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Abstract

In the dynamic realm of Cloud computing, the challenges of research repro-
ducibility and precise performance estimation are paramount. This thesis ad-
dresses two intertwined concerns: the reproducibility problem and the accur-
acy of performance estimation within the Cloud computing environment. The
study’s primary objectives include a comprehensive examination of experiment
reproducibility as outlined in the original SeBS and Faasdom papers. Through
meticulous reproduction, the aim was to assess the feasibility of reproducing
these experiments in the evolving Cloud computing landscape. A comparative
analysis to evaluate the alignment between the findings in the original papers
and the outcomes of the reproduced experiments was conducted. By addressing
these critical challenges, the aspiration is to foster a more reliable and informed
Cloud computing ecosystem, where research findings stand as sturdy pillars
upon which future innovation can flourish. It was discovered that running FaaS
benchmarking tools that lack up-to-date contributions pose several challenges
because they are not well-adjusted to incorporate technological advancements.
Furthermore, the findings suggest that the conclusions presented in the SeBS
and FaaSdom related literature remain relevant.
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Chapter 1

Defining the Challenge

1.1 Adoption of the Cloud

The evolution of technology has brought about a transformative shift in the
way businesses operate and manage their IT resources. Before the advent of
Cloud computing, companies relied on on-premise solutions where servers were
physically located within their offices, and in-house developers were responsible
for managing both hardware and software. However, this approach presented
several challenges and limitations [11].

e Limited capacity of hardware: one of the primary drawbacks of on-
premise solutions was the finite capacity of hardware. This limitation
directly impacted the number of users who could simultaneously connect
to and utilize the server resources. As businesses expanded, they often
found themselves constrained by the scalability limitations of their on-
premise infrastructure.

e Waste of resources in case of over-provisioning: on the other side,
maintaining servers on-premise could lead to over-provisioning. Over-
provisioning occurs when a company keeps servers running even when
they are not fully utilized. This results in wasted resources, including
excessive electricity consumption and unnecessary labour costs associated
with managing and maintaining idle hardware.

e Maintenance of the servers: hosting servers in-house also required cre-
ating a suitable environment for the machines to operate efficiently. This
included addressing issues such as cooling, electricity provisioning, and
ensuring limited access to sensitive equipment. The operational overhead
of maintaining servers in a physical location added complexity and costs
to I'T management.

e Manual software update and licensing: additionally, on-premise solu-
tions demanded the tedious task of managing software licences. Organiza-
tions had to keep track of software licences, often resulting in complexities,
especially when dealing with a myriad of software components. Further-
more, updating software typically required downtime, and ensuring back-
ward compatibility added another layer of complexity to IT operations.

6
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Figure 1.1: Usage of Cloud computing in enterprises in European Union (%
of enterprises with internet access) [1].

Monitoring the support lifecycle, particularly for long-term support (LTS)
software components, became a critical but time-consuming task.

By transitioning to the Cloud, organizations could offload many of the chal-
lenges associated with on-premise solutions [12]. Clouds changed the computing
landscape with the promise of plentiful resources, economy of scale for everyone,
and on-demand availability without up-front or long-term commitment. Repor-
ted costs of running an application in a Cloud are up to seven times lower than
that of a traditional in-house server [13]. Figure 1.1 shows a steady growth of
interest among the enterprises in European Union.

Thus, while organizations are interested in migrating their applications to
the Cloud, they face a need to choose among various options in the market [14].
When organizations embark on the journey of selecting a Cloud provider, several
critical characteristics come into play. Safety, cost, and efficiency stand out as
pivotal factors that influence this decision-making process. Businesses keen on
optimizing their solution development workflow are acutely aware of the need
to assess the financial implications of adopting a particular Cloud service [15].
This evaluation involves comparing the costs associated with Cloud solutions
against those of traditional or existing methods. Moreover, it is paramount
to comprehend the performance limitations of any chosen service, such as ex-
ecution time, memory consumption, and throughput. This understanding not
only aids in optimizing resource utilization but also facilitates the comparison
of performance constraints among a diverse range of Cloud providers.
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1.2 Cost of Migration

Given the demand, there exists a vast amount of literature that compares and
ranks Cloud service providers along with their respective services. From insight-
ful blog posts [16, 17, 18] to comprehensive 70-page annual surveys [19, 20, 21],
there is no shortage of information sources available to assist individuals and
organizations in making informed decisions when selecting a suitable Cloud pro-
vider.

These resources come in two primary categories: qualitative and quantitat-
ive. Qualitative studies delve into various aspects of Cloud providers’ offerings,
such as their support systems, the strength of their user communities, the range
of supported programming languages and runtimes, and more. These qualitative
assessments provide valuable insights into the non-quantifiable factors that can
greatly influence the user experience and overall satisfaction with a particular
Cloud service.

On the other hand, quantitative studies take a more data-driven approach.
They employ benchmarking as a powerful tool to collect numerical data, en-
abling a systematic and objective comparison of Cloud providers. Through
benchmarking, one can evaluate and contrast performance metrics, cost-efficiency,
scalability, and other quantitative attributes. This approach allows users to
make well-informed choices based on empirical evidence rather than mere conjec-
ture. By facilitating transparency, fostering competition, and promoting data-
driven decision-making, systematic benchmarking and evaluation guide users
and providers alike in their adoption and implementation of Cloud solutions.

Vazquez et al. [22] state that benchmarks should accurately depict the spe-
cific workloads that consumers intend to execute. It is essential to recognize
that benchmarks for distinct purposes, such as those designed for social net-
working platforms versus database systems, should be distinct in nature. Even
applications sharing the same computing infrastructure may exhibit varying
demands concerning computing resources, storage, and networking [22]. This
recognition has led to the development of diverse benchmarking tools, catering
to various application domains in the market. Table 1.1 provides an overview
of four prominent benchmark suites, each tailored to specific areas of interest.
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Table 1.1: Prominent Cloud benchmarking

suites and their characteristics.
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Figure 1.2: 7 R’s mental model for migrating applications to the Cloud [2].

1.3 Case Study

Benchmarking can help enterprises at the initial state of exploring Cloud solu-
tions. To illustrate, consider the scenario of Company X, faced with the task of
selecting an optimal Cloud provider.

Company X must first conduct a comprehensive analysis of their existing
on-premise system and devise a migration plan (Figure 1.2). This preparatory
phase enables Company X to gain insights into the architecture of the forthcom-
ing Cloud application, involving workload patterns and data schemas. Armed
with this information, benchmarking Cloud service providers for specific work-
load types becomes a straightforward process. The only missing element is the
right tool that will allow consistent benchmarking. This is when benchmarking
tools prove invaluable.

There exists a wide array of open-source benchmarking tools and suites
designed for Cloud computing services. Notably, all benchmarks presented in
Table 1.1 were initially developed as in-house projects and later were made
open-source.

These tools offer a valuable advantage as they can be customized to align
with the specific requirements of a business while also being cost-effective due
to their open-source nature. For Company X the utilization of readily available
benchmarking suites or versatile benchmark toolkits, such as PerfKit Bench-
marker [27], which provides wrappers and workload definitions around popular
benchmark tools, can prove to be instrumental. This empowers Company X to
thoroughly assess the performance of various Cloud providers without the need
for cumbersome migration of an entire existing application.

However, amidst the benefits, a significant challenge emerges. Many bench-
marking tools, originally celebrated for their adaptability and cost-effectiveness,
often originate from scientific research endeavours [28] which are no longer act-
ively maintained. For instance, as of the time of this writing, both Netperf
and YCSB projects have their last contributions in 2021 [23, 29]. This presents
Company X with a pressing issue, as outdated versions of dependency packages
can hinder the effectiveness of these tools. Furthermore, the reliance on external
APIs introduces an additional layer of complexity, as changes in their interfaces
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over time can lead to installation and usage complications, undermining the
very reproducibility and reliability sought in benchmarking processes.

This leads to a critical question: Is there a more fundamental problem that
needs to be examined, one that goes beyond the immediate challenges related
to reproducibility? This thesis aims to investigate open-source benchmarking
tools, uncovering where reproducibility issues originate, their implications, and
any larger concerns that might be causing these challenges.

1.4 The Problem of Reproducibility

The term ”reproducibility” has sparked considerable debate, with variations
in its interpretation across various fields. In the context of informatics and
data analysis, a reproducible analysis is characterized by its ability to be rerun
by a different researcher, resulting in identical outcomes and conclusions [3].
Reproducibility shares connections with repeatability and replicability, but it is
important to distinguish these terms.

Replicability

new researcher, new data

Reproducibility

new researcher, same data

Repeatability

same researcher, same data

Based off of a figure from Essawy et al, 2020 https://doi.org/10.1016/j.envsoft.2020.104753
Figure 1.3: Reproducibility’s relation to repeatability and replicability [3].

The challenge of reproducibility is a significant and prominent issue within
the scientific community [30, 31, 32, 33]. Scientific research endeavours, ideally,
serve as solid foundations upon which subsequent works can build and expand.
Yet, the stark reality reveals a disconcerting trend where results obtained in
research studies often elude successful reproduction. This lack of reproducibility
stems from a myriad of potential reasons, each presenting a roadblock to the
reliability and longevity of scientific contributions [34]. As research garners
substantial support in the form of grants, cutting-edge equipment, and dedicated
human effort, it paradoxically struggles to yield enduring results that can be
effectively leveraged for the advancement of science.

To expedite and bolster the pace of scientific progress, there is a crucial need
to streamline and enhance the research process, rendering it more dependable
and readily reproducible [35]. Central to this endeavour is the essential notion
that scientific work should be conducted in a manner that inherently facilitates
reproducibility [36]. Thus, there arises a question of what makes an experiment
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reproducible, thereby unveiling the key attributes that researchers can cultivate
to augment the reproducibility of their studies.

Although it presents a global challenge, the problem of reproducibility in
science is not unsolvable. Numerous communities and institutions have act-
ively engaged in addressing this issue by orchestrating initiatives that encour-
age emerging researchers to reproduce the findings of earlier, unverified studies
[37, 38, 39, 40, 41]. This organized effort aims to systematically reproduce sci-
entific experiments, tackling them discipline by discipline and paper by paper.
In addressing this question, the scientific community embarks on a journey to
fortify the very foundations of scientific inquiry, fostering an environment where
research outcomes stand as robust pillars for the edifice of knowledge and in-
novation, poised to accelerate the course of scientific discovery.

1.5 Scope

This master’s thesis addresses benchmarking Function-as-a-Service (FaaS) of-
ferings from three of the most prominent Cloud service providers: Microsoft
Azure, Amazon Web Services (AWS), and Google Cloud (Figure 1.4). The re-
search is conducted with a focus on practicality and affordability, aligning with
the broader reproducibility initiative in Cloud computing.

