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Abstract

The goal of this thesis is to give a homological characterization of piecewise
hereditary algebras. In particular we show that for a finite dimensional
algebra Λ, it is equivalent to be piecewise hereditary or to have a finite
strong global dimension. Furthermore we discuss in detail some prelimanary
notions, such as derived categories or the representation theory of algebras,
in order to make the thesis accessible for a wider audience.
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Introduction

Homological dimensions are a useful tool to determine the complexity of
abelian categories. In particular, when we focus on rings, these dimensions
give us an indication of how complex modules over such rings are or give
us informations about their derived categories. Take for example the global
dimension of a ring R: we know that gl. dimR = 0 means that R is semisim-
ple or that gl. dimR = 1 means that R is hereditary. Both these properties
have consequences on the categories modR and Db(R). Indeed, if we take a
finite dimensional, hereditary algebra A, we know that Db(A) is particularly
simple, in the sense that any complex is isomorphic a direct sum of shifts of
its cohomologies. However, we have a class of algebras which are not hered-
itary, but still have a derived category which is "hereditary-like", meaning
that we have an abelian, hereditary category H and a triangle equivalence
F : Db(A) → Db(H), where A is one such algebra. We call these algebras
piecewise hereditary. Because of the aforementioned equivalence, their de-
rived categories are easy to deal with and thus we are interested in finding
a way to classify all these algebras.

Following [6], we focused on a newer homological dimension, called strong
global dimension, which was first introduced by Ringel. This dimension in
particular measures the supremum of the length of indecomposable com-
plexes of projectives A-modules in Kb(A) and is shown to be bigger or equal
than the normal global dimension.

The goal of this thesis is to follow [6] in order to prove that a finite
dimensional algebra is piecewise hereditary if and only if its strong global
dimension is finite. In order to be able to make [6] comprehensible for people
without an extensive background in these topics, we try to cover several areas
that are needed to understand it. Among these we focused mostly on the
notion of derived category and on the representation theory of algebras.

The contents of this thesis are as follows. In the first chapter we cover
the preliminaries notions needed to understand [6]. In particular we talk
about the localization of categories, triangulated categories, derived cate-
gories, the representation theory of algebras and Yoneda extensions. The
second chapter covers [6] more closely. First we discuss some technical re-
sults and then we introduce the concept of paths and of strong paths in
triangulated categories. Finally we give a proof of the original claim. The
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thesis ends with some explicit computations. In particular we computed
the strong global dimension for a class of algebras, based on linear, directed
quivers and we found an algebra with finite global dimension and infinite
strong global dimension, which is important to show the difference between
these two homological dimensions.
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Chapter 1

Preliminaries

In this chapter we are going to introduce some concepts about derived cat-
egories and about the representation theory of algebras which are necessary
to understand the central result of this thesis. This chapter though is not
supposed to be intended as a thorough and complete dissertation on these
topics, but rather as a collection of important definitions and results, nec-
essary for understanding the topics of this thesis. For a more precise and
systematic approach we refer to [8], [1] and [9], which are the main references
used by the writer of this thesis.

1.1 Localization of categories

In this section we will refer mainly to [8]. Any proof that will be omitted
can be found in [8], unless otherwise stated.

Theorem 1.1.1. Let A be a category and S be an arbitrary class of mor-
phisms in A. Then there exists a category A[S−1] and a functor Q : A →
A[S−1] such that

i) Q(s) is an isomorphism for every s ∈ S;

ii) For any category B and every functor F : A → B such that F (s) is an
isomorphism for any s ∈ S, there exists a unique functor G : A[S−1]→
B such that F = G◦Q, i.e., we have the following commutative diagram
of functors:

A

A[S−1] B

FQ

G

Moreover the category A[S−1] is unique up to isomorphism.
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8 CHAPTER 1. PRELIMINARIES

The category A[S−1] is called the localization of A with respect to S.

Proof. First we prove uniqueness. Assume we have two pairs (C, Q) and
(C′, Q′) satisfying the conditions of the theorem. Then, the universal prop-
erty implies the existence of the functors G : C → C′ and H : C′ → C such
that Q′ = G ◦Q and Q = H ◦Q′, meaning that we would have the following
commutative diagram of functors:

A

C′ C

QQ′

H

G

In particular this implies that Q′ = (G ◦H) ◦Q′ and Q = (H ◦G) ◦Q. This
leads us to the following commutative diagram of functors:

A

C′ C

QQ

idC

H◦G

where idC denotes the identity functor of C. By the uniqueness of the factor-
ization we must have H ◦ G = idC . With analogous considerations we also
get that G ◦H = idC′ . Therefore H and G are isomorphisms of categories.

It remains to prove the existence of A[S−1]. First we put

ObA[S−1] = ObA

It remains to define the morphisms in A[S−1].
Consider two objects M and N in A (thus also in A[S−1]). Let In =

(0, 1, . . . , n), Jn = {(i, i+ 1) : 0 ≤ i ≤ n− 1}. We define a path of length n
as

i) a map L of In into ObA such that L0 =M and Ln = N ,

ii) a map Φ of Jn into the morphisms of A such that either Φ(i, i+ 1) =
fi : Li → Li+1 or Φ(i, i+ 1) = si : Li+1 → Li for some si ∈ S.

Paths can be represented diagrammatically by an oriented graph as

M L1 · · · Li · · · N
f0 f1 si−1 fi sn−1

Now we define what an elementary transformation of a path is:

i) Switch of
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· · ·Li−1 Li Li+1 · · ·
fi−1 fi

and

· · ·Li−1 Li+1 · · ·
fi◦fi−1

ii) Switch of

· · ·L P L · · ·s s

and

· · ·L L · · ·idL

iii) Switch of

· · ·L P L · · ·ss

and

· · ·L L · · ·idL

iv) Switch of

· · ·L L P · · ·idL s

and

· · ·L P · · ·s

Two paths between two objects M and N are said to be equivalent if one
can be obtained from the other via a finite sequence of elementary transfor-
mations. This clearly defines an equivalence relation on the set of all paths
between M and N .

Now we are finally able to define morphisms between two objects M
and N in A[S−1] as equivalence classes of paths between M and N . We
also define the composition of paths as concatenation. It clearly induces a
composition on equivalence classes. The identity morphism of an object M
is given by the equivalence class of the path

M M
idM
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One can easily check that A[S−1] is a category.
We also still have to define the functor Q : A → A[S−1]. We set Q(M) =

M for M ∈ ObA. For a morphism f : M → N instead we define Q(f) to
be the path

M N
f

Clearly for s ∈ S we have that Q(s) is represented by

M Ns

and its inverse is the equivalence class of the path

N Ms

Hence Q(s) is an isomorphism for all s ∈ S.
Now consider a functor F : A → B sending all morphisms in S into

isomorphisms. We need to define G : A[S−1]→ B such that F = G ◦Q. We
set G to be equal to F on objects. For a path P of length n between M and
N instead we put

G(P ) = G(Φ(n− 1, n)) ◦ · · · ◦G(Φ(2, 1)) ◦G(Φ(1, 0))

where

G(Φ(i, i+ 1)) =

{
F (fi), if Φ(i, i+ 1) = fi : Li → Li+1

F (si)
−1, if Φ(i, i+ 1) = si : Li+1 → Li

If a path P ′ is obtained from another path P by an elementary transforma-
tion, one can easily check that G(P ′) = G(P ). Therefore G is constant on the
equivalence classes of paths. Hence it induces a map from HomA[S−1](M,N)
into HomB(G(M), G(N)). Again it is easy to check that G, defined in this
way, is a functor from A[S−1] into B and that G ◦ Q = F . Moreover, by
construction G is uniquely determined by F . Therefore the pair (A[S−1], Q)
satisfies the conditions of the theorem.

To make use of duality it is important to know what the opposite of
a localized category A[S−1] looks like and in particular if it can also be
viewed as a localized category. In fact we are interested in the two following
categories: A[S−1]opp, i.e. the actual opposite of the localized category,
and Aopp[S−1], i.e. the localization with respect to S (viewed as a set of
morphisms in Aopp) of the opposite category Aopp. Fortunately we have the
following

Theorem 1.1.2. Let A be a category and S be a class of morphisms in A.
Then the categories A[S−1]opp and Aopp[S−1] are isomorphic.
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The construction we described in Theorem 1.1.1 is fairly general, however
if S is an arbitrary class of morphisms, it is very hard to say anything useful
about A[S−1]. That’s why localization is mostly done with special types of
classes of morphisms, called localizing classes, for which one can give a more
manageable description of morphisms.

Definition 1.1.1. Let A be a category. A class of morphisms S in A is
called a localizing class if it has the following properties:

LC1) For any object M in A, the identity morphism idM is in S;

LC2) If s, t are morphisms in S, then also their composition s ◦ t is in S
(clearly given that such composition is possible);

LC3a) For any pair f ∈ MorA and s ∈ S, there exist g ∈ MorA and t ∈ S
such that the diagram

K L

M N

g

t s

f

is commutative;

LC3b) For any pair f ∈ MorA and s ∈ S, there exist g ∈ MorA and t ∈ S
such that the diagram

K L

M N

g

t

f

s

is commutative;

LC4) Let f, g : M → N be two morphisms. Then there exists s in S such
that s◦f = s◦ g if and only if there exists t in S such that f ◦ t = g ◦ t.

It is clear that if S is a localizing class in A, then it is also a localizing
class in the opposite category Aopp.

In this setting, we would like to be able to give a description of the
morphisms in A[S−1] which is more suitable for computations. First of all
we notice that any morphism in A[S−1] is represented as the composition of
several morphisms Q(s)−1, for s ∈ S, and Q(f). Also, by (LC2) we know
that Q(t)−1 ◦Q(s)−1 = Q(s ◦ t)−1 since both s and t and s ◦ t are in S and
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thus are invertible. Hence we can conclude that any morphism in A[S−1]
has the form

Q(f1) ◦Q(s1)
−1 ◦Q(f2) ◦Q(s2)

−1 ◦ · · · ◦Q(fn) ◦Q(sn)
−1

with s1, s2, . . . , sn ∈ S. Notice in particular that for all i, si and fi have
the same domain, exactly as it happens in (LC3a). Indeed, this property
tells us that for any such morphisms f and s ∈ S, there exist g and t ∈ S
such that f ◦ t = s ◦ g. Clearly we also have Q(f) ◦ Q(t) = Q(s) ◦ Q(g)
which yields Q(s)−1 ◦ Q(f) = Q(g) ◦ Q(t)−1. By induction on n on our
previous representation of morphisms, we get that any morphism in A[S−1]
can be represented as Q(f) ◦Q(s)−1 with s ∈ S. Analogously it can also be
represented by Q(s)−1 ◦Q(f) with s ∈ S.

With these considerations in mind we can give the following

Definition 1.1.2. Let A be a category and S a localizing class of morphisms
in A. A (left) roof betwwen M and N is a diagram

L

M N

s
∼

f

where s is in S and L is in ObA. The symbol ∼ denotes that that arrow is
in S. Analogously we define a (right) roof between M and N as a diagram

L

M N

g t
∼

where t is in S.

Clearly, going to A to the opposite category Aopp switches left roofs
between M and N with right roofs between N and M . Therefore, it is
enough to study the properties of left roofs.

From now on, when we will talk about roofs we will be referring to left
roofs, always keeping in mind that analogous results can be obtained for
right roofs.

We say that two roofs

L

M N

s
∼

f

K

M N

t
∼

g
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are equivalent if there exists an object H in A and morphisms p : H → L
and q : H → K such that the diagram

L

M H N

K

s
∼

f
p

q
t

∼
g

commutes and s ◦ p = t ◦ q ∈ S.
This definition is motivated by the fact that, using the same notation as

above, Q(p ◦ s) = Q(p) ◦ Q(s) is an isomorphism in A[S−1]. Indeed since
Q(s) is an isomorphism, this means that also Q(p) is such and an analogous
argument shows that Q(q) is an isomorphism as well. Thus,

Q(f) ◦Q(s)−1 = Q(f) ◦Q(p) ◦Q(p)−1 ◦Q(s)−1 = Q(f ◦ p) ◦Q(s ◦ p)−1 =

= Q(g ◦ q) ◦Q(t ◦ q)−1 = Q(g) ◦Q(q) ◦Q(q)−1 ◦Q(t)−1 = Q(g) ◦Q(t)−1

Notice that we can define an analogous notion of equivalent right roofs
(we just require that there is a commutative diagram similar to the one for
left roofs, but with p and q going into H).

Lemma 1.1.3. The above relation on left roofs (and on right roofs) is an
equivalence relation.

We also want to define a composition of equivalence classes of (left) roofs,
since we said that roofs are a useful representation of morphisms in A[S−1].
To do this let

L

M N

s
∼

f

be a roof between M and N and

K

N P

t
∼

g

be a roof between N and P . Then, by (LC3a), there exists an object U and
morphisms u : U → L in S and h : U → K such that
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U

L K

M N P

u
∼

h

s
∼

f t
∼

g

is a commutative diagram. It determines the roof

U

M P

s◦u
∼

g◦h (⋆)

Lemma 1.1.4. The equivalence class of the roof in (⋆) is independent of the
choices of U , u and h and depends only on the equivalence classes of the first
two roofs.

It follows that the above process defines a map from the product of the
sets of equivalence classes of roofs between M and N and equivalence classes
of roofs between N and P into the set of equivalence classes of roofs between
M and P . We call this map the composition of (left) roofs. One can check
that this composition is also associative.

Now we are able to give a complete description of the category A[S−1] and
of the functor Q : A → A[S−1] from Theorem 1.1.1 when S is a localizing
class. In particular A[S−1] is the category with ObA[S−1] = ObA and
HomA[S−1](M,N) = { equivalence classes of roofs between M and N} and
Q is the identity on objects and assigns to a morphism f : M → N the
equivalence class of roofs attached to the roof

M

M N

idM
∼

f

One can easily check that Q is a functor. Furthermore, it can be proven
that if there is a functor F : A → B mapping morphisms in S into isomor-
phism, then F factors uniquely through the localized category A[S−1]. Thus
we have a complete description of the localized category A[S−1] that makes
computations more manageable.

Now consider a category A with a localizing class S and let B be a
subcategory of A. Then, if SB = S ∩MorB forms a localizing class in B, we
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have a natural functor B[S−1
B ]→ A[S−1]. This functor sends an object in B

into itself and a morphism in B[S−1
B ] represented by a roof

L

M N

s
∼

f

into the equivalence class of the same roof in A[S−1].

Proposition 1.1.5. Let A be a category, S a localizing class of morphisms
in A and B a full subcategory of A. Assume that the following conditions
are satisfied:

i) SB = S ∩MorB is a localizing class in B;

ii) for each morphism s : N →M with s ∈ S and M ∈ ObB, there exists
u : P → N such that s ◦ u ∈ S and P ∈ ObB.

Then the natural functor B[S−1
B ]→ A[S−1] is fully faithful.

Proof. Let M and N be two objects in B. We have to show that the map
HomB[S−1

B ](M,N)→ HomA[S−1](M,N) is a bijection.
First we prove injectivity. Let

L

M N

s
∼

f

K

M N

t
∼

g

be two roofs representing morphisms in B[S−1
B ] which determine the same

morphism in A[S−1]. This implies that we have the following commutative
diagram of roofs

L

M U N

K

s
∼

f
u

v
t

∼
g

where U ∈ ObA and s ◦ v = t ◦ u ∈ S. Since L,K ∈ ObB, by ii) there exist
V in B and w : V → U such that s ◦u ◦w = t ◦ v ◦w ∈ S. Hence, we get the
diagram
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L

M V N

K

s
∼

f
u◦w

v◦w
t

∼
g

which clearly commutes. It follows that the above roofs determine the same
morphism in B[S−1

B ]. Thus, the above map is an injection.
In order to show surjectivity, let

L

M N

s
∼

f

be a roof representing a morphism φ ∈ HomA[S−1](M,N). By ii). there exist
U in B and u : U → L in S such that s ◦ u ∈ S. Therefore we have the
following commutative diagram

L

M U N

K

s
∼

f
u

idUs◦u
∼

f◦u

which in particular implies that the roof

U

M N

s◦u
∼

f◦u

also represents φ. On the other hand, it determines also a morphism in
HomB[S−1

B ](M,N) which maps into φ, i.e. the map is surjective.

Therefore one can view B[S−1
B ] as a full subcategory of A[S−1].

If we now replace A with its opposite category, we get the following
result.

Proposition 1.1.6. Let A be a category, S a localizing class of morphisms
in A and B a full subcategory of A. Assume that the following conditions
are satisfied:
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i) SB = S ∩MorB is a localizing class in B;

ii) for each morphism s :M → N with s ∈ S and M ∈ ObB, there exists
u : N → P such that u ◦ s ∈ S and P ∈ ObB.

Then the natural functor B[S−1
B ]→ A[S−1] is fully faithful.

We are mostly interested in localizing categories which are additive or
abelian. For these kind of categories we have results analogous to Theorems
1.1.1 and 1.1.2.

Theorem 1.1.7. Let A be an additive (respectively abelian) category and
S a localizing class. There exists a unique additive (respectively abelian)
category A[S−1] and an additive (respectively exact) functor Q : A → A[S−1]
such that the pair (A[S−1], Q) is the localization of A with respect to S.
Furthermore we have once again that the categories A[S−1]opp and Aopp[S−1]
are isomorphic.

This theorem in particular tells us that if A is an abelian category, S
a localizing class and φ : M → N is a morphism in A[S−1], then φ has a
kernel and a cokernel.

Remark. When dealing with additive categories we can replace (LC4) in
the definition of a localizing class with

LC4’) Let f : M → N be a morphism. Then there exists s ∈ S such that
s ◦ f = 0 if and only if there exists t ∈ S such that f ◦ t = 0

Indeed, since HomA(M,N) is an abelian group, s ◦ f = s ◦ g is equivalent
to s ◦ (f − g) = 0 and similarly f ◦ t = g ◦ t is equivalent to (f − g) ◦ t = 0.
Therefore, if we replace f by f − g in (LC4’), it becomes identical to (LC4).

To end this section we want to provide some results concerning mor-
phisms in localized additive categories. In particular, from now on, A will
denote an additive category and S will be a localizing class in A.

Lemma 1.1.8. Let φ : M → N be a morphism be a morphism in A[S−1]
represented by a roof

L

M N

s
∼

f

Then the following conditions are equivalent:7

i) φ = 0;

ii) There exists t ∈ S such that f ◦ t = 0;
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iii) There exists t ∈ S such that t ◦ f = 0.

Proof. Clearly ii) and iii) are equivalent conditions by (LC4’).
Now assume i) holds. Then 0 = Q(f) ◦Q(s)−1 and thus Q(f) = 0 since

Q(s)−1 is an isomorphism. Therefore the roof

L

L N

idL
∼

f

represents the zero morphism in HomA[S−1](L,N). We know that the zero
morphism between L and N is also represented by the roof

L

L N

idL
∼

0

This implies that these two roofs are equivalent, which means that there is
U ∈ ObA and t : U → L such that the diagram

L

M U N

L

idL
∼

f
t

t
idL

∼
0

commutes and t is in S. This implies that there is t ∈ S such that f ◦ t = 0.
Conversely, if ii) holds, f ◦ t = 0 and thus Q(f) ◦Q(t) = 0. Since Q(t) is

an isomorphism this means that Q(f) = 0 and thus φ = Q(f) ◦Q(s)−1 = 0,
as we wanted.

Corollary 1.1.9. Let f :M → N be a morphism in A. Then the following
conditions are equivalent:

i) Q(f) = 0;

ii) There exists t ∈ S such that f ◦ t = 0;

iii) There exists t ∈ S such that t ◦ f = 0.

Proof. The morphism Q(f) is represented by the roof
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M

M N

idM
∼

f

Hence the result follows from Lemma 1.1.8.

Corollary 1.1.10. Let M be an object in A. Then the following conditions
are equivalent:

i) Q(M) = 0;

ii) There exists an object N in A such that the zero morphism N →M is
in S;

iii) There exists an object N in A such that the zero morphism M → N is
in S.

Proof. We can easily see that ii) and iii) are equivalent just by switching to
the opposite category.

Now assume Q(M) = 0. This implies that Q(idM ) = 0. Hence, by
Corollary 1.1.9, there exists s : N →M in S such that s = idM ◦s = 0. This
implies ii).
Conversely if ii) holds, the zero morphism Q(N)→ Q(M) is an isomorphism.
This implies that Q(M) = Q(N) = 0, as we wanted. Indeed if the zero
morphism 0 : Q(N) → Q(M) is an isomorphism, then we have an inverse,
say g, and we also know that 0 = ba where a : Q(N)→ 0 and b : 0→ Q(M).
Furthermore we clearly have that ag is an inverse to b (and analogously gb
is an inverse to a) since bag = idQ(M) by the definition of g and agb : 0→ 0
needs to be the identity on 0.

Finally, we have the following consequence of the above results.

Lemma 1.1.11. Let f :M → N be a morphism in A. Then:

i) If f is a monomorphism, Q(f) is a monomorphism as well;

ii) If f is an epimorphism, Q(f) is an epimorphism as well.

Proof. We can clearly see that i) and ii) are equivalent by switching from A
to the opposite category Aopp, therefore it suffices to prove i).

Let φ : L → M be a morphism in A[S−1] such that Q(f) ◦ φ = 0. The
morphism φ is represented by a roof

U

L M

s
∼

g
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and φ = Q(g) ◦Q(s)−1. This implies that

0 = Q(f) ◦ φ = Q(f) ◦Q(g) ◦Q(s)−1 = Q(f ◦ g) ◦Q(s)−1

and thus Q(f ◦ g) = 0 since Q(s) is an isomorphism. By Corollary 1.1.9
it follows that there exists t ∈ S such that f ◦ g ◦ t = 0. But since f is a
monomorphism, this implies that g ◦ t = 0. By using 1.1.9 again, we see that
this means that Q(g) = 0. Thus φ = Q(g) ◦Q(s)−1 = 0 and we proved that
Q(f) is a monomorphism.

1.2 Triangulated categories

In this section we will refer mainly to [8]. Any proof that will be omitted
can be found in [8], unless otherwise stated.

Let C be an additive category. Let T : C → C be an additive functor
which is an automorphism of the category C, meaning that T is bijective
both on objects and on morphisms. We call such T the translation functor
on C. For an object X we will use the notation Tn(X) = X[n] for any
n ∈ Z. An example of such a functor T is the shift functor on the category
C(A) of complexes over an abelian category. We’re going to give an intuitive
description of it now, in order to have an idea of a non trivial such functor.
Later on we are going to come back on it with more precise definitions. So
for now, the shift functor is the functor sending a complex X• = (Xi)i∈Z
into the complex X•[1] defined by X[1]i = Xi+1 for all i.

A triangle in C is a diagram

X Y Z T (X)

We are also going to represent triangles schematically as

Z

X Y

[1]

A morphism of triangles is a commutative diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

u v w T (u)
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Such a morphism is an isomorphism of triangles if u, v and w are isomor-
phisms.

The category C is a triangulated category if it is equipped with a family of
triangles called distinguished triangles, which satisfy the following properties:

(TR1.a) Any triangle isomorphic to a distinguished triangle is a distinguished
triangle.

