

Facoltà di Ingegneria - Dipartimento di Tecnica e Gestione dei Sistemi Industriali

 Erasmus Training - project

Registration n°___________________________ Faculty __

Name of trainee___

Born in __________________________country _______________________on _____________________

Full andress __ tel ____________________

Premises where the training takes place (factory, department, office) please write :

Period of training lasting : _____months , from__________to__________Hours of attendente__________

Tutor of the training(Supervisor at the Host University), please write name and full postal andress

Training aims and methods __

Final achievements______________________________________n°of credits/ECTS(if avalable)__________

Insurance policies:

. Accident on the training place is managed by INAIL (National Institute for insurance against industrial accident)

.Third party hability policy nR:250270037 provided by Generali Assicurazioni insurence company

For more info you can contact Servizio di Contabilità, Università degli Studi di Padova (Riviera Tito Livio, 6, 35123, Pdova;

tel*390498273154, e-mail: assicurazioni@unipd.it or visit http//www.unipd.it/studenti/assicurazioni/index.htm

Place____________________________________date___

Read, approved and signed by tutor__

Signed by promoter (Supervisor at Padua University)__

Vicenza______________

Università degli Studi di Padova
TESI DI LAUREA MAGISTRALE IN INGEGNERIA DELL’INNOVAZIONE DEL

PRODOTTO
Facoltà di Ingegneria

Input synchronization of a real car
and its real-time simulator

Advisor: Prof. Alberto Trevisani1

Co-advisor: Prof. Miguel Á. V. Naya2

Student: Pasquale Gallo
Matriculation number: 1013490

Dipartimento di tecnica e gestione dei sistemi industriali
Academic year 2011-2012

http://www.unipd.it/
http://www.gest.unipd.it/it/didattica/corsi-di-laurea-magistrale/corso-di-laurea-magistrale-in-ingegneria-dellinnovazione-del-prodotto
http://www.gest.unipd.it/it/didattica/corsi-di-laurea-magistrale/corso-di-laurea-magistrale-in-ingegneria-dellinnovazione-del-prodotto
http://www.ing.unipd.it/index.php?page=Home
http://www.gest.unipd.it/it/personale/professori-e-ricercatori/trevisani-alberto/trevisani-alberto
http://lim.ii.udc.es/people.es.html
mailto:pasquale.gallo.86@gmail.com
http://www.gest.unipd.it

1Università degli studi di Padova, Dipartimento di Tecnica e Gestione dei Sistemi Industriali,
Vicenza.

2Universidad de La Coruña, Departemento de Ingeneŕıa Industrtial II, Ferrol, Spain.

”It is by logic we prove, but by intuition we discover.”
(Leonardo da Vinci)

Abstract

Il presente lavoro riassume il progetto di tesi svolto all’estero, presso Universidad de La
Coruña, nell’arco di sei mesi. L’attività è stata condotta nel Laboratorio de Ingenieŕıa
Mecánica (LIM) di Ferrol, punto di riferimento anche a livello internazionale nell’ambito
di multibody system dynamics e simulazione dinamica.

Il progetto ha avuto come obiettivo lo sviluppo di un interfaccia tra un prototipo
reale di un autoveicolo, ed il suo simulatore dinamico real-time, prestando attenzione
alla sincronizzazione in termini di tempo tra le azioni dell’utente sul prototipo e
le variabili inviate al simulatore. La simulazione on-board cos̀ı eseguibile è un passo
fondamentale per estendere le applicazioni del simulatore al di fuori del campo scientifico
ed accademico. Infatti i benefici dal punto di vista industriale sono molti: primo tra
tutti l’incremento della sicurezza dei veicolo terrestri e non solo.

Per simulatore dinamico si intende un software, largamente utilizzato in molti
campi dell’ingengneria, che ha la capacità di simulare una moltitudine di modelli
multibody, analizzando sia gli aspetti cinematici che quelli dinamici del sistema. Questo
aspetto distingue un simulatore dinamico da una comune animazione 3D, la quale è solo
approssimativamente capace di simulare la cinematica di semplici sistemi. L’ausilio di un
simulatore dinamico permette l’analisi di sistemi complesssi, composti da un elevatissimo
numero di elementi, grazie all’implementazione di opportuni metodi numerici capaci di
individuare le soluzioni delle equazioni differenziali non-linari risultanti da questo tipo
di analisi.

Il prototipo oggetto dello studio è stato dotato di un sistema di acquisizione dati
(DAS) per campionamenti ad alta frequenza. Dopo un attenta analisi del simulatore,
sono state scelte tre variabili di input: pressione del freno, posizione del volante,
posizione dell’acceleratore. Le grandezze in esame sono state monitorate grazie ad
opportuni sensori: sensore di pressione ed econders.

Attraverso un linguaggio di programmazione proprio del sistema di acquisizione dati
è stata sviluppata un applicazione capace di gestire il DAS, elaborare le informazioni
provenienti dai sensori e di inivare le grandezze di interesse al simulatore. Più in
dettaglio: il sistema di acquisizione dati riesce a monitorare di continuo le tre variabili
di interesse; queste vengono lette e organizzate in blocchi; ogni blocco contiene le
tre informazioni che approssimativamente possono essere riferite al medesimo istante
temporale; tra tutti i blocchi, l’ultimo, che è il più recente in termini di tempo, viene
inviato a delle specifiche funzioni capaci di elaborare le informazioni e determinare le
grandezze di interesse del simulatore, ovvero pressione del freno, coppia motrice alle
ruote, posizione del volante, velocità angolare del volante, accelerazione angolare del
volante. Il simulatore a questo punto ha a disposizione tutte le informazioni per elaborare
la simulazione. Un aspetto molto importante da sottolineare è la coerenza in termini di
tempo tra l’istante temporale della chiamata del simulatore e l’istante temporale a cui
si riferiscono le grandezze. Grazie infatti alla metodologia di trasferimento adottata,
si riesce ad ottenere una certa sincronizzazione tra le azione dell’utente e le variabili
inviate al simulatore.

I risultati raggiunti sono molto promettenti. In particolare la simulazione on-board
è resa possibile: all’esecuzione della manovra del prototipo reale, corrisponde una
simulazione in tempo reale visibile su un piccolo monitor a bordo macchina, ottenendo
un tempo di trasferimento delle informazioni di circa 0.43 ms.

http://www.udc.es/
http://www.udc.es/
http://lim.ii.udc.es/index.es.html
http://lim.ii.udc.es/index.es.html
http://lim.ii.udc.es/index.es.html

Acknowledgements

At the end of an hard and long work, spend some words for the people that help us is
a pleasure and an obligation.

I would thank, first of all, the Professor Alberto Trevisani, for giving me the
opportunity to carry out the present work abroad, and to live an amazing life and
educational experience. Moreover he supervised my project. I would thank all my

academics friends, for making incredible the last two years. I must mention, moreover,
all the teachers of the master Degree, for their commitment and perseverance. A

special thanks to Professor Persona, who has always been a supporter of our academic
course, to Prof. F. Berto, for his patience had towards me despite my numerous mails

due to request of “further informations”. Thanks also to Prof. P. Lazzarin, for the
passion and commitment invested in education.

I would like to thank the Laboratorio de Ingenieŕıa Mecánica of Ferrol. Thanks to Prof.
Naya, Prof. Cuadrado and Emilio, for allowing me to do this job. A special thanks is
for Roland Pastorino, for his enormous help and for the support. Thanks to Alberto,
first of all for his pleasantness, and after for the help in the code programming aspects.
A huge thank you to Pedro, Amelia, Florian, David, for giving me the welcome, and
for making me feel like at home. I will never forget the sympathy of Urbano, who i

hope to meet in a concert, one day. A final thanks to all the people of the LIM for the
wonderful moments shared.

I would love to thank my family for supporting me financially and morally not only in
the last two years, but during the entire studies career. Thanks to my friends Fabio,
Kris, Matt, Piga, who have always been close to me, despite the university often has
taken me away for long periods. Thanks to my room-mates Vicentini: Salvo, Ludo,

and Raff, for the wonderful and hilarious shared moments. Thanks to Alberto Hyvoz,
first of all, a friend of mine, and for being present with his cheerfulness and kindness.
Thanks to Paolino, for being a great adventure companion in Spain, and a huge hug to
Noelia, Miguel, José, and all my new friends that i have leaved in Spain and beyond.

Dulcis in fundo, the most important “thank you” is for Carlotta, who has always
encouraged me, supported, pushed, in the past three years. If i got where i am, i owe it

especially to her.

Agradecimientos

Al final de un largo viaje es más un placer dar las gracias a todos los que me han
acompañado y han estado a mi lado.

Me gustaŕıa agradecer ante todo al profesor Alberto Trevisani, por haberme dado la
oportunidad y la confianza de desarrollar el presente trabajo de tesis en el extranjero,

regalándome una experiencia formativa y personal inolvidable. Además le doy las
gracias por el trabajo de supervisión del presente proyecto. Agradezco a todos mis
compañeros de curso, con los que he pasado dos años incréı. Agradezco a todos los

profesores del grado de “Innovazione del Prodotto”, por el distinguido trabajo
desarrollado con empeño y constancia. Un agradecimiento especial al Profesor A.

Persona, desde siempre defensor de nuestro curso, y también al Profesor Filippo Berto,
por la paciencia demostrada conmigo a pesar del persistente tráfico de emails en este
ultimos dos años. Un agradecimiento además al Profesor P. Lazzarin, por la pasión y el

empeño invertidos en la enseñanza.

No puedo quedar sin hacer un agradecimiento tambié al Laboratorio de Ingenieŕıa
Mecánica de Ferrol. Un profundo agradecimiento para el Prof. Naya, el Prof.

Cuadrado y a Emilio, por permitirme desarrollar el presente trabajo poniendo a mi
disposición todos los instrumentos necesarios. Merece un reconocimiento especial por

su enorme ayuda, y por su supervisión, Roland Pastorino, que me ha respaldado
siempre. Gracias a Alberto, ante todo por la simpat́ıa, pero tambié para la ayuda que
me has dado en todo lo relativo a los códigos de programación. Un gracias de corazón
a Pedro, Amelia, Florian y David, por darme la bienvenida ya desde el primer d́ıa y

por hacerme sentir como en casa. No olvidaré jamás a Urbano por la contagiosa
simpat́ıa, indudablemente nos encontraremos en algún concierto! Un gracias final a

todas las personas del LIM, por los estupendos momentos compartidos.

Doy las gracias a mi familia por apoyarme económicamente y moralmente no sólo en
los últimos dos años, sino durante toda la duración de mis estudios. Gracias a mis

amigos, Fabio, Kris, Matt, Piga, que siempre han estado cerca de mi, aunque la
universidad a menudo me ha llevado lejos por largos peŕıodos. Gracias a mis

compañeros de Vicenza: Salvo, Ludo, Raff, por los muchos momentos compartidos, y
por las inmensas carcajadas. Un gracias a Alberto Hyvoz, en primer lugar un amigo,
por darme un techo en los últimos dos años, y por haber estado siempre presente con
su jovialidad y amabilidad. Un gracias a Paolino, por haber sido un gran compañero
de aventura en tierra española. Y un enorme abrazo a Noelia, Miguel, José, y a todos

mis nuevos amigos españoles.

Un último agradecimiento, pero sin duda el más importante es para mi novia, que
siempre me ha alentado, apoyado e impulsado en los últimos tres años,

acompañándome hasta la consecución de esta especial meta de mi vida. Gracias de
corazón Carlotta.

Ringraziamenti

Alla fine di un lungo percorso, è sia un piacere, che un dovere, ringraziare chi ci ha
accompagnato e stato vicino.

Vorrei ringraziare innanzitutto il Professor Alberto Trevisani, per avermi dato la
possibilità (e la fiducia) di svolgere il presente lavoro di tesi all’estero, regalandomi un

esperienza di vita e formativa indimenticabile. Lo ringrazio inoltre per il lavoro di
supervisione del presente progetto. Ringrazio tutti i miei compagni di corso, con i quali
ho passato due anni davvero bellissimi. Ringrazio tutti i Professori del corso di Laurea
di Innovazione del Prodotto, per l’egregio lavoro svolto con impegno e costanza. Un

particolare ringraziamento al Professor Persona, da sempre sostenitore del nostro corso,
ed al Professor Filippo Berto, per la pazienza avuta nei miei confronti nonostante le
asillanti mails dovute a richieste di approfondimenti. Un ringraziamento inoltre al

Professor P. Lazzarin, per la passione e l’impegno investito nell’insegnamento.

Non posso non ringraziare il Laboratorio de Ingenieŕıa Mecánica di Ferrol. Grazie al
Prof. Naya, al Prof. Cuadrado e ad Emilio, per avermi permesso di svolgere il presente

lavoro, mettendomi a disposizione tutti gli strumenti. Un grazie speciale per il suo
enorme aiuto e per la sua supervisione, a Roland Pastorino, che mi ha sempre

supportato. Grazie ad Alberto, innanzitutto per la simpatia e poi per l’aiuto negli
aspetti di programmazione. Un enorme grazie a Pedro, Amelia, Florian, David, per
avermi dato il benvenuto sin dal primo giorno e per avermi fatto sentire a casa. Non
dimenticherò poi la simpatia di Urbano, che spero di incontrare a qualche concerto. Un

grazie finale a tutte le persone del LIM, per i momenti stupendi condivisi.

Ringrazio la mia famiglia, per avermi sostenuto economicamente e moralmente non solo
negli ultimi due anni, ma durante tutta la durata del mio percorso di studi. Grazie ai

miei amici Fabio, Kris, Mattia, Piga, da sempre vicini, nonostante l’Università mi
abbia spesso portato lontano per lunghi periodi. Un grazie ai miei coinquilini Vicentini:
Salvo, Ludo, Raff, per i tanti momenti condivisi e per le risate. Un grazie ad Alberto
Hyvoz, prima di tutto amico, per avermi dato un tetto negli ultimi due anni, per essere
stato sempre presente con la sua allegria e gentilezza. Un grazie a Paolino, per essere
stato un grande compagno di avventura in terra spagnola, ed un enorme abbraccio a

Noelia, Miguel, José ed a tutti i miei nuovi amici che lascio in Spagna e non solo.

Un ultimo grazie, ma sicuramente il più importante, è per Carlotta, che mi ha sempre
incoraggiato, sostenuto, spinto, negli ultimi tre anni. Se sono arrivato dove sono, lo

devo sopratutto a lei.

Table of Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Background . 3
1.2 Objectives . 5
1.3 Thesis structure . 5

2 Basic concepts of multibody systems 7
2.1 Definitions . 9
2.2 MBS elements representation . 10

2.2.1 Types of coordinates . 10
2.2.2 Natural coordinates . 12

2.3 Introduction to MBS equations of motion 15
2.4 Multibody systems simulator and real-time concept 18

3 X-by-wire prototype: features of hardware and simulator 21
3.1 Hardware configuration . 23

3.1.1 Prototype description . 23
3.1.2 Sensors . 26
3.1.3 Data acquisition system . 30

3.2 Simulator and simulation environment 33
3.2.1 Brief numerical methods and analytical considerations 33
3.2.2 Code and software arrangement 34

4 Real car-Simulator communication interface development 39
4.1 Overall considerations . 41

4.1.1 Previous layout of simulations management 41
4.1.2 Aims and critical factors of the communication interface 41

4.2 Simulator input variables . 45
4.2.1 Drive wheels torque . 46
4.2.2 Position, speed, and acceleration of the steering wheel 50
4.2.3 Brake pressure . 58

4.3 System communication tools . 59
4.3.1 Introduction to DAS management 59
4.3.2 Communication pipes . 60
4.3.3 Strategies available for data transfers 62

xiii

TABLE OF CONTENTS

4.3.4 Strategy chosen and developed for data transfers 63
4.4 Data sampling configuration . 71
4.5 Whole application and buffers system 74

5 Conclusions 79
5.1 Goals achieved, possible applications and future developments 81

Appendix A: main.cpp and guiado.f90 changes 85

Appendix B: header files 87

Appendix C: DapControl thread 89

Appendix D: derived function 93

Appendix E: compute-par function 95

Appendix F: brake-pressure and time functions 97

Bibliography 99

xiv

List of Figures

2.1 Four-bar articulated quadrilateral . 9
2.2 RSCR spatial mechanism . 10
2.3 Solutions of the position problem in a four-bar mechanism 12
2.4 Types of coordinates used in multibody formulation 12
2.5 Four-bar articulated quadrilateral in natural coordinates 14
2.6 Multibody model of a car suspension and steering system 19
2.7 3D multibody simulator model of a car suspension and steering system 19

3.1 X-by-wire prototype . 23
3.2 TBW system assembled . 24
3.3 BBW system assembled . 25
3.4 Diagram of SBW system . 25
3.5 Encoder with spinning codewheel and stationary mask 28
3.6 Encoder sensor of steering wheel . 28
3.7 Encoder sensor of throttle . 29
3.8 Brake pressure sensor assembled . 29
3.9 Connection scheme of DAS, PC, sensors, drivers and actuators 32
3.10 3D prototype-model of simulator . 33
3.11 Real test track photo . 37
3.12 3D model of test track . 37

4.1 Steps scheme of a simulation without the communication system developed 42
4.2 General scheme of the communication system developed 42
4.3 First In First Out approach . 44
4.4 Engine torque curve . 48
4.5 Working scheme of the drive wheels torque estimation 50
4.6 Working scheme of the steering wheel position, velocity and acceleration

computation . 51
4.7 Steering angle of the test maneuver . 52
4.8 Comparison within the maneuver not smoothed and smoothed 53
4.9 Deviation within the maneuver not smoothed and smoothed 53
4.10 Reference derivatives obtained trough a finite difference method forward 55
4.11 First derivative obtained trough the one sided smooth differentiators

N = 4 . 56
4.12 First derivative obtained through a finite difference method backward . 56
4.13 Second derivative obtained trough the one sided smooth differentiators

N = 4 . 57

xv

LIST OF FIGURES

4.14 Second derivative obtained trough a finite difference method backward 57
4.15 Working scheme of the brake pressure estimation 59
4.16 Bytes transferred during 1000 loops . 70
4.17 Bytes transferred during an entire maneuver 70
4.18 Working detailed scheme of the application developed 76
4.19 Values assumed by the first and last block stored in bufferIn 77
4.20 Correspondence between the most recent data and the value stored in

bufferOut . 78

xvi

List of Tables

3.1 Gear ratios of the prototype . 26
3.2 List of the sensors fitted in the prototype 27

4.1 Variables monitored and simulator inputs 46
4.2 Limit values of the function f , and equivalent digital and angle forms . 49
4.3 One sided smooth differentiators formulas 54
4.4 Sensor output, digital value, and pressure value correspondences 58
4.5 Data transferred and execution time for each test maneuvers 69

xvii

Chapter 1

Introduction

1

1.1 Background

1.1 Background

The present paper was developed at Universidad de La Coruña1 (UDC), collaborating
with Laboratorio de Ingenieŕıa Mecánica (LIM), during a six months working period.
The main work area of LIM is multibody system dynamics and simulation environment.
Nowadays, the term multibody systems is related to a large number of engineering
fields like robotics, dynamics and vehicles. The reduction in cost, risk and time during
the development is one of the most relevant contributions of MB techniques. The power
of a multibody system is the possibility to create an algorithmic, computer-aided way
to model, analyse, simulate and optimize arbitrary motion of possibly thousands of
interconnected bodies. Different approaches are available to model a vehicle but the
more detailed the model is, the more accurate the simulation predictions of the future
vehicle dynamics are. However, the multibody models and formulations are strictly
related to the final target pursued (e.g. handling analysis, ride analysis, durability
analysis, real-time applications, crash analyses) (Rauh, 2003).

Natural coordinates and a self-developed multi-body formulation (Cuadrado et al.,
1997; Garćıa de Jalón and Bayo, 1994; Bayo et al., 1991) that enables the simulation of
complex systems to run in real-time with efficiency and robustness are the preferred
choices to model vehicles in the LIM. The research lines of the laboratory are in detail:
the investigation of efficient methods for multibody system dynamics (Bayo et al., 1991;
Orden et al., 2007), which focus on achieving fast simulations, the purpose being either
to run human- or hardware-in-the-loop applications which require real-time performance,
or computationally intensive algorithms like those appearing in dynamic optimization;
the implementation of simulators of vehicles and machinery, indeed efficient methods
for the dynamics of multibody systems may be applied to the construction of simulators
of vehicles and machinery for personnel training or evaluation, interfaces assessment; the
study of virtual reality in the product life-cycle, which deals with being able to compute
the real physical behaviour of virtual entities, may serve to enhance virtual reality
applications with new features, which enable their efficient use in the different stages of
any industrial product life-cycle like design, analysis, testing, manufacturing, assembly,
maintenance, and end-of-life (currently, an application for the virtual assembling and
disassembling of mechanisms is being developed); the study of the human body (Alonso
et al., 2012; Font-Llagunes et al., 2011), that can be considered as a multibody system
composed by rigid links (the bones) connected by joints and actuated by muscles; naval
and oceanic applications, indeed multibody dynamics techniques have also application
to these two fields which are so relevant for the local economy, so that the Laboratory
is especially committed to develop research on them; at least, efficient methods for
the dynamics of multibody systems find application in the control of ground vehicles
(Cuadrado et al., 2012; Pastorino et al., 2011, 2010), since they serve to build models
which can be used either to design and test controllers or to make part of the controllers
themselves.

The project presented in this work is part of a broader research, which has been
under development for many years, regarding the handling and the automation of land
vehicles. Especially, the main objective broader research was to develop a car prototype
and its simulator, in order to execute a real-time simulation. The validation of the
multibody models, theory and implementation aspect, were other issues addressed.

1Campus of Ferrol, Spain.

3

http://www.udc.es/
http://www.udc.es/
http://lim.ii.udc.es/index.es.html
http://lim.ii.udc.es/index.es.html
http://lim.ii.udc.es/index.es.html
http://lim.ii.udc.es/index.es.html

Chapter 1. Introduction

Moreover, the LIM has recently begun a research on the use of real-time vehicle MB
models in state observers. Using state estimation techniques and highly-detailed vehicle
models should provide information to the controllers that is not available when using
classical vehicle models (Pastorino, 2012). Three papers describe all the steps of the
broader project: Naya (2007); Sanjurjo (2011); Pastorino (2012).

Naya (2007) asserts that the real-time multibody dynamic is the key to achieve
better results in simulations field and in land vehicles control. Moreover he shows how
it is possible to exploit a multibody formulation in order to realize detailed models of
vehicles, which are suitable for real-time simulations (human- or hardware-in-the-loop)
of complex maneuvers also. In his work, it has been presented the following topic: the
built operations of a car prototype provided with sensors and actuators; the development
of a PC application that is able to find solution of a multibody equations of motion
reaching a very high correctness; implementation of a control sub-system able to repeat
maneuvers; experimental validation of the application developed.