The primary objective of this study is to evaluate and compare the per-
formance of FaaS services, namely the execution time of the functions, the time
in which a client can get the response from the server, and how well the FaaS
platforms can handle sudden spikes in arriving requests. This evaluation will in-
volve the reproduction of two benchmarking studies: ”FaaSdom: A benchmark
suite for serverless computing” by Maissen et al. [42] and ”SeBS: A serverless
benchmark suite for function-as-a-service computing” by Copik et al. [9]. By
undertaking the reproduction of these studies, the aim is to contribute to the
ongoing efforts to enhance the reliability and applicability of scientific research
in Cloud computing.

The scope of this thesis emphasizes quantitative analysis, which will involve
data collection and statistical analysis.
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Figure 1.4: Worldwide market share of leading Cloud infrastructure service
providers in Q2 2023 [4].

1.6 Research questions

This thesis aims to answer the following critical questions:

e Is it possible to reproduce the results of previous Cloud bench-
marking studies? This question underscores the feasibility and chal-
lenges of reproducing Cloud benchmarking experiments, especially those
lacking recent contributions.

¢ What are the main factors contributing to the reproducibility of
Cloud benchmarking results? Understanding the key factors that in-
fluence reproducibility is essential for devising strategies to improve bench-
marking practices.

1.7 Contributions

e Providing empirical data and insights on the performance of FaaS offerings
from major Cloud providers.

o Offering a practical guide for businesses considering Cloud adoption, aid-
ing in informed decision-making.

e Supporting the broader reproducibility initiative by reproducing and ex-
tending previous benchmarking studies.
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1.8 Limitations

This study has a number of limitations, of which the author is fully aware:

e The focus on specific Cloud providers may not encompass the entire spec-
trum of FaaS offerings.

e The study may not account for all potential variations due to specific use
cases and configurations.

e The assessment omits an examination of the expressivity of benchmarks
and their alignment with business requirements.



Chapter 2

Understanding the
Landscape

2.1 Cloud Computing

Cloud computing facilitates the convenient and on-demand utilization of com-
puting resources like networks, servers, storage, applications, and services via
network connectivity [43]. As illustrated in Figure 2.1, Cloud computing is
typically classified into three primary models based on the degree of user man-
agement involvement: Infrastructure as a Service (TaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). In the context of IaaS, users gain ac-
cess to fundamental infrastructure resources, such as networking, storage, and
virtual machines (VM), without needing to handle hardware management, while
retaining substantial control over the infrastructure. PaaS, in contrast, eases
the operational responsibilities associated with managing the core Cloud infra-
structure. It provides developers with an array of tools and services, allowing
them to concentrate on building tailored environments and applications. At
the other end of the spectrum, SaaS delivers complete software products dir-
ectly to end-users via the internet, eliminating the need for users to manage
any underlying infrastructure. Leading Cloud providers like Amazon Web Ser-
vices (AWS), Microsoft Azure, and Google Cloud offer a comprehensive range
of Cloud services built upon these three model types.

Cloud computing offers organizations and individual developers a significant
advantage by eliminating the need for substantial upfront capital investment
during application deployment, particularly in experimental and early devel-
opment phases. Instead, they gain instant access to a vast pool of computing
resources and services without having to commit to substantial upfront costs.
Users only pay for the resources they have actually consumed, following a pay-as-
you-go model. This not only accelerates time-to-market and fosters innovation
but also leads to cost savings [13].

15
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Figure 2.1: Shared responsibility model defines what customer can control,
and the level of control changes according to the type of the service [5].

2.2 Serverless Computing

2.2.1 Serverless Application

Serverless computing gives developers an opportunity to build and run applica-
tions without having to manage Cloud infrastructure [44]. Although the model
is called ”serverless”, virtual servers are still used as the underlying infrastruc-
ture, but they are abstracted away from app development. In a serverless model,
a Cloud provider handles the routine infrastructure management and mainten-
ance, including operating system updates and patches, security management,
capacity planning, and system monitoring. Meanwhile, developers can focus on
code for deployment [45].

Serverless can be considered a bridge between PaaS and SaaS in a sense that
the developer doesn’t handle server (virtual machine) entirely, as he would do
in PaaS, but unlike in SaaS, the developer still has the ability to manage the
front-end application code and business logic [45].

Additionally, serverless computing offers a ready-made scalability solution,
including the ability to scale down to zero, a task that typically demands ad-
vanced expertise and substantial effort. Serverless Computing follows a ”pay per
use” pricing model where users are billed solely when their applications actively
serve requests or events, aligning more closely with the original vision of Cloud
computing as a utility service [46]. Some examples of serverless services are
FaaS, serverless databases, event streaming and messaging, and API gateways
[47, 48, 49].

With the availability of Function as a Service (FaaS) and other serverless
components offered by Cloud providers, developers have the capability to con-
struct fully-fledged serverless applications. These applications typically employ
FaaS as the computing layer for hosting and executing business logic code, com-
plemented by other fully managed or serverless services for functions like data
storage, messaging, streaming, and user authentication/authorization [50]. Eis-
mann et al. [51] derived several key characteristics of serverless applications
through a comprehensive examination of 89 serverless applications from open-
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Figure 2.2: FaaS is a subset of serverless computing that is focused on event-
driven triggers, where code runs in response to events or requests [6].

source projects, academic literature, industrial documentation, and domain-
specific feedback:

AWS stands as the dominant platform for serverless applications, encom-
passing 80% of all studied applications, with Azure accounting for 10%.
This prevalence can be attributed to AWS being the first major Cloud
provider to introduce serverless computing, with AWS Lambda pioneer-
ing the concept of FaaS [51].

Serverless applications are primarily utilized for brief tasks with low data
volume and sporadic workloads, primarily because providers impose lim-
itations on the duration a function can run per execution. For instance,
AWS Lambda permits execution times of up to 15 minutes per operation,
while Azure Function in the Consumption plan has a timeout limit of only
10 minutes [51].

Cloud storage, Cloud databases, and Cloud messaging services are com-
monly employed within serverless applications.

HTTP triggers and Cloud events are the most frequently employed triggers
in serverless applications. As stated by Microsoft, the HTTP trigger lets
you invoke a function with an HTTP request [52].

Most serverless applications employ a limited number of Cloud functions,
with 82% of them utilizing five or fewer functions [51].

The most popular programming languages for serverless applications are
Python and JavaScript, likely due to interpreted languages such as Py-
thon, Ruby, and JavaScript having significantly shorter cold-start delays
compared to compiled runtimes like Java and .NET. Node.js was the first
language runtime supported by Amazon Lambda, since it has fast startup
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Figure 2.3: Service provision time reduces as the provisioned resource becomes
lighter [7].

times and a low memory footprint suitable for customer-facing functions
that demand low latencies. [53]. Moreover, JavaScript and Python are
both relatively easy to learn and are widely used in other production
areas [54], which in turn expands the customer base for the serverless
platforms. However, C# remains the primary choice for serverless applic-
ations on Azure, primarily because it was the initial and most supported
language offered by Azure [55, 56].

2.2.2 Function as a Service

The predominant form of serverless computing, known as FaaS exemplified by
services like AWS Lambda and Azure Functions, revolves around the concept of
using functions as the fundamental units of computation. These functions ex-
ecute user-written code in response to various triggers, such as events or HT' TP
requests [46]. This approach offers an appealing alternative to implementing
microservices-based architecture, a popular approach for constructing applica-
tions comprising small, self-contained components that can be independently
scaled, with the aim of enhancing development efficiency and scalability. One
of the primary advantages of FaaS over the microservices based architecture is
the reduced provision time, as it is shown in Figure 2.3.

Behind the scenes of serverless functions, Cloud providers dynamically pro-
vision function instances, scaling them as needed [57]. The lifecycle of a function
begins when it receives an event, such as an HT'TP request, which is routed to
an available function instance via a function routing service. In cases where
no function instance is readily available, the resource manager, responsible for
scheduling and overseeing all function instances, must create a new one based on
user-specified configurations. This process involves establishing a new function
instance and initializing it with the required container image and code assets,
leading to what is termed a ”cold start” [42]. Once the function instance is
fully prepared, it can process the invocation request and execute the business
logic contained within the user’s code. In instances where a function instance
is already active, referred to as a ”"warm instance”, this cold start phase can be
bypassed, allowing the event to be processed directly.
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2.3 Performance Benchmarking

2.3.1 Benchmarking Basics

Benchmarking in Computer Science is a systematic and empirical approach util-
ized to assess and compare the performance of various computer systems, tools,
techniques, and more. Typically, a benchmark centres around a System Under
Test (SUT), comprising components essential for executing a benchmark scen-
ario [58]. This SUT also encompasses the complete application architecture,
including the components of interest. Essential elements of a benchmark en-
compass a clearly defined rationale for the comparison, representative tasks or
workloads, and the types of measurements, whether quantitative or qualitative.

The key considerations for constructing a benchmark are elucidated as fol-
lows. Effective benchmarking necessitates striking a balance among these char-
acteristics and criteria:

1. Relevance: The degree to which the benchmark and its results are per-
tinent and applicable to a particular domain and relevant stakeholders. For
those utilizing the benchmark results, relevance must also account for the spe-
cific context and use cases. Scalability poses a significant challenge to relevance,
as benchmarks are expected to run on a broader system and simulate real ap-
plication behaviours. Enhancing benchmark relevance in a specific domain often
involves narrowing its applicability.

2. Reproducibility: Given the same underlying hardware infrastructure
and system configuration, the benchmark should consistently yield similar res-
ults. Achieving absolute reproducibility can be challenging due to the variability
in modern software systems. In practice, reproducibility can be enhanced by
running the benchmark for a sufficient duration and/or in different sandboxes to
encompass representative samples of variable behaviours. This may also entail
conducting multiple runs to enhance consistency.

3. Verifiability: Other researchers and interested parties should be able to
use the benchmark to verify its results and establish trustworthiness. A cru-
cial approach to enhancing verifiability involves providing comprehensive details
about the benchmark and the data used.

4. Fairness: Ensuring that systems can be compared based on their metrics
without artificial constraints. Improving fairness typically involves designing
benchmarks based on consensus among a panel of experts rather than individual
parties and considering how the results will be utilized.

2.3.2 Serverless Benchmarking

Among the various Cloud computing paradigms, FaaS has emerged as a par-
ticularly intriguing area of research and development. The attention from
the researcher’s community produced a number of papers that came up with
benchmarks to compare different providers and services in order to establish
which provider has the lowest latency, the lowest cost and highest throughput
[42, 9, 59, 60].

In the realm of serverless computing, there are generally two main categories
of benchmarks: micro-benchmarks and application benchmarks [61]. Depending
on the chosen benchmark type, serverless benchmarking can be classified into
two distinct approaches: micro-benchmarking and application benchmarking.
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Micro-benchmarking focuses on assessing specific aspects of serverless func-
tions by using individual functions for evaluation. This involves evaluating
factors such as CPU and memory performance, disk I/O performance, and
network performance using a single function. For instance, an AWS Lambda
function can be designed to handle a specific function where it receives para-
meters from its triggering events and then conducts floating-point operations to
measure the latency of CPU-intensive computations [61]. Another example of
micro-benchmarking, as seen in FunctionBench [59], employs a single function
coupled with Cloud storage to measure network performance by downloading
and uploading objects.