(TR1.b) For any object X in C,

0

X X

[1]

idX

is a distinguished triangle.

(TR1.c) For any morphism f : X → Y in C, there exists a distinguished triangle

Z

X Y

[1]

f

(TR2) The triangle

Z

X Y

[1]

h

f

g

is distinguished if and only if the triangle

T (X)

Y Y

[1]

−T (f)

g

h



22 CHAPTER 1. PRELIMINARIES

is distinguished.

(TR3) Let

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

u v T (u)

be a diagram where the rows are distinguished triangles and the first
square is commutative. Then there exists a morphism w : Z → Z ′

such that the diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

u v w T (u)

is a morphism of distinguished triangles.

(TR4) Let f , g and h = g ◦ f be morphisms in C. Then the diagram

X Y Z ′ T (X)

X Z Y ′ T (X)

Y Z X ′ T (Y )

f

idX

a

g T (idX)

h

f

b

idZ T (f)

g c

where the rows are distinguished triangles can be completed to the
diagram
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X Y Z ′ T (X)

X Z Y ′ T (X)

Y Z X ′ T (Y )

Z ′ Y ′ X ′ T (Z ′)

f

idX

a

g u T (idX)

h

f

b

idZ v T (f)

g

a

c

b idX′ T (a)

u v w

where all four rows are distinguished triangles and the vertical arrows
are morphisms of triangles.

We will often refer to the second property as the turning of triangles axiom,
and to the fourth property as the octahedral axiom.

Definition 1.2.1. Let C and D be two triangulated categories. An additive
functor F : C → D is called graded if T ◦ F is isomorphic to F ◦ T .

A graded functor F : C → D is called exact if it maps distinguished
triangles into distinguished triangles.

If F : C → D is a graded functor, let η be the isomorphism of F ◦ T into
T ◦ F . If

X Y Z T (X)
f g h

is a triangle in C and we apply F to it, we get a diagram

F (X) F (Y ) F (Z) F (T (X)) T (F (X))
F (f) F (g) F (h) ηX

which is also a triangle since we can collapse the last two arrows into one.
Moreover if we have a morphism of triangles

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

u v w T (u)

and we apply F , we get the commutative diagram
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F (X) F (Y ) F (Z) F (T (X)) T (F (X))

F (X ′) F (Y ′) F (Z ′) F (T (X ′)) T (F (X ′))

F (u) F (v) F (w) F (T (u))

ηX

T (F (u))

ηX′

which is again a morphism of triangles, by collapsing the last two rectangles
into one. Clearly if the original morphism is an isomorphism of triangles, so
is the latter one, since functors preserve isomorphisms.

Now, if we have a triangulated category (C, T ), we would like to know
if we can give to its opposite category Copp a compatible structure of a
triangulated category. First of all we define the translation functor T opp on
Copp as the inverse of the translation functor X 7→ T (X) on C, i.e. we have
T opp(X) = X[−1] = T−1(X). If

X Y Z T (X)
f g h

is a distinguished triangle in C, we declare

Z Y X T (Z)
g f T opp(h)

to be a distinguished triangle in Copp.

Proposition 1.2.1. The category Copp, equipped with the translation func-
tor T opp and with the family of distinguished triangles defined above, is a
triangulated category.

We will call Copp the opposite triangulated category of C.
Given a distinguished triangle

X Y Z T (X)
f g h

we can easily extend it to an infinite diagram

· · · X Y Z T (X) · · ·T−1(h) f g h T (f)

Lemma 1.2.2. Let

X Y Z T (X)
f g h

be a distinguished triangle. Then the composition of any two consecutive
morphisms in the triangle is equal to 0, i.e.

g ◦ f = h ◦ g = T (f) ◦ h = 0

Proof. By (TR2) it is enough to show that g ◦ f = 0 since for the other
compositions we can just turn our triangle. Consider the diagram
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X X 0 T (X)

X Y Z T (X)

idX

idX f T (idX)

f g h

By (TR1.b) the first row is also a distinguished triangle. Also by (TR3)
we know that there is a morphism u : 0 → Z which completes the above
diagram to the diagram

X X 0 T (X)

X Y Z T (X)

idX

idX f u T (idX)

f g h

which is a morphism of triangles. Since u is necessarily the zero morphism,
from the commutativity of the middle square we conclude that g ◦f = 0.

Now consider our triangulated category C and an additive functor F :
C → A, where A is an abelian category. For any distinguished triangle

X Y Z T (X)
f g h

we have
F (g) ◦ F (f) = 0

by 1.2.2. Moreover, the above long sequence of morphisms leads to the
following complex

· · · F (X) F (Y ) F (Z) F (T (X)) · · ·F (T−1(h)) F (f) F (g) F (h) F (T (f))

of objects in A.

Definition 1.2.2. An additive functor F : C → A between a triangulated
category C and an abelian category A is said to be a cohomological functor
if for any distinguished triangle

X Y Z T (X)
f g h

we have an exact sequence

F (X) F (Y ) F (Z)
F (f) F (g)

in A. Therefore the above complex is exact.
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Let f : X → Y be a morphism in C. Then for any object U in C, it induces
morphisms f∗ : HomC(U,X) → HomC(U, Y ) defined by f∗(φ) = f ◦ φ and
f∗ : HomC(Y,U)→ HomC(X,U) given by f∗(ψ) = ψ ◦ f .

Now let

X Y Z T (X)
f g h

be a distinguished triangle and U an object in C. Then f , g and h induce
morphisms in the following infinite sequences of abelian groups

· · · → HomC(U,X) HomC(U, Y ) HomC(U,Z) HomC(U, T (X)) · · ·f∗ g∗ h∗ T (f)∗

and

· · · HomC(T (X), U) HomC(Z,U) HomC(Y,U) HomC(X,U)→ · · ·T (f)∗ h∗ g∗ f∗

The next result tells us that these are long exact sequences of abelian groups.

Proposition 1.2.3. Let U be an object in C. Then

i) The functor X 7→ HomC(U,X) from C to the category of abelian groups
is a cohomological functor.

ii) The functor X 7→ HomC(X,U) from Copp to the category of abelian
groups is a cohomological functor.

Proof. Clearly i) and ii) are dual statements, so it suffices to prove i), i.e.
we need to prove that Im f∗ = Ker g∗. By 1.2.2 we already know that
Im f∗ ⊆ Ker g∗.

Assume now that u : U → Y is such that g∗(u) = 0, i.e. g ◦ u = 0. Then
we can consider the diagram

U U 0 T (U)

X Y Z T (X)

idU

u 0

f g

where the middle square commutes and the rows are distinguished triangles.
By turning both triangles we get the diagram

U 0 T (U) T (U)

Y Z T (X) T (Y )

u 0

−T (idU )

T (u)

g −T (f)
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which we can complete by (TR3) to a morphism of distinguished triangles

U 0 T (U) T (U)

Y Z T (X) T (Y )

u 0 T (v)

−T (idU )

T (u)

g −T (f)

By turning these triangles back, we get the morphism of distinguished tri-
angles

U U 0 T (U)

X Y Z T (X)

idU

v u 0 T (v)

f g

Hence we constructed v : U → X such that u = f ◦ v = f∗(v). It follows
that u ∈ Im f∗. Hence, Ker g∗ ⊆ Im f∗, and thus Ker g∗ = Im f∗.

Lemma 1.2.4. Let

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

u v w T (u)

be a morphism of two distinguished triangles. If two morphisms between u,
v and w are isomorphisms, then the third one is an isomorphism as well.

Proof. By turning the triangles we can assume without loss of generality that
u and v are the two known isomorphisms. By 1.2.3, we have the following
commutative diagram
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Hom(Z ′, X) Hom(Z ′, X ′)

Hom(Z ′, Y ) Hom(Z ′, Y ′)

Hom(Z ′, Z) Hom(Z ′, Z ′)

Hom(Z ′, T (X)) Hom(Z ′, T (X ′))

Hom(Z ′, T (Y )) Hom(Z ′, T (Y ′))

u∗

v∗

w∗

T (u)∗

T (v)∗

where both columns are exact and all horizontal arrows are isomorphisms,
except possibly the middle one. Indeed since u and v are isomorphisms this
means that also T (u) and T (v) are such, since T (u−1)◦T (u) = T (u−1 ◦u) =
id = T (u◦u−1) = T (u)◦T (u−1). Clearly then the functor Hom(Z ′,−) sends
them to other isomorphisms. By the five lemma the middle arrow is also an
isomorphism. Therefore, there exists a : Z ′ → Z such that w∗(a) = w ◦ a =
idZ′ .

Analogously, by 1.2.3, we have the following commutative diagram
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Hom(T (Y ′), Z) Hom(T (Y )′, Z)

Hom(T (X ′), Z) Hom(T (X), Z)

Hom(Z ′, Z) Hom(Z,Z)

Hom(Y ′, Z) Hom(Y,Z)

Hom(X ′, Z) Hom(X,Z)

T (v)∗

T (u)∗

w∗

v∗

u∗

where again both columns are exact and all horizontal arrows are isomor-
phisms, except possibly the middle one. Again by the five lemma the middle
arrow is also an isomorphism. This means that there exists b : Z ′ → Z such
that w∗(b) = b ◦ w = idZ . It follows that

b = b ◦ (w ◦ a) = (b ◦ w) ◦ a = a

Therefore w is an isomorphism, as wanted.

Therefore, in the morphism

X Y Z T (X)

X Y Z ′ T (X)

f

idX idY w T (idX)

f

of two distinguished triangles based on f : X → Y , the morphism w : Z → Z ′

is an isomorphism. It follows that the third vertex in a distinguished triangle
is determined up to isomorphism. We call it a cone of f .

Lemma 1.2.5. Let

X Y Z T (X)
f

be a distinguished triangle. Then the following statements are equivalent:

i) f is an isomorphism;
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ii) Z = 0.

Proof. Consider the following morphism of distinguished triangles

X X 0 T (X)

X Y Z T (X)

idX

idX f T (idX)

f

If f : X → Y is an isomorphism, then the first two vertical arrows are isomor-
phisms, therefore by Lemma 1.2.4 the third vertical arrow is an isomorphism
as well, i.e. Z = 0.

Conversely, if Z = 0 the first and third vertical arrows are isomorphisms
and by the same result f : X → Y is an isomorphism.

The following result is a refinement of (TR3).

Proposition 1.2.6. Let

X Y Z T (X)
f g h

and

X ′ Y ′ Z ′ T (X ′)
f g′ h′

be two distinguished triangles and v : Y → Y ′ be a morphism. Then we have
the following diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

f

u

g

v

h

w T (u)

f g′ h′

and the following statements are equivalent:

i) g′ ◦ v ◦ f = 0;

ii) there exists u such that the first square in the diagram is commutative;

iii) there exists w such that the second square in the diagram is commuta-
tive;

iv) there exist u and w such that the diagram is a morphism of triangles.

If these conditions are satisfied and Hom(X,Z ′[−1]) = 0, the morphism u in
ii) (resp. w in iii)) is unique.

Proof. By Proposition 1.2.3 we have the following exact sequence
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Hom(X,Z ′[−1]) Hom(X,X ′) Hom(X,Y ′) Hom(X,Z ′)
f ′∗ g′∗

Therefore, if g′∗(v ◦ f) = g′ ◦ v ◦ f = 0, then v ◦ f ∈ Ker g′∗ = Im f ′∗ and thus
there is u : X → X ′ such that v ◦ f = f ′(u) = f ′ ◦ u. Hence i) implies ii).
Moreover, if Hom(X,Z ′[−1]) = 0, the morphism u is unique, since in this
case f ′∗ would be a monomorphism by the exactness of the sequence.

Conversely, if ii) holds,

g′ ◦ v ◦ f = g′ ◦ f ′ ◦ u = 0

by Lemma 1.2.2, and i) holds. Analogously, by 1.2.3, we have the following
exact sequence

Hom(X[1], Z ′) Hom(Z,X ′) Hom(Y,Z ′) Hom(X,Z ′)
g∗ f∗

Therefore if f∗(g′ ◦ v) = g′ ◦ v ◦ f = 0, there exists w : Z → Z ′ such
that g∗(w) = w ◦ g = g′ ◦ v, i.e. iii) holds. Moreover, if Hom(X[1], Z ′) =
Hom(X,Z ′[−1]) = 0, the morphism w is unique for similar reasons as before.

Conversely, if iii) holds,

g′ ◦ v ◦ f = w ◦ g ◦ f = 0

again by 1.2.2, and i) holds.
Finally, if iv) holds, ii) a fortiori holds and if ii) implies iv) by (TR3).

With similar arguments about the long exact sequence of homology one
could prove the following.

Lemma 1.2.7. Let

X Y Z T (X)
f g h

and

X ′ Y ′ Z ′ T (X ′)
f g′ h′

be two distinguished triangles. Then

X ⊕X ′ Y ⊕ Y ′ Z ⊕ Z ′ T (X ⊕X ′)
f⊕f ′ g⊕g′ h⊕h′

is a distinguished triangle.

In particular we are interested in the following consequences.

Corollary 1.2.8. Let εX : X → X ⊕ Y be the natural inclusion and πY :
X ⊕ Y → Y the natural projection. Then
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X X ⊕ Y Y T (X)
εX πY 0

is a distinguished triangle.

Proof. Clearly

X X 0 T (X)
idX

and

Y Y 0 T (Y )
idY

are distinguished triangles by (TR1). By (TR2)

0 Y Y T (0)
idY

is also a distinguished triangle. Then the direct sum of the first and third
distinguished triangles is also a distinguished triangle by Lemma 1.2.7.

This result has the following converse.

Corollary 1.2.9. Let

X Z Y T (X)u v 0

be a distinguished triangle in C. Then there exists an isomorphism φ : X ⊕
Y → Z.

Proof. By turning the commutative diagram

X X ⊕ Y Y T (X)

X Z Y T (X)

εX

idX

πX 0

idY idT (X)

u v 0

and using (TR2) and (TR3), we see that exists φ : X ⊕ Y → Z such that it
completes the above diagram to a morphism of triangles. By Lemma 1.2.4,
φ is an isomorphism.

Lemma 1.2.10. Let X f−→ Y
(u0)−−→ Z1 ⊕ Z2 → T (X) be a distinguished

triangle. Then the object Z2 is a direct summand of T (X) and in particular
Z2 = 0 whenever Hom(Z2, T (X)) = 0. Furthermore, if X is indecomposable
and Z2 ̸= 0, then u = 0.
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Proof. Since the morphism Y → Z1 ⊕ Z2 is of the form u ⊕ 0 : B ⊕ 0 →
Z1 ⊕Z2, it follows that the given triangle is isomorphic to the direct sum of
X ′ → Y → Z1 → T (X ′) and

Z2[−1]→ 0→ Z2
id−→ Z2

The first part of the thesis follows immediately. Furthermore, if X is inde-
composable and Z2 ̸= 0, f must be the zero morphism.

Next we want to see what happens when you localize a triangulated
category. For this let C be a triangulated category. A localizing class in C is
said to be compatible with triangulation if it satisfies

LT1) For any morphism s, s ∈ S if and only if T (s) ∈ S.

LT2) The diagram

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

s t T (s)

where rows are distinguished triangles, the first square is commutative
and s, t ∈ S can be completed to a morphism of triangles

X Y Z T (X)

X ′ Y ′ Z ′ T (X ′)

s t p T (s)

where p ∈ S.

If we have such a triangulated category C and such a localizing class S, let
Q : C → C[S−1] be the quotient functor. Since for any s ∈ S, (Q ◦ T )(s) =
Q(T (s)) is an isomorphism, the functor Q ◦ T factors through C[S−1], i.e.
we have the following commutative diagram of functors

C C

C[S−1] C[S−1]

T

Q Q

TS

From the diagram it is clear that TS is an automorphism of the category
C[S−1]. We will often denote it just by T , by abuse of notation.

A triangle
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X Y Z T (X)

in C[S−1] is distinguished if there exists a distinguished triangle

U V W T (U)

in C and an isomorphism of triangles

U V W T (U)

X Y Z T (X)

a b c T (a)

in C[S−1].
We are now going to sum up some results about the localization of trian-

gulated categories which are similar to some other results obtained in Section
1.1.

Theorem 1.2.11. Let C be a triangulated category and S a localizing class
in C compatible with triangulation. Then the category C[S−1] is triangulated.
The natural functor Q : C → C[S−1] is exact.

Furthermore, if D is another triangulated category and F : C → D an
exact (resp. cohomological) functor such that s ∈ S implies that F (s) is an
isomorphism in D. Then there exists a unique functor FS : C[S−1]→ D such
that the diagram

C

C[S−1] D

Q F

FS

of functors commutes. The functor FS : C[S−1] → D is exact (resp. coho-
mological).

Finally we have that the categories Copp[S−1] and C[S−1]opp are isomor-
phic as triangulated categories.

1.3 Categories of complexes

In this section we will refer mainly to [8]. Any proof that will be omitted
can be found in [8], unless otherwise stated.

Let A be an additive category. We will start by defining the category
of complexes of A-objects, which we are going to denote by C(A). This is
the category with ObC(A) = (Xi, diX ; i ∈ Z), where Xi is an object in A
and diX : Xi → Xi+1 for all i. Furthermore we require that diX ◦ d

i−1
X = 0

for all i. Sometimes we are going to denote such complexes (Xi) by X•.
Schematically we can view such complexes as a diagram



1.3. CATEGORIES OF COMPLEXES 35

· · · Xn−1 Xn Xn+1 · · ·
dn−1
X dnX

A morphism of complexes f• : X• → Y • is a collection of morphisms (f i :
Xi → Y i; i ∈ Z), such that f i+1 ◦ diX = diY ◦ f i for all i. Schematically we
can see morphisms as infinite commutative diagrams

· · · Xn−1 Xn Xn+1 · · ·

· · · Y n−1 Y n Y n+1 · · ·

fn−1

dn−1
X

fn

dnX

fn+1

dn−1
Y dnY

Now we are also able to give a precise definition for the translation functor
T : C(A)→ C(A). Indeed T is the functor that sends a complex X• to the
complex T (X•) such that

T (X•)n = Xn+1 and dnT (X) = −d
n+1
X

for any n ∈ Z and sends a morphism of complexes f : X → Y to the
morphism T (f) : T (X) → T (Y ) given by T (f)n = fn+1 for any n ∈ Z.
Clearly T is an automorphism of the category C(A). We are often going to
use the notation T p(X•) = X•[p] and call this object the complex X• shifted
to the left p times.

The complex · · · → 0→ 0→ · · · is the zero object in C(A). Furthermore
if we have two complexes X and Y we can define their direct sum X ⊕Y by
(X ⊕ Y )n = Xn ⊕ Y n with the natural differential dX ⊕ dY . Therefore we
have the following

Lemma 1.3.1. The category C(A) is an additive category.

We can also define an additive functor C : A → C(A) by

C(X)p =

{
X if p = 0,

0 if p ̸= 0;
and dC(X) = 0

for X ∈ ObA, and

C(f)p =

{
f if p = 0,

0 if p ̸= 0;

for any f ∈ MorA.

Lemma 1.3.2. The functor C : A → C(A) is fully faithful.

Hence A is isomorphic to the full subcategory of C(A) consisting of
complexes X• with Xp = 0 for p ̸= 0.

We say that a complex X is bounded from above (resp. bounded from
below) if there exists n0 ∈ Z such that Xn = 0 for n > n0 (resp for n < n0).
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We will say that a complex is bounded if it is bounded from above and from
below. We denote by C−(A) (resp. C+(A) and Cb(A)) the full subcategories
of C(A) consisting of complexes bounded from above (resp. bounded from
below and bounded). Obviously all these subcategories are invariant for the
action of the translation functor. Also, they are additive. In the following we
are going to use the shorthand C∗(A) to indicate any of the above categories.

We also have that the categories C(A)opp and C(Aopp) are isomorphic
and their isomorphism induces isomorphisms between the bounded subcat-
egories C∗(A)opp and C∗(Aopp).

Let f : X → Y be a morphism of complexes in C(A). We will denote by
Hom−1(X,Y ) the set of homotopies between X and Y , where an homotopy
is h = (hi; i ∈ Z) where hi : Xi → Y i−1 is a morphism in A for all i. We say
that f ishomotopic to zero if there exists a homotopy hf ∈ Hom−1(X,Y )
such that

f = dY ◦ hf + hf ◦ dX
We will denote by Ht(X,Y ) the set of all morphisms in HomC(A)(X,Y )
which are homotopic to zero.

Lemma 1.3.3. The subset Ht(X,Y ) is a subgroup HomC(A)(X,Y )

Proof. Clearly the zero morphism is in Ht(X,Y ) with h0 = 0. Now assume
that f, g ∈ Ht(X,Y ) with homotopies hf and hg. Then hf+hg is a homotopy
for f+g thanks to the distributive property of the composition, thus f+g ∈
Ht(X,Y ). Similarly if f ∈ Ht(X,Y ) then −hf is a homotopy for −f , so we
also have that −f ∈ Ht(X,Y ). Hence we proved that Ht(X,Y ) is indeed a
subgroup.

We say that two morphisms f, g : X → Y are homotopic if f − g ∈
Ht(X,Y ) and denote this by f ∼ g. Clearly ∼ is an equivalence relation on
HomC(A)(X,Y ).

Lemma 1.3.4. Let X, Y and Z be in ObC(A)and let f : X → Y and
g : Y → Z be two morphisms of complexes. If either f or g is homotopic to
zero, then also g ◦ f is homotopic to zero.

Proof. If f ∈ Ht(X,Y ) with the homotopy hf , then we have that

g ◦ f = g ◦ dY ◦ hf + g ◦ hf ◦ dX = dz ◦ g ◦ hf + g ◦ hf ◦ dX

Thus we have that g ◦ f ∈ Ht(X,Z), since g ◦ hf ∈ Hom−1(X,Z).
Analogously, if g ∈ Ht(Y,Z) with the homotopy hg we have that

g ◦ f = dz ◦ hg ◦ f + hg ◦ dY ◦ f = dZ ◦ hg ◦ f + hg ◦ f ◦ dX

Thus we have once again that g ◦f ∈ Ht(X,Z), since hg ◦f ∈ Hom−1(X,Z).
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Now we are able to define the homotopic (or stable) category of com-
plexes of A-objects which we will denote by K(A). This is the category with
ObK(A) = ObC(A) and where the morphisms between two such objects
are classes of homotopic morphisms. Lemma 1.3.4 ensures that the composi-
tion in C(A) induces a well defined composition in K(A), with in particular
[g]∼ ◦ [f ]∼ = [g ◦ f ]∼. In the following we will also use the following conven-
tion: given a complex X• = (Xi, di) ∈ Kb(A) we may consider a preimage
X̄• = (X̄i, d̄i) in Cb(A) without indecomposable null-homotopic summands.
Clearly X̄• is uniquely determined by X• up to isomorphism.

We also have that the zero object in K(A) is the zero object in C(A) and
that for any two complexes in K(A) we can define their direct sum as the
direct sum in C(A). Moreover the canonical inclusions and projections are
just the homotopy classes of the corresponding morphisms in C(A). Hence,
this immediately leads to the following result.

