| > 0. Then,

E[δ(x(S), S)] =
1− p

1− p|S|
.

Proof. Applying the law of total expectation and Lemma 4.1.1, we easily

get

E[δ(x(S), S)] =
|x∗(S)|∑︂
t=1

E[δ(x(S), S) | |x(S)| = t] · P[|x(S)| = t]

=

|x∗(S)|∑︂
t=1

1− p

1− p|S|
· P[|x(S)| = t]

=
1− p

1− p|S|

|x∗(S)|∑︂
t=1

P[|x(S)| = t]

=
1− p

1− p|S|
· 1

=
1− p

1− p|S|
.

30 CHAPTER 4. PROPOSED ALGORITHMS

Corollary 4.1.2.1. Let D and S be defined as per Proposition 4.1.2. Then,

as |S| → ∞, the expected value of δ(x(S), S) tends to 1− p.

Proof. Recall that by definition p < 1; hence, we can trivially verify that

lim
|S|→∞

1− p

1− p|S|
= 1− p.

Remark. Interestingly, we can verify that

lim
p→1

1− p

1− p|S|
= lim

p→1

1− p

(1− p)
∑︁|S|−1

t=0 pt
=

1∑︁|S|−1
t=0 1

=
1

|S|

which, consistently with Corollary 4.1.2.1, tends to 1− p = 0 as |S| → ∞.

Lemma 4.1.3. Let f(α) =
α

1− pα
for p ∈ [0, 1) and α ∈ R > 0. Then,

f(α) is strictly monotonically increasing.

Proof. We can easily verify that

d

dα
f(α) =

1− pα + pα · α ln p

(1− pα)2
> 0 ⇔ 1− pα + pα · α ln p

(∗)

> 0.

We can rearrange (∗) as follows:

(∗) = 1− eα ln p + eα ln p · α ln p

= 1− et + tet

where the substitution t = α ln p was applied. We can easily verify that for

t = 0 we get 1 − et + tet = 0; otherwise, we can differentiate once again,

getting
d

dt

(︁
1− et + tet

)︁
= 0− et + et + tet = tet

which is strictly positive for t > 0 and strictly negative for t < 0. Hence,

1− et + tet > 0 ∀t ̸= 0. But this implies that

(∗) > 0 ⇔ α ln p ̸= 0

which always holds since α > 0 and p ̸= 1.

Proposition 4.1.4. Let D be a mutation matrix affected by destructive

noise with strength p. Let S ⊆ C be a non-empty set of cells that originally

belonged to at least two different clones. Then,

E[δ(x(S), S)] <
1− p

1− p|S|
.

4.1. DENSITY OF AN ITEMSET 31

Proof. The informal idea works as follows: first, we will divide all the mu-

tations that could possibly be included into disjoint groups; then, for each

group of mutations, we will consider all the cells that could include all the

given mutations. Each such pair of cells and mutations will then behave as

if it were a clone, enabling us to exploit the previous results. But since we

are considering at least two clones there is always a group of mutations that

cannot be included by all cells. Therefore, we are always going to have some

non-zero probability of including such mutations, which will decrease the

average density by forcing us to include some “extra” zeros in our computa-

tion. We will then be able to conclude by properly weighting and summing

the contribution of each group of mutations.

Before starting the actual proof, we need to introduce some notation.

Let us partition S into disjoint subsets S1, S2, . . . , ST such that each St

contains all and only the cells from S that originally belonged to the same

clone. It is trivial to check that
⋃︁T

t=1 St = S.

Let then S = {S1, S2, . . . , ST}, and let x∗(s) ⊂ x∗(S) be the set of

mutations that originally were exclusive to the set of clones s ⊆ S. Notice

that it may happen that x∗(s) = ∅, and that by construction all the x∗(s)

create a partitioning of x∗(S), since each mutation is included in exactly one

such set. Similarly, let x(s) = x∗(s) ∩ x(S), i. e. the set of mutations that

originally were exclusive to the set of clones s ∈ S, and that are actually

present in x(S). Finally, let

P = {s ⊆ S s.t. x∗(s) ̸= ∅}

and

S(s) =
⋃︂
St∈s

St.

Notice that {x(s) s.t. s ∈ P} is still a partitioning of x(S), since we only

excluded empty sets (which do not contribute to the resulting union).

The notation we just introduced is relatively heavy, so it is quite helpful

to fix the idea by looking at a simple example, for which we can once again

refer to Figure 2.1. In that case, we would have:

• S = {S1 ⊆ C1, S2 ⊆ C2}

• x∗(s) = V2 for s = {S2}

• x∗(s) = V1 for s = {S1, S2}

32 CHAPTER 4. PROPOSED ALGORITHMS

• x∗(s) = ∅ for s = {S1}

• P = {{S2}, {S1, S2}}

We can now start the actual proof. First of all, we can verify that for each

s ∈ P it holds true that∑︂
ci∈S

∑︂
j∈x(s)

dij =
∑︂

ci∈S(s)

∑︂
j∈x(s)

dij (4.2)

since by construction ∄dij = 1 s.t. j ∈ x(s) ∧ ci /∈ S(s). Therefore,

δ(x(S), S) =

∑︁
ci∈S

∑︁
j∈x(S) dij

|x(S)| · |S|
by definition

=

∑︁
ci∈S

∑︁
s∈P

∑︁
j∈x(s) dij

|x(S)| · |S|
by linearity

=
∑︂
s∈P

∑︁
ci∈S

∑︁
j∈x(s) dij

|x(S)| · |S|
by linearity

=
∑︂
s∈P

∑︁
ci∈S(s)

∑︁
j∈x(s) dij

|x(S)| · |S|
(∗)

4.2

Let X(s) be the random variable with value

X(s) =

⎧⎨⎩
|x(s)|
|x(S)|

· |S(s)|
|S|

· δ(x(s), S(s)) if |x(s)| ≠ 0

0 otherwise

and notice that

(∗) = 0 = X(s) if |x(s)| = 0

(∗) = |x(s)| · |S(s)|
|x(S)| · |S|

·
∑︁

ci∈S(s)
∑︁

j∈x(s) dij

|x(s)| · |S(s)|
= X(s) otherwise

where in the first case we exploited the fact that the numerator contains a

sum over the elements of an empty set, and the second case is a simple alge-

braic manipulation followed by the application of the definition of density.

Therefore,

δ(x(S), S) =
∑︂
s∈P

X(s).

Let k = |P|, and let a = [|x(s1)|, |x(s2)|, . . . , |x(sk)|]T ; recall that each

entry of a is a random variable. Let as be the entry of a corresponding to

x(s). Finally, let A be the set of admissible values for a. Notice that thanks

4.1. DENSITY OF AN ITEMSET 33

to the way we constructed P there is always at least one a′ ∈ A such that

a′
s > 0, for each s ∈ P . Then,

E [δ(x(S), S)] = E

[︄∑︂
s∈P

X(s)

]︄
=

∑︂
s∈P

E [X(s)] linearity of E

=
∑︂
s∈P

∑︂
a′∈A

E [X(s) | a = a′] · P [a = a′]

where in the last step we applied the law of total expectation. Next, we can

verify that as long as a′
s ̸= 0

E [X(s) | a = a′] = E
[︃
|x(s)|
|x(S)|

· |S(s)|
|S|

· δ(x(s), S(s))
⃓⃓⃓⃓
a = a′

]︃
= E

[︃
a′
s∑︁

s′∈P a′
s′
· |S(s)|
|S|

· δ(x(s), S(s))
⃓⃓⃓⃓
a = a′

]︃
=

a′
s∑︁

s′∈P a′
s′
· |S(s)|
|S|

· E [δ(x(s), S(s)) | a = a′]

where the last step is due to the linearity of the conditional expected value.

We can now notice that δ(x(s), S(s)) is independent from all elements of a

except as; therefore,

E [δ(x(s), S(s)) | a = a′] = E [δ(x(s), S(s)) | as = a′
s] .

Furthermore, x(s) and S(s) are structured like a clone with its corresponding

mutations; hence, we can apply Lemma 4.1.1, yielding

E [δ(x(s), S(s)) | a = a′] = E [δ(x(s), S(s)) | as = a′
s]

= E [δ(x(s), S(s)) | |x(s)| = a′
s] by definition of a

=
1− p

1− p|S(s)|
Lemma 4.1.1

Let us now consider the inequality

|S(s)|
|S|

· E [δ(x(s), S(s)) | a = a′] <
1− p

1− p|S|

|S(s)|
|S|

· 1− p

1− p|S(s)|
<

1− p

1− p|S|

|S(s)|
|S|

· 1

1− p|S(s)|
<

1

1− p|S|
p ̸= 1

|S(s)|
1− p|S(s)|

<
|S|

1− p|S|
|S| > 0

34 CHAPTER 4. PROPOSED ALGORITHMS

and thanks to Lemma 4.1.3 we can conclude that the considered inequality

holds as long as |S| > |S(s)|. This is indeed the case for all s ∈ P except

at most one where S(s) = S. Notice that such element may not be present

(i. e., there might not be any mutation that originally was present in all

the considered cells). On the other hand, there must for sure be at least

one element where |S| > |S(s)|, since we are considering cells from at least

two different clones and therefore there must be at least a mutation that

originally was not present in all the considered cells. All in all, this means

that for each s ∈ P

E [X(s) | a = a′] =
a′
s∑︁

s′∈P a′
s′
· |S(s)|
|S|

· E [δ(x(s), S(s)) | a = a′]

<
a′
s∑︁

s′∈P a′
s′
· 1− p

1− p|S|

except at most one case where we have an equality. We did not consider

the case a′
s = 0 yet; however, we can trivially verify that we still have an

equality, since in this case

E [δ(x(S), S)] = 0

=
a′
s∑︁

s′∈P a′
s′
· 1− p

1− p|S|
.

This implies that

E [δ(x(S), S)] =
∑︂
s∈P

∑︂
a′∈A

E [X(s) | a = a′] · P [a = a′]

<
∑︂
s∈P

∑︂
a′∈A

a′
s∑︁

s′∈P a′
s′
· 1− p

1− p|S|
· P [a = a′]

=
1− p

1− p|S|
·
∑︂
s∈P

∑︂
a′∈A

a′
s∑︁

s′∈P a′
s′
· P [a = a′] by linearity

=
1− p

1− p|S|
·
∑︂
a′∈A

P [a = a′] ·
∑︂
s∈P

a′
s∑︁

s′∈P a′
s′

by linearity

=
1− p

1− p|S|
·
∑︂
a′∈A

P [a = a′] ·
∑︁

s∈P a′
s∑︁

s′∈P a′
s′

by linearity

=
1− p

1− p|S|
·
∑︂
a′∈A

P [a = a′] · 1

=
1− p

1− p|S|
· 1

=
1− p

1− p|S|
.

4.1. DENSITY OF AN ITEMSET 35

Corollary 4.1.4.1. Let D and S be defined as per Proposition 4.1.4. Then,

lim
|S|→∞

E[δ(x(S), S)] ≤ 1− p.

Proof. Applying Proposition 4.1.4 and the sandwich theorem, we easily get

lim
|S|→∞

E[δ(x(S), S)] ≤ lim
|S|→∞

1− p

1− p|S|

= 1− p.

All in all, what we have just proved highlights the presence of a deep

connection between density and the amount of noise in matrix D. Some

consequences of such connection will be explored in more detail in the fol-

lowing Sections; at the moment, the most important conclusion is that the

proposed score is provably meaningful. In particular, true clones do reach

in expectation a strictly better score with respect to randomly picked sets

of cells, and even asymptotically the expected score they reach is not worse.

In other words, it is reasonable to use density as an heuristic to identify the

correct itemsets within noisy data; as previously seen at the end of Section

2.2, this is exactly what we needed. However, this does not mean that we

cannot achieve a better result, as we will see in the following Sections.

4.1.2 Weighted density

The first enhancement to the basic definition of density is empirically mo-

tivated. Let us consider once again the example of Figure 2.1, and this

time suppose that |V1| ≫ |V2|. Intuitively, this means that it’s harder to

distinguish cells from C1 and cells of C2, since cells will contain mostly the

same mutations anyway. Notice how this problem is linked to the issue with

overlapping itemsets mentioned for the ETI algorithm in Section 3.1. We

can then introduce the following quantity:

Definition 4.1.2 (weight of a mutation). Let D be affected by destructive

noise. Let j ∈ V be a mutation, and suppose that ∃ci ∈ C s.t. dij = 1.

Then, its weight is defined as

wj =
1∑︁

ci∈C dij
.

Remark. Notice that in practice if ∄ci ∈ C s.t. dij = 1 the mutation should

be dropped from our matrix, since we have no way of telling which cells may

or may not contain such mutation.

36 CHAPTER 4. PROPOSED ALGORITHMS

Such weights naturally lead to the following definition:

Definition 4.1.3 (Weighted density). Let x ⊆ V be a generic non-empty

itemset. Let S ⊆ C be a non-empty set of transactions. Then, the weighted

density of x in S is defined as

δw(x, S) =

∑︁
ci∈S

∑︁
j∈xwjdij(︂∑︁

j∈xwj

)︂
· |S|

.

As usual in practice we will take x = x(S). Finding exact expected val-

ues for wj and δw(x, S) is not trivial due to the bias introduced by requiring

that the mutation is present at least once; however, it seems reasonable

to expect an higher weight from mutations that before the introduction of

noise were supported by fewer cells. In our example, this would correspond

to giving more importance to mutations from V2; in turns, this should in-

tuitively help distinguishing very similar clones.

We will see in Chapter 5, and in particular in Section 5.1, that in practice

weighted density does indeed perform better than plain density; but there

is still a way to further improve our score.

4.1.3 Adjusted density

An important consequence of Proposition 4.1.2 is that the expected value

of density is strictly decreasing as the number of cells considered increases.

This means that on average smaller groups of cells will be preferred even

over the true original clones, which of course is not a desirable behaviour.

The natural solution is to introduce the following.

Definition 4.1.4 (Adjusted density). Let S ⊆ C be a non-empty set of

transactions. Let x ⊆ V be a generic non-empty itemset. Let I(S) = {S ′ ⊆
C s.t. |S ′| = |S|} be the set of all subsets of C with the same cardinality as

S. Then, the adjusted density of x in S is defined as

δA(x, S) = δ(x, S) − E
S′∼U(I(S))

[δ(x(S ′), S ′)]

where U (I(S)) is the uniform distribution over I(S).

Similarly, we can define the following.

Definition 4.1.5 (Adjusted weighted density). Let S, x, I(S) and U (I(S))

be as in Definition 4.1.4. Then, the adjusted weighted density of x in S is

defined as

δA,w(x, S) = δw(x, S) − E
S′∼U(I(S))

[δw(x(S
′), S ′)] .

4.2. ALGORITHMS TO OPTIMIZE DENSITY 37

Notice that in both cases computing the value of the score is not trivial,

due to the presence of an expected value. We have a closed-form expression

for E[δ(x(S ′), S ′)] when S ′ is a clone, and a bound otherwise; but even this

is not extremely helpful in practice: the problem is that in general the value

of p can only be estimated for the sequencing technology of choice, and is

thus not known with precision.

The proposed solution is to use sampling so as to estimate the expected

value of interest directly from data; such approach will be presented in

more detail in Section 4.2.3, while some considerations and tests about the

number of samples needed to get a good approximation can be found in

Sections 4.4 and 5.6 respectively.

4.2 Algorithms to optimize density

In the previous Section we have seen several scores that can be used to

choose between different itemsets; the second task we have to consider is

how to select the itemsets that maximize the score of choice. The simplest

option would be to just enumerate all possible itemsets and choose the

best performing ones; however, the number of different options to consider

is exponential in the number of mutations, making this approach clearly

unfeasible. An interesting tradeoff between output quality and time com-

plexity can instead be reached by using a greedy agglomerative clustering

algorithm, as we will see next.

4.2.1 Naive algorithm

Let us start from the simplest option, where we simply try to blindly merge

together subsets of cells that maximize density; the result is Algorithm 1.

In practice, this algorithm is far from the best we can do; however, it is

an ideal foundation upon which we can incrementally build more advanced

algorithms. Furthermore, it is a good test bench to experimentally define

a performance baseline, and to evaluate how well density alone works in

practice.

Anyway, the algorithm works as follows. First of all, we denote with

Cindex a clustering of all the considered cells, where along with each cluster

S ∈ Cindex we also store the corresponding itemset x(S). The first clustering

(line 3) is initially filled (lines 4 to 6) by inserting each cell in its own cluster

(line 5). We can then start to iteratively merge clusters together.

38 CHAPTER 4. PROPOSED ALGORITHMS

Algorithm 1: cluster naive

Input: Mutation matrix D, list of cells C, list of mutations V .

Output: Dendrogram of cell clusters and corresponding itemsets of

mutations.

1 begin

2 index← 1;

3 C1 ← empty set;

4 foreach cell ci ∈ C do

5 Si ← {ci};
6 C1 ← C1 ∪ { (Si, x(Si)) };

7 while not all cells are in a single cluster do

8 (Sa, x(Sa)), (Sb, x(Sb))← elements of Cindex maximizing

δ(x(Sa ∪ Sb), Sa ∪ Sb);

9 Cindex+1 ← Cindex \ { (Sa, x(Sa)), (Sb, x(Sb)) };
10 Cindex+1 ← Cindex+1 ∪ { (Sa ∪ Sb, x(Sa ∪ Sb)) };
11 index← index+ 1;

12 return C1, C2, . . . , Cm;

The clusters to be merged are simply the ones that maximize the density

of the resulting cluster (line 8). Once we have identified such pair, to obtain

the new clustering we just remove the old clusters (line 10) and replace

them with the merged one (line 10). After increasing the index of the

iteration (line 11) we can simply repeat the process, until we are left with a

single cluster containing all cells (line 7). Finally, we can output our result

(line 12) which is composed of all the clustering we obtained at the end of

each iteration; since each time we merge two clusters we reduce by one the

cardinality of the resulting clustering, and since the cardinality of the first

clustering is equal to the cardinality m of the set C of cells, it is immediate

to verify that we will output exactly m different clusterings.

According to our problem definition, we now need to choose a single

clustering among the ones that the algorithm returned; to do so, we need

some kind of model selection. Only then we will be able to separate the

individual groups of mutation, as described in Section 2.2. However, there

are already several model selection algorithms available in literature; fur-

thermore, in real-world scenarios we may actually be interested in analyzing

the whole dendrogram, either manually or automatically. Therefore, it is a

good idea to keep model selection separate from the clustering algorithm.

4.2. ALGORITHMS TO OPTIMIZE DENSITY 39

4.2.2 Weighted algorithm

The second proposed algorithm looks very similar to the first one, but two

important changes are made. First of all, we will use weighted density in

place of just density; secondly, we will try whenever possible to merge only

those groups of cells that share at least a mutation in the noisy matrix.

It is quite obvious that merging clusters that do not share any mutation

does not make much sense, since there is no proof that such cells originally

did not belong to different clones. However, this kind of union can happen

relatively frequently in practice: for example, if we let S be composed of

two cells at random that do not share any mutation, it is trivial to verify

that according to definition δ(x(S), S) = 0.5.

If we then take p = 0.995, a common value through the tests presented

in [2], we get that the expected value of the density from two cells of the

same clone is just
1− 0.995

1− 0.9952
≈ 0.5013. Quite clearly, the difference is low

enough to allow for several errors, at least in our greedy setup. If we instead

consider weighted density things get more complex; however, the underlying

idea is still valid, hence the need to avoid merging non-intersecting groups

of mutations as much as possible. All in all, this results in Algorithm 2.

This algorithm is very similar to the first one, with the only differences

being in lines 8 to 11. Here, we are doing exactly what was described at

the start of this Section: first, we check if we can merge clusters whose cells

share at least a mutation (line 8); if this is the case, we simply pick the

pair of clusters with at least a common mutation that maximize weighted

density when merged (line 9). If no such pair can be found, we simply pick

the one with the best resulting score (line 11).

In practice, despite the apparent similarity, Algorithm 2 consistently

outperforms Algorithm 1, as we will see in Chapter 5; however, there is still

one last option to consider.

40 CHAPTER 4. PROPOSED ALGORITHMS

Algorithm 2: cluster weighted

Input: Mutation matrix D, list of cells C, list of mutations V .

Output: Dendrogram of clones and corresponding itemsets of

mutations.

1 begin

2 index← 1;

3 C1 ← empty set;

4 foreach cell ci ∈ C do

5 Si ← {ci};
6 C1 ← C1 ∪ { (Si, x(Si)) };

7 while not all cells are in a single cluster do

8 if ∃ (Sa, x(Sa)), (Sb, x(Sb)) ∈ Cindex s.t. x(Sa) ∩ x(Sb) ̸= ∅
then

9 (Sa, x(Sa)), (Sb, x(Sb))← elements of Cindex such that

x(Sa) ∩ x(Sb) ̸= ∅ and δw(x(Sa ∪ Sb), Sa ∪ Sb) is

maximized;

10 else

11 (Sa, x(Sa)), (Sb, x(Sb))← elements of Cindex such that

δw(x(Sa ∪ Sb), Sa ∪ Sb) is maximized;

12 Cindex+1 ← Cindex \ { (Sa, x(Sa)), (Sb, x(Sb)) };
13 Cindex+1 ← Cindex+1 ∪ { (Sa ∪ Sb, x(Sa ∪ Sb)) };
14 index← index+ 1;

15 return C1, C2, . . . , Cm;

4.2. ALGORITHMS TO OPTIMIZE DENSITY 41

4.2.3 Sampling algorithm

We have previously introduced three different variations of the same score,

two of which where then used to build an algorithm. It is all but natural

to exploit the last variation, too. The general idea is to reuse the structure

of Algorithm 2 and just replace δw with δA,w; however, we need to add a

new subroutine to approximate the required expected values. All in all, this

results in Algorithm 3.