Conversely, application benchmarking entails the use of applications com-
posed of multiple serverless components and typically measures the overall
response time from start to finish. As an illustration, BeFaaS utilizes an e-
commerce benchmark that encompasses 17 functions and relies on a Redis in-
stance as an external service for state persistence [60]. Another example of
an application benchmark might involve an Image Processing application that
performs image transformation using the Pillow library [62]. This application
retrieves an input image from shared block storage, applies various effects to it,
and then uploads it to another shared storage [59].

2.4 Benchmarks of Interest

2.4.1 FaaSdom

FaaSdom is an open-source serverless benchmark suite. It automatizes the de-
ployment, execution and clean-up of tests, as well as able to provide insights on
the performance via a graphical user interface. As shown in Figure 2.4, the tool
consists of four main modules and is integrated with IndexDB for data storage
and Graphana for data visualization. The tool currently supports only four
Cloud platforms: AWS, Azure, Google, and IBM.

FaaSdom benchmark collection consists of two compute intensive bench-
marks (faas-fact and faas-matriz-mult) and two IO-intensive benchmarks (faas-
netlatency and faas-diskio) written in both Node.js and Python. Notably, the
benchmark suite can be extended by adding custom benchmarks.

e faas-fact: performs integer factorization.
e faas-matriz-mult: performs multiplication of large matrices many times.

e faas-netlatency: measures network latency by sending a small-sized HTTP
response as soon as the benchmark function is invoked.

e faas-diskio: measures disk I/O performance.

The benchmark deployment process is parallellised, including creation of
Cloud resources, the build and packaging of the functions and their upload to
the Cloud. The invocation process yields processed output including invocation
parameters, execution time, throughput, and statistics relate to the execution
time: average, mean, max latency and execution time distribution.

Maissen et al. [42] evaluated metrics such as call latency (roundtrip), cold
start, and throughput. To evaluate call latency across different language runtimes
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Figure 2.4: Architecture of FaaSdom application fully depends on docker con-
tainers [8].

and Cloud service providers, they performed experiments using Node.js version
of faas-netlatency benchmark deployed at all available regions for each provider
using 128 MB of memory where available. Figure 2.5 presents the results ob-
tained from the original study.

CPU bound Throughput/Latency experiment was performed involving faas-
matriz-mult benchmark from FaaSdom toolkit. The experiment involved func-
tion invocations at different rates in the range from 10 to 1000 requests per
second for each provider/language runtime configuration. FaaSdom tool relies
on another HTTP-based benchmarking tool wrk2 [63], an extended version of
wrk [64], to perform the Throughput/Latency experiment.

The evaluation of experiments reveals that AWS Lambda is the best-performing
Cloud provider with the lowest call latency, average cold start latency, and most
stable response. Furthermore, they came to the conclusion that the time of the
execution is linearly correlated with the size of allocated memory.

2.4.2 SeBS

SeBS (Serverless Benchmark Suite) is and open-source suite of diverse FaaS
benchmarks that allows automated performance analysis of commercial Cloud
platforms like AWS, Azure, Google Cloud, and open source platforms like Open-
Whisk. The tool enables automatic deployment and invocation of benchmarks,
as well as parallel experiments that model and analyse the behaviour of FaaS
system. SeBS regards cost efficiency as a primary metric to determine the
most efficient configuration for a specific workload. To ensure seamless bin-
ary compatibility with the Cloud, SeBS encapsulates benchmarks and their
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Figure 2.5: Latency of Cloud functions across different regions and providers
obtained by the authors of FaaSdom tool [8].

dependencies within Docker containers, resembling function execution workers.
Additionally, a unified interface has been implemented for each platform (Figure

2.6).

The benchmark suite consists of total 10 representative workloads and can
be extended with custom benchmarks. There are five types of benchmarks:
webapps, multimedia, utilities, inference, and scientific.

dynamic-html: dynamically generaties HTML file from a predefined tem-
plate.

storage-uploader: uploads a file from a given URL to a Cloud storage.
thumbnailer: creates a thumbnail of an uploaded image.

video-processing: uses a static build of ffmpeg to apply a watermark on a
video and converts it to a gif file.

compression: compresses a set of files and returns an archive to the user.

data-visualisation: passes DNA data to a function which generates spe-
cified visualisation and caches results in the storage.

image-recognition: recognizes an object on the image using Res-Net-50
model.

graph-pagerank: performs irregular graph computations to identify page
ranking.

graph-mst: computes minimum spanning tree of a graph.

graph-bfs: performs breadth first search on a graph.

In their experiments, the authors employed various invocation methods, in-
cluding an abstract trigger interface, and utilized both Cloud SDK and HTTP
triggers. The invocation process yields measurements and an unchanged output
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Figure 2.6: Integration of SeBS benchmarking tool with a FaaS platform. [9].

of the benchmark application. The SeBS functions were implemented within
function wrappers and leveraged the provider’s log querying capabilities.

Their research revolved around conducting a comprehensive performance
and cost analysis across three major Cloud service providers: AWS, Azure, and
Google Cloud Platform (GCP). To achieve this, they executed a total of 200
cold invocations and 200 calls to a pre-warmed container on each platform.
The functions were invoked in batches of size 50 to ensure different sandbox
parameters.

The study’s findings highlighted a significant correlation between memory
allocation and CPU as well as I/O allocation. Furthermore, running uploader
and compression benchmarks unveiled a wide distribution of latencies, charac-
terized by numerous outliers. This wide variability in latency hinders the ability
to attain predictable and consistent performance from serverless functions.

When evaluating the performance of benchmarked FaaS platforms, their
results showed that AWS Functions consistently outperformed the other Cloud
service providers. After analysing the results of experiments, they came to the
conclusion that serverless applications benefits from the larger resource alloca-
tions, particularly in terms of memory usage. However, the study emphasized
the importance of developing precise methodologies for measuring the perform-
ance of short-duration serverless functions to select the right configuration.
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SeBS

FaaSdom

Supported FaaS
providers

GCP, Azure, AWS

GCP, Azure, AWS, IBM, OpenWhisk

Test scenarios
and workloads

Dynamic HTML
Storage uploader
Thumbnailer
Video processing
Compression
Data visualisation
Image recognition
Graph pagerank
Graph MST
Graph BFS

Latency test
CPU test factors
CPU test matrix
Filesystem test

CPU utilization* (%)
Memory utilization* (bytes)
I/0* (ops)

e L% Code e (1) e o)
Provider execution time (ms) Y
Client execution time (ms)
Benchmark execution time (ms)
Languages Python, Nodejs Nodejs, Python, Go, .NET
supported

Provided documentation

Installation guide

Usage guide

Provider configuration
Benchmark specifications

Installation guide
Benchmark specifications
Provider configuration

Interface type

Command-line interface

Web user interface

Customization
and flexibility

Allows to configure batch size,
N, number of every type of start

Allows to configure N,
duration of the test,
requests per second

Reporting and visualization

No visualization,
has textual output and
outputs processed csv table

Has integration with Grafana
for visualization.
Tabular data stored in InfluxDB

Community and support

Has an active repository
where one of the authors
answers questions and helps
resolve problems.

The repository was not active
since June 15th, 2020.
Provides no tutorials or
platform to report issues

Open Source vs. commercial

Open-source
BSD 3-Clause License

Open-source
Apache License

Regression testing

Allows performing
regression tests locally

No regresion testing

Cost and performance estimation

Allows to estimate both
performance and cost

Allows to estimate both
performance and cost

Security

Requires adding Cloud credentials
in the config file. Saves secret
credentials in resulting files

Asks for the credentials on program
start. Uses Cloud providers’ login
and access verification services

Updates and maintenance

Last update 23 August, 2023

Last update June 15th, 2020

Table 2.1: Qualitative comparison of SeBS and FaaSdom. Metrics denoted
with the star (*) are local to the Cloud provider.



Chapter 3

Experimental Process and
Analysis

3.1 Proposed Methodology

Aligned with the scope of this Master’s thesis, the experiments were performed
to evaluate and compare the performance of Amazon Lambda, Google Cloud
Functions and Azure Functions. The evaluation was intended to be based on
quantitative analysis of the data obtained from benchmarking FaaS platforms
using SeBS and FaaSdom open-source benchmarking tools. Given that the tools
emerged from scientific research endeavours culminating in the publication of
scientific literature, another aim of this thesis was to evaluate the reproducibility
of those conducted studies.

The experiments had a dual purpose: either to validate the findings high-
lighted in scientific papers by Maissen et al. [42] and by Copik et al. [9], or
to identify disparities with recently acquired data. These experiments were
specifically designed for collecting performance data related to FaaS platforms.
Specifically, the intent of this study was to employ the SeBS and FaaSdom tools
for benchmarking, thereby investigating potential causes for any reproduction
failures. Ultimately, the overarching objective was contributing to the ongoing
efforts to enhance the reliability and applicability of scientific research in Cloud
computing (Figure 3.1).

To achieve research objectives, the experimental settings and procedures
described in two original papers were reproduced. Subsequently, the acquired
raw experimental data was processed. Graphical representations were generated
to provide a bird’s-eye perspective of the data and can be found in the section
3.4 Data Analysis. Those results were rigorously compared with the original
findings presented in the source papers. The evaluation primarily focused on
two key facets:

e Comparative Analysis: The disparities between the results obtained
through the experimentation and those originally documented in the source
papers were analysed. This entails both qualitative and quantitative com-
parisons, enabling us to discern any divergences in outcomes.

e Identification of Obstacles: The investigation diligently catalogued

25
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and analysed any impediments encountered during the process of repro-
ducing the experiments. This qualitative examination is invaluable for
elucidating the challenges and intricacies inherent in utilizing the bench-
marking tools.

As a part of this thesis, an experiment that is referred to as perf-cost in Copik
et al.’s paper was performed. The collected data was used to create box plots,
to obtain a statistical data similar to one in the original paper. Additionally,
overarching trends in the data were identified, aiding in the drawing of conclu-
sions about the consistency of FaaS providers’ ranking. All events hindering
the reproducibility of the original study were documented and communicated
to the original paper’s co-author and SeBS repository maintainer Marcin Copik

65] [66] [67] [68].
identification

What was expected
from reproduction of
the experiments?

v
Contributing to
OpEN-S0Urce

Figure 3.1: Expected outcomes of experiment reproduction.

Identification of
solid scientific
research

Extendin
scientific studies

Motivation for
collaboration
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Similarly, in the reproduction of Maissen et al.’s work [42], a grounded
and methodical approach is being maintained. Call latency (faas-netlatency),
throughput (faas-matriz-mult), and CPU-bound assessments (faas-fact) were
being conducted. Once the data was gathered, the results of experiments were
visualized with scatter plots and line graphs, just as the original paper did.
With this approach, a compatible overview of providers’ performance was cre-
ated for the evaluation of differences from the original paper. All blocking events
encountered during the execution of experiments were thoroughly documented,
and a new repository was created to contain all the updates performed to the
original repository.