Lemma 1.3.5. The category K(A) is an additive category.

Lemma 1.3.6. Let f : X → Y be a morphism of complexes. Then the
following statements are equivalent:

i) f is homotopic to zero;

ii) T (f) is homotopic to zero.

Proof. If i) holds, then we have a homotopy hf for f which is given by a
family of morphisms hpf : Xp → Y p−1. Therefore we can also see hf as a
morphism in hT (f) ∈ Hom−1(X,Y ). In this case we have

T (f)p = fp+1 = dpY ◦ h
p+1
f + hp+2

f ◦ dp+1
X = −dp−1

T (Y ) ◦ h
p
T (f) − h

p+1
T (f) ◦ d

p
T (X)

for all p ∈ Z, i.e. T (f) is homotopic to zero via the homotopy −hT (f).
The proof of the converse is analogous.

Therefore, the translation functor T induces an isomorphism of HomK(A)(X,Y )
onto HomK(A)(T (X), T (Y )). It follows that T induces an automorphism of
the category K(A). We will again call it the translation functor and denote
it by T .

As before, we define the full subcategories K+(A), K−(A) and Kb(A)
of complexes bounded from below, resp. bounded from above and bounded.
Again we are going to indicate any of them with the shorthand K∗(A).
Clearly all these subcategories are once again invariant under the action of
the translation functor.

Definition 1.3.1. Let 0 ̸= X• ∈ Kb(A) and let X̄• be its preimage in Cb(A)
as defined above. Let r ≤ s such that X̄r ̸= 0 ̸= X̄s and X̄i = 0 for i < r
and i > s. These are well defined since X̄• is defined up to isomorphism of
complexes in Cb(A). We define the length of X• as ℓ(X•) = s− r.
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Now letH : C(A)→ K(A) be the natural functor which is the identity on
objects and maps morphisms of complexes into their homotopy classes. This
is clearly an additive functor which commutes with the translation functors.
Moreover we have the additive functor K = H ◦ C : A → K(A).

Lemma 1.3.7. The functor K : A → K(A) is fully faithful.

Proof. Let X and Y be two objects in A. Then K(X) and K(Y ) are com-
plexes such that K(X)p = K(Y )p = 0 for all p ̸= 0. Therefore any morphism
in Hom−1(X,Y ) must be zero. In particular Ht(K(X),K(Y )) = 0 and thus
HomK(A)(X,Y ) = HomC(A)(X,Y ). Now the statement follows from Lemma
1.3.2.

Notice that we have again that A is isomorphic to the full subcategory
of K(A) consisting of complexes X• with Xp = 0 for p ̸= 0.

We also have once again that the categoriesK(A)opp andK(Aopp) are iso-
morphic and their isomorphism induces isomorphisms between the bounded
subcategories K∗(A)opp and K∗(Aopp).

Assume now that A is an abelian category. For p ∈ Z and for any
complex X• in C(A) we define

Hp(X•) = Ker dpX/ Im dp−1
X

which is an object in A. If f : X• → Y • is a morphism of complexes,
fp(KerpX) ⊆ Ker dpY and fp(Im dp−1

X ) ⊆ Im dp−1
Y and therefore f induces a

morphism Hp(f) : Hp(X•)→ Hp(Y •). Hence we have that Hp is a functor
from C(A) into A, which is clearly additive for all p ∈ Z. The functors Hp,
p ∈ Z, are called the cohomology functors.

Clearly we have that

Hp(T (X•)) = Ker dpT (X)/ Im dp−1
T (X) = Ker dp+1

X / Im dpX = Hp+1(X•)

and analogously Hp(T (f)) = Hp+1(f). Therefore,

Hp = H0 ◦ T p

for any p ∈ Z, and thus it is enough to study the functor H0 : C(A)→ A.

Lemma 1.3.8. Let f, g : X → Y be two homotopic morphisms of complexes.
Then Hp(f) = Hp(g) for all p ∈ Z.

Proof. By the above remark it is enough to prove H0(f) = H0(g).
Let h be the corresponding homotopy, then we have

f0 − g0 = d−1
Y ◦ h

0 + h1 ◦ d0X
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This in particular implies that the restriction of f0 − g0 to Ker d0X agrees
with the morphism d−1

Y ◦ h0. Therefore the image of f0 − g0 : Ker d0X → Y 0

is contained in Im d−1
Y . It follows that f0 − g0 induces the zero morphism

from Ker d0X into H0(Y ). Therefore H0(f)−H0(g) = H0(f −g) : H0(X)→
H0(Y ) is the zero morphism.

This last result in particular tells us that the functors Hp : C(A) → A
induce functors Hp : K(A)→ A which are again clearly additive. Moreover,
they satisfy once again

Hp = H0 ◦ T p

Our next goal is giving a triangulated structure to K∗(A), where A is
an additive category. We first start by defining the cone of a morphism f :
X → Y in C∗(A). This will be the complex (Cf , dCf

) with Cnf = Xn+1⊕Y n

and with dCf
: Cnf → Cn+1

f given by

dnCf
=

[
−dn+1

X 0
fn+1 dnY

]
for any n ∈ Z. One can easily check that dCf

◦ dCf
= 0, so that (Cf , dCf

) is
actually a complex in C∗(A). We also have two natural morphisms if : Y →
Cf given by the inclusions Y n ↪→ Xn+1 ⊕ Y n = Cnf and pf : Cf → T (X)

given by the projections Cnf = Xn+1 ⊕ Y n ↠ Xn+1 = T (X)n. One can
easily check that these actually determine morphisms of complexes, i.e. that
they commute with the differentials.

We will call the diagram

X Y Cf T (X)
f if pf

the standard triangle in C∗(A) attached to f .
We say that a triangle

X Y Z T (X)

in K∗(A) is distinguished if it is isomorphic to the image of a standard
triangle in K∗(A).

Theorem 1.3.9. The additive category K∗(A) equipped with the translation
functor T and the class of distinguished triangles in K∗(A) is a triangulated
category. Furthermore the categories K∗(A)opp and K∗(Aopp) are isomorphic
as triangulated categories.

Now let A be an abelian category again. We have two important results
concerning the cohomology functors Hp.
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Theorem 1.3.10. The functor H0 : K∗(A)→ A is a cohomological functor.

This can be reformulated in the following way.

Corollary 1.3.11. Let

X Y Z T (X)
f g h

be a distinguished triangle in K∗(A). Then

· · · → Hp(X) Hp(Y ) Hp(Z) Hp+1(X)→ · · ·Hp(f) Hp(g) Hp(h)

is exact in A.

This exact sequence is called the long exact sequence of cohomology of
the distinguished triangle

X Y Z T (X)
f g h

1.4 Derived categories

In this section we will refer mainly to [8]. Any proof that will be omitted
can be found in [8], unless otherwise stated.

Let A be an abelian category. Denote by K∗(A) the corresponding ho-
motopic category of complex with triangulated structure given in the last
section.

Definition 1.4.1. A morphism f : X → Y in C∗(A) is called a quasiiso-
morphism if Hp(f) : Hp(X)→ Hp(Y ) is an isomorphism for all p ∈ Z.

If f : X → Y is a quasiisomorphism and g : X → Y is homotopic to
f , then g is also a quasiisomorphism. Therefore we extend the definition
of quasiisomorphism to K∗(A) by saying that a morphism in K∗(A) is a
quasiisomorphism if all of its representatives are such. We will denote by S∗

the class of all quasiisomorphisms in K∗(A).

Definition 1.4.2. An object X in K∗(A) is called acyclic if Hp(X) = 0 for
all p ∈ Z.

Lemma 1.4.1. Let f : X → Y be a morphism in K∗(A). Then the following
conditions are equivalent:

i) The morphism f is a quasiisomorphism.

ii) The cone of f is acyclic.

Proof. Let
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X Y Z T (X)
f

be a distinguished triangle based on f . By Corollary 1.3.11, we have the
long exact sequence of cohomology

· · · → Hp(X) Hp(Y )→ Hp(Z)→ Hp+1(X) Hp+1(Y )→ · · ·Hp(f) Hp+1(f)

Hence, if f is a quasiisomorphism, then Hp(f) and Hp+1(f) are isomor-
phisms and thus Hp(Z) = 0 for all p ∈ Z. Therefore Z is acyclic.

Conversely, if Z is acyclic, from the long exact sequence

· · · → Hp−1(Z) Hp(X) Hp(Y ) Hp(Z)→ · · ·Hp(f)

we conclude that Hp(f) is an isomorphism for all p ∈ Z, i.e. f is a quasiiso-
morphism.

We have the following result.

Proposition 1.4.2. The class S∗ of all quasiisomorphisms in K∗(A) is a
localizing class compatible with triangulation.

This leads to the following important definition.

Definition 1.4.3. The localization of the category K∗(A) with respect to
the class S∗ of all quasiisomorphisms is called the derived category of A and
denoted by D∗(A).

By definition, the cohomological functor H0 : K∗(A) → A maps quasi-
isomorphisms in K∗(A) into isomorphisms in A. Therefore, by Theorem
1.2.11, it induces a cohomological functor from D∗(A) into A. By abuse of
notation, we denote it also by H0. More explicitly, let

X Y Z T (X)
f g h

be a distinguished triangle in D∗(A). Then

· · · → Hp(X) Hp(Y ) Hp(Z) Hp+1(X)→ · · ·Hp(f) Hp(g) Hp(h)

is exact in A. This exact sequence is called the long exact sequence of coho-
mology of the distinguished triangle

X Y Z T (X)
f g h

We already know that we have canonical functors C∗(A) → K∗(A) →
D∗(A). Moreover, if we denote by S̃∗ the class of all quasiisomorphisms in
C∗(A), we see that any s ∈ S̃∗ induces an isomorphism in D∗(A). By The-
orem 1.1.1 we know that the above functor factors through the localization
C∗(A)[S̃∗−1], i.e. we have the following commutative diagram of functors
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C∗(A) K∗(A)

C∗(A)[S̃∗−1] D∗(A)

Q̃ Q

ι

Theorem 1.4.3. The functor ι : C∗(A)[S̃∗−1] → D∗(A) in the above dia-
gram is an isomorphism of categories.

We also have the following result about the opposite category of a derived
category.

Theorem 1.4.4. The categories D(A)opp and D(Aopp) are isomorphic as
triangulated categories.

We are now going to define the so-called truncation functors. Let A be a
complex in C(A) and n ∈ Z. We define a complex τ≤n(A) as the subcomplex
of A given by

τ≤n(A)
p =


Ap, if p < n

Ker dn, if p = n

0, if p > n.

Let i : τ≤n(A) → A be the canonical inclusion morphism. The next result
follows immediately from the definition.

Lemma 1.4.5. The morphism Hp(i) : Hp(τ≤n(A))→ Hp(A) is an isomor-
phism for p ≤ n and is the zero morphism for p > n.

We want to show that τ≤n induces a functor D(A) → D(A). If B ∈
ObC(A) is another complex and f : A → B is a morphism of complexes,
then dnfn = fn+1dn and therefore fn(Ker dn) ⊆ Ker dn. It follows that f
induces a morphism of complexes τ≤n(f) : τ≤n(A) → τ≤n(B). Therefore
τ≤n : C(A)→ C(A) is an additive functor.

Now assume that f, g : A → B are homotopic morphisms of complexes,
i.e. f − g = dh+hd for some homotopy h. Then τ≤n(f) and τ≤n(g) are also
homotopic, with the homotopy given by the restriction of h to τ≤n(A). This
means that τ≤n also induces a functor τ≤n : K(A)→ K(A).

Finally, we clearly have

Hp(τ≤n(f)) =

{
Hp(f), if p ≤ n
0, if p > n.

Therefore, if f : A → B is a quasiisomorphism, then by 1.4.5 Hp(f) is an
isomorphism for p ≤ n between Hp(τ≤n(A)) and Hp(τ≤n(B)) and for p > n
the zero morphism is also an isomorphism between Hp(τ≤n(A)) = 0 and
Hp(τ≤n(B)) = 0. Hence τ≤n(f) is a quasiisomorphism as well. It follows
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that τ≤n indeed induces a functor τ≤n : D(A) → D(A) and we will call it
the truncation functor τ≤n, as anticipated.

Analogously, given a complex A, we can define the complex τ≥n(A) as a
quotient complex of A

τ≥n(A)
p =


0, if p < n

Coker dn−1, if p = n

Ap, if p > n.

Let q : A→ τ≥n(A) be the canonical projection morphism. The next result
follows immediately from the definition.

Lemma 1.4.6. The morphism Hp(q) : Hp(A)→ Hp(τ≥n(A)) is an isomor-
phism for p ≥ n and is the zero morphism for p < n.

By some considerations analogous to the ones we made about τ≤n, we
can show that also τ≥n induces a functor τ≥n : D(A)→ D(A) which we will
call the truncation functor τ≥n.

Notice in particular that both truncations functor send objects from
D∗(A) into other objects in D∗(A). In particular, since the categories D∗(A)
are indeed full subcategories of D(A) (we are going to prove this next), these
truncation functors induce corresponding truncation functors in these cate-
gories, for which we will use the same notation.

We have a natural functor K−(A) → K(A) (resp. K+(A) → K(A)),
which induces a functorD−(A)→ D(A) (resp. D+(A)→ D(A)). Moreover,
the localizing class S− (resp S+) consists of all morphisms in S which are
morphisms in K−(A) (resp. K+(A)). Let now X and Y be two complexes.
Assume that X is bounded from above (resp. from below). Let s : Y → X
be a quasiisomorphism. Since X is bounded from above (resp. from below),
there exists n ∈ Z such that Hp(X) = 0 for p > n (resp. p < n). Thus,
since s is a quasiisomorphism, we must also have Hp(Y ) = 0 for p > n (resp.
p < n). Therefore, by Lemma 1.4.5 (resp. 1.4.6), i : τ≤n(Y ) → Y (resp.
q : Y → τ≥n(Y )) is a quasiisomorphism. It follows that s ◦ i : τ≤n(Y ) → X
(resp. q ◦ s : X → τ≥n(Y )) is a quasiisomorphism. Therefore, Proposition
1.1.5 (resp. 1.1.6) implies the following result.

Proposition 1.4.7. The natural functors D−(A) → D(A) and D+(A) →
D(A) are fully faithful, i.e. D−(A) and D+(A) are full subcategories of
D(A).

Furthermore the natural functor Kb(A) → K+(A) induces a functor
Db(A)→ D+(A). Moreover, the localizing class Sb consists of all morphisms
in S+ which are morphisms in Kb(A). Let now X and Y be two complexes.
Assume that X is bounded and that Y is bounded from below. Let s :



44 CHAPTER 1. PRELIMINARIES

Y → X be a quasiisomorphism. Since X is bounded, there exists n ∈ Z
such that Hp(X) = 0 for p > n. Thus, since s is a quasiisomorphism,
we must also have Hp(Y ) = 0 for p > n. Therefore, by Lemma 1.4.5,
i : τ≤n(Y ) → Y is a quasiisomorphism. Moreover, τ≤n(Y ) is a bounded
complex. It follows that s ◦ i : τ≤n(Y ) → X (resp. q ◦ s : X → τ≥n(Y )) is
a quasiisomorphism. Hence, by 1.1.5 the functor Db(A) → D+(A) is fully
faithful. When we combine this with pour previous result in 1.4.7 we see
that the natural functor Db(A)→ D(A) is fully faithful, i.e. Db(A) is a full
subcategory of D(A). This proves the following result.

Proposition 1.4.8. The natural functor Db(A) → D(A) is fully faithful,
i.e. Db(A) is a full subcategory of D(A) equal to D−(A) ∩D+(A).

We also have the following result about opposite categories.

Theorem 1.4.9. The isomorphism between D(A)opp and D(Aopp) induces
isomorphisms of triangulated categories between D∗(A)opp and D∗(Aopp).

We denote by D : A → D∗(A) the natural functor which is the composi-
tion of the functor K : A → K∗(A) and the quotient functor Q : K∗(A) →
D∗(A).
Theorem 1.4.10. The functor D : A → D∗(A) is fully faithful.

Proof. Let M and N be objects in A. Let F :M → N be a morphism in A.
ThenH0(D(F )) = F and thus the mapping HomA(M,N)→ HomD(A)(D(M), D(N))
is injective. Indeed if two morphisms f, g : M → N in A are mapped into
the same morphism by D, then f = H0(D(f)) = H0(D(g)) = g.

Now we prove the surjectivity of the map HomA(M,N)→ HomD(A)(D(M), D(N)).
For this, let φ : D(M)→ D(N) be a morphism in D(A). We can represent
it by a roof

X•

D(M) D(N)

s
∼

f

where s : X• → D(M) is a quasiisomorphism. It follows that Hp(X•) = 0 for
p ̸= 0. Therefore, by Lemma 1.4.5, i : τ≤0(X

•)→ X• is a quasiisomorphism.
If we put Y • = τ≤0(X

•), the diagram

X•

D(M) Y • D(N)

Y •

s
∼

f
i∼

idY
s◦i

∼
f◦i
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is commutative. This in particular implies that φ can be represented by a
roof where X• satisfies Xp = 0 for p > 0. Hence we have the commutative
diagram

· · · X−1 X0 0 · · ·

· · · 0 N 0 · · ·

F 0

for a representative F of the homotopy class of f . Clearly all homotopies
from X• to D(N) are zero. So this representative is unique. In addition, by
the commutativity of the left square in the diagram we know that F 0 vanishes
on Im d−1. Hence F 0 factors through H0(F ) : H0(X•) = X0/ Im d−1 → N
and H0(F ) = H0(f) = H0(φ) ◦ H0(s) since φ = Q(f) ◦ Q(s)−1 in D(A).
Therefore we have the following commutative diagram, which shows that
φ = D(H0(φ)).

X•

D(M) X• D(N)

D(M)

s
∼

f
idX∼

s∼
idD(M)

∼
D(H0(φ))

Indeed commutativity of the left side of the diagram is clear. For the right
side, we only need to check commutativity in degree 0, since for p ̸= 0 we
have that D(N)p = 0. For this we have the following diagram

X0 X0/ Im d−1 = H0(X•) M

N

F 0

s0

H0(s)

H0(F )
H0(φ)

In particular both the right and the left triangle commute because of our
previous considerations, thus also the outside diagram commutes. Thus we
proved that our map HomA(M,N)→ HomD(A)(D(M), D(N)) is surjective.

Therefore, the full subcategory of D∗(A) consisting of all complexes X•

such that Xp = 0 for p ̸= 0 is isomorphic to A.
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We already know that for an abelian category A, its category of com-
plexes C∗(A) is also abelian. Now let

0 X• Y • Z• 0
f g

be an exact sequence in C∗(A). We can also consider the standard triangle

X• Y • Cf X•[1]
f if pf

attached to the monomorphism f : X• → Y •. Let m : Cf = X•[1] ⊕ Y • →
Z• be the composition of the natural projection q : X•[1] ⊕ Y • → Y • with
g : Y • → Z•. This clearly defines a morphism of complexes such that
m ◦ if = g.

Also, we can define a morphism of complexes w : CidX → Cf by

wn =

[
idXn+1 0

0 fn

]
This morphism is clearly a monomorphism and moreover we have

Imwn = Xn+1 ⊕ Im fn = Xn+1 ⊕Ker gn = Kermn

for any n ∈ Z. Hence the sequence

0 CidX Cf Z• 0w m

is exact in C∗(A).
Since we know that K∗(A) is a triangulated category, by 1.2 Cidx = 0

in K∗(A), so in particular we have Hp(CidX ) = 0 for any p ∈ Z. Therefore,
from the long exact sequence of cohomology attached to the above short
exact sequence, we see that Hp(m) : Hp(Cf ) → Hp(Z•) is an isomorphism
for all p ∈ Z, i.e. we have the following result.

Lemma 1.4.11. The morphism m : Cf → Z• is a quasiisomorphism.

This tells us in particular that the homotopy class of m is an isomorphism
in D∗(A). This leads to the following result.

Proposition 1.4.12. Let

0 X• Y • Z• 0
f g

be an exact sequence in C(A). Then it determines a distinguished triangle

X• Y • Z• X•[1]
f g

in D(A).
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Proof. By Lemma 1.4.11, the diagram

X• Y • Cf X•[1]

X• Y • Z• X•[1]

f

idX

if

idY

pf

m idX[1]

f g

is an isomorphism of triangles in D∗(A). Since the top triangle is distin-
guished, the lower one is also distinguished.

Consider now a complex X of A-objects and let n ∈ Z. We have the
following exact sequence of complexes

0 τ≤n(X) X Q 0

Clearly Q is the kernel of the natural inclusion i : τ≤n(X)→ X, i.e. we have

Qp =


0, if p < n

Coim dn, if p = n

Xp, if p > n.

Therefore Hp(Q) = 0 for p ≤ n and Hp(Q) = Hp(X) for p > n. If we
consider the canonical projection Q → τ≥n+1(Q) = τ≥n+1(X), i.e. the
commutative diagram

· · · 0 Coim dn Xn+1 Xn+2 · · ·

· · · 0 0 Coker dn Xn+2 · · ·

we see that this morphism is a quasiisomorphism. Therefore, by Proposition
1.4.12, we have a distinguished triangle

τ≤n(X) X Q τ≤n(X)[1]i

in D(A). In particular, since Q is isomorphic to τ≥n+1(X) in D(A) by the
above considerations, this leads to a distinguished triangle

τ≤n(X) X τ≥n+1(X) τ≤n(X)[1]i q

This in particular proves the existence part of the following result.

Proposition 1.4.13. For any complex X and any n ∈ Z there exists a
unique morphism h : τ≥n+1(X)→ τ≤n(X)[1] such that
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τ≤n(X) X Q τ≤n(X)[1]i h

is a distinguished triangle in D(A)

It remains to prove the uniqueness of h. It is a consequence of Proposition
1.2.6 and of the following lemma. Indeed if h, h′ are two morphisms satisfying
the requirements of the Proposition we have the following diagram

τ≤n(X) X Q τ≤n(X)[1]

τ≤n(X) X Q τ≤n(X)[1]

i

idτ≤n(X) idX idQ

h

idτ≤n(X)[1]

i h′

that can be completed to a morphism of distinguished triangles and we
know that there is a unique way of completing it since τ≤n(X)p = 0 for
p ≥ n + 1 and τ≥n+1(X)[−1]p = 0 for p < n + 1 so by the following lemma
HomD(A)(τ≤n(X), τ≥n+1(X)[−1]) = 0 so by the commutativity of the right-
most square we can deduce that h = h′.

Lemma 1.4.14. Let X and Y be two complexes such that Xp = 0 for p ≥ n
and Y p = 0 for p < n. Then HomD(A)(X,Y ) = 0.

Proof. Let φ be an element of HomD(A)(X,Y ). Assume that it is represented
by a roof

Z

X Y

s
∼

f

Since Hp(X) = 0 for p ≥ n and s is a quasiisomorphism, we see that for
p ≥ n, Hp(Z) = 0 as well. It follows that i : τ≤n−1(Z) → Z is a quasi-
isomorphism. Therefore, by putting U = τ≤n−1(Z) we have the following
commutative diagram

Z

X U Y

U

s
∼

f
i∼

idU
s◦i

∼
f◦i

In particular it shows that φ can be represented by a roof satisfying Zp = 0
for p ≥ n. In this case, f must be zero and thus φ is zero as well.
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Remark. An important consequence of this last lemma is that for any two
objects X, Y in A we have that HomD(A)(X,Y [−1]) = 0 by simply applying
the last result with n = 1.

Now let

0 L M N 0
f g

be a short exact sequence in A. By Proposition 1.4.12, we have a distin-
guished triangle

D(L) D(M) D(N) D(L)[1]
D(f) D(g)

in D∗(A). In this case, we have a stronger result.

Proposition 1.4.15. There exists a unique morphism h such that

D(L) D(M) D(N) D(L)[1]
D(f) D(g) h

is distinguished in D∗(A).

Proof. The uniqueness of h is given by an argument similar to the one we gave
to prove Proposition 1.4.13, considering that HomD(A)(D(L), D(N)[−1]) = 0
by the above remark.

1.5 Representation of algebras

In this section we will refer mainly to [1]. Any proof that will be omitted
can be found in [1], unless otherwise stated.

The goal of this section is to give some useful results about algebras and
then to introduce some elements of the representation theory of algebras.
In particular we will mostly focus on finite dimensional k-algebras, where k
denotes an algebraically closed field.

We start by recalling the standard duality between modA and modAop.
This is the functor D : modA → modAop that associates to each right A-
module M the dual k-vector space M∗ = Homk(M,k) endowed with the
left A-module structure given by the formula (aφ)(m) = φ(ma) for φ ∈
Homk(M,k), a ∈ A and m ∈ M , and to each morphism h : M → N the
dual morphism D(h) = Homk(h, k) : D(N) → D(M), φ 7→ φh, of left A-
modules. We denote its quasi-inverse also by D : modAop → modA. We
have natural equivalences of functors 1modA

∼= D ◦D and 1modAop ∼= D ◦D.
Our first goal is to understand indecomposable modules over a k-algebra

A. In order to study them we need to understand the role played by idem-
potent elements of A. An element e ∈ A is called idempotent if e2 = e. The
idempotent e is called central if ae = ea for all a ∈ A. Two idempotents
e1, e2 ∈ A are said to be orthogonal if e1e2 = e2e1 = 0. The idempotent e is
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called primitive if e cannot be written as a sum e = e1 + e2, where e1 and
e2 are nonzero orthogonal idempotents of A.

Every algebra A has two trivial idempotents 0 and 1. Moreover if e is
a nontrivial idempotent in A, then 1 − e is also a nontrivial idempotent,
the idempotents e and 1 − e are orthogonal and there is a nontrivial right
A-module decomposition AA = eA⊕ (1−e)A. Conversely, if AA =M1⊕M2

is a nontrivial A-module decomposition and 1 = e1 + e2 with ei ∈ Mi,
then e1 and e2 are a pair of orthogonal idempotents of A, and Mi = eiA is
indecomposable if and only if ei is primitive.

If e is a central idempotent, then so is 1−e and thus eA and (1−e)A are
two-sided ideals. It can be easily shown that they have k-algebra structures
(induced by the structure on A) with identity elements e ∈ eA and 1− e ∈
(1− e)A respectively. In this case the decomposition AA = eA⊕ (1− e)A is
a direct product decomposition of the algebra A.

Since A is finite dimensional, the module AA admits a direct sum decom-
position AA = P1⊕· · ·⊕Pn, where P1, . . . , Pn are indecomposable right ideals
of A. It follows from the above discussion that P1 = e1A, . . . , Pn = enA,
where e1, . . . , en are primitive pairwise orthogonal idempotents of A such
that 1 = e1+ · · ·+ en. Conversely, every set of idempotents with the preced-
ing properties induces a decomposition AA = P1⊕ · · · ⊕Pn where the Pi are
indecomposable right ideals of the form Pi = eiA for all i = 1, . . . , n. Such
a decomposition is called an indecomposable decomposition of A and such a
set {e1, . . . , en} is called a complete set of primitive orthogonal idempotents
of A.

Definition 1.5.1. An algebra A is said to be connected if A is not a direct
product of two algebras. Equivalently, A is called connected if 0 and 1 are
the only central idempotents of A.

Now assume that e ∈ A is an idempotent and that M is a right A-module.
It is easy to check that the k-vector subspace eAe of A is a k-algebra with
identity element e. Also, the k-vector subspace Me of M is a right eAe-
module if we set (me) · (eae) = meae for all m ∈M and a ∈ A. In particular
we have that Ae is a right eAe-module and eA is a left eAe-module. It follows
that the k-vector space HomA(eA,M) is a right eAe-module with respect to
the action (φ · eae)(x) = φ(eaex) for x ∈ eA, a ∈ A, φ ∈ HomA(eA,M).
This leads us to the following fact, which will be used frequently.

Lemma 1.5.1. Let A be a k-algebra, e ∈ A be an idempotent and M be a
right A-module. Then the following hold:

i) The k-linear map

θM : HomA(eA,M)→Me

defined by the formula φ 7→ φ(e)e for φ ∈ HomA(eA,M), is an iso-
morphism of right eAe-modules.
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ii) The isomorphism θeA : End eA → eAe of right eAe-modules induces
an isomorphism of k-algebras.

Proof. It is easy to see that θM is a homomorphism of right eAe-modules.
We define a k-linear map θ′M :Me→ HomA(eA,M) by the formula

θ′M (me)(ea) = mea

for a ∈ A and m ∈ M . Easy calculations show that θ′M (me) : eA → M is
well-defined (i.e. does not depend on the choice of a in the presentation of
ea) and that it is a homomorphism of A-modules. Moreover θ′M is a homo-
morphism of eAe-modules. Let us check that θ′M is an inverse of θM . Take
φ ∈ HomA(eA,M). Then θ′M (θM (φ)) = θ′M (φ(e)e) and this is exactly the
morphism mapping ea 7→ φ(e)ea = φ(eea) = φ(ea) as wanted. Furthermore
take me ∈ Me. We have θM (θ′M (me)) = (θ′M (me)(e))e = me · e = me. It
follows that θM is indeed an isomorphism. The statement ii) is just an easy
consequence of i).

Proposition 1.5.2. Let A be an algebra and B = A/ radA.

i) Every right ideal I of B is a direct sum of simple right ideals of the
form eB for some primitive idempotent e ∈ B. In particular B is
semisimple.

ii) If e ∈ A is a primitive idempotent of A, then the B-module top eA =
eA/ rad eA is simple.

Proof. i) Let S be a nonzero right ideal of B contained in I that is of
minimal dimension. Then S is a simple B-module and S2 ̸= 0 since
this would mean that 0 ̸= S ⊆ radB = rad(A/ radA) = 0. Hence
S2 = S and there exists x ∈ S such that xS ̸= 0. Thus S = xS
and therefore x = xe for some nonzero e ∈ S. This means that the
B-homomorphism φ : S → S given by φ(y) = xy is not the zero
morphism and thus it is an isomorphism by Schur’s Lemma. Since
φ(e2− e) = x(e2− e) = xee− xe = xe− xe = 0, it must be e2− e = 0,
therefore e ∈ S is a nonzero idempotent and we clearly have S = eB.
It follows that B = eB ⊕ (1− e)B and I = S ⊕ (1− e)I. Since S ̸= 0
we have that dimk(1 − e)I < dimk I and we can assume by induction
that i) is satisfied for (1− e)I and therefore i) follows.

ii) The element e = e + radA is an idempotent of B and top eA ∼= eB.
Assume that eB is not simple. Then, by i) we have that eB = e1B ⊕
e2B, where e1, e2 are nonzero orthogonal idempotents such that e =
e1 + e2. Since e12 = (e − e2)e1 = ee1 we have that e1 = g1 + radA
for some g1 ∈ eA. It can be computed that there is m ∈ N and t ∈ A
such that e1 = (gt)m is an idempotent of A and e1 = e1 + radA.
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In particular we need to take m such that (radA)m = 0 and t such
that (g − g2)m − gm = gm+1t. Now it follows that top eA = eB =
e1B ⊕ e2B. Since g1 ∈ eA, e1 ∈ eA and thus e1A ⊆ eA. then the
decomposition AA = e1A⊕ (1− e1)A induces the decomposition eA =
e1A⊕{(1−e1)A∩eA}. Since e is a primitive idempotent in A, it follows
that eA = e1A. Hence eB = top eA = top e1A = e1B and therefore
e2B = 0, contrary to our assumption. Thus the module top eA is
simple.

We recall the following result, which will be useful in the future.

Lemma 1.5.3. Let A be a finite dimensional k-algebra. The following con-
ditions are equivalent:

i) A is a local algebra.

ii) The set of all noninvertible elements of A is a two-sided ideal.

iii) For any a ∈ A, one of the elements a or 1− a is invertible.

iv) A has only two idempotents, 0 and 1.

v) The k-algebra A/ radA is isomorphic to k.

We will focus on some useful consequences of this lemma.

Corollary 1.5.4. Let A be an arbitrary k-algebra and M a right A-module.

i) If the algebra EndM is local, then M is indecomposable.

ii) If M is finite dimensional and indecomposable, then the algebra EndM
is local and any A-module endomorphism of M is either nilpotent or
an isomorphism.

Proof. i) If M decomposes as M = X1 ⊕ X2 with both X1 and X2

nonzero, then there exist projections πi : M → Xi and injections
εi : Xi →M for i = 1, 2. In particular we know that ε1π1+ε2π2 = 1M .
Since ε1π1 and ε2π2 are clearly nonzero idempotents in EndM , the al-
gebra EndM is not local by Lemma 1.5.3.

ii) Assume that M is finite dimensional and indecomposable. If EndM is
not local, by 1.5.3 there is a pair of nonzero idempotents e1, e2 = 1−e1
in EndM and therefore M ∼= Im e1 ⊕ Im e2 is a nontrivial direct sum
decomposition. Thus the algebra EndM must be local. Furthermore,
again by 1.5.3, any noninvertible A-module endomorphism f :M →M
belongs to the radical of EndM and therefore f is nilpotent, because
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EndM is finite dimensional and thus its radical is nilpotent. Indeed,
if we set radEndM = R, since dimk R <∞, the chain

R ⊇ R2 ⊇ · · ·Rn ⊇ Rn+1 ⊇ · · ·

becomes stationary. It follows that Rm = (Rm)R for some m, and thus
we have R = 0 by Nakayama’s Lemma.

Corollary 1.5.5. An idempotent e ∈ A is primitive if and only if the algebra
eAe ∼= End eA has only two idempotents 0 and e, that is, the algebra eAe is
local.

Proof. We will first show that if eAe has a nontrivial idempotent, say efe
for some f ∈ A, then e ∈ A is not primitive. In this case indeed e = efe +
e(1− f)e and both efe and e(1− f)e are nontrivial orthogonal idempotents
in A as well, thus e is not primitive, as wanted. Conversely assume that
End eA is local. By Corollary 1.5.4 we have that eA is indecomposable and
thus e must be primitive.

The following result is fundamental for the representation theory of finite
dimensional algebras.

Theorem 1.5.6 (Unique decomposition theorem). Let A be a finite dimen-
sionalo k-algebra.

i) Every module M in modA has a decompostion M ∼= M1 ⊕ · · · ⊕Mn

where M1, . . . ,Mn are indecomposable modules and the endomorphism
k-algebra EndMi is local for each i = 1, . . . , n.

ii) If M ∼=
⊕n

i=1Mi
∼=

⊕m
j=1Nj, where Mi and Nj are indecomposable,

then n = m and there exist a permutation σ of {1, . . . , n} such that
Mi
∼= Nσ(i) for each i = 1, . . . , n.

We know that if AA = e1A ⊕ · · · en is a decomposition of A into inde-
composable submodules (so in particular if {e1, . . . , en} is a complete set of
primitive orthogonal idempotents), then all projective A-modules P are of
the form P = (e1A)

m1 ⊕ · · · (en)mn for some m1, . . . ,mn ∈ N, since projec-
tive modules have to be summands of some free module. This, together with
Proposition 1.5.2, leads to the following result.

Proposition 1.5.7. Suppose that AA = e1A ⊕ · · · en is a decomposition of
A into indecomposable submodules.

i) Every simple right A-module is isomorphic to one of the modules

S(1) = e1A/ rad e1A := top e1A, . . . , S(n) = enA/ rad enA := top enA
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ii) Every indecomposable projective right A-module is isomorphic to one
of the modules

P (1) = e1A,P (2) = e2A, . . . , P (n) = enA

Moreover, eiA ∼= ejA if and only if S(i) ∼= S(j).

iii) Dually, every indecomposable injective right A-module is isomorphic to
one of the modules

I(1) = D(Ae1) ∼= E(S(1)), . . . , I(n) = D(Aen) ∼= E(S(n))

where E(S(j)) is an injective envelope of the simple module S(j).

Definition 1.5.2. Let A be a k-algebra with a complete set {e1, . . . , en} of
primitive orthogonal idempotents. The algebra A is called basic if eiA ≇ ejA
for all i ̸= j.

Proposition 1.5.8. A finite dimensional k-algebra A is basic if and only if
the algebra B = A/ radA is isomorphic to a product k×k×· · ·× k of copies
of k.

Definition 1.5.3. Let A be a k-algebra with a complete set {e1, . . . , en} of
primitive orthogonal idempotents. A basic algebra associated to A is the
algebra

Ab = eAAeA

where eA = ej1 + · · ·+ eja and ej1 , . . . , eja are chosen such that ejiA ≇ ejtA
for i ̸= t and for all s = 1, . . . , n the module esA is isomorphic to one of the
modules ej1A, . . . , ejaA.

Lemma 1.5.9. Let Ab = eAAeA be a basic algebra associated to A. The
algebra Ab does not depend on the choice of the sets e1, . . . , en and ej1 , . . . eja ,
up to a k-algebra isomorphism. Furthermore the algebra Ab is basic.

This Lemma in particular tells us that for each algebra A there is up to
isomorphism one basic algebra Ab associated with A.

Proof. We are just going to prove that Ab is basic. For this, assume that
{e1, . . . , en} is a complete set of primitive orthogonal idempotents of A,
eA = ej1 + · · · + eja and ej1 , . . . , eja are chosen as in Definition 1.5.3. Then
ej1 , . . . , eja are clearly orthogonal idempotents in Ab as well. Furthermore
for all t = 1, . . . , a we have ejtAbejt = ejteAAeAejt = ejtAejt . It follows from
Corollary 1.5.5 that the algebra End ejtA

b ∼= ejtA
bejt is local, because ejtA

is indecomposable in modA. Hence ejt is a primitive idempotent of Ab. To
show that the algebra Ab is basic, assume that ejtAb ∼= ejrA

b. We know that
the multiplication map mji : ejiA

b ⊗ eAA→ ejiA, ejix⊗ eAa 7→ ejixeAa, is



1.5. REPRESENTATION OF ALGEBRAS 55

an A-module isomorphism for i = 1, . . . , a (for more details see [1]). Thus
we get A-module isomorphisms

ejtA
∼= ejtA

b ⊗ eAA ∼= ejrA
b ⊗ eAA ∼= ejrA

and therefore t = r by the choice of ej1 , . . . , eja in 1.5.3.

Proposition 1.5.10. Let Ab = eAAeA be a basic k-algebra associated with
A. Then there are k-linear equivalences of categories quasi-inverse to each
other between modAb and modA.

This Proposition, and the equivalence it talks about, is going to be very
important in the central chapter of this thesis. Indeed when dealing with
categories such as modA or Db(modA) for some algebra A, we can always
suppose that A is basic because by switching A with Ab we would get equiv-
alent categories and Ab is basic.

We are now interested in introducing quivers and the related terminology.
Indeed they will play a central role in the theory of algebra representation.

Definition 1.5.4. A quiver Q = (Q0, Q1, s, t) is a quadruple consisting of
two sets Q0 (whose elements are called points or vertices) and Q1 (whose
elements are called arrows), and two maps s, t : Q1 → Q0 which associate to
each arrow α ∈ Q1 its source s(α) ∈ Q0 and its target t(α) ∈ Q0, respectively.

An arrow α ∈ Q1 of source a = s(α) and target b = t(α) is usually
denoted by α : a → b. A quiver Q = (Q0, Q1, s, t) is usually denoted by
Q = (Q0, Q1) or even just by Q.

It is also important to notice that a quiver is nothing but an oriented
graph without any restriction as to the number of arrows between two points,
to the existence of loops or oriented cyrcles.

A quiver Q is said to be finite if Q0 and Q1 are finite sets. A quiver Q
is said to be connected if its underlying graph is a connected graph.

Now let Q = (Q0, Q1, s, t) be a quiver and a, b ∈ Q0. A path of length
ℓ ≥ 1 from a to b is a sequence

(a | α1, α2, . . . , αℓ | b)

where αk ∈ Q1 for all 1 ≤ k ≤ ℓ, and we have s(α1) = a, t(αk) = s(αk+1)
for each 1 ≤ k < ℓ, and finally t(αℓ) = b. Such a path is denoted briefly by
α1α2 . . . αℓ and may be visualised as follows

a = a0 a1 a2 · · · aℓ = b
α1 α2 αℓ

We denote by Qℓ the set of all paths in Q of length ℓ. We also agree to
associate with each point a ∈ Q0 a path of length ℓ = 0, called the trivial or
stationary path at a, and denoted by

εa = (a || a)
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Thus the paths of lengths 0 and 1 are in bijective correspondence with the
elements of Q0 and Q1, respectively. A path of length ℓ ≥ 1 is called a cycle
whenever its source and target coincide. A cycle of length 1 is called a loop.
A quiver is called acyclic if it does not contain any cycle.

Definition 1.5.5. Let Q be a quiver. The path algebra kQ of Q is the k-
algebra whose underlying k-vector space has as its basis the set of all paths
(a | α1, . . . , αℓ | b) of length ℓ ≥ 0 in Q and such that the product of two basis
vectors (a | α1, , . . . , αℓ | b) and (c | β1, . . . , βk | d) of kQ is defined by

(a | α1, , . . . , αℓ | b) · (c | β1, . . . , βk | d) = δbc(a | α1, , . . . , αℓ, β1, . . . , βk | d)

where δbc denotes the Kronecker delta. In other words, the product of two
paths α1 . . . αℓ and β1 . . . βk is equal to zero if t(αℓ) ̸= s(β1) and is equal
to the juxtaposition α1 . . . αℓβ1 . . . βk of the two paths if t(αℓ) = s(β1). The
product of basis elements is then extended to arbitrary elements of kQ by
distributivity.

Clearly kQ is an associative algebra, since juxtaposition is clearly an
associative operation.

Moreover, there is a direct sum decomposition

kQ = kQ0 ⊕ kQ1 ⊕ · · · ⊕ kQℓ ⊕ · · ·

of the k-vector space kQ, where, for each ℓ ≥ 0, kQℓ is the subspace of kQ
generated by the set Qℓ of all paths of length ℓ.

Notice in particular that each stationary path εa = (a | a) is clearly an
idempotent of kQ, thus, ifQ0 is finite,

∑
a∈Q0

εa is the identity on kQ. Indeed
nif α is a path from b to c we have that (

∑
a∈Q0

εa) · α = εbα+
∑

a̸=b 0 = α
and similarly α·(

∑
a∈Q0

εa) = αεc+0 = α. Furthermore it can be shown that
the set {εa : a ∈ Q0} is a complete set of primitive orthogonal idempotents
for kQ.

Lemma 1.5.11. Let Q be a quiver and kQ be its path algebra. Then kQ is
finite dimensional if and only if Q is finite and acyclic.

Proof. If Q is infinite, then so is the basis of kQ, which is therefore infinite
dimensional. Moreover, if w = α1 . . . αℓ is a cycle in Q, then, for each t ≥ 0,
we have a basis vector wt = (α1 . . . αℓ)

t, so kQ is again infinite dimensional.
Conversely if Q is finite and acyclic, it contains only finitely many paths and
thus kQ is finite dimensional.

To prove the next lemma we are going to need a technical result that we
will just state without proof. For a proof we refer as usual to [1].
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Lemma 1.5.12. Let A be an associative algebra with identity and assume
that {e1, . . . , en} is a (finite) complete set of primitive orthogonal idempo-
tents. Then A is a connected algebra if and only if there is no nontriv-
ial partition I∪̇J of the set {1, . . . , n} such that i ∈ I and j ∈ J imply
eiAej = 0 = ejAei.

Lemma 1.5.13. Let Q be a finite quiver. The path algebra kQ is connected
if and only if Q is a connected quiver.

Proof. Assume that Q is not connected and let Q′ be a connected component
of Q. Denote by Q′′ the quiver with Q′′

0 = Q0\Q′
0 and with Q′′

1 = Q1\Q′
1. By

hypothesis, neither Q′ nor Q′′ is empty. Thus consider a ∈ Q′
0 and b ∈ Q′′

0 .
Since Q is not connected, an arbitrary path w in Q is entirely contained
in either Q′ or in (a connected component of) Q′′ . In the former case we
have wεb = 0 and in the latter case we have εaw = 0, hence we always have
εawεb = 0. Thus εa(kQ)εb = 0. Similarly εb(kQ)εa = 0. By the previous
result 1.5.12 this shows that kQ is not a connected algebra.

Conversely suppose that Q is connected but kQ is not. Again by 1.5.12,
there exists a partition Q0 = Q′

0∪̇Q
′′
0 such that, if x ∈ Q′

0 and y ∈ Q′′
0 , then

εx(kQ)εy = 0 = εy(kQ)εx. Since Q is connected, there exist a ∈ Q′
0 and

b ∈ Q′′
0 such that there is an arrow α : a → b (or an arrow β : b → a, but

without loss of generality we can assume the previous case to hold). But
now we have

α = εaαεb ∈ εa(kQ)εb = 0

which clearly is a contradiction and completes the proof of the lemma.

Definition 1.5.6. Let Q be a finite and connected quiver. The two-sided
ideal of the path algebra kQ generated (as an ideal) by the arrows of Q is
called the arrow ideal of kQ and denoted by RQ (or simply by R).

Note that there is a direct sum decomposition

RQ = kQ1 ⊕ kQ2 ⊕ · · · ⊕ kQℓ ⊕⊕ · · ·

of the k-vector space RQ. This shows in particular that the underlying k-
vector space of RQ is generated by all paths in Q of length ℓ ≥ 1. This
implies that, for each ℓ ≥ 1,

RℓQ =
⊕
m≥ℓ

kQm

and therefore RℓQ is the ideal of kQ generated, as a k-vector space, by the set
of all paths of length ≥ ℓ. In particular we have a k-vector space isomorphism
RℓQ/R

ℓ+1
Q
∼= kQℓ.