Sanjurjo (2011) developed a multibody model related to state observers theory.
In fact, also a good dynamic model has differences in the results if compared to the
actual prototype. These divergences are resulted from simplifications of the model,
from external noises or from errors due to impossibility to know every parameters with
such precision. A good way to check these errors, when the real prototype and real-time
simulation are available, is to evaluate the errors comparing the behaviours of the real
prototype and of the simulator. After the evaluation of the errors it is possible to
introduce some adjustments in order to obtain consistent results.

Pastorino (2012) focuses on the study of the validity of real-time vehicle multibody
models. For this purpose, a vehicle prototype has been built and automated in order to
repeat reference maneuvers. The numerous sensors on the prototype gather the most
relevant magnitudes of the vehicle motion (e.g. roll-pitch-yaw rates, wheel speeds).
Two low speed maneuvers involving the longitudinal and lateral vehicle dynamics have
been repeated several times in a test area. A real-time multibody model of the vehicle
prototype has been prepared as well as a simulation environment that includes a close
graphical environment, a true road profile and collision detection. Subsystems like
brakes or tires have also been modeled. Both test maneuvers have been repeated
with the developed multibody model in the simulation environment using inputs that
have been measured experimentally. Selected simulation variables have then been
compared to their experimental counterparts provided with a confidence interval that
characterizes the field testing process errors. The results of the comparisons have
then been interpreted to extract useful guidelines to build real-time vehicle multibody
models. Once a real-time vehicle model is validated, it not only raises the possibility to
be used in hardware or human-in-the-loop applications but also in on-board stability
controllers. Nowadays simplified vehicle models coming from the classical vehicle
dynamics theory are commonly employed in on-board stability controllers. At least, he
shows the developed implementation of the Extended Kalman filter, a common state
observer for non-linear systems, with multibody models and, after that presents several
new implementations using this filter and other filters coming from the family of the
sigma-point Kalman filters.

Summarizing, in this context, an X-by-wire car prototype has been built and
provided with a data acquisition system. Both are described in § 3. On the other
side, through natural coordinates and a self-developed multibody model formulation, a

4

http://lim.ii.udc.es/index.es.html

1.2 Objectives

simulator of the prototype has been developed.
The present paper deals with the current stage of the development, when the need

of a synchronize communication interface between the simulator and the real prototype
has begun meaningful. Indeed, send a coherent data in term of time is an unavoidable
condition to make available the execution of a real-time simulation on-board; moreover,
of this way, different behaviours of the virtual prototype and the real prototype gain
evidence. The on-board execution is an essential step to extend the utility of the
simulator outside the scientific field. In fact, benefits from an application point of
view, in the automotive fields, are several, for example to improve security issues: not
only (or no longer) a passive system which can execute the commands necessary to
bring the vehicle back under control after the detection of unstable handling (like all
the common equipments), but a system which is able to prevent an event and takes
decisions in real-time. At least, thanks to the communication interface developed and
to the on-board simulation execution, it is possible trough a state observers technique
to fix potential simulation errors and to obtain more informations about the vehicle
handling than the number of magnitudes monitored. All others future avails and the
results obtained are discussed in § 5 exhaustively.

1.2 Objectives

The main object of this work was to establish a communication interface between
a prototype multibody model simulator and the real buggy-prototype, in order to
execute the virtual model on-board, employing the signals from sensors through a
data acquisition system and, most important, paying attention to the synchronization
in term of time between the user actions on the real prototype and the values sent
to the simulator. Synchronization means: the real car and the simulator receive the
same inputs at the same time. Obviously, this is an ideal condition, and only an
approximation is achievable. The target was to obtain a data transfer time as small
as possible, or at least, less than the integration time of the simulator (i.e. 5 ms).
Furthermore, it is important to reach the main objective using an as small as possible
number of sensors, cause it is essential to obtain a low-cost solution.

The results obtained are very promising, better than expected, with a transfers data
time less than 1 ms, monitoring only three magnitudes (i.e. brake pressure, steering
wheel angle, accelerator pedal angle).

1.3 Thesis structure

The thesis is structured as follows:

� Chapter 1 is a brief introduction about the present work. More precisely, an
overview about the past-works that make this project achievable, the motivations
and the thesis structure are presented.

� Chapter 2 defines the basic concepts of multibody system dynamics, which are
helpful to contextualize the present thesis and to give a ready-to-use content to
understand some key-words used.

5

Chapter 1. Introduction

� Chapter 3 deals with the hardware instruments and the simulator involved
in the present project. The test buggy, the digital acquisition system and the
sensors utilized are extensively described. Moreover, the simulator of the buggy
is presented, paying attention on the numerical method used and on the code-
software arrangement.

� Chapter 4 treats in depth the heart of the present work: the development
of the interface between the real prototype, the digital acquisition system and
the simulator. An introduction about the aims and critical factors is given, in
order to better understand the choices made during the development; after, the
simulator input variables are presented, paying attention on the data processing
and the configuration of sampling; subsequently, all the strategies available and
the strategy chosen for data transfers are explained, discussing the results at the
end; lastly, the general structure of the application developed is shown, in order
to better understand how the implemented functions work together, and how the
buffers system is structured. Moreover, all the sections are provided with the
relative implemented code as example.

� Chapter 5 draws the conclusions and the possible future developments.

To complete the thesis with further details, the code developed is collected at the end,
in different appendixes.

6

Chapter 2

Basic concepts of multibody
systems

7

2.1 Definitions

2.1 Definitions

In the book by Garćıa de Jalón and Bayo, a multibody system (MBS) (e.g. Fig. 2.1) is
defined as follows:

“It is an assembly of two or more rigid bodies imperfectly joined together, having
the possibility of relative movement between them” (Garćıa de Jalón and Bayo,
1994).

The term rigid body implies that distance between any two given points of the body
under consideration remains constant at all time, in other words, the body deformation
is neglected. Relative motion of the interconnected bodies is kinematically constrained
because joints allow one or more degrees of freedom and constraint others. For example,
in the case of plane systems, a prismatic joint allows one relative translation while
a revolute one allows one relative rotation. Sometimes, the bodies are not directly
connected, but related by force transmission deformable elements, like springs or
dampers. Because the variety of joints and interconnection possibilities, a system could

18 2. Dependent Coordinates and Related Constraint Equations

An important aspect of the dependent coordinates is precisely their
dependent nature, or in other words, the fact that they are related by algebraic
constraint equations in a number equal to the difference between the number of
dependent coordinates and the number of degrees of freedom. Constraint
equations are generally nonlinear and play a main role in the kinematic and
dynamic analysis of multibody systems. Therefore, the description of the
dependent coordinates included below and their comparative study will be
completed with the study of the specific constraint equations generated by each
one of the types of dependent coordinates. The concept of constraint equation is
not complicated and neither is its mathematical formulation. A very simple
example will be presented next.

Example 2.1

Figure 2.2 illustrates a four-bar mechanism modeled with natural coordinates, i.e.
with the Cartesian coordinates of points 1 and 2. There are four dependent coordi-
nates (x1, y1, x2, y2) and the mechanism has one degree of freedom. Hence, there
should be three constraint equations relating the four dependent coordinates.

The constraint equations shall guarantee that points 1 and 2 move in accordance
with the limitations imposed on them by the three moving bars of the four-bar
mechanism. It is precisely from there that the three constraint equations arise: from
the fact of imposing the rigid body condition (a constant distance between points) on
the three elements of the mechanism. These conditions can be formulated
mathematically as follows:

 (x1 – xA)2
 + (y1 – yA)2

 – L2
2
 = 0

 (x2 – x1)
2
 + (y2 – y1)

2
 – L3

2
 = 0

 (x2 – xB)
2
 + (y2 – yB)

2
 – L4

2
 = 0

These are the three constraint equations that correspond to the mechanism of
Figure 2.2. It may be seen that they are nonlinear equations (quadratic in this case).
A similar system of equations can be established for any other type of coordinates
and for any other multibody system.

2

3

4

A

1

2

B

Figure 2.2. Representation of a four-bar mechanism using natural coordinates.

Fig. 2.1: Four-bar articulated quadrilateral

be very complex, even more if it is a 3D model, as shown in Fig. 2.2, which involves
the third dimension.
Overall, the multibody systems are classified as follows:

� Closed-chain: MBS composed of bodies that are connected to other elements in
order to create only closed loops. The four-bar mechanism is an example.

� Open-chain1: one or more bodies of MBS doesn’t create a closed loop, such is a
double pendulum or a robot-hand.

In order to study a MBS, the following analyses can be performed :

� Kinematic analysis. It deals with the study of system motion independently of
the forces that produce it. Only the position, velocity and acceleration of MBS
elements are involved, so it is useful mostly to study the trajectory of bodies.
Merely, the interaction between geometry and motions is obtained and/or analysed.
In a kinematic analysis, a driving element2 must be kinematically prescribed,
while the motions of all the other elements are obtained using kinematic constraint

1Open and closed chain can be furthermore simple, composed, planar, three-dimensional.
2More than one driving element can be identified and described.

9

Chapter 2. Basic concepts of multibody systems

equations that describe the topology of the system. In some simple cases, the use
of trigonometric formulas could be adequate. The main kinematic problems are:
initial position, finite displacement, velocity and acceleration analysis, kinematic
simulation (Garćıa de Jalón and Bayo, 1994).

� Dynamic analysis. It deals with the study of the system motion as response to
the forces that act on it. Usually, the motion of the system is the unknown factor
which must be determined through the analysis. This kind of study can be more
difficult than the kinematic one because it involves all kind of forces (i.e external
and internal reaction forces, moments) and inertial characteristic parameters (i.e.
inertia tensor and mass) of each element. The main dynamic problems are: static
equilibrium position, linearized dynamics, inverse dynamic, forward dynamics
(Garćıa de Jalón and Bayo, 1994).

44 2. Dependent Coordinates and Related Constraint Equations

not parallel to the axis, will maintain a constant angle. Assuming that the angle
does not have a value close to 0o, this condition can be imposed by means of the
scalar product of vectors as follows:

 (A i pi
i) ⋅ (A j pj

j) – LPi Oi LPj Oj cos α = 0 (2.16)

whereupon the joint is perfectly defined.
The reference point coordinates and the generation of the

corresponding constraint equations have been extensively dealt
with in Nikravesh (1988) and Haug (1989).

2.2.3 Natural Coordinates

In the case of three-dimensional multibody systems, the natural coordinates de-
scribe the position of each element by means of the Cartesian coordinates of the
basic points distributed throughout the elements and by means of the Cartesian
components of several unit vectors as seen in the example of Figure 2.25. Each
element of the system should have a sufficient number of points and vectors
linked to it; so that their motion completely defines that of the element.

Example 2.10

Figure 2.25 shows an RSCR spatial mechanism with four elements and one degree of
freedom. There are three basic moving points (1, 2 and 3) and two fixed points (A
and B). There is one moving unit vector u1 and two fixed vectors uA and uB.
Element 2 is made up of basic points A and 1, and the unit vector uA. Element 3 is

4

1

B

1

u

u

3

2

3

2

A

A

u
B

Figure 2.25. RSCR spatial mechanism.

 Fig. 2.2: RSCR spatial mechanism

2.2 MBS elements representation

2.2.1 Types of coordinates

The first issue to be considered in order to perform the analyses presented in § 2.1 is
the selection of some coordinates which allow to define at all time the position, velocity
and acceleration of the system. Several alternatives are available and none of them can
be classified as the best or the worst: each method has pros and cons, the choice is
highly dependent on the problems and the investigator’s final target.

Even though the same multibody system can be described with different types of
coordinates, this does not mean that they are all equivalent in the sense that they will
allow for formulations that are just as efficient or as easy to implement. In fact, there
are differences in computational efficiency and simplicity of implementation when using
different sets of coordinates. The different dynamic formulation may also benefit from
the characteristics of a particular set of coordinates.

Consequently, the first important question encountered at the time of modeling the
motion of a multibody is that of finding an appropriate system of coordinates. The

10

2.2 MBS elements representation

choice is between a set of independent coordinates (ICs) or dependent coordinates (DCs).
The number of independent coordinates is equal to the system degrees of freedom (DOF),
and so it is the smallest possible. Conversely, the number of dependent coordinates is
greater than the DOF and the relations among them are defined through constraint
equations, which are usually non-linear and play a main role in the kinematics and
dynamics of multibody systems. The constraint equations number r can be obtained
through the algebraic difference between the coordinates number n and the degrees of
freedom g, as shown by Eq. (2.1).

r = n− g (2.1)

Using IC generally it is not possible to define unequivocally the position of all MBS
elements, as shown in Fig. 2.3: for a certain value of the angle ϕ (independent coordinate)
two solutions of the position problem are possible for the elements 3 and 4. Anyway,
for some particular applications, independent coordinates can be very useful to describe
with a minimum data set the actual velocities or accelerations and small variations
in the position. In addition, they may lead to the highest computational efficiency.
Instead, using a set of DCs the position of each and every element is achievable and
they may lead to the most easy implementation. The conclusion is that the DCs are
much more suitable to describe a MBS while the ICs are not an acceptable solution.
In fact, dealing with complex multibody systems, it is preferable an easy and fast
implementation. Three main types of dependent coordinates are available:

� Relative coordinates. They were the first ones used in the general purpose planar
and three-dimensional analysis programs. Relative coordinates define the position
of each element in relation to the previous element in the kinematic chain by using
the parameters or coordinates corresponding to the relative degrees of freedom
allowed by the joint linking these elements (Garćıa de Jalón and Bayo, 1994).
Relative coordinates make up a system with a minimum number of dependent
coordinates. This involves a good numerical efficiency. On the other hand, the
mathematical formulation can be more involved, cause the absolute position of
an element depends on the positions of the previous elements in the kinematic
chain; they lead to equations of motion with matrices that, although small, are
full and sometimes expensive to evaluate; they require some processing work and
post processing.

� Reference point (or Cartesian) coordinates. They try to remedy the disadvantages
of the relative coordinates by directly defining, using three coordinates or param-
eters, the absolute position of each one of the element (the so called reference
point, which often is the center of gravity) with two Cartesian coordinates, and
by determining with an angle the orientation of the body in relation to a system
of inertial axes. The reference point coordinates require a much larger number of
variables that the relative coordinates and do not take into account at all if it is
an open chain configuration or not. This means that for some particular cases,
and from numerical efficiency point of view, reference point coordinates may not
be the most suitable ones. An advantage of these coordinates is that the matrices
appearing in the equations of motion are spare, meaning that they have very few
non-zero elements. On the other hand, the apparent disadvantages are their large

11

Chapter 2. Basic concepts of multibody systems

2.1. Planar Multibody Systems 17

important concepts and the differences between the various types of dependent
coordinates.

The first dilemma encountered when choosing a system of coordinates which
may describe the motion by position, velocity and acceleration is the problem of
either adopting a set of independent coordinates, whose number coincides with
the number of degrees of freedom and is thereby minimal, or adopting an ex-
panded system of dependent coordinates. The latter can describe the system
much more easily, but they are not independent but instead related through
certain constraint equations.

Studies on this subject tend to conclude that generally a system of indepen-
dent coordinates is not an acceptable solution, because it does not meet one of
the most important conditions: the system of coordinates should be capable of
unequivocally describing the position of the multibody system. Independent co-
ordinates directly determine the position of the input elements or the value of
the driven degrees of freedom but not the position of the other elements. In
order to determine the position of the entire system, the position problem must
first be solved. As was already explained in Chapter 1, there are multiple
solutions to this problem. For example, the four-bar mechanism of Figure 2.1
has one degree of freedom and one independent coordinate, the angle ϕ. It may
be seen that there are two possible solutions for the position of the elements 3
and 4. The same thing generally occurs with other multibody systems.

Once the independent coordinates have been ruled out for the description of
the position, a system of dependent coordinates larger than the number of
degrees of freedom must be adopted to determine the position of each and every
one of the bodies. Three major types of coordinates have been described in the
literature: relative coordinates, reference point coordinates, and natural
coordinates. These types of coordinates will be described in detail in the
following sections, both for planar and three-dimensional multibody systems.

2

3

4

ϕ

2'

B
A

1

2

Figure 2.1. Solutions of the position problem in a four-bar mechanism.

Fig. 2.3: Solutions of the position problem in a four-bar mechanism

Types of coordinates{Independent coordinates

Dependent coordinates
Relative
Reference points (Cartesian)
Natural (fully Cartesian)

{
Fig. 2.4: Types of coordinates used in multibody formulation

number and the difficulty to be adapted for a particular topologies such as open
kinematic chains.

� Natural (or fully Cartesian) coordinates. The prototype MBS under investigation
in this paper was modelled using mixed coordinates of natural (almost the model
totality) and relative types. For the sake of completeness, the natural coordinates
are better defined in § 2.2.2, and also an example is given in the same section.
These coordinates, as will be presented in the next section, present numerous
advantages from computational point of view.

Anyhow, a comprehensive discussion about all the coordinate systems types is exhaus-
tively treated by Garćıa de Jalón and Bayo (1994); Cuadrado (2012); Flores et al.
(2008). Figure 2.4 summarizes the previously presented coordinates types. The
same types of coordinates discussed above for planar multibody systems also apply
to three-dimensional ones. Although the formulation is at times substantially more
complicated, the basic concepts hardly differ, therefore the explanations tend to be
quite straightforward.

2.2.2 Natural coordinates

The natural coordinates in the case of planar multibody systems are made up of
Cartesian coordinates of points, called basic points, which are distributed throughout
the entire mechanism. They can be considered like as an evolution of the reference point

12

2.2 MBS elements representation

coordinates in which the points are moved to the joints or to other important points of
the elements, so that each element has at least two points. It is important to point
out that since each body has at least two points, its position and angular orientation
are determined by the Cartesian coordinates of these points, and the angular variables
used by reference point coordinates are no longer necessary. This will simplify the
formulation of the constraint equations cause the points can be shared at the joints.
The criteria to chosen the points proposed by Garćıa de Jalón and Bayo (1994) are
the follows: at least two basic points for the motion to be defined for each element;
basic points should be sheared at the revolute joints; in addition to the basic points
that model the body, any other important point of any body can be selected as a basic
point, and its coordinates would then automatically become part of the set of unknown
variables; each prismatic joint P links two bodies, and the two basic points at one of
these determine the direction of the relative motion. Although one of the basic points
of the other body can be located on the segment determined by the two basic points of
the first one, this is not absolutely necessary.

The number of natural coordinates tends to be an average between the number of
relative coordinates and the number of reference point coordinates. The reason for the
decrease in the number of coordinates is due, on one hand, to the elimination of the
angular coordinates and, on the other hand, to the sharing of the basic points by two
or more bodies. Thus, they have the advantage of describing the position of bodies
with a reduced number of unknowns. Finally, it should be pointed out that perhaps
the most important advantage of natural coordinates is their easy formulation and
implementation from a programming standpoint, cause the constraint equations and
their Jacobian matrix are very easy to evaluate. These advantages can be translated into
some reductions in calculation times, which is very useful for a real-time application.

Figure 2.5 displays a four-bar articulated quadrilateral described through natu-
ral coordinates. The variables which define its geometric configuration are shown
in Eq. (2.2).

q = {x1, y1, x2, y2}T (2.2)

The system has only one degree of freedom and four dependent coordinates. Therefore,
according to Eq. (2.1), three constraint equations are required.

(x1 − xA)2 + (y1 − yA)2 − L2
1 = 0 (2.3)

(x2 − xB)2 + (y2 − yB)2 − L2
3 = 0 (2.4)

(x2 − x1)2 + (y2 − y1)2 − L2
2 = 0 (2.5)

Constraint equations (2.3), (2.4), (2.5), are obtained by imposing a null variation of
the elements length, or in other words imposing the rigid body condition. It may be
seen that they are non-linear equations (quadratic in this case). It clearly appears that
natural coordinates considerably simplify the formulation of constraint equations along
with the fact that points can be shared at the joints.

In the case of three-dimensional multibody systems, the natural coordinates describe
the position of each element by means of the Cartesian coordinates of the basic points
distributed throughout the elements and by means of the Cartesian components of
several unit vectors. Each element of the system should have a sufficient number
of points and vectors linked to it; so that their motion completely defines that of

13

Chapter 2. Basic concepts of multibody systems

(x1,y1)

(x2,y2)

A B

L1

L2

L3

α

Fig. 2.5: Four-bar articulated quadrilateral in natural coordinates

the element. Also in the case of three-dimensional multibody systems, the natural
coordinates provide a simple formulation and implementation. The complexity of the
mathematical formulation increases linearly when moving from 2D to 3D applications,
cause it only suffices to add new points to the model and a new term to the equations
coming from the scalar product of vectors. So, as in the case of planar multibody
systems, the need for preprocessing and postprocessing is minimal when using natural
coordinates. At least, in the case of 3D multibody systems, the constraint equations
with natural coordinates also originate in two ways: from the rigid body condition of
the element and from some of the kinematic joints that exist among them (Garćıa de
Jalón and Bayo, 1994).

Summarizing, the most interesting features of the natural coordinates, that make
their representation useful for simulation multibody formulation and for real-time
applications are:

� Natural coordinates are composed of purely Cartesian variables and therefore are
easy to define and to represent geometrically.

� The rotation matrix of rigid body whose motion is described with natural coor-
dinates is a linear function of these coordinates; while with the reference point
coordinates the rotation matrix is a quadratic function of Euler parameters and a
transcendental function (sine and cosine) of Euler angles.

� Natural coordinates can be defined at the joints and then shared by contiguous
bodies, contributing to define the position of both bodies and significant simpli-
fying the definition of joint constraint equations. At the same time, the total
number of variables is kept moderate.

� A single set of variables define the geometry and the position of the body directly
in the global reference frame.

� The constraint equation that arise from the rigid body and joint conditions are
quadratic (or linear); so their Jacobian matrix is a linear (or constant) function
of the natural coordinates.

� Natural coordinates can be complemented easily with relative angles and distances
defined at the joints to yield a mixed set of Cartesian and relative coordinate.

14

2.3 Introduction to MBS equations of motion

Driving an angles or a distance, and defining forces and/or torque in joints become
rather straightforward. Relative coordinates also simplify the task of defining the
constraint equations for some particular joints.

� The design variables (e.g. length, angles) appear explicitly in the constraint
equations.