Both experiments were conducted on remote virtual machines (VMs). Run-
ning an experiment on a remote VM provided several benefits. The key advant-
ages that were considered are isolation and experiment reproducibility.

e Isolation: Remote VMs provide a sandboxed environment that is isolated
from the local machine. This isolation ensures that the experiment doesn’t
interfere with the local system or other running processes.

e Experiment reproducibility: By documenting the VM’s configuration
and software environment, one can ensure that the experiments are repro-
ducible, which is crucial for future research and validation.
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The graphs for visualisation of results were constructed using a Python pro-
gram running on Google Colab platform [69]. The code used for the construction
of the graphs as well as the source data obtained during the experiments are
available online at GitHub code sharing platform:

e Produced copy of SeBS repository, which contains the results of SeBS
related experiments obtained during this study [70]

e Produced copy of FaaSdom repository, which contains reworked source
code of FaaSdom tool [71].

3.2 Experimental Setup

The experiments were run on an environment composed of two identical virtual
machines (VM) on DigitalOcean platform [72] called Droplets. DigitalOcean
provides intuitive web interface for Cloud service hosting. This testbed provides
a large amount of resources, which makes it suitable to carry out the experi-
ments. Each VM had the following characteristics:

o Location: Frankfurt

e OS image: Ubuntu 22.04 (LTS) x64
e Numebr of CPUs: 2 vCPUs

e CPU memory: 4GB

Disk type: SSD
e Disk memory: 80GB

The Droplets were accessed via a web browser application, called the Droplet
Console [73]. Tt was considered as an alternative to using ssh command in a
local terminal. The Droplet Console has a command-line user interface (Figure
3.2), similar to one in the computer terminal, and can be used to run commands
on the Droplet. The advantages of using Droplet Console is a straightforward
SSH access to the connected Droplet without the need for a password or manual
SSH key configuration.

The Droplets that were accessed via the Droplet Console met the following
requirements [73]:

e The Droplet must be running a supported operating system.
The Droplet Console is supported only for DigitalOcean-provided Linux
distributions: Ubuntu, Debian, CentOS and Fedora. The Droplets used
for the experiments were running Ubuntu operating system.

e The Cloud firewall and any host firewalls must accept SSH traffic
on the port that sshd uses. The configuration of every firewall should
allow SSH traffic on the port the SSH daemon listens on. The default
firewall configuration on Droplets and FaaS platforms allowed a correct
connection.
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Figure 3.2: Although the Droplet Console has a user interface similar to a
computer terminal, it is a web-based app running on the Droplet user’s browser.

The author was acknowledged of the possible latency caused by the archi-
tecture of the Droplet Console (Figure 3.3). However, as seen in Figure 3.4, the
significant delay occurring during the communication between the local work-
station and the DigitalOcean Droplet does not impact the time measured during
the benchmarking experiment. The latency pattern between the Droplet and
the FaaS platform would resemble the one that would occur between a local
workstation and FaaS platform via ssh connection, and only that round-trip
time (RTT) latency is measured during the benchmarking.

Prior to the installation on the virtual machines, the benchmark suits of in-
terest were downloaded from their official GitHub repositories [74] [8]. GitHub
is a web platform that is commonly used to host open source software devel-
opment projects. It is also a Cloud-based service for software development and
version control using Git [75], which contributes to its success as a platform for
collaboration of researchers and developers.
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Figure 3.4: Experiment setup architecture focused on connection type between
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3.3 Execution

3.3.1 SeBS

The initial step entails the installation of dependencies. However, during the
adherence to the installation guidelines as outlined in [76], it became apparent
that the packages required for the libcurl library’s headers were not explicitly
stated in the documentation. Consequently, a more comprehensive installation
guide was sought and identified in [77].

Furthermore, the setup process necessitated the creation of accounts on the
respective Cloud provider’s platforms and the acquisition of credentials, typic-
ally composed of a public and a private key pair, as instructed in [78].

To validate the connectivity of the tool with each Cloud service provider,
this tool offers a set of regression tests. After verifying the correct interaction
of the SeBS tool and the platforms, a performance measuring experiment was
initiated in accordance with the methodology outlined in the original research
paper [9]. Concurrent function invocations were performed, sampling to obtain
200 cold invocations, achieved by automated forced container eviction between
each invocation batch. Next, the function executions were sampled to obtain
200 warm invocations. Function invocations were performed in batches of size
50 in order to include invocations in different sandboxes. The regions used for
running experiments on Amazon Lambda, Azure Functions and Google Cloud
Functions were us-east-1, west-europe and europe-west1 respectively.

perf-cost experiment was executed for the following benchmarks: uploader,
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thumbnailer, compression and graph-bfs. All functions subjected to benchmark-
ing adhere to the Python programming language. Subsequently, all resulting
data was meticulously processed and organized into CSV tables before being
securely stored in a remote GitHub repository [70].

3.3.2 FaaSdom

The installation process for FaaSdom was straightforward, guided by the com-
prehensive installation manual [79], which provided step-by-step instructions
for the installation of necessary dependencies. Similarly to the SeBS tool, the
setup of FaaSdom tool entailed the creation of accounts on each respective Cloud
provider’s platform and the acquisition of credentials.

However, during the operational phase of the project, it became apparent
that certain aspects required attention. Specifically, outdated versions of Docker
images and the Node.js runtime were identified. Subsequently, when attempting
to interact with the Cloud providers’ services, issues arose, manifesting as either
the non-display of webpages or difficulties in proper authentication. Resolution
efforts involved the updating of the GCP CLI, Node.js, and Azure Docker im-
ages. Adjustments were also necessary in accordance with recent Azure func-
tions API specifications to facilitate function deployment on the Azure platform.
Following these updates, the program successfully established connections with
the Cloud service providers, enabling function deployment across all target plat-
forms.

After the execution of the latency experiment, an issue was uncovered con-
cerning the integration with InfluxDB tables, leading to the inadvertent loss of
experiment output data. Upon thorough examination of the source code, a de-
cision was made to adopt a data processing approach similar to that employed
in the SeBS experiments, involving the storage of data in the CSV format.
Consequently, the utilization of Grafana for data visualization was foregone.

To gather performance data across different language runtimes and Cloud
service providers, CPU bound Throughput/Latency experiment was performed
involving faas-matriz-mult benchmark from FaaSdom toolkit. As in the ori-
ginal study, the experiment involved 10 manual function invocations for each
provider/language runtime configuration. After performing time bound Latency
experiment, the distributions of latencies was collected across different providers.

3.4 Data Analysis
3.4.1 SeBS

Figures 3.5-3.8 illustrate results obtained from SeBS experiments. Warm in-
vocation function execution time (s) versus allocated memory (MB) box plots
were constructed to verify the linear relationship stated in [9]. Azure Functions
platform did not allow static instance memory allocation, and two rounds of ex-
periment, 200 invocations each, were performed. Notably, the whiskers include
data from the 2nd to 98th percentile.
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Performance of uploader application on Amazon Lambda
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Figure 3.5: Execution time vs Allocated memory of SeBS uploader application
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Performance of thumbnailer application on Amazon Lambda
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Figure 3.5 demonstrates the performance of the uploader application on AWS
Lambda, Google Cloud Functions, and Azure Functions. Four memory config-
urations were tested (128 MB, 256 MB, 512 MB, and 1024 MB) on Amazon
Lambda and Google Cloud Functions. Overall, the median execution time on
Amazon Lambda is smaller for each configuration. Moreover, in both platforms,
the execution time decreases gradually with the increase of memory. Another
trend that should be mentioned is that all boxes have around the same range
except for the 512 MB on Google Cloud Functions, which is more skewed to-
wards the higher values. Regarding Azure Function, which has two rounds of
experiments, the execution time was smaller compared to the previous two plat-
forms. In both rounds, the distribution is the same, but the outliers of the first
round of experiment were slightly further from the median.

Figure 3.6 illustrates the performance of the thumbnailer application. The
same trend can be seen in that the time drops with the increase in memory, but
the drop is sharper this time. The median execution time on Amazon is from
2 to 7 times smaller than one on Google. Also, the distribution of invocations
on Google are twice as wide as on Amazon platform. Azure Functions has the
lowest median execution time.

The performance of compression application is shown in Figure 3.7. The
same patterns were observed in Figure 3.6, but in these experiments, the exe-
cution time is around 9 times longer on Amazon Lambda and Azure Functions,
whereas it’s about 6 times longer on Google Cloud Functions. Execution time
on Azure Functions has a greater variability.

The graph-bfs applications performance is depicted in Figure 3.8. It can be
clearly seen that the execution time doesn’t depend on the memory for this ap-
plication, and the median is approximately the same for all platforms. However,
the outliers on Google Cloud Function are much further from the median time
compared to the other platforms. In one case, the execution time took about
16 times more than the median time.
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Performance of compression application on Amazon Lambda
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Performance of graph-bfs application on Amazon Lambda
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The results for the compression and uploader experiments ran on Azure
Functions platform yielded a notable degree of dispersion within the dataset.
Therefore, a decision to implement an outlier removal was made. The strategy
of outlier removal was grounded in the calculation of z-scores. Outliers can affect
an analysis in several ways. They can skew the data and affect the mean and
standard deviation, making it difficult to obtain accurate estimates. Outliers
can also affect the regression line and lead to incorrect predictions. Therefore, it
is crucial to identify and exclude outliers before conducting any further analysis.

The z-score is a statistical measure that indicates how many standard devi-
ations a data point is away from the mean. The z-score can be calculated using
the following formula:

(x — mean)
std

z =

where x is the data point, mean is the mean of the dataset, and std is the
standard deviation of the dataset.

To identify outliers using the z-score, one can set a threshold value. A z-
score of 3 was chosen, meaning that more than 99% of data would be covered
by the calculated interval. Consequently, any data point with a z-score greater
than 3 or less than -3 was considered an outlier. SciPy library [80] was used to
calculate the data points within the confidence interval and filter outliers. After
removing outliers, the statistics in the graph for function invocations on Azure
platform became more distinguishable.

In the pursuit of assessing the impact of cold starts on performance, [9] cold
startup overhead was estimated as a ratio of every cold start benchmark execu-
tion time (INV) to every warm start execution time (INV), resulting in N? values.
The plots (Figure 3.9) illuminate that cold start invocations can exhibit laten-
cies up to 1.7 times greater than warm invocations. Interestingly, for functions
with longer average runtimes, such as compression, the impact of cold starts
appears negligible, with Azure demonstrating comparatively lower overheads
when contrasted with the other two providers.
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Figure 3.9: The ratio of cold start client time over warm start client time

helps to see the impact of a cold start on an end-to-end response time.
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Invocations of uploader function on Amazon Lambda

64
5 4
—_— 4 1
»u
[
E 34
=
2
] t— —t——
0 _ T T T
exec_time provider_time client_time
Invocations of thumbnailer function on Amazon Lambda
B 4
6
)
&
E 44
=
) ; ;
0 A T T T
exec_time provider_time client_time
Invocations of compression function on Amazon Lambda
18 -
16 -|
14 |
— 12
0
[
g 10
=
8
6 -
44
2 L T T T
exec_time provider_time client_time
Invocations of graph-bfs function on Amazon Lambda
5
44
—_— 3 1
G
E
F 2
1 4
0+ + +

T T T
exec_time provider_time client_time

Figure 3.10: Benchmark execution time, provider time and client time for
experiments executed on Amazon Lambda.