Proposition 1.5.14. Let Q be a finite connected quiver which is also acyclic.
Then rad kQ = RQ and kQ is a finite dimensional basic algebra.
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Proof. We already know that kQ is finite dimensional by Lemma 1.5.11.
Since Q is acyclic there exists a largest ℓ ≥ 1 such that Q contains a path of
length ℓ. This in particular implies that any product of ℓ+1 arrows is zero,
so Rℓ+1

Q = 0. Consequently RQ is a nilpotent ideal and hence RQ ⊆ rad kQ.
But we also know that kQ/RQ has the finite set Q0 as a basis and thus it is
isomorphic to a product of copies of k, thus RQ = rad kQ. This in particular
means that kQ/ rad kQ = kQ/RQ is also isomorphic to a product of copies of
k and thus it follows from Proposition 1.5.8 that the algebra kQ is basic.

Our goal now is to remove the hypothesis of a quiver Q being acyclic
(thus leading to potentially infinite dimensional path algebras kQ) and to
study the finite dimensional quotients of not necessarily finite dimensional
path algebras.

Definition 1.5.7. Let Q be a finite quiver and RQ be the arrow ideal of the
path algebra kQ. A two-sided ideal I of kQ is said to be admissable if there
exists m ≥ 2 such that

RmQ ⊆ I ⊆ R2
Q

If I is an admissable ideal of kQ, the pair (Q, I) is called a bound quiver.
The quotient algebra kQ/I is said to be a bound quiver algebra.

It follows directly from the definition that an ideal I of kQ, contained in
R2
Q, is admissable if and only if it contains all paths whose length is large

enough. It can be shown that this is the case if and only if , for each cycle σ
in Q, there exists s ≥ 1 such that σs ∈ I. In particular, if Q is acyclic, any
ideal contained in R2

Q is admissable.

Definition 1.5.8. Let Q be a quiver. A relation in Q with coefficients in
k is a k-linear combination of paths of length at least two having the same
source and target. Thus a relation ρ is an element of kQ such that

ρ =

m∑
i=1

λiwi

where the λi are scalars (not all zero) and the wi are paths in Q of length at
least 2 such that all of their sources (or target, respectively) coincide.

The next few results show that if Q is a quiver and I is an admissable
ideal of kQ, then the bound quiver algebra kQ/I has similar properties to a
path algebra kQ̃ over an acyclic quiver Q̃.

Lemma 1.5.15. Let Q be a finite quiver and I be an admissable ideal of
kQ. The following statements hold.

i) The set {ea = εa+I : a ∈ Q0} is a complete set of primitive orthogonal
idempotents of the bound quiver algebra kQ/I.
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ii) The bound quiver algebra kQ/I is connected if and only if Q is a con-
nected quiver.

iii) The bound quiver algebra kQ/I is finite dimensional.

Proof. We are just going to prove iii). Since I is admissable, there exists
m ≥ 2 such that Rm ⊆ I, where R denotes the arrow ideal RQ of kQ.
This means that there exists a surjective algebra homomorphism kQ/Rm ↠
kQ/I. Thus it suffices to prove that kQ/Rm is finite dimensional. But now,
the residual classes of paths of length less than m form a basis of kQ/Rm as a
k-vector space. Since there are only finitely many such paths, our statement
follows.

Lemma 1.5.16. Let Q be a finite quiver. Every admissable ideal I of kQ
is finitely generated.

Proof. Let R be the arrow ideal of kQ and m ≥ 2 an integer such that
Rm ⊆ I. We have a short exact sequence 0 → Rm → I → I/Rm → 0
of kQ-modules. Hence, it suffices to show that Rm and I/Rm are finitely
generated as kQ-modules. Rm is the kQ-module generated by the paths
of length m. Since there are only finitely many such paths, Rm is finitely
generated. On the other hand, I/Rm is an ideal of the finite dimensional
algebra kQ/Rm (which is finite dimensional in view of 1.5.15 iii) since Rm is
clearly an admissable ideal). Therefore I/Rm is a finite dimensional k-vector
space, hence a finitely generated kQ-module.

Corollary 1.5.17. Let Q be a finite quiver and I be an admissable ideal
of kQ. There exist a finite set of relations {ρ1, . . . , ρm} such that I =
⟨ρ1, . . . , ρm⟩.

Proof. By 1.5.16, I has a finite generating set {σ1, . . . , σt}. If the σi are not
relations, then the set {εaσiεb : 1 ≤ i ≤ t; a, b ∈ Q0} is a finite set of relations
generating I. Indeed for any 1 ≤ i ≤ t we have that σi =

∑
a,b∈Q0

εaσiεb
and that εaσiεb is either zero or a relation.

Lemma 1.5.18. Let Q be a finite quiver, R be the arrow ideal of kQ and
I be an admissable ideal of kQ. Then rad(kQ/I) = RQ/I. Moreover, the
bound quiver algebra kQ/I is basic.

Proof. Since I is an admissable ideal of kQ, there exists m ≥ 2 such that
Rm ⊆ I. Consequently, (R/I)m = 0 and thus R/I is a nilpotent ideal of
kQ/I. On the other hand, the algebra (kQ/I)/(R/I) ∼= kQ/R is isomorphic
to a direct product of copies of k. Thus, by considerations analogous to
the ones in the proof of Proposition 1.5.14, we have proved both of our
assertions.

Corollary 1.5.19. For each ℓ ≥ 1, we have radℓ(kQ/I) = (RQ/I)ℓ.
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It follows from the last two results that the k-vector space

rad(kQ/I)/ rad2(kQ/I) = (RQ/I)/(RQ/I)2 ∼= RQ/R
2
Q
∼= kQ1

admits as basis the set α + rad2(kQ/I), where α = α + kQ/I and α ∈ Q1.
This fact is going to be really important for the following part.

Now let A be a finite dimensional algebra over an algebraically closed
field k. From the point of view of studying the representation theory of A,
we can assume that A is basic and connected. Indeed if A is not basic, in
view of Proposition 1.5.10 we can just consider Ab and if A is not connected,
then A ∼=

⊕
Ai for some connected algebras Ai and mod(A) ∼=

⊕
mod(Ai).

Our next goal is to understand under which hypotheses A is isomorphic to
a bound quiver algebra kQ/I, with Q a finite connected quiver and I an
admissable ideal of kQ. We start by associating a finite quiver to each basic
and connected finite dimensional algebra.

Definition 1.5.9. Let A be a basic and connected finite dimensional k-
algebra and {e1, . . . , en} be a complete set of primitive orthogonal idempotents
of A. The (ordinary) quiver of A, denoted by QA, is defined as follows:

i) The points of QA are the numbers 1, 2, . . . , n, which are in bijective
correspondence with the idempotents e1, e2, . . . , en.

ii) Given two points a, b ∈ (QA)0, the arrows α : a → b are in bijec-
tive correspondence with the vectors in a basis of the k-vector space
ea(radA/ rad

2A)eb.

Since A is finite dimensional, it follows that every vector space of the
form ea(radA/ rad

2A)eb (with a, b ∈ (QA)0) is also finite dimensional, thus
QA is finite. Also, it can be shown that QA does not depend on the choice
of a complete set of primitive orthogonal idempotents in A.

Lemma 1.5.20. Let Q be a finite connected quiver, I be an admissable ideal
of kQ, and A = kQ/I. Then QA = Q.

Proof. By Lemma 1.5.15 i), the set {ea = εa + I : a ∈ Q0} is a complete
set of primitive orthogonal idempotents of A = kQ/I. Thus the points of
QA are in bijective correspondence with those of Q. On the other hand,
by Corollary 1.5.19 and in particular by the remark following it, the ar-
rows in Q are in bijective correspondence with a basis of the k-vector space
radA/ rad2A. This implies in particular that the arrows from a to b in Q
are in bijective correspondence with the vectors in a basis of the k-vector
subspace ea(radA/ rad2A)eb, thus with the arrows from a to b in QA.
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Theorem 1.5.21. Let A be a basic and connected finite dimensional k-
algebra. Then there exists an admissable ideal I of kQA such that A ∼=
kQA/I.

Proof. We are just going to give a sketch of the proof. More precise details
can be found in [1]. The main idea is to construct an algebra homomorphism
φ : kQA → A, then to show that it is surjective and that its kernel I := Kerφ
is an admissable ideal of kQA. We are just going to show how to construct
φ.

For any point a ∈ (QA)0 we define φ(a) = ea. For each arrow α : i → j
in (QA)1, first let xα ∈ radA be chosen so that {xα + rad2A | α : i → j}
forms a basis of ei(radA/ rad2A)ej . We define φ(α) = xα for all α ∈ (QA)1.
Notice in particular that the elements φ(a), a ∈ (QA)0, form a complete set
of primitive orthogonal idempotents in A and that for any α : a→ b we have
φ(a)φ(α)φ(b) = eaxαeb = xα = φ(α). This in particular ensures us that
φ actually extends to a unique k-algebra homomorphism by the universal
property of path algebras.

We just saw how quivers help us in visualising finite dimensional algebras.
Our next goal is to see how said quivers provide a convenient way to visualise
any module over an algebra. For this we will need the following definition.

Definition 1.5.10. Let Q be a finite quiver. A k-linear representation, or
simply a representation M of Q is defined by the following data:

i) To each point a in Q0 is associated a k-vector space Ma.

ii) To each arrow α : a→ b in Q1 is associated a k-linear map φα :Ma →
Mb.

Such a representation is denoted as M = (Ma, φα)a∈Q0,α∈Q1 or simply M =
(Ma, φα). It is called finite dimensional if each vector space Ma is finite
dimensional.

Let M = (Ma, φα) and M ′ = (M ′
a, φ

′
α) be two representations of Q.

A morphism (of representations) f : M → M ′ is a family f = (fa)a∈Q0

of k-linear maps (fa : Ma → M ′
a)a∈Q0 that are compatible with the struc-

ture maps φα, that is, for each arrow α : a → b, we have φ′
αfa = fbφα.

Equivalently, the following square needs to be commutative for any arrow
α : a→ b

Ma Mb

M ′
a M ′

b

fa

φα

fb

φ′
α
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Let f = (fa)a∈Q0 :M →M ′ and g = (ga)a∈Q0 :M ′ →M ′′ be two morphisms
of representations of Q. Their composition is defined to be the family gf =
(gafa)a∈Q0 . It can be easily seen that gf is a morphism from M to M ′′.

We have thus defined a category Rep(Q) of k-linear representations of
Q. We denote by rep(Q) the full subcategory of Rep(Q) consisting of the
finite dimensional representations. In particular it can be shown that both
of these categories are abelian k-categories.

Definition 1.5.11. Let Q be a finite quiver and M = (Ma, φα) be a repre-
sentation of Q. For any nontrivial path w = α1α2 . . . αℓ from a to b in Q,
we define the evaluation of M on the path w to be the k-linear map from Ma

to Mb defined by
φw = φαℓ

φαℓ−1
. . . φα2φα1

This definitions extend to relations in Q. Indeed if ρ =
∑m

i=1 λiwi is a
relation in Q we set

φρ =

m∑
i=1

λiφwi

We are now able to define the notion of representation of a bound quiver.
Let thus Q be a finite quiver and I be an admissable ideal of kQ. A rep-
resentation M = (Ma, φα) of Q is said to be bound by I, or to satisfy the
relations in I, if we have

φρ = 0, for all relations ρ ∈ I

Since we know that I is a finitely generated by some relations (see 1.5.17) we
can just check this condition on the generators. We denote by Repk(Q, I) (or
by repk(Q, I)) the full subcategory of Repk(Q) (or of repk(Q) respectively)
consisting of the representations of Q bound by I.

The next theorem will justify all this setup. Indeed our goal is to study
the category modA, where A is a finite dimensional k-algebra, which we can
assume to be basic and connected without loss of generality. We already saw
that there exists a finite connected quiver QA and an admissable ideal I of
kQA such that A ∼= kQA/I. We will now show that the category modA
of finitely generated A-modules is equivalent to the category repk(QA, I) of
finite dimensional k-linear representations of QA bound by I.

Theorem 1.5.22. Let A = kQ/I, where Q is a finite connected quiver
and I is an admissable ideal of kQ. There exists a k-linear equivalence of
categories

ModA Repk(Q, I)
≃

that restricts to an equivalence of categories
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modA repk(Q, I)
≃

Proof. We will show how to construct the equivalences F : ModA→ Repk(Q, I)
and G : Repk(Q, I)→ ModA. We will not prove that they are indeed func-
tors and that they are quasi-inverse to each other. From the constructions
it will be clear that F and G restrict to equivalences modA → repk(Q, I)
and Repk(Q, I)→ modA respectively.

First we construct F . Let MA be an A-module. We define the k-linear
representation F (M) = (Ma, φα)a∈Q0,α∈Q1 of (Q, I) as follows: if a ∈ Q0,
let ea = εa + I be the corresponding primitive idempotent in A = kQ/I,
then set Ma =Mea; if α : a→ b is in Q1 and α = α+ I is its class modulo
I, define φα :Ma →Mb by φα(x) = xα(= xeaαeb) for x ∈Ma. Because M
is an A-module, φa is a k-linear map. Also, F (M) is bound by I. Indeed let
ρ =

∑m
i=1 λiwi be a relation from a to b in I, where wi = αi,1αi,2 . . . αi,ℓi .

Then we have

φρ(x) =
m∑
i=1

λiφwi(x)

=
m∑
i=1

λiφαi,ℓi
. . . φαi,1(x)

=
m∑
i=1

λi(xαi,1 . . . αi,ℓi)

= x ·
m∑
i=1

λi(αi,1 . . . αi,ℓi)

= x · ρ = x · 0 = 0

This defines the functor on the objects.
If f : MA → M ′

A is an A-module homomorphism, we define F (f) :
F (M) → F (M ′) to be (fa)a∈Q0 , where fa is the restriction of f to Ma.
Indeed for any a ∈ Q0 and xea ∈ Ma = Mea, we have f(xea) = f(xe2a) =
f(xea)ea ∈M ′ea =M ′

a. It can be checked that this is indeed a morphism of
representations.

Now we focus on the definition of G. If M = (Ma, φα) is an object of
Repk(Q, I) we set G(M) =

⊕
a∈Q0

Ma and we define an A-module structure
on the k-vector space G(M) as follows. Let x = (xa)a∈Q0 be an element in
G(M). We need to define products of the form x ·w = x ·w+ I, where w is
a path in Q. If w = εa is the stationary path, we put

xw = xεa = xa

If instead w = α1α2 . . . αℓ is a nontrivial path from a to b, we consider the
k-linear map φw :Ma →Mb and we set

(xw)c = δbcφw(xa)
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where δbc denotes the Kronecker delta. In other words, xw is the element of
G(M) whose only nonzero coordinate is (xw)b = φw(xa) ∈ Mb. It can be
checked that this definition is well-posed, i.e. that it does not depend on the
representative of the class that we choose. This defines G on objects.

If (fa)a∈Q0 is a morphism from M = (Ma, φα) to M ′ = (M ′
a, φ

′
α), we set

G(f) =
⊕

a∈Q0
fa : G(M) → G(M ′). It can be checked that this is indeed

an A-module homomorphism.
Notice in particular that the second statement of the theorem follows

from the fact that, since Q is finite, for a representation M = (Ma, φα) we
have dimk(

⊕
a∈Q0

Ma) <∞ if and only if dimkMa <∞ for all a ∈ Q0.

In the last part of this section we are going to define simple and projective
representations and show some useful facts about them. For this part the
main refernce will be [9].

Let Q be a finite connected quiver and let I be an admissable ideal of
kQ. We will denote by A the bound quiver algebra kQ/I.

Let i be a vertex of Q. We will define the following representations:

i) The simple representation at vertex i is defined by

S(i)j =

{
k, if i = j;

0 otherwise

with structure maps

φα = 0 for all arrows α

ii) The projective representation at vertex i is P (i) = (P (i)j , φα)i∈Q0,α∈Q1

where P (i)j is the k-vector space with basis the set of all w = w + I,
with w a path from i to j and, for an arrow α : b → c, the structure
map φα : P (i)b → P (i)c is given by right multiplication by α = α+ I.

We clearly have that for any i ∈ Q0, the simple representation S(i) has
no proper subrepresentation, thus the representations S(i) are simple objects
in repk(Q, I). Furthermore, by applying the functor G described in the proof
of Theorem 1.5.22, we can see that the representations P (i) correspond to
the indecomposable projective modules eiA. Indeed G(P (i)) is the module
whose underlying vector space is

⊕
j∈Q0

P (i)j which has a basis consisting
of all residue classes w+I of paths w starting at i and thus is isomorphic to
the vector space eiA. Furthermore a residue class w′+I of a path w′ acts on
a basis element w+I of G(P (i)) by the formula (w+I) · (w′+I) = φw′(w),
which is given by the composition of paths ww′. Thus G(P (i)) is isomorphic
to eiA a an A-module for all i ∈ Q0.

We also want to give a quick description of the indecomposable injective
A-modules. By Proposition 1.5.7, a complete list of pairwise nonisomorphic
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indecomposable injective A-modules is given by I(a) = D(Aea) for a ∈ Q0,
where D is the standard duality between right and left A-modules. We say
that I(a) is the indecomposable injective A-module corresponding to the
point a ∈ Q0.

Lemma 1.5.23. Let A = kQ/I be the bound quiver algebra of (Q, I).

i) For any a ∈ Q0, S(a) viewed as an A-module is isomorphic to the top
of the indecomposable projective A-module eaA.

ii) The set {S(a) : a ∈ Q0} is a complete set of representatives of the
isomorphism classes of the simple A-modules.

iii) Given a ∈ Q0, the simple module S(a) is isomorphic to the simple socle
of I(a).

Proof. We already saw that the S(a), a ∈ Q0, are simple representations and
thus they represent simple modules. Furthermore, from the proof of Theorem
1.5.22 we have that HomA(eaA,S(a)) ∼= S(a)ea ∼= S(a)a ̸= 0, so there exists
a nonzero morphism from the indecomposable projective A-module eaA onto
the simple A-module S(a). This proves i), since by Proposition 1.5.2 we know
that eaA has a simple top. On the other hand, if a ̸= b, it is clear from their
representation that Hom(S(a), S(b)) = 0, so in particular S(a) ≇ S(b). By
Proposition 1.5.7 there exists a bijection between a complete set of primitive
orthogonal idempotents and a complete set of pairwise nonisomorphic simple
A-modules given by ea 7→ top eaA, so ii) follows.

For iii) we just need to notice that this statement is dual to the one in
i). Thus we have the isomorphisms

soc I(a) ∼= P (a)/ radP (a) ∼= S(a)

of right A-modules.

Lemma 1.5.24. Let A = kQ/I be a bound quiver algebra. For every A-
module M and a ∈ Q0, the k-linear map from Lemma 1.5.1 induces isomor-
phisms of k-vector spaces

HomA(P (a),M) ∼=Mea ∼= DHomA(M, I(a))

Proof. We have the first isomorphism from Lemma 1.5.1. The second iso-
morphism is the composition

DHomA(M, I(a)) = DHomA(M,D(Aea)) ∼= DHomAop(Aea, DM)
∼= D(eaDM) ∼= D(DM)ea ∼=Mea
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As a consequence, we obtain an expression of the quiver of A in terms of
the extensions between simple modules that will be useful later.

Theorem 1.5.25. Let A = kQ/I be a bound quiver algebra and let a, b ∈ Q0.

i) There exists an isomorphism of k-vector spaces

Ext1A(S(a), S(b))
∼= ea(radA/ rad

2A)eb

ii) The number of arrows in Q from a to b is equal to the dimension
dimk Ext

1
A(S(a), S(b)) of Ext1A(S(a), S(b)).

Proof. i) Let · · · → P2
p2−→ P1

p1−→ P0
p0−→ S → 0 be a minimal projective

resolution of a simple module S. We wish to compute Ext1A(S, S
′) for some

other simple module S. Using the definition of Ext1A(−, S′) as a right derived
functor, we consider the complex · · · → P2

p2−→ P1
p1−→ P0 → 0 to which we

apply the functor HomA(−, S′), thus obtaining the complex

0→HomA(P0, S
′)

HomA(p1,S′)−−−−−−−−→ HomA(P1, S
′)

HomA(p2,S′)−−−−−−−−→

HomA(P2, S
′)

HomA(p3,S′)−−−−−−−−→ HomA(P3, S
′)

HomA(p4,S′)−−−−−−−−→ · · ·

We claim that the maps HomA(pi+1, S
′) = 0 for every i ≥ 0. Let f ∈

HomA(Pi, S
′) be a nonzero homomorphism. By the definition of minimal

projective resolution, we have that Im pi+1 = Ker pi ⊆ radPi, thus

HomA(pi+1, S
′)(f)(x) = (fpi+1)(x) ∈ f(Im pi+1) ⊆ f(radPi) ⊆ radS′ = 0

for any x ∈ Pi. Therefore HomA(pi+1, S
′)(f) = 0 and our claim follows.

In particular, we get Ext1A(S, S
′) ∼= KerHomA(p2, S

′)/ ImHomA(p1, S
′) ∼=

HomA(P1, S
′).

If S = S(a) and we write radP (a)/ rad2 P (a) =
⊕

c∈Q0
S(c)nc , a minimal

projective resolution of S(a) is of the form

· · · →
⊕
c∈Q0

P (c)nc → P (a)→ S(a)→ 0

so that

Ext1A(S(a), S(b))
∼=HomA(P1, S(b))

∼= HomA(
⊕
c∈Q0

P (c)nc , S(b))

∼= HomA(radP (a)/ rad
2 P (a), S(b))

At this point we need to notice that we have an isomorphism

HomA(radP (a)/ rad
2 P (a), S(b)) ∼= HomA(radP (a)/ rad

2 P (a), I(b))
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This is true since radP (a)/ rad2 P (a) is semisimple, so its image in I(b) must
be semisimple. But since I(b), by being the injective envelope of S(b), is an
essential extension of S(b) the image of any morphism radP (a)/ rad2 P (a)→
I(b) must be contained in S(b). Thus we have the following chain of isomor-
phisms.

Ext1A(S(a), S(b))
∼=HomA(radP (a)/ rad

2 P (a), S(b))

∼= HomA(radP (a)/ rad
2 P (a), I(b))

∼= DHomA(P (b), radP (a)/ rad
2 P (a))

∼= DHomA(ebA, ea(radA/ rad
2A))

∼= D(ea(radA/ rad
2A)eb)

∼= ea(radA/ rad
2A)eb

ii) By definition, the number of arrows from a to b in the quiver Q is
equal to dimk(ea(radA/ rad

2A)eb). Then ii) follows from i).

1.6 Yoneda extensions

The goal of this section is to show how to interpret the groups ExtA(X,Y )
without having to go through projective (or injective) resolutions. In partic-
ular we will not need necessarily A to have enough projectives (or injectives).
The main reference for this section will be [11] and [10].

Definition 1.6.1. Let A be an abelian category and A,B ∈ ObA. A degree
i Yoneda extension of B by A is an exact sequence

E : 0→ A→ Zi−1 → Zi−2 → · · · → Z0 → B → 0

in A. We say that two Yoneda extensions E and E′ of the same degreee are
equivalent if there exists a commutative diagram

0 A Zi−1 · · · Z0 B 0

0 A Z ′′
i−1 · · · Z ′′

0 B 0

0 A Z ′
i−1 · · · Z ′

0 B 0

id

id

id

id

where the middle row is a Yoneda extension as well.
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It can be shown that the relation of the definition is an equivalence
relation.

Definition 1.6.2. Let A be an abelian category and let i ∈ Z. For any two
objects A,B of A we define the ith extension group of B by A to be

ExtiA(A,B) = {E : E is a degree i Yoneda extension of B by A}/ ∼

where ∼ denotes the equivalence relation between extensions defined above.

Notice that the word group in the definition is not casual. Indeed we can
put a group structure on ExtiA(A,B), with the so-called Baer sum.

Let A be an abelian category with objects A, B. Given a degree i
Yoneda extension E of B by A we can naturally define a morphism in
HomD(A)(B[0], A[i]). We will denote this morphism by δ(E) = fs−1 :
B[0]→ A[i], where s is the quasiisomorphism

(· · · → 0→ A→ Zi−1 → · · · → Z0 → 0→ · · · )→ B[0]

induced by the long exact sequence E and f is the morphism of complexes

(· · · → 0→ A→ Zi−1 → · · · → Z0 → 0→ · · · )→ A[i]

given by the identity in degree −i and by the zero morphism otherwise. We
will call δ(E) = fs−1 the class of the Yoneda extension. It turns out that
this class characterizes the equivalence class of the Yoneda extension.

Lemma 1.6.1. Let A be an abelian category with objects A,B. Any element
in HomD(A)(B[0], A[i]) is of the form δ(E) for some degree i Yoneda exten-
sion E of B by A. Furthermore if E and E′ are two Yoneda extensions of
the same degreee, then E is equivalent to E′ if and only if δ(E) = δ(E′).

Proof. Let ξ : B[0] → A[i] be an element of HomD(A)(B[0], A[i]). We may
write ξ = f•s−1 for some quasiisomorphism s : L• → B[0] and a map
f• : L• → A[i]. By replacing L• by its truncation τ≤0L

• we may assume
that Lj = 0 for j > 0. We have the following situation

L−i−1 L−i · · · L0 B 0

A

f

Then, by setting Zi−1 to be the pushout of the diagram A
f←− L−i d−i−−→ L−i+1

and Zj = L−j for j = i − 2, . . . , 0, we obtain a degree i extension E of B
by A. To show this, we want to prove that the sequence 0 → A → Zi−1 →
· · · → Z0 → B → 0 is exact. This would mean that this is indeed a Yoneda
extension and that the complex · · · → A → Zi−1 → · · · → Z0 → 0 → · · · is
quasiisomorphic to the complex L•, so that the class δ(E) equals to ξ. We
are going to show this just for modules.

First of all, we know that we have a commutative diagram
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L−i−1 L−i

0 A

d−i−1

f

This shows that fd−i−1 = 0, so that f factors through Coker d−i−1 ∼=
L−i/ Im d−i−1 ∼= L−i/Ker d−i ∼= Im d−i2, where the second isomorphism
comes from the fact that H−i(L•) = 0, because L• is quasiisomorphic to
B[0]. In particular we have that the complex L̃• given by · · · → 0 →
Im d−i → L−i+1 → · · · → L0 → 0 → · · · is still quasiisomorphic to B[0]
and that f• = f̃• ◦ π, where π is the quasiisomorphism L• → L̃•. So in
particular we have that our morphism ξ : B → A[i] can be represented by

the roof B s←− L̃• f̃•−→ A[i].
Now consider the following diagram, where the top row is exact.

0 Im d−i L−i+1 L−i+2 · · ·

0 A Z−i+1 L−i+2 · · ·
⌜

ι

f α

d−i+1 d−i+2

β γ d−i+2

In particular, α and β are the maps given by the pushout and γ is the
unique map given by the universal property of pushouts such that γβ = 0
and γα = d−i+1. Furthermore, since d−i+2γβ = 0 = d−i+2γα, the universal
property of the pushout guarantees that d−i+2γ = 0, so in particular the
bottom row is also a complex.

By the properties of pushouts we know that we have an epimorphism
Ker ι = 0 ↠ Kerβ, so we have that β is a monomorphism and that the
sequence E is exact at A. Also E is clearly exact at L−i+t for any 3 ≤
t ≤ i since the top row is exact by hypothesis. Now it remains to see that
Ker d−i+2 ⊆ Im γ and Ker γ ⊆ Imβ. For this, consider the following diagram

0 Im d−i L−i+1 Coker ι 0

0 A Z−i+1 Cokerβ 0

ι

f α

ℓ

a∼=

β π

where we know that a is an isomorphism since the left square is a pushout
square and thus it preserves cokernels. By the exactness of the top (long)
sequence we have

Coker ι ∼= L−i+1/ Im ι ∼= L−i+1/ Im d−i = L−i+1/Ker d−i+1 ∼= Im d−i+1 = Ker d−i+2

In particular this tells us that we can identify Ker d−i+2 with Cokerβ. Notice
also that γβ = 0, so γ factors through Cokerβ, so we have the following
diagram
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L−i+1 L−i+2

Cokerβ

Z−i+1 L−i+2

α

d−i+1

aℓ ba−1

jπ

γ

We want to show that j = ba−1, so that we can deduce that Ker d−i+2 ∼=
Cokerβ ⊆ Im γ. For this we first need to notice that ℓ = a−1πα. Then we
have that γα = d−i+1 = bℓ = ba−1πα. Since we also have that ba−1πβ = 0
because πβ = 0, we can conclude that γ = ba−1π by the uniqueness of the
morphism given by the universal property. But now, since γ = jπ and π
is an epimorphism, we can conclude that j = ba−1, as wanted. Finally, we
observe that if x ∈ Ker γ, then jπ(x) = 0. Since j is a monomorphism by
the previous considerations this means that π(x) = 0, which in turn implies
that x ∈ Imβ.

Now let E and E′ be equivalent degree i Yoneda extensions of B by
A with the same class. We have a diagram as in Definition 1.6.1 with an
extension E′′ in the middle. If we denote E• = (· · · → 0 → A → Zi−1 →
· · · → Z0 → 0→ · · · ), E′• = (· · · → 0→ A→ Z ′

i−1 → · · · → Z ′
0 → 0→ · · · )

and E′′• = (· · · → 0 → A → Z ′′
i−1 → · · · → Z ′′

0 → 0 → · · · ), then we have
the following roof equivalence between δ(E) = fs−1 and δ(E′) = f ′s′−1

E•

B E′′• A[i]

E′•

s
∼

f
t ∼

t′ ∼
s′

∼
f ′

where t and t′ are the quasiisomorphisms from the equivalence diagram.
Suppose instead that E : 0→ A→ Zi−1 → Zi−2 → · · · → Z0 → B → 0 and
E′ : 0 → A → Z ′

i−1 → Z ′
i−2 → · · · → Z ′

0 → B → 0 are Yoneda extensions
with the same class δ(E) = fs−1 = δ(E′) = f ′s′−1. Since D(A) is the
localization of K(A) at the set of all quasiisomorphisms, this means that
there exists a complex L• and quasiisomorphisms

t : L• → (· · · → 0→ A→ Zi−1 → · · · → Z0 → 0→ · · · )
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and
t′ : L• → (· · · → 0→ A→ Z ′

i−1 → · · · → Z ′
0 → 0→ · · · )

such that s◦t = s′◦t′ and f ◦t = f ′◦t′. Let E′′ be the degree i extension of B
by A constructed from the pair L• → B[0] and L• → A[i] at the beginning
of the proof. Then we clearly have a commutative diagram as the one in
Definition 1.6.1, thus E is equivalent to E′.

Remark. An important consequence of this Lemma is that for any abelian
category A with objects A,B and for any i ∈ Z we have

ExtiA(A,B) = HomD(A)(A,B[i]) = HomD(A)(A[−i], B)
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Chapter 2

Main result

The main goal of this chapter is to prove that a finite dimensional algebra Λ
over a field k is piecewise hereditary if and only if its strong global dimension
is finite. The result can be originally found in [6], together with most of the
results in this Chapter. Another reference we use throughout this chapter is
[3].

2.1 Setting

In this section we present some definitions and some results that will be
central to prove our thesis.

Definition 2.1.1. Let H be an abelian category. H is said to be a hereditary
category if the functor Ext2H(−,−) vanishes over H, i.e. if Ext2H(X,Y ) = 0
for all objects X and Y in H.

An example of abelian, hereditary categories is given by the categories
mod kQ, where Q is a finite, acyclic quiver. A proof of this can be found in
[9].

We now give a characterization of hereditary categories.

Proposition 2.1.1. Let A be an abelian category. The following are equiv-
alent:

i) A is hereditary;

ii) ExtnA(M,N) = 0 for all n ≥ 2 and for all objects M , N of A;

Proof. i) ⇒ ii). Since A is hereditary we know that Ext2A(−,−) vanishes.
For i > 2 write any class ξ ∈ ExtiA(M,N) as δ(E), where E is a Yoneda
extension

E : 0→ N → Zi−1 → Zi−2 → · · · → Z0 →M → 0

73
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This is possible as we already saw that for an element in ExtiA(M,N) we
have a unique degree i Yoneda extension of M by N , up to the equivalence
relation discussed in 1.6.1. Now set C = Ker(Z1 → Z0) = Im(Z2 → Z1).
This means we can write δ(E) as the composition of δ(E′) with δ(E′′) where

E′ : 0→ C → Z1 → Z0 →M → 0

and
E′′ := 0→ N → Zi−1 → · · · → Z2 → C → 0

Since δ(E′) ∈ Ext2A(M,N) = 0, then also δ(E) = 0 and we can conclude.
On the other hand, ii) clearly implies i) so we are done.

Now we can proceed by giving a useful description of the bounded derived
category Db(H) of an abelian, hereditary category H.

Lemma 2.1.2. Let H be an abelian, hereditary category. Then any object
K of its derived category Db(H) is isomorphic to the direct sum of its coho-
mologies in Db(H), in other words we have that:

K ∼=
⊕
i∈Z

H i(K)[−i]

Proof. Before starting with the actual proof we need to notice that for p ≥ 2
we have ExtpH(H

i(K), Hj(K)) = 0 for all i, j ∈ Z since H i(K) is an object
in H.

Now pick a, b such that H i(K) = 0 for i /∈ [a, b]. This is always possible
since K is a bounded complex. We will proceed on induction over b− a. If
b− a = 0 we have that K is quasi-isomorphic to 0, so K ∼=

⊕
H i(K)[−i]. If

b− a > 0 then we look at the distinguished triangle of truncations

τ≤b−1K → K → Hb(K)[−b]→ (τ≤b−1K)[1]

By Corollary 1.2.9, if the last arrow is zero, then K ∼= τ≤b−1K ⊕Hb(K)[−b]
and we conclude due to the inductive hypothesis. Again by induction we
have that τ≤b−1K ∼=

⊕
H i(τ≤b−1K)[−i], which yields

HomDb(H)(H
b(K)[−b], (τ≤b−1K)[1]) ∼=

∼=
⊕

HomDb(H)(H
b(K)[−b], H i(τ≤b−1K)[1− i]) =

=
⊕
i<b

Extb−i+1
H (Hb(K), H i(K))

Notice that the first isomorphism holds because τ≤b−1K ∈ Db(H) and thus
the direct sum is finite. By assumption the last direct sum is zero and our
proof is complete.
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We are also going to need the following characterization of the derived
category of an abelian, hereditary category H, whose proof can be found in
[3].

Theorem 2.1.3. Let D be a triangulated category with a full additive sub-
category H. Then the following statements are equivalent:

i) The category H is hereditary abelian with an equivalence F : Db(H)→
D of categories, which commutes with the translation functors and re-
spects the canonical embedding of H into Db(H).

ii) D is equal to the smallest additive category which contains
⋃
n∈ZH[n]

and is closed under isomorphisms (in which case we will write D =
add(

⋃
n∈ZA[n])) and HomD(H,H[m]) = 0 for m < 0.

Definition 2.1.2. Let Λ be a finite dimensional algebra over a field k. Λ
is called piecewise hereditary if there exists a hereditary, abelian category H
such that the bounded derived categories Db(modΛ) and Db(H) are equiva-
lent as triangulated categories.

Note that we will often write Db(Λ) instead of Db(modΛ).
As one would expect, hereditary algebras are also piecewise hereditary.

Indeed if H is a hereditary algebra, the category modH can be easily shown
to be hereditary. We will give a more precise proof of this in the last section
of this thesis.

Example 2.1.4. We are interested in showing that we have algebras that
are piecewise hereditary, but not hereditary. An example is the algebra
Λ = kQ/I, where Q is the quiver

1 2 3α β

and I = ⟨αβ⟩. It is well known (see for example [1]), that there is an equiva-
lence of categories Db(Λ) ∼= Db(kQ) and we know that kQ is hereditary, since
it is the path algebra of a finite, acyclic quiver. However, we also know that
Λ is not hereditary itself, for example we know that Ext2Λ(S(1), S(3)) ̸= 0,
so in particular Λ is piecewise hereditary, but not hereditary, as wanted. We
will discuss and generalise this case in the last section of this thesis.

Definition 2.1.3. Let A be an abelian category and X ∈ Cb(A) be a bounded
complex. By the boundness of X, there exist r ≤ s such that Xr ̸= 0 ̸= Xs

and Xi = 0 for i < r or i > s. We define the length of X as ℓ(X) = s− r.
Notice that this definition extends to Kb(A), since we have the convention
that given X ∈ Kb(A), we represent it with its unique (up to isomorphism)
preimage in Cb(A) without null-homotopic direct summands.
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Definition 2.1.4. Let A be an abelian category. We define the global di-
mension of A as

gl. dimA = sup {n ∈ N ∪ {∞} : ∃ objects X,Y in A s.t. ExtnA(X,Y ) ̸= 0}

Morover, if we denote by P the full subcategory of A containing its projective
objects, we can define the strong global dimension of A as

s. gl. dimA = sup
{
ℓ(P •) : P • is indecomposable in Kb(P)

}
where ℓ(P •) is the length of the complex P • and P • is said to be indecom-
posable if there are no nontrivial complexes P •

1 , P
•
2 such that P • ∼= P •

1 ⊕P •
2 .

In the rest of this thesis we will just talk about the global dimension and
the strong global dimension of categories of modules over a finite dimensional
algebra Λ. Within this setup we will write ΛP instead of just P as in the
last definition.

We also recall an equivalent definition of global dimension for finite di-
mensional algebras, which will be useful later.

Theorem 2.1.5. If Λ is a finite dimensional k-algebra, then

gl. dimΛ = max{pdS : S is a simple right Λ-module}

Proof. Clearly "≥" holds. For "≤" we actually just need to show that for any
module M we have pdM ≤ max{pdS : S is a simple right Λ-module} =
n. To do this we are going to proceed by induction on the length i of a
composition series of M . Notice that this length is finite, since M is a
finitely generated and Λ is a finite dimensional algebra.

If i = 1, then M is simple, so the previous inequality clearly holds.
Assume now that our inequality holds for i. Let M be of length i+1 and let
Mi ⊊Mi+1 =M be the penultimate term of the composition series, so that
M/Mi is simple. In particular we have a short exact sequence 0 → Mi →
M → M/Mi → 0. The Horseshoe Lemma guarantees that the direct sum
of the projective resolutions of Mi and M/Mi yields a projective resolution
of M , which in particular is not longer than the previous ones. Thus, since
by inductive hypothesis pdMi ≤ n and clearly pdM/Mi ≤ n, we also have
that pdM ≤ n, as wanted.

Definition 2.1.5. A category C is said to be Krull-Schmidt if any object in
C is isomorphic to a sum of indecomposable objects in C in a unique way up
to isomorphism.

Remark. All of the categories that we are interested in from now on are
Krull-Schmidt, in particular the categories modΛ,Kb(ΛP),Kb(Λ) andDb(Λ)
for a finite dimensional k-algebra Λ. We already showed that modΛ is Krull-
Schmidt in Theorem 1.5.6. For the other categories mentioned above, we
refer to [12].
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Lemma 2.1.6. Let A be an additive Krull-Schmidt category. Let X ∈ A
and Y • ∈ Kb(A).

a) i) If HomKb(A)(X[t], Y •) ̸= 0 for some t ∈ Z, then Y −t ̸= 0;
ii) If HomKb(A)(Y

•, X[t]) ̸= 0 for some t ∈ Z, then Y −t ̸= 0.

b) If 0 ̸= Y • = (Y i, di) ∈ Kb(A) with Y r ̸= 0 ̸= Y 0 for some r ≤ 0 and
Y i = 0 for i < r and for i > 0 then

i) HomKb(A)(Y
•, Y r[−r]) ̸= 0 and

ii) HomKb(A)(Y
0, Y •) ̸= 0.

Proof. Clearly both claims in a) hold. Indeed if we assume by contra-
diction that Y t = 0 we would have that HomCb(A)(X[t], Y •) = 0 (resp.
HomCb(A)(Y

•, X[t]) = 0) since X[t]i = 0 for i ̸= t and the only morphism
in degree t would be the 0 morphism. Since for any two complexes B,D
of A objects we have an epimorphism HomCb(A)(B,D) ↠ HomKb(A)(B,D),
this yields the desired contradiction, since HomKb(A)(X[t], Y •) ̸= 0 (resp.
HomKb(A)(Y

•, X[t]) ̸= 0) by hypothesis.
We will now show the first assertion in b). The second follows by dual

considerations. Let π• : Y • → Y r[−r] be defined by πr = idY r and πj = 0 for
j ̸= r. π• is clearly a map of complexes. Now if HomKb(A)(Y

•, Y r[−r]) = 0,
then π• needs to be homotopic to 0. This would mean in particular that
there is a map h : Y r+1 → Y r with hdr = idY r . So Y • has indecomposable
null-homotopic direct summands in Cb(A), in contrast to the convention
agreed upon when we defined Kb(Λ). Indeed since hdr = idY r , we have that
dr needs to be a monomorphism and we would have a split exact sequence
0 → Y r → Y r+1 → Coker(dr) → 0. This in particular means that Y r+1 ∼=
Y r⊕Coker(h), so we could write Y • as the direct sum of the two complexes

· · · → 0→ 0→ Coker(dr)→ Y r+2 → . . .

and
· · · → 0→ Y r ∼=−→ Y r → 0→ . . .

which is null-homotopic.

In the rest of this section we will denote by C an additive triangulated k-
category that is Krull-Schmidt and has the property that for all X,Y ∈ C the
dimension of HomC(X,Y ) is finite. For example, the categoryKb(ΛP), where
Λ is a finite dimensional algebra, satisfies these assumptions. Moreover, when
we will have to deal with maps u : X → E and v : E → Y with E =

⊕r
i=1Ei

for some indecomposable Ei, we will use the following notation. First we
call εi : Ei → E the canonical split monomorphisms and πi : E → Ei the
canonical split epimorphisms. Then for each 1 ≤ i ≤ r we define the map
ui : X → Ei by ui = πiu and the map vi : Ei → Y by vi = vεi.

The next lemma collects some results about maps occuring in triangles.
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Lemma 2.1.7. i) The following are equivalent for a triangle

X Y Z X[1]
f u v

a) f is a split monomorphism;

b) u is a split epimorphism;

c) v = 0.

ii) Let f : X → Y be nonzero and not invertible for X,Y indecomposable,
and let

X Y
⊕r

i=1 Zi X[1]
f u v

be a triangle with each Zi indecomposable. Then the components ui of
u, as well as the components vi of v, are nonzero and not invertible.

iii) If r > 1, in the situation of ii), we have that viui is nonzero for each
i = 1, . . . , r.

Proof. i) We will just show a) ⇐⇒ c). The proof for b) ⇐⇒ c) is similar.
Let f be a split monomorphism. Then there is g : Y → X such that

gf = idX . By applying HomC(−, X) we get the following long exact sequence

· · · → HomC(Y,X) HomC(X,X) HomC(Z[−1], X)→ · · ·f∗ v[−1]∗

Hence we see that f∗(g) ∈ Ker v[−1]∗ by the exactness of the sequence. But
f∗(g) = gf = idX , thus we have v[−1]∗(idX) = v[−1] = 0. Thus v = 0 since
this is true whenever v[i] = 0 for some i ∈ Z.

Conversely, if v = 0, from the same sequence from above, we see that
f∗ is surjective, thus there is g ∈ HomC(Y,X) such that f∗(g) = gf = idX .
Thus f is a split monomorphism, as wanted.

ii) Since f is not invertible, its cone is nonzero. Also we have u =
(u1, . . . , ur). Since 0 = u◦f = (u1 ◦f, . . . , ur ◦f) and f is nonzero, it follows
that the components ui of u are not invertible. Similarly v = (v1, . . . , vr)
and f [1] ◦ v = 0, thus the components vi of v are not invertible. Further-
more, since f is nonzero, Lemma 1.2.10 implies that the components ui of u
are nonzero. By a dual argument we have that the components vi of v are
nonzero as well.

iii) Let us assume that there is 1 ≤ i ≤ r such that viui. So 0 = viui =
vεiπiu. In particular we have the following situation
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Cui [−1] Y Zi Cui

X Y
⊕r

i=1 Zi X[1]

πiu

φi εi

f u v

where the rows are triangles. Thus since vεiπiu = 0, by Proposition 1.2.6
there is φi : Y → Y with uφi = εiπiu. In particular we have that ujφi =
πjuφi = 0 for j ̸= i (notice that since r > 1 there is such j) and uiφi =
ui. By ii) we have that uj ̸= 0, so φi is neither an isomorphism (since
ujφi = 0 and uj ̸= 0) nor the zero morphisms (since uiφi = ui). Now Y is
indecomposable, so we know that EndC(Y ) is local and finite dimensional,
hence φi is nilpotent, which means that there is n > 0 such that φn = 0, in
contrast to uiφn = ui ̸= 0. Thus it must be viui ̸= 0 for all i.

Proposition 2.1.8. Let f : X → Y be nonzero and not invertible for X,Y
indecomposable, and let

X Y Cf X[1]
f u v

be a triangle. If the induced map f∗ : HomC(Y,X[1]) → HomC(X,X[1]) is
injective, then Cf is indecomposable.

Proof. Assume by contradiction that Cf = C1 ⊕ C for C1 indecomposable
and C ̸= 0. By Lemma 2.1.7 iii) we have that v1u1 ̸= 0. Since f∗ is injective
we also have that 0 ̸= f∗(v1u1) = v1u1f . Now u1f = π1uf = 0 since
uf = 0. Indeed we know that the composition of any two consecutive maps
in a triangle is zero. So we obtain our desired contradiction and we can
conclude that Cf must be indecomposable.

This proposition has as an immediate consequence the following

Corollary 2.1.9. Let f : X → Y be nonzero and not invertible for X,Y
indecomposable. If HomC(Y,X[1]) = 0, then Cf is indecomposable.

2.2 Paths in triangulated categories

The goal of this section is to prove some results concerned with shortening
paths in a triangulated category C which we assume to be Krull-Schmidt
and such that the dimension of HomC(X,Y ) is finite for all X,Y ∈ C. We
will denote by Ind C a complete class of representatives of indecomposable
objects.

Following [3], a path in C is a sequence X0, . . . , Xs of indecomposable
objects in C such that either HomC(Xi, Xi+1) ̸= 0 for 0 ≤ i ≤ s − 1 or
Xi+1 = Xi[1]. We will call a sequence X0, . . . , Xs of indecomposable objects
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in C a strong path in C, if HomC(Xi, Xi+1) ̸= 0 for 0 ≤ i ≤ s − 1. We will
say that these paths go from X0 to Xs.

A subclass U ⊆ Ind C is called path-closed provided that for each path
from X to Y , X lies in U if and only if so does Y . Clearly, a path-closed class
U is closed under the translation functors [1] and [−1] and for any X ∈ U ,
an indecomposable object Y necessarily lies in U whenever HomC(X,Y ) ̸= 0
or HomC(Y,X) ̸= 0. We observe that whenever a class U is path-closed, so
is its complement V = Ind C \ U .

Lemma 2.2.1. Let U ⊆ Ind C be a path-closed class and let V be its com-
plement. Set C1 (resp. C2) to be the smallest additive category generated by
the objects in U (resp. V). Then both Ci are triangulated subcategories and
C = C1 × C2 is their product.

Proof. By their path-closedness, we have

HomC(C1, C2) = 0 = HomC(C2, C1) (∗)

Then we have a decomposition C = C1 × C2 of additive categories. This
is clear for objects, since our category C is Krull-Schmidt by hypothesis. For
morphisms instead, this decomposition makes sense exactly because of (∗).
Indeed, if f : X → Y is a morphism in C, it corresponds to a couple of
morphisms (f1, f2) in Mor(C1 ×C2). To see this, we can write X = X1 ×X2

and Y = Y1 × Y2 for some Xi, Yi ∈ Ci and for i = 1, 2. By (∗) then we know
that for i = 1, 2, Xi is mapped into Yi by f , thus f = (f1 = f |X1 , f2 = f |X2)
in C1 × C2.

Now recall that both Ci are closed under [1] and [−1]. To complete the
proof, we take a morphism u : A→ B in C1 and form a triangle in C

A
u−→ B → C → A[1]

If C = C1 ⊕ C2, with Ci ∈ Ci, then C2 = 0 by Lemma 1.2.10. This proves
that C1 is a triangulated subcategory. The proof for C2 is analogous.

Definition 2.2.1. A triangulated category C is called a block provided that
it is nonzero and does not admit a proper decomposition into two triangulated
subcategories.

Lemma 2.2.2. Let C be a triangulated category where for each indecompos-
able X ∈ C, there exists an indecomposable object Y ∈ C such that there is a
nonzero, noninvertible map f : X → Y . Then each path in C can be refined
to a strong path in C.

Proof. Let X0, . . . , Xs be a path in C. If HomC(Xi, Xi+1) ̸= 0 for 0 ≤ i ≤
s− 1 we already have a strong path. Assume then that there is i such that
Xi+1 = Xi[1]. By hypothesis there is an indecomposable object Y ∈ C and
a morphism f : Xi → Y which is nonzero and noninvertible. Consider now
the following triangle:
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Xi Y Cf Xi[1]
f u v

Then for each indecomposable summand Cj of Cf we obtain a strong path
Xi → Y → Cj → Xi[1] and thus our original path can be refined to a strong
path. Notice that Lemma 2.1.7 ii) ensures that the maps uj : Y → Cj and
vj : Cj → Xi[1] are nonzero.

The next lemma ensures we can use Lemma 2.2.2 within the setup we
are working in.

Lemma 2.2.3. Let Λ be a connected finite dimensional algebra which is
not semi-simple. Then for each indecomposable object X ∈ Db(Λ) there
exists an indecomposable object Y ∈ Db(Λ) and a nonzero, noninvertible
map f : X → Y .

Proof. First we need to notice that since we are operating with the derived
category Db(Λ) we can assume Λ to be basic. Indeed if this is not the case,
by Proposition 1.5.10, we know that there is a basic algebra Λb associated
to Λ such that Db(Λ) is equivalent to Db(Λb) and thus in this case we can
simply use Λb instead of Λ.

Now let X• ∈ Db(Λ) be indecomposable. By applying the shift functor, if
necessary, we may assume that H i(X•) = 0 for i > 0, and that H0(X•) ̸= 0.
Let τ≤0X

• be the complex defined by (τ≤0X
•)i = 0 for i > 0, (τ≤0X

•)i = Xi

for i < 0 and (τ≤0X
•)0 = Ker d0 with the induced differentials. Let τ>0X

•

be the complex defined by (τ>0X
•)i = Xi for i > 1, (τ>0X

•)i = 0 for i ≤ 0
and (τ>0X

•)1 = Coker d0 with the induced differentials. Now we obtain the
following triangle, where u is the morphism such that ui is the inclusion map
for all i

τ≤0X
• X• τ>0X

• (τ≤0X
•)[1]u

Since τ>0X
• is acyclic, the long exact sequence in cohomology shows that

u is an isomorphism in Db(Λ), hence we may assume that Xi = 0 for
i > 0 without loss of generality. This means that H0(X•) = Coker d−1

and we obtain a map f : X• → Coker d−1[0] in Db(Λ) with f0 the natu-
ral map X0 → Coker d−1. Considering cohomology we can see that that
H0(f) ̸= 0, thus f ̸= 0 in Db(Λ). In particular there exists an indecom-
posable direct summand Z of Coker d−1 and a nonzero map induced by f ,
say f ′ : X• → Z[0]. If f ′ is noninvertible we are done. Thus we can reduce
ourselves to the case that X• is isomorphic in Db(Λ) to an indecompos-
able Λ-module Z. If Z is not simple, there exists a simple module S and a
nonzero, noninvertible map Z → S (for example take for S one of the simple
direct summands of Z/radZ and for the map the canonical projection). So
we may suppose Z to be simple. If now Z is not injective there exists an
indecomposable injective I and a nonzero, noninvertible map Z → I (take
for example the injective envelope with the canonical inclusion). So without
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loss of generality we can assume Z to be simple and injective. Now, since Λ
is basic, connected and finite dimensional, by Theorem 1.5.21, we know that
Λ ∼= kQΛ/I, where QΛ is the quiver associated to Λ and I is an admissable
ideal. Thus, since Z is simple, it must be of the form Z = S(a) for some
point a of QΛ. Also, since Z is injective, we have that Ext1Λ(S,Z) = 0 for all
Λ-modules S, which in particular means that there are no arrows starting
from a in QΛ. Now assume that there are also no arrows with target a in
QΛ, so that we have Ext1Λ(Z, S) = 0 for all simple Λ-modules S. Since Λ
is connected by hypothesis, the only possibility left is that QΛ is a quiver
made of only one point, namely a. But in this case we would have that Λ
is semi-simple, which contradicts our hypothesis. Thus there is an arrow
in QΛ going from a to another point, say b. By Theorem 1.5.25 this im-
plies that Ext1Λ(Z, S(b)) ̸= 0, where S(b) is the simple module associated
with the point b. But then we also have that HomDb(Λ)(Z, S(b)[1]) ̸= 0.
Clearly all maps in HomDb(Λ)(Z, S(b)[1]) are noninvertible, since by Lemma
1.4.14 HomDb(Λ)(S(b)[1], Z)

∼= HomDb(Λ)(S(b), Z[−1]) = 0 so it would not
be possible to have a nonzero inverse.

Corollary 2.2.4. Let Λ be a connected finite dimensional algebra which is
not semi-simple. Then any path in Db(Λ) can be refined to a strong path in
Db(Λ).

Proof. This follows immediately from Lemmas 2.2.2 and 2.2.3.

The following lemma is central to proving the main result of this section.

Lemma 2.2.5. Let X0, X1, X2, X3 be a strong path in C. Then there exists
0 ≤ t ≤ 1, an indecomposable object Y ∈ C and a strong path X0[t] → Y →
X3.

Proof. Given X0 and X3 we may choose a strong path from X0 to X3 of
minimal length. If this minimal length is less than three, there is an inde-
composable object Y ∈ C and a strong path X0 → Y → X3 and we are done.
So we may assume the minimal length for such a strong path to be three.
We will show that in this case there is an indecomposable object Y ∈ C and
a strong path X0[1] → Y → X3. To do this we choose among the strong
paths of minimal length a strong path ω

X0 X1 X2 X3
f g h

such that dimkKer g∗ is minimal, where g∗ : HomC(X2, X1[1])→ HomC(X1, X1[1])
is the map induced by g. Notice in particular that g (as well as f and h)
cannot be an isomorphism. Indeed if g were an isomorphism, we would
have a nonzero morphism gf : X0 → X2 and thus a path of length two,
which would contradict the minimality of ω’s length. Similar arguments
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show that we can suppose that also f and h are not isomorphisms. In par-
ticular "ω"’s minimality implies that HomC(X0, X2) = 0 = HomC(X1, X3),
since if any of them were nonzero we would already be able to have a strong
path X0 → X2 → X3 (or X0 → X1 → X3) of length two.

Consider now the following triangle in C

Cg[−1] X1 X2 Cg
g

obtained by rotating the distinguished triangle induced by g. Applying
HomC(X0,−) and HomC(−, X3) to the triangle above we obtain the two
following exact sequences

HomC(X0, Cg[−1])→ HomC(X0, X1)→ HomC(X0, X2) = 0

HomC(Cg, X3)→ HomC(X2, X3)→ HomC(X1, X3) = 0

These sequences show that HomC(X0, Cg[−1]) ̸= 0 and HomC(Cg, X3) ̸= 0,
since HomC(X0, X1) ̸= 0 ̸= HomC(X2, X3) by the assumption that we
have a path X0 → X1 → X2 → X3. Note that we can also assume
HomC(X1[1], X3) = 0, since otherwise we would have a strong path X0[1]→
X1[1]→ X3.

At this point notice that if Cg is indecomposable we are done. Indeed
given that we already showed that HomC(X0, Cg[−1]) ̸= 0 and HomC(Cg, X3) ̸=
0, if Cg is really indecomposable we would have a strong path X0[1]→ Cg →
X3. Thus the rest of the proof will be focused on showing that Cg is indeed
indecomposable.

Assume to the contrary that Cg is not indecomposable, so that we have
Cg =

⊕r
i=1Ci with Ci indecomposable and r > 1. We already know

that HomC(Cg, X3) ̸= 0. Thus there is an indecomposable direct sum-
mand Ci of Cg such that HomC(Ci, X3) ̸= 0. Note that we can also as-
sume HomC(X0, Ci[−1]) = 0 since otherwise we would have a strong path
X0[1]→ Ci → X3.

The canonical split mono εi : Ci → Cg induces the following map of
triangles:

X1 Y Ci X1[1]

X1 X2 Cg X1[1]

α β

φ

vi

εi

g u v

Note that Y is defined by the property that Y [1] is the cone of vi and that φ
exists since C is a triangulated category and as such (TR3) holds. Now if we
apply HomC(−, X3) to the upper triangle we can see that HomC(Y,X3) ̸= 0
since we already know that HomC(X1[1], X3) = 0 and HomC(Ci, X3) ̸=
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0. If we apply HomC(X0,−) to the same triangle instead, we get that
HomC(X0, Y ) ̸= 0 since we know that HomC(X0, Ci[−1]) = 0 and HomC(X0, X1) ̸=
0. If Y is indecomposable we get a strong path X0 → Y → X3, in contrast
with the minimality of ω. Thus we can safely assume Y =

⊕t
j=1 Yj with Yj

indecomposable and t > 1. Since HomC(Y,X3) ̸= 0 there must be j such
that HomC(Yj , X3) ̸= 0. Recall now that g is not invertible and necessarily
nonzero. Thus we can use Lemma 2.1.7 ii) to see that vi, and thus vi[−1], is
nonzero and not invertible. This means that we can again apply Lemma 2.1.7
ii) to the rotated triangle to infer that βj = βεj is nonzero and noninvertible.
In particular this means that we have a strong path X0 → X1 → Yj → X3

which is of minimal length by assumption.
Let us now apply the functor HomC(−, X1[1]) to the commutative dia-

gram of triangles from above. This yields the following commutative diagram
of exact sequences of vector spaces:

HomC(Cg, X1[1]) HomC(X2, X1[1]) HomC(X1, X1[1])

HomC(Ci, X1[1]) HomC(Y,X1[1]) HomC(X1, X1[1])

u∗

ε∗i

g∗

φ∗

β∗
α∗

Since εi is a split monomorphism and HomC(−, X1[1]) is a contravariant
functor we infer that ε∗i is a split epimorphism. Thus the above diagram
gives us a surjective map Ker g∗ → Kerα∗, namely the restriction of φ∗ to
the image of u∗, which implies dimKer g∗ ≥ dimKerα∗.

The canonical split epimorphism πj : Y → Yj induces the following map
of triangles:

X1 Y Ci X1[1]

X1 Yj Cαj X1[1]

α β

πj

vi

αj

Applying HomC(−, X1[1]) to this commutative diagram of triangles yields
the following commutative diagram of exact sequences of vector spaces:

0 Kerα∗
j HomC(Yj , X1[1]) HomC(X1, X1[1])

0 Kerα∗ HomC(Y,X1[1]) HomC(X1, X1[1])

ψ

α∗
j

π∗
j

α
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where ψ denotes the induced map. Since πj is a split epimorphism and
HomC(−, X1[1]) is contravariant, we obtain that π∗j is a split monomor-
phism. Thus ψ has to be a monomorphism as well. In particular we obtain
that dimKer g∗ ≥ dimKerα∗ ≥ dimKerα∗

j . By minimality of dimKer g∗

we can infer that these inequalities are actually equalities, so in particular
dimKer g∗ = dimKerα∗ = dimKerα∗

j and we can infer that the surjection
Ker g∗ → Kerα∗ is actually an isomorphism. Now from the diagram where
φ∗ was involved we get the following commutative square:

Kerα∗ HomC(Y,X1[1])

Ker g∗ HomC(X2, X1[1])

∼= φ∗

where the left arrow is the inverse of the aforementioned isomorphism Ker g∗ →
Kerα∗. In particular if φ∗(f) = 0 for some f ∈ HomC(X2, X1[1]) we have
that g∗(f) = α∗(φ∗f) = 0, so f ∈ Ker g∗. Thus we can find a unique el-
ement f ′ in Kerα∗ sent to f by our isomorphism. But since the square is
commutative and Kerα∗ → HomC(Y,X1[1]) is injective we have necessarily
f ′ = 0, thus φ∗ is injective.

Finally let s ̸= i. By Lemma 2.1.7 iii) we know that vsus ̸= 0. Thus
φ∗(vsus) ̸= 0. But we also have φ∗(vsus) = vsusφ = vsπsuφ = vsπsεiβ = 0
since πsεi = 0 for s ̸= i. So we obtained a contradiction, which shows that
Cg is indecomposable, as wanted, and we can conclude our proof.

Theorem 2.2.6. Let X0, . . . , Xs be a strong path in C. Then there exists
0 ≤ t ≤ s − 2, an indecomposable object Y ∈ C and a strong path X0[t] →
Y → Xs.

Proof. This follows by a repeated application of Lemma 2.2.5.

The next corollary shows how this result is useful for hereditary algebras.

Corollary 2.2.7. Let Λ be a finite dimensional connected hereditary algebra
which is not semi-simple. Let X,Y be indecomposable Λ-modules. Then
there exists 0 ≤ m ≤ 2, an indecomposable object Z ∈ Db(Λ) and a strong
path X[0]→ Z → Y [m].

Proof. First, we want to show that since Λ is a connected algebra, then there
is a path from X to Y [n] for some n ∈ Z. Indeed, assume there is no such
path. Then we can find a path-closed class in Db(Λ) such that X is in it and
Y is not. Thus we have a nontrivial partition of IndDb(Λ) when taking the
path-closed class U containing X and its complement. From Lemma 2.2.1 we
have that Db(Λ) can be written as a product of triangulated subcategories



86 CHAPTER 2. MAIN RESULT

D1 × D2. In particular, from this decomposition we have ΛΛ = (Λ1,Λ2).
Thus we have that

Λ ∼= EndmodΛ(Λ) = EndDb(Λ)(Λ)
∼= EndD1×D2(Λ1,Λ2)

In particular, in EndD1×D2(Λ1,Λ2) we have the central idempotents (idΛ1 , 0)
and (0, idΛ2), so Λ ∼= EndD1×D2(Λ1,Λ2) is not connected, which would be a
contradiction. Thus we showed that if we have a connected algebra Λ, its
derived category is a block.

Furthermore, since Λ is not semi-simple, we may assume by Corollary
2.2.4 that we have in fact a strong path from X[0] to Y [n]. By Theorem
2.2.6, there is t ≥ 0, an indecomposable object Z ∈ Db(Λ) and a strong path
X[t]→ Z → Y [n], which clearly would give us a strong path X → Z[−t]→
Y [n − t] after shifting. Notice that since Λ is hereditary, by Lemma 2.1.2,
since Z is indecomposable there is an indecomposable module Z ′, such that
Z = Z ′[i] for some i ∈ Z. Thus, by having our path X → Z ′[i−t]→ Y [n−t]
we know that HomDb(Λ)(X,Z

′[i− t]) ̸= 0 and HomDb(Λ)(Z
′[i− t], Y [n− t]) ̸=

0. Hence we have 0 ≤ i− t ≤ 1 and more importantly 0 ≤ n− t ≤ 2.

2.3 Piecewise hereditary algebras

In this section we are going to prove the main result of this chapter, i.e. that
a finite dimensional algebra Λ over a field k is piecewise hereditary if and
only if its strong global dimension is finite.

If Λ is piecewise hereditary, there exists a hereditary, abelian category H
and a triangle equivalence F : Db(Λ) → Db(H). We denote by Ui the class
of indecomposable Λ-modules X such that F (X) ∈ H[i]. Clearly, by Lemma
2.1.2, every indecomposable object belongs to some Ui.

The following two results are by [4].

Lemma 2.3.1. Let X ∈ Ui and Y ∈ Uj. Then HomΛ(X,Y ) ̸= 0 implies
0 ≤ j − i ≤ 1 and ExtrΛ(X,Y ) ̸= 0 implies 0 ≤ r + j − i ≤ 1.

Proof. Since X ∈ Ui and H is hereditary, we have necessarily that F (X) =
X ′[i] for some indecomposable object X ′ ∈ ObH. Similarly F (Y ) = Y ′[j]
for some indecomposable object Y ′. Then we have that

HomΛ(X,Y ) = HomDb(Λ)(X,Y ) ∼= HomDb(H)(X
′[i], Y ′[j]) = Extj−iH (X ′, Y ′)

which is nonzero if and only if 0 ≤ j − i ≤ 1. Note that the first equality
comes from the fact that the canonical inclusion modΛ → Db(Λ) is fully
faithful.

Similarly we have

ExtrΛ(X,Y ) = HomDb(Λ)(X,Y [r])

∼= HomDb(H)(X
′[i], Y ′[j + r]) = Extj+r−iH (X ′, Y ′)
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which again is nonzero if and only if 0 ≤ j + r − i ≤ 1.

Lemma 2.3.2. Each non-empty Ui contains simple Λ-modules.

Proof. Let X ∈ Ui be of minimal dimension and suppose that X is not
simple. Then there exists a non-split short exact sequence 0 → S → X →
X/S → 0, where S is a simple Λ-module. Indeed, if such sequence were
to be split, it would imply that X would not be indecomposable, which
would be a contradiction since X ∈ Ui. By the previous Lemma, we have
either S ∈ Ui−1 or S ∈ Ui, thus we can assume S ∈ Ui−1. Let X ′ be an
indecomposable summand of X/S such that Ext1Λ(X

′, S) ̸= 0. Notice that
such summand exists, since the sequence from above constitutes a nonzero
degree 1 Yoneda extension of X/S by S. Again, since X is of minimal
dimension in Ui, we infer X ′ ∈ Ui+1. But then by the previous Lemma we
must have 0 ≤ 1 + (i− 1)− (i+ 1) ≤ 1, which is a contradiction.

Since in the algebras that we are interested in have finitely many simple
modules, this last result assures us that we may assume that the trian-
gle equivalence F is normalized in the sense that there exists r ≥ 0 such
that for an indecomposable Λ-module X we have F (X) ∈

⋃r
i=0H[i] and

that there exist indecomposable Λ-modules X,Y such that F (X) ∈ H[0]
and F (Y ) ∈ H[r]. Note that such normalized equivalences are not unique
and that the value of r may depend on the choice of H. Moreover, by the
Lemma above, for each 0 ≤ i ≤ r we have a simple Λ-module Si, such that
F (Si) ∈ H[i]. Thus, if we denote by n the cardinality of the set of all iso-
morphism classes of simple Λ-modules, we have r + 1 ≤ n.

We are now ready to show the first part of our central result.

Proposition 2.3.3. Let Λ be a finite dimensional piecewise hereditary alge-
bra. Then s. gl. dimΛ ≤ #{isomorphism classes of simple Λ-modules} + 1.
In particular we have that s. gl. dimΛ <∞.

Proof. Let F : Db(Λ) → Db(H) be a normalized equivalence. Let P • =
(P i, di) ∈ Kb(ΛP) be indecomposable with length ℓ(P •) = t. By applying
the shift functor in Kb(ΛP) if necessary, we may assume that P 0 ̸= 0 and
P i = 0 for i > 0. As a consequence we also may assume that P i = 0 for
i < −t and P−t ̸= 0. Since by our assumptions P • has no indecomposable
projective direct summands in Cb(ΛP), we have that HomKb(ΛP)(P

0, P •) ̸=
0 ̸= HomKb(ΛP)(P

•, P−t[t]) by Lemma 2.1.6 b). Now, since F is normalized,
we have that F (P−t[t]) ∈

⋃r+t
i=t H[i] and F (P 0) ∈

⋃r
i=0H[i]. Also, since P •

is indecomposable, there is s ∈ Z such that F (P •) ∈ H[s].
Now consider two indecomposable objects X and Y in Db(H) with

HomDb(H)(F (P
•), X) ̸= 0 ̸= HomDb(H)(Y, F (P

•))
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We can assume that X ∈ H[iX ] and Y ∈ H[iY ] for some iX , iY ∈ Z. There-
fore, since H is hereditary we have that iX ∈ {s, s+ 1} and iY ∈ {s− 1, s}.
Indeed for a hereditary category H and objects X,Y ∈ H we have nonzero
morphisms X[i] → Y [j] only if 0 ≤ j − i ≤ 1 since HomDb(H)(X[i], Y [j]) =

Extj−iH (X,Y ) which is zero for j − i /∈ {0, 1}. In particular, by Lemma 2.1.6
b) we have

HomKb(ΛP)(P
•, P−t[t]) ̸= 0 ̸= HomKb(ΛP)(P

0, P •)

thus we infer that

HomDb(H)(F (P
0), F (P •)) ̸= 0 ̸= HomDb(H)(F (P

•), F (P−t[t]))

Since F (P 0) ∈
⋃r
i=0H[i], we have that 0 ≤ s ≤ r+1. Similarly, F (P−t[t]) ∈⋃r+t

i=t H[i] implies that t− 1 ≤ s ≤ r+ t. By combining these inequalities we
conclude that t − 1 ≤ s ≤ r + 1 which yields t ≤ r + 2. This concludes the
proof since it shows that the length of an indecomposable complex in Kb(ΛP)
is less or equal to the number of isomorphism classes of simple Λ-modules
plus one, so in particular is finite.

To show the reverse implication we first need to take a step back and
prove that every complex bounded from above in D−(Λ) is quasiisomorphic
to a complex in K−(ΛP). To do so we will give a generalization of the
concept of projective resolution and then show that every complex admits
a projective resolution in this new setup. This is a well-known result. We
follow [2] to explain it.

Definition 2.3.1. Let X be a bounded from above complex. A projective
resolution of X is a complex P ∈ K−(ΛP) together with a quasiisomorphism
P → X.

Definition 2.3.2. Let X be a complex. A Cartan-Eilenberg (projective)
resolution of X is a complex of complexes P •,• = · · · → P−2,• → P−1,• →
P 0,• together with a map of complexes P 0,• → X such that

i) if Xq = 0, then P •,q = 0

ii) for every q, the sequences

· · · → Bq(P−2,•)→ Bq(P−1,•)→ Bq(P 0,•)→ Bq(X)

· · · → Hq(P−2,•)→ Hq(P−1,•)→ Hq(P 0,•)→ Hq(X)

· · · → Zq(P−2,•)→ Zq(P−1,•)→ Zq(P 0,•)→ Zq(X)

· · · → P−2,q → P−1,q → P 0,q → Xq

are projective resolutions.
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Proposition 2.3.4. Every complex X in K(Λ) has a Cartan-Eilenberg res-
olution.

Proof. For every q ∈ Z, fix projective resolutions of Bq(X) and Hq(X). By
the horseshoe lemma, there is a projective resolution of Zq(X) fitting in a
commutative diagram with exact rows

...
...

...

0 P−1,q
B P−1,q

Z P−1,q
H 0

0 P 0,q
B P 0,q

Z P 0,q
H 0

0 Bq(X) Zq(X) Hq(X) 0

Similarly, since for every q ∈ Z Xq ∼= Ker dq ⊕ Im dq, we get a projective
resolution of Xq fitting in a commutative diagram

...
...

...

0 P−1,q
Z P−1,q P−1,q+1

B 0

0 P 0,q
Z P 0,q P 0,q+1

B 0

0 Zq(X) Xq Bq+1(X) 0

From this construction we obtain maps P •,q → P •,q+1
B → P •,q+1

Z → P •,q+1

which we will call dqh. These maps will be the horizontal differentials for our
double complex P •,• which we claim to be a Cartan-Eilenberg resolution.
Clearly dh ◦ dh = 0 since we are composing two consecutive maps in an
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exact sequence. Also clearly · · · → P−2,q → P−1,q → P 0,q → Xq is a
projective resolution for every q. We will just show that · · · → Zq(P−2,•)→
Zq(P−1,•) → Zq(P 0,•) → Zq(X) is a projective resolution for every q. The
cases for Bq(X) and Hq(X) are analogous. Indeed, for every q, Zq(P i,•) is
the kernel of dqh and thus is isomorphic to PZ(i, q). Indeed since we have
exact rows in the diagrams above, we have that dqh is the composition of two
monomorphism after an epimorphism. Hence the kernel of dqh is isomorphic
to the kernel of the epimorphism, which by the exactness of the rows is
isomorphic to PZ(i, q). Clearly · · · → P−1,q

Z → P 0,q
Z → Zq(X) is a projective

resolution of Zq(X).

Definition 2.3.3. Let P •,• be a complex of complexes with differentials dvert
and dhor. We define its total complex Tot(P ) to be the complex defined by

Tot(P )n =
⊕
k+l=n

P k,l

and whose differential is given by the linear combination

dTot = dvert + (−1)verticaldegreedhor

We give the following technical result without a proof. For more details,
we refer to [11].

Lemma 2.3.5. The total complex of a third quadrant double complex whose
columns are acyclic is also acyclic.

Notice that by third quadrant double complex we mean a double complex
P •,• such that P i,j = 0 whenever i or j are positive.

Proposition 2.3.6. For every bounded above complex X ∈ K−(Λ) there is
a triangle

P → X → A→ P [1]

in K(Λ) such that P ∈ K−(ΛP) and A is an acyclic complex. In particu-
lar, the long exact sequence of cohomology of this triangle tells us that the
morphism P → X is a quasiisomorphism, i.e. P is a projective resolution of
X.

Proof. Let X be a bounded above complex. After applying the shift func-
tor if necessary we can suppose that Xn = 0 for n > 0. Let P •,• be a
Cartan-Eilenberg resolution of X. By our hypothesis about X this is a third
quadrant double complex, hence we can consider the total complex P of P •,•

and the total complex A of the augmented double complex P •,• → X, shown
in the next diagram.
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...
...

...

· · · P−2,−2 P−2,−1 P−2,0

· · · P−1,−2 P−1,−1 P−1,0

· · · P 0,−2 P 0,−1 P 0,0

· · · X−2 X−1 X0

The augmentation map induces a map P → X and calculating the mapping
cone of this morphism one can see that it is exactly A. Thus we have a
triangle P → X → A → P [1] in K(Λ). A is acyclic by 2.3.5. Also P (resp.
A) is a bounded above complex because, since P •,• (resp. P •,• → X) is a
third quadrant double complex, Pn = 0 (resp. An = 0). Furthermore, every
component of P is a sum of projectives and hence it is projective itself, as
wanted.

Proposition 2.3.7. Let P ∈ K−(ΛP) be a bounded above complex of pro-
jectives. Then HomK(Λ)(P,A) = 0 for every acyclic complex A.

Proof. Let f : P → A be a morphism of complexes. Without loss of gener-
ality we can suppose Pn = 0 for n > 0. We want to construct a homotopy
h such that f = dAh + hdP and we are going to do so inductively. Indeed
for n > 0 we can consider hn : Pn → An−1 to be the zero morphism. Now
suppose that we have hn+1. We define hn in the following way

Pn Pn+1

Ker(dnA)

An−1 An An+1

fn−hn+1dnP

dnP

φ

hn

dnA

where φ exists by the universal property of kernels, since

dnA(f
n − hn+1dnP ) = dnAf

n − dnAhn+1dnP =

= dnAf
n − (fn+1 − hn+2dn+1

P )dnP = dnAf
n − fn+1dnP = 0
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and hn exists by the projectivity of Pn.

Proposition 2.3.8. Let P ∈ K−(ΛP) be a bounded above complex of pro-
jectives. Then for every complex X, the canonical map HomK(Λ)(P,X) =
HomD(Λ)(P,X) is an isomorphism. In particular this tells us that the canon-
ical inclusion functor K−(ΛP)→ D−(Λ) is fully faithful.

Proof. First we need to notice that if s : X → Y is a quasiisomorphism,
the canonical map HomK(Λ)(P,X)→ HomK(Λ)(P, Y ) is bijective. Indeed to
show this we just need to consider the triangle X → Y → cone(s) → X[1]
and apply HomK(Λ)(P,−) to it. Then our claim follows from Proposition
2.3.7, since cone(s) is acyclic. We now prove the bijectivity of the map
HomK(Λ)(P,X) = HomD(Λ)(P,X).

Surjectivity. Consider a morphism φ : P → X in D(Λ) represented by a
right roof P f−→ Y

t←− X, where t is a quasiisomorphism. Then the following
diagram shows that φ can be represented by a morphism g : P → X in K(Λ)
whose existence comes from the surjectivity of the map HomK(Λ)(P,X) →
HomK(Λ)(P, Y ).

Y

P Y X

X

idY
f

∃g

t

idX
t

Injectivity. If f, g : P → X in K(Λ) represent the same map in D(Λ),
we have a diagram

X

P Y X

X

h
f

g

id

id
h

Since h is a quasiisomorphism, from the injectivity of the map HomK(Λ)(P,X)→
HomK(Λ)(P, Y ) follows f = g.

Theorem 2.3.9. Let Λ be a finite dimensional algebra. Then gl. dimΛ is fi-
nite if and only if the canonical inclusion Kb(ΛP)→ Db(Λ) is an equivalence
of categories.
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Proof. By the proof of Proposition 2.3.8 the inclusion is fully faithful. Indeed
if Y is not bounded we can just apply a suitable truncation functor. Hence we
just need to show that gl. dimΛ is finite if an only if the canonical inclusion
is essentially surjective.t

Suppose gl. dimΛ <∞. Consider an object X ∈ Db(Λ). By Proposition
2.3.6 we can construct a bounded above complex of projectives P which is
quasiisomorphic to X. But then P is bounded also below by its construction
as a total complex, since X is bounded and all the Xn have a finite projective
resolution, by our hypothesis that gl. dimΛ <∞.

Conversely suppose that gl. dimΛ is infinite. Then, since Λ is a finite
dimensional algebra, by Theorem 2.1.5 there is a simple module S of infinite
projective dimension. But then S, viewed as an object in Db(Λ), cannot be
quasiisomorphic to a complex in Kb(ΛP) because it would make for a finite
projective resolution.

This last theorem in particular shows us that for any finite dimensional
algebra Λ we have gl. dimΛ ≤ s. gl. dimΛ. Indeed, for any indecomposable
module X ∈ modΛ viewed as an object in D−(Λ), we have that its projec-
tive resolution is indecomposable in K−(ΛP) by the equivalence of categories
seen above and because the canonical inclusion modΛ→. Thus, for any in-
decomposable Λ-module X we have that proj. dimX ≤ s. gl. dimΛ and the
inequality holds also when we pass to the sup over all indecomposable Λ-
modules. Moreover, if X =

⊕
Xi for some indecomposable Xi, we have

that a projective resolution of X is given by the direct sum of the projective
resolutions its components Xi. Hence our claim holds.

We need one last result from [3] in order to prove our main claim. We
also need to introduce the following notation: if X is an indecomposable
object in a triangulated category C, we denote by [X →] the class of all
indecomposable objects U in C with a path from X to U . Then [X →] is
closed under the under the translation functor [1]. The complement of [X →]
in Ind C is closed under [−1].

Theorem 2.3.10. Let D be a triangulated category which is a block. Then
the following are equivalent:

i) The triangulated category D is equivalent to the derived category of an
hereditary category.

ii) If X is an indecomposable object in D, then there is no path from X[1]
to X.

iii) There is an indecomposable object X in D with no path from X[1] to
X.
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Notice in particular that if we have a connected algebra Λ, its derived
category Db(Λ) is a block, as we saw in the proof of Corollary 2.2.7, so this
theorem works for this case, which is what we are really interested in.

Proof. "i)⇒ ii)" is easy. Indeed since X is indecomposable in D, by Lemma
2.1.2, it is of the form X = A[n] for some indecomposable object A and
n ∈ Z. But then, since we cannot have nonzero morphism A[n]→ B[n− 1]
for an indecomposable object B, we can deduce by induction on the length
of paths that [X →] ⊆

⋃
i≥nD[i]. In particular we have that X[−1] does not

belong to [X →].

"ii)⇒ iii)" is trivial.

It remains to show "iii) ⇒ i)". For this we write U = [X →] and
V = IndDb(Λ)\U . We set A to be the smallest additive category containing
U∩V [1] and which is closed under isomorphisms. We writeA = add(U∩V [1]).
Our goal is to prove that A satisfies the conditions in Theorem 2.1.3 ii), so
that we prove our claim.

The first step is showing that if we have A ∈ A and a nonzero morphism
u : A → B, then B /∈ U [2]. Assume on the contrary that B ∈ U [2] (so in
particular B /∈ U [i] for i ≥ 2, since for n ≥ 0 we have that U [n+ 1] ⊆ U [n]).
In this case we have a path from X[1] to B[−1]. By the facts that A /∈ U [1]
and that U [2] ⊆ U [1], we infer that u is not an isomorphism, else we would
have A ∈ U [2], contarily to what we just discussed. Then, by a dual version
of Lemma 2.1.7 ii), we would get a path of length two from B[−1] to A.
This in turn would mean that we would have a path from X[1] to A, which
means that A ∈ U [1], a contradiction.

From this, we infer that in the above case, B lies in A or in A[1]. Indeed
if B ∈ U , then B ∈ A. Otherwise, we have B ∈ U [1]. By what we just
showed we also have B ∈ V [2], so B ∈ A[1]. Indeed, if B /∈ V [2], it means
that we do have a path from X → B[−2], meaning that B ∈ U [2], contra-
dicting what we just proved.

Now we need to show that D = add(
⋃
n∈ZA[n]). We claim that each

indecomposable object Y ∈ D is of the form B[m] for some B ∈ A and
m ∈ Z. We start by observing that X ∈ A by assumption. Assume first
that Y ∈ U = [X →]. Then there is a path X = X0, X1, . . . , Xt = Y .
By induction on the length of paths, we may assume that Xt−1 = A[n] for
A ∈ A and some n ∈ Z. If Y = Xt−1[1], then Y = A[n + 1] ∈ A[n + 1]
and we are done. If instead HomD(Xt−1, Y ) ̸= 0, we have equivalently that
HomD(A, Y [−n]) ̸= 0, so we infer by the previous step that Y [−n] lies in A
or in A[1]. This proves the statement in this case.

For the general case, we already saw in the proof of Corollary 2.2.7, that
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in the case of Λ-modules (which is the case we are mostly interested in),
given X, we always have an nY ∈ N and a path in Db(Λ) from X to Y [nY ]
for any other Λ-module Y . In [3], one can find a more general proof of this
for arbitrary triangulated categories which are blocks. In particular, in our
case we have that Y [nY ] ∈ [X →]. By applying the above argument to
Y [nY ], we proved our claim.

In order to complete our proof, we still need to check that

HomD(A,A[m]) = 0

for m < 0. We assume the contrary. Then let us take two indecomposable
objects A,B ∈ A with HomD(A,B[m]) ̸= 0. Then B[m] lies in U . On the
other hand, B[m] lies in V[m+ 1]. Since m+ 1 ≤ 0, we have V[m+ 1] ⊆ V
since V is closed under [−1]. We conclude that B[m] ∈ U∩V , a contradiction.
This completes the whole proof.

Now we are finally ready to prove our main result.

Theorem 2.3.11. Let Λ be a finite dimensional algebra. Then Λ is piecewise
hereditary if and only if s. gl. dimΛ <∞.

Proof. If Λ is piecewise hereditary, then s.gl.dimΛ <∞ by Proposition 2.3.3.
Conversely assume that s. gl. dimΛ < ∞. In particular by the consider-

ations above, we have that gl. dim < ∞ as well, so Theorem 2.3.9 tells us
that Db(Λ) ∼= Kb(ΛP). Assume by contradiction that Λ is not piecewise
hereditary. Notice that we may assume that Λ is basic and connected and
Λ ≇ k. Indeed if Λ is not connected then Λ ∼=

⊕t
i=1 Λi for some connected

algebras Λi and some t ∈ N and, since modΛ ∼=
⊕t

i=1modΛi, if the theorem
holds for the connected algebras Λi then it also holds for Λ. Moreover if Λ
is not basic, by Proposition 1.5.10 there is a basic algebra associated with
Λ, say Λb, such that the categories modΛ and modΛb are equivalent, which
would a fortiori imply Db(Λ) ∼= Db(Λb), so in particular Λ and Λb have the
same strong global dimension. Finally, if Λ ∼= k one can easily show that k
is hereditary and thus piecewise hereditary.

Now we can resume the proof with our basic and connected algebra Λ.
By Theorem 2.3.10 and Corollary 2.2.4, since Λ is not piecewise hereditary,
we have that for each indecomposable object X ∈ Kb(ΛP) there exists a
strong path from X[1] to X in Kb(ΛP). Thus, just by shifting this path, we
see that there is also a strong path from X[2] to X[1] and so on. In particular
we can concatenate these paths in order to get a strong path in Kb(ΛP) from
X[n] to X for each n ≥ 0. By Theorem 2.2.6 we can shorten these paths,
meaning that there exists t ≥ 0, an indecomposable object Q•

n,t ∈ Kb(ΛP)
and a strong path

X[n+ t]→ Q•
n,t → X
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If we take X = P [0] for an indecomposable projective Λ-module P , by using
the considerations above, for each n ≥ 1 we obtain an integer t ≥ 0 and an
indecomposable object Q•

n,t ∈ Kb(ΛP), with Homb
K(ΛP)(P [n+ t], Q•

n,t) ̸= 0

and Homb
K(ΛP)(Q•

n,t, P ) ̸= 0. In particular, by Lemma 2.1.6 a) we have
that Q−(n+t)

n,t ̸= 0 ̸= Q0
n,t. Hence ℓ(Q•

n,t) ≥ n+ t. Thus we have constructed
indecomposable complexes of arbitrary length in Kb(ΛP), which contradicts
the hypothesis that Λ has finite strong global dimension. Thus Λ is indeed
piecewise hereditary.

2.4 Examples

We are now going to finish this thesis by presenting some meaningful exam-
ples, in which we will use some notions discussed before.

Example 2.4.1. The first example is given by hereditary algebras. In par-
ticular, given an hereditary algebra H, the category modH is also hereditary.
Indeed, since every H-module has a projective resolution of length at most
1, the functor Exti(−,−) vanishes for i > 1. In particular, hereditary alge-
bras are also piecewise hereditary, as one would expect. Furthermore, for a
hereditary algebra H we have s. gl. dimH ≤ 1. To show this, consider an
indecomposable object P in Kb(HP). Since gl. dimH ≤ 1, it will give rise
to an indecomposable object P ′ in Db(H) under the equivalence discussed
in Theorem 2.3.9. Then, by Lemma 2.1.2, there is an indecomposable H-
module X such that P ′ ∼= X[i], for some i ∈ Z. But, again by 2.3.9, this
means that P is just the projective resolution of X shifted i times. Again,
since H is hereditary, this means that ℓ(P ) ≤ 1, so we showed our claim.

Example 2.4.2. For the second example we will consider a quiver algebra
A = kQ/I, where Q is the quiver

1 2

α

β

and I is the ideal generated by the path βα. We will show that gl. dimA = 2,
but s. gl. dimA = ∞, so in particular we infer that the algebra A is not
piecewise hereditary.

First of all, recall that the simple A-modules are S(1) and S(2), given
by the following representations

S(1) : k 0 S(2) : 0 k

Moreover, the indecomposable projectives A-modules are P (1) and P (2),
given by
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P (1) : k2 k

(
1 0

)

0

1


P (2) : k k

0

id

We start by computing the global dimension of A. By Theorem 2.1.5,
we know that gl. dimA = maxi=1,2 pdS(i), where pd denotes the projective
dimension. Some easy computations yield · · · → 0 → P (2) → P (1) →
S(1) as a projective resolution for S(1) and · · · → 0 → P (2) → P (1) →
P (2)→ S(2) as a projective resolution for S(2). In particular, we infer that
gl. dimA = 2.

To show that s. gl. dimA =∞, let Pn be the complex with (Pn)
i = P (1)

for −n ≤ i ≤ 0 and 0 otherwise and with the differentials given by the map
d = β∗α∗ : P (1) → P (1) induced by the path αβ. The following diagram
describes d as a morphism of representations:

k2 k

k2 k

0 0

1 0



(
1 0

)

0

0

1


(
1 0

)
0

1


We clearly can see that d2 = 0, so that the Pn are indeed complexes. We
claim that Pn is indecomposable for every n ∈ N. If this holds, then we
have indecomposable complexes of projective of arbitrary length, so that
s. gl. dimA =∞.

In order to show our claim we want to show that the algebras EndA(Pn)
are local for all n. An endomorphism of Pn consists of n endomorphisms of
P (1) which commute with the differentials, hence we can start by studying
EndA(P (1)). A morphism of representation P (1) → P (1) is given by two

linear maps f1 : k2 → k2 and f2 : k → k such that
(
0
1

)
◦ f2 = f1 ◦

(
0
1

)
and

(
1 0

)
◦ f1 = f2 ◦

(
1 0

)
. If we set f1 =

(
a c
b d

)
and f2 = λ for some

a, b, c, d, λ ∈ k, the previous equations yield
(
c
d

)
=

(
0
λ

)
and (a, c) = (λ, 0)

respectively, thus we have that a = d = λ and c = 0. In particular, any
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endomorphism of P (1) can be described by a matrix of the form
(
λ 0
b λ

)
for some λ, b ∈ k. In order to understand the endomorphism algebra of

Pn, take endomorphisms of P (1), namely fi =

(
λi 0
bi λi

)
for −n ≤ i ≤

0 and impose that they commute with d. This in particular yields that(
0 0
1 0

)
◦fi = fi+1 ◦

(
0 0
1 0

)
, which in turn gives λi = λi+1. In particular we

have EndCb(A)(Pn) = {f = (f1, . . . , fn) : λ1 = λ2 = · · · = λn := λf}, where
fi ∈ EndA(P (1)) are of the form described above and all the operations
are done componentwise. Notice that the f ∈ EndCb(A)(Pn) is the identity
if and only if fi = id for all −n ≤ i ≤ 0. Furthermore, we have that
f ∈ EndCb(A)(Pn) is invertible if and only if all the fi are. One can easily see
that any inverse to such an f is also a morphism of the same form. Consider
then f ∈ EndCb(A)(Pn) with a fixed λf . If λf ̸= 0, then all of the fi are
invertible since their determinant is nonzero. Conversely, if λf = 0, then
clearly 1 − f is invertible since λ1−f = 1 ̸= 0. Hence, by Lemma 1.5.3,
EndCb(A)(Pn) is local for every n ∈ N . This implies that also EndKb(A)(Pn)
is local, since this is just a quotient of the local ring EndCb(A)(Pn). Hence we
have indecomposable complexes of projectives of arbitrary length in Kb(A).
In particular, as claimed, we have s. gl. dimA =∞.

Example 2.4.3. For the last example we need to introduce a new class of
algebras. For this consider the quiver An with n vertices arranged as in the
following diagram

An : 1 2 · · · nα α α

We take into considerations the algebras A(n, 2) := kAn/⟨α2⟩. We know by
[5] that these algebras are piecewise hereditary, so that their strong global
dimension is finite. We computed s. gl. dimA(n, 2) for any n ∈ N. To do so,
we needed the following result by [7], which we will state without a proof.

Proposition 2.4.4. Let A = A(n, 2) for some n.Let P • ∈ Kb(AP) be an
indecomposable complex. Let S be a simple A-module and P (S) its projective
cover. Then there is at most one i such that P (S) is a direct summand of
P i.

This in particular yields immediately the bound s. gl. dimA(n, 2) ≤ n−1.
Indeed, by 1.5.23 we know that for any A(n, 2) we have exactly n iso-
morphism classes of simple A(n, 2)-modules. Our goal now is to find an
indecomposable complex of length n − 1, so that we can conclude that
s. gl. dimA(n, 2) = n− 1. To do this we consider the projective resolution of
the simple module S(1). Some easy computations show that P (n)→ P (n−
1) → · · · → P (2) → P (1) is such a projective resolution. This in particular
implies that the complex P • = · · · → 0 → P (n) → · · · → P (1) → 0 → · · ·
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is indecomposable in Kb(A(n,2)P). Since ℓ(P •) = n − 1, we are done. In
particular we showed that s. gl. dimA(n, 2) = n − 1 = gl. dimA(n, 2), since
this indecomposable complex arises from a projective resolution of a simple
module.
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