
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di Laurea Magistrale in Fisica

Tesi di Laurea

Primordial Black Holes from Inflation

Relatore Laureanda

Prof. Nicola Bartolo Alba Kalaja

Correlatori Mat. 1157327

Dr. Alvise Raccanelli

Prof. Sabino Matarrese

Anno Accademico 2017/2018





3

Abstract: The study of Primordial Black Holes (PBHs) allows us to gain a deep insight into
the early Universe since it gives access to much smaller scales than the CMB scales and it could
potentially put strict limits on inflationary models. This thesis aims to put an upper limit
on the amplitude of the power spectrum associated to the formation of a PBH by means of
recent observational constraints on the PBHs abundance. We use the results of recent numerical
simulations in the framework of the general relativistic collapse and peaks theory to connect the
formation of PBHs in real space to a generic feature in the primordial curvature power spectrum.
Moreover, we investigate the effects that the choice of a particular window function has on the
power spectrum.
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Chapter 1

Introduction

One of the most promising research field in modern cosmology is represented by the study of
the early Universe. In this context, the theory of inflation plays a major role. Despite the
successful confirmations by several observations, the understanding of inflationary mechanism is
still far from being complete. In this scenario, the study of primordial black holes (PBHs) could
potentially contribute from a theoretical as well as an observational point of view. Such object
could have formed during the early universe because of large density fluctuations that collapse
gravitationally to form a black hole. As it can be seen in figure 1.1 taken from Ref. [1], the
possible existence of PBHs allows the investigation of much smaller scales than those accessed by
observation of the Cosmic Microwave Background radiation (CMB) and Large Scale Structure
(LSS) among many.
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Figure 1.1: Current constraints on the primordial curvature power spectrum.

In addition to this, the recent detection of binary black hole mergers through gravitational
waves by the LIGO-Virgo collaboration [9] has brought a significant increase of interest in models
where primordial black holes constitute a relevant fraction of dark matter. As a matter of fact,
the nature of dark matter is yet to be clarified and PBHs are viable candidates.

In this work we employ the results of recent numerical simulations in the framework of the
general relativistic collapse of primordial black holes to connect their formation in real space
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to a generic feature in the primordial curvature power spectrum. The main goal is to use the
current constraints we have from observations to put an upper limit on the amplitude of the
primordial power spectrum.

This work is organised as follows: in chapter 2 we review the inflationary mechanism during
which the perturbation that eventually collapse into PBHs are generated; in chapter 3 we
summarize the details of PBHs formation; in chapter 4 we explore the main aspect of peaks
theory and we apply the results to the theory of PBHs formation; in chapter 5 we explain how
to connect perturbations in the geometry of spacetime to perturbations in the radiation field,
including a broad discussion on the choice of a window function 5.2, and we present the results
of our work.

Notation: In this work we use natural unitsc = 1 and ~ = 1 unless specified. The metric
signature used throughout the following discussion is (−,+,+,+). Finally, our Fourier transform
convention reads as

f(r) =

∫
d3k

(2π)3
f(k)eik·r, f(k) =

∫
d3rf(r)e−ik·r. (1.1)

1.1 The homogeneous and isotropic Universe

In this section, we review the basic aspects of the Hot Big Bang (HBB) theory which are relevant
for the following parts of this work (see e.g. Ref. [2, 3, 4, 5]).

The cornerstone of modern cosmology is the cosmological principle, which states that at least
on large scales the Universe is homogeneous and isotropic, implying respectively no privileged
position nor direction. Despite the fact that at small scales the present Universe is inhomogeneous,
with matter clumped into stars, galaxies and clusters of galaxies, the validity of this principle
has been confirmed experimentally by the study of the Large Scale Structures (LSS) and the
Cosmic Microwave Background (CMB).

The spacetime of the Universe consistent with the cosmological principle is described by the
Friedmann-Robertson-Walker (FRW) metric

ds2 = −c2dt2 + a(t)2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
, (1.2)

where the scale factor a(t) measures the expansion of the Universe and the spatial curvature
parameter k can take three values: k = 0 in the case of zero curvature and flat Universe, k = +1
for positive curvature and closed Universe, k = −1 for negative curvature corresponding to a
closed Universe. The coordinates used in equation (1.2) refer to an observer comoving with
the expansion of the Universe. The physical distance R is given by multiplying the comoving
distance r by the scale factor, namely R = a(t)r.

Using a coordinate transformation, the metric (1.2) can be recast in

ds2 = −c2dt2 + a(t)2
[
dχ2 + f(χ)2(dθ2 + sin2 θdφ2)

]
, (1.3)

where

f(χ) ≡


sinhχ k = −1

χ k = 0

sinχ k = +1

. (1.4)
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Another convenient quantity is the conformal time τ defined as

dτ ≡ dt

a(t)
⇒ τ ≡

∫
dt

a(t)
, (1.5)

whereby the FRW metric becomes

ds2 = a(τ)2
[
−c2dτ2 +

(
dχ2 + f(χ)2(dθ2 + sin2 θdφ2)

)]
. (1.6)

We see that the metric has factorized into a static Minkowski metric multiplied by a time-
dependent conformal factor a(τ). Hereafter, we distinguish between the derivative with respect
to the cosmic time t, denoted with a dot ,̇ and the derivative with respect to the conformal time
τ , denoted with a prime ′.