2.3 Introduction to MBS equations of motion

In order to determine the motion of an entire system, it is necessary to establish
the dynamic equilibrium condition that leads to a system of second order differential
equations generally called the equations of motion.

At current state of the art, many methods are available to derive the equations of
motion. The two more popular are: Newton-Euler’s method (Nikravesh, 1988), and
Lagrange’s method (Shabana, 1989). The main difference between them is that with
the Newton-Euler formulation, all forces, which are acting on or within the system,
must be considered. This is particularly cumbersome when dealing with a system
of interconnected bodies and when many of these forces are forces of reaction and
constraint, which generally not concern when wanting only to describe motion, but
which constitute additional unknowns to the problem. In the Lagrange method, instead,
all the workless forces and many constraint forces are automatically eliminated. As
consequence the method can be easy, methodical and suitable for an implementation.
Furthermore, the derivation is simpler and more systematic than in the Newton-Euler’s
method. In spite of this, the generated analytic model could be very complex and the
selection of the correct coordinates is not a simple step. The Lagrange equations for a
constrained mechanical system, described through a set of dependent coordinates has
the form expressed in Eq. (2.6).

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+ ΦT

qλ = Qex (2.6)

Where L = T − V is the Lagrangian function, q are the dependent coordinates, Φq

is the Jacobian matrix, λ contains the Lagrange multipliers. The kinetic energy of
a multibody system can be written as shown in Eq. (2.7), where the mass matrix M
is constant as long as all the bodies have at least two points and two non-coplanar
unit vectors or an equivalent structure. Otherwise, the mass matrix is dependent on
the position q. For general case, in which the kinetic energy depends on q, Eq. (2.6)
becomes Eq. (2.8), where Qex is the vector of external forces and L the Lagrangian.

T =
1

2
q̇TM(q)q̇ (2.7)

Mq̈ + ΦT
qλ = Qex + Lq − Ṁq̇ (2.8)

At time of formulating the equations of motion, it is possible to do it with both
dependent or independent coordinates. There is not a consensus among the experts as
to which method is the best for all cases. A method can be advantageous over another
under certain conditions and vice versa. Usually, the Lagrange’s method is applied

15

Chapter 2. Basic concepts of multibody systems

with a set of dependent coordinates, while the Newton-Euler’s approach with a set of
independent coordinates.

One advantage of the independent coordinates is precisely an important reduction
in the number of equations to be integrated. Most important is the disappearance
of the instability problem in the integration of the constraint equations using ODE
solvers. However, this has a price in terms of computational effort since the position
and velocity problems need to be solved after the function evaluations. Some of the
numerical integration algorithms and in particular the more stable implicit algorithms
are difficult to implement. In addition, the formulation and implementation of these
methods become more involved than those which use dependent coordinates. At least,
one important point is the choice of the right set of independent coordinates.

Instead, when using a set of redundant/dependent coordinates (e.g. natural coordi-
nates presented in § 2.2.2), the motion of MBS is described by differential algebraic
equations (DAEs) which consist of second-order differential equations plus algebraic
constraints (Nikravesh, 1988). DAEs present some differences with respect to ordinary
differential equations (ODEs) obtained trough a set of independent coordinate. In
general, a set of first-order ODEs can be expressed as shown in Eq. (2.9).

F(t,x, ẋ) = 0 (2.9)

The derivatives of the dependent variables x are expressed explicitly in terms of
the independent variable t and dependent variables x. As long the vector valued
function F has sufficient continuity, a unique solution can be found for an initial value
problem where the values of the dependent variables are given at a specific value of
the independent variable. Conversely, considering DAEs, the derivatives are not (in
general) expressed explicitly. In fact, derivatives of some of the dependent variables
typically do not appear in the equations.

The general form of DAEs system for a constrained mechanical system is expressed
by Eq. (2.10), which represents the Lagrange’s equation, and by Eq. (2.11), which
represents the constraints. M is the mass matrix, Φq is the constraints Jacobian matrix,
λ are the Lagrange multipliers, Q is the external forces vector, Φ are the constraints.
Its solution yields the values of nd dependent coordinates as well as the m Lagrange
multipliers.

Mq̈ + ΦT
qλ = Q (2.10)

Φ(q, t) = 0 (2.11)

This kind of equations can be solved through sundry ways, one of them is to transform
the set of DAEs into a set of ODEs through one of the methods presented in the
literature. The preferred method from a computational point of view is the Penalty
method (Bayo and Ledesma, 1996). In fact, the Lagrange multipliers technique allows
for the solution of the dynamic problem at the expense of solving for an augmented set of
(nd+m) unknowns: λ plus q. The penalty formulation instead, eliminates the Lagrange
multipliers from the equations of motion and leads to a set of nd ordinary differential
equations with q̈ as the only unknowns. This method is very interesting cause it has
been successfully extended to real-time dynamics within the context of fully Cartesian
coordinates (Garćıa de Jalón and Bayo, 1994). Unfortunately, Penalty method bring
forth the problem of choosing the right penalty number. While large penalty values will

16

2.3 Introduction to MBS equations of motion

ensure convergence to the constraint within a tight tolerance, those values may also
lead to a numerical conditioning problems and develop round-off errors. It is therefore
important that the analyst be supplied with a method that converges, regardless of
the size of the penalty values, to the right solution within specified tolerances in the
constraints. To this end, it is possible to extend the augmented Lagrangian method
commonly used in optimization analysis to improve the numerical conditioning of the
proposed penalty equations. The resulting equations, shown in Eq. (2.12) yield the
augmented Lagrangian (AL) formulation (Garćıa de Jalón and Bayo, 1994), where
the penalty terms are zero if the constraints are satisfied. In this method, in order to
avoid using explicitly Eq. (2.11), the Lagrange multipliers are calculated iteratively, as
shown in Eq. (2.13). This last equation represents the progressive introduction of forces
that help to fulfill better the constraints of Eq. (2.11). Finally, the iterative process
of Eq. (2.13) can be introduced in Eq. (2.12), leading to Eq. (2.14).

Mq̈ + ΦT
qα(Φ̈ + 2ωζΦ̇ + ω2Φ) + ΦT

qλ
∗ = Q (2.12)

λ∗i+1 = λ∗i +α(Φ̈ + 2ωζΦ̇ + ω2Φ) with λ∗0 = 0 (2.13)

(M + ΦT
qαΦq)q̈i+1 = Mq̈i −ΦT

qα(Φ̇qq̇ + Φ̇t + 2ωζΦ̇ + ω2Φ) (2.14)

Where i is the index for the iterative process, Φ are the constraints, M is the mass
matrix, Φq is the constraints Jacobian matrix, λ and λ∗ are the Lagrange multipliers,
Q contains the external forces, the velocity-dependent inertia forces and those obtained
from a potential, Φt is the partial derivative of the constraint with respect to time and
α, ζ and ω contain the penalty factors, the dimensionless damping ratios (usually∼=1)
and the natural frequencies for each constraint. At first, this procedure might seem
to be at a disadvantage since an iteration process and thus extra computation are
required. However, the extra numerical effort is practically insignificant, since an
iterative procedure is usually necessary to solve a system of non-linear differential
equations. A major advantage obtained in return for this additional computation is
that the analyst does not have to be concerned with the value of the penalty number
that simultaneously assures convergence and avoids round-off errors. Moreover, the
numerical integration algorithm has the advantage of solving a set of nd equations
as compared to (nd + m) needed by the Lagrange multipliers method. Constraint
stabilization is implicitly considered within the algorithm and is implemented more
simply than the methods that use independent coordinates. The penalty formulation has
the advantage over the formulations in independent coordinates, in that the appearance
or disappearance of constraints can be done accommodates automatically without
changing the coordinates. This in turn avoids the restarting procedure of the numerical
integrator. The penalty formulation is also more suitable when the multibody system
goes through a singular position. In these cases the Jacobian matrix changes its rank,
and the use of independent coordinates requires a sudden change of coordinates. Unless
special provisions are made, the formulation in independent coordinates and even the
Lagrange’s equations in dependent coordinates tends either to crash the simulation
or introduce sudden large errors. However, with the penalty formulations, the term
(M + ΦT

qαΦq) of equation Eq.(2.14) is free of singularities and the integration becomes
be very stable under these circumstances. This fact also makes the penalty formulation
go through kinematic singular position without problems, an advantage not shared
by the classical Lagrange’s method with Baumgarte stabilization (Baumgarte, 1972).

17

Chapter 2. Basic concepts of multibody systems

From all the considerations explained emerges that the Lagrange’s method, a set of
dependent coordinates and AL technique are the best solutions when dealing with a
multibody system implementation and with the development of a multibody real-time
simulator, in spite of the Newton-Euler’s method in dependent coordinates. A review
of advantages and disadvantages of different formulations can be found in Nikravesh
(1988); Garćıa de Jalón and Bayo (1994), and in the most recent book by Arnold and
Schiehlen (2009).

2.4 Multibody systems simulator and real-time

concept

A multibody simulator is a software widely used nowadays in most engineering fields,
which is able to simulate a large variety of MBS. First of all, the difference between
a 3D animation (such is a video-game) and a MBS simulator must be clarified: the
multibody simulator is able to analyse kinematic and dynamic aspects of the system
under consideration; conversely, a 3D animation is only roughly able to elaborate
kinematic aspects.

Traditionally, the kinematic and dynamic analyses of multibody systems were un-
dertaken by assuming heavy simplifications, for example, that the bodies were perfectly
rigid without any influence due to joints behaviour. For simple cases, analytic and/or
graphical solutions were possible. Nowadays, because the improvement of technology
and increasing necessity to study complex systems behaviour (e.g. cost reduction,
security enhancement, high-level optimization) computer aided assistance is unavoid-
able. Fortunately, this requirement was/is supported by a continuous improvement of
computers and, especially, of numerical methods.

The need to resort to a computer-aided software is due to the hard and complex
mathematical instruments involved in a MBS analysis. In fact, studying a large scale
model (e.g. a car prototype, see Fig. 2.6 and Fig. 2.7) involves hundreds bodies linked
by different joints. From a mathematical standpoint hundreds of differential equations
of motion need to be solved, which is not possible through the analytic way. It can be
asserted that multibody system simulation, numerical methods and code programming
are closely intertwined. Flores et al. (2008) present an exhaustive introduction about
all computer codes for a large variety of purposes that have been developed during
the last fifty years (e.g. ADAMS, DRAM, SIMPACK, LINCAGES, KINSYN). Using
computer-aided or self-developed software mandatorily introduces some simplifications
and then errors, the first and most evident one being that to compute the variables in
the model as a time function on a digital computer, time has to be discretized, and the
variable will be available as a discrete series of values, not as a continuous function. The
time distance between two adjacent instants is called time step or integration interval.
It is crucial to consider that besides errors due to time discretization, errors are also
generated because numerical integration formulas are only approximations of the real
integration function. The time step is strictly related to one of the numerous and
different purposes (affecting the numerical methods involved and code programming
style) of a MBS simulator: the real-time challenge. Some words deserve to be spent on
this topic in order to understand the actual meaning of “real-time”.

The real-time simulation is a special case of conventional simulation, mainly used

18

2.4 Multibody systems simulator and real-time concept

312 8. ,ΠΣΥΡΨΗΓ)ΡΥΠΞΟ∆ΩΛΡΘς ΙΡΥ 5Η∆Ο-7ΛΠΗ ∋∴Θ∆ΠΛΦς

)ΛϑΞΥΗ 8.21. %ΥΛΦ∆ΥΓ ΠΗΦΚ∆ΘΛςΠ.)ΛϑΞΥΗ 8.22.)ΛΨΗ-Ε∆Υ ΣΗΘΓΞΟΞΠ.

5

6 6

6

55

6

5
8

6

5

6 5

6 3

6

8

35

3

6

5

6

5 5 6

36

56
6

6

5

6

)ΛϑΞΥΗ 8.23. 0ΞΟΩΛΕΡΓ∴ ΠΡΓΗΟ ΡΙ ∆ Φ∆Υ ςΞςΣΗΘςΛΡΘ ∆ΘΓ ςΩΗΗΥΛΘϑ ς∴ςΩΗΠ.Fig. 2.6: Multibody model of a car suspension and steering system

Fig. 2.7: 3D multibody simulator model of a car suspension and steering system

19

Chapter 2. Basic concepts of multibody systems

in human-in-the-loop applications (HITL) (e.g. faithful driving simulators, flight
simulators) and in hardware-in-the-loop3 applications (HIL) (development and test of
complex real-time embedded systems). As already mentioned, solutions of hundreds
(for complex systems) nonlinear differential equations are needed to perform an analysis
and are accomplished through numerical methods and computer aid. According to
Garćıa de Jalón and Bayo (1994), in order to work in real-time, a multibody system
simulation needs that the analysis time (composed of the integration time plus the time
for graphical display), is smaller than the physical time taken by the actual motion of
the multibody system. In other words, the software modules must be able to process
all actions according to a predetermined time (Korkealaakso, 2009). This is the key
that controls most the choice of coordinates presented in § 2.2, the algorithms/code
implemented in the simulator and, moreover, the interface between the simulator and
the data acquisition system developed and presented by the undersigned. Indeed, some
numerical methods are available in the literature for each purpose, but only few of
them are suitable for real-time simulations. It is not the final target of this paper to
present and describe all kind of method, but it must be emphasized that fully Cartesian
dependent coordinates and implicit integration methods seem to be suitable for the
real-time challenge, specially for their computational rapidity and inexpensiveness.
Anyhow, different solutions are presented from different authors, using implicit and
explicit methods. For example Hong et al. (2011) introduced a real-time simulator using
an explicit integration method to improve the solving performance for the dynamic
analysis of a wheeled vehicle. For further details, the following papers are available in
literature: Garćıa de Jalón et al. (1986); Nikravesh (1988); Haug (1989); Cuadrado
et al. (1997); Bayo et al. (1991); Bae et al. (2000); especially related to the present
paper, Naya (2007); Sanjurjo (2011); Pastorino (2012).

Independently of the methods used, it is important to keep in mind that real-time
solution requirements often force to simplify the computational model, so that the
real-time model must be always considered as a trade-off between efficiency and accuracy.

3A HIL simulation must include electrical emulation of sensors and actuators.

20

Chapter 3

X-by-wire prototype: features of
hardware and simulator

21

3.1 Hardware configuration

Fig. 3.1: X-by-wire prototype

3.1 Hardware configuration

3.1.1 Prototype description

The prototype represented in Fig. 3.1, has been built over several years by Laboratorio
de Ingenieŕıa Mecánica (LIM) of Universidad de La Coruña (UDC), and it is very similar
to a little buggy. The development is described carefully by Pastorino (2012) and Naya
(2007). The choice to build a prototype by themselves entails several advantages:

� The design is completely free, and the prototype could be plan in order to satisfy
all the specific necessities (e.g. dimensions, materials, technical features).

� The cost, which is always an important parameter, is under control.

� Easy and fast future re-design.

� All the prototype aspects and characteristics are known (e.g. mass of components,
materials properties, geometry configuration), and all dynamic/static properties
could be easily determined.

On the other hand, the development could be very hard and complex.
The test-buggy is an X-by-wire (XBW) vehicle prototype. XBW technology consists

in the replacement of traditional control systems with electronic control systems,
using electromechanical actuators and human-machine interfaces, such as pedal and
steering feel emulators. In the concerned prototype, three by-wire systems have been
implemented and described by Pastorino et al. (2010):

1. Throttle-by-wire (TBW) system (Fig. 3.2). The throttle pedal is provided by
a geared stepper motor and controlled by a bipolar drive. The control of the

23

http://lim.ii.udc.es/index.es.html
http://lim.ii.udc.es/index.es.html
http://lim.ii.udc.es/index.es.html
http://www.udc.es/
http://www.udc.es/

Chapter 3. X-by-wire prototype: features of hardware and simulator

Fig. 3.2: TBW system assembled

throttle angle is performed on its rotation through an encoder (see § 3.1.2 for
prototype sensors).

2. Brake-by-wire (BBW) system (Fig. 3.3). The idea is that commands are transmit-
ted electronically through wire. The BBW system, also, actuates on the vacuum
servo through an actuator. The control of the brake motion is performed on its
position by an encoder, but this solution does not perform a very accurate value
of the brake pressure. For this reason, a pressure sensor (see § 3.1.2 for prototype
sensor) is mounted in order to obtain a better measurement.

3. Steer-by-wire (SBW) system (Fig. 3.4). It implies that the steering column
between the steering wheel, rack and pinion, is eliminated. Thus, two electrical
motors realize the steering operations. The first, called road wheel motor (RWM),
steers the front wheels following the steering wheel angular position provided by an
encoder (see § 3.1.2 for prototype sensors). The second one, called steering wheel
motor (SWM), provides an operator tactile feedback at the steering handwheel.
Then the driver can feel the resistance of the maneuvers like in the common
mechanical systems.

Such configuration gives to the vehicle the possibility to repeat automatically maneuvers,
and to be driven without the human control. The systems are controlled by DAS
through sensors and controller loop implemented and presented by Pastorino (2012).
This characteristic had should be mentioned, because was an unavoidable step to make
achievable the present project, making it a future development.

Concerning the technical features, the vehicle is a rear-wheel drive, provided with
an internal combustion engine with four cylinders (Chrysler 150 SX) 1600 c.c., a two-
barrel carburetor and an automatic gearbox transmission. The following technical
specifications are available:

� Engine power of 88 CV (DIN) at 5400 rpm.

24

3.1 Hardware configuration

Fig. 3.3: BBW system assembled

Steering wheel

Precision gearbox

Coreless DC motor

Precision gearbox
Torque sensor

Encoder B

Rack and pinion gear system

Encoders A

Fig. 3.4: Diagram of SBW system

25

Chapter 3. X-by-wire prototype: features of hardware and simulator

Gear Ratio

1st 2.475
2nd 1.475
3rd 1

Table 3.1: Gear ratios of the prototype

� Maximum engine torque of 145 Nm.

� The transmission has three speed automatic gearbox. Table 3.1 summarizes the
gear ratios.

� Differential reducer ratio of 3.673.

� Final transmission performance: 29.4 km/h, 3rd gear.

The engine is installed in the rear of the buggy, and linked to the chassis through
vibration dumpers that, unfortunately, can’t completely dull disturbing vibrations. The
frame has been made of tubes. The rear suspension is of MacPherson type, while the
front one is of double wishbone type. The tyres are four Michelin 155/80 R13, and
the brake system is of disk brake type on rear and front wheels. Moreover, the vehicle
comes with an on-board 14’’ LCD screen, a personal computer and the data acquisition
system (DAS). The subsystems are supplied by four batteries: common 12 V battery,
one mini-battery of 12 V restricted to the sensors, and two serial batteries of 12 V each
one.

3.1.2 Sensors

The vehicle is a very complex system. A lot of sensors are fitted for different purposes,
such as to monitor the position, the speed or in general to sense the vehicle dynamics.
Table 3.2 summarizes all sensors mounted in the vehicle. A complete description of
them can be found in Pastorino (2012); Pastorino et al. (2010); Naya (2007). Related
to the present work, only the throttle, brake and steer sensors are presented, cause are
the sensors used to monitor the simulator input parameters introduced in § 4.2.

Steer and throttle encoder

A digital optical encoder, is a device that converts motion into a sequence of digital
pulses. By counting a single bit, or by decoding a set of bits, the pulses can be
converted to relative or absolute position measurements. Encoders have both linear
(for displacement measurement) and rotary (for rotation measurement) configurations,
though the most common type is rotary. The rotary encoders are manufactured in two
basic forms:

� Absolute encoder. The main characteristic of this encoder is that a unique digital
word corresponds to each rotational position of the shaft.

26

3.1 Hardware configuration

Measured magnitudes Sensors

Vehicle accelerations (X, Y, Z) Accelerometers (m/s2)
Vehicle angular rates (X, Y, Z) Gyroscopes (rad/s)
Vehicle orientation angles Inclinometers (rad)
Wheel rotational angles Hall-effect sensors (rad)
Brake line pressure Pressure sensor (kPa)
Steering wheel and steer angles Encoders (rad)
Engine speed Hall-effects sensor (rad/s)
Steering torque In-line torque sensor (Nm)
Throttle pedal angle Encoder (rad)
Rear wheel torque Wheel torque sensor (Nm)

Table 3.2: List of the sensors fitted in the prototype

� Incremental encoder. The main characteristic of this encoder is that produces
digital pulses as the shaft rotates, allowing measurement of relative position of
shaft. It consists of two tracks and two sensors, whose outputs are called channels
A and B. As the shaft rotates, pulse trains occur on these channels at a frequency
proportional to the shaft speed, while the phase relationship between the signals
yields the direction of rotation. By counting the number of pulses, and knowing
the resolution of the disk, the angular motion can be measured. The channels A
and B are used to determine the direction of rotation by assessing which channels
leads the other. The signals from the two channels are a 1/4 cycle out of phase
with each other, and are known as quadrature signals. Often, a third output
channel, called index, yields one pulse per revolution and is useful in counting full
revolutions. It is also helpful as a reference to define a home base or zero position.

Most rotary encoders are composed of glass or plastic dotted disk. As radial lines in
each track interrupt the beam between a photoemitter-detector pair, digital pulses are
produced. Figure 3.5 shows an encoder with spinning codewheel and a stationary mask.

Regarding the prototype, the steer encoder is an HEDS 5500 A06 from Agilent ,
while the throttle encoder is an HEDS 5540 A06 model from the same producer.
They are incremental type, and provided with two quadrature output channels with
optional index pulse. These encoders emphasize high reliability, high resolution and easy
assembly, maintaining a very low cost. The operation-range temperature is about from
−40 ◦C to 100 ◦C. The encoder used to monitor the steering wheel angle is designated
as encoder A in Fig. 3.4 and shown in Fig. 3.6. It has a resolution of 0.18◦ with 500
cycle per revolution (CPR), and output pulses resolution setted to 4X. Also the throttle
encoder in Fig. 3.7 has a resolution of 0.18◦ with 500 CPR, and output pulses resolution
setted to 4X. The differences between them are the output channel and the mounting
system, while both are encoders with metal code-wheels.

Brake pressure sensor

A pressure sensor usually acts as a transducer: it generates a signal as a function of
the pressure imposed (the signal is electrical). Pressure sensors can vary drastically in

27

http://www.home.agilent.com/agilent/home.jspx?cc=ES&lc=eng

Chapter 3. X-by-wire prototype: features of hardware and simulator

A

B

Stationary mask

Shaft

Rotating
codewheel

Fig. 3.5: Encoder with spinning codewheel and stationary mask

Fig. 3.6: Encoder sensor of steering wheel

28

3.1 Hardware configuration

Fig. 3.7: Encoder sensor of throttle

Fig. 3.8: Brake pressure sensor assembled

29

Chapter 3. X-by-wire prototype: features of hardware and simulator

technology, design, performance, application, suitability and cost. The pressure sensor
used on the prototype is a piezoresistive strain gauge, which uses the piezoresistive
effect of bonded or formed strain gauges to detect the strain due to applied pressure.
Common technology types are Silicon, Polysilicon Thin Film, Bonded Metal Foil or,
such is the buggy sensor, a Sputtered Thin Film. Generally, the strain gauges are
connected to form a Wheatstone bridge circuit to maximize the output of the sensor
and to reduce sensitivity to errors.

The concerned pressure sensor, shown in Fig. 3.8, is 3100R0040G0LB00 from Gems .
The maximum pressure detected is 40 barG, and the output voltage range is 0-5 V. The
operation range temperature is from −40 ◦C up to 125 ◦C, and the accuracy is ±0.25%
FS (Temp O/P ±3% FS).

3.1.3 Data acquisition system

First of all, data acquisition is the process of sampling signals that measure real world
physical conditions, and converting the resulting samples into digital numeric values
that can be manipulated by a computer. As technology has progressed, this type of
process has been simplified and made more accurate, versatile and reliable through
electronic equipment. A data acquisition system, called also DAS or DAQ, typically
converts analog waveforms into digital values for processing, and is the hardware
what usually interfaces between the signal from transducers and the PC. Nowadays,
numerous DASs are available on the market, built for different purposes and with
different characteristics. The choice is strictly related to the applications involved and
to the final results pursued, such as number and type of sensors or phenomenons to
be measured. Another parameter, which can not be overlooked, is obviously the cost.
However, being the system always in change (e.g. a sensor could be unthinkable at
the beginning of the project and indispensable at the end), it is not possible to own
all the informations before purchase. Furthermore, has to be considered which kind of
operating system will be used, indeed most DASs have better tools for rapid developing
only under Windows or only under Linux (or other OSs). Therefore, DAS for vehicle
research purpose must be flexible, modular, expandable and programmable.

Considering these characteristics, a PC-based DAS with PCI host interface has
been employed and mounted on the prototype. Figure 3.9 p. 32 shows the connection
scheme of on-board DAS, PC and sensors. The main board is a DAP4200a (Microstar
Laboratories, a) from Microstar Laboratories (ML) and is installed in a standard
computer. This DAS is designed for high speed data transfers, real-time data sampling
and:

� Has an Intel i486 DX4 processor on-board.

� Provides 16 bits A/D converter resolution.

� Works with the 5 V PCI bus for Pentium/Pentium II platforms.

� Comes with 16 M of DRAM on-board memory.

� Transfer data to PC at high rates (up to 3.2 M samples per second).

� Offers low latency for fast response (0.2 ms task time quantum).

30

http://www.gemssensors.com/
http://www.mstarlabs.com/
http://www.mstarlabs.com/

3.1 Hardware configuration

� Offers sampling period resolution to 100 ns.

� Samples or updates the digital section at up to 1.66 million values per second.

� Samples analog inputs at up to 769 k samples per second at 12 bits accuracy.

� Updates analog outputs at up to 833 k samples per second each.

� Has expandable analog and digital inputs/outputs.

The on-board multitasking operating system, DAPL 2000, runs on the DAP4200a,
and ensures that hardware-level differences are transparent. DAPL 2000 (Microstar
Laboratories, c) is a complete software environment for real-time data acquisition.
Tasks that perform averaging, triggering, PID control, fast Fourier transforms, filtering,
arithmetic operations and many other functions are pre-coded in DAPL. These tasks
are chained together to form a complete data acquisition application. More important,
user-defined processing commands can be created in C/C++ language for special tasks
and a C++ library, called DAPIO32 (Microstar Laboratories, b), is available to interface
the main board with the computer applications.
Referring once again to Fig. 3.9, five expansion boards all from ML are mounted:

� MSXB 037, which provides sixteen single-ended or eight differential analog inputs
with 14 bits A/D converter resolution.

� The second and third boards are MSXB 056 and have eight analog outputs with
16 bits D/A converter resolution.

� The fourth board, MSXB 036, is an high speed counting board used for rotational
speed. It has ten independent counter inputs with 16 bits resolution. Two inputs
have a maximum input frequency of 100 MHz while the others 6.8 MHz.

� The fifth board, MSXB 050, is a quadrature decoder board used for high speed
angle counting. It’s provided with four input channels with 16 bits resolution and
a maximum frequency of 1 MHz for each counter.

The expansion boards are located in a separate rack under the driver’s seat, and all the
complete manuals can be found in Microstar Laboratories (d). At least, the PC OS is
Windows XP Professional (despite that it’s not a real-time OS), and the processor is
an Intel(R) Core(TM)2 Duo, CPU E8500 @ 3.16 GHz with 2 Gbyte of RAM.

31

http://www.mstarlabs.com/

Chapter 3. X-by-wire prototype: features of hardware and simulator

Fig. 3.9: Connection scheme of DAS, PC, sensors, drivers and actuators

32

3.2 Simulator and simulation environment

Fig. 3.10: 3D prototype-model of simulator

3.2 Simulator and simulation environment

The MB vehicle model has been completely developed by Laboratorio de Ingenieŕıa
Mecánica of Universidad de La Coruña. In order to understand how it works, some
basic considerations about the numerical methods, and in general about the simulator,
must be done.

3.2.1 Brief numerical methods and analytical considerations

The XBW prototype, presented in the previous sections, has been modelled using
fully Cartesian dependent coordinates explained in § 2.2. As asserted in § 2.3, some
methods are available to derive the equations of motion, but regarding the simulator
the chosen MB formulation is an index 3 augmented Lagrangian formulation with
mass-damping-stiffness-orthogonal projections in velocities and accelerations (I3AL).
The integration scheme is a predictor -corrector type: at first, at time t0 a prediction
of the system-state of the time t1 is done through the implicit single-step trapezoidal
rule; subsequently, using the prediction and the last system-state known, the iterative
Newton-Raphson method is applied in order to obtain the correct system-state of time
t1 (Cuadrado et al., 2001). An integration time-step of 5 ms is imposed.

Concerning the prototype model, it is schematized by eighteen rigid bodies. For
every body are defined points plus some vectors in order to completely define its motion,
and the mass is known, in order to calculate the chassis total mass. However the
obtained value is not accurate, due to some difficulties taking into account the mass of
small elements (e.g. wires, screws, fixing elements). For these reasons, the real mass is
comparing with the calculated mass, and the difference is taking into account. Finally,
with the aid of a CAD software, the center of gravity (COG) and the inertia of each

33

http://lim.ii.udc.es/index.es.html
http://lim.ii.udc.es/index.es.html
http://www.udc.es/

Chapter 3. X-by-wire prototype: features of hardware and simulator

body (and moreover of the complete chassis) are calculated.
All the details, about the numerical methods employed and the models, are explained

in Pastorino (2012). Since these aspects were not objects of this paper, are not treated
in depth here.

3.2.2 Code and software arrangement

The simulator consists in a self-developed code implementing and solving the MBM
equations of motion. It is composed of some subroutines, programmed in C/C++, that
covers the 3D outputs, the collision detection, the communication with DAS developed
at this work and numerous modules programmed in Fortran90 (the most widely used
language for scientific programming) that cover the vehicle MB. Moreover, a Fortran-
library, called MBSLIMf90, has been developed by LIM and used. This choice is
made in order to take advantage of both languages according to the needs, indeed
the Fortran90 is more suitable for scientific applications, for management matrix of
big dimension and in general for easy-develop of numerical methods; while the C/C++

language is suitable for general purposes. Both languages provide some commands
and structures in order to interface them, as consequence it’s allowed to call a C/C++

function in a Fortran90 programs and vice-versa.
The modules implemented are:

� CONSTANTES. In this module are implemented all the constant parameters. Two
subroutines are included, the first one, called inicializa_costantes initializes
the following parameters:

– time_step. This is the time-step of the integration process, setted to 5 ms.

– formulation. It includes the implemented methods: I3AL, matrix R,
penalty coefficients or matrix R with Kalman filter.

– penaltycoef. It deals with the coefficients for the penalty formulation.

– numerip, numeriv, numeris, numeria. Which are the numbers of points,
vectors, distances and angles.

– gravity. It is the gravity-vector.

and the second one, called inicializa_callbaks, which operates on:

– forces. It is a pointer to the subroutine of forces.

– stiffness_damping_matrices. It is a pointer to the subroutine of matrix
R.

– ptocolision_normal. It is a pointer to the subroutine of collisions-detection.

� CONSTRAINTS_MOD. It operates on all the model constraints, creates the constraints
of all rigid bodies, manages the constraint vector, the Jacobian matrix and all
derived parameters.

� ESTADO. In this module are included the informations about all the variables used
by the solver for every time-step.

34

http://lim.ii.udc.es/index.es.html

3.2 Simulator and simulation environment

� FORCES_MOD. It manages all the forces of the model, e.g. contact forces, brakes
forces, shock absorbers forces, tyres forces. For each kind of force, a specified
function is implemented.

� Formulations_MOD. It contains the generic functions which call the desired nu-
merical formulation implemented in the Fortran-library MBSLIMf90.

� GENERALIZED_FORCES_MOD. This is the module of the generalized forces which
are dependent of the coordinates. This module assembles the generalized force in
a global vector and adds their contributions to the rigid/damping matrix.

� SOLIDOS_MOD. It contains all the functions responsible of the solids creation. For
example it adds solids in the model, adds inertia moments and gravity center to
the solids.

In addition, some C/C++ and Fortran90 functions and subroutines have been imple-
mented, but only the most interesting for the present work are presented below:

� main.cpp. This is the main code, the reference tree. Its job is to call the other
functions or subroutines implemented, in order to organize the operations and
make the simulation start. For example, in the first part, all the functions and
files for the graphical display are called, all the modules presented above are
declared and called at the right moments.

� guiado.f90. It is the subroutine that operates on the input and output parameters
of the simulator (that is crucial for the present work), it calls the modules and
parameters it needs, declares the pointers to input data file, to output one also, and
computes all the operations and computations related to the motion of prototype
(e.g position, velocity and acceleration of the wheels taking into account eventually
gearbox, steer offset, rack, and having as input data the steering wheel angle,
velocity or acceleration).

� lectdatos.f90. This is the subroutine that declares all the input and output data
of simulator, and initializes them, if necessary, through functions implemented in
the modules presented in the previous page. Moreover, it calls functions which
define the points and vectors of each body. The subroutine is executed only one
time, at the simulation-start.

All these subroutines-functions-modules are strictly related and interconnected, so the
resulting program is very complex and not easy to understand. On the other hand,
implementation of different subroutines-functions-modules in different files and specified
for an unique need, facilitates vastly maintenance and debugging. Moreover, every
code-part can be tested before aggregation to the main project. These considerations
justify the programming style chosen. As already mentioned, in order to not complicate
the general scheme, all the other subroutines are omitted.

Since the programming languages have no convenient graphical output, an open-
source 3D graphical toolkit, OpenSceneGraph, has been used to obtain a realistic 3D
graphics which reproduce the real environment of the maneuvers road. Particularly, a
true road profile was realized through a topographical survey. Figure 3.11 shows the
real test track, while in Fig. 3.12 a 3D surrounding of test track is presented. As is

35

http://www.openscenegraph.org/projects/osg

Chapter 3. X-by-wire prototype: features of hardware and simulator

possible to see from the figures, the test maneuvers take place in the school campus in
Ferrol. Figure 3.10 shows the 3D model of prototype which runs in the simulator.

For further discussions the reader can relate Sanjurjo (2011) for the implemented
modules and Pastorino (2012) for analytic aspects and simulator environment (e.g.
topographical survey, bodies modelling, subsystems model, collision detection, graphical
environment).

36

3.2 Simulator and simulation environment

Fig. 3.11: Real test track photo

Fig. 3.12: 3D model of test track

37

Chapter 4

Real car-Simulator communication
interface development

39

4.1 Overall considerations

4.1 Overall considerations

The communication interface developed at this project faces numerous troubles due
to the complexity of the hardware, software and to the variables involved. For these
reasons, some overall considerations must be done before to present in detail the
interface developed, in order to better understand it. So, a presentation of the previous
layout of the simulations management, with respect the present work, is done in § 4.1.1;
next the main aims and troubles are presented in § 4.1.2. These remarks will give an
essential overview.

4.1.1 Previous layout of simulations management

The previous layout (compared to the present work) of simulations management presents
the setting shown in Fig. 4.1: the maneuvers and simulations are performed in two
different moments. During a maneuver, the interested variables are sampled through
the data acquisition system and stored in a text file. At a later time, the data are
reprocessed by a PC: the functions are smoothed and, eventually, the derivatives are
calculated and re-smoothed through the aid of MATLAB , which is a programming
environment for algorithm development, data analysis, visualization, and numerical
computation. Since the complete trends of the interested variables, relative to the
executed maneuver, are completely known, it is allowed to compute derivatives with
simple methods like forward finite difference method, obtaining some very good results
effortlessly. Lastly, where appropriate, the values are sent to the simulator as input
data and the simulation is executed. This allows to state that no direct communication
interface was developed. For the sake of completeness, another approach is practicable:
the X-by-wire systems of prototype presented in § 3, can be not only monitored, but
also controlled by DAS through its software sampling. More in detail, it is possible to
execute a maneuver, save data, and repeat the same identical maneuver without the
human participation.

These approaches, from a scientific investigation standpoint, don’t present any
disadvantages and are suitable for test the simulator, do analyses and especially useful
for the development. Moreover, it is not strictly necessary to start the engine for both
methods, so most of the operations could be done easily on site. On the other hand, a
direct interface raises the possibilities and the applications of the simulator, obtaining a
significant step forward from an application point of view, which is exactly the objective
of the present work: to make available the execution in real-time of the multibody
models on-board.

4.1.2 Aims and critical factors of the communication interface

A direct communication, between DAS and simulator, has the main target to make
available to the simulator, when necessary, the most recent data. This changes drastically
the setting of the simulation, inasmuch the maneuver and the simulation are done in the
same time. In addition, driving the prototype, it is possible to see the output simulation
on the on-board monitor. An overall and simple scheme about how the interface worked
is shown in Fig. 4.2: the driver and the disturbances (e.g. road profile) act on the
prototype; the interested variables (which are presented in § 4.2) are continuously

41

http://www.mathworks.com/products/matlab/

Chapter 4. Real car-Simulator communication interface development

Prototype

DAS
PC

Disturbances

Driver's inputs

 Maneuver
and car-handling

OUTPUT

INPUT

Monitored Variables

Maneuver and car-handling
 simulation

Multibody Model

Re-processed
 Variables

PC

INPUT

OUTPUT

OUTPUT

Fig. 4.1: Steps scheme of a simulation without the communication system developed

Maneuver and car-handling
 simulation

Monitored Variables

Prototype

DAS
PC

Multibody Model

Disturbances

Driver's inputs

 Maneuver
and car-handling

OUTPUT

INPUT

Fig. 4.2: General scheme of the communication system developed

42

4.1 Overall considerations

monitored by DAS through the sensors and transferred to the PC; when the simulator
needs data, the most recent values are sent to it. These operations, that sound simple
at first, after a depth analysis present some difficulties discussed below not easy to be
solved:

1. The PC and DAS have different speeds and times for data management. In
particular, the data acquisition system can generate a lot of values in a small time
since offers a sampling period resolution to 100 ns. Conversely, the PC is very slow.
Moreover, the DAS generates data predictably, in the manner defined by the user,
but the application developed to managed data transfers runs at those moments
the operating system scheduler deems appropriate, with an unpredictable delay,
depending on other process activity (e.g. graphic displays, disk activity, mouse
pointer management). These remarks allow to state that it is impossible to get a
perfect synchronization in term of time between PC and DAS, while the correct
way is to manage data asynchronously.

2. Every time step (i.e. integration time), the simulator needs to know the system-
state in order to solve the numerical methods implemented. So, when there is the
need, for example at time t1, the data of time t1 must be sent instantly, without
delay. This condition is impossible to achieved due to an inevitable time-cost in
performing the operations (e.g. monitor data, transfer data, save data) and to
the difficulties to manage data synchronously expressed previously. So, the main
aim is to get as close as possible to the aforementioned ideal condition, and it is
achieved sending the most recent values monitored at the moment of the receiver
call since are the nearest available data to time t1. This is the most important
and tricky aspect of all the work. Be able to send the most recent data means
be able to supply the simulator with the most faithful state-system in term of
time, obtaining a remarkable step forward in the real time direction and in the
correctness of the simulations.

3. Pipes overloading is an aspect strictly related to the two points discussed previously.
A pipe is a communication channel, buffers data from and to the data acquisition
processor. It is defined carefully in § 4.3.2, where the communication tools
are presented. The pipe must be considered not only like a flow of data, but
also like a stack which stores unprocessed data, according to Fist In First Out
(FIFO) methodology shown in Fig. 4.3. This characteristic, combined with the
impossibility to flush unwanted data from a pipe, with the DAS high speed sample
and with the low PC speed, generates the following two cases:

� The simulator needs data every time step. During the elapsed time, all
unprocessed values that arrive are buffered in the pipe and stacked. Referring
once again to Fig. 4.3, suppose that C is the state-system at time t2 (the
most faithful, the most recent data), while A and B are values stacked
between t1 and t2. At time t2 the simulator needs data C, but the PC can
read values mandatorily observing FIFO approach, so the only data available
is A, which is an incorrect old value from a time point of view. Read the
most recent data, at first, seems to be impossible. The simulation obtained
could be correct, but not related to time t2, rather to an old state-system.

43

Chapter 4. Real car-Simulator communication interface development

C B A

C
B

A

C B A

Fig. 4.3: FIFO approach involves that the first value that enters, A, is the first that
comes out so the enter sequence is also the output sequence.

As consequence, the maneuver executed are displayed (and simulated) with
a delay that could be of few seconds (the best case), or some minutes,
depending on PC processing speed and sampling rate: more fast the DAS
samples, more the values are stacked. This condition stays surely on the
side opposite to the real time concept.

� The worst case occurs when the PC is so slow to process data that the
amount of values stacked in the pipe is higher than the maximum admissible.
This situation is called overflow, and generates an immediate crash of the
program. The buffer limit can be reached in a few seconds or in some
minutes, depending on PC processing speed and DAS sampling rate.

4. The PC capabilities are limited. For this reason, every operation assigned to
it must be simple and, as consequence, inexpensive in term of computational
cost. In fact, it has to manage the numerical and graphical outputs of simulator,
actions which are obviously unavoidable and that exploit the processor power. So,
the interface has to continuously manage and transfer data with the maximum
efficiency, in order to obtain almost the same performance achieved reading data
by a text file.

5. Lastly, the data processing must be executed without interfering the simulator
run. Then, emerges the necessity to deserialize all activities.

Taking into account all the aforementioned remarks, the solution developed, presented
in detail in § 4.3.4 and § 4.5, blends together the following aspects:

� Asynchronous data management.

� Empty the pipes in order to avoid the overloading.

� Make available, when simulator needs, the most recent and time-faithful data.

� Deserialize activities to obtain a parallel execution of simulation and data man-
agement.

44

4.2 Simulator input variables

4.2 Simulator input variables

Table 4.1 summarizes the variables involved in the interface developed. First of all, it is
important underline that the variables monitored by the DAS are different than those
needed by the simulator. The two main reasons are:

� The DAS and its expansion boards, as already explained in § 3.1.3, convert a
continuous quantity to a discrete time representation in digital form. In other
words, the analog input produced by the sensor (e.g. voltage) is converted to a
digital form processable by the PC. As consequence, the DAS, from a PC point of
view, produces numbers. The simulator, on the other hand, needs measurements
of specific real physical conditions, for example the brake pressure. For these
accounts the digital values must be linked and converted to the real physical
conditions monitored before be passed to the simulator.

� Sometimes many ways are available to obtain measurements of the desired physical
phenomenon. They have pros and cons, depending on the own needs (e.g. cost,
efficiency) one method may be preferable to another. For this reason, a physical
condition is not always directly monitored, but could be more suitable to monitor
another phenomenon and linked them through a relation.

In the next sections, are presented all the variables needed by the simulator and the
relative measurements; moreover it is justified the choices done and the consequences
involved. At the end, the DAS configuration of sampling is presented. However, to
better understand some aspects, it is appropriate to describe some basic concepts of
analog-to-digital conversion:

� Input Volt range ∆V . It is the input electrical tension range admissible by the
converter. The tension can vary within a minimum Vmin and a maximum Vmax

value. It is calculated trough Eq. (4.1).

∆V = Vmax − Vmin (4.1)

� Maximum value of the digital output. It is the maximum digital value achiev-
able by the conversion from analog to digital form. It can be easy obtained
through Eq. (4.2); n is the ADC resolution in bit, N the maximum number.

N = 2n − 1 (4.2)

It is useful to calculate the digital range that varies within 0 to N (i.e. unsigned
integer) or within −N/2 to (N − 1)/2 (i.e. signed integer), depending on the
application. Usually the range is approximated by ±N/2.

� Resolution. The resolution Q of the converter is the minimum change in voltage
required to guarantee a change in the output digital values. It is computed
through Eq. (4.3).

Q =
∆V

N
(4.3)

For example, considering the DAS of the prototype, n is equal to 16 bits and ∆V
admissible is 10 V: the maximum digital value is 65535, while the resolution of the
converter is 0.15 mV. The digital values can cover the range 0-65535 or ±32768 (such
is the range of the prototype steering wheel encoder).

45

Chapter 4. Real car-Simulator communication interface development

Monitored variables Simulator inputs

Throttle pedal angle (deg) Drive wheels torque (Nm)
Steering wheel angle (deg) Steering wheel angle (deg)

Steering wheel speed (deg/s)
Steering wheel acceleration (deg/s2)

Brake pressure (bar) Brake pressure (bar)

Table 4.1: Variables monitored and simulator inputs

4.2.1 Drive wheels torque

The drive wheels torque is an essential magnitude to be sent to the simulator. Different
ways are available to monitor it, for example using a specified sensor and obtaining
directly the desired magnitude. In despite of this, in the present work the drive wheels
torque is estimated using a measurement of the throttle pedal angle and assuming a
model for the engine behaviour. The justification of this solution is its appropriateness
in an initial development phase. In fact, correlating the throttle displacement to a
model of the engine behaviour, it is possible to estimate an approximation of the drive
wheels torque and so to drive the virtual-prototype with the real engine off. This is an
enormous advantage cause all the numerous tests can be performed in the laboratory, on
site, in a very fast and convenient way. The general relation scheme can be summarizes
as follows: the throttle pedal angle adjusts the fuel injection which act, in turn, on the
engine torque and so on the drive wheels torque. The most critical aspect, presented
in depth here, is exactly the correlation between the accelerator pedal and the engine
torque. To accomplish this operation, two steps are crucial:

� A model or a function of the engine behaviour must be developed or assumed.