Lines 8 and 10 just reflect the change in score we just described, while

most other lines are just unchanged; as such, we can focus on the auxiliary

procedure starting at line 15. To keep a good amount of efficiency, it is

quite clear that we cannot recompute the expected values each time we need

them. We may then try to precompute them all; however, the total number

of expected values we may theoretically need is linear in the cardinality of C,

while the number of expected values we will use in practice is experimentally

only a small subset of the total ones. Therefore, the best option is to rely

on memoization: we first initialize an empty dictionary (line 5) that we will

fill as the algorithm runs; then, each time an expected value is required,

we check if we already computed its approximation (line 16). If this is the

case, we do not enter the body of the if clause and we simply return the

memoized value from the dictionary (line 22). If instead the expected value

was never required before, then we initialize a new variable to contain our

approximation (line 17). Such approximation will be obtained by sampling

the required number of cells uniformly at random from the entire population

(line 19) and by updating the average weighted density with the considered

sample (line 20). The whole process is repeated for a fixed number of

iterations (line 18); finally, the approximated expected value is inserted

into out dictionary (line 21) and we can conclude by returning the requested

expectation (line 22).

This procedure is by no means complex; it does however raise the prob-

lem of choosing a proper amount of samples to estimate the expected value

with a reasonable amount of precision. As previously mentioned, this will

be the topic of Sections 4.4 and 5.6.

Once again, we will see in Chapter 5 how this slight variation of the

general greedy clustering approach affects the overall performance of the

algorithm; however, we first need to consider some implementation details

that up to now we hid for simplicity.

42 CHAPTER 4. PROPOSED ALGORITHMS

Algorithm 3: cluster adjusted

Input: Mutation matrix D, list of cells C, list of mutations V .

Output: Dendrogram of clones and corresponding itemsets of

mutations.

1 begin

2 index← 1; C1 ← empty set;

3 foreach cell ci ∈ C do

4 Si ← {ci}; C1 ← C1 ∪ { (Si, x(Si)) };

5 memo← empty dictionary;

6 while not all cells are in a single cluster do

7 if ∃ (Sa, x(Sa)), (Sb, x(Sb)) ∈ Cindex s.t. x(Sa) ∩ x(Sb) ̸= ∅
then

8 (Sa, x(Sa)), (Sb, x(Sb))← elements of Cindex such that

x(Sa) ∩ x(Sb) ̸= ∅ and δw(x(Sa ∪ Sb), Sa ∪ Sb) −
getExpVal(memo, |Sa ∪ Sb|, C, V , D) is maximized;

9 else

10 (Sa, x(Sa)), (Sb, x(Sb))← elements of Cindex such that

δw(x(Sa ∪ Sb), Sa ∪ Sb) − getExpVal(memo, |Sa ∪ Sb|,
C, V , D) is maximized;

11 Cindex+1 ← Cindex \ { (Sa, x(Sa)), (Sb, x(Sb)) };
12 Cindex+1 ← Cindex+1 ∪ { (Sa ∪ Sb, x(Sa ∪ Sb)) };
13 index← index+ 1;

14 return C1, C2, . . . , Cm;

15 Procedure getExpVal(memoized, k, C, V , D)

16 if k /∈ memoized.keys() then

17 avg ← 0;

18 for i← 1 to SAMPLES COUNT do

19 S ← k cells sampled uniformly at random from C;

20 avg ← avg +
δw(x(S), S)

SAMPLES COUNT
;

21 memoized[k]← avg;

22 return memoized[k];

4.3. TIME COMPLEXITY AND IMPROVEMENTS 43

4.3 Time complexity and improvements

If we want to use an algorithm in practice we do not need it to simply give

good results: we need it to run in a reasonable amount of time, too. Up to

now we did not consider the proposed algorithms’ time complexity; while

this was helpful to grasp the idea behind them, we must verify that the

resulting runtimes are practical.

Let us consider the most complex option, i. e. Algorithm 3. The first

cycle (line 3) is repeated m times; assuming sets are implemented as hash

tables, each operation in the first cycle has on average constant complex-

ity. The only exception is identifying x(Si) (line 4), which requires O(n)

operations; this means that the first cycle has complexity O(mn).

As for the second cycle (line 6) it gets executed O(m) times, as previ-

ously argued. The clustering Cindex contains O(m) elements, too; this means

that the if clause of line 7 must consider O(m2) different pairs of clusters,

and checking for intersection has complexity O(n). Maximizing the approx-

imation of the adjusted density, either on line 8 or on line 10, requires once

again to scan O(m2) different pairs; the weighted density can be computed

quite efficiently from the weighted density of each of the considered clus-

ters: the numerator is the sum of the two numerators (available in constant

time), the cardinality of the set of cells is the sum of the cardinalities of

the two sets (once again, available in constant time), computing x(Sa ∪ Sb)

can be done in O(n) operations starting from x(Sa) and x(Sb), and finally

summing the weights of the mutations in x(Sa∪Sb) can be done once again

in time O(n), assuming the weight of each mutation is pre-computed. To

sum up, up to now we have O(m2n) operation from the condition of the if

clause, and O(m2n) operations from either the body of the if clause or from

the body of the else clause.

Each call to the auxiliary procedure to approximate the expected values

requires constant time if the requested expected value was already com-

puted. Otherwise, we can assume that SAMPLES COUNT is a constant

and can hence be neglected; this we we get complexity O(k+kn) ∈ O(mn).

We can notice that whenever the procedure has constant runtime it does

not contribute to the overall complexity; since at most O(m) different ex-

pected values need to be computed, the auxiliary procedure requires at most

O(m2n) operations cumulatively.

44 CHAPTER 4. PROPOSED ALGORITHMS

Most of the complex part of the analysis is completed: line 11 requires

time O(mn), while line 12 and 13 require respectively time O(m + n) and

O(1). All in all, this means that the whole cycle requires

O
(︁
m · (m2n+m2n+mn+m+ n+ 1)

)︁
∈ O(m3n)

operations.

We are almost done: all the operations outside the cycles have constant

complexity, but as mentioned we need to pre-compute the weight of each

mutation; this adds an additional O(mn) operations to the algorithm, which

as a whole requires O(mn + m3n + m2n + mn) operations (just to recap,

the four terms correspond respectively to the first cycle, the second one, the

calls to the auxiliary procedure and the pre-computation of the mutations’

weights). All in all, this means that the algorithm has complexity O(m3n).

This is not a terrible result; however, as the number of cells increases

the algorithm can rapidly become impractical. Luckily, there is something

we can do about it: the basic idea is that we are wasting a huge amount

of time by repeatedly calculating the same densities over and over again,

since each time that a pair of cells clusters do not get merged we have to

recompute the density of their union in the next iteration.

The solution to this problem is to compute each density just once, and

then store it in a max-heap along with the corresponding pair of clusters

if and only if said pair contains intersecting mutation sets. Each time we

need to merge two clusters we then just need to retrieve the first element

of the heap and check if each of the corresponding clusters is still to be

merged; if this is the case, we merge them; otherwise, we move on with the

next entry of the heap. There is of course an exception to consider when no

intersecting pair is available, as we will see; the result is Algorithm 4. The

auxiliary procedure is exactly the same as the one of Algorithm 3 and was

thus omitted.

The algorithm works as follows: we initialize our max-heap H at line 5;

then, we start to fill it with all possible pairs of cells that we can merge at

first (lines 6 to 10) along with the score of the resulting cluster (computed

through lines 8 and 9), provided that the considered cells share at least a

mutation (line 7). We can then heapify H (line 11).

We can now proceed almost as usual: we try to get the first element

out of our heap (line 13); if no element is available and still not all cells

are in the same cluster, it means that there is no pair of clusters that share

4.3. TIME COMPLEXITY AND IMPROVEMENTS 45

at least a mutation left. Therefore, we just pick the pair of clusters that

maximizes the resulting adjusted density, ignoring the fact that they do not

share any mutation (lines 15 and 16). We then check whether one or both

of the clusters obtained through the steps we just described have already

been merged with another cluster (line 17). Notice that this can never be

the case if we passed through the else clause of line 15, since in that case we

are always picking two clusters among the current ones. Anyway, if at least

one of the considered clusters has already been merged, we just proceed to

the next iteration without changing the current clustering. On the other

hand, if we are free to merge the considered clusters we do so as usual (lines

19 to 21) and we naturally mark them as merged (line 18).

At this point we need to update the heap with all the new possible pairs

of clusters we could merge; notice how all such pairs must involve the newly

created cluster. Quite trivially, this is done thanks to lines 22 to 26.

We can now focus on the resulting time complexity. Line 5 is of course

executed in constant time; the cycle of line 6 gets repeated O(m2) times,

with each iteration requiring O(n) operations ignoring the call to the aux-

iliary function (whose contribute we can compute separately as previously

done). This result in complexity O(m2n). Line 11 requires time linear in

the size of H, i. e. O(m2).

Things now get a little more complex, since the main cycle of line 12

may be executed for a variable number of iterations. The easiest option is

to separately consider the cases where we enter in the body of the if clause

of line 17 (case A), and the case where we do not (case B).

First of all, notice that whenever we execute lines 18 to 27 we are re-

ducing by one the number of clusters in the current clustering; as such, we

can fall in case A no more than m times. Furthermore, let us assume for

the moment that the else case of lines 15 and 16 gets executed at most

O(1) times; we will justify this assumption later. If this is the case, the

else clause only contributes with O(m2n) operations globally, and can be

ignored in the analysis of our cycle. We then have an operation of constant

cost on line 13, while line 14 contributes with O(log(m)). Lines 17 and

18 require once again O(1), while lines 19 to 21 all in all require O(mn)

just as their corresponding lines from Algorithm 3. The for cycle of line

22 gets executed O(m) times, with each iteration requiring O(n) operations

for lines 23 to 25 (since as previously argued we can compute efficiently

x(Sc ∪ Sd) starting from x(Sc) and x(Sd)) and O(log(m)) operations for

46 CHAPTER 4. PROPOSED ALGORITHMS

line 26. All in all, this means that each iteration of the main cycle requires

O(m(n+log(m))) operations in case A, which we can safely assume belongs

to O(mn) in all practical cases. This means that all occurrences of case A

cumulatively contribute with O(m2n) operations to the final complexity.

As for case B, as previously mentioned if we do not enter in the body of

the if clause of line 17 then for sure we entered in the body of the if clause

of line 13; therefore, we only require O(log(m)) operations for line 14 and

a constant number of operations for all other lines. We can now argue that

case B can only happen at most once for each time we executed line 26,

which by itself already requires O(log(m)) operations; therefore, we have

already considered all possible contributes of case B.

Therefore, the complexity of the main cycle gets reduced from O(m3n)

to O(m2n); since no other part of the algorithm requires more than this

amount of operations, this results in an overall reduction of the complexity

to O(m2n). While this may not sound exactly thrilling, in practice this

means that the algorithm is now more than capable to handle real-world-

sized data efficiently enough. Very similar optimizations can be carried on

for the first two algorithms, resulting in the same final runtime.

Notice that we may still incur in a worst-case cost which is cubic in m

if line 16 gets executed more than a constant amount of times, as we have

previously assumed. However, if this is the case it means that most of the

merges that we are performing are arbitrary, as in this situation there is

no real evidence that the merged cells originally shared any mutation at

all. This is clearly undesirable, and in practice it means that presumably

we will not succeed in recovering the original clones. In other words, if

the algorithm takes more than O(m2n) operations to complete we are not

interested in the results anyway. We will experimentally see in Chapter

5 that this is actually the case in practice; furthermore, we will more in

general verify that the so far derived time complexity bounds do hold.

4.3. TIME COMPLEXITY AND IMPROVEMENTS 47

Algorithm 4: optimized cluster adjusted

Input: Mutation matrix D, list of cells C, list of mutations V .

Output: Dendrogram of clones and corresponding itemsets of

mutations.
1 begin

2 index← 1; C1 ← empty set; memo← empty dictionary;

3 foreach cell ci ∈ C do

4 Si ← {ci}; C1 ← C1 ∪ { (Si, x(Si)) };

5 H ← empty max-heap;

6 foreach ordered pair (Sa, x(Sa)), (Sb, x(Sb)) from C1 do

7 if x(Sa) ∩ x(Sb) ̸= ∅ then
8 δab ← δw(x(Sa ∪ Sb), Sa ∪ Sb);

9 δab ← δab − getExpVal(memo, |Sa ∪ Sb|, C, V , D);

10 H.append(δab, (Sa, x(Sa)), (Sb, x(Sb)));

11 heapify(H);

12 while not all cells are in a single cluster do

13 if H is not empty then

14 (Sa, x(Sa)), (Sb, x(Sb))← heappop(H) ;

15 else

16 (Sa, x(Sa)), (Sb, x(Sb))← elements of Cindex such that

δw(x(Sa ∪ Sb), Sa ∪ Sb) − getExpVal(memo, |Sa ∪ Sb|,
C, V , D) is maximized;

17 if neither (Sa, x(Sa)) nor (Sb, x(Sb)) is marked as merged

then

18 mark (Sa, x(Sa)) and (Sb, x(Sb)) as merged;

19 Sc ← Sa ∪ Sb;

20 Cindex+1 ← Cindex \ { (Sa, x(Sa)), (Sb, x(Sb)) };
21 Cindex+1 ← Cindex+1 ∪ { (Sc, x(Sc)) };
22 foreach (Sd, x(Sd)) ∈ Cindex+1 do

23 if Sd ̸= Sc ∧ x(Sd) ∩ x(Sc) ̸= ∅ then
24 δcd ← δw(x(Sc ∪ Sd), Sc ∪ Sd);

25 δcd ← δcd − getExpVal(memo, |Sc ∪Sd|, C,V ,D);

26 H.heappush(δcd, (Sc, x(Sc)), (Sd, x(Sd)));

27 index← index+ 1;

28 return C1, C2, . . . , Cm;

48 CHAPTER 4. PROPOSED ALGORITHMS

4.4 Sampling efficiency

In Section 4.3 we assumed that the number of samples needed to estimate

the expected value of the weighted density is a constant, and potentially a

small one. This fact is mostly justified empirically, as we will see in Section

5.6; however, we can still propose some interesting, high-level theoretical

considerations.

For simplicity, let us consider the unweighted density, for which we have

derived more theoretical results. In particular, given any k ∈ N+ we can

easily apply Propositions 4.1.2 and 4.1.4 to verify that an upper bound to

the expected value of δ(x(S), S) is

1− p

1− pk

when S ∼ U({S ⊆ C s.t. |S| = k}).
Similarly, it is trivial to verify that according to our choice of x(S) the

density of δ(x(S), S) can never be lower than

1

|S|

no matter the choice of S; hence, thanks to the linearity of the expected

value we are assured that the expectation we are interested in is lower

bounded by k−1. We can actually verify an even stronger result: even the

sampling approximation of the expected value is lower bounded by the same

quantity, since as we have just seen each sample must individually be greater

or equal to k−1.

We can now plot both the upper and the lower bounds of our expectation

as a function of the cardinality k of S, trying different values of p; this

results in Figure 4.1. Notice that the upper bound of the expectation does

not necessarily hold for its sampled approximation, too; and since we have

no explicit formula for the variance, we do not even know how far from this

upper bound we may reasonably get.

However, it is quite clear that as the value of p increases the upper bound

of the correct expectation gets closer and closer to its lower bound; as seen

in the Remark to Corollary 4.1.2.1, we even know that

1− p

1− pk
→ 1

k

as p → 1. Therefore, this is still a hint that we may expect the variability

of our approximation to decrease as p increases. As a side note, notice how

4.4. SAMPLING EFFICIENCY 49

Figure 4.1: Bounds on the true expected density for various values of p.

the fact that the two bounds get closer and closer is very consistent with

the fact that both intuitively and experimentally the problem gets harder

as p→ 1.

Anyway, the most interesting consideration we can make is that the be-

haviour of the bounds depicted in Figure 4.1 does not depend upon the total

number of cells, nor does it depend upon the total number of mutations.

Once again, this is probably a hint to the fact that as we are assuming the

number of samples needed to estimate the expected value is a constant with

respect to the total size of our problem, especially for high values of p.

50 CHAPTER 4. PROPOSED ALGORITHMS

Chapter 5

Experimental Evaluation

In this Chapter we explore the capabilities of the proposed algorithms by

discussing some experimental results. Such results are summarized as plots;

the detailed numerical values can be found in Appendix A.

As discussed in Chapter 4, in order to compare the results with the ones

from SMBClone we need a way to choose a single clustering among the ones

in the dendrogram. The solution adopted is to simply choose the clustering

with cardinality equal to the correct number of clones. While this approach

could potentially give some advantage to the proposed algorithms, it allows

us to evaluate their performance without any bias that would be introduced

by choosing a specific model selection algorithm.

To better compare the results with the ones from [2] the same score is

used throughout the experiments; namely, the Adjusted Rand Index (ARI).

Given a set containing n elements and two different partitioning X and Y

of such set, the Rand Index is defined as

RI =
α(︁
n
2

)︁
where α is the number of pairs of elements from the set that were either

put in the same subset both in X and in Y or that were put in different

subsets both in X and in Y . Therefore, the Rand Index measures the

similarity between two different clusterings of the same input data. The

Adjusted Rand Index additionally corrects for the expected value of such

similarity, so that a value of one means that the correct clonal composition

was perfectly recovered, while a value of zero corresponds to what we would

get on average by randomly guessing; formally,

ARI =
RI− E[RI]
1− E[RI]

.

51

52 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.1: (A) The clone tree used in SBMClone and (B) its corresponding

mutation matrix.

All synthetic samples were obtained using the code for simulated data

generation from SBMClone; unless otherwise stated the parameters were

chosen to be consistent with the ones used in [2], i. e. m = 4000, n = 5000,

p = 0.995 and a mutation matrix as per Figure 5.1, with a fraction of

overlapping mutations of 0.3. Since the noise strength is quite high in most

tests, for ease of representation we will often refer to p̄
def
= 1− p. To ensure

that no bias was introduced through the data, the row and columns of the

resulting matrices were randomly shuffled. Each result is averaged over five

different matrices generated with the same parameters, unless otherwise

stated. All tests were performed on a PC with a Intel® Centrino™ 2 dual-

core processor and 2 GB of RAM. The code was implemented using Python,

and a C++ porting is currently in its preliminary stages. Since currently the

C++ version is not sufficiently refined, all presented results are relative to

the Python implementation. Notice however that the code of SBMClone is

mostly implemented in C++, so this may influence all runtime comparisons.

The Chapter is divided as follows: in Section 5.1 we will test differ-

ent fractions of overlap between the mutations of the clones, highlighting

the limitations of the basic density described in Section 4.1.2 and how the

weighted density solves these problems. In Section 5.2 we will consider the

effect of the number of cells on the algorithms; in particular, there will

be a focus on the interesting behaviour of the proposed algorithms when

few cells are present. Similarly, in Section 5.3 we will present the effect of

varying the number of mutations, while for completeness we will test the

effect of varying both the number of cells and the number of mutations at

the same time in Section 5.4. Then, we will explore the consequences of

more complex mutation trees on multiple problem sizes in Section 5.5. The

considerations on the sampling efficiency presented during Section 4.4 will

be experimentally tested in Section 5.6, confirming what we expected. A

5.1. VARYING THE OVERLAP 53

further discussion about the causes of the errors of the proposed algorithms

will be the subject of Section 5.7; finally, we will test some data generated

using realistic parameters in Section 5.8, where the proposed algorithms

proved to perform better than SBMClone.

5.1 Varying the overlap

Figure 5.2: ARI vs. fraction of overlap.

The first test performed was checking the effect of the presence of a

varying fraction of common mutations between the clones. In our case,

the utilized mutation tree is the one of Figure 5.1; as such, the fraction of

overlap is defined as
|V1|
n

.

We have already discussed how the basic density may present some diffi-

culties when several common mutations are present; Figure 5.2 does actually

confirm this. In particular, we can verify how the naive algorithm struggles

in retrieving the true clonal composition when the overlap increases, espe-

cially for low values of p̄. On the bright side, the weighted version of the

algorithm already shows a good performance for all noise strengths, and

54 CHAPTER 5. EXPERIMENTAL EVALUATION

consistently achieves ARI equal to one when no overlap is present. This

confirms that the introduction of the weighted density greatly mitigates

the limitations of its vanilla version. Furthermore, while SBMClone itself

clearly does not suffer from overlapping mutation groups at all, the adjusted

version of the algorithm displays similar reconstruction capabilities in the

vast majority of the considered parameter subspace.

As for runtimes, we can see in Figure 5.3 that all four algorithms re-

quired roughly comparable amounts of time, with SBMClone performing

the best. Once again, this is at least partially due to the different program-

ming language used in the implementations.

Figure 5.3: Runtime vs. fraction of overlap.

5.2. VARYING THE NUMBER OF CELLS 55

5.2 Varying the number of cells

Figure 5.4: ARI vs. number of cells.

Another interesting test to perform is verifying how the algorithms be-

have as a function of the number of cells. The results are in Figure 5.4.