CHAPTER 3. EXPERIMENTAL PROCESS AND ANALYSIS 39

A differentiation is observed between execution time and client time across
all service providers, as illustrated in Figure 3.10. This disparity is less pro-
nounced for workloads characterized by longer execution times, such as com-
pression. In this context, ”benchmark time” refers to the execution time within
the Cloud environment, excluding network and system latency. Conversely,
?provider time” encompasses the execution time augmented by the additional
overhead introduced by the language and the serverless sandbox of the provider.
7Client time” denotes the measurement taken from the client’s perspective. A
substantial invocation overhead underscores the importance of providers offer-
ing comprehensive tools for sequential function invocation, ideally orchestrated
entirely on the providers’ side.

In summary, graphical representations of experiments performed using SeBS
tool provide evidence that augmenting the allocated memory yields a reduction
in execution time. Consequently, the presence of a linear relationship between
system performance and allocated memory was validated. Remarkably, it was
observed that Azure’s performance surpasses the reported metrics from the
2021 study, reflecting an unexpected improvement in its operational efficiency.
Moreover, Google platform exhibit significant variability in performance, while
AWS platform yields the responses with the most predictable latency. The exe-
cution time records obtained from the Azure platform display a comparatively
greater number of outliers when compared with the other two platforms.

In alignment with prior work [9], the analysis underscores the inherent vari-
ability in FaaS performance. The most significant variance is observed in the
uploader and compression benchmarks, which rely heavily on I/O bandwidth.
Long-running functions, exemplified by compression tasks, yield the highest
number of performance outliers. In general, the experiments show a wide distri-
bution of latencies, contributing to inconsistent and unpredictable performance
of FaaS platforms.
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3.4.2 FaaSdom

Figures 3.11, 3.14, 3.16, and 3.18 show the results for the Throughput/ Latency
experiment performed using faas-matriz-function function written in 4 different
programming languages: JavaScript, Python, Go, and .NET.
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Figure 3.11: Throughput vs latency for Node.js faasdom-matriz-mult function.
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Figure 3.12: Throughput/latency graph for Node.js function based on the
data from the original study.
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In Figure 3.11 almost equal performance is achieved by a function running
in Node.js runtime on Google Cloud Functions and AWS Lambda platform.
A slight decrease in latency can be seen as the throughput increases, indicat-
ing that the performance increases with increased throughput. That may be
caused by an effective instance allocation to handle the load, striking the bal-
ance between over-provisioning and under-provisioning of the virtual resources.
Meanwhile, the latency on Azure Functions platform grows rapidly with the
increasing throughput. The results for throughput higher than 100 requests per
second were omitted from the graph, as the response latency quickly saturated.
The result obtained during the recent experiment is slightly different from one
presented in the original study. The latencies on Azure platform were reported
to be much higher than was observed in 2020 (Figure 3.12).

Surprisingly, the Python function invocation on Azure platform has a some-
what steady performance (Figure 3.14) compared to the one observed in the
original study (Figure 3.15). For Python language runtime, the latency of func-
tion executions on Azure and AWS platforms increases linearly, while the latency
of function invocations on Google platform jumps unexpectedly at 100 requests
per second. Furthermore, an optimal performance is reached at the low request
rate, while increasing throughput leads to steady grows in latency until reach-
ing a plateau at 800 requests per second. However, it was observed from the
metrics dashboard on the Google Cloud Platform that the number of allocated
instances did not remain constant, which otherwise could explain an increased
delay at higher throughput rates (Figure 3.13).
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Figure 3.13: The number of instances on Google platform during Through-
put/Latency experiment for Python language runtime.
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: Throughput vs latency for Go faasdom-matriz-mult function.
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Figure 3.17: Throughput/latency graph for Go function based on the data
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Notably, Go runtime is not supported on Azure platform, so we compared
performance of Go function running on AWS and Google platform only. The
obtained graph (Figure 3.16) represents a close-up look of the original graph
without the latencies observed on IBM Cloud platform (Figure 3.17). Although
both functions run on Google and AWS platform show increasing performance as
the throughput increases, the former shows a much lower latency value for every
value of throughput. However, the low latency may be caused by optimizations
of Go runtime on Google platform, since Go language was originally developed
by Google.

.NET runtime is not supported on Google platform, therefore the comparison
was made between performance of .NET function on Azure and AWS platform
(Figure 3.18). Azure platform demonstrated competitive response latency at
throughput values below 50 requests per second. As the number of requests
sent every second grew, the response latency grew linearly, reaching 25 seconds
of delay at the rate of 200 requests per second.

3.5 Evaluation

3.5.1 SeBS

As reproduction of the experiments continued, the failure of automatic gener-
ation of Azure login credentials was discovered. As a result, a contribution to
the open-source project repository was made by raising the issue on GitHub
platform [65]. After discussion with the maintainer of the official repository, the
conclusion was reached that the error occurred due to the updated Azure CLI
interface. The main program flow was restored as the correct commands for
interaction with Azure platform were inserted. Moreover, the Azure Functions
configuration was updated so that it was possible to invoke the deployed func-
tion without authorization on the Azure platform. Two more bugs were found
regarding integration with Azure platform, both of them were raised as issues on
the GitHub platform [67, 66]. As of the time of writing, the issue with running
regression tests on Azure platform was successfully resolved, while the issue of
unsupported version of Python runtime was labelled as hardly reproducible.

Insights obtained regarding the performance of FaaS platforms, which in-
clude AWS Lambda, Google Cloud Functions, and Azure Functions were as
followed:

e Memory allocation impact on the function execution time: The
experiments confirm hat increasing the allocated memory results in a re-
duction in execution time. This validates the presence of a linear relation-
ship between system performance and memory allocation.

e Distinctive platform performance patterns: It was observed that
AWS Lambda consistently had the smallest median execution time across
different memory configurations. In contrast, Google Cloud Functions and
Azure Functions exhibited significant variability in performance.

e Cold start impact on function execution time: Cold start invoca-
tions showed latencies up to 1.7 times greater than warm invocations. The
impact of cold starts was found to be negligible for functions with longer
average runtimes.
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Version in
Software source Release date Upd.ated Release date
component . version

repository
Google Cloud
SDK docker 274.0.1-alpine | 28 Dec 2019 [81] | 400.0.0 30 Aug 2022 [82]
image
Node.js . .
docker image 10.16.2-alpine | 9 Aug 2019 [83] 18-alpine | 11 Aug 2023 [84]
Azure CLI 2.0.78 17 Dec 2019 [85] | 2.52.0 5 Sep 2023 [85]
docker image
NET

. dotnetcore2.1 | 30 May 2018 [86] | dotnet6 12 Sep 2023 [87]

runtime
Go
e golll 13 Aug 2019 [81] | goll5 05 Aug 2021 [82]

Table 3.1: Software components and version migration performed to load
FaaSdom tool.

e Execution time differentiation: There was a noticeable difference
between execution time, provider time, and client time across all service
providers. This disparity was less pronounced for workloads characterized
by longer execution times.

e Performance variability: The experiments demonstrated a wide dis-
tribution of latencies across FaaS platforms, contributing to inconsistent
and unpredictable performance. Azure Functions platform had a compar-
atively greater number of outliers in execution time records than Google
Cloud Functions and Amazon Lambda platforms.

Performed experiments depict noteworthy disparities in warm invocations
among service providers. Google platform ranks second after AWS, displaying
notably higher performance levels, particularly in tasks related to image pro-
cessing. Surprisingly, Azure platform performance increased compared to the
one measured in 2021, sometimes exhibiting the most favourable performance,
with execution times less than a second.

Furthermore, the ratio between cold start execution time and warm start
execution time measured on client’s device has reduced compared to the study
conducted two years ago. This result underlines the significant impact of tech-
nological advancements on the obtained results and motivates the need for re-
production of benchmarking studies.

3.5.2 FaaSdom

A considerable presence of software components employing outdated versions
was discovered. Table 3.1 provides an inventory of these software components
along with the requisite version updates necessary to ensure the FaaSdom tool’s
functionality. The updated version of FaaSdom benchmarking tool is available
at [71].

In general, due to its web-based user interface, utilizing the FaaSdom tool
proved to be more user-friendly compared to SeBS. Nevertheless, several chal-
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lenges were encountered during results collection and experiment execution. For
instance, conducting cold start experiments necessitated the manual removal of
deployed functions, as well as manual monitoring to confirm cold start and in-
vocation of functions. Additionally, the web interface lacked clarity regarding
the runtimes supported by cloud service providers, often indicating runtime
incompatibility only during the actual experiment runs.

Similar to the results observed in the original study, stable response latencies
are evident for all tested languages on AWS. Azure demonstrates the highest
latency values for all language runtimes. When conducting a comparative ana-
lysis with the graphs presented in the original paper, a comparable behaviour
is noted for Amazon Functions when operating on Node.js runtime. However, a
distinct behaviour is documented for Python function invocations on the Google
Functions platform, with latency increasing more rapidly. Nevertheless, the ob-
served trend of superior performance at low request rates aligns with the findings
highlighted in the reproduced study.

The summary of the key findings for each programming language and plat-
form combination is as follows:

e Node.js (JavaScript): Node.js functions on Google Cloud Functions
and AWS Lambda demonstrated almost equal performance. An increase
in throughput led to a slight decrease in latency of JavaScript functions,
suggesting effective instance allocation. Azure Functions showed signific-
antly higher latencies than in the original study.

e Python: Azure Functions had somewhat steady performance for Python
runtime, unlike in the original study. Latency for Azure and AWS plat-
forms increased linearly with throughput, while Google’s latency jumped
unexpectedly at 100 requests per second. Google Cloud Functions ex-
perienced fluctuations in the number of allocated instances, potentially
explaining increased latency at higher throughput rates.

e Go: Go runtime was not supported on Azure. On Google Cloud Func-
tions and AWS Lambda, Go functions showed increasing performance with
higher throughput. Google Cloud Functions exhibited significantly lower
latency for every throughput value.

e NET: NET runtime was not supported on Google Cloud Functions.
Azure Functions showed competitive response latency at low throughputs,
but latency grew linearly with increasing requests per second, reaching 25
seconds of delay at 200 requests per second.
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Conclusions and Outlook

4.1 Key Findings

In retrospect, it is crucial to revisit the fundamental questions posed in this
study and evaluate whether they were successfully addressed. This study was
conducted aiming to answer two questions:

e Is it possible to reproduce the results of previous Cloud bench-
marking studies? While the installation of the benchmarking tools
was initially hindered by the abundance of outdated dependencies, once
those dependencies were updated and fine-tuned with accordance to the
most recent usage guidelines, reproducing benchmarking experiments be-
came considerably more straightforward. After analysing the outputs of
the benchmarking experiments, all the statements outlined in reproduced
studies regarding memory allocation impact on the function execution
time, prominent platform performance patterns, cold start impact on func-
tion execution time, and performance variability were validated.

In general, the experiments confirmed hat increasing the allocated memory
results in a reduction in execution time. AWS Lambda platform consist-
ently yielded the smallest median execution time across different memory
configurations for function executions, while Google Cloud Functions and
Azure Functions exhibited significant variability. Cold start invocations
showed latencies up to 1.7 times greater than warm invocations. The
workloads characterized by longer execution times were less impacted by
cold start invocations and showed less difference between execution time,
provider time, and client time across all service providers. Azure Functions
platform was observed to have a greater number of outliers in execution
time records compared to Google Cloud Functions and Amazon Lambda
platforms.

e What are the main factors contributing to the reproducibility
of Cloud benchmarking results? Since the number of encountered
obstacles varied significantly depending on the current maintenance status
of the tools used in the original studies, it was concluded that the pivotal
point in reproducing benchmarking studies was the community support
and original researcher’s interest in discussing their publications. In the

48
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experiments, two FaaS benchmarking tools were used, namely SeBS and
FaaSdom. Both tools are open-source, however SeBS tool needed fewer
interventions during the experiment execution process, which speeded up
the process of reproduction. The time left was used for discussion with the
co-author of the scientific paper and extension of the tool by contributing
to the open-source code.

When comparing the present state of FaaSdom application to the time
of the last contribution by the original authors, it became evident that
the tool needs supervision and maintenance to adapt to the ever-changing
landscape of technological advancements. Thus, the supervision and the
community’s interest were established as the primary factors that contrib-
ute to the reproducibility of Cloud benchmarking studies.

Finally, the research proposes practical solutions and guidelines that could be
implemented to strengthen the reproducibility of Cloud benchmarking research.
Reproducible studies tend to have the following characteristics:

e Open-source codebase: Making the source code openly available em-
powers other researchers and developers to contribute to the project. This
can be useful in several ways. First, contributors will be able to identify
the errors and areas for improvement. Second, the tool will grow in terms
of its abilities as developers and researchers will find and elaborate on new
use cases, thus naturally extending the tool.

e Extensive documentation: At the state of development, when a few
collaborators are involved, the implementation details can be shared via
personal communication. As the project attracts new collaborators and
contributors, comprehensive documentation of usage and installation pro-
cedures becomes crucial, serving as a serve as starting point and a guide.
The tool will benefit from comprehensive documentation of its usage and
installation procedures, simplifying the maintenance for the original au-
thors.

e Code structure that isolates dependencies: By isolating depend-
encies, one can make sure that the monitoring and maintenance of de-
pendencies and their versions will be efficient. One of the main sources of
frustration for developers can be dispersed and hardcoded version specific-
ation for various dependencies occurring in numerous code components.

4.2 Future Work

This thesis focused on evaluating and comparing the performance of serverless
computing platforms, specifically Amazon Lambda, Google Cloud Functions,
and Azure Functions, and successfully validated the key finding of two bench-
marking studies: ”"FaaSdom: A benchmark suite for serverless computing” by
Maissen et al. [42] and ”SeBS: A serverless benchmark suite for function-as-a-
service computing” by Copik et al. [9]. This study can be further extended, by
focusing on the alternative aspects of FaaS benchmarking.

In the performed experiments, the evaluation of Go runtime on Azure plat-
form and .NET runtime on GCP was omitted, since Azure platform doesn’t
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possess a built-in a Go runtime, and .NET runtime is absent on GCP. However,
some of prominent Cloud platforms recently introduced a support for custom
language runtimes [88]. Therefore, a new study could be conducted by extending
the available array of language runtimes with the custom ones to obtain more
data related to the performance of various language runtimes on mentioned
Cloud platforms.

Another strategy would be to assess more FaaS benchmarking tools, such
as BeFaaS [60] and FunctionBench [59]. By reproducing more benchmarking
studies and making a comparative analysis of the obtained results, it may be
possible to identify common patters among benchmarking tools that were pro-
duced as a part of scientific research endeavours, thereby contributing to the
enhancement of FaaS benchmarking studies’ reproducibility and utility.

The subsequent phase of the study may broaden by researching expressivity
of the benchmarks that are currently available. As a part of the study, new use
cases may be found, resulting in the creation of new benchmarks. Particularly
interesting fields of application of FaaS is IoT, so designing new benchmarks
to represent Smart Home or health monitoring application workloads could be
a promising area of research. That study would also allow extending existing
benchmark suites, such as SeBS.

Including more cloud providers, including open-source Cloud platform such
as OpenWhisk is regarded as a possible continuation trajectory of the study.
Benchmarks may also be used for reverse engineering a better Cloud architec-
tures for a specific use cases represented by the respective workloads.



Bibliography

[1]

[7]

eurostat. (2021)  File: Use of cloud computing services,
2020 and 2021. Accessed on September 10, 2023. [On-
line].  Available: https://ec.europa.eu/eurostat /statistics-explained/

images/6/65/Use_of _cloud_computing_services%2C_2020_and_2021_%28%
25_of _enterprises%29_v2.png

J. Allen. (2021) 7 Strategies for Migrating Applications to the Cloud, intro-
ducing AWS Mainframe Modernization and AWS Migration Hub Refactor
Spaces. Accessed on September 11, 2023. [Online]. Available: https://aws.
amazon.com/blogs/enterprise-strategy /cloud-native-or-lift-and-shift /

The Johns Hopkins Data Science Lab. (2022) Online course: In-
tro to reproducibility in cancer informatics. chapter 2: Defining
reproducibility. Accessed on September 12, 2023. [Online]. Avail-
able:  https://jhudatascience.org/Reproducibility_in_Cancer_Informatics/
defining-reproducibility.html

F. Richter. (2023) Amazon  maintains  lead in  the
cloud  market. Accessed on  September 11, 2023.  [On-
line]. Available: https://www.statista.com/chart/18819/
worldwide-market-share-of-leading-cloud-infrastructure-service-providers/

G. Gireesh. (2021) Saas vs paas vs iaas: What’s the difference and how
do you choose? Accessed on September 5, 2023. [Online]. Available:
https://www.liquidweb.com/kb/saas-paas-iaas/

I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Isahagian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski, and P. Suter, Server-
less Computing: Current Trends and Open Problems, 12 2017, pp. 1-20.

IBM Technology. (2021) Youtube lecture: What is faas (functions
as a service)?  Accessed September 8, 2023. [Online]. Available:
https://youtu.be/EOIja7yFScs?si=dUP{J1_88LwPJNpY

faas-benchmarking. (2020, Apr.) The FAASDOM benchmark suite.
[Online]. Available: https://github.com/faas-benchmarking/faasdom

M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler,
“Sebs: A serverless benchmark suite for function-as-a-service computing,”
in Proceedings of the 22nd International Middleware Conference, 2021, pp.
64-78.

51


https://ec.europa.eu/eurostat/statistics-explained/images/6/65/Use_of_cloud_computing_services%2C_2020_and_2021_%28%25_of_enterprises%29_v2.png
https://ec.europa.eu/eurostat/statistics-explained/images/6/65/Use_of_cloud_computing_services%2C_2020_and_2021_%28%25_of_enterprises%29_v2.png
https://ec.europa.eu/eurostat/statistics-explained/images/6/65/Use_of_cloud_computing_services%2C_2020_and_2021_%28%25_of_enterprises%29_v2.png
https://aws.amazon.com/blogs/enterprise-strategy/cloud-native-or-lift-and-shift/
https://aws.amazon.com/blogs/enterprise-strategy/cloud-native-or-lift-and-shift/
https://jhudatascience.org/Reproducibility_in_Cancer_Informatics/defining-reproducibility.html
https://jhudatascience.org/Reproducibility_in_Cancer_Informatics/defining-reproducibility.html
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.statista.com/chart/18819/worldwide-market-share-of-leading-cloud-infrastructure-service-providers/
https://www.liquidweb.com/kb/saas-paas-iaas/
https://youtu.be/EOIja7yFScs?si=dUPfJ1_88LwPJNpY
https://github.com/faas-benchmarking/faasdom

BIBLIOGRAPHY 52

[10]

[11]

[12]

[18]

[19]

[20]

[21]

[23]

H. Li. (2022) How digitalocean’s new droplet console works. Accessed on
September 12, 2023. [Online]. Available: https://www.digitalocean.com/
blog/how-digitaloceans-new-droplet-console-works

C. Fisher, “Cloud versus on-premise computing,” American Journal of In-
dustrial and Business Management, vol. 08, pp. 1991-2006, 01 2018.

TutorialsPoint. (2023) Cloud computing overview. Accessed on September
1, 2023. [Online]. Available:  https://www.tutorialspoint.com/cloud_
computing/cloud_computing_overview.htm

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud comput-
ing,” Communications of the ACM, vol. 53, no. 4, pp. 50-58, 2010.

Gartner. (2023) Gartner peer insights: Cloud infrastructure and platform
services. Accessed on September 1, 2023. [Online]. Available: https://www.
gartner.com/reviews/market/cloud-infrastructure-and-platform-services

J. Manner, “Towards performance and cost simulation in function as a
service,” 2019.

C+# Corner. (2023) Top 10 cloud service providers. Accessed on September
1, 2023. [Online]. Available: https://www.c-sharpcorner.com/article/
top-10-cloud-service-providers/

Pluralsight.  (2023) Compute compared: Aws vs. azure
vs. gep.  Accessed on  September  September 2, 2023. [On-
line]. Available: https://www.pluralsight.com/resources/blog/cloud/
compute-compared-aws-vs-azure-vs-gep

N2WS. Aws vs. azure vs. google cloud comparison. Ac-
cessed on September 2, 2023. [Online]. Available: https:
//n2ws.com/blog/aws-vs-azure-vs-google-cloud

Cockroach ~ Labs.  (2020) Aws, azure, and gcp  respond
to the 2020 cloud report. Accessed on  September = 2,
2023. [Online].  Available: https://www.cockroachlabs.com/blog/
aws-azure-gep-respond-to-the-2020-cloud-report/

——. (2021) 2021 Cloud Report. Accessed on September 2, 2023. [Online].
Available: https://www.cockroachlabs.com/blog/2021-cloud-report/

——. (2022) 2022 cloud report. Accessed on September 2, 2023. [Online].
Available: https://www.cockroachlabs.com/blog/2022-cloud-report/

C. Vazquez, R. Krishnan, and E. John, “Cloud computing benchmarking:
a survey,” in Proceedings of the international conference on grid, cloud,
and cluster computing (GCC). The Steering Committee of The World
Congress in Computer Science, 2014, p. 1.

Hewlett Packard. (2023) Netprf GitHub Repository. Accessed on September
2, 2023. [Online]. Available: https://github.com/HewlettPackard/netperf


https://www.digitalocean.com/blog/how-digitaloceans-new-droplet-console-works
https://www.digitalocean.com/blog/how-digitaloceans-new-droplet-console-works
https://www.tutorialspoint.com/cloud_computing/cloud_computing_overview.htm
https://www.tutorialspoint.com/cloud_computing/cloud_computing_overview.htm
https://www.gartner.com/reviews/market/cloud-infrastructure-and-platform-services
https://www.gartner.com/reviews/market/cloud-infrastructure-and-platform-services
https://www.c-sharpcorner.com/article/top-10-cloud-service-providers/
https://www.c-sharpcorner.com/article/top-10-cloud-service-providers/
https://www.pluralsight.com/resources/blog/cloud/compute-compared-aws-vs-azure-vs-gcp
https://www.pluralsight.com/resources/blog/cloud/compute-compared-aws-vs-azure-vs-gcp
https://n2ws.com/blog/aws-vs-azure-vs-google-cloud
https://n2ws.com/blog/aws-vs-azure-vs-google-cloud
https://www.cockroachlabs.com/blog/aws-azure-gcp-respond-to-the-2020-cloud-report/
https://www.cockroachlabs.com/blog/aws-azure-gcp-respond-to-the-2020-cloud-report/
https://www.cockroachlabs.com/blog/2021-cloud-report/
https://www.cockroachlabs.com/blog/2022-cloud-report/
https://github.com/HewlettPackard/netperf

BIBLIOGRAPHY 53

[24] Intel. (2023) HiBench GitHub Repository. Accessed on September 2, 2023.
[Online]. Available: https://github.com/Intel-bigdata/HiBench

[25] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-
marking cloud serving systems with ycsb,” 09 2010, pp. 143—-154.

[26] EPFL. (2023) CloudSuite GitHub Repository. Accessed on September 2,
2023. [Online]. Available: https://github.com/parsa-epfl/cloudsuite/tree/
main

[27] Google. (2023) PerfKit Benchmarker GitHub Repository. Accessed
on September 2, 2023. [Online]. Available:  https://github.com/
GoogleCloudPlatform /PerfKitBenchmarker

[28] M. Ficco, M. Rak, S. Venticinque, L. Tasquier, and G. Aversano, Cloud
Evaluation: Benchmarking and Monitoring, 04 2015, pp. 175-200.

[29] Yahoo. (2010) YCSB GitHub Repository. Accessed on September 2, 2023.
[Online]. Available: https://github.com/brianfrankcooper/YCSB

[30] A. E. Carroll, “Publication bias: The threat to science,”
The New York Times, 2018, accessed on September 2, 2023.
[Online].  Available: https://www.nytimes.com/2018/09/24 /upshot/
publication-bias-threat-to-science.html

[31] M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature, vol. 533,
no. 7604, 2016.

[32] G. J. Lithgow, M. Driscoll, and P. Phillips, “A long journey to reproducible
results,” Nature, vol. 548, no. 7668, pp. 387-388, 2017.

[33] C. G. Begley and J. P. Toannidis, “Reproducibility in science: improving
the standard for basic and preclinical research,” Clirculation research, vol.
116, no. 1, pp. 116-126, 2015.

[34] D. Randall and C. Welser, The Irreproducibility Crisis of Modern Science:
Causes, Consequences, and the Road to Reform. ERIC, 2018.

[35] M. Serra-Garcia and U. Gneezy, “Nonreplicable publications are cited
more than replicable ones,” Science Advances, vol. 7, mno. 21, p.
eabd1705, 2021. [Online]. Available: https://www.science.org/doi/abs/10.
1126/sciadv.abd1705

[36] T. Miyakawa, “No raw data, no science: another possible source of the
reproducibility crisis,” pp. 1-6, 2020.

[37] Papers With Code. (2022) MI reproducibility challenge 2022. Accessed
on September 4, 2023. [Online]. Available: https://paperswithcode.com/
rc2022

[38] EDS book. (2023) Reproducibility challenge 2023. Accessed on
September 4, 2023. [Online]. Available: https://eds-book.github.io/
reproducibility-challenge-2023 /intro.html


https://github.com/Intel-bigdata/HiBench
https://github.com/parsa-epfl/cloudsuite/tree/main
https://github.com/parsa-epfl/cloudsuite/tree/main
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker
https://github.com/brianfrankcooper/YCSB
https://www.nytimes.com/2018/09/24/upshot/publication-bias-threat-to-science.html
https://www.nytimes.com/2018/09/24/upshot/publication-bias-threat-to-science.html
https://www.science.org/doi/abs/10.1126/sciadv.abd1705
https://www.science.org/doi/abs/10.1126/sciadv.abd1705
https://paperswithcode.com/rc2022
https://paperswithcode.com/rc2022
https://eds-book.github.io/reproducibility-challenge-2023/intro.html
https://eds-book.github.io/reproducibility-challenge-2023/intro.html

BIBLIOGRAPHY 54

[39]

[45]

[46]

[47]

International — Conference on Learning Representations. (2019)
Ielr 2019  reproducibility  challenge.  Accessed on  September
4, 2023. [Online]. Available: https://www.cs.mcgill.ca/~jpineau/
ICLR2019-ReproducibilityChallenge.html

Kaggle. (2022) Kaggle awards for ml reproducibility challenge 2022.
Accessed on September 4, 2023. [Online]. Available: https://www.kaggle.
com /reproducibility-challenge-2022

The International Conference for High Performance Computing,
Networking, Storage, and Analysis. (2022) Reproducibility ini-
tiative. Accessed on September 4, 2023. [Ounline]. Available:
https://sc22.supercomputing.org/submit/reproducibility-initiative/

P. Maissen, P. Felber, P. Kropf, and V. Schiavoni, “Faasdom: A benchmark
suite for serverless computing,” in Proceedings of the 14th ACM interna-
tional conference on distributed and event-based systems, 2020, pp. 73-84.

P. Mell and T. Grance, “The nist definition of cloud computing,” Sep 2011.

B. King. (2022) What is faas? function as a service explained. Accessed on
September 12, 2023. [Online]. Available: https://www.digitalocean.com/
blog/what-is-faas-function-as-a-service-explained

IBM. (2020) What is serverless? Accessed on September 12, 2023.
[Online]. Available: https://www.ibm.com/topics/serverless

P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise of
serverless computing,” Communications of The ACM, Nov 2019.

AWS, Amazon Web Services. Serverless on aws. Accessed September 1,
2023. [Online]. Available: https://aws.amazon.com/serverless/

Google. Serverless computing. Accessed September 1, 2023. [Online].
Available: https://cloud.google.com/serverless

Microsoft Azure. Azure serverless. Accessed September 1, 2023. [On-
line]. Available: https://azure.microsoft.com/en-us/solutions/serverless/
#solutions.

S. Eismann, J. Scheuner, E. van Eyk, M. Schwinger, J. Grohmann,
N. Herbst, C. L. Abad, and A. Tosup, “Serverless applications: Why, when,
and how?” IEEFE Software, vol. 38, no. 1, pp. 32-39, 2021.

S. Eismann, J. Scheuner, E. v. Eyk, M. Schwinger, J. Grohmann, N. Herbst,
C. L. Abad, and A. Iosup, “The state of serverless applications: Collection,
characterization, and community consensus,” IEEE Transactions on Soft-
ware Engineering, vol. 48, no. 10, pp. 4152-4166, 2022.

Microsoft. Azure functions http trigger. Ac-
cessed September 8, 2023. [Online]. Avail-
able: https://learn.microsoft.com/en-us/azure/azure-functions/

functions-bindings-http-webhook-trigger?tabs=python-v2%
2Cin-process%2Cfunctionsv2&pivots=programming-language-python


https://www.cs.mcgill.ca/~jpineau/ICLR2019-ReproducibilityChallenge.html
https://www.cs.mcgill.ca/~jpineau/ICLR2019-ReproducibilityChallenge.html
https://www.kaggle.com/reproducibility-challenge-2022
https://www.kaggle.com/reproducibility-challenge-2022
https://sc22.supercomputing.org/submit/reproducibility-initiative/
https://www.digitalocean.com/blog/what-is-faas-function-as-a-service-explained
https://www.digitalocean.com/blog/what-is-faas-function-as-a-service-explained
https://www.ibm.com/topics/serverless
https://aws.amazon.com/serverless/
https://cloud.google.com/serverless
https://azure.microsoft.com/en-us/solutions/serverless/#solutions.
https://azure.microsoft.com/en-us/solutions/serverless/#solutions.
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-trigger?tabs=python-v2%2Cin-process%2Cfunctionsv2&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-trigger?tabs=python-v2%2Cin-process%2Cfunctionsv2&pivots=programming-language-python
https://learn.microsoft.com/en-us/azure/azure-functions/functions-bindings-http-webhook-trigger?tabs=python-v2%2Cin-process%2Cfunctionsv2&pivots=programming-language-python

BIBLIOGRAPHY 95

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[66]

Amazon. Supported Languages at AWS Lambda. Accessed Septem-
ber 8, 2023. [Online]. Available: https://blog.awsfundamentals.com/
supported-languages-at-aws-lambda

—— 11 most in-demand programming languages. Accessed Septem-
ber 8, 2023. [Online]. Available: https://bootcamp.berkeley.edu/blog/
most-in-demand-programming-languages/

Microsoft. Supported languages in azure functions. Accessed September
1, 2023. [Online]. Available: https://learn.microsoft.com/en-us/azure/
azure-functions/supported-languages#languages-by-runtime-version/

——. Announcing general availability of azure functions. Accessed
September 1, 2023. [Online]. Available: https://azure.microsoft.com/
en-us/blog/announcing-general-availability-of-azure-functions/

E. v. Eyk, A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A spec rg
cloud group’s vision on the performance challenges of faas cloud architec-
tures,” International Conference on Performance Engineering, Apr 2018.

R. Deng, “Benchmarking of serverless application performance across cloud
providers: An in-depth understanding of reasons for differences,” 2022.

J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD). 1EEE, 2019, pp. 502-504.

M. Grambow, T. Pfandzelter, L. Burchard, C. Schubert, M. Zhao, and
D. Bermbach, “Befaas: An application-centric benchmarking framework
for faas platforms,” in 2021 IEEE International Conference on Cloud En-
gineering (IC2E). 1EEE, 2021, pp. 1-8.

J. Scheuner and P. Leitner, “Function-as-a-service performance evaluation:
A multivocal literature review,” Journal of Systems and Software, vol. 170,
p. 110708, 2020.

Jeffrey A. Clark. Python pillow library. Accessed September 8, 2023.
[Online]. Available: https://pillow.readthedocs.io/en/stable/

G. Tene. (2015) wrk2 github repository. Accessed on September 12, 2023.
[Online]. Available: https://github.com/giltene/wrk2

W. Glozer. (2015) wrk github repository. Accessed on September 12, 2023.
[Online]. Available: https://github.com/wg/wrk

S. Nursultan. (2023) Issue discussion on github: Azure credential creation
script doesn’t work. Accessed on September 7, 2023. [Online]. Available:
https://github.com/spcl/serverless-benchmarks/issues/176

——. (2023) Issue discussion on github: Azure supports only
python 3.7. Accessed on September 7, 2023. [Online]. Available:
https://github.com/spcl/serverless-benchmarks /issues/177


https://blog.awsfundamentals.com/supported-languages-at-aws-lambda
https://blog.awsfundamentals.com/supported-languages-at-aws-lambda
https://bootcamp.berkeley.edu/blog/most-in-demand-programming-languages/
https://bootcamp.berkeley.edu/blog/most-in-demand-programming-languages/
https://learn.microsoft.com/en-us/azure/azure-functions/supported-languages#languages-by-runtime-version/
https://learn.microsoft.com/en-us/azure/azure-functions/supported-languages#languages-by-runtime-version/
https://azure.microsoft.com/en-us/blog/announcing-general-availability-of-azure-functions/
https://azure.microsoft.com/en-us/blog/announcing-general-availability-of-azure-functions/
https://pillow.readthedocs.io/en/stable/
https://github.com/giltene/wrk2
https://github.com/wg/wrk
https://github.com/spcl/serverless-benchmarks/issues/176
https://github.com/spcl/serverless-benchmarks/issues/177

BIBLIOGRAPHY 56

[67]

[68]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

——. (2023) Issue discussion on github: Regression tests are not
passing for azure. Accessed on September 7, 2023. [Online]. Available:
https://github.com/spcl/serverless-benchmarks/issues /178

——. (2023) Issue discussion on github: Documentation for outputted
results. Accessed on September 13, 2023. [Online]. Available: https:
//github.com/spcl/serverless-benchmarks/issues /180

Google. (2023) Welcome to colaboratory. Accessed on September
12, 2023. [Online]. Available: https://colab.research.google.com/?utm_
source=scs-index

S. Nursultan. (2023) Fork of SeBS GitHub repository. Accessed on
September 7, 2023. [Online]. Available: https://github.com/nurSaadat/
sebs

——. (2023) Fork of faasdom project. Accessed on September 9, 2023.
[Online]. Available: https://github.com/nurSaadat/faasdom

DigitalOcean. (2023) Digitalocean official website. Accessed on September
7, 2023. [Online]. Available: https://www.digitalocean.com/

DigitalOcean. (2021) How to connect to droplets with the droplet console.
Accessed on September 12, 2023. [Online]. Available: https://docs.
digitalocean.com/products/droplets/how-to/connect-with-console/

M. Copik. (2021, Jul.) SeBS: serverless benchmarks suite. [Online].
Available: https://github.com/spcl/serverless-benchmarks

Wired. (2015) The problem with putting all the world’s code
in github. Accessed on September 7, 2023. [Online]. Available:
https://www.wired.com/2015/06 /problem-putting-worlds-code-github/

M. Copik. (2023) Sebs installation. Accessed on September 6, 2023.
[Online]. Available:  https://github.com/spcl/serverless-benchmarks#
installation

C. Maharjan. (2022) Evaluating serverless computers. Accessed on
September 6, 2023. [Online]. Available:  https://repository.lsu.edu/
gradschool _theses/5648 /

M. Copik. (2023) Sebs cloud platforms configuration. Accessed on
September 6, 2023. [Online]. Available:  https://github.com/spcl/
serverless-benchmarks/blob /master /docs/platforms.md

V. Schiavoni. (2021) Faasdom installation. Accessed on September
6, 2023. [Online]. Available: https://github.com/faas-benchmarking/
faasdom#install

SciPy. Official scipy website. Accessed September 9, 2023. [Ouline].
Available: https://scipy.org/


https://github.com/spcl/serverless-benchmarks/issues/178
https://github.com/spcl/serverless-benchmarks/issues/180
https://github.com/spcl/serverless-benchmarks/issues/180
https://colab.research.google.com/?utm_source=scs-index
https://colab.research.google.com/?utm_source=scs-index
https://github.com/nurSaadat/sebs
https://github.com/nurSaadat/sebs
https://github.com/nurSaadat/faasdom
https://www.digitalocean.com/
https://docs.digitalocean.com/products/droplets/how-to/connect-with-console/
https://docs.digitalocean.com/products/droplets/how-to/connect-with-console/
https://github.com/spcl/serverless-benchmarks
https://www.wired.com/2015/06/problem-putting-worlds-code-github/
https://github.com/spcl/serverless-benchmarks#installation
https://github.com/spcl/serverless-benchmarks#installation
https://repository.lsu.edu/gradschool_theses/5648/
https://repository.lsu.edu/gradschool_theses/5648/
https://github.com/spcl/serverless-benchmarks/blob/master/docs/platforms.md
https://github.com/spcl/serverless-benchmarks/blob/master/docs/platforms.md
https://github.com/faas-benchmarking/faasdom#install
https://github.com/faas-benchmarking/faasdom#install
https://scipy.org/

BIBLIOGRAPHY 57

[81]

[83]

[84]

[36]

[87]

[83]

Docker Hub. (2019) Image layer details: google/cloud-sdk:274.0.1-
alpine. Accessed on September 13, 2023. [Online]. Available:
https://hub.docker.com/layers/google/cloud-sdk/274.0.1-alpine/images/
sha256-cc824eeb6355c¢dchIcd3dad705fdd6899d0al137154a68025df5598739f8c422f7
context=explore

—— (2022) Image layer details: google/cloud-sdk:400.0.0.
Accessed  on  September = 13, 2023. [Online].  Available:
https://hub.docker.com/layers/google/cloud-sdk/400.0.0 /images/
sha256-d7d89de58ed3a72a623736676a5106488052a720f073ba281bb20bfb9d9d7aece?

context=explore

——  (2019) Image layer details: node:10.16.2-alpine.  Ac-
cessed on September 13, 2023. [Online]. Available:
https://hub.docker.com/layers/library /node/10.16.2-alpine /images/
sha256-139c6470aa6d6468484{d38a76066632ed514¢2234afa91c¢144b6511d3c52{227
context=explore

——  (2023) Image layer  details: node:18-alpine.  Ac-
cessed on September 13, 2023. [Online]. Available:
https://hub.docker.com/layers/library /node/18-alpine/images/
sha256-982b5b6£07cd9241c9ebb163829067deac8eaefc57cfa8f31927f4b18943d9717
context=explore

Microsoft. (2023) Azure cli release notes. Accessed on September 13,
2023. [Online]. Available: https://learn.microsoft.com/en-us/cli/azure/
release-notes-azure-cli

——. (2021) Download .net core 2.1. Accessed on September 13,
2023. [Online]. Available: https://dotnet.microsoft.com/en-us/download/
dotnet/2.1

Google. (2023) .net github repository. Accessed on September 13,
2023. [Online]. Available: https://github.com/dotnet/core/blob/main/
release-notes/6.0/6.0.22/6.0.22.md

Amazon. (2023) Custom lambda runtimes. Accessed on September 14,
2023. [Online]. Available: https://docs.aws.amazon.com/lambda/latest/
dg/runtimes-custom.html


https://hub.docker.com/layers/google/cloud-sdk/274.0.1-alpine/images/sha256-cc824eeb6355cdc59cd3dad705fdd6899d0a137154a68025df5598739f8c422f?context=explore
https://hub.docker.com/layers/google/cloud-sdk/274.0.1-alpine/images/sha256-cc824eeb6355cdc59cd3dad705fdd6899d0a137154a68025df5598739f8c422f?context=explore
https://hub.docker.com/layers/google/cloud-sdk/274.0.1-alpine/images/sha256-cc824eeb6355cdc59cd3dad705fdd6899d0a137154a68025df5598739f8c422f?context=explore
https://hub.docker.com/layers/google/cloud-sdk/400.0.0/images/sha256-d7d89de58ed3a72a623736676a5106488052a720f073ba281bb20bfb9d9d7aee?context=explore
https://hub.docker.com/layers/google/cloud-sdk/400.0.0/images/sha256-d7d89de58ed3a72a623736676a5106488052a720f073ba281bb20bfb9d9d7aee?context=explore
https://hub.docker.com/layers/google/cloud-sdk/400.0.0/images/sha256-d7d89de58ed3a72a623736676a5106488052a720f073ba281bb20bfb9d9d7aee?context=explore
https://hub.docker.com/layers/library/node/10.16.2-alpine/images/sha256-f39c6470aa6d6468484fd38a76066632ed514c2234afa91c144b6511d3c52f22?context=explore
https://hub.docker.com/layers/library/node/10.16.2-alpine/images/sha256-f39c6470aa6d6468484fd38a76066632ed514c2234afa91c144b6511d3c52f22?context=explore
https://hub.docker.com/layers/library/node/10.16.2-alpine/images/sha256-f39c6470aa6d6468484fd38a76066632ed514c2234afa91c144b6511d3c52f22?context=explore
https://hub.docker.com/layers/library/node/18-alpine/images/sha256-982b5b6f07cd9241c9ebb163829067deac8eaefc57cfa8f31927f4b18943d971?context=explore
https://hub.docker.com/layers/library/node/18-alpine/images/sha256-982b5b6f07cd9241c9ebb163829067deac8eaefc57cfa8f31927f4b18943d971?context=explore
https://hub.docker.com/layers/library/node/18-alpine/images/sha256-982b5b6f07cd9241c9ebb163829067deac8eaefc57cfa8f31927f4b18943d971?context=explore
https://learn.microsoft.com/en-us/cli/azure/release-notes-azure-cli
https://learn.microsoft.com/en-us/cli/azure/release-notes-azure-cli
https://dotnet.microsoft.com/en-us/download/dotnet/2.1
https://dotnet.microsoft.com/en-us/download/dotnet/2.1
https://github.com/dotnet/core/blob/main/release-notes/6.0/6.0.22/6.0.22.md
https://github.com/dotnet/core/blob/main/release-notes/6.0/6.0.22/6.0.22.md
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html

	Defining the Challenge
	Adoption of the Cloud
	Cost of Migration
	Case Study
	The Problem of Reproducibility
	Scope
	Research questions
	Contributions
	Limitations

	Understanding the Landscape
	Cloud Computing
	Serverless Computing
	Serverless Application
	Function as a Service

	Performance Benchmarking
	Benchmarking Basics
	Serverless Benchmarking

	Benchmarks of Interest
	FaaSdom
	SeBS


	Experimental Process and Analysis
	Proposed Methodology
	Experimental Setup
	Execution
	SeBS
	FaaSdom

	Data Analysis
	SeBS
	FaaSdom

	Evaluation
	SeBS
	FaaSdom


	Conclusions and Outlook
	Key Findings
	Future Work