� The throttle pedal angle must be correlated to the engine torque through the
model/function assumed.

The development of a model, that faithfully describes and represents the engine
behaviour, is a very complex and hard achievement. The advantage of performed
tests with the engine off could be incomparable in respect with the cost to develop the
model. For this reason, a simply and approximative model must be developed. So, the
suitability of the solution assumed is doubtless, but on the other hand the development
of an approximative model introduces a very large approximation of the engine torque
and of the final drive wheels torque. Anyway, it is an acceptable compromise cause the
final target is to develop and test the communication interface in term of transfers of
data. The development of a more faithful model, or a choice of another measurement
method, should be considered as a future achievement.

In the present paper, the model developed by Naya (2007) has been assumed and is
presented in detail below. In general, the engine torque, every instant, is dependent on
the following variables:

� The maximum torque of the internal-combustion engine, which is usually a higher
value than the actual torque on the wheels.

46

4.2 Simulator input variables

� The torque of the engine braking.

� The revolutions per minute of the engine.

� The actual gear.

� Fuel injection, that depends on the throttle pedal angle.

Taking into account the engine specifications presented in § 3.1.1, a third degree
polynomial has been assumed as a good representation of the maximum engine torque.
Three constraint are imposed:

1. Engine torque of 96 Nm at 1000 rpm.

2. Maximum engine torque of 137 Nm at 3000 rpm.

3. A torque value of zero at 6000 rpm.

The equation of the acceleration torque, Ta, is obtained in function of the revolutions
per minute n and consists in Eq. (4.4). It represents the maximum torque of the
internal-combustion engine, when the throttle reaches the maximum displacement.

Ta = −9.9444 · 10−10n3 − 3.2888 · 10−3n2 + 0.046583n+ 53.7 (4.4)

On the other side, when the accelerator pedal is completely released the engine braking
torque, Tb, has to be considered. Equation (4.5) norms this condition.

Tb = −15 · 10−3n (4.5)

Figure 4.4 shows the resultant engine torque for the two limit conditions presented
above. The revolutions per minutes n, that is an unknown factor, can be obtained
indirectly through measurements of the drive wheels angular velocity ωw. Two different
ways are practicable to capture this information:

1. Through a direct measurement of the angular velocity achievable trough the
Hall-effect sensor mounted on the prototype.

2. Taking advantage of the simulator itself, exploiting the dynamic model imple-
mented to obtain an approximation of the wheels angular velocity every time
step.

In despite of the first solution accuracy, the second one is chosen. Indeed, the use of a
direct measurement on the wheels involves to turn the engine on and to drive effectively
the real prototype. This condition, obviously, contrasts with the target to drive the
virtual model with prototype engine off, on site.

In general, the revolutions per minute n are related to the engine angular velocity
ωe trough Eq. (4.6).

n =
60ωe

2π
(4.6)

Neglecting the transmission losses, the relation between the angular velocity of the
engine, ωe, and of the wheels, ωw, is shown in Eq. (4.7). Variables Tw and Te are

47

Chapter 4. Real car-Simulator communication interface development

0 1000 2000 3000 4000 5000 6000
−100

−50

0

50

100

150

R.p.m.

T
or
q
u
e
(N

m
)

Fig. 4.4: Engine torque curve
The blue curve is Ta, the green one is Tb.

respectively a general drive wheels and engine torque. The parameter τ , computed
through Eq. (4.8), is the total speed ratio. It takes into account two contributes: one
due to the gearbox ratio ρgb, which depends on the gear engaged, and one due to the
differential speed ratio ρd, that assumes the constant value of 3.673. Table 3.1 p. 26
reports all the value assumed by ρgb.

Tw
Te

=
ωe

ωw

= τ (4.7)

τ = ρgbρd (4.8)

Taking into account Eq. (4.6) and Eq. (4.7), the revolutions per minute can be defined
as Eq. (4.9).

n =
60ωe

2π
=

60ωwτ

2π
(4.9)

Since the angular velocity of the right drive wheel is different from the left one, ωw has
been assumed the arithmetic mean of the two values as shown in Eq. (4.10), where ωrw

is the angular velocity of the right wheel while ωlw is the angular velocity of the left
one.

ωw =
ωrw + ωlw

2
(4.10)

Equations of Ta and Tb are now completely defined.
The actual engine torque, Treal, is a mix of the two limit conditions, depending on

the fuel injection and so on the throttle pedal angle. This relation is shown by Eq. (4.11).
Where f is a function linked to the accelerator pedal angle.

Treal = Taf + Tb(1− f) (4.11)

48

4.2 Simulator input variables

Digital form f Angle form
x y (deg)

Minimum value (x1, y1) 0 0 0
Maximum value (x2, y2) 420 1 75.5

Table 4.2: Limit values of the function f , and equivalent digital and angle forms

The definition of f , which is a developer choice, is a very important step. This function
can vary within a minimum value of 0, when the accelerator pedal is completely released,
and a value of 1, when the pedal reaches the maximum angle available. It is evident
that, referring to Eq. (4.11), this two values return respectively a real torque equal to
Tb and Ta.

The trend of the function must be related to the digital values generated by the
encoder (presented in §3.1.2) which is monitoring the accelerator pedal angle. Assuming
f as a linear equation, only two values of the function are needed to write the straight
line equation. So, the digital values, corresponding to the two limit conditions of f = 1
and f = 0, have been determined through a test. The minimum digital value registered
for a complete release of the pedal was equal to 0; while the maximum digital value
registered for the maximum rotation allowed by the hardware configuration was 420.
Taking into account the resolution of the encoder, that is 0.18◦ per pulse, the value can
be easy converted in degrees: 76.6◦. Table 4.2 summarizes the limit values. However,
since the angle value is not strictly necessary, only the digital form is considered.

Having available two points and having defined the trend, the equation has been
obtained substituting the four values in the so called two-point form of linear equations
shown in Eq. (4.12); where, referring once again to table 4.2, x can be considered as the
general actual digital value received from the DAS, y the general actual value assumed
by f , (x1, y1) are respectively the digital number registered and the value assumed by
f for a complete release of the pedal, while (x2, y2) are respectively the digital values
registered and the value assumed by f for the maximum pedal angle.

y − y1 =
y2 − y1
x2 − x1

(x− x1) (4.12)

The resulting equation, written in a clear and general form, is Eq. (4.13).

f =
actual encoder digital value

420
(4.13)

The last equation is the link between the digital form of the accelerator pedal angle
generated by the encoder and the engine torque. Once f is known, Eq. (4.11) is
completely defined, and the actual engine torque Treal can be easily computed.

The final step is to estimate the final input variable needed by the simulator, that
is the drive wheels torque. Taking into account the relation between a general engine
and drive wheels torque shown in Eq. (4.7), the drive wheels torque Tdw is obtained
through Eq. (4.14). Where Treal is the actual engine torque and τ the total speed ratio,
both already defined previously.

Tdw = Treal τ (4.14)

49

Chapter 4. Real car-Simulator communication interface development

DAS

Accelerator
angle

PC

Compute_par function

SIMULATOR
DYNAMIC MODEL

wrw wlf

f rmp

Ta Tb

Treal

Tdw

Dynamic model

Other input
variables

Fig. 4.5: Working scheme of the drive wheels torque estimation

All the equations presented previously are implemented in the communication interface
developed, precisely in the compute_par.cpp function shown in appendix E. The
value of ρgb is setted to 1.475, which correspond to the 2nd gear, in order to obtain
a smooth acceleration that helps to drive the virtual prototype. The gear shift is
omitted. Referring to Fig. 4.5, the working scheme can be summarizes as follows: the
DAS continuously monitors the accelerator angle through the encoder sensor; when
appropriate the value is sent to the PC and managed by the compute_par.cpp function.
Reading the dynamic model output angular velocity of the wheels (that are called
ap(30) and ap(40)) the revolutions per minutes is calculated; subsequently, through
the equation presented in this section, all the other variables are computed; at the
end, the torque of the drive wheels is sent to the simulator as input data; the dynamic
model, taking into account the wheels torque generated by the engine motor and the
contributes of other variables (e.g. road profile, brake pressure), acts on the virtual
prototype run. With the new dynamic conditions the angular velocity are recalculated
and made available for another estimation of the engine motor torque contribution.

The model of the engine and the estimation of the engine torque using the drive
wheels angular velocity of the virtual prototype introduce errors in the final result.
Moreover, some limits on the engine model can be inferred, like the omission of the gear
shift. Despite all, the solution is suitable for testing the communication interface, and
from an application point of view the solution presented makes unnecessary the use of
a specific and more expensive torque sensor, maintaining a small number of sensors.

4.2.2 Position, speed, and acceleration of the steering wheel

Three variables, related to the steering wheel, are sent to the simulator: the steering
wheel position, that is the rotation angle, the steering wheel rotation velocity and lastly
the steering wheel rotation acceleration. Despite this, only the position is monitored
through the data acquisition system and the encoder shown in § 3.1.2. The other two

50

4.2 Simulator input variables

DAS

Steering wheels angle

PC

derived function

SIMULATOR

swp

swv swa

Dynamic model

Other input
variables

Fig. 4.6: Working scheme of the steering wheel position, velocity and acceleration
computation

variables are obtained a posteriori, trough a numerical differentiation method considers
only past values. In order to obtain the steering wheel angle position, the digital values
produced by the DAS must be related to the angle form. Working with a rotary encoder
this operation is very simple. Taking into account the encoder resolution, that is 0.18◦,
the steering position swp is calculated through Eq. (4.15).

swp = 0.18◦ · actual encoder digital value (4.15)

So, once the steering wheel digital measurement is transferred to the PC, the function
derived.cpp shown in appendix D calculates the position, velocity and the acceleration.
Subsequent, the three values are stored into a buffer and made available at the simulator.
Figure 4.6 draws the working scheme of the derived.cpp function.

The numerical differentiation methods used to obtain the first and the second
derivatives of the position has been investigated for a long time. In fact, the time
discretization of the steering wheel position generates a stepped curve shown in Fig. 4.7,
although the high encoder resolution. The steps are evident especially if the maneuver is
compared to the curve obtained after a smooth operation, shown in Fig. 4.8. Figure 4.9,
instead, shows only the deviation within the two curves that has an oscillating trend.
Moreover, only past-data are available to estimate the derivatives cause it is impossible
to anticipate the user actions. As consequence, the numerical derivatives of this curve,
obtained considering only past values, is very noisy and wrong. If the simulator receives
a too wrong derivatives, the time needed to solve the equations of motion through the
integration methods explained in § 3.2.1 increases cause the iterations number to reach
the solution steps up. If the final objective is a real-time simulation, it is not allowed
an increase in the number of the iterations and, in turn, an increase in the time needed
to reach a numerical solution. Rather, a real-time simulation has precisely the opposite
aims: low number of the iterations, and an as small as possible time to obtain the
numerical solutions. Another aspect must be highlighted, using past values to calculate
the derivatives introduces a time delay: more past values are considered, more the delay
increases. Fort all these reasons, the best solution must be considered as a trade-off

51

Chapter 4. Real car-Simulator communication interface development

0 10 20 30 40 50 60
−500

0

500

1000

1500

2000

Time (s)

S
te
er
in
g
w
h
ee
ls
an

gl
e
(d
eg
)

Fig. 4.7: Steering angle of the test maneuver

between a faithful derivatives and the time delay introduced. So, the main objective is:
estimate good derivatives with an as small as possible number of past values.

To found the correct solution a test maneuver has been executed and stored, in
order to manage the data easily. Some numerical methods has been tested through
their implementation in MATLAB , and after a comparison of the results, the best
method has been chosen.

The derivatives method chosen is treated by Holoborodko (2008). The power of this
differentiation method is due mainly to the following reasons:

� It is a backward method.

� It does a noise reduction operation.

� The resulting derivatives are acceptable already considering a small number of
past values.

� The results, presented at the end of this section, are incomparable with other
methods if considering the same number of values of the past data.

Such differentiators, of any filter length N , can be written as shown by Eq. (4.16).

f ′(xi) ≈
1

h

N∑
k=0

ckfi−k (4.16)

Where ck are the coefficients expressed by Eq. (4.17) and Eq. (4.18), h is the sampling

52

http://www.mathworks.com/products/matlab/

4.2 Simulator input variables

0 10 20 30 40 50 60
−500

0

500

1000

1500

2000

Time (s)

S
te
er
in
g
w
h
ee
ls
an

gl
e
(d
eg
)

Test maneuver

Test maneuver smoothed
Deviation

Fig. 4.8: Comparison within the maneuver not smoothed and smoothed

0 10 20 30 40 50 60
−80

−60

−40

−20

0

20

40

60

80

Time (s)

D
ev
ia
ti
on

(d
eg
)

Fig. 4.9: Deviation within the maneuver not smoothed and smoothed

53

Chapter 4. Real car-Simulator communication interface development

N One sided smooth differentiators

2
1

2h
(fi − fi−2)

3
1

4h
(fi + fi−1 − fi−2 − fi−3)

4
1

8h
(fi + 2fi−1 − 2fi−3 − fi−4)

5
1

16h
(fi + 3fi−1 + 2fi−2 − 2fi−3 − 3fi−4 − fi−5)

6
1

32h
(fi + 4fi−1 + 5fi−2 − 5fi−4 − 4fi−5 − fi−6)

7
1

64h
(fi + 5fi−1 + 9fi−2 + 5fi−3 − 5fi−4 − 9fi−5 − 5fi−6 − fi−7)

8
1

128h
(fi + 6fi−1 + 14fi−2 + 14fi−3 − 14fi−5 − 14fi−6 − 6fi−7 − fi−8)

Table 4.3: One sided smooth differentiators formulas

step and fi−k = f(xi − kh).

ck =
1

22m+1

[(
2m

m− k + 1

)
−
(

2m
m− k − 1

)]
(4.17)

m =
N − 3

2
(4.18)

The method combines numerical derivative estimation and guaranteed noise suppression
towards upper bound of Nyquist interval. Moreover, it posses preciseness on low
frequencies and smooth/suppression of high frequencies. Table 4.3 reported the explicit
formulas for some values of N .

The differentiators method presented have been tested for different values of the
filter length N , within N = 10 to N = 2. The upper limit is chosen considering the delay
introduced in the derivative. Consider more than ten values to calculate the derivatives
involves a time delay bigger than 50 ms, which is unacceptable, even if supported by
an improvement of the derivatives. In truth, since no significant improvement of the
derivatives quality was registered for high values of N , the filter length N = 4 has
been adopted as a good choice and trade-off between the number of past values and
the derivatives quality. The method is applied on the position to calculate the first
derivative, and on the first derivative to calculate the second derivative. To compare
the results, Fig. 4.10 shown the test maneuver and the derivatives obtained trough
a finite difference method forward in the post processing. One more time must be
underlined that such kind of methods are not suitable in an on-board simulation, cause
would need the complete trend of the function known. However such derivatives can

54

4.2 Simulator input variables

0 10 20 30 40 50 60
−2000

−1500

−1000

−500

0

500

1000

1500

2000

Time (s)

S
te
er

an
gl
e
(d
eg
,
d
eg
/s
,
d
eg
/s
*s
)

Steering wheel position
First derivative
Second derivative

Fig. 4.10: Reference derivatives obtained trough a finite difference method forward

be considered as good references. For the forward method has been considered four
points. Figure 4.11 shown the first derivative obtained with the one sided smooth
differentiators method, for N = 4. It is possible to see that, despite the peaks, the
trend is easily recognizable. For the sake of completeness, the good result is emphasized
if it is compared with a finite difference method backward shown in Fig. 4.12, which
uses the same number of past values and that is suitable for an on-board simulation
cause considers only past data. The quality of the first derivative is incomparable:
the one sided smooth differentiator gives a better result. For the second derivative
there is not a so large improvement on the trend, but however the peaks are correct.
Figure 4.13 and Fig. 4.14 shown respectively the second derivative calculated trough
the one sided smooth differentiator method and the classic finite difference method four
points backward.

The solution to estimate the speed and the acceleration trough numerical methods
was adopted in an early phase of the development, when the good performances reached
by the data transfer operations was unknown. By this logic, it was thought to limit the
DAS operations as much as possible, relying instead on the calculation speed of the
PC. At the conclusion of the present project, the positive results give the possibility
to trust on the data transfer operation and to exploit the DAS to obtain at least the
velocity of the steering wheel. In fact, a simple processing command can be included in
the configuration file presented in § 4.4, i.e. CTRATE, which can give a measurement of
the rotation speed. This option, that deserves to be investigated, could make possible
the calculation of the first derivative in an easy an more precise way respect of the
current numerical differentiation method. The benefits are also reflected on the second
derivative.

55

Chapter 4. Real car-Simulator communication interface development

0 10 20 30 40 50 60
−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

2500

Time (s)

S
te
er

an
gl
e
d
er
iv
at
iv
e
(d
eg
/s
)

One sided smooth differentiator

Forward method

Fig. 4.11: First derivative obtained trough the one sided smooth differentiators N = 4

0 10 20 30 40 50 60
−10000

−8000

−6000

−4000

−2000

0

2000

4000

6000

8000

Time (s)

S
te
er

an
gl
e
d
er
iv
at
iv
e
(d
eg
/
s)

Finite diff. method backward
Forward method

Fig. 4.12: First derivative obtained through a finite difference method backward

56

4.2 Simulator input variables

0 10 20 30 40 50 60
−2000

−1500

−1000

−500

0

500

1000

1500

2000

Time (s)

S
te
er

an
gl
e
d
er
iv
at
iv
e
(d
eg
/s
*s
)

One sided smooth differentiator

Forward method

Fig. 4.13: Second derivative obtained trough the one sided smooth differentiators
N = 4

0 10 20 30 40 50 60
−3

−2

−1

0

1

2

3
x 106

Time (s)

S
te
er

an
gl
e
se
co
n
d
d
er
iv
at
iv
e
(d
eg
/s
*s
)

Finite diff. method backward
Forward method

Fig. 4.14: Second derivative obtained trough a finite difference method backward

57

Chapter 4. Real car-Simulator communication interface development

Sensor output Digital value Pressure
(V) (barG)

0 0 0
+5 32767 40

Table 4.4: Sensor output, digital value, and pressure value correspondences

4.2.3 Brake pressure

Measurements of the brake pressure have not hard operations. However, it is important
to remind the concepts clarified in § 4.2 about analog-to-digital conversion. Indeed,
the digital value generated by the DAS must be converted in the desired unit of
measurement.

The full voltage range of the DAS pin to which the sensor is connected is ±5 V. The
digital precision of the DAS input is 16 bits, that gives a digital range of ±32767. The
pressure sensor, presented in § 3.1.2, has a pressure range that is 0-40 barG, while the
output voltage range is 0-5 V. As consequence, the sensor has a digital output range of
0-32767, that, in turn, correspond to the pressure range of 0-40 barG. Table 4.4 reports
these correspondences. Having available two points, a linear equation has been obtained
substituting the four values in the so called two-point form of linear equations, shown
in Eq. (4.12); where x can be considered as the general actual digital value received
from the DAS, y the general actual value assumed by the pressure (in bar); (x1, y1) are
respectively the minimum digital value of zero and the corresponding pressure value
that is 0; (x2, y2) are respectively the maximum digital value, that is 32767, and the
corresponding maximum pressure value that is 40 barG. The resulting equation written
in a clear and general form is Eq. (4.19). It correlates the digital values of the range
admitted to the corresponding brake pressure bp.

bp =
actual sensor digital value

32767
40(barG) (4.19)

The last equation is implemented in the brkPress.cpp function, shown in appendix
F. The function receives the digital value from the DAS and converts it in the correct
pressure value. Subsequently, the pressure measurement is made available for the
simulator. It truth, inasmuch the digital range is 0-32767, the function managed also
the case of a digital value less than zero. In fact, due to noise of the sensor, for a null
pressure the digital value is not perfectly zero but a small negative number. In order to
avoid an erroneous measurement of a negative pressure, if the digital number received is
less than zero, the pressure is setted to a value of zero. Figure 4.15 shows the working
scheme of brkPressure.cpp function.

58

4.3 System communication tools

DAS

Brake pressure

PC

BrkPress function

SIMULATOR

digital value <=0 digital value >0

bp=0 bp

Dynamic model

Other input
variables

Fig. 4.15: Working scheme of the brake pressure estimation

4.3 System communication tools

The system communication tools available give to the user a large variety of possibilities
to communicate with the DAS, as much as give different strategies to manage the
data sent. All these instruments are presented in the paragraphs below: a brief
introduction on standard software and on DAPIO32 language is given; after, are defined
the communication channels first and, subsequently, all the tools applicable to manage
data by PC application through DAPIO32; at the end, the strategy chosen by the
undersigned is presented in § 4.3.4.

4.3.1 Introduction to DAS management

The DAS used on the prototype is very flexible and gives to the user a lot of instruments
to sample and manage data. These possibilities are not only hardware expansions but,
above all, software aspects that can improve the standard software given and make
DAS adaptive to their own needs or specifications. The data acquisition system, in
general, can be managed and setted through the following two standard ways:

� Through software provided with an highly developed graphical interface for input
and output operations, such is DAPstudio. This applications software is a no-
coding-required development environment, that allows to develop a complete
data acquisition application rapidly, selecting the settings of the DAS easily (e.g.
sampling rate, input and output channels, pre or postprocessing of data). Despite
the last assertion, DAPstudio is a powerful and professional software for data
sampling management, and can be used for proof-of-concept development or for
a full application run-time environment.

� Through software devoid of an highly developed graphical interface, such is
DAPview . This applications software allows to configure the DAS writing a
sequence of commands which are defined in a standard library1. In other words,

1A library has to be considered like a dictionary where all the commands or functions are defined
and all their operations programmed

59

http://www.mstarlabs.com/dapstudio/tabs.html#_home
http://www.mstarlabs.com/dapstudio/tabs.html#_home
http://www.mstarlabs.com/software/dvwindow.html

Chapter 4. Real car-Simulator communication interface development

it is made possible to set the DAS writing the instructions in a text file (like in
programming), that can be the input for DAPview. The software sends the file to
the DAS and makes the acquisition run. A basic graphical output is given anyhow.
The commands sequence is very similar to the so called machine language, and
makes easy to understand a very important aspect for the present work: the data
acquisition system is a programmable instrument through a text file, which is
provided with commands predefined in a standard library. In fact, this is the
method used in the application presented in this work to set the configuration of
sampling. The instructions file is explained carefully in § 4.4.

Both the previous methods presented can operate only on the DAS side. Once values
are sent in the output pipe, only few simple operations are allowed (e.g. graphical
display, data log). On the other hand, before data are sent, some tasks can be done
through standard functions or self-developed modules. These modules, once added
to the standard library, are available for every applications. The usefulness of self-
developed modules is, first of all, the possibility to merge multiple operations in one
single command, improving performance and computational efficiency. Furthermore,
the user can design personal command in C/C++ languages for his specific aim. A good
example on how and why is possible to develop modules is given in Pastorino (2012)
and Pastorino et al. (2010).

On the PC side, the most important aim to achieve is the management of data sent
by the DAS. The most powerful tool at hand is DAPIO32 (Microstar Laboratories,
b). It is a language interface allows a PC application to control the Data Acquisition
Processor through its operating system. DAPIO32 defines functions, commands and
complete language rules, which can be utilized during the development of an application
in C/C++, that can be able to communicate with DAS, and manages data coming from
the output DAS channels.

4.3.2 Communication pipes

Application of PC communicates with the DAS through a communication channel
structure called communication pipe. It is possible to open an handle to a pipe and then
use the handle to send and receive data through the pipe, according to First In First
Out method (see Fig. 4.3 p. 44). The pipe is also a buffer, in fact DAPIO32 buffers
data from and to the DAS in the pipes. There are no dangers that in a pipe could flow
data from two or more applications in the same time: pipe can be opened for reading
or writing only once; once opened the pipe is reserved until the application closes the
open handle. There are communication pipes in the DAPL operating system running
on the data acquisition processor and in the PC. They are logically connected on a
one-to-one basis in order to obtain a continuous pipe, which is considered an output
channel if data flows from DAS to PC, and input channel if data flows from PC to DAS2.
Each connected pair of pipes (one on DAS and one on PC) form a communication
channel between the PC application and the DAS. Four default communication pipes
are available for each data acquisition system:

� $SysIn. It is used for text commands from the host (in this case the PC) to the
DAPL system on the DAP board. The DAS, as already said, is a programmable

2To regard a pipe as Input or Output channel, must be considered always a DAS point of view.

60

http://www.mstarlabs.com/software/dvwindow.html

4.3 System communication tools

instrument through a text file provided with the instructions (commands) to
perform the sampling operations. This pipe is useful to send precisely the
configuration text file, or every single text command line.

� $SysOut. It is used for text messages returned from DAPL system to the ap-
plication on the host system. This pipe is useful above all for receive error
messages.

� $BinOut. It is used for binary data transfers from the DAPL system, and its
processing configuration to the application on the host system (typically for
returning digitized signal data). This is precisely the pipe used to receive data
from DAS. Data transfers in binary format were preferred to data transfers in
text format because to avoid the change-over from binary to text type, and cause
binary format allows higher velocity of transfer. In general, nothing prevents the
user to transfer data in text format.

� $BinIn. It is used for binary data transfers from the application on the host system
to the processing configuration in the DAPL system (typically, for generating
output signals). This pipe is not interesting for the present work.

The four default communication channels should be adequate for most applications.
Anyhow, additional pipes can be created by the application using DAPIO32 function
DapComPipeCreate, for a maximum of 32 sets of inputs and outputs.

The data transfers through buffered communication pipes (dynamic object) are
not easy like data transfers from a static object, such as a file. In general, the
following aspects should be taken into account carefully when working with pipes in
any investigation field:

� Place data into the pipe and take data from the pipe are two separated process,
which run concurrently. It should be taken into account that the application (on
the PC side) is subject to timing constraints of operating system.

� It is impossible to decide, during data sending, exactly when the receiver will
take the data; just as it is impossible, during data receiving, to decide exactly
when data were sent.

� Simply taking all the data that arrive through the pipe implies the impossibility
to define exactly the amount of data received: it will vary depending on how
much was sent, and how much has arrived.

� Taking a part of the data that arrive through the pipe implies the danger to
incur in the pipes overloading explained in § 4.1.2 (point three p. 43): some
amount of other as-yet-unseen data can remain within the transfer pipe, and/or
the maximum buffer capacity can be reached.

� The groupings of data that is taken from the stream can be completely different
from the groupings as they went in.

For these reasons, for a strong management of pipe, the main targets should be: to
be able to receive all data transferred, to avoid waiting for data where not yet sent
because is not possible to know the waiting time, to take data in meaningful groups in
order to make easy and unequivocal their interpretation.

61

Chapter 4. Real car-Simulator communication interface development

4.3.3 Strategies available for data transfers

Depending on the goals of the application, DAPIO32 offers a lot of strategies for data
transfers. It is important to take into account that every strategies have to be considered
only like a guide-line. These methods are presented and commented below, highlighting
the base-strategies chosen by the undersigned as references.

One value at a time − This strategy implies that, at each opportunity, a
scheduling loop extracts one unit of data from the communication pipe buffers. Being
the PC so slow to process values, is obviously the wrong way to transfer a lot amount
of data. It is not suitable for the present work because pipe-overloading. Moreover, if
for some reason arrival is delayed, the application pauses without control. This strategy
is helpful only to manage pipes that are always empty except in certain conditions.
For example, a pipe that contains emergency or error warning flags: the function will
always wait for something, while other processes of other applications are running; if a
warning flag does appear, it is directly transferred.

One block at a time − This strategy, in despite of the poor efficient of the PC
operating system in transferring data, allows to manage a lot amount of data. In
fact, which each operation many values at a time are moved, then the overhead per
transported value reduces dramatically, and it is possible to move a specified number of
values. The main problem is precisely the size of block. This method, indeed, attempts
to transfer in each operation exactly the number of values defined by the user (block
size). If data are not available, the application waits, but it is not possible to know
how much time is needed to collect the correct number of values. The consequences
are: application blocking (if the waiting time exceeds a maximum value) and/or pipe-
overloading, because it is not possible to know how many values are not transferred
at each operation. Read the most recent-value is made impossible so this method is
not suitable for the present work, while could be helpful for a general purpose of data
transfers which are not needed by other processes.

Take everything available − This strategy allows to transfer a lot amount of
data, independently of how much data is arrived and when. The application can move
everything that arrived with the great efficiency. At each opportunity, the application
attempts to receive a full data block. If it does: the data is transferred to other processes
and the application attempts to receive another block. If it does not: the data yet
arrived is anyway transferred, and the application attempts to receive immediately
another block. More over, if arrival is delayed and no data is available, it is permitted to
specify a maximum time-pause, and let the application do other things. To control data
transfers, the DAPIO32 structure called TDapBufferGetEx is defined. This strategy is
the guide-line used by the undersigned to transfer data. Indeed, at first, it has all the
characteristics needed:

� The pipe is always kept empty at each operation, independently of how much
and when data arrives, so pipe-overloading is surely avoided.

� The computational efficiency is reached, because if no data are available for a
specified time, the application can do other things.

� The most recent data is surely available: in fact, transferring for every operations
all the values, can be asserted for sure that even the last value entered in the

62

4.3 System communication tools

pipe at the moment of the receiver call is transferred. The key, once data are
transferred, is to read the correct value.

After a depth analysis, it is found a big limit due to that in the prototype more than one
parameter is sampled (i.e. throttle pedal angle, steering wheel angle, brake pressure).
To understand why the strategy fails in this case, some words deserve to be spent on how
the DAS works when sampling. The three parameters are sampled and sent to output
pipe one at a time, in an order that can be chosen by the user. Assume that the order
is throttle, steer, brake and that the pipe has a certain amount of data yet collected.
The take everything available method, at each opportunity, transfers everything arrived,
independently of how much and when data is arrived. As consequence, it is not under
control when and where the stream of data will be interrupted and transferred. Being
the pipe a stack of single independent values, there are no guarantees that, at each
operation, the stream of data is interrupted precisely at brake value, which is the last
one of the three. The certainty that the last three values of transferred data have
always the selected order is loosed. It is possible to conclude that, sampling more than
one value and transferring data through this strategy:

� It is impossible to know which are the last three values of transferred data at
each transfer operation.

� The most recent data of each value isn’t surely transferred and available.

Even though this strategy is not directly suitable, must be absolutely taken into account
to develop a correct method.

Take what you need − This strategy can be useful when receiving small tagged
data blocks, on the sort that occur when there are multiple activities on the DAP board
producing small amount of data. Thanks to the tag preceding each group of data, it is
achievable to identify the type and size. This strategy is not suitable to transfer a lot
amount of data and so is not considerable.

Take block if available − This strategy is helpful for data transfers when the
data sources generates fixed size blocks with periods of delay between. For example, to
monitor one or more parameters every predefined elapsed time. This method is not
suitable for continuous sampling at high rate such is the necessities of the prototype.
Anyhow, take block if available strategy shows how it is possible to transfer data in
a fixed size block. Since it is very important for the application developed by the
undersigned to be sure to transfer always, at least, three parameters (i.e. steer, brake,
throttle), and to avoid the problems that occur in the take everything procedure,
this strategy can be taken into account for understand the block data transfers. To
control data transfers and block size, it is defined the so called DAPIO32 structure
TDapBufferGetEx.

4.3.4 Strategy chosen and developed for data transfers

As can be inferred in the section § 4.3.3, no one of the basic strategies available is
perfectly suitable for the final target of this work. In fact, to accomplish all the goals,
a new strategy (only alluded in Microstar Laboratories (b)), which takes the best of
some methods, has been developed and thought. The strategy is presented below.

63

Chapter 4. Real car-Simulator communication interface development

Take all blocks available strategy

Take all blocks available strategy is a mix of two strategies already presented in § 4.3.3:
take everything available and take block if available. From the second method is
understood how to transfer data only in a specified block size, from the first one how
to transfer all data entered in the pipe. Mixing the two methods, at each opportunity
is attempted to transfer all blocks available, independently on when and how much
data is sent to the pipe. As consequence, the transferred data will be organized in a
variable number of blocks of the same size. Obviously, every block consists in the three
desired values: steering wheel angle, brake pressure, throttle pedal angle. Through
this method, the stream of data entered in the pipe is interrupted always in the same
point and, more precisely, after the last value of the last block available. Take all blocks
available strategy satisfies all the needs, avoiding the problems that occur in the take
everything method, and without the necessity of a time delay between the block:

� The pipe is always kept empty at each operation.

� If no data are available, for a specified time the application can do other things.

� The most recent data is surely available: in fact, transferring for every operations
all the blocks, can be asserted for sure that even the last block entered in the
pipe at the moment of the receiver call is transferred. The most recent data will
be the three values of the last block.

For the sake of completeness, the assertion “the pipe is always kept empty at each
operation” is not completely true. The pipe is effectively kept empty only when a
number of values multiple of three is entered in the pipe because the values can be
transferred only in groups of three. Such condition is impossible to be controlled.
Indeed, it should be kept in mind that process that places data into the pipe is separate
from process that takes data out of a pipe. For this reason, the sampled values will
enter anyway in the pipe one at a time independently from each other and from takes
operation, while the transfer operation takes only all blocks of three values available.
As implication, it is not guaranteed that the last block has effectively the last values
entered in the pipe. For example, could have been left behind in the pipe, in the worst
case, two values, cause the last one at the moment of the call of the receiver was not
already sent. The most recent data, as consequence, is not the most recent as possible,
but this approximation could be doubtless assumed cause the high rate of sampling and
so the negligible short elapsed time between two values. Furthermore, this strategy is
the best choice (maybe the only one) to transfer the three parameters in a synchronous
way (i.e. related approximately to the same time-instant) maintaining an useful sort.

From a code programming point of view, to control data transfers, DAPIO32 gives to
the user a structure called TDapBufferGetEx and the related function DapBufferGetEx.
Defining the structure, it is possible to configure all the parameters needed in order to
obtain the desired strategy for data transfers through the function. Since this structure
is used in the application developed by the undersigned, it is essential see in detail the
parameters and the settings for take all blocks available.

64

4.3 System communication tools

TDapBufferGetEx structure and DapBufferGetEx function

TDapBufferGetEx and DapBufferGetEx are strictly intertwined: the structure defines
how the function work, but the function defined the input and output parameters to
be processed. So, both the commands must be presented (first the function and after
the structure).

DapBufferGetEx − It is a DAPIO32 function that, as all the functions in the
programming field, operates on input and output defined variables. The function has
the following structure:

int stdcall DapBufferGetEx (
HDAP hAccel, const TDapBufferGetEx *pGetInfo, void *pvbuffer);

Three parameters can be defined:

� hAccel. It specifies the open handle to the target pipe. The handle can be
considered like a pipe on PC, and the open operation is nothing but a definition
of the logical connection to a specified DAS pipe in order to obtain a continuous
communication channel. More details about opening handle are explained in § 4.5.
From a point of view of the PC and the application, this is the input channel:
data arrive from hAccel. Because to define the input/output attributes must be
considered always the DAS point of view, the handle must be opened with read
access and the target pipe must be an output pipe from the data acquisition
processor. Indeed from the DAS standpoint, hAccel is the channel from which
data is read. In the application presented in the present paper, this handle is
called hDapBinGet, is opened with the read access and has as target one of the
default DAS output pipes presented in § 4.3.2: $BinOut.

� pGetInfo. Which is a pointer3 to the TDapBuggerGetEx structure, that passes
the parameters of the get operation into the function. In the application of
communication interface developed this pointer is called BufControl.

� pvBuffer. It is the pointer to the buffer that receives data, and called bufferIn in
the application presented in the present work.

Summarizing: DapBufferGetEx function reads a block of data from the target pipe
hAccel and transfers data in the target buffer through the pointer pvBuffer ; instructions
on how data is read and transferred are passed to the function through the pointer
pGetInfo. If the function succeeds, the return value is the number of data bytes read,
while if fails, the return value is -1. One last note: HDAP, const TDapBufferGetEx,
void, are the declarations of data type. Below, an extract of appendix C shows the
function as appears in the communication interface code developed:

92 bytes = DapBufferGetEx(hDapBinGet,BufControl,(void *)bufferIn);

3A pointer is a programming language data type whose value refers directly to (or points to) another
value stored elsewhere in the computer memory using its address

65

Chapter 4. Real car-Simulator communication interface development

TDapBufferGetEx − It is a DAPIO32 structure and defines the behaviour of
the DapBufferGetEx function. This structure is composed of some parameters and has
the following form:

typedef struct tag TDapBufferGetEx {
int iInfoSize;
int iByteGetMin;
int iByteGetMax ;
unsigned long dwTimeWait ;
unsigned long dwTimeOut ;
int iBytesMultiple;
} TDapBufferGetEx;

Six parameters cab be defined:

� iInfoSize. It specifies the size of this information structure.

� iByteGetMin. It specifies the minimum number of bytes to get. It can be zero,
or a positive integer that is a multiple of iBytesMultiple. This parameter is
very important. In fact, the minimum number of bytes to get corresponds to
the desired minimum number of values to transfer. In the application of the
communication interface developed, this parameter is setted as the sum of the
three desired variables data type. The brake pressure and the accelerator angle
are short type (2 bytes), while the steer position is long one (4 bytes), so the sum
of the three desired variables is 8 bytes. With this setting, at least three value
are transferred.

� iByteGetMax. It specifies the maximum number of bytes to get. It must be
greater than or equal to iBytesGetMin and a multiple of iBytesMultiple. The
value of this parameter must be big enough to allow the transfers of all data at
each operation, in order to empty the pipe and avoid the pipe overloading. In
the application developed, it is setted as the multiplication within the size of the
buffer where data are transferred (in number of values) and value of iBytesGetMin
(in bytes). The result is the value in bytes of the target buffer.

� dwTimeWait. It specifies the longest time in milliseconds to wait for new data
to arrive. If no new data arrive in this amount of time, the service aborts the
operation. A value of zero implies that the application doesn’t wait. In the
application developed, this parameter is setted to five milliseconds. Since the
sampling rate is setted to 200 µs (for details about sampling configurations refer
to § 4.4), the total time necessary to sample three variables is 1 ms. It can be
asserted that it is very improbable that no data are available, while it is not sure
that, at least, one block of three variables has been collected. So data could be
available but not processable. In this last case the time out does not start and
the number of bytes transferred is equal to zero.

� dwTimeOut. It specifies the longest time in milliseconds to complete the entire
operation. If the operation fails to complete in this amount of time, the service
aborts the operation. A value of zero implies an indefinitely wait, if necessary.
This parameters is setted as ten milliseconds.

66

4.3 System communication tools

� iBytesMultiple. It specifies that the number of bytes to get for iBytesGetMin and
iBytesGetMax be restricted to a multiple of this value. This parameter is the
key for ensure that the sort of transferred data is maintained and that the flow
of data is interrupted always in the same point, transferring always only groups
multiple of iBytesMultiple size. In the application developed it is setted, obviously,
equal to iBytesGetMin. As result, only the groups of three values available are
transferred.

Summarizing: TDapBufferGetEx defines the behaviour of DapBufferGetEx function.
At each opportunity, the function attempts to read and transfer an amount of data
multiple of iBytesMultiple; if data are available, the minimum data transferred could
be iBytesGetMin, while the maximum one could be iBytesGetMax ; if data are not
available, the maximum time to wait before abort operation is specified in dwTimeWait ;
all the operations have to be accomplished, anyway, before the elapsed time reaches
dwTimeOut. Below, an extract of appendix C shows the structure declaration as
appears in the communication interface code developed:

67 TDapBufferGetEx BufControl;

68 DapStructPrepare(&BufControl,sizeof(TDapBufferGetEx));

69 //At least 3 samples

70 BufControl.iBytesGetMin = sizeof(Type);

71 //As many as " " of these groups

72 BufControl.iBytesGetMax = BUFFER_DIM*sizeof(Type);

73 Always groups of 3 samples

74 BufControl.iBytesMultiple =sizeof(Type);

75 BufControl.dwTimeWait = TimeMaxWait;

76 BufControl.dwTimeOut = TimeMaxTot;

It is very interesting to spend some words about the performance of the function. As
already said, the DapBufferGetEx, if succeeds, returns the number of bytes sent. This
information is very easy to achieve (e.g. printing the variable on the terminal, or in a
text file) and, thanks to it, considerations about the data transfers and the time needed
can be done. The results obtained show that, every loop, the following three case may
occur:

� The number of bytes transferred is equal to zero. It can be deduced that the
operations of read and transfer are so fast that, during the elapsed time, no data
processable are collected. A so called if cycle has been thought and implemented
in the application in order to prevent that, if this condition occurs, the null
values (or whatever has been interpreted by the PC) reach the simulator. In
fact, when a null value of bytes is detected, the function returns and attempts
another read operation (appendix C, line 114). It must be underlined again that
processable data are different from available data, cause the parameters setted
in the structure. If the transferred bytes are equal to zero, doesn’t imply that
the pipe is empty but quite simple that the number of the pipe values is not the
minimum one imposed.

� The number of bytes transferred is equal to iBytesGetMin, that is 8 bytes. This
implies that one block , composed of three values (steer position, throttle pedal

67

Chapter 4. Real car-Simulator communication interface development

angle, brake pressure), was available and transferred. The block available, being
the only one, can be considered as the most recent data and sent to the target
buffer.

� The number of bytes transferred is larger than the minimum one imposed. This
implies that more than one group of three variables is available. If this condition
occurs, according to the TDapBufferGetEx structure settings, all blocks available
are transferred to the target buffer. Since some blocks are buffered, the last one,
which is the most recent data, must be read and made available to the simulator.
This step exploits the aid of another buffer, which can store only three parameters,
and where the most recent data is always sent and overwritten (more details
in § 4.5).

Five test maneuvers, lengthy fifty seconds, have been done in order to analyse more
accurately the results. Figure 4.17 shows the number of bytes transferred every loop
(transfer operation) during the maneuver number one, while Fig. 4.16 shows the number
of bytes transferred for the first 1000 loops. All the three cases (one, more than one,
none block processable) explained previously are evident. A preliminary analysis makes
think that, in most cases, the number of bytes transferred is equal to the size of one
group of three variables, that is 8 bytes. This result is evident mainly in Fig. 4.16.
The PC, in despite of its slow management of data, can transfer the values so quickly
that, in the subsequent loop, only another block is processable. Undoubtedly, this
result is due to the powerful of transfer in blocks. A time estimation is possible: the
time needed can be considered, with approximation, as the time needed to collect
five values. In fact, the data processable are different from the data available and,
as consequence, the operation time can not be considered equal to the one needed to
collect three values, but surely, is lower than the one needed to collect two groups
(six values). Since the sampling rate is setted to 200 µs, as shown in § 4.4, the total
time can be easily obtained: 1.4 ms. Another condition which often occurs, is that the
number of bytes obtained is equal to two groups of data, that is 16 bytes. Summing
the possible maximum number of value of unprocessable data, i.e. two, the total time
obtained is 2200 µs, that is 2.2 ms, for a total of height values. It can be asserted that,
as a conclusion of a preliminary analysis, on average, the total time seems to vary
within the two times obtained, not a such good result. Fortunately this conclusion is
not reliable cause other non evident factors must be taking into account. Nevertheless,
the application, and so the transfer operation too, is subject to timing constraints
of the operating system scheduler. An unpredictable delay may occur due to other
process operations (e.g. disk activity, desktop application). Moreover, the impact on
the transfer time of the peaks (which occur cause the last circumstance asserted) shown
in Fig. 4.17 must be considered. On the other hand, the zero bytes transferred could
be a signal that the function, sometimes, is more fast to transfer data than the DAS to
collect it, and must be considered too.

A more correct conclusion can be obtained considering the total time of the maneuver
and the total number of loops, which are respectively: 50 s and 125229 loops. Dividing
the maneuver time by the maneuver loops, the average time of a transfer operation
can be easily calculated: 0.40 ms. Unexpectedly, the value obtained is lower than
the estimation of the preliminary analysis and moreover is lower than the minimum
time needed to collect a block of three value, that is 1 ms. This result is supported

68

4.3 System communication tools

Maneuver Length Loops Bytes Blocks Transfer time
(s) (ms/loop)

1 50 125229 1117416 139677 0.40
2 50 120857 1080528 135066 0.41
3 50 102720 918152 114769 0.49
4 50 149883 1342368 167796 0.33
5 50 100413 897064 112133 0.50

Avg. time 0.43

Table 4.5: Data transferred and execution time for each test maneuvers

by Fig. 4.16, where it is possible to see that the condition of zero bytes transferred
occurs very often. If zero bytes are transferred, the PC is so quickly to transfer the
values that in the subsequent loop none block is available. The result is better than
expected and very promising, because it remains largely under the integration time
step imposed, i.e. 5 ms and moreover under 1 ms. Furthermore, the peaks do not have
a significant influence.

Table 4.5 summarizes the number of loops, of bytes transferred, of blocks transferred
and the average transfer time for each maneuver. It shows that a variation occurs in
the results, due to the impact of the operating system scheduler, which, as already
said, involves casual and unpredictable delays. Considering all the five maneuvers, the
final average time is equal to: 0.43 ms, largely under the integration time step imposed,
i.e. 5 ms. This result, at the moment, is the more reliable obtainable but can not be
considered totally the real limit of the achievable performances. In fact, the influence
of the operating system scheduler is unquantifiable. A totally reliable measurement
should be done on a real-time operating system.

69

Chapter 4. Real car-Simulator communication interface development

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

30

40

50

60

Loop

B
y
te
s

Fig. 4.16: Bytes transferred during 1000 loops

0 2 4 6 8 10 12

x 104

−10

0

10

20

30

40

50

60

Loop

B
y
te
s

Fig. 4.17: Bytes transferred during an entire maneuver

70

4.4 Data sampling configuration

4.4 Data sampling configuration

As already mentioned, the digital acquisition system can be managed through a text file,
provided with the desired commands and options, and sent through the communication
pipe $SysIn. This is precisely the way adopted at the present project to configure the
settings of the sampling. The application developed opens the communication pipe and
through the command DapConfig sends the instructions file to the DAS (see appendix
C, line 64).

The text file, or better the configuration script, consists in procedures, which
are groups of commands that together perform some functions. The commands are
recognized by the DAS operating system called DAPL. The DAPL is downloaded into
RAM of the data acquisition processor during the boot sequence of the host processor.
Once the configuration script is downloaded, it is translated automatically into a set
of tasks, which consist of commands and its parameters. All the tasks in a procedure
execute concurrently when a procedure is active. The procedures can be grouped in
the following types:

� Input procedure sets the sampling rate and select the physical input pins on
which voltages are sampled.

� Processing procedure deals with the processing of the data. For example it might
contain several commands setting up an average tasks that the DAS executes
concurrently on different input channel pipes.

� Output procedure defines commands to perform output operations. For example
it might contain commands setting up the output port or pipe for the processed
data.

An application has no obligation to have all the procedures described, but most common
configuration is: one input procedure, one processing procedure and possibly one output
procedure.

Since the number of DAPL commands is very large, it would be difficult and useless
to describe them all. For these reasons, only the commands used in the configuration
script of the communication interface developed are presented below. Further details can
be found in Microstar Laboratories (c). The configuration script is called con_dap.DAP

and is reported below:

1 RESET

2 outport 8..11 type=1

3 options buffering=off

4 options quantum=200

5 options scheduling=fixed

6 PIPES P1 LONG

7 IDEF A 5

8 SET IP0 S4 //BRAKE buffer[1]

9 SET IP1 B3

10 SET IP2 B2 //SWHEELS buffer[3]

11 SET IP3 B2

71

Chapter 4. Real car-Simulator communication interface development

12 SET IP4 B2 //THR buffer[2]

13 TIME 200 //microseconds

14 END

15 PDEF B

16 QDCOUNT(IP2,0,"RELATIVE",P1)

17 MERGE(IP0,IP4,P1,$BinOut)

18 END

19 START A,B

As it is shown, the configuration script consists in a preamble, where are specified
some system options for controlling the trade off between latency and efficiency, and
two procedure: the input procedure called A defined by the command IDEF with the
declaration of the number of channels (such is five) to be sampled (line 7); the process
procedure called B defined by the command PDEF (line 15). Each procedure is closed by
its own END command. The tasks defined in the procedures remain available, though
inactive, until the system command START, in the last line, activates the procedure.
In the preamble, the commands useful especially for a real-time application are the
follows:

� RESET command clears all definitions and errors. It is a good practice to put
always this command in the first line.

� outport command informs DAPL of the types of output expansion boards
in a system and their output port addresses, both depending on the hardware
configuration: type=1 is for analog output expansion board. The output expansion
boards, in fact, appear to the data acquisition processor as several input/output
ports.

� option buffering acts on the buffering of the processed data. With the option
off, the task pushes individual values through the sequence without buffering.

� option quantum sets the maximum time allocation allowed per task, in microsec-
onds. A setting of 200 µs is typical when low response latency is required.

� option scheduling deals with the tasks scheduling. When DAPL switches
between tasks, the operating system is responsible fro selecting the task to
activate. With the option fixed, DAPL uses a round robin scheduling algorithm.

The configuration of buffering, quantum and scheduling shown, set the DAS in a low
latency configuration.
In the input procedures two commands are defined:

� SET command associates an individual physical input pin S4, B3, B2, to the
input pipes IP0-1-2-3-4. The number of the pin is dependent on the hardware
configuration, inasmuch every number correspond to a specific pin on which a
specific sensor is plugged. On the other hand, the output pipe numbers are
user-defined but when the sampling configuration runs, it will capture samples in
order of channel identifier numbers rather than by order of appearance within

72

4.4 Data sampling configuration

the IDEF section. The input pin names begin with a character that allows to
identify the pin type: S stands for single-ended analog input while B stands for
binary digital input source. Once more, the pin type depends on the hardware.
In the input procedure considered, one single-ended input pin, on which the brake
pressure sensor is plugged, is defined and associated with the pipe number 0.
The other pipes regard the quadrature decoder board, are digital type, and the
relation between pins and pipes is not evident like the analog case. In fact, the
quadrature decoder board consists of two input ports: a control port (i.e. B3) and
a data port (i.e. B2). Reading the control port latches (stores) values of all the
counters on the quadrature decoder board for reading. Internally, the counters
continue to monitor and count events while latched values remain stable. After
latching, each operation reading from the data port obtains one latched counter
value. The first read from the data port obtains the latched value from the first
counter. Subsequent read operations obtain the latched count values from the
second, third and fourth counters in sequence. Reading the control port again
ends the read sequence and latches new count values in all channels. Reading
the data port again begins the next cycle of reading counter values, starting
with the first counter. For example, considering the file con_dap.DAP, reading
the control port B3 stores four values (one for each encoder) on the quadrature
decoder board and a not useful data is sent to IP1. To read the stored data,
some read-operations of the input port B2 must be executed in order to scroll
through the values. For this reason, the first lecture of the input port obtains
the first value, that is the digital value from the steering wheel encoder, and
sends it to the input pipe IP2; the second lecture obtains the digital value from
another encoder which is not considered in the present work; the third lecture
obtains the third value stored, which is the digital value of the throttle encoder,
and sends it to the input pipe IP3. It is possible to observe that the second
lecture is useless. Unfortunately, none skip operation is available, so the only way
available to scroll the stored values is to read in order the counters, also of the
unwanted data. However, not all counters must be read. If, for example, only the
first two counters are needed, the last two can be omitted. In the configuration
script shown in this section the last counter is omitted. Lastly, the order of the
stored values depends on the hardware configuration and on how the encoders
are plugged to the quadrature board.

� TIME command sets the sampling time in microseconds unit. In case of multiplex
input sampling and with M channels, each channel is sampled every TIME ·M .
Because the sampling time has been set to 200 µs per channel, and there are five
channels, each pin is sampled every 1 ms, while the delay between two subsequent
channels is 200 µs.

Some optimization of the input procedure are available, for example a more useful
hardware configuration could avoid the lecture of the useless counter, saving time.
Moreover, the sampling time can be reduced.
In the process procedure the following commands are defined:

� QDCOUNT processing command deals with the quadrature decoder board, and
maintains a 32-bit representation of the running count compensating for the

73

Chapter 4. Real car-Simulator communication interface development

numerical overflow conditions, yielding a running 32-bit count with vastly larger
effective range. It also provides some helpful features for establishing the initial
state of the processing. An additional 32-bit pipe is needed to receive adjusted
count values. This expedient is useful to process the steering wheel encoder digital
values, since the digital range of ±32767, due to the 16 bit resolution, is too short
to describe large rotation angles of the steering wheel. In fact, the numerical
overflow condition is quickly reached for small rotations and the count appears
to jump instantaneously from a large positive value to a large negative value, or
reverse. From a simulator point of view, this is traduced in an instantaneous
change of the steering position, from a large positive angle to a large negative value
(or reverse), despite the user is turning in the same verse. To avoid confusion that
this cause, the QDCOUNT command reads the values form the pipe IP2, that is a
16 bit representation of the steering wheel count, and sends a 32 bit representation
to the user-defined pipe P1. This pipe is declared in the line 6 with the attribute
long, since a 32 bit representation produces long data type. Two options are
defined for this command: the initial offset of the count start, setted to zero, and
the operating mode setted to relative, that is an explicit request of the default
operating mode. It assures that only the counts change after processing is started
are considered, while the counts change between the time that the hardware
counters are initialized and the processing begins are unconsidered.

� MERGE reads data from one or more input pipes and places the data consecutively
into an output pipe. One important characteristic of this command is: data arrival
rates in all input pipes must be equal. Thanks to this command, the values of the
pipe IP0, IP4, P1, which correspond respectively to the brake pressure, throttle
pedal angle and steering wheel angle (long representation), are sent maintaining
the order to the output pipe $BinOut. The order of the merge operation is very
important, because permits to easily identify data once are transferred on the
PC, in the buffers system presented in § 4.5. Moreover, the order is not casual,
indeed a little trick is to put the long data type in the last position, in order to
avoid eventual data type format problems.

The last line of the script shown the aforementioned START command. It activates the
procedures defined.

4.5 Whole application and buffers system

All the functions presented in the previous sections work together to realize the
communication interface. They are also linked by a buffers system that is useful to
identify and transfer the most recent data at the simulator call. Figure 4.18 shows the
general organization of the whole application. Referring to this figure, the application
is divided in two main parts:

1. DAS management thread, called DapControl. The thread has the main goal to
manage the data acquisition processor and to transfer the data available at all
time.

74

4.5 Whole application and buffers system

2. Function call section (on the left), that consists in three function: derived,
compute_par, brk_press. The goals of these function are to process the most
recent data and to send the values to the simulator.

The most important advantage of using a thread to manage the DAS is that it is
possible to execute it in parallel respect the main program. So independently by the
simulator running, the thread executes the operations programmed. The function call
section, instead, is executed only when the simulator need data. It can be considered
like a read operation of the simulator.

In detail, a simulation works as follows. In the code main section, first it is initialized
the DAS management thread and subsequently the simulator that however will run
effectively only after a user explicit command. The thread, at the contrary, runs
immediately. First of all, it opens the communication pipes presented in § 4.3.2.
Through the input pipe, the configuration script shown in § 4.4 is sent to the DAS
and the sampling operations starts (these operation are executed only once). After
that, thanks to the function explained in § 4.3.4, the thread takes all blocks available
from the output DAS pipe and puts all the data transferred in the first buffer, called
bufferIn. In this way, the output pipe is always kept empty. The bufferIn buffer
consists in some blocks, so its length is equal to the maximum number of blocks which
can be transferred. This number must be large enough, cause every transfer operation,
all the data sampled must be transferred. One block, in turn, consists in: one value of
the brake pressure, one value of the throttle angle, one value of the steering wheel angle.
Moreover it is inaccessible by the simulator. Once the data are available in the first
buffer, the most recent data, which is the last block entered, is stored to another buffer:
bufferOut. This buffer has length one, or in other words, it consists only in one block
which is always overwritten at every loop and that is accessible by the application.
Being the number of blocks different at every loop, a check on the bytes transferred is
implemented to recognize the correct number of blocks and so the last one. The data
transfer operations are executed every time is possible, continuously, as fast is possible,
in an infinite loop. As shown in § 4.3.4 one loop takes 0.43 ms.

On the other side, the simulator, every time step (i.e. 5 ms), needs input data to
execute the simulation. It calls the functions presented in § 4.2 which in turn read the
most recent data block from bufferOut, process the data, and send the data to the
simulator. At this point, the simulator has all it needs. In the same time the thread is
still running and the most recent data is continuously update.

Despite the parallel execution of the simulation and the data management, the two
process are not truly independent from each other. In fact, it should be remembered
that they are executed on the same PC processor. Obviously, they influence each
other in term of performances. This aspect, unfortunately, is absolutely random and
unquantifiable, especially when a real-time OS is not used. Certainly, there could be
improvements with a real-time OS, but the best could be a real parallel execution
exploiting two different CPUs: one dedicated to the simulation and one dedicated to
the data management.

In the previous section, it has been stated that the most recent data is the last block
entered in the buffer bufferIn. To recognize it, a check on the bytes transferred is im-
plemented: every loop the number of bytes transferred is stored, and through Eq. (4.20)

75

Chapter 4. Real car-Simulator communication interface development

C
od

e
m

ai
n

se
ct

io
n

D
ap

C
on

tr
ol

 th
re

ad

D
A

S

al
l b

lo
ck

s
av

ai
la

bl
e

bu
ff

er
In

M
R

D M
os

t
R

ec
en

t
D

at
a

bu
ff

er
O

ut

T
hr

ea
d

L
oo

p

M
R

D

S
im

ul
at

or t C
A

L
L

 d
er

iv
ed

 f
un

ct
io

n

C
A

L
L

 c
om

pu
te

_p
ar

 f
un

ct
io

n

C
A

L
L

 b
rk

_p
re

ss
 f

un
ct

io
n

st
ee

ri
ng

 w
he

el
 a

ng
le

th
ro

tt
le

 a
ng

le

br
ak

e
pr

es
su

re

IN
-d

ig
ita

l

IN
P

U
T

R
ea

d
op

er
at

io
n

O
U

T
-M

ag
ni

tu
de

S
te

er
in

g
w

he
el

 p
os

iti
on

S
te

er
in

g
w

he
el

 v
el

oc
ity

S
te

er
in

g
w

he
el

 a
cc

el
er

at
io

n
D

ri
ve

 w
he

el
s

to
rq

ue
B

ra
ke

 p
re

ss
ur

e

=
1

bl
oc

k=
B

ra
ke

 p
re

ss
ur

e
T

hr
ot

tle
 a

ng
le

S
te

er
in

g
w

he
el

 a
ng

le
{

Fig. 4.18: Working detailed scheme of the application developed

76

4.5 Whole application and buffers system

536 537 538 539 540 541 542 543 544 545 546

6000

6200

6400

6600

6800

7000

7200

Loop

D
ig
it
al

va
lu
e

bufferIn.[1]−block 2

bufferIn.[0]−block 1

Fig. 4.19: Values assumed by the first and last block stored in bufferIn

is calculated the number of block transferred nb, where 8 byte is the size of one block.

nb =
bytes transferred

8 byte
(4.20)

The most recent data is located in the last block, which has an index that is i = nb− 1.
This is simple justified keeping in mind some basic rules of C/C++ programming: the
buffer, which is a mono-dimensional array or vector, consists in elements. These
elements, or blocks as are called in the present paper, are identified by a progressive
index. The first element has not an index value of 1, but an index value of 0. For this
reason, the index can assume the value within 0 and D−1, where D is the vector length
(Bellini and Guidi, 2009). At the contrary, none rules assure that the most recent data
is stored precisely in the last block, cause only the order in the communication pipes is
certain. For this reason, a simple check has been done: turn the steering wheel in the
right hand implies a registered digital value increasing; during the execution of a slow
operation of turning, maintaining the right hand direction, all the blocks of bufferIn
has been stored in a text file with the correct index. Considering only the cases of
when two blocks are transferred, Fig. 4.19 plots the values of the first and the second
block. It is evident that the last block transferred, which has the index number 1, has
always a value bigger then the first. As consequence the last block is the most recent
data at the moment of the transfers data operation and the order of the pipe is kept.
The last check is to verify that the block stored in the bufferOut matches to the last
block of bufferIn, and so to the most recent data. Figure 4.20 shows the subtraction
of the most recent data from the value stored in bufferOut: the result is always 0, the
values match perfectly during the entire maneuver. At the end, a numerical extract is
reported.

77

Chapter 4. Real car-Simulator communication interface development

bufferIn.[0] bufferIn.[1]=MRD bufferOut.[0]

93947 93992 93992

94175 94221 94221

94497 94543 94543

94869 94916 94916

95152 95199 95199

95532 95580 95580

95869 95918 95918

96209 96258 96258

96600 96649 96649

96894 96943 96943

97188 97237 97237

97533 97583 97583

97883 97933 97933

98234 98284 98284

98536 98586 98586

98888 98938 98938

99239 99290 99290

99645 99696 99696

...

2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500
−2

0

2

4

6

8

10

12

14

16

18
x 104

Loop

D
ig
it
al

va
lu
e

Difference

bufferIn.[1] MRD
bufferOut.[0]

Fig. 4.20: Correspondence between the most recent data and the value stored in
bufferOut

78

Chapter 5

Conclusions

79

5.1 Goals achieved, possible applications and future developments

5.1 Goals achieved, possible applications and

future developments

All the aims, goals reached, and improvements available of the application developed,
are already reported in every sections of the present work. However, for greater clarity,
as final comment, all of them are summarized and further discussed below.

First of all, the main objective of the present work is reached: the execution of the
simulation on-board, in real-time, employing the signal from the digital acquisition
system. The performances reached are better than expected, and this is absolutely a
step forward from an industrial application point of view. The application developed
permits now to simulate in real-time, on-board, the behaviour of the car. In this
way, the system is able to prevent an event of unstable handling and takes decision in
real-time. Moreover, the small number of sensors utilized to monitor the prototype
involves a small investment. A futuristic application regards the automation of land
vehicles without the driver interaction. In fact, monitoring the car through a data
acquisition system and elaborating the data through the simulator, in case of sudden
changes of the environment, appropriate actions and/or decisions can be taken. So the
car will be provided with a better automatic and realistic driving. The car industries,
moreover, can be interested on the present project cause it could be useful to test
the performances of a real car, driving the virtual prototype on a virtual track, with
the engine off. It is evident the enormous saving of money. At least, thanks to the
communication interface developed and to the on-board simulation execution, it is
possible trough a state observers technique to fix potential simulation errors and to
obtain more informations about the vehicle handling than the number of magnitudes
monitored. So instead of using real sensors to support some common safety car systems,
it is possible to obtain every kind of desired data directly from the real-time simulation.
This innovation involves a considerable saving of money and car development time.
The main objective is achieved thanks to some small goals, the most important are:

� Asynchronous data management is reached, creating a thread for the data transfer
operations, as shown in § 4.5, which runs in parallel to the simulator.

� Thanks to the DapBufferGetEx function, presented in § 4.3.4, the data transfers
operation reaches very good result: a time for the transfer of 0.43 ms, which is
less than the time step imposed and moreover less than one millisecond. This
guarantees a time-faithful data.

� The communication pipes are always kept empty, avoiding the overloading prob-
lem.

� The most recent and time-faithful data is made available every transfer operation.
This is proved and shown in § 4.5, where the buffers system is explained.

� The functions presented in § 4.2 process the data before to send the values to
the simulator. Especially, regarding the steering wheel, through a numerical
differentiator method the derivatives are calculated and smoothed, obtaining a
very good result with a small number of past values considered.

81

Chapter 5. Conclusions

Despite the considerations above, and the good results reached, numerous improvements
are available:

� The employment of a real-time operating system (RTOS), e.g. LynxOS, OSE,
QNX, RTlinx. This solution will give more reliability on the test results, cause
RTOSs are more appropriate to achieve the aims of a real-time application. The
key characteristic of an RTOS is the level of its consistency concerning the amount
of time it takes to accept and complete an application task; the variability is
jitter 1. An RTOS, moreover, has an advanced algorithm for scheduling, a minimal
interrupt latency and minimal thread switching latency. Compared to a classic
OS, the advantages and the benefits are several, both on the performances of the
application and of the simulator.

� The application developed deserializes the two processes, i.e. the simulation and
the data management, but they are performed on the same CPU. This approach
does not permit to make the best use of the parallel tasks programming. So the
execution of the processes on different CPUs must be surely investigated.

� In § 4.2.1, in order to estimate the drive wheels torque, an engine model is adopted.
However this solution is appropriate only in an early development phase: first of
all, the gearbox must be taken into account in the current model, and moreover a
more faithful model must be developed. Another solution is to monitor directly
the drive wheels torque through an Hall-effect sensor. In this manner, however,
the only way to drive the virtual prototype is to drive the real car.

� In § 4.2.2, a numerical method is exploited to obtain the first and the second
derivatives of the steering wheel position. This approach introduced unavoidable
errors already presented. A more better measurements can be obtained thanks
to a simple processing command, i.e. CTRATE, which can be included in the
configuration file presented in § 4.4. This command can give a direct measurement
of the rotation speed processing the signal of the position, without the need of
another sensor. On the other hand, this option, that deserves to be investigated,
involves changes in the entire application. The command was not considered at
first cause the good performances of the data transfer operations were unknown.
By this logic, it was thought to limit the DAS operations as much as possible,
relying instead on the calculation speed of the PC. At the conclusion of the
present project, the positive results give the possibility to trust on the data
transfer operation and to exploit the DAS to obtain at least the velocity of the
steering wheel.

� The sampling period can be reduced. Smaller is the sampling period, more the
data is faithful in term of time, cause the delay between the simulator call and
the sampling instant is reduced.

Lastly, another improvement is available, and regards the simulator. In truth,
the dynamic model of the simulator is not complete, missing the model of the tyres
behaviour. Once the model will be introduced and since the application developed

1Jitter is the undesired deviation from true periodicity of an assumed periodic signal in electronics
and telecommunications, often in relation to a reference clock source.

82

5.1 Goals achieved, possible applications and future developments

does not introduced important delay, the number of the iteration will decrease. The
real-time simulation could be reached in full.

83

Appendix A

Changes introduced in main.cpp

1 ...

2 ...

3 //Changes introduced by Pasquale Gallo in order to interface

4 // DAS-simulator;

5 //March-September 2012

6 //

7 #include <Windows.h> //create thread

8 #include <iostream>

9 #include <fstream>

10 #include "DapControl.h" //header dapControl

11 #include <stdio.h>

12 ...

13 ...

14 //bufferOutDap as global variable.

15 //The most recent value from Dap is stored here.

16 typedef struct My_buf

17 {

18 short int brake;

19 short int thr;

20 long int stw;

21 } Type;

22 #define BUFFER_OUT_DIM 1

23 Type bufferOutDap[BUFFER_OUT_DIM];

24 ...

25 ...

26 //Thread variables.

27 DWORD ID;

28 HANDLE threadDap;

29 //call thread DapControl.

30 //The thread will running parallel to simulator.

31 threadDap=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)

32 DapControl,&bufferOutDap,0,&ID);

33 printf("Create Thread surpassed\n");

34 ...

35 ...

85

Changes introduced in guiado.f90

1 ...

2 ...

3 !Changes introduced by Pasquale Gallo in order to interface

4 ! DAS-simulator;

5 !March-September 2012

6 !Fortran calls to C function "interface"

7 interface

8 subroutine compute_par(a, b, c) bind (C, name=’compute_par’)

9 implicit none

10 real(8):: a, b, c

11 end subroutine

12 subroutine brkPress(a) bind (C, name=’brkPress’)

13 implicit none

14 real(8):: a

15 end subroutine

16 subroutine derived(a, b, c) bind (C, name=’derived’)

17 implicit none

18 real(8):: a, b, c

19 end subroutine

20 subroutine time_c(a) bind (C, name=’time_c’)

21 implicit none

22 real(8)::a

23 end subroutine

24 end interface

25 !!Reading data from DAP

26 !!Fortran calls to C function

27 call time_c (time)

28 call compute_par (ap(30),ap(40),torque)

29 call brkPress (brk_press)

30 call derived (str_pos,str_vel,str_ace)

31 ...

32 ...

86

Appendix B

bufferOutDap.h

1 //Developed by Pasquale Gallo, March-September 2012;

2 //include this header to read from bufferOutDap

3 //bufferOutDap defined in main.cpp

4 #ifndef __BUFFEROUTDAP_H__

5 #define __BUFFEROUTDAP_H__

6 typedef struct My_buf

7 {

8 short int brake;

9 short int thr;

10 long int stw;

11 } Type;

12 #define BUFFER_OUT_DIM 1

13 extern Type bufferOutDap[BUFFER_OUT_DIM];;

14 #endif

DapControl.h

1 //Developed by Pasquale Gallo, March-September 2012;

2 //Dap thread header

3 #ifndef __DAPCONTROL_H__

4 #define __DAPCONTROL_H__

5 #include "windows.h"

6 extern "C"

7 {

8 DWORD WINAPI DapControl (LPVOID lpParameter);

9 }

10 #endif

87

Appendix C

DapControl.cpp thread

1 //Developed by Pasquale Gallo, March-September 2012

2 //DapControl Thread.

3 //This Thread is called from main.cpp.

4 //The thread runs parallel to simulator.

5 //DapControl continuously reads from bufferIn

6 //The most recent value is sent to bufferOut.

7 //bufferOut is a pointer to bufferOutDap.

8 //bufferOut has BUFFER_DIM and can store a lot of values in order

9 //to avoid the complete $binout filling.

10 //bufferOutDap has BUFFER_OUT_DIM 1 and stores only the most

11 //recent value of bufferOut.

12 //All the operations are executed as fast as possible but:

13 //with variable TIME, it is possible to do a cycle-pause.

14 //

15 #include <stdio.h>

16 #include <Windows.h>

17 #undef UNICODE

18 #include <dapio32.h>

19 #include "DapControl.h"

20 #define BUFFER_DIM 50000 //number of vector "My_buf" which is

21 //contained in buffer.

22 #define BUFFER_OUT_DIM 1 //number of vector "My_buf" which is

23 //contained in buffer.

24 const short int TIME=2; //time to "Sleep" {ms) for Data Send

25 const short int dim_one_block=8//dim of one block=8 bytes

26 const short int TimeMaxWait=5;//Milliseconds maximum to wait for

27 //first new data, no data=return

28 const short int TimeMaxTot=10; //Milliseconds maximum before abort

29 //operation, 0=wait indefinitely.

30 //delivered data function

31 int DeliveredData;

32 typedef struct My_buf

33 {

34 short int brake;

89

35 short int thr;

36 long int stw;

37 } Type;

38 //function declaration

39 int DeliverData(Type *,Type *,int,int);

40 void ReceiveAvailableData(HDAP hDapBinGet,TDapBufferGetEx *BufControl,

41 Type *,Type *);

42 DWORD WINAPI DapControl (LPVOID lpParameter)

43 {

44 //bufferOut points to lpParameter; lpParameter points to bufferOutDap.

45 struct My_buf*bufferOut=(struct My_buf*)lpParameter;

46 Type bufferIn[BUFFER_DIM];

47 //Get: send to PC, set OUT port, option READ; Put: reverse Get

48 HDAP hdapBinGet, hdapSysPut;

49 BOOL isConfigured;

50 // Open communication handles

51 //PC->DAQ

52 hdapSysPut = DapHandleOpen("\\\\.\\dap0\\$SysIn", DAPOPEN_WRITE);

53 if (hdapSysPut==0)

54 printf("Error opening DAP text input handle hdapSysPut\n");

55 else printf("Input handle hdapSysPut is opened\n");

56 //DAQ ->PC

57 hdapBinGet = DapHandleOpen("\\\\.\\dap0\\$BinOut", DAPOPEN_READ);

58 if (hdapBinGet==0)

59 printf("Error opening DAP binary data output handle hdapBinGet\n");

60 else printf("Output handle hdapBinGet is opened\n");

61 DapLinePut(hdapSysPut,"RESET");

62 DapInputFlush(hdapBinGet);

63 //load .DAP file

64 isConfigured = DapConfig(hdapSysPut, "con_dap.DAP");

65 if (isConfigured){

66 //TDapBufferGetEx control structure

67 TDapBufferGetEx BufControl;

68 DapStructPrepare(&BufControl,sizeof(TDapBufferGetEx));

69 //At least 3 samples

70 BufControl.iBytesGetMin = sizeof(Type);

71 //As many as " " of these groups

72 BufControl.iBytesGetMax = BUFFER_DIM*sizeof(Type);

73 //Always groups of 3 samples

74 BufControl.iBytesMultiple = sizeof(Type);

75 BufControl.dwTimeWait = TimeMaxWait;

76 BufControl.dwTimeOut = TimeMaxTot;

77 printf("\nConfiguration and Buffer structure are ok\n");

78 ReceiveAvailableData(hdapBinGet,&BufControl,bufferIn,bufferOut);

79 }

80 else printf("error load configuration Dap file\n");

81 }

90

82 // Call this to fetch and deliver any new data that arrive.

83 // Report the number of new values.

84 void ReceiveAvailableData(HDAP hDapBinGet,

85 TDapBufferGetEx *BufControl,Type*bufferIn,Type *bufferOut)

86 {

87 int total = 0;

88 int received;

89 int bytes;

90 while (1)

91 {

92 bytes = DapBufferGetEx(hDapBinGet,BufControl,(void *)bufferIn);

93 received = (bytes / sizeof(Type));

94 DeliveredData = DeliverData(bufferIn,bufferOut,received,bytes);

95 //total+ = received; //total number of values

96 }

97 return;

98 }

99 //DeliverData Function

100 int DeliverData (Type *bufferIn,Type *bufferOut,int received,int bytes)

101 {

102 int nblock=0

103 int valuesent = 0;

104 if (bytes>0 && received<BUFFER_DIM)

105 {

106 nblock=(bytes/dim_one_block)-1

107 bufferOut[0].brake = bufferIn[nblock].brake;

108 bufferOut[0].thr = bufferIn[nblock].thr;

109 bufferOut[0].stw = bufferIn[nblock].stw;

110 valuesent = received;

111 //Sleep (TIME);//Uncomment this line in order to do a cycle-pause.

112 }

113 else

114 if (bytes<=0)

115 return (valuesent);

116 else

117 if (received==BUFFER_DIM)

118 {

119 printf ("\nValue received: %dl\n ",received);

120 printf ("BUFFER_DIM is reached! Increase BUFFER_DIM

121 or you will not ""read"" the Most Recent Value\n");

122 }

123 return (valuesent);

124 }

91

Appendix D

derived.cpp function

1 //Developed by Pasquale Gallo, March-September 2012

2 //Derived function

3 //This function reads steering encoder value from bufferOutDap,

4 //and calculates stw1 and stw2.

5 //stw is converted in double type, steering angle,

6 //and saved to str_pos.

7 //stw1 (double) is saved in str_vel

8 //stw2 (double) is saved in str_ace

9 //(stwFdN=steering wheels first derivative of step N{x})

10 //stwN -> point x(n)

11 //stwN1 -> point x(n-1)

12 //stwN2 -> point x(n-2)

13 //stwN3 -> point x(n-3)

14 //stwn4 -> point x(n-4)

15 //Call:

16 //call derived (str_pos,str_vel,str_ace) in guiado.f90

17 #include "bufferOutDap.h"

18 extern "C" void derived(double *stw, double *stw1, double *stw2);

19 void derived(double *stw, double *stw1, double *stw2)

20 {

21 //mehthod: 4 points backward filtered

22 static double stwN=0,stwN1=0,stwN2=0;

23 static double stwN3=0,stwN4=0,stwN5=0,stw_double;

24 static double stwFdN=0,stwFdN1=0,stwFdN2=0;

25 static dobule stwFdN3=0,stwFdN4=0,stwFdN5=0;

26 static float time=0.005f; //integration time

27 static int i = 0;

28 const double ENCODER_PULSE_ANGLE=0.18f;

29 //safe conversion type from long to double

30 stw_double=(double(bufferOutDap[0].stw)*-1.0);

31 *stw=(stw_double*ENCODER_PULSE_ANGLE);

32 stwN4=stwN3;

93

33 stwN3=stwN2;

34 stwN2=stwN1;

35 stwN1=stwN; //send x(n) to x(n-1)

36 stwN=*stw; //send stw’s most recent value to x(n)

37 //first derivative variables

38 stwFdN4=stwFdN3;

39 stwFdN3=stwFdN2;

40 stwFdN2=stwFdN1; // send x(n-1) to x(n-2)

41 stwFdN1=stwFdN; //send x(n) to x(n-1)

42 //First 4 cycle (cycle needed to capture 5 points)

43 if (i<4)

44 {

45 *stw1=0;

46 *stw2=0;

47 i++;

48 }

49 else //all next cycle

50 {

51 *stw1=(stwN+2*stwN1-2*stwN3-stwN4)/(16.0*time);

52 stwFdN=*stw1;//store stw first derivative most recent value

53 *stw2=(stwFdN+2*stwFdN1-2*stwFdN3-stwFdN4)/(320*time);

54 }

55 }

94

Appendix E

compute par.cpp function

1 //Developed by Pasquale Gallo, March-September 2012

2 //Compute_par function

3 //This function computes the motor PAR

4 //input: ap(30) and ap(40) (from simulator),

5 //throttle encoder (from bufferOutDap)

6 //ap(30) and ap(40) are backward wheels angular velocity {rad/sec}

7 //call:

8 //call compute_par (ap(30),ap(40),torque) in guiado.f90

9 #include "bufferOutDap.h"

10 extern "C" void compute_par(double *ap30,double *ap40,double *par);

11 void compute_par(double *ap30,double *ap40,double *par)

12 {

13 short throttle_encoder=bufferOutDap[0].thr;

14 const short int ENC_THR_MAX=420; //throttle encoder max value

15 const double PI_GRECO=3.14159265;

16 double ap_av=0; //ap avarage [rad/s]

17 const float rid=3.673f; //

18 const float ro=1.475f; //

19 double rpm;

20 double T,Tc; //

21 float f; // throttle displacement

22 double ap4,ap3;

23 ap4 = *ap40;

24 ap3 = *ap30;

25 ap_av = (ap3+ap4)/2;

26 rpm = (60*ap_av*rid*ro)/(2*PI_GRECO);

27 T = ((-9.9444E-10)*(rpm*rpm*rpm))-((3.2888E-6)*(rpm*rpm))+

28 +(0.046583*rpm)+53.7;

29 Tc = (-15E-3)*rpm;

30 f = float(throttle_encoder)/float(ENC_THR_MAX);

31 *par = -((T*f)+Tc*(1-f))*ro*rid;

32 }

95

Appendix F

brkPress.cpp function

1 //Developed by Pasquale Gallo, March-September 2012

2 //brkPress function

3 //This function reads brake encoder value from bufferOutDap (short)

4 //and sends it to guiado’s brk_press (double) after bar conversion.

5 //Call:

6 //call brkPress(brk_press) in guiado.f90

7 #include "bufferOutDap.h"

8 #define D_MAX_VALUE 32767 //max digital value

9 #define MAX_BAR 40

10 extern "C" void brkPress(double *brk_press);

11 void brkPress (double *brk_press)

12 {

13 double brk_pressDouble;

14 if (bufferOutDap[0].brake>=0)

15 {

16 brk_pressDouble = double(bufferOutDap[0].brake);

17 //bar conversion

18 *brk_press = ((brk_pressDouble*MAX_BAR)/D_MAX_VALUE);

19 }

20 //if encoder value is <0 brk_press=0

21 else *brk_press = 0.00000;

22 }

time.cpp function

1 //Developed by Pasquale Gallo, March-September 2012

2 extern "C" void time_c(double *timeOut);

3 void time_c(double *timeOut)

4 {

5 static double time = 0.0;

6 *timeOut = time;

7 time = time+0.005; }

97

Bibliography

Alonso, J., F. Romero, R. Pàmies-Vilà, U. Lugŕıs, and J. Font-Llagunes (2012). A
simple approach to estimate muscle forces and orthosis actuation in powered assisted
walking of spinal cord-injured subjects. Multibody System Dynamics 28, 109–124.
10.1007/s11044-011-9284-5.

Arnold, M. and W. Schiehlen (2009). Simulation Techniques For Applied Dynamics,
Volume 507 of CISM Courses and lectures. Springer.

Bae, D. S., J. Lee, H. Cho, and H. Yae (2000). An explicit integration method for
realtime simulation of multibody vehicle models. Computer Methods in Applied
Mechanics and Engineering 187 (1), 337–350.

Baumgarte, J. (1972). Stabilization of constraints and integrals of motion in dynamical
systems. Computer Methods in Applied Mechanics and Engineering 1 (1), 1 – 16.

Bayo, E., J. Garćıa de Jalón, A. Avello, and J. Cuadrado (1991). An efficient com-
putational method for real time multibody dynamic simulation in fully cartesian
coordinates. Computer Methods in Applied Mechanics and Engineering 92 (3), 377 –
395.

Bayo, E., J. Garćıa de Jalón, and M. A. Serna (1988). A modified lagrangian formulation
for the dynamic analysis of constrained mechanical systems. Computer Methods in
Applied Mechanics and Engineering 71 (2), 183 – 195.

Bayo, E. and R. Ledesma (1996). Augmented lagrangian and mass-orthogonal projection
methods for constrained multibody dynamics. Nonlinear Dynamics 9 (1), 113–130.

Bellini, A. and A. Guidi (2009). Linguaggio C. McGraw-Hill.

Carbone, V., L. Primavera, and F. Stabile. Appunti di metodi numerici. http:

//www.fis.unical.it/astroplasmi/carbone.pdf. [Online, accessed March-2012].

Cossalter, V., M. D. Lio, and A. Doria (2006). Meccanica Applicata alle Macchine.
Edizioni Progetto.

Cuadrado, J. (2012). Curso de multibody. Universidade da Coruna, On line material
course.

Cuadrado, J., J. Cardenal, and E. Bayo (1997). Modeling and solution methods for effi-
cient real-time simulation of multibody dynamics. Multibody System Dynamics 1 (3),
259–280.

99

http://www.fis.unical.it/astroplasmi/carbone.pdf
http://www.fis.unical.it/astroplasmi/carbone.pdf

BIBLIOGRAPHY

Cuadrado, J., D. Dopico, J. Perez, and R. Pastorino (2012). Automotive observers based
on multibody models and the extended kalman filter. Multibody System Dynamics 27,
3–19. 10.1007/s11044-011-9251-1.

Cuadrado, J., R. Gutiérrez, M. A. Naya, and P. Morer (2001). A comparison in
terms of accuracy and efficiency between a mbs dynamic formulation with stress
analysis and a non-linear fea code. International Journal for Numerical Methods in
Engineering 51 (9), 1033–1052.

Flores, P., J. Ambrósio, J. C. P. Claro, and H. M. Lankarani (2008). Kinematics and
Dynamics of Multibody Systems with Imperfect Joints, Volume 34. Springer.

Font-Llagunes, J. M., R. Pàmies-Vilà, J. Alonso, and U. Lugŕıs (2011). Simulation and
design of an active orthosis for an incomplete spinal cord injured subject. Procedia
IUTAM 2 (0), 68 – 81. IUTAM Symposium on Human Body Dynamics.

Garćıa de Jalón, J. and E. Bayo (1994). Kinematic and Dynamic Simulation of Multibody
Systems. Springer-Verlag.

Garćıa de Jalón, J., J. Unda, and A. Avello (1986). Natural coordinates for the
computer analysis of multibody systems. Computer Methods in Applied Mechanics
and Engineering 56 (3), 309 – 327.

Guiggiani, M. (2007). Dinamica del Veicolo. CittáStudi Edizioni.

Haug, E. J. (1989). Computer aided kinematics and dynamics of mechanical systems,
Volume 1: basic methods. Allyn and Bacon.

Heitel, H. and P. J. Heitel (1999). C++ How to Program. Prentice Hall.

Holoborodko, P. (2008). Smooth noise robust differentiators. http:

//www.holoborodko.com/pavel/numerical-methods/numerical-derivative/

smooth-low-noise-differentiators/. [Online, accessed June-2012].

Hong, S., H. W. Kim, Y. S. Cho, H. J. Cho, J. H. Jung, and D. S. Bae (2011).
Development of realtime simulator for multibody dynamics analysis of wheeled
vehicle on soft soil. Journal of Ocean Engineering and Technology 25 (6), 116–122.

Kane, T. R. and D. Levinson (1985). Dynamics: theory and applications. McGraw Hill.

Korkealaakso, P. (2009). Real time simulation of mobile and industrial machines
using the multibody simulation approach. Ph. D. thesis, Lappeenranta University of
Technology.

Lio, M. D. and R. Lot (1999). Analisi modale di sistemi multibody descritti in coordinate
naturali. Technical report, XIV Congresso Nazionale dell’Associazione Italiana di
Meccanica Teorica ed Apllicata.

Microstar Laboratories. DAP 4200a Manual (1.01 ed.). Microstar Laboratories. http://
www.mstarlabs.com/docs/manuals/DAP4200A.PDF. [Online, accessed March-2012].

100

http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
http://www.holoborodko.com/pavel/numerical-methods/numerical-derivative/smooth-low-noise-differentiators/
http://www.mstarlabs.com/docs/manuals/DAP4200A.PDF
http://www.mstarlabs.com/docs/manuals/DAP4200A.PDF

BIBLIOGRAPHY

Microstar Laboratories. DAPIO32 Reference Manual (4.14 ed.). Microstar Laborato-
ries. http://www.mstarlabs.com/docs/manuals/DAPIO32.PDF. [Online, accessed
March-2012].

Microstar Laboratories. DAPL 2000 Manual (6.00 ed.). Microstar Laboratories. http://
www.mstarlabs.com/docs/manuals/DAPL2000.PDF. [Online, accessed March-2012].

Microstar Laboratories. Expansion Boards Manuals. Microstar Laboratories. http:

//www.mstarlabs.com/docs/manuals.html. [Online, accessed April-2012].

Natalini, R. Introduzione ai Metodi Numerici alle Differenze Finite. http://www.

dmmm.uniroma1.it/pubblicazioni/doc/phd_quaderni/04-02-nat.pdf. [Online,
accessed April-2012].

Naya, M. A. (2007). Aplicación de la dinámica multicuerpo en tiempo real a la simulación
y el control de automóviles. Ph. D. thesis, Universidade da Coruña.

Nikravesh, P. E. (1988). Computer-aided analysis of mechanical system. Prentice Hall.

Orden, J., J. Goicolea, and J. Cuadrado (2007). Multibody dynamics: computational
methods and applications. Computational methods in applied sciences. Springer.

Pastorino, R. (2012, June). Experimental validation of a multibody model for a vehicle
prototype and its application to automotive state observers. Ph. D. thesis, Universidade
da Coruña.

Pastorino, R., M. Ángel Naya, A. Luaces, and J. Cuadrado (2010). X-by-wire vehicle
prototype: automatic driving maneuver implemantation for real-time MBS model
validation. In Proceedings of the 515th EUROMECH Colloquium.

Pastorino, R., M. A. Naya, J. A. Pèrez, and J. Cuadrado (2011). Geared PM coreless mo-
tor modelling for drivers force feedback in steer-by-wire systems. Mechatronics 21 (6),
1043 – 1054.

Rauh, J. (2003). Virtual development of ride and handling characteristics for advanced
passenger cars. Vehicle System Dynamics 40 (1-3), 135–155.

Sanjurjo, E. M. (2011). Modelo multicuerpo de automóvil para su aplicación en técnicas
de estimación de estados. Master’s thesis, Universidade da Coruña.

Shabana, A. (1989). Dynamics of multibody system. Wiley.

101

http://www.mstarlabs.com/docs/manuals/DAPIO32.PDF
http://www.mstarlabs.com/docs/manuals/DAPL2000.PDF
http://www.mstarlabs.com/docs/manuals/DAPL2000.PDF
http://www.mstarlabs.com/docs/manuals.html
http://www.mstarlabs.com/docs/manuals.html
http://www.dmmm.uniroma1.it/pubblicazioni/doc/phd_quaderni/04-02-nat.pdf
http://www.dmmm.uniroma1.it/pubblicazioni/doc/phd_quaderni/04-02-nat.pdf

	List of Figures
	List of Tables
	Introduction
	Background
	Objectives
	Thesis structure

	Basic concepts of multibody systems
	Definitions
	MBS elements representation
	Types of coordinates
	Natural coordinates

	Introduction to MBS equations of motion
	Multibody systems simulator and real-time concept

	X-by-wire prototype: features of hardware and simulator
	Hardware configuration
	Prototype description
	Sensors
	Data acquisition system

	Simulator and simulation environment
	Brief numerical methods and analytical considerations
	Code and software arrangement

	Real car-Simulator communication interface development
	Overall considerations
	Previous layout of simulations management
	Aims and critical factors of the communication interface

	Simulator input variables
	Drive wheels torque
	Position, speed, and acceleration of the steering wheel
	Brake pressure

	System communication tools
	Introduction to DAS management
	Communication pipes
	Strategies available for data transfers
	Strategy chosen and developed for data transfers

	Data sampling configuration
	Whole application and buffers system

	Conclusions
	Goals achieved, possible applications and future developments

	Appendix A: main.cpp and guiado.f90 changes
	Appendix B: header files
	Appendix C: DapControl thread
	Appendix D: derived function
	Appendix E: compute-par function
	Appendix F: brake-pressure and time functions
	Bibliography