Notice that both SBMClone and the adjusted algorithm start to perform

perfectly in most cases for values of m as low as 1000, so reaching the usual

value ofm = 4000 was deemed unnecessary. Once again, we can see that the

naive clustering algorithm performed the worst, while the weighted and ad-

justed versions reached increasingly better scores and SBMClone generally

worked the best.

However, the adjusted clustering algorithm seems to often achieve re-

sults comparable to the ones of SBMClone, which is even consistently out-

performed for lower values of |C|. This will be better discussed at the end

of the Chapter.

Another interesting feature of the considered results is the presence of a

local ARI maximum when a small number of cells is considered. Such local

maximum can be identified both in the naive and the weighted version of the

56 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.5: Runtime vs. number of cells.

clustering algorithm, while it is absent from the adjusted algorithm. The

presence of this local maximum may be surprising, since we could expect the

considered computational problem to get easier and easier as the number of

cells (and thus the available data) increases. A possible explanation of this

behaviour will be discussed in Section 5.2.1.

As for the runtimes, we can verify from Figure 5.5 that the theoreti-

cal predictions of Section 4.3 do hold in practice. In particular, all three

clustering algorithms display a complexity quadratic in the number of cells,

and the only difference between one another is a multiplicative constant

factor. In any case, all runtimes are usually comparable, including the ones

of SBMClone.

5.2. VARYING THE NUMBER OF CELLS 57

5.2.1 Dendrograms and distribution of the errors

Figure 5.6: Dendrogram from the weighted algorithm, m = 40, p̄ = 0.025.

Figure 5.7: Dendrogram from the adjusted algorithm, m = 40, p̄ = 0.025.

To better understand how the number of cells influences the algorithms’

performances we can directly look at some output dendrograms. The con-

sidered input mutation matrix was generated using noise strength p̄ = 0.025;

to keep a good readability of the outputs, onlym = 40 cells were considered.

The dendrogram from Figure 5.6 was generated using the weighted al-

gorithm. Here we can clearly notice how the cells are merged following the

clusters’ sizes, i. e. at first all cells are grouped into pairs, then all pairs are

merged into clusters of four cells and so on. This behaviour was expected,

since as previously seen the expected density is a monotonically decreasing

function of the number of cells in a cluster.

The dendrogram of the adjusted algorithm can be seen in Figure 5.7.

This highlights a completely different behaviour, with cluster merged with-

out any influence from their size. This means that the correction factor used

in the adjusted density does actually help counteracting the bias introduced

by the cardinality of the clusters.

58 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.8: Cumulative errors vs. number of iterations.

The consequences of this structural difference between the two dendro-

grams can be seen in Figure 5.8. Here, the cumulative number of errors

up to the i−th iteration is plotted for both the weighted and the adjusted

algorithm. In this context, merging two clusters is considered to be an error

whenever the majority of the cells from the first cluster originally belonged

to a different clone with respect to the majority of the cells of the second

cluster. The test was performed using m = 500, p̄ = 0.01 and averaging

over 50 runs.

The consequence of merging clusters according to size in the weighted

algorithm can be clearly seen: each time a given cardinality is considered

the most promising clusters get merged at first, resulting in a somewhat

slow increase in the number of cumulative errors. However, at some point

only the most uncertain clusters are left; in this case, it is very likely that

we may perform wrong merges, causing a steep increase in the number of

cumulative errors. After all clusters of a given cardinality get processed the

cycle repeats, until all cells get merged in a single cluster.

On the other hand, the adjusted algorithm tends to immediately exploit

the most promising merges; then, as we proceed through the iterations, the

problems becomes artificially easier, since the information from multiple

cells is merged. This enables us to keep the most uncertain clusters for later,

when we can merge even them with higher reliability due to the increased

amount of information per cluster. This means that the increase of the

cumulative number of errors is not only more gradual and uniform, but it

also tends to slow down in the last iterations.

5.3. VARYING THE NUMBER OF MUTATIONS 59

This different behaviour between the two algorithms clearly explains

the difference in performance that was discussed in the previous Section.

Furthermore, the local ARI maximum followed by a sudden decline of per-

formance that was observed in both the naive and the weighted algorithms

may be linked with the erratic behaviour of the errors distribution and the

presence of abrupt increases in the amount of wrong merges.

5.3 Varying the number of mutations

Figure 5.9: ARI vs. number of mutations.

We have previously analyzed how the algorithms respond to a change

in the number of cells. Symmetrically, we will now consider the impact of

a different number of mutations. In particular, the ARI reached by each

algorithm is shown in Figure 5.9. As in the previous Section, reaching the

usual value of n = 5000 was deemed unnecessary to highlight the interesting

points. Generally speaking, the considerations presented with regards to the

number of cells are still holding. The main difference is that in this case

60 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.10: Runtime vs. number of mutations. Light gray points corre-

spond to outliers which were clipped in the graphs.

a low number of mutations affects all algorithms much more than a low

number of cells, especially when an higher amount of noise is present.

As for the runtimes (Figure 5.10), we can once again verify that the

general trends correspond to the theoretical ones, with all runtimes linearly

increasing with the number of mutations. However, while this holds true

almost perfectly for the naive algorithm, the weighted and the adjusted

versions present some outliers. As discussed in Section 4.3, this is caused

by the worst-case scenario where the complexity is cubic in the number of

cells. However, we can verify that this always results in an ARI very close

to zero, meaning that the resulting output is not of interest.

5.4. VARYING THE NUMBER OF BOTH CELLS AND MUTATIONS61

5.4 Varying the number of both cells and

mutations

Figure 5.11: ARI vs. number of both cells and mutations.

For completeness, as a final test both the number of cells and the number

of mutations was varied. This resulted in Figures 5.11 and 5.12. The results

are consistent with what could be expected, in terms of both ARI and

runtime, and reflect the same general considerations that were previously

presented. The only interesting difference with respect to Section 5.3 is that

this time there is not a dramatic increase in runtime when few mutations are

present, mostly because now the corresponding low number of cells prevents

the worst-case cubic scenario to heavily affect the overall time requirements.

62 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.12: Runtime vs. number of both cells and mutations.

5.5 Varying the mutation tree

Up to now, all algorithms were tested on the same basic mutation tree.

However, more complex structures may be found in practice; as such, the

increasingly complex mutation trees represented in Figure 5.13 were consid-

ered. Multiple numbers of cells were tested: 4000 cells in total (Figure 5.14)

100 cells per clone (Figure 5.15) and 20 cells per clone (Figure 5.16). Notice

that in this last case the number of mutations was increased to 50k, since

the results presented in the previous Sections suggested that all algorithms

would probably fail with this few cells, unless more mutations are present.

Furthermore, using n = 50k is consistent with some real-world datasets, as

discussed in Section 5.8.

In most cases, more complex underlying topologies led to lower ARI,

as would be expected. There are some exceptions in the setups where the

total number of cells was not constant: in these occasions, more elaborate

mutation trees correspond to a larger number of cells; this may offset the

additional complexity introduced by the topology.

5.5. VARYING THE MUTATION TREE 63

The most interesting results are the ones with the lowest number of cells:

here, consistently with what was seen in Section 5.2, the adjusted algorithm

outperforms SBMClone for most topologies and most values of p̄.

Figure 5.13: The four mutation trees tested, along with their corresponding

matrices.

Figure 5.14: ARI vs. p̄ for different mutation trees, m = 4000.

64 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.15: ARI vs. p̄ for different mutation trees, 100 cells per clone.

Figure 5.16: ARI vs. p̄ for different mutation trees, 20 cells per clone.

5.6. TESTING SAMPLING EFFICIENCY 65

5.6 Testing sampling efficiency

In Chapter 4 we have assumed that the adjusted algorithm could use a

constant sample size, providing some hints about the reason why this could

hold true. To verify this assumption empirically we can start from Figure

5.17, where the expected weighted density for |S| = 2 is computed for many

different sample sizes. Looking at this plot it may seem like the variability

of the approximation is quite considerable, despite it being slightly reduced

for higher sample sizes.

Figure 5.17: Detailed view of the estimated expected value for |S| = 2.

However, if we look at the global picture, we can realize that such vari-

ability is actually very small, even for the lowest sample size. In particular,

Figure 5.18 clearly shows that the difference in magnitude between multiple

values of |S| overshadows the variability of the single approximation.

Figure 5.18: Global view of the estimations of different expected values.

66 CHAPTER 5. EXPERIMENTAL EVALUATION

A further confirmation of the ideas of Section 4.4 derives from Figure

5.19. Here |S| = 20 in all tests, and p̄ is varied instead. We can then

verify that as p̄→ 0 the variability of the approximations decreases, which

is exactly what we conjectured would happen due to the behaviour of the

expected density bounds, as argued in the previous Chapter.

Figure 5.19: Estimated weighted density expected value, varying p̄.

However, we have not answered the most important question yet: what

happens to the adjusted algorithm when we vary the sample size? The

answer lies in Figure 5.20. Here, we can verify that there is a noticeable

benefit in terms of ARI when we go to a sample size of zero (meaning that

we do not perform any sampling at all, making the adjusted algorithm an

exact copy of the weighted algorithm) to a sample size of one. However,

as the sample size increases, there is not any further benefit; on the other

hand, the total runtime grows linearly with the sample size, as should be

expected. All in all, this should definitively confirm our choice of fixing the

sample size to be a small constant.

5.7. STATISTICAL AND COMPUTATIONAL BARRIERS 67

(A) (B)

Figure 5.20: Average ARI (A) and runtime (B) for different sample sizes,

symlog x axis scale.

5.7 Statistical and computational barriers

We have seen that the proposed algorithms can perform very well for some

combinations of the problem’s parameters; however, some other times the

resulting ARI was not satisfactory. This naturally poses the question of

whether we are encountering a statistical or a computational barrier. In

the first case, data does not contain enough information to allow perfect

recovery of the clonal composition using a density-based algorithm; in the

second one, the information contained in the data could be sufficient but

the proposed algorithms are not capable of retrieving the density-optimal

partitioning.

A possible answer comes from Figure 5.21, where the adjusted algorithm

was once again tested with a variable number of cells like we did in Section

5.2, using p̄ = 0.005. In this case, the weighted density of each of the two

clones was averaged together and plotted along with the resulting ARI. In

particular, the weighted density was computed for both the correct, original

clones and for the ones returned by the algorithm.

As expected, both the correct and the estimated densities decrease for

bigger values of m. However, the decrease in the estimated weighted density

is more steep: the algorithm achieves an average density higher than the one

of the correct clones for low values of m, but it starts to return a weighted

density worse than the ground truth as the number of cells increases; how-

68 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.21: Relation between the density of the correct clones, the density

of the estimated clones and the resulting ARI

ever, this results in higher ARI. All in all, this seems to suggest that we are

initially dealing with a statistical barrier; then, as the available amount of

data increases, density starts to correctly characterize the problem and the

remaining amount of error is presumably imputable to the greedy choices

of the algorithm.

Notice however that even when the barrier is mostly computational we

continue to achieve better and better ARI as m increases, despite the differ-

ence between the correct and the estimated densities remaining almost con-

stant. This suggests that density alone does not capture the whole picture:

since it is only an heuristic score (despite being a provably meaningful one)

finding the global optimum is not necessarily needed to better reconstruct

clones; as such, we once again confirm that a greedy clustering algorithm

can be suitable, being very efficient and enabling the exploitation of the

more promising and informative merges, as previously discussed in Section

5.2.1.

5.8. TESTING REALISTIC PARAMETERS 69

5.8 Testing realistic parameters

As previously mentioned in Section 5.2 the clustering algorithms seem to

outperform SBMClone when the cell count and p̄ are low. Interestingly

enough, the real-world datasets presented in [5] and tested by the authors

of SBMClone [2] do contain a low cell count; in particular, each sample

contains aroundm = 45 cells, n = 50000 mutations and a roughly estimated

p̄ ≈ 0.02. It was therefore all but natural to test all four algorithms on some

synthetic data generated using these parameters; the mutation tree is the

one of Figure 5.1. The results can be seen in Figures 5.22 and 5.23.

It is quite clear that in this setup all the proposed algorithms outperform

SBMClone for most values of p̄ with respect to both time and ARI. In

particular, the adjusted algorithms consistently manages to achieve perfect

or almost perfect identification of the correct clones starting from p̄ ≈ 0.01,

and therefore including the realistic case of p̄ ≈ 0.02. On the other hand,

SBMClone is quite far from returning a correct partitioning of the cells for

most noise strengths, starting to provide slightly more meaningful results

only when p̄ is roughly twice as big as the estimated one.

Figure 5.22: ARI vs. p̄, realistic parameters.

70 CHAPTER 5. EXPERIMENTAL EVALUATION

Figure 5.23: Runtime vs. p̄, realistic parameters.

Chapter 6

Conclusions

To the best of our knowledge, in this work we presented the first algorithms

based on noisy itemset mining that allows the recovery of the clonal com-

position of tumor samples from single nucleotide variations.

We theoretically proved the relationship between noisy itemsets, mu-

tations and clones; this allowed the definition of a score to distinguish be-

tween true clones and random groups of cells. Extensive theoretical analyses

proved that in expectation true clones are actually rewarded with a strictly

higher score; furthermore, they enabled the definition of even more effective

variants of the basic score.

In turns, this enabled us to develop and implement three greedy ag-

glomerative clustering algorithms, whose runtimes were analyzed and con-

sequently optimized. We could then perform comprehensive experiments

on synthetic data, assessing the efficiency, the scalability and the accuracy

of the proposed techniques and comparing them to a state of the art al-

gorithm, SBMClone. Such tests also enabled us to better understand the

inner workings of both the scores and the algorithms, from how the errors

distribute along the iterations to what kind of statistical and computational

barriers we may encounter in practice.

Incidentally, all three proposed algorithms displayed good recovery ca-

pabilities. Even the naive approach, despite its performance being inferior

to SBMClone and the other proposed techniques, actually outperformed all

the other algorithms tested in [2] whenever a direct comparison was possible.

We finally performed some tests on synthetic data generated using realis-

tic parameters derived from [5] through [2]; in such conditions, the proposed

approaches proved to outperform SBMClone. In particular, the adjusted

algorithm seems to be particularly suitable to this kind of real-world data

71

72 CHAPTER 6. CONCLUSIONS

where lots of mutations are available and few cells are present: practical

tests suggest that the reconstruction capability is mostly influenced by the

number of available mutations; furthermore, since its complexity is linear

in n, it remains quite efficient. Additionally, the greedy nature of the al-

gorithm actually enables it to solve the easiest cases at first; this way, the

most difficult decisions can be made at a later time, when the data is already

partially merged and thus the signal to noise ratio is increased.

In light of these considerations, an interesting direction for future works

would be to actually test the proposed algorithms on real datasets. More-

over, deriving some results on the variance of the proposed score could

further improve our understanding of both the problem and the proposed

solution; as such, this would be an interesting direction for future expan-

sions of the work. Finally, from a more practical point of view it could

be interesting to complete and refine the C++ implementation of the algo-

rithms; preliminary tests on the current unoptimized version already display

a five-fold increase in time efficiency, which would make the proposed ap-

proach quite competitive over SBMClone in a wider range of the input data

parameter space.

Bibliography

[1] C. Gawad, W. Koh, and S. R. Quake, “Single-cell genome sequencing:

current state of the science,” Nature Reviews Genetics, vol. 17, pp. 175–

188, Jan. 2016.

[2] M. A. Myers, S. Zaccaria, and B. J. Raphael, “Identifying tumor clones

in sparse single-cell mutation data,” Bioinformatics, vol. 36, pp. i186–

i193, 07 2020.

[3] T. P. Peixoto, “Efficient monte carlo and greedy heuristic for the in-

ference of stochastic block models,” Phys. Rev. E, vol. 89, p. 012804,

Jan 2014.

[4] T. P. Peixoto, “Hierarchical block structures and high-resolution model

selection in large networks,” Phys. Rev. X, vol. 4, p. 011047, Mar 2014.

[5] C. Kim, R. Gao, E. Sei, R. Brandt, J. Hartman, T. Hatschek,

N. Crosetto, T. Foukakis, and N. E. Navin, “Chemoresistance evolution

in triple-negative breast cancer delineated by single-cell sequencing,”

Cell, vol. 173, pp. 879–893.e13, May 2018.

[6] A. K. Casasent, M. Edgerton, and N. E. Navin, “Genome evolution

in ductal carcinoma in situ: invasion of the clones,” The Journal of

Pathology, vol. 241, pp. 208–218, Nov. 2016.

[7] A. Davis and N. E. Navin, “Computing tumor trees from single cells,”

Genome Biology, vol. 17, May 2016.

[8] L. Melchor, A. Brioli, C. P. Wardell, A. Murison, N. E. Potter, M. F.

Kaiser, R. A. Fryer, D. C. Johnson, D. B. Begum, S. H. Wilson, G. Vi-

jayaraghavan, I. Titley, M. Cavo, F. E. Davies, B. A. Walker, and

G. J. Morgan, “Single-cell genetic analysis reveals the composition of

initiating clones and phylogenetic patterns of branching and parallel

evolution in myeloma,” Leukemia, vol. 28, pp. 1705–1715, Jan. 2014.

[9] Z. Yu, A. Li, and M. Wang, “CloneCNA: detecting subclonal somatic

copy number alterations in heterogeneous tumor samples from whole-

exome sequencing data,” BMC Bioinformatics, vol. 17, Aug. 2016.

73

74 BIBLIOGRAPHY

[10] R. Wang, D.-Y. Lin, and Y. Jiang, “SCOPE: A normalization and

copy-number estimation method for single-cell DNA sequencing,” Cell

Systems, vol. 10, pp. 445–452.e6, May 2020.

[11] S. Hui and R. Nielsen, “SCONCE: a method for profiling copy number

alterations in cancer evolution using single-cell whole genome sequenc-

ing,” Bioinformatics, vol. 38, pp. 1801–1808, Jan. 2022.

[12] S. Salehi, A. Steif, A. Roth, S. Aparicio, A. Bouchard-Côté, and S. P.

Shah, “ddClone: joint statistical inference of clonal populations from

single cell and bulk tumour sequencing data,” Genome Biology, vol. 18,

Mar. 2017.

[13] G. Satas, S. Zaccaria, G. Mon, and B. J. Raphael, “SCARLET: Single-

cell tumor phylogeny inference with copy-number constrained mutation

losses,” Cell Systems, vol. 10, pp. 323–332.e8, Apr. 2020.

[14] S. Malikic, F. R. Mehrabadi, S. Ciccolella, M. K. Rahman, C. Rick-

etts, E. Haghshenas, D. Seidman, F. Hach, I. Hajirasouliha, and S. C.

Sahinalp, “PhISCS: a combinatorial approach for subperfect tumor

phylogeny reconstruction via integrative use of single-cell and bulk se-

quencing data,” Genome Research, vol. 29, pp. 1860–1877, Oct. 2019.

[15] K. Yuan, T. Sakoparnig, F. Markowetz, and N. Beerenwinkel, “Bit-

Phylogeny: a probabilistic framework for reconstructing intra-tumor

phylogenies,” Genome Biology, vol. 16, Feb. 2015.

[16] K. Jahn, J. Kuipers, and N. Beerenwinkel, “Tree inference for single-

cell data,” Genome Biology, vol. 17, May 2016.

[17] J. Singer, J. Kuipers, K. Jahn, and N. Beerenwinkel, “Single-cell mu-

tation identification via phylogenetic inference,” Nature Communica-

tions, vol. 9, Dec. 2018.

[18] H. Zafar, N. Navin, K. Chen, and L. Nakhleh, “SiCloneFit: Bayesian

inference of population structure, genotype, and phylogeny of tumor

clones from single-cell genome sequencing data,” Genome Research,

vol. 29, pp. 1847–1859, Oct. 2019.

[19] N. Borgsmüller, J. Bonet, F. Marass, A. Gonzalez-Perez, N. Lopez-

Bigas, and N. Beerenwinkel, “BnpC: Bayesian non-parametric cluster-

BIBLIOGRAPHY 75

ing of single-cell mutation profiles,” Bioinformatics, vol. 36, pp. 4854–

4859, June 2020.

[20] E. M. Ross and F. Markowetz, “OncoNEM: inferring tumor evolution

from single-cell sequencing data,” Genome Biology, vol. 17, Apr. 2016.

[21] Z. Yu, F. Du, and L. Song, “SCClone: Accurate clustering of tumor

single-cell DNA sequencing data,” Frontiers in Genetics, vol. 13, Jan.

2022.

[22] A. Roth, A. McPherson, E. Laks, J. Biele, D. Yap, A. Wan, M. A.

Smith, C. B. Nielsen, J. N. McAlpine, S. Aparicio, A. Bouchard-Côté,

and S. P. Shah, “Clonal genotype and population structure inference

from single-cell tumor sequencing,” Nature Methods, vol. 13, pp. 573–

576, May 2016.

[23] S. Ciccolella, C. Ricketts, M. S. Gomez, M. Patterson, D. Silverbush,

P. Bonizzoni, I. Hajirasouliha, and G. D. Vedova, “Inferring cancer

progression from single-cell sequencing while allowing mutation losses,”

Bioinformatics, vol. 37, pp. 326–333, Aug. 2020.

[24] M. El-Kebir, “SPhyR: tumor phylogeny estimation from single-cell se-

quencing data under loss and error,” Bioinformatics, vol. 34, pp. i671–

i679, Sept. 2018.

[25] Z. Yu, H. Liu, F. Du, and X. Tang, “GRMT: Generative reconstruc-

tion of mutation tree from scratch using single-cell sequencing data,”

Frontiers in Genetics, vol. 12, June 2021.