1.1.1 The Friedmann equations

The dynamics of the Universe is determined by the Hilbert-Einstein and matter actions

SHE + Sm =

∫
d4x
√−g

[
R

16πG
+ Lm

]
, (1.7)

that yields the Einstein equations

Rµν −
1

2
gµνR = 8πGTµν (1.8)

through the principal of least action. Here, Rµν and R are respectively the Ricci tensor and the
Ricci scalar. The general definition of stress-energy tensor in the theory of general relativity is

Tµν ≡ −
2√−g

δ (
√−gLm)

δgµν
. (1.9)

Assuming that the matter content of the Universe can be described by a perfect fluid, the
stress-energy tensor Tµν is given by

Tµν = (p+ %)uµuν + pgµν , (1.10)

with p the pressure, % the energy density and uµ the four-velocity of the fluid with uµuµ = −1.
In the fluid rest frame where we may choose uµ = (1, 0, 0, 0), therefore the stress-energy tensor
is given by

Tµν =


% 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.11)

The stress-energy tensor is diagonal and the spatial component of Tµν along the diagonal are all
equal since the fluid is perfect.

Applying the FRW metric in equation (1.2) to the Einstein equations, the time-time compo-
nent yields

ä

a
= −4πG

3
(%+ 3p), (1.12)
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and the space-space components

ȧ2

a2
= H2 =

8πG

3
%− k

a2
, (1.13)

where H is the Hubble parameter. Since the FRW metric is diagonal, the space-time components
and the off-diagonal space-space components give 0 = 0. Finally, from the conservation of
stress-energy tensor equation in general relativity

DµT
µν = 0, (1.14)

where Dµ is the covariant derivative, one obtains the continuity equation

%̇ = −3
ȧ

a
(%+ p). (1.15)

To close the system given by equations (1.12), (1.13) and (1.15) we have to specify the equation
of state that relates the pressure of the fluid with its energy density. We assume that this is
given by

p = w%, (1.16)

where w is a dimensionless constant. In this case, equation (1.15) yields

d log %

d log a
= −3(1 + w) ⇒ % ∝ a−3(1+w). (1.17)

Combined with the Friedmann equation (1.13), this leads to the time evolution of the scale
factor of a flat (k = 0) Universe

a(t) ∝
{
t

2
3(1+w) w 6= −1,

eHt w = −1,
(1.18)

or in conformal time

a(t) ∝
{
τ

2
1+3w w 6= −1,

(−τ)−1 w = −1.
(1.19)

In particular, for the Universe dominated by non-relativistic matter (dust) w = 0, thus a(t) ∝ t2/3
or equivalently a(τ) ∝ τ2, whereas the radiation or relativistic matter dominated Universe
corresponds to w = 1/3, therefore a(t) ∝ t1/2 and a(τ) ∝ τ . As we shall see next, the
second solution in equations (1.18) and (1.19) corresponds to a cosmological constant dominated
Universe.

To complete the discussion, we introduce the density parameter Ω, which will become
relevant in chapter 2. According to the Einstein equations (1.8), the geometry of the spacetime
is intimately related to the distribution of matter-energy. From the Friedmann equation (1.13),
one can see that a flat Universe corresponds to a precise value of the energy density given by

%crit =
8πG

3H2
. (1.20)

We define the density parameter Ω(t) as the ratio between the observed energy density %(t) and
the critical one %crit

Ω(t) =
%(t)

%crit
, (1.21)
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which determines the overall geometry of the Universe. In fact, from equation (1.13) we obtain

Ω(t)− 1 =
k

(aH)2
. (1.22)

Therefore, the space is closed (k = 1), flat (k = 0) or open (k = −1) according to whether the
Ω(t) is greater than, equal to or less than unity.

The details of the evolution of the Universe depends not only on the total energy density
% but also on the contributions of the various components present (baryonic matter, photons,
etc.). The contribution of the ith component is given by

Ω(t)i =
%(t)i

%crit
, (1.23)

According to the ΛCDM (Cold Dark Matter) model, the contents of the present Universe is
divided in Baryonic Matter (Ωb ' 0.05), the ordinary matter made of quarks and leptons; Cold
Dark Matter (Ωcdm ' 0.26), the non-luminous matter whose nature is yet to be clarified, the
problem is addressed in further details in section 1.2; Radiation (Ωr ' 10−5), that gives a low
contribution to the total energy today, but was dominant in the early stages of the Universe,
during the so-called radiation dominated era; finally, Dark Energy (ΩΛ ' 0.68), a form of energy
besides ordinary matter and radiation that could explain the present accelerated expansion of
the Universe experimentally observed. In the standard framework, dark energy is described by
the cosmological constant (see section 1.1.2), however there is a huge debate concerning the
nature of such energy.