[26] Z. Chen, F. Gong, L. Wan, and L. Ma, “RobustClone: a robust PCA

method for tumor clone and evolution inference from single-cell se-

quencing data,” Bioinformatics, vol. 36, pp. 3299–3306, Mar. 2020.

[27] Z. Yu and F. Du, “AMC: accurate mutation clustering from single-cell

DNA sequencing data,” Bioinformatics, vol. 38, pp. 1732–1734, Dec.

2021.

[28] J. Liu, S. Paulsen, X. Sun, W. Wang, A. B. Nobel, and J. Prins, “Min-

ing approximate frequent itemsets in the presence of noise: Algorithm

and analysis,” in SDM, 2006.

76 BIBLIOGRAPHY

[29] X. Sun and A. B. Nobel, “On the size and recovery of submatrices of

ones in a random binary matrix,” Journal of Machine Learning Re-

search, vol. 9, no. 80, pp. 2431–2453, 2008.

[30] C. Yang, U. Fayyad, and P. S. Bradley, “Efficient discovery of error-

tolerant frequent itemsets in high dimensions,” in Proceedings of the

Seventh ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, KDD ’01, (New York, NY, USA), p. 194–203,

Association for Computing Machinery, 2001.

[31] J. Liu, S. Paulsen, W. Wang, A. Nobel, and J. Prins, “Mining approx-

imate frequent itemsets from noisy data,” in Fifth IEEE International

Conference on Data Mining (ICDM’05), pp. 4 pp.–, 2005.

[32] H. Cheng, P. S. Yu, and J. Han, “Ac-close: Efficiently mining approx-

imate closed itemsets by core pattern recovery,” in Sixth International

Conference on Data Mining (ICDM’06), pp. 839–844, 2006.

[33] H. Cheng, P. S. Yu, and J. Han, “Approximate frequent itemset mining

in the presence of random noise,” in Soft Computing for Knowledge

Discovery and Data Mining (O. Maimon and L. Rokach, eds.), pp. 363–

389, Springer, 2008.

[34] K. Mouhoubi, L. Letocart, and C. Rouveirol, “Itemset mining in noisy

contexts: A hybrid approach,” in 2011 IEEE 23rd International Con-

ference on Tools with Artificial Intelligence, pp. 33–40, 2011.

Appendix A

Detailed experimental results

This appendix contains all the numerical results presented in Chapter 5,

together with their standard deviations. Each time an algorithm was the

best performing one in terms of either ARI or runtime, the corresponding

entry is highlighted in boldface.

A.1 Overlap

Algorithm: Naive

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.005 0.0 0.984 0.001 334.219 14.756

0.005 0.04 0.929 0.017 336.535 2.259

0.005 0.08 0.828 0.018 341.511 2.226

0.005 0.12 0.703 0.034 354.454 3.731

0.005 0.16 0.654 0.018 361.489 3.408

0.005 0.2 0.516 0.044 367.888 3.337

0.005 0.24 0.431 0.069 375.663 2.665

0.005 0.28 0.357 0.068 384.227 2.663

0.005 0.32 0.244 0.041 391.747 2.845

Table A.1: Detailed data for Naive - p̄ = 0.005.

77

78 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Naive

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.01 0.0 0.984 0.000 522.865 2.245

0.01 0.04 0.983 0.002 536.824 1.566

0.01 0.08 0.975 0.004 553.971 2.579

0.01 0.12 0.956 0.004 565.723 5.090

0.01 0.16 0.926 0.011 580.971 2.477

0.01 0.2 0.867 0.032 597.268 3.166

0.01 0.24 0.801 0.029 609.967 2.806

0.01 0.28 0.730 0.023 624.401 2.704

0.01 0.32 0.702 0.022 638.597 0.473

Table A.2: Detailed data for Naive - p̄ = 0.010.

Algorithm: Naive

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.015 0.0 0.984 0.000 698.293 2.572

0.015 0.04 0.983 0.001 723.616 4.285

0.015 0.08 0.982 0.001 748.061 4.901

0.015 0.12 0.981 0.002 772.827 1.612

0.015 0.16 0.973 0.006 793.652 2.100

0.015 0.2 0.959 0.006 1002.476 410.058

0.015 0.24 0.927 0.021 1023.687 402.779

0.015 0.28 0.898 0.014 864.926 5.291

0.015 0.32 0.849 0.023 893.063 10.181

Table A.3: Detailed data for Naive - p̄ = 0.015.

A.1. OVERLAP 79

Algorithm: Naive

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.02 0.0 0.984 0.000 885.247 3.113

0.02 0.04 0.984 0.000 916.485 1.219

0.02 0.08 0.984 0.001 947.736 1.842

0.02 0.12 0.984 0.000 978.824 2.046

0.02 0.16 0.982 0.002 1012.464 8.917

0.02 0.2 0.979 0.001 1043.023 2.534

0.02 0.24 0.967 0.004 1075.429 5.778

0.02 0.28 0.953 0.012 1099.897 2.711

0.02 0.32 0.922 0.016 1132.664 6.725

Table A.4: Detailed data for Naive - p̄ = 0.020.

Algorithm: Naive

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.025 0.0 0.999 0.001 1070.209 3.694

0.025 0.04 0.997 0.007 1111.708 7.307

0.025 0.08 0.984 0.001 1144.678 5.613

0.025 0.12 0.984 0.000 1183.155 3.819

0.025 0.16 0.984 0.000 1262.837 25.349

0.025 0.2 0.983 0.001 1301.968 15.680

0.025 0.24 0.979 0.002 1353.389 7.270

0.025 0.28 0.973 0.003 1392.115 12.235

0.025 0.32 0.961 0.002 1425.284 38.148

Table A.5: Detailed data for Naive - p̄ = 0.025.

80 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Weighted

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.005 0.0 1.000 0.000 378.851 13.518

0.005 0.04 0.966 0.011 389.837 1.721

0.005 0.08 0.956 0.033 396.807 4.686

0.005 0.12 0.951 0.004 408.054 0.801

0.005 0.16 0.946 0.019 416.025 1.990

0.005 0.2 0.890 0.062 425.295 2.637

0.005 0.24 0.913 0.046 434.375 2.645

0.005 0.28 0.872 0.062 444.369 2.232

0.005 0.32 0.786 0.031 453.319 1.806

Table A.6: Detailed data for Weighted - p̄ = 0.005.

Algorithm: Weighted

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.01 0.0 1.000 0.000 597.512 2.061

0.01 0.04 0.984 0.001 618.648 2.982

0.01 0.08 0.983 0.001 638.549 1.728

0.01 0.12 0.983 0.001 653.330 3.010

0.01 0.16 0.983 0.001 671.473 3.287

0.01 0.2 0.980 0.004 688.397 4.074

0.01 0.24 0.979 0.002 705.259 1.616

0.01 0.28 0.980 0.003 720.217 2.971

0.01 0.32 0.974 0.007 737.646 2.310

Table A.7: Detailed data for Weighted - p̄ = 0.010.

A.1. OVERLAP 81

Algorithm: Weighted

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.015 0.0 1.000 0.000 803.028 1.232

0.015 0.04 0.983 0.001 831.379 3.811

0.015 0.08 0.984 0.000 857.961 3.763

0.015 0.12 0.984 0.000 886.092 1.412

0.015 0.16 0.984 0.000 915.180 4.389

0.015 0.2 0.983 0.001 943.498 3.753

0.015 0.24 0.984 0.000 1212.213 542.013

0.015 0.28 0.983 0.001 996.461 6.468

0.015 0.32 0.982 0.002 1029.012 4.486

Table A.8: Detailed data for Weighted - p̄ = 0.015.

Algorithm: Weighted

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.02 0.0 1.000 0.000 1007.411 1.908

0.02 0.04 0.987 0.007 1047.654 7.410

0.02 0.08 0.984 0.000 1082.395 1.242

0.02 0.12 0.984 0.000 1121.082 4.927

0.02 0.16 0.984 0.000 1164.380 4.519

0.02 0.2 0.984 0.000 1204.203 7.812

0.02 0.24 0.984 0.001 1239.521 12.978

0.02 0.28 0.984 0.000 1267.259 5.915

0.02 0.32 0.984 0.000 1303.802 7.206

Table A.9: Detailed data for Weighted - p̄ = 0.020.

82 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Weighted

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.025 0.0 1.000 0.000 1217.754 7.399

0.025 0.04 0.999 0.002 1261.907 2.154

0.025 0.08 0.997 0.007 1306.634 5.538

0.025 0.12 0.996 0.007 1348.641 5.399

0.025 0.16 0.997 0.007 1466.508 40.727

0.025 0.2 0.987 0.007 1497.494 6.296

0.025 0.24 0.987 0.007 1551.839 5.534

0.025 0.28 0.986 0.006 1613.016 6.157

0.025 0.32 0.984 0.000 1666.336 11.171

Table A.10: Detailed data for Weighted - p̄ = 0.025.

Algorithm: Adjusted

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.005 0.0 1.000 0.000 382.835 12.023

0.005 0.04 1.000 0.000 392.304 2.358

0.005 0.08 0.998 0.002 402.428 5.663

0.005 0.12 0.996 0.005 410.489 4.937

0.005 0.16 0.995 0.002 418.784 1.475

0.005 0.2 0.991 0.003 433.023 1.287

0.005 0.24 0.984 0.003 440.811 3.886

0.005 0.28 0.969 0.008 447.609 2.014

0.005 0.32 0.950 0.010 456.654 3.227

Table A.11: Detailed data for Adjusted - p̄ = 0.005.

A.1. OVERLAP 83

Algorithm: Adjusted

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.01 0.0 1.000 0.000 636.111 15.295

0.01 0.04 1.000 0.000 648.695 5.577

0.01 0.08 1.000 0.000 686.507 19.269

0.01 0.12 1.000 0.000 686.631 3.467

0.01 0.16 1.000 0.000 706.700 4.134

0.01 0.2 1.000 0.000 725.737 3.353

0.01 0.24 0.999 0.001 743.132 4.754

0.01 0.28 0.999 0.001 759.441 7.220

0.01 0.32 0.999 0.001 786.686 2.406

Table A.12: Detailed data for Adjusted - p̄ = 0.010.

Algorithm: Adjusted

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.015 0.0 1.000 0.000 881.148 39.254

0.015 0.04 1.000 0.000 912.627 18.658

0.015 0.08 1.000 0.000 959.591 31.213

0.015 0.12 1.000 0.000 969.715 9.528

0.015 0.16 1.000 0.000 991.685 18.425

0.015 0.2 1.000 0.000 1021.567 10.215

0.015 0.24 1.000 0.000 1318.351 578.225

0.015 0.28 1.000 0.000 1085.329 20.506

0.015 0.32 1.000 0.000 1108.931 6.919

Table A.13: Detailed data for Adjusted - p̄ = 0.015.

84 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Adjusted

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.02 0.0 1.000 0.000 1199.882 150.436

0.02 0.04 1.000 0.000 1180.654 29.839

0.02 0.08 1.000 0.000 1245.062 43.716

0.02 0.12 1.000 0.000 1245.656 24.003

0.02 0.16 1.000 0.000 1293.239 36.717

0.02 0.2 1.000 0.000 1320.704 23.426

0.02 0.24 1.000 0.000 1369.350 20.508

0.02 0.28 1.000 0.000 1403.423 42.109

0.02 0.32 1.000 0.000 1443.009 26.693

Table A.14: Detailed data for Adjusted - p̄ = 0.020.

Algorithm: Adjusted

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.025 0.0 1.000 0.000 1600.157 428.212

0.025 0.04 1.000 0.000 1434.740 50.537

0.025 0.08 1.000 0.000 1497.932 40.864

0.025 0.12 1.000 0.000 1522.601 47.454

0.025 0.16 1.000 0.000 1721.825 104.582

0.025 0.2 1.000 0.000 1725.390 19.563

0.025 0.24 1.000 0.000 1786.862 35.002

0.025 0.28 1.000 0.000 1914.997 87.578

0.025 0.32 1.000 0.000 1916.654 21.942

Table A.15: Detailed data for Adjusted - p̄ = 0.025.

A.1. OVERLAP 85

Algorithm: SBMClone

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.005 0.0 1.000 0.000 187.633 8.310

0.005 0.04 1.000 0.000 178.554 5.819

0.005 0.08 1.000 0.000 182.460 8.213

0.005 0.12 1.000 0.000 201.607 7.773

0.005 0.16 1.000 0.000 198.299 6.735

0.005 0.2 1.000 0.000 218.681 35.990

0.005 0.24 1.000 0.000 271.662 86.091

0.005 0.28 1.000 0.000 246.556 28.476

0.005 0.32 1.000 0.000 246.945 4.660

Table A.16: Detailed data for SBMClone - p̄ = 0.005.

Algorithm: SBMClone

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.01 0.0 1.000 0.000 417.276 244.905

0.01 0.04 1.000 0.000 339.706 73.663

0.01 0.08 1.000 0.000 324.782 2.968

0.01 0.12 1.000 0.000 340.790 11.048

0.01 0.16 1.000 0.000 356.519 10.331

0.01 0.2 1.000 0.000 366.832 16.497

0.01 0.24 1.000 0.000 448.270 96.836

0.01 0.28 1.000 0.000 420.160 11.621

0.01 0.32 1.000 0.000 519.981 38.536

Table A.17: Detailed data for SBMClone - p̄ = 0.010.

86 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: SBMClone

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.015 0.0 1.000 0.000 621.870 105.123

0.015 0.04 1.000 0.000 446.912 25.151

0.015 0.08 1.000 0.000 453.560 28.528

0.015 0.12 1.000 0.000 513.244 80.172

0.015 0.16 1.000 0.000 471.043 16.060

0.015 0.2 1.000 0.000 475.802 18.989

0.015 0.24 1.000 0.000 683.423 348.424

0.015 0.28 1.000 0.000 551.078 52.199

0.015 0.32 1.000 0.000 606.408 29.595

Table A.18: Detailed data for SBMClone - p̄ = 0.015.

Algorithm: SBMClone

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.02 0.0 1.000 0.000 454.712 14.896

0.02 0.04 1.000 0.000 862.936 246.471

0.02 0.08 1.000 0.000 559.874 22.581

0.02 0.12 1.000 0.000 576.338 12.850

0.02 0.16 1.000 0.000 769.846 341.196

0.02 0.2 1.000 0.000 646.679 38.051

0.02 0.24 1.000 0.000 679.063 12.294

0.02 0.28 1.000 0.000 750.228 48.124

0.02 0.32 1.000 0.000 1108.609 195.871

Table A.19: Detailed data for SBMClone - p̄ = 0.020.

A.1. OVERLAP 87

Algorithm: SBMClone

p̄ overlap
ARI Runtime (s)

mean SD mean SD

0.025 0.0 1.000 0.000 690.449 64.931

0.025 0.04 1.000 0.000 890.716 35.189

0.025 0.08 1.000 0.000 1082.332 236.912

0.025 0.12 1.000 0.000 1554.307 833.641

0.025 0.16 1.000 0.000 942.718 198.334

0.025 0.2 1.000 0.000 1219.163 556.504

0.025 0.24 1.000 0.000 870.048 23.995

0.025 0.28 1.000 0.000 909.167 105.779

0.025 0.32 1.000 0.000 909.998 22.262

Table A.20: Detailed data for SBMClone - p̄ = 0.025.

88 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

A.2 Number of cells

Algorithm: Naive

p̄ m
ARI Runtime (s)

mean SD mean SD

0.005 100 0.015 0.044 0.203 0.006

0.005 250 0.037 0.049 1.306 0.108

0.005 400 0.002 0.005 3.555 0.141

0.005 550 0.093 0.041 6.977 0.155

0.005 700 0.014 0.016 11.581 0.187

0.005 850 0.075 0.052 17.387 0.288

0.005 1000 0.121 0.064 24.432 0.297

0.005 1150 0.122 0.068 32.197 0.258

0.005 1300 0.138 0.059 41.346 0.521

0.005 1450 0.149 0.039 51.481 0.652

0.005 1600 0.153 0.065 62.013 2.923

0.005 1750 0.232 0.064 76.470 0.687

0.005 1900 0.233 0.042 89.681 0.737

0.005 2050 0.228 0.037 106.135 1.723

Table A.21: Detailed data for Naive - p̄ = 0.005.

A.2. NUMBER OF CELLS 89

Algorithm: Naive

p̄ m
ARI Runtime (s)

mean SD mean SD

0.01 100 0.016 0.044 0.329 0.004

0.01 250 0.453 0.093 2.215 0.077

0.01 400 0.118 0.152 5.810 0.111

0.01 550 0.464 0.084 11.293 0.074

0.01 700 0.442 0.076 18.753 0.358

0.01 850 0.496 0.036 28.042 0.175

0.01 1000 0.493 0.059 39.367 0.460

0.01 1150 0.521 0.073 52.139 0.262

0.01 1300 0.517 0.057 67.471 0.577

0.01 1450 0.618 0.067 84.966 0.185

0.01 1600 0.617 0.074 104.068 1.115

0.01 1750 0.618 0.043 121.600 3.265

0.01 1900 0.619 0.041 146.804 1.123

0.01 2050 0.638 0.043 171.833 0.884

Table A.22: Detailed data for Naive - p̄ = 0.010.

Algorithm: Naive

p̄ m
ARI Runtime (s)

mean SD mean SD

0.015 100 -0.002 0.007 0.494 0.077

0.015 250 0.575 0.058 3.005 0.090

0.015 400 0.644 0.085 7.972 0.069

0.015 550 0.739 0.039 15.574 0.157

0.015 700 0.725 0.038 25.623 0.269

0.015 850 0.740 0.049 38.588 0.266

0.015 1000 0.783 0.037 52.639 2.170

0.015 1150 0.727 0.026 72.535 0.362

0.015 1300 0.782 0.039 93.064 0.356

0.015 1450 0.799 0.034 116.640 0.655

0.015 1600 0.836 0.019 143.132 1.254

0.015 1750 0.805 0.021 171.637 0.894

0.015 1900 0.833 0.020 202.966 1.955

0.015 2050 0.858 0.028 236.905 1.360

Table A.23: Detailed data for Naive - p̄ = 0.015.

90 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Naive

p̄ m
ARI Runtime (s)

mean SD mean SD

0.02 100 0.076 0.184 0.631 0.069

0.02 250 0.780 0.072 3.787 0.056

0.02 400 0.824 0.035 10.225 0.158

0.02 550 0.818 0.015 20.052 0.080

0.02 700 0.809 0.025 33.402 0.208

0.02 850 0.867 0.038 49.477 0.291

0.02 1000 0.815 0.049 69.211 0.394

0.02 1150 0.882 0.013 92.658 0.411

0.02 1300 0.897 0.008 118.699 1.191

0.02 1450 0.909 0.021 148.769 0.479

0.02 1600 0.893 0.013 181.669 1.047

0.02 1750 0.907 0.037 218.188 1.086

0.02 1900 0.910 0.022 257.447 6.134

0.02 2050 0.923 0.018 299.858 7.733

Table A.24: Detailed data for Naive - p̄ = 0.020.

Algorithm: Naive

p̄ m
ARI Runtime (s)

mean SD mean SD

0.025 100 0.156 0.226 0.734 0.010

0.025 250 0.850 0.062 4.744 0.050

0.025 400 0.887 0.016 12.585 0.081

0.025 550 0.851 0.062 24.586 0.261

0.025 700 0.890 0.060 40.490 0.296

0.025 850 0.947 0.008 60.571 0.447

0.025 1000 0.936 0.034 84.781 0.632

0.025 1150 0.926 0.041 113.319 0.383

0.025 1300 0.934 0.034 143.397 3.876

0.025 1450 0.946 0.018 182.918 3.106

0.025 1600 0.939 0.029 223.206 0.995

0.025 1750 0.953 0.003 267.617 1.112

0.025 1900 0.955 0.010 315.880 2.113

0.025 2050 0.950 0.018 367.945 2.143

Table A.25: Detailed data for Naive - p̄ = 0.025.

A.2. NUMBER OF CELLS 91

Algorithm: Weighted

p̄ m
ARI Runtime (s)

mean SD mean SD

0.005 100 0.010 0.027 0.253 0.096

0.005 250 0.052 0.056 1.461 0.113

0.005 400 0.014 0.021 3.824 0.152

0.005 550 0.050 0.039 7.619 0.150

0.005 700 0.083 0.126 12.644 0.249

0.005 850 0.047 0.033 19.013 0.204

0.005 1000 0.314 0.108 26.684 0.102

0.005 1150 0.435 0.046 35.506 0.437

0.005 1300 0.454 0.051 46.057 0.380

0.005 1450 0.538 0.154 57.512 0.640

0.005 1600 0.602 0.049 68.152 3.353

0.005 1750 0.606 0.111 85.609 0.764

0.005 1900 0.662 0.108 101.198 0.961

0.005 2050 0.651 0.074 117.397 1.442

Table A.26: Detailed data for Weighted - p̄ = 0.005.

Algorithm: Weighted

p̄ m
ARI Runtime (s)

mean SD mean SD

0.01 100 0.025 0.026 0.340 0.003

0.01 250 0.410 0.154 2.254 0.117

0.01 400 -0.000 0.002 6.172 0.112

0.01 550 0.760 0.011 12.174 0.094

0.01 700 0.711 0.122 20.365 0.254

0.01 850 0.764 0.058 30.596 0.267

0.01 1000 0.807 0.019 43.018 0.290

0.01 1150 0.797 0.064 57.289 0.455

0.01 1300 0.920 0.014 73.917 0.209

0.01 1450 0.914 0.019 92.550 0.687

0.01 1600 0.914 0.005 113.845 0.869

0.01 1750 0.927 0.033 135.668 4.128

0.01 1900 0.915 0.034 162.001 0.967

0.01 2050 0.961 0.018 191.184 1.094

Table A.27: Detailed data for Weighted - p̄ = 0.010.

92 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Weighted

p̄ m
ARI Runtime (s)

mean SD mean SD

0.015 100 0.000 0.011 0.478 0.010

0.015 250 0.719 0.054 3.117 0.104

0.015 400 0.859 0.022 8.488 0.207

0.015 550 0.845 0.024 16.692 0.154

0.015 700 0.834 0.005 27.846 0.184

0.015 850 0.944 0.014 42.093 0.203

0.015 1000 0.842 0.078 57.351 2.621

0.015 1150 0.974 0.015 79.332 0.669

0.015 1300 0.963 0.004 101.882 1.039

0.015 1450 0.968 0.015 127.861 0.640

0.015 1600 0.921 0.001 157.770 1.419

0.015 1750 0.972 0.002 190.326 1.234

0.015 1900 0.975 0.019 226.502 2.242

0.015 2050 0.979 0.013 267.096 1.765

Table A.28: Detailed data for Weighted - p̄ = 0.015.

Algorithm: Weighted

p̄ m
ARI Runtime (s)

mean SD mean SD

0.02 100 -0.008 0.001 0.609 0.009

0.02 250 0.855 0.058 3.993 0.147

0.02 400 0.914 0.008 10.860 0.192

0.02 550 0.866 0.000 21.301 0.134

0.02 700 0.933 0.056 35.938 0.435

0.02 850 0.958 0.000 54.156 0.201

0.02 1000 0.978 0.008 75.955 0.365

0.02 1150 0.977 0.013 100.912 0.701

0.02 1300 0.969 0.000 130.336 0.644

0.02 1450 0.986 0.000 163.318 0.711

0.02 1600 0.994 0.006 201.110 0.660

0.02 1750 0.965 0.008 243.578 1.170

0.02 1900 0.977 0.014 284.639 9.150

0.02 2050 0.985 0.011 334.686 8.173

Table A.29: Detailed data for Weighted - p̄ = 0.020.

A.2. NUMBER OF CELLS 93

Algorithm: Weighted

p̄ m
ARI Runtime (s)

mean SD mean SD

0.025 100 -0.008 0.003 0.785 0.072

0.025 250 0.831 0.036 4.903 0.073

0.025 400 0.921 0.000 13.392 0.119

0.025 550 0.978 0.000 26.349 0.170

0.025 700 0.971 0.019 43.899 0.146

0.025 850 0.958 0.000 66.424 0.323

0.025 1000 0.981 0.007 93.197 0.779

0.025 1150 0.984 0.011 126.034 2.297

0.025 1300 0.971 0.009 158.694 4.411

0.025 1450 0.984 0.003 208.531 12.922

0.025 1600 0.996 0.005 248.929 1.784

0.025 1750 0.985 0.009 298.685 1.054

0.025 1900 0.986 0.003 353.253 0.857

0.025 2050 0.992 0.007 414.999 2.553

Table A.30: Detailed data for Weighted - p̄ = 0.025.

Algorithm: Adjusted

p̄ m
ARI Runtime (s)

mean SD mean SD

0.005 100 0.007 0.019 0.250 0.011

0.005 250 0.073 0.081 1.515 0.106

0.005 400 0.101 0.050 4.126 0.128

0.005 550 0.390 0.097 8.166 0.227

0.005 700 0.476 0.088 13.307 0.144

0.005 850 0.572 0.065 19.811 0.211

0.005 1000 0.660 0.060 27.752 0.455

0.005 1150 0.714 0.069 36.822 0.533

0.005 1300 0.775 0.035 47.224 0.389

0.005 1450 0.812 0.030 59.622 0.704

0.005 1600 0.816 0.039 69.951 2.699

0.005 1750 0.858 0.033 87.736 1.428

0.005 1900 0.880 0.038 103.821 1.513

0.005 2050 0.873 0.028 120.868 1.592

Table A.31: Detailed data for Adjusted - p̄ = 0.005.

94 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Adjusted

p̄ m
ARI Runtime (s)

mean SD mean SD

0.01 100 0.451 0.264 0.450 0.086

0.01 250 0.726 0.094 2.567 0.125

0.01 400 0.846 0.043 6.949 0.237

0.01 550 0.882 0.038 13.607 0.543

0.01 700 0.932 0.031 22.660 0.878

0.01 850 0.959 0.022 32.948 0.642

0.01 1000 0.977 0.015 45.776 0.376

0.01 1150 0.981 0.005 61.422 0.223

0.01 1300 0.990 0.009 79.694 1.382

0.01 1450 0.992 0.005 99.186 0.332

0.01 1600 0.997 0.003 123.274 0.566

0.01 1750 0.995 0.004 145.920 5.346

0.01 1900 0.997 0.002 174.072 2.225

0.01 2050 0.996 0.004 204.708 2.838

Table A.32: Detailed data for Adjusted - p̄ = 0.010.

Algorithm: Adjusted

p̄ m
ARI Runtime (s)

mean SD mean SD

0.015 100 0.817 0.085 0.590 0.022

0.015 250 0.934 0.017 3.605 0.098

0.015 400 0.974 0.019 9.693 0.663

0.015 550 0.994 0.003 18.903 0.511

0.015 700 0.995 0.006 31.107 1.310

0.015 850 1.000 0.000 46.549 0.866

0.015 1000 0.998 0.002 63.299 1.289

0.015 1150 0.999 0.002 86.063 3.146

0.015 1300 0.998 0.003 112.717 4.443

0.015 1450 1.000 0.000 142.066 2.644

0.015 1600 1.000 0.000 173.557 0.964

0.015 1750 1.000 0.000 211.016 7.365

0.015 1900 1.000 0.001 246.004 6.587

0.015 2050 1.000 0.001 292.152 4.660

Table A.33: Detailed data for Adjusted - p̄ = 0.015.

A.2. NUMBER OF CELLS 95

Algorithm: Adjusted

p̄ m
ARI Runtime (s)

mean SD mean SD

0.02 100 0.876 0.072 0.751 0.024

0.02 250 0.971 0.021 4.617 0.112

0.02 400 1.000 0.000 12.280 0.335

0.02 550 0.997 0.004 24.881 0.996

0.02 700 1.000 0.000 40.840 1.521

0.02 850 0.999 0.002 61.425 1.489

0.02 1000 1.000 0.000 86.340 2.766

0.02 1150 1.000 0.000 112.522 2.519

0.02 1300 1.000 0.000 149.263 9.025

0.02 1450 1.000 0.000 192.212 8.035

0.02 1600 1.000 0.000 230.312 5.534

0.02 1750 1.000 0.000 278.259 10.126

0.02 1900 1.000 0.000 320.226 15.800

0.02 2050 1.000 0.000 395.460 29.602

Table A.34: Detailed data for Adjusted - p̄ = 0.020.

Algorithm: Adjusted

p̄ m
ARI Runtime (s)

mean SD mean SD

0.025 100 0.961 0.056 0.940 0.018

0.025 250 0.997 0.007 5.768 0.165

0.025 400 1.000 0.000 15.669 0.464

0.025 550 1.000 0.000 35.023 6.506

0.025 700 1.000 0.000 52.841 1.927

0.025 850 1.000 0.000 79.680 1.957

0.025 1000 1.000 0.000 109.416 3.005

0.025 1150 1.000 0.000 145.332 5.265

0.025 1300 1.000 0.000 183.403 7.780

0.025 1450 1.000 0.000 249.508 13.585

0.025 1600 1.000 0.000 295.687 7.637

0.025 1750 1.000 0.000 356.981 17.577

0.025 1900 1.000 0.000 413.325 23.371

0.025 2050 1.000 0.000 507.888 36.277

Table A.35: Detailed data for Adjusted - p̄ = 0.025.

96 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: SBMClone

p̄ m
ARI Runtime (s)

mean SD mean SD

0.005 100 0.000 0.000 0.718 0.094

0.005 250 0.000 0.000 2.264 0.393

0.005 400 0.000 0.000 3.941 0.480

0.005 550 0.000 0.000 6.400 0.864

0.005 700 0.000 0.000 12.776 1.333

0.005 850 0.895 0.020 60.408 16.829

0.005 1000 0.949 0.033 70.458 16.362

0.005 1150 0.989 0.007 77.508 23.301

0.005 1300 0.996 0.003 94.541 36.944

0.005 1450 0.998 0.002 110.245 42.147

0.005 1600 0.997 0.003 84.087 13.344

0.005 1750 0.999 0.001 115.263 24.009

0.005 1900 0.999 0.002 98.092 2.298

0.005 2050 1.000 0.000 105.658 2.825

Table A.36: Detailed data for SBMClone - p̄ = 0.005.

Algorithm: SBMClone

p̄ m
ARI Runtime (s)

mean SD mean SD

0.01 100 0.000 0.000 1.947 0.133

0.01 250 0.000 0.000 7.180 1.242

0.01 400 0.990 0.007 27.981 5.484

0.01 550 1.000 0.000 43.418 9.216

0.01 700 1.000 0.000 72.831 20.711

0.01 850 1.000 0.000 93.769 28.329

0.01 1000 1.000 0.000 141.399 73.596

0.01 1150 1.000 0.000 309.602 432.737

0.01 1300 1.000 0.000 240.801 251.976

0.01 1450 1.000 0.000 208.034 107.804

0.01 1600 1.000 0.000 181.330 38.589

0.01 1750 1.000 0.000 283.503 178.799

0.01 1900 1.000 0.000 206.551 43.694

0.01 2050 1.000 0.000 408.131 269.555

Table A.37: Detailed data for SBMClone - p̄ = 0.010.

A.2. NUMBER OF CELLS 97

Algorithm: SBMClone

p̄ m
ARI Runtime (s)

mean SD mean SD

0.015 100 0.000 0.000 3.180 0.300

0.015 250 1.000 0.000 31.190 7.558

0.015 400 1.000 0.000 56.273 20.280

0.015 550 1.000 0.000 63.256 15.570

0.015 700 0.999 0.001 95.092 17.628

0.015 850 1.000 0.000 99.387 3.777

0.015 1000 1.000 0.000 194.618 133.915

0.015 1150 1.000 0.000 186.053 44.904

0.015 1300 1.000 0.000 162.393 2.661

0.015 1450 1.000 0.000 354.075 154.274

0.015 1600 1.000 0.000 296.152 164.053

0.015 1750 1.000 0.000 258.653 9.366

0.015 1900 1.000 0.000 240.250 8.670

0.015 2050 1.000 0.000 289.842 70.686

Table A.38: Detailed data for SBMClone - p̄ = 0.015.

Algorithm: SBMClone

p̄ m
ARI Runtime (s)

mean SD mean SD

0.02 100 0.000 0.000 4.908 0.559

0.02 250 1.000 0.000 37.081 14.479

0.02 400 1.000 0.000 75.219 36.525

0.02 550 1.000 0.000 102.040 27.702

0.02 700 1.000 0.000 117.779 33.044

0.02 850 1.000 0.000 128.656 7.041

0.02 1000 1.000 0.000 230.722 156.593

0.02 1150 1.000 0.000 239.490 31.729

0.02 1300 1.000 0.000 303.356 150.458

0.02 1450 1.000 0.000 231.832 7.380

0.02 1600 1.000 0.000 316.290 59.843

0.02 1750 1.000 0.000 277.803 6.395

0.02 1900 1.000 0.000 306.523 10.878

0.02 2050 1.000 0.000 618.983 126.910

Table A.39: Detailed data for SBMClone - p̄ = 0.020.

98 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: SBMClone

p̄ m
ARI Runtime (s)

mean SD mean SD

0.025 100 0.200 0.447 9.282 3.490

0.025 250 1.000 0.000 35.044 4.837

0.025 400 1.000 0.000 87.969 18.157

0.025 550 1.000 0.000 106.183 9.505

0.025 700 1.000 0.000 130.509 18.614

0.025 850 1.000 0.000 217.240 27.772

0.025 1000 1.000 0.000 185.067 9.963

0.025 1150 1.000 0.000 229.101 23.969

0.025 1300 1.000 0.000 242.168 10.603

0.025 1450 1.000 0.000 309.224 74.700

0.025 1600 1.000 0.000 342.856 18.475

0.025 1750 1.000 0.000 518.340 128.882

0.025 1900 1.000 0.000 621.997 283.567

0.025 2050 1.000 0.000 413.310 22.548

Table A.40: Detailed data for SBMClone - p̄ = 0.025.

A.3. NUMBER OF MUTATIONS 99

A.3 Number of mutations

Algorithm: Naive

p̄ n
ARI Runtime (s)

mean SD mean SD

0.005 100 0.000 0.000 138.955 1.567

0.005 250 0.000 0.000 161.981 1.340

0.005 400 -0.000 0.000 172.313 2.731

0.005 550 -0.000 0.000 182.600 1.508

0.005 700 0.000 0.000 190.998 1.974

0.005 850 0.001 0.001 198.365 2.439

0.005 1000 0.000 0.000 205.784 1.831

0.005 1150 0.001 0.001 210.065 3.748

0.005 1300 0.002 0.002 220.759 3.323

0.005 1450 0.001 0.001 229.724 2.298

0.005 1600 0.001 0.001 234.516 4.679

0.005 1750 0.005 0.004 241.434 5.688

0.005 1900 0.001 0.001 246.850 3.976

0.005 2050 0.003 0.003 256.416 3.806

Table A.41: Detailed data for Naive - p̄ = 0.005.

100 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Naive

p̄ n
ARI Runtime (s)

mean SD mean SD

0.01 100 0.001 0.001 154.828 1.782

0.01 250 0.000 0.001 178.236 2.364

0.01 400 0.000 0.000 194.322 1.657

0.01 550 0.001 0.001 211.019 1.661

0.01 700 0.002 0.003 226.807 3.736

0.01 850 0.014 0.013 244.472 2.248

0.01 1000 0.086 0.080 255.164 8.803

0.01 1150 0.152 0.106 272.386 2.175

0.01 1300 0.128 0.089 285.740 4.412

0.01 1450 0.261 0.077 303.197 4.232

0.01 1600 0.349 0.073 315.840 2.338

0.01 1750 0.349 0.026 332.929 2.548

0.01 1900 0.401 0.114 347.036 3.323

0.01 2050 0.463 0.027 363.420 3.257

Table A.42: Detailed data for Naive - p̄ = 0.010.

Algorithm: Naive

p̄ n
ARI Runtime (s)

mean SD mean SD

0.015 100 0.000 0.000 164.287 2.537

0.015 250 -0.000 0.000 189.167 1.575

0.015 400 0.001 0.002 215.828 1.178

0.015 550 0.003 0.004 239.282 2.721

0.015 700 0.108 0.098 264.204 2.027

0.015 850 0.235 0.144 284.243 2.746

0.015 1000 0.418 0.098 307.347 3.416

0.015 1150 0.412 0.108 327.558 7.943

0.015 1300 0.545 0.056 350.149 2.658

0.015 1450 0.584 0.047 377.435 3.151

0.015 1600 0.568 0.111 399.895 3.837

0.015 1750 0.653 0.014 426.787 2.659

0.015 1900 0.688 0.024 447.216 5.207

0.015 2050 0.706 0.008 461.843 1.580

Table A.43: Detailed data for Naive - p̄ = 0.015.

A.3. NUMBER OF MUTATIONS 101

Algorithm: Naive

p̄ n
ARI Runtime (s)

mean SD mean SD

0.02 100 0.000 0.000 171.398 3.559

0.02 250 0.000 0.001 198.329 1.710

0.02 400 0.103 0.101 232.595 1.757

0.02 550 0.322 0.090 262.992 1.999

0.02 700 0.470 0.128 292.948 2.587

0.02 850 0.454 0.178 317.971 3.841

0.02 1000 0.658 0.024 347.823 0.739

0.02 1150 0.680 0.034 382.098 1.524

0.02 1300 0.735 0.017 411.857 0.960

0.02 1450 0.745 0.016 442.487 3.652

0.02 1600 0.763 0.029 472.265 2.318

0.02 1750 0.797 0.020 506.991 4.446

0.02 1900 0.796 0.035 530.643 5.289

0.02 2050 0.809 0.043 561.956 4.421

Table A.44: Detailed data for Naive - p̄ = 0.020.

Algorithm: Naive

p̄ n
ARI Runtime (s)

mean SD mean SD

0.025 100 0.001 0.001 175.210 3.345

0.025 250 0.000 0.000 211.585 3.328

0.025 400 0.287 0.180 250.216 3.400

0.025 550 0.569 0.054 291.061 2.512

0.025 700 0.512 0.289 325.126 3.361

0.025 850 0.708 0.042 362.841 3.594

0.025 1000 0.752 0.012 400.404 6.247

0.025 1150 0.787 0.019 439.738 2.101

0.025 1300 0.816 0.023 481.736 3.076

0.025 1450 0.843 0.026 512.095 13.019

0.025 1600 0.863 0.014 559.597 14.788

0.025 1750 0.872 0.019 588.583 3.352

0.025 1900 0.883 0.014 625.436 3.224

0.025 2050 0.888 0.009 659.725 2.636

Table A.45: Detailed data for Naive - p̄ = 0.025.

102 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Weighted

p̄ n
ARI Runtime (s)

mean SD mean SD

0.005 100 -0.000 0.000 38817.553 1469.551

0.005 250 0.000 0.000 8684.403 495.209

0.005 400 -0.000 0.000 2216.916 49.338

0.005 550 -0.000 0.000 677.228 18.108

0.005 700 0.000 0.000 331.460 7.466

0.005 850 0.000 0.000 262.798 2.967

0.005 1000 0.000 0.000 257.078 3.796

0.005 1150 0.000 0.000 256.467 6.300

0.005 1300 0.000 0.000 265.168 4.208

0.005 1450 0.000 0.000 271.122 1.472

0.005 1600 0.000 0.000 276.074 2.803

0.005 1750 0.000 0.000 284.392 2.300

0.005 1900 0.000 0.000 291.337 3.219

0.005 2050 0.000 0.000 300.129 2.727

Table A.46: Detailed data for Weighted - p̄ = 0.005.

Algorithm: Weighted

p̄ n
ARI Runtime (s)

mean SD mean SD

0.01 100 -0.000 0.000 14407.092 807.978

0.01 250 -0.000 0.000 900.981 80.053

0.01 400 -0.000 0.000 270.060 4.997

0.01 550 0.000 0.000 256.775 1.458

0.01 700 0.000 0.000 270.154 1.043

0.01 850 0.000 0.000 285.131 2.159

0.01 1000 0.000 0.000 295.412 9.352

0.01 1150 0.165 0.368 314.939 3.083

0.01 1300 0.503 0.460 328.547 2.653

0.01 1450 0.684 0.382 346.489 2.950

0.01 1600 0.697 0.390 365.102 1.625

0.01 1750 0.718 0.401 380.433 2.618

0.01 1900 0.899 0.025 396.612 3.318

0.01 2050 0.933 0.007 416.592 2.178

Table A.47: Detailed data for Weighted - p̄ = 0.010.

A.3. NUMBER OF MUTATIONS 103

Algorithm: Weighted

p̄ n
ARI Runtime (s)

mean SD mean SD

0.015 100 -0.000 0.000 5346.111 465.720

0.015 250 0.000 0.000 278.840 6.522

0.015 400 0.000 0.000 258.981 3.229

0.015 550 0.000 0.000 280.870 4.691

0.015 700 0.148 0.331 307.279 2.611

0.015 850 0.515 0.471 329.403 2.317

0.015 1000 0.535 0.489 352.213 2.404

0.015 1150 0.915 0.009 378.154 2.363

0.015 1300 0.927 0.022 403.426 1.961

0.015 1450 0.950 0.004 430.434 3.145

0.015 1600 0.955 0.008 457.127 2.434

0.015 1750 0.934 0.024 484.795 1.106

0.015 1900 0.969 0.008 508.147 4.530

0.015 2050 0.965 0.007 525.199 2.806

Table A.48: Detailed data for Weighted - p̄ = 0.015.

Algorithm: Weighted

p̄ n
ARI Runtime (s)

mean SD mean SD

0.02 100 -0.000 0.000 2141.701 181.561

0.02 250 0.000 0.000 246.692 4.153

0.02 400 0.000 0.000 278.290 1.016

0.02 550 0.000 0.000 308.527 3.147

0.02 700 0.725 0.406 338.327 0.550

0.02 850 0.925 0.015 368.203 3.798

0.02 1000 0.950 0.011 404.491 2.678

0.02 1150 0.960 0.013 439.689 2.613

0.02 1300 0.971 0.006 476.033 2.366

0.02 1450 0.974 0.004 506.685 4.451

0.02 1600 0.979 0.006 543.649 3.245

0.02 1750 0.977 0.005 574.351 2.282

0.02 1900 0.984 0.008 603.695 11.413

0.02 2050 0.982 0.001 642.151 3.002

Table A.49: Detailed data for Weighted - p̄ = 0.020.

104 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Weighted

p̄ n
ARI Runtime (s)

mean SD mean SD

0.025 100 -0.000 0.000 888.164 71.370

0.025 250 0.000 0.000 257.762 2.727

0.025 400 0.000 0.000 295.080 2.646

0.025 550 0.731 0.409 337.974 1.706

0.025 700 0.951 0.008 377.811 1.495

0.025 850 0.962 0.005 419.745 1.859

0.025 1000 0.975 0.005 464.826 3.241

0.025 1150 0.982 0.005 508.557 3.075

0.025 1300 0.982 0.005 550.752 4.867

0.025 1450 0.984 0.002 592.419 3.984

0.025 1600 0.984 0.008 633.153 2.211

0.025 1750 0.985 0.005 675.740 0.353

0.025 1900 0.990 0.008 713.087 3.658

0.025 2050 0.987 0.005 753.064 2.563

Table A.50: Detailed data for Weighted - p̄ = 0.025.

Algorithm: Adjusted

p̄ n
ARI Runtime (s)

mean SD mean SD

0.005 100 0.001 0.001 39574.937 2396.776

0.005 250 -0.000 0.000 8924.613 574.722

0.005 400 -0.000 0.000 2322.590 57.214

0.005 550 -0.000 0.000 753.464 22.333

0.005 700 0.000 0.000 396.994 10.046

0.005 850 0.000 0.000 320.125 4.873

0.005 1000 0.000 0.000 311.283 2.817

0.005 1150 0.000 0.000 309.054 8.867

0.005 1300 0.000 0.000 323.550 2.646

0.005 1450 0.000 0.000 329.897 0.991

0.005 1600 0.000 0.000 338.674 4.435

0.005 1750 0.000 0.000 344.853 7.742

0.005 1900 0.000 0.000 357.208 3.028

0.005 2050 0.000 0.000 365.271 2.186

Table A.51: Detailed data for Adjusted - p̄ = 0.005.

A.3. NUMBER OF MUTATIONS 105

Algorithm: Adjusted

p̄ n
ARI Runtime (s)

mean SD mean SD

0.01 100 -0.000 0.000 14748.854 781.089

0.01 250 -0.000 0.000 981.519 79.793

0.01 400 -0.000 0.000 328.184 6.620

0.01 550 0.000 0.000 310.024 4.840

0.01 700 0.000 0.000 325.611 4.278

0.01 850 0.000 0.000 340.377 4.334

0.01 1000 0.000 0.000 359.806 5.164

0.01 1150 0.167 0.373 335.654 32.903

0.01 1300 0.525 0.480 344.299 30.561

0.01 1450 0.738 0.413 351.400 2.367

0.01 1600 0.752 0.420 369.597 2.343

0.01 1750 0.768 0.430 389.461 4.670

0.01 1900 0.966 0.007 403.693 3.260

0.01 2050 0.969 0.008 426.684 3.671

Table A.52: Detailed data for Adjusted - p̄ = 0.010.

Algorithm: Adjusted

p̄ n
ARI Runtime (s)

mean SD mean SD

0.015 100 -0.000 0.000 5484.290 483.011

0.015 250 0.000 0.000 337.970 8.790

0.015 400 0.000 0.000 311.331 3.756

0.015 550 0.000 0.000 337.783 4.083

0.015 700 0.167 0.372 342.709 36.975

0.015 850 0.553 0.505 353.066 37.048

0.015 1000 0.570 0.520 356.499 3.948

0.015 1150 0.963 0.008 380.732 8.276

0.015 1300 0.979 0.002 413.577 4.335

0.015 1450 0.988 0.004 445.461 4.128

0.015 1600 0.986 0.005 471.050 3.742

0.015 1750 0.992 0.004 503.841 4.708

0.015 1900 0.994 0.003 1142.884 1357.854

0.015 2050 0.994 0.003 1135.188 1181.348

Table A.53: Detailed data for Adjusted - p̄ = 0.015.

106 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Adjusted

p̄ n
ARI Runtime (s)

mean SD mean SD

0.02 100 -0.000 0.000 2257.943 164.179

0.02 250 0.000 0.000 299.678 3.297

0.02 400 0.000 0.000 332.459 4.216

0.02 550 0.000 0.000 367.364 4.303

0.02 700 0.753 0.421 340.689 6.157

0.02 850 0.963 0.012 375.860 4.729

0.02 1000 0.982 0.006 413.101 2.682

0.02 1150 0.992 0.004 446.064 2.014

0.02 1300 0.995 0.002 487.406 5.783

0.02 1450 0.997 0.001 524.391 3.460

0.02 1600 0.997 0.002 565.623 4.955

0.02 1750 0.998 0.002 601.980 5.698

0.02 1900 0.999 0.001 645.355 8.878

0.02 2050 0.999 0.001 679.424 2.913

Table A.54: Detailed data for Adjusted - p̄ = 0.020.

Algorithm: Adjusted

p̄ n
ARI Runtime (s)

mean SD mean SD

0.025 100 -0.000 0.000 964.971 73.298

0.025 250 0.000 0.000 312.386 4.399

0.025 400 0.000 0.000 341.744 27.840

0.025 550 0.751 0.420 338.154 3.867

0.025 700 0.980 0.008 381.024 4.188

0.025 850 0.987 0.009 420.058 13.837

0.025 1000 0.994 0.002 472.628 5.481

0.025 1150 0.996 0.002 517.931 10.675

0.025 1300 0.998 0.002 562.874 10.481

0.025 1450 0.999 0.001 615.884 10.898

0.025 1600 1.000 0.000 659.468 10.077

0.025 1750 1.000 0.000 706.829 6.267

0.025 1900 1.000 0.000 758.854 13.968

0.025 2050 1.000 0.000 805.297 3.129

Table A.55: Detailed data for Adjusted - p̄ = 0.025.

A.3. NUMBER OF MUTATIONS 107

Algorithm: SBMClone

p̄ n
ARI Runtime (s)

mean SD mean SD

0.005 100 0.000 0.000 0.604 0.044

0.005 250 -0.000 0.000 2.035 0.426

0.005 400 0.000 0.000 3.533 0.396

0.005 550 -0.000 0.000 5.137 1.226

0.005 700 0.104 0.059 19.439 7.364

0.005 850 0.301 0.158 27.133 2.010

0.005 1000 0.414 0.141 46.394 11.304

0.005 1150 0.528 0.115 55.668 19.101

0.005 1300 0.800 0.014 77.897 9.769

0.005 1450 0.848 0.006 97.727 32.584

0.005 1600 0.885 0.006 91.241 32.298

0.005 1750 0.912 0.005 79.157 20.489

0.005 1900 0.931 0.006 105.776 33.705

0.005 2050 0.947 0.007 108.116 38.367

Table A.56: Detailed data for SBMClone - p̄ = 0.005.

Algorithm: SBMClone

p̄ n
ARI Runtime (s)

mean SD mean SD

0.01 100 0.000 0.000 1.600 0.061

0.01 250 0.041 0.002 11.320 2.754

0.01 400 0.276 0.155 28.479 12.933

0.01 550 0.722 0.012 40.781 19.455

0.01 700 0.841 0.008 54.812 18.102

0.01 850 0.897 0.006 56.911 12.662

0.01 1000 0.945 0.007 129.478 95.200

0.01 1150 0.972 0.006 76.318 6.095

0.01 1300 0.982 0.003 147.954 60.564

0.01 1450 0.987 0.001 199.368 69.636

0.01 1600 0.992 0.002 149.296 41.964

0.01 1750 0.997 0.002 143.676 23.503

0.01 1900 0.996 0.002 153.205 27.708

0.01 2050 0.999 0.002 158.646 7.319

Table A.57: Detailed data for SBMClone - p̄ = 0.010.

108 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: SBMClone

p̄ n
ARI Runtime (s)

mean SD mean SD

0.015 100 -0.000 0.000 2.591 0.295

0.015 250 0.248 0.164 23.364 10.721

0.015 400 0.772 0.006 30.409 7.749

0.015 550 0.895 0.007 67.590 20.450

0.015 700 0.952 0.008 87.644 9.675

0.015 850 0.977 0.004 89.222 4.157

0.015 1000 0.987 0.004 118.640 25.648

0.015 1150 0.995 0.002 119.167 11.518

0.015 1300 0.999 0.001 129.137 6.755

0.015 1450 0.999 0.001 165.313 10.606

0.015 1600 0.999 0.001 176.746 5.237

0.015 1750 1.000 0.000 259.672 74.214

0.015 1900 1.000 0.000 360.267 80.736

0.015 2050 1.000 0.000 235.549 10.253

Table A.58: Detailed data for SBMClone - p̄ = 0.015.

Algorithm: SBMClone

p̄ n
ARI Runtime (s)

mean SD mean SD

0.02 100 0.019 0.001 7.254 1.456

0.02 250 0.561 0.180 41.944 14.003

0.02 400 0.886 0.015 75.569 68.599

0.02 550 0.963 0.005 76.316 21.751

0.02 700 0.985 0.003 156.945 115.084

0.02 850 0.994 0.003 126.702 33.724

0.02 1000 0.998 0.002 139.484 9.690

0.02 1150 0.999 0.001 148.334 5.453

0.02 1300 1.000 0.000 207.890 11.639

0.02 1450 1.000 0.000 313.572 183.822

0.02 1600 1.000 0.000 220.414 10.300

0.02 1750 1.000 0.000 261.225 67.391

0.02 1900 1.000 0.000 259.965 21.645

0.02 2050 1.000 0.000 401.673 262.314

Table A.59: Detailed data for SBMClone - p̄ = 0.020.

A.3. NUMBER OF MUTATIONS 109

Algorithm: SBMClone

p̄ n
ARI Runtime (s)

mean SD mean SD

0.025 100 0.057 0.024 11.252 5.134

0.025 250 0.795 0.010 33.514 8.998

0.025 400 0.942 0.011 84.447 47.143

0.025 550 0.987 0.003 94.783 18.973

0.025 700 0.994 0.003 113.758 9.812

0.025 850 0.999 0.001 198.235 155.992

0.025 1000 0.999 0.001 177.918 7.729

0.025 1150 1.000 0.001 221.114 34.528

0.025 1300 1.000 0.000 214.321 7.425

0.025 1450 1.000 0.000 230.813 17.524

0.025 1600 1.000 0.000 252.286 12.272

0.025 1750 1.000 0.000 285.320 14.783

0.025 1900 1.000 0.000 349.107 92.298

0.025 2050 1.000 0.000 551.833 78.517

Table A.60: Detailed data for SBMClone - p̄ = 0.025.

110 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

A.4 Number of both cells and mutations

Algorithm: Naive

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.005 100 -0.008 0.002 0.048 0.007

0.005 250 0.004 0.005 0.385 0.059

0.005 400 -0.002 0.001 1.231 0.055

0.005 550 0.002 0.004 2.646 0.102

0.005 700 0.002 0.002 4.792 0.083

0.005 850 -0.000 0.001 7.597 0.082

0.005 1000 0.007 0.007 11.130 0.096

0.005 1150 0.005 0.008 15.361 0.224

0.005 1300 0.003 0.005 20.328 0.256

0.005 1450 0.002 0.002 26.847 0.318

0.005 1600 0.009 0.012 34.358 0.362

0.005 1750 0.018 0.012 43.107 0.512

0.005 1900 0.019 0.023 52.091 0.893

0.005 2050 0.039 0.030 62.769 0.531

Table A.61: Detailed data for Naive - p̄ = 0.005.

A.4. NUMBER OF BOTH CELLS AND MUTATIONS 111

Algorithm: Naive

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.01 100 -0.002 0.008 0.076 0.048

0.01 250 0.005 0.010 0.479 0.062

0.01 400 0.011 0.017 1.483 0.083

0.01 550 0.001 0.004 3.178 0.101

0.01 700 0.006 0.005 5.839 0.071

0.01 850 0.046 0.060 9.402 0.230

0.01 1000 0.024 0.045 14.009 0.137

0.01 1150 0.146 0.038 20.052 0.299

0.01 1300 0.151 0.052 27.346 0.390

0.01 1450 0.236 0.037 36.026 0.419

0.01 1600 0.267 0.082 46.779 0.527

0.01 1750 0.335 0.036 59.317 0.664

0.01 1900 0.313 0.030 73.841 0.767

0.01 2050 0.333 0.021 89.371 1.166

Table A.62: Detailed data for Naive - p̄ = 0.010.

Algorithm: Naive

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.015 100 0.003 0.020 0.079 0.043

0.015 250 0.019 0.029 0.532 0.063

0.015 400 0.008 0.011 1.636 0.060

0.015 550 0.075 0.099 3.644 0.078

0.015 700 0.216 0.065 6.813 0.115

0.015 850 0.205 0.061 11.039 0.149

0.015 1000 0.326 0.051 16.793 0.173

0.015 1150 0.365 0.035 23.688 0.897

0.015 1300 0.430 0.075 32.321 1.286

0.015 1450 0.422 0.097 45.269 0.551

0.015 1600 0.524 0.059 59.503 0.306

0.015 1750 0.557 0.048 76.614 0.627

0.015 1900 0.553 0.072 95.682 0.926

0.015 2050 0.628 0.033 117.173 2.194

Table A.63: Detailed data for Naive - p̄ = 0.015.

112 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Naive

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.02 100 0.012 0.028 0.066 0.007

0.02 250 0.043 0.058 0.548 0.056

0.02 400 0.038 0.044 1.839 0.069

0.02 550 0.225 0.072 4.148 0.060

0.02 700 0.331 0.042 7.727 0.064

0.02 850 0.388 0.070 12.806 0.230

0.02 1000 0.479 0.022 19.680 0.369

0.02 1150 0.534 0.042 29.955 2.544

0.02 1300 0.607 0.049 40.611 0.423

0.02 1450 0.630 0.049 54.935 0.360

0.02 1600 0.704 0.046 70.066 2.211

0.02 1750 0.719 0.035 93.094 0.853

0.02 1900 0.738 0.016 115.694 0.584

0.02 2050 0.767 0.009 143.034 1.302

Table A.64: Detailed data for Naive - p̄ = 0.020.

Algorithm: Naive

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.025 100 0.025 0.040 0.080 0.039

0.025 250 0.047 0.070 0.594 0.053

0.025 400 0.102 0.084 1.958 0.059

0.025 550 0.366 0.043 4.533 0.091

0.025 700 0.511 0.063 8.623 0.070

0.025 850 0.543 0.113 14.520 0.105

0.025 1000 0.648 0.073 22.827 0.182

0.025 1150 0.684 0.032 33.538 0.417

0.025 1300 0.704 0.042 47.277 0.220

0.025 1450 0.771 0.037 63.945 0.315

0.025 1600 0.752 0.041 84.984 1.377

0.025 1750 0.824 0.022 107.875 0.584

0.025 1900 0.855 0.031 136.384 0.519

0.025 2050 0.855 0.023 168.202 1.330

Table A.65: Detailed data for Naive - p̄ = 0.025.

A.4. NUMBER OF BOTH CELLS AND MUTATIONS 113

Algorithm: Weighted

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.005 100 -0.000 0.019 0.822 0.081

0.005 250 0.002 0.005 7.637 1.168

0.005 400 0.002 0.006 8.453 1.588

0.005 550 -0.000 0.001 6.202 0.549

0.005 700 -0.000 0.001 6.890 0.256

0.005 850 0.000 0.001 9.145 0.217

0.005 1000 -0.000 0.000 12.775 0.269

0.005 1150 -0.000 0.000 17.565 0.267

0.005 1300 -0.000 0.000 23.433 0.150

0.005 1450 -0.000 0.000 30.456 0.210

0.005 1600 -0.000 0.000 39.314 0.505

0.005 1750 0.000 0.000 49.129 0.526

0.005 1900 0.000 0.000 59.455 0.897

0.005 2050 0.000 0.000 71.499 0.826

Table A.66: Detailed data for Weighted - p̄ = 0.005.

Algorithm: Weighted

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.01 100 -0.007 0.005 0.695 0.111

0.01 250 0.012 0.012 1.045 0.139

0.01 400 -0.000 0.001 1.682 0.079

0.01 550 0.000 0.000 3.518 0.090

0.01 700 -0.000 0.000 6.413 0.032

0.01 850 0.000 0.000 10.353 0.060

0.01 1000 0.065 0.146 15.400 0.152

0.01 1150 0.312 0.306 21.994 0.283

0.01 1300 0.446 0.255 29.987 0.274

0.01 1450 0.548 0.310 40.014 0.636

0.01 1600 0.744 0.045 51.944 0.409

0.01 1750 0.801 0.052 65.735 0.742

0.01 1900 0.822 0.014 81.900 0.514

0.01 2050 0.784 0.057 100.918 3.212

Table A.67: Detailed data for Weighted - p̄ = 0.010.

114 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Weighted

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.015 100 0.015 0.035 0.401 0.132

0.015 250 0.005 0.005 0.628 0.094

0.015 400 -0.000 0.000 1.770 0.078

0.015 550 0.058 0.129 3.964 0.036

0.015 700 0.063 0.141 7.388 0.056

0.015 850 0.589 0.018 12.133 0.204

0.015 1000 0.621 0.350 18.406 0.176

0.015 1150 0.814 0.061 25.905 1.122

0.015 1300 0.843 0.030 35.510 1.725

0.015 1450 0.856 0.028 49.993 0.628

0.015 1600 0.898 0.023 65.521 0.569

0.015 1750 0.899 0.029 83.758 0.451

0.015 1900 0.926 0.013 105.381 1.332

0.015 2050 0.937 0.037 129.325 1.193

Table A.68: Detailed data for Weighted - p̄ = 0.015.

Algorithm: Weighted

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.02 100 -0.008 0.003 0.194 0.045

0.02 250 0.001 0.002 0.615 0.049

0.02 400 0.038 0.086 1.933 0.057

0.02 550 0.439 0.246 4.467 0.041

0.02 700 0.719 0.029 8.236 0.077

0.02 850 0.802 0.060 13.811 0.237

0.02 1000 0.861 0.036 21.370 0.290

0.02 1150 0.887 0.057 31.487 0.244

0.02 1300 0.888 0.057 43.985 0.363

0.02 1450 0.942 0.019 59.896 0.366

0.02 1600 0.944 0.032 76.421 2.061

0.02 1750 0.946 0.020 101.668 0.529

0.02 1900 0.953 0.015 128.207 1.134

0.02 2050 0.952 0.023 159.482 0.754

Table A.69: Detailed data for Weighted - p̄ = 0.020.

A.4. NUMBER OF BOTH CELLS AND MUTATIONS 115

Algorithm: Weighted

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.025 100 -0.002 0.011 0.095 0.012

0.025 250 -0.000 0.000 0.618 0.052

0.025 400 0.231 0.213 2.056 0.052

0.025 550 0.729 0.028 4.874 0.043

0.025 700 0.822 0.065 9.249 0.127

0.025 850 0.897 0.025 15.697 0.109

0.025 1000 0.925 0.023 24.627 0.206

0.025 1150 0.935 0.027 36.418 0.135

0.025 1300 0.953 0.010 51.433 0.575

0.025 1450 0.963 0.015 69.877 0.760

0.025 1600 0.943 0.032 92.425 0.269

0.025 1750 0.984 0.012 118.680 1.257

0.025 1900 0.972 0.017 149.496 0.801

0.025 2050 0.988 0.006 186.643 0.706

Table A.70: Detailed data for Weighted - p̄ = 0.025.

Algorithm: Adjusted

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.005 100 0.001 0.008 0.926 0.132

0.005 250 -0.001 0.004 8.036 1.254

0.005 400 -0.000 0.002 9.061 1.730

0.005 550 0.000 0.001 6.690 0.467

0.005 700 -0.000 0.000 7.886 0.293

0.005 850 -0.000 0.000 10.831 0.211

0.005 1000 -0.000 0.000 15.172 0.242

0.005 1150 0.000 0.000 20.433 0.374

0.005 1300 0.000 0.000 27.928 0.354

0.005 1450 0.000 0.000 36.047 0.332

0.005 1600 0.000 0.000 46.416 0.384

0.005 1750 0.000 0.000 57.447 0.610

0.005 1900 0.000 0.000 69.315 5.131

0.005 2050 0.000 0.000 86.734 0.673

Table A.71: Detailed data for Adjusted - p̄ = 0.005.

116 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Adjusted

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.01 100 -0.001 0.008 0.719 0.094

0.01 250 0.007 0.008 1.136 0.182

0.01 400 -0.000 0.000 2.042 0.120

0.01 550 0.000 0.000 4.163 0.086

0.01 700 -0.000 0.000 7.577 0.124

0.01 850 0.000 0.000 11.732 0.753

0.01 1000 0.136 0.304 16.504 1.371

0.01 1150 0.418 0.383 22.182 0.407

0.01 1300 0.626 0.351 30.540 0.361

0.01 1450 0.669 0.375 40.875 0.367

0.01 1600 0.862 0.021 53.596 0.354

0.01 1750 0.913 0.022 67.644 0.804

0.01 1900 0.927 0.015 83.933 1.332

0.01 2050 0.945 0.010 103.008 0.661

Table A.72: Detailed data for Adjusted - p̄ = 0.010.

Algorithm: Adjusted

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.015 100 0.004 0.015 0.436 0.132

0.015 250 0.001 0.001 0.738 0.043

0.015 400 0.000 0.000 2.115 0.074

0.015 550 0.111 0.248 4.485 0.241

0.015 700 0.115 0.256 7.785 0.518

0.015 850 0.805 0.018 12.558 0.171

0.015 1000 0.713 0.399 19.042 0.259

0.015 1150 0.926 0.009 26.814 1.064

0.015 1300 0.949 0.011 36.707 1.231

0.015 1450 0.961 0.009 51.432 0.484

0.015 1600 0.972 0.006 67.897 0.266

0.015 1750 0.975 0.020 86.878 0.507

0.015 1900 0.987 0.003 109.729 0.708

0.015 2050 0.991 0.005 136.021 0.739

Table A.73: Detailed data for Adjusted - p̄ = 0.015.

A.4. NUMBER OF BOTH CELLS AND MUTATIONS 117

Algorithm: Adjusted

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.02 100 0.010 0.028 0.198 0.033

0.02 250 0.000 0.000 0.736 0.055

0.02 400 0.068 0.152 2.138 0.215

0.02 550 0.555 0.318 4.616 0.096

0.02 700 0.852 0.036 8.541 0.112

0.02 850 0.912 0.031 14.526 0.152

0.02 1000 0.959 0.022 22.450 0.260

0.02 1150 0.968 0.013 33.162 0.288

0.02 1300 0.985 0.008 46.267 0.806

0.02 1450 0.982 0.005 63.059 0.579

0.02 1600 0.998 0.001 81.517 2.062

0.02 1750 0.997 0.004 107.519 1.010

0.02 1900 0.999 0.002 135.241 1.035

0.02 2050 0.997 0.002 168.759 0.876

Table A.74: Detailed data for Adjusted - p̄ = 0.020.

Algorithm: Adjusted

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.025 100 -0.002 0.005 0.119 0.016

0.025 250 0.000 0.000 0.731 0.043

0.025 400 0.382 0.352 2.162 0.068

0.025 550 0.881 0.060 5.047 0.074

0.025 700 0.942 0.025 9.685 0.066

0.025 850 0.968 0.023 16.497 0.230

0.025 1000 0.982 0.013 26.001 0.265

0.025 1150 0.992 0.008 38.354 0.487

0.025 1300 0.998 0.004 54.634 1.551

0.025 1450 0.997 0.003 74.724 0.877

0.025 1600 0.997 0.003 98.465 1.210

0.025 1750 1.000 0.001 128.074 4.272

0.025 1900 1.000 0.000 161.330 2.143

0.025 2050 0.999 0.001 204.010 5.984

Table A.75: Detailed data for Adjusted - p̄ = 0.025.

118 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: SBMClone

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.005 100 0.002 0.007 0.049 0.003

0.005 250 0.004 0.006 0.126 0.002

0.005 400 -0.001 0.003 0.260 0.029

0.005 550 -0.000 0.000 0.586 0.025

0.005 700 -0.000 0.001 0.993 0.071

0.005 850 0.000 0.000 1.993 0.180

0.005 1000 -0.000 0.000 2.852 0.314

0.005 1150 -0.000 0.000 5.192 1.687

0.005 1300 -0.000 0.000 8.582 5.731

0.005 1450 -0.000 0.000 7.894 0.506

0.005 1600 0.481 0.439 24.426 9.265

0.005 1750 0.854 0.033 36.293 23.976

0.005 1900 0.904 0.008 51.063 19.563

0.005 2050 0.931 0.008 61.621 17.909

Table A.76: Detailed data for SBMClone - p̄ = 0.005.

Algorithm: SBMClone

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.01 100 -0.001 0.010 0.066 0.004

0.01 250 0.008 0.011 0.218 0.027

0.01 400 -0.000 0.001 0.700 0.065

0.01 550 0.000 0.000 1.595 0.169

0.01 700 -0.000 0.000 3.058 0.555

0.01 850 0.702 0.394 10.719 4.107

0.01 1000 0.918 0.018 21.263 7.334

0.01 1150 0.959 0.012 23.303 4.416

0.01 1300 0.976 0.007 31.828 7.850

0.01 1450 0.987 0.007 40.686 11.126

0.01 1600 0.993 0.005 53.182 12.525

0.01 1750 0.996 0.003 60.590 8.215

0.01 1900 0.998 0.002 78.510 22.452

0.01 2050 0.998 0.002 79.863 2.352

Table A.77: Detailed data for SBMClone - p̄ = 0.010.

A.4. NUMBER OF BOTH CELLS AND MUTATIONS 119

Algorithm: SBMClone

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.015 100 -0.006 0.004 0.075 0.005

0.015 250 0.003 0.004 0.411 0.056

0.015 400 0.000 0.000 1.173 0.165

0.015 550 0.822 0.067 7.448 1.530

0.015 700 0.948 0.018 9.936 2.023

0.015 850 0.976 0.010 15.649 2.332

0.015 1000 0.994 0.006 23.356 4.858

0.015 1150 0.992 0.005 30.715 5.782

0.015 1300 0.998 0.002 40.576 4.562

0.015 1450 1.000 0.000 60.587 9.834

0.015 1600 1.000 0.000 69.065 2.422

0.015 1750 1.000 0.000 79.857 4.078

0.015 1900 1.000 0.000 123.345 13.337

0.015 2050 1.000 0.000 123.853 10.672

Table A.78: Detailed data for SBMClone - p̄ = 0.015.

Algorithm: SBMClone

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.02 100 0.001 0.017 0.089 0.006

0.02 250 0.000 0.001 0.544 0.069

0.02 400 0.651 0.365 3.640 1.326

0.02 550 0.968 0.009 11.351 5.417

0.02 700 0.983 0.006 11.450 0.653

0.02 850 0.996 0.004 22.585 4.789

0.02 1000 0.999 0.002 27.950 0.302

0.02 1150 1.000 0.000 46.888 5.476

0.02 1300 1.000 0.000 59.444 4.337

0.02 1450 1.000 0.000 93.819 55.277

0.02 1600 1.000 0.000 111.219 25.949

0.02 1750 1.000 0.000 112.792 14.307

0.02 1900 1.000 0.000 124.983 10.941

0.02 2050 1.000 0.000 174.558 56.477

Table A.79: Detailed data for SBMClone - p̄ = 0.020.

120 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: SBMClone

p̄ m = n
ARI Runtime (s)

mean SD mean SD

0.025 100 -0.000 0.010 0.091 0.007

0.025 250 0.000 0.001 0.865 0.333

0.025 400 0.941 0.019 5.447 2.104

0.025 550 0.990 0.004 9.720 2.928

0.025 700 0.995 0.005 15.559 1.329

0.025 850 1.000 0.000 32.544 10.743

0.025 1000 1.000 0.000 36.501 1.399

0.025 1150 1.000 0.000 48.175 2.975

0.025 1300 1.000 0.000 83.067 15.008

0.025 1450 1.000 0.000 117.497 30.489

0.025 1600 1.000 0.000 104.253 6.626

0.025 1750 1.000 0.000 118.230 8.490

0.025 1900 1.000 0.000 162.132 42.489

0.025 2050 1.000 0.000 274.658 126.202

Table A.80: Detailed data for SBMClone - p̄ = 0.025.

A.5. MUTATION TREES 121

A.5 Mutation trees

A.5.1 Large number of cells

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.053 0.029 193.719 3.081

3 0.005 0.214 0.033 369.679 4.147

3 0.009 0.386 0.037 543.623 5.432

3 0.013 0.560 0.054 1087.781 521.344

3 0.017 0.621 0.011 1013.339 292.115

3 0.021 0.710 0.036 1045.185 3.075

3 0.025 0.773 0.017 1227.196 4.701

3 0.029 0.821 0.018 1852.683 670.465

3 0.033 0.869 0.025 1587.658 5.058

3 0.037 0.880 0.019 1746.534 5.077

3 0.041 0.907 0.015 1881.554 15.098

Table A.81: Detailed data for Naive - 3 clones.

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.049 0.012 191.752 0.854

4 0.005 0.153 0.023 352.969 2.523

4 0.009 0.318 0.032 511.869 2.843

4 0.013 0.396 0.039 671.182 3.367

4 0.017 0.430 0.024 822.315 4.553

4 0.021 0.491 0.050 981.317 5.946

4 0.025 0.547 0.026 1129.683 19.315

4 0.029 0.623 0.047 1284.842 11.574

4 0.033 0.637 0.049 1437.998 6.296

4 0.037 0.708 0.017 1566.870 43.876

4 0.041 0.724 0.048 1739.466 35.930

Table A.82: Detailed data for Naive - 4 clones.

122 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.024 0.002 185.746 1.340

6 0.005 0.105 0.016 309.651 1.845

6 0.009 0.209 0.014 438.598 4.706

6 0.013 0.279 0.022 561.541 1.383

6 0.017 0.330 0.014 684.371 2.655

6 0.021 0.395 0.020 806.675 7.102

6 0.025 0.449 0.041 919.354 17.647

6 0.029 0.494 0.014 1051.057 11.095

6 0.033 0.523 0.026 1172.686 4.357

6 0.037 0.547 0.015 1290.358 17.676

6 0.041 0.593 0.019 1415.166 10.761

Table A.83: Detailed data for Naive - 6 clones.

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.011 0.002 175.160 1.924

10 0.005 0.060 0.003 261.145 4.092

10 0.009 0.114 0.015 350.510 2.713

10 0.013 0.185 0.011 438.507 3.843

10 0.017 0.249 0.010 525.434 4.105

10 0.021 0.306 0.015 608.656 3.691

10 0.025 0.340 0.025 685.011 15.145

10 0.029 0.383 0.020 774.698 1.798

10 0.033 0.402 0.022 855.276 1.897

10 0.037 0.442 0.021 940.310 3.887

10 0.041 0.463 0.032 989.498 32.038

Table A.84: Detailed data for Naive - 10 clones.

A.5. MUTATION TREES 123

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.007 0.002 404.137 22.814

3 0.005 0.619 0.118 422.242 4.058

3 0.009 0.888 0.046 613.994 10.963

3 0.013 0.957 0.009 1031.190 342.951

3 0.017 0.981 0.003 1003.256 9.114

3 0.021 0.979 0.001 1198.107 6.437

3 0.025 0.981 0.002 1422.921 6.803

3 0.029 0.980 0.001 1708.045 254.001

3 0.033 0.992 0.000 1828.617 7.143

3 0.037 0.993 0.000 2013.911 5.155

3 0.041 0.992 0.000 2178.509 14.510

Table A.85: Detailed data for Weighted - 3 clones.

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.010 0.002 662.838 74.151

4 0.005 0.248 0.230 404.585 1.375

4 0.009 0.687 0.052 581.735 1.776

4 0.013 0.844 0.008 755.522 2.348

4 0.017 0.886 0.029 927.125 1.756

4 0.021 0.919 0.017 1105.266 18.485

4 0.025 0.943 0.025 1308.142 3.918

4 0.029 0.964 0.016 1474.871 10.833

4 0.033 0.961 0.014 1653.590 4.339

4 0.037 0.965 0.013 1815.027 6.230

4 0.041 0.988 0.001 1994.106 44.021

Table A.86: Detailed data for Weighted - 4 clones.

124 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.007 0.001 1837.165 222.311

6 0.005 0.000 0.000 356.958 3.204

6 0.009 0.567 0.068 499.318 2.838

6 0.013 0.718 0.043 638.464 4.926

6 0.017 0.822 0.018 772.914 1.761

6 0.021 0.882 0.030 910.611 1.041

6 0.025 0.921 0.018 1048.991 6.414

6 0.029 0.944 0.011 1196.915 5.760

6 0.033 0.939 0.016 1338.422 1.461

6 0.037 0.963 0.018 1483.839 2.777

6 0.041 0.957 0.013 1614.548 5.548

Table A.87: Detailed data for Weighted - 6 clones.

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.008 0.002 9023.903 899.298

10 0.005 0.000 0.000 309.394 1.847

10 0.009 0.268 0.072 402.333 0.919

10 0.013 0.545 0.018 498.308 1.333

10 0.017 0.652 0.032 598.403 1.491

10 0.021 0.748 0.017 682.688 9.503

10 0.025 0.803 0.045 771.322 20.988

10 0.029 0.797 0.038 873.476 8.800

10 0.033 0.861 0.024 967.668 4.681

10 0.037 0.881 0.040 1063.175 4.028

10 0.041 0.917 0.020 1143.737 18.482

Table A.88: Detailed data for Weighted - 10 clones.

A.5. MUTATION TREES 125

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.007 0.003 455.430 23.224

3 0.005 0.801 0.152 431.546 1.609

3 0.009 0.982 0.003 649.911 3.771

3 0.013 0.996 0.001 862.698 10.317

3 0.017 0.999 0.001 1073.981 12.029

3 0.021 0.967 0.071 1320.306 79.309

3 0.025 0.969 0.065 1580.191 141.783

3 0.029 0.998 0.004 1845.086 120.231

3 0.033 0.998 0.002 2133.865 95.117

3 0.037 0.998 0.002 2368.153 158.443

3 0.041 0.980 0.038 2594.962 215.406

Table A.89: Detailed data for Adjusted - 3 clones.

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.011 0.001 708.198 88.018

4 0.005 0.313 0.287 422.799 29.140

4 0.009 0.762 0.016 607.962 3.166

4 0.013 0.882 0.039 792.087 6.826

4 0.017 0.889 0.063 972.319 10.527

4 0.021 0.877 0.132 1178.722 33.203

4 0.025 0.900 0.075 1378.414 23.669

4 0.029 0.969 0.022 1551.623 12.035

4 0.033 0.971 0.016 1789.398 22.635

4 0.037 0.979 0.018 1971.302 40.132

4 0.041 0.982 0.019 2207.836 59.338

Table A.90: Detailed data for Adjusted - 4 clones.

126 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.010 0.002 1927.244 228.235

6 0.005 0.000 0.000 417.224 5.426

6 0.009 0.668 0.050 507.224 2.710

6 0.013 0.762 0.071 657.922 16.764

6 0.017 0.802 0.111 799.810 25.628

6 0.021 0.850 0.099 937.476 35.839

6 0.025 0.854 0.117 1090.547 41.109

6 0.029 0.885 0.081 1268.501 83.273

6 0.033 0.893 0.080 1452.624 99.275

6 0.037 0.924 0.059 1659.692 163.888

6 0.041 0.936 0.042 1815.686 182.609

Table A.91: Detailed data for Adjusted - 6 clones.

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.012 0.003 9291.932 977.650

10 0.005 0.000 0.000 372.267 2.905

10 0.009 0.317 0.090 406.582 4.258

10 0.013 0.610 0.031 507.245 4.533

10 0.017 0.687 0.024 603.224 5.216

10 0.021 0.755 0.025 686.980 17.491

10 0.025 0.788 0.036 775.545 19.560

10 0.029 0.832 0.041 878.237 16.580

10 0.033 0.881 0.056 972.478 9.350

10 0.037 0.884 0.022 1071.718 4.316

10 0.041 0.895 0.026 1153.180 35.891

Table A.92: Detailed data for Adjusted - 10 clones.

A.5. MUTATION TREES 127

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.011 0.003 13.196 0.363

3 0.005 0.999 0.002 194.646 61.921

3 0.009 1.000 0.000 288.268 23.727

3 0.013 1.000 0.000 454.445 72.643

3 0.017 1.000 0.000 1590.455 2423.014

3 0.021 1.000 0.000 689.551 99.939

3 0.025 1.000 0.000 880.533 125.873

3 0.029 1.000 0.000 1326.669 822.728

3 0.033 1.000 0.000 709.421 12.256

3 0.037 1.000 0.000 786.078 35.150

3 0.041 1.000 0.000 1029.837 286.497

Table A.93: Detailed data for SBMClone - 3 clones.

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.016 0.003 11.045 0.814

4 0.005 0.961 0.002 175.113 72.701

4 0.009 1.000 0.001 288.287 55.608

4 0.013 1.000 0.000 341.086 12.252

4 0.017 1.000 0.000 397.033 12.590

4 0.021 1.000 0.000 513.907 93.354

4 0.025 1.000 0.000 568.683 32.000

4 0.029 1.000 0.000 721.985 44.668

4 0.033 1.000 0.000 1984.128 1886.507

4 0.037 1.000 0.000 1734.979 1177.768

4 0.041 1.000 0.000 784.039 15.171

Table A.94: Detailed data for SBMClone - 4 clones.

128 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.016 0.001 7.150 1.015

6 0.005 0.788 0.047 135.298 25.793

6 0.009 0.995 0.002 514.100 507.980

6 0.013 1.000 0.000 260.016 33.111

6 0.017 1.000 0.000 357.723 13.297

6 0.021 1.000 0.000 451.265 18.960

6 0.025 1.000 0.000 511.703 81.341

6 0.029 1.000 0.001 582.309 123.658

6 0.033 1.000 0.000 689.552 145.501

6 0.037 1.000 0.001 1525.383 1197.469

6 0.041 1.000 0.000 897.345 164.504

Table A.95: Detailed data for SBMClone - 6 clones.

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.014 0.002 4.092 0.438

10 0.005 0.442 0.064 108.463 34.610

10 0.009 0.901 0.010 204.281 135.795

10 0.013 0.985 0.004 291.977 70.228

10 0.017 0.997 0.002 262.369 57.374

10 0.021 0.999 0.001 327.855 56.091

10 0.025 0.999 0.001 408.322 105.318

10 0.029 1.000 0.000 1177.370 1731.318

10 0.033 1.000 0.000 484.503 142.189

10 0.037 1.000 0.001 425.949 112.582

10 0.041 1.000 0.001 780.101 642.350

Table A.96: Detailed data for SBMClone - 10 clones.

A.5. MUTATION TREES 129

A.5.2 Medium number of cells

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.007 0.006 0.957 0.234

3 0.005 0.035 0.022 2.014 0.023

3 0.009 0.057 0.052 2.759 0.212

3 0.013 0.140 0.065 3.404 0.245

3 0.017 0.195 0.044 4.424 0.247

3 0.021 0.400 0.132 5.170 0.228

3 0.025 0.465 0.142 6.251 0.057

3 0.029 0.599 0.069 7.081 0.045

3 0.033 0.692 0.097 7.718 0.284

3 0.037 0.635 0.111 8.691 0.030

3 0.041 0.733 0.069 9.289 0.153

Table A.97: Detailed data for Naive - 3 clones.

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.009 0.007 1.856 0.224

4 0.005 0.068 0.028 3.314 0.249

4 0.009 0.110 0.015 4.753 0.241

4 0.013 0.154 0.030 6.005 0.218

4 0.017 0.277 0.043 7.340 0.211

4 0.021 0.291 0.047 8.754 0.234

4 0.025 0.321 0.071 10.223 0.257

4 0.029 0.400 0.055 11.519 0.265

4 0.033 0.448 0.072 12.934 0.290

4 0.037 0.587 0.024 14.265 0.320

4 0.041 0.556 0.077 15.597 0.272

Table A.98: Detailed data for Naive - 4 clones.

130 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.009 0.006 3.855 0.280

6 0.005 0.044 0.015 6.889 0.291

6 0.009 0.106 0.027 9.347 0.270

6 0.013 0.157 0.024 11.818 0.200

6 0.017 0.201 0.027 14.163 0.168

6 0.021 0.245 0.034 16.721 0.163

6 0.025 0.303 0.032 19.106 0.254

6 0.029 0.356 0.027 21.653 0.238

6 0.033 0.399 0.023 24.058 0.222

6 0.037 0.434 0.054 26.651 0.132

6 0.041 0.469 0.031 28.927 0.115

Table A.99: Detailed data for Naive - 6 clones.

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.005 0.002 10.943 0.244

10 0.005 0.040 0.006 16.113 0.248

10 0.009 0.068 0.011 21.245 0.319

10 0.013 0.103 0.016 26.058 0.353

10 0.017 0.160 0.019 31.409 0.435

10 0.021 0.191 0.020 36.359 0.446

10 0.025 0.243 0.023 40.668 0.405

10 0.029 0.306 0.015 45.661 0.543

10 0.033 0.320 0.026 50.257 0.549

10 0.037 0.363 0.017 55.060 0.586

10 0.041 0.394 0.025 59.795 0.631

Table A.100: Detailed data for Naive - 10 clones.

A.5. MUTATION TREES 131

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.001 0.004 21.606 2.627

3 0.005 0.051 0.034 1.932 0.257

3 0.009 0.136 0.053 2.999 0.046

3 0.013 0.283 0.131 3.844 0.026

3 0.017 0.404 0.182 4.644 0.221

3 0.021 0.625 0.037 5.530 0.061

3 0.025 0.690 0.119 6.484 0.063

3 0.029 0.872 0.042 7.179 0.259

3 0.033 0.907 0.021 8.216 0.103

3 0.037 0.884 0.067 8.886 0.241

3 0.041 0.905 0.028 9.618 0.245

Table A.101: Detailed data for Weighted - 3 clones.

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.002 0.006 50.498 5.740

4 0.005 0.062 0.018 3.425 0.222

4 0.009 0.144 0.024 4.933 0.269

4 0.013 0.323 0.043 6.409 0.262

4 0.017 0.446 0.151 7.842 0.278

4 0.021 0.523 0.065 9.316 0.303

4 0.025 0.653 0.112 10.781 0.241

4 0.029 0.779 0.050 12.041 0.311

4 0.033 0.847 0.072 13.533 0.264

4 0.037 0.873 0.033 14.797 0.245

4 0.041 0.901 0.013 16.178 0.352

Table A.102: Detailed data for Weighted - 4 clones.

132 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.003 0.004 153.375 18.201

6 0.005 0.042 0.026 7.109 0.053

6 0.009 0.185 0.013 9.958 0.262

6 0.013 0.282 0.030 12.520 0.325

6 0.017 0.400 0.026 15.175 0.277

6 0.021 0.460 0.050 17.660 0.245

6 0.025 0.516 0.051 20.235 0.437

6 0.029 0.652 0.087 22.829 0.310

6 0.033 0.766 0.073 25.722 0.401

6 0.037 0.814 0.069 28.219 0.188

6 0.041 0.851 0.090 30.928 0.299

Table A.103: Detailed data for Weighted - 6 clones.

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.004 0.003 828.935 80.352

10 0.005 0.006 0.014 17.821 0.362

10 0.009 0.178 0.027 23.068 0.405

10 0.013 0.286 0.021 28.459 0.294

10 0.017 0.368 0.021 34.168 0.256

10 0.021 0.434 0.031 39.033 0.335

10 0.025 0.503 0.024 44.547 0.294

10 0.029 0.590 0.032 49.472 0.354

10 0.033 0.650 0.026 54.525 0.328

10 0.037 0.712 0.055 60.172 0.170

10 0.041 0.745 0.021 64.803 0.450

Table A.104: Detailed data for Weighted - 10 clones.

A.5. MUTATION TREES 133

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.010 0.015 22.769 2.610

3 0.005 0.018 0.028 2.255 0.030

3 0.009 0.214 0.045 3.127 0.240

3 0.013 0.519 0.108 4.307 0.119

3 0.017 0.808 0.090 5.303 0.101

3 0.021 0.953 0.022 6.313 0.231

3 0.025 0.881 0.146 7.372 0.668

3 0.029 0.982 0.021 8.750 0.443

3 0.033 0.986 0.011 9.947 0.524

3 0.037 0.974 0.005 11.522 1.605

3 0.041 0.976 0.006 13.669 3.385

Table A.105: Detailed data for Adjusted - 3 clones.

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.011 0.010 52.718 5.742

4 0.005 0.034 0.022 3.603 0.243

4 0.009 0.297 0.075 5.351 0.277

4 0.013 0.531 0.054 6.827 0.199

4 0.017 0.728 0.072 8.402 0.318

4 0.021 0.822 0.027 10.033 0.328

4 0.025 0.886 0.023 11.674 0.202

4 0.029 0.944 0.010 13.799 0.710

4 0.033 0.942 0.020 15.497 0.578

4 0.037 0.966 0.019 17.200 1.243

4 0.041 0.957 0.026 19.008 1.708

Table A.106: Detailed data for Adjusted - 4 clones.

134 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.013 0.008 159.584 18.375

6 0.005 0.023 0.020 7.499 0.324

6 0.009 0.272 0.048 10.389 0.309

6 0.013 0.474 0.032 13.161 0.196

6 0.017 0.639 0.066 15.909 0.330

6 0.021 0.762 0.014 18.869 0.319

6 0.025 0.840 0.073 21.641 0.376

6 0.029 0.907 0.035 24.517 0.260

6 0.033 0.941 0.007 28.004 0.596

6 0.037 0.965 0.008 31.137 0.317

6 0.041 0.964 0.006 34.729 0.627

Table A.107: Detailed data for Adjusted - 6 clones.

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.009 0.005 864.141 82.437

10 0.005 0.005 0.012 20.101 1.072

10 0.009 0.271 0.015 23.795 0.295

10 0.013 0.411 0.038 29.523 0.459

10 0.017 0.543 0.012 35.206 0.334

10 0.021 0.621 0.035 40.397 0.447

10 0.025 0.702 0.016 45.951 0.348

10 0.029 0.774 0.027 51.645 0.610

10 0.033 0.803 0.034 57.063 0.785

10 0.037 0.821 0.034 62.711 0.895

10 0.041 0.921 0.022 68.465 1.335

Table A.108: Detailed data for Adjusted - 10 clones.

A.5. MUTATION TREES 135

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.012 0.008 0.369 0.070

3 0.005 0.000 0.000 2.110 0.268

3 0.009 0.000 0.000 7.235 2.536

3 0.013 0.966 0.022 22.328 4.758

3 0.017 1.000 0.000 31.939 11.554

3 0.021 1.000 0.000 26.761 5.708

3 0.025 1.000 0.000 34.520 9.937

3 0.029 1.000 0.000 37.931 6.075

3 0.033 1.000 0.000 48.189 17.625

3 0.037 1.000 0.000 49.956 6.693

3 0.041 1.000 0.000 56.873 5.414

Table A.109: Detailed data for SBMClone - 3 clones.

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.018 0.007 0.444 0.073

4 0.005 0.000 0.000 2.994 0.380

4 0.009 0.214 0.293 11.563 5.353

4 0.013 0.762 0.091 24.441 7.011

4 0.017 0.845 0.078 36.847 6.819

4 0.021 0.978 0.022 37.720 12.017

4 0.025 0.999 0.003 62.697 28.498

4 0.029 1.000 0.000 55.856 14.989

4 0.033 1.000 0.000 62.183 19.687

4 0.037 1.000 0.000 79.421 21.563

4 0.041 1.000 0.000 69.033 8.428

Table A.110: Detailed data for SBMClone - 4 clones.

136 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.016 0.004 0.653 0.179

6 0.005 0.000 0.000 3.940 0.651

6 0.009 0.451 0.009 29.086 14.691

6 0.013 0.653 0.117 44.387 17.202

6 0.017 0.862 0.061 42.123 10.741

6 0.021 0.912 0.051 65.206 32.534

6 0.025 0.986 0.021 51.962 14.981

6 0.029 0.999 0.002 57.030 16.539

6 0.033 1.000 0.000 80.302 22.808

6 0.037 1.000 0.000 91.472 31.036

6 0.041 0.999 0.002 83.011 17.699

Table A.111: Detailed data for SBMClone - 6 clones.

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.013 0.002 0.748 0.070

10 0.005 0.000 0.000 6.992 0.520

10 0.009 0.341 0.003 40.943 17.789

10 0.013 0.585 0.007 33.262 5.900

10 0.017 0.788 0.007 53.347 19.141

10 0.021 0.804 0.003 46.598 8.908

10 0.025 0.832 0.036 79.401 24.228

10 0.029 0.846 0.044 87.434 27.430

10 0.033 0.990 0.015 107.302 36.723

10 0.037 0.999 0.001 91.504 23.133

10 0.041 1.000 0.000 85.345 4.243

Table A.112: Detailed data for SBMClone - 10 clones.

A.5. MUTATION TREES 137

A.5.3 Small number of cells

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.028 0.039 0.129 0.002

3 0.005 0.039 0.024 0.471 0.009

3 0.009 0.271 0.094 0.829 0.011

3 0.013 0.286 0.141 1.204 0.009

3 0.017 0.414 0.146 1.534 0.021

3 0.021 0.347 0.036 1.951 0.018

3 0.025 0.431 0.104 2.344 0.041

3 0.029 0.479 0.124 2.748 0.036

3 0.033 0.421 0.109 3.089 0.123

3 0.037 0.372 0.000 3.519 0.053

3 0.041 0.372 0.000 4.027 0.044

Table A.113: Detailed data for Naive - 3 clones.

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.032 0.028 0.194 0.006

4 0.005 0.141 0.076 0.740 0.007

4 0.009 0.281 0.145 1.319 0.015

4 0.013 0.354 0.083 1.926 0.016

4 0.017 0.425 0.027 2.522 0.017

4 0.021 0.435 0.037 3.107 0.038

4 0.025 0.498 0.006 3.739 0.036

4 0.029 0.500 0.005 4.332 0.027

4 0.033 0.496 0.001 5.041 0.047

4 0.037 0.496 0.001 5.721 0.056

4 0.041 0.495 0.000 6.364 0.079

Table A.114: Detailed data for Naive - 4 clones.

138 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.020 0.015 0.384 0.091

6 0.005 0.083 0.035 1.349 0.087

6 0.009 0.212 0.041 2.308 0.080

6 0.013 0.275 0.032 3.368 0.036

6 0.017 0.367 0.062 4.464 0.040

6 0.021 0.480 0.055 5.539 0.080

6 0.025 0.592 0.048 6.628 0.074

6 0.029 0.563 0.054 7.723 0.099

6 0.033 0.568 0.040 8.788 0.164

6 0.037 0.612 0.012 9.953 0.156

6 0.041 0.615 0.013 10.665 0.473

Table A.115: Detailed data for Naive - 6 clones.

Algorithm: Naive

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.019 0.007 0.931 0.020

10 0.005 0.059 0.011 2.750 0.024

10 0.009 0.140 0.016 4.614 0.078

10 0.013 0.248 0.017 6.445 0.085

10 0.017 0.300 0.028 8.505 0.060

10 0.021 0.366 0.038 10.801 0.153

10 0.025 0.419 0.033 12.866 0.100

10 0.029 0.475 0.055 14.791 0.068

10 0.033 0.555 0.020 16.995 0.197

10 0.037 0.536 0.031 18.824 0.139

10 0.041 0.565 0.009 19.965 0.751

Table A.116: Detailed data for Naive - 10 clones.

A.5. MUTATION TREES 139

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.002 0.021 0.275 0.068

3 0.005 0.093 0.057 0.492 0.007

3 0.009 0.209 0.053 0.874 0.012

3 0.013 0.401 0.147 1.301 0.011

3 0.017 0.388 0.028 1.681 0.023

3 0.021 0.474 0.129 2.193 0.029

3 0.025 0.377 0.011 2.634 0.051

3 0.029 0.372 0.000 3.121 0.056

3 0.033 0.421 0.109 3.493 0.019

3 0.037 0.372 0.000 4.099 0.073

3 0.041 0.372 0.000 4.764 0.044

Table A.117: Detailed data for Weighted - 3 clones.

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.033 0.033 0.538 0.173

4 0.005 0.111 0.051 0.781 0.008

4 0.009 0.320 0.124 1.468 0.116

4 0.013 0.390 0.079 2.095 0.026

4 0.017 0.476 0.031 2.865 0.138

4 0.021 0.500 0.013 3.495 0.061

4 0.025 0.494 0.013 4.329 0.129

4 0.029 0.495 0.000 4.991 0.040

4 0.033 0.495 0.000 5.961 0.097

4 0.037 0.495 0.000 6.766 0.131

4 0.041 0.495 0.000 7.524 0.143

Table A.118: Detailed data for Weighted - 4 clones.

140 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.004 0.006 1.073 0.109

6 0.005 0.092 0.012 1.386 0.018

6 0.009 0.258 0.048 2.496 0.057

6 0.013 0.345 0.052 3.773 0.103

6 0.017 0.488 0.059 4.946 0.072

6 0.021 0.559 0.033 6.258 0.103

6 0.025 0.601 0.016 7.576 0.042

6 0.029 0.612 0.013 8.908 0.104

6 0.033 0.617 0.007 10.251 0.166

6 0.037 0.615 0.010 11.598 0.100

6 0.041 0.623 0.000 12.543 0.688

Table A.119: Detailed data for Weighted - 6 clones.

Algorithm: Weighted

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.011 0.007 2.368 0.201

10 0.005 0.081 0.042 2.789 0.035

10 0.009 0.215 0.033 5.058 0.092

10 0.013 0.350 0.022 7.446 0.154

10 0.017 0.425 0.034 9.625 0.064

10 0.021 0.485 0.022 12.226 0.056

10 0.025 0.560 0.028 14.880 0.169

10 0.029 0.598 0.020 17.104 0.207

10 0.033 0.610 0.008 19.676 0.192

10 0.037 0.612 0.022 22.070 0.342

10 0.041 0.621 0.003 23.335 1.095

Table A.120: Detailed data for Weighted - 10 clones.

A.5. MUTATION TREES 141

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.008 0.024 0.316 0.070

3 0.005 0.138 0.072 0.612 0.016

3 0.009 0.478 0.153 1.137 0.114

3 0.013 0.873 0.064 1.837 0.282

3 0.017 0.951 0.069 2.433 0.328

3 0.021 0.883 0.235 3.346 0.918

3 0.025 0.970 0.028 3.885 0.635

3 0.029 0.920 0.044 4.833 0.599

3 0.033 0.919 0.045 5.663 0.663

3 0.037 0.911 0.041 6.997 0.590

3 0.041 0.864 0.062 8.305 0.367

Table A.121: Detailed data for Adjusted - 3 clones.

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.019 0.014 0.535 0.098

4 0.005 0.174 0.081 0.905 0.016

4 0.009 0.359 0.069 1.736 0.153

4 0.013 0.582 0.060 2.598 0.183

4 0.017 0.776 0.102 3.656 0.491

4 0.021 0.833 0.137 4.861 1.010

4 0.025 0.904 0.058 5.996 0.820

4 0.029 0.831 0.145 7.801 1.552

4 0.033 0.775 0.132 9.368 1.630

4 0.037 0.762 0.165 11.301 2.064

4 0.041 0.824 0.110 12.461 1.483

Table A.122: Detailed data for Adjusted - 4 clones.

142 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.005 0.005 1.122 0.107

6 0.005 0.124 0.040 1.590 0.040

6 0.009 0.297 0.034 2.827 0.063

6 0.013 0.478 0.078 4.320 0.132

6 0.017 0.651 0.091 6.019 0.345

6 0.021 0.785 0.052 8.431 1.339

6 0.025 0.793 0.122 10.732 1.642

6 0.029 0.768 0.138 14.243 2.747

6 0.033 0.710 0.101 17.219 1.968

6 0.037 0.694 0.105 20.293 2.405

6 0.041 0.653 0.108 22.407 3.434

Table A.123: Detailed data for Adjusted - 6 clones.

Algorithm: Adjusted

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.011 0.007 2.503 0.191

10 0.005 0.094 0.016 3.063 0.136

10 0.009 0.293 0.028 5.601 0.264

10 0.013 0.436 0.046 8.199 0.186

10 0.017 0.591 0.038 11.574 0.555

10 0.021 0.676 0.045 15.222 1.303

10 0.025 0.785 0.066 19.659 2.273

10 0.029 0.763 0.040 24.049 2.239

10 0.033 0.809 0.072 28.623 2.729

10 0.037 0.791 0.048 35.034 2.852

10 0.041 0.755 0.085 38.535 4.095

Table A.124: Detailed data for Adjusted - 10 clones.

A.5. MUTATION TREES 143

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

3 0.001 0.000 0.000 0.522 0.092

3 0.005 0.000 0.000 2.482 0.231

3 0.009 0.000 0.000 6.213 0.274

3 0.013 0.000 0.000 188.776 223.519

3 0.017 0.000 0.000 134.597 119.107

3 0.021 0.225 0.308 50.808 20.751

3 0.025 0.563 0.000 105.665 32.605

3 0.029 0.225 0.308 64.030 25.255

3 0.033 0.113 0.252 51.972 55.580

3 0.037 0.113 0.252 46.033 35.461

3 0.041 0.000 0.000 31.533 22.493

Table A.125: Detailed data for SBMClone - 3 clones.

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

4 0.001 0.000 0.000 0.537 0.098

4 0.005 0.000 0.000 3.671 0.448

4 0.009 0.000 0.000 9.301 0.292

4 0.013 0.000 0.000 61.037 42.378

4 0.017 0.367 0.251 74.405 37.769

4 0.021 0.466 0.301 113.247 53.388

4 0.025 0.206 0.313 81.120 37.027

4 0.029 0.335 0.473 65.845 28.904

4 0.033 0.460 0.472 117.456 89.308

4 0.037 0.029 0.064 35.053 12.284

4 0.041 0.065 0.145 41.295 13.135

Table A.126: Detailed data for SBMClone - 4 clones.

144 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

6 0.001 0.000 0.000 0.781 0.098

6 0.005 0.000 0.000 6.410 0.610

6 0.009 0.000 0.000 258.016 218.065

6 0.013 0.234 0.134 101.359 84.888

6 0.017 0.386 0.125 113.737 26.962

6 0.021 0.511 0.184 168.459 38.403

6 0.025 0.610 0.099 189.863 41.964

6 0.029 0.799 0.041 219.038 95.052

6 0.033 0.477 0.267 190.463 46.873

6 0.037 0.446 0.171 127.324 20.030

6 0.041 0.332 0.071 241.127 207.067

Table A.127: Detailed data for SBMClone - 6 clones.

Algorithm: SBMClone

clones p̄
ARI Runtime (s)

mean SD mean SD

10 0.001 0.000 0.000 0.907 0.075

10 0.005 0.000 0.000 9.489 0.623

10 0.009 0.079 0.050 3207.806 4004.426

10 0.013 0.404 0.181 114.453 23.322

10 0.017 0.442 0.100 111.900 13.544

10 0.021 0.429 0.129 172.250 37.933

10 0.025 0.470 0.113 219.143 64.845

10 0.029 0.436 0.147 287.749 21.800

10 0.033 0.693 0.158 284.698 63.323

10 0.037 0.807 0.083 396.343 59.608

10 0.041 0.942 0.057 460.582 93.404

Table A.128: Detailed data for SBMClone - 10 clones.

A.6. SAMPLING EFFICIENCY 145

A.6 Sampling efficiency

Algorithm: Adjusted

samples
ARI Runtime (s)

mean SD mean SD

0 0.847 0.064 301.499 21.206

1 0.967 0.006 298.270 9.511

2 0.965 0.012 314.851 20.542

4 0.956 0.012 315.613 29.114

10 0.964 0.003 324.534 34.773

21 0.959 0.006 335.625 17.620

46 0.956 0.015 386.866 9.888

100 0.967 0.010 477.156 14.030

215 0.961 0.012 697.197 90.912

464 0.965 0.006 1116.324 75.218

1000 0.964 0.006 2132.039 97.754

Table A.129: Detailed data for sampling efficiency tests. m = 4000, n =

5000, p̄ = 0.005, 30% overlap. Using zero samples is equivalent to using the

weighted algorithm.

146 APPENDIX A. DETAILED EXPERIMENTAL RESULTS

A.7 Realistic parameters

Algorithm: Naive

p̄
ARI Runtime (s)

mean SD mean SD

0.001 -0.017 0.005 0.089 0.001

0.005 0.108 0.170 0.302 0.004

0.009 0.369 0.211 0.512 0.013

0.013 0.477 0.053 0.756 0.006

0.017 0.515 0.029 0.939 0.007

0.021 0.515 0.029 1.212 0.005

0.025 0.528 0.000 1.414 0.016

0.029 0.528 0.000 1.648 0.013

0.033 0.528 0.000 1.852 0.011

0.037 0.528 0.000 2.082 0.026

0.041 0.528 0.000 2.482 0.015

Table A.130: Detailed data for Naive - realistic parameters.

Algorithm: Weighted

p̄
ARI Runtime (s)

mean SD mean SD

0.001 -0.015 0.006 0.211 0.041

0.005 0.021 0.053 0.315 0.003

0.009 0.370 0.216 0.531 0.013

0.013 0.476 0.029 0.803 0.011

0.017 0.515 0.029 1.003 0.008

0.021 0.515 0.029 1.297 0.015

0.025 0.515 0.029 1.544 0.023

0.029 0.528 0.000 1.838 0.014

0.033 0.528 0.000 2.105 0.031

0.037 0.528 0.000 2.402 0.037

0.041 0.528 0.000 2.910 0.034

Table A.131: Detailed data for Weighted - realistic parameters.

A.7. REALISTIC PARAMETERS 147

Algorithm: Adjusted

p̄
ARI Runtime (s)

mean SD mean SD

0.001 0.026 0.060 0.245 0.035

0.005 0.354 0.123 0.436 0.054

0.009 0.931 0.111 0.703 0.045

0.013 0.982 0.040 1.180 0.157

0.017 1.000 0.000 1.658 0.292

0.021 1.000 0.000 2.034 0.258

0.025 1.000 0.000 2.521 0.347

0.029 1.000 0.000 3.293 0.542

0.033 1.000 0.000 4.367 0.407

0.037 0.982 0.040 5.134 0.375

0.041 0.964 0.049 6.318 0.120

Table A.132: Detailed data for Adjusted - realistic parameters.

Algorithm: SBMClone

p̄
ARI Runtime (s)

mean SD mean SD

0.001 0.000 0.000 0.469 0.219

0.005 0.000 0.000 2.244 1.982

0.009 0.000 0.000 4.458 0.178

0.013 0.000 0.000 104.828 52.404

0.017 0.000 0.000 60.222 54.549

0.021 0.000 0.000 464.168 879.135

0.025 0.000 0.000 155.834 151.750

0.029 0.000 0.000 275.595 433.404

0.033 0.000 0.000 41.353 2.184

0.037 0.000 0.000 27.433 15.362

0.041 0.200 0.447 26.943 14.296

Table A.133: Detailed data for SBMClone - realistic parameters.

	Introduction
	Introduction to the task
	Data model and SBMClone
	Related work
	Thesis outline

	Itemset mining and clones reconstruction
	Noisy Frequent Itemsets Mining
	Reconstruction of clones and mutations

	Previous works
	Error-Tolerant Itemset (ETI)
	Approximate Frequent Itemset (AFI)
	Analysis by Sun and Nobel
	AC-Close
	HANCIM
	General considerations

	Proposed algorithms
	Density of an itemset
	Basic definition and its properties
	Weighted density
	Adjusted density

	Algorithms to optimize density
	Naive algorithm
	Weighted algorithm
	Sampling algorithm

	Time complexity and improvements
	Sampling efficiency

	Experimental Evaluation
	Varying the overlap
	Varying the number of cells
	Dendrograms and distribution of the errors

	Varying the number of mutations
	Varying the number of both cells and mutations
	Varying the mutation tree
	Testing sampling efficiency
	Statistical and computational barriers
	Testing realistic parameters

	Conclusions
	Bibliography
	Detailed experimental results
	Overlap
	Number of cells
	Number of mutations
	Number of both cells and mutations
	Mutation trees
	Large number of cells
	Medium number of cells
	Small number of cells

	Sampling efficiency
	Realistic parameters