1.1.2 The cosmological constant

At the time when Einstein formulated his theory of general relativity, it was generally accepted
that the Universe was static. However, a Universe evolving according to the Friedmann equations
cannot be static unless ä = 0, namely

% = −3p. (1.24)

Since a fluid with such property did not seem to be physically reasonable, Einstein modified equa-
tions (1.8) by introducing the cosmological constant term Λ to counterbalance the gravitational
attraction

Rµν −
1

2
gµνR = 8πGTµν − Λgµν , (1.25)

in such a way that it does not change the covariant character of the equations. It can be shown
that for an appropriate choice of Λ, one indeed obtains a static cosmological model.

In order to recover a form similar to the equations (1.8), we rewrite the stress-energy tensor
in a more compact way

T̃µν = Tµν −
Λ

8πG
gµν

= (p̃+ %̃)uµuν + p̃gµν ,
(1.26)

so that

Rµν −
1

2
gµνR = 8πGT̃µν . (1.27)

In (1.26), the effective pressure p̃ and the effective density %̃ are related to the corresponding
quantities for a perfect fluid by

p̃ = p− Λ

8πG
, %̃ = %+

Λ

8πG
. (1.28)
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Although after the discovery of the expansion of the Universe in the late 1920s there was no
need for a term that made the Universe static, the cosmological constant remained a subject
of great interest and it is today the simplest possible explanation for the observed accelerated
expansion of the Universe. The standard model of cosmology that incorporates the effects of the
cosmological constant is the ΛCDM model.

We now introduce a model involving the cosmological constant which we will encounter again
when discussing inflation in chapter 2. The de Sitter Universe is a cosmological model in which
the universe is dominated by a positive valued cosmological constant, that suppressed all other
matter contributions empty, i.e. % = 0 and p = 0, and flat (k = 0). Under this conditions, from
equations (1.28), we get

p̃ = −%̃ = − Λ

8πG
, (1.29)

which, if replaced in equation (1.13) gives

ȧ2

a2
= H2 =

Λ

3
, (1.30)

corresponding to a Hubble parameter constant in time. This equation has a solution of the form

a ∝ exp

(√
Λ

3
t

)
, (1.31)

which means that the de Sitter model describes a Universe subject to an exponential expansion
where test particles move away from each other because of the repulsive gravitational effect of
the positive cosmological constant [5].

In the modern interpretation of Λ, the energy density %Λ and pressure pΛ found in (1.29)
represent the energy density and pressure of the vacuum, which is the ground state of a quantum
system. In such a system, the vacuum state does not contain any physical particles but it is
characterized by creation and annihilation of virtual particles. Therefore, it is not empty and
contributes to the total energy of the system with a non-zero vacuum energy.

1.1.3 Cosmological horizons

The causal structure of the Universe is determined by the propagation of light in the FRW
spacetime (1.3). Massless photons move along null geodesics ds2 = 0, which under the assumption
of isotropy, are given by

ds2 = −c2dt2 + a(t)2dχ2 = 0. (1.32)

The maximum comoving distance covered by light from a zero initial time to a certain time t
defines the region of causal connection with a radius

χ(t) ≡ rp(t) =

∫ t

0

cdt′

a(t′)
. (1.33)

The physical size associated to this quantity is

dp(t) = a(t)rp(t) = a(t)

∫ t

0

cdt′

a(t′)
. (1.34)

In equation (1.34), the lower limit of integration taken equal to 0 may lead to the possibility of
a divergent integral since also a(t) tends to zero for small t. In this case, an observer O at time
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t is in principle in causal connection with the whole Universe. On the other hand, if the integral
in equation (1.34) converges to a finite value in this limit, then the observer at O can receive
light signals from regions within a spherical surface of radius dp(t). Any source of light located
at a proper distance d > dp(t) in the interval of time [0, t] cannot possibly reach the observer O.
In this case, the radius dp(t) is called the particle horizon at time t of the observer.

In the standard FRW models where a(t) ∝ tα, with α = 2
3(1+w) , the particle horizon (1.34)

is approximately given by

dp(t) ∼ 3(1 + w)

1 + 3w
ct (1.35)

under the condition w ≥ −1/3, otherwise the integral in equation (1.34) would be divergent.
Using the fact that the Hubble parameter in FRW models is given by

H =
2

3(1 + w)t
, (1.36)

then equation (1.35) can be rewritten as

dp(t) ∼ 2

1 + 3w

c

H
, (1.37)

where this solution corresponds to a decelerated expansion ä < 0 (see the Friedmann equa-
tion (1.12)).

The particle horizon is related to the Hubble radius RH, which will play an important role
when we discuss inflation. The Hubble radius is the distance from an observer O of an object
moving with the cosmological expansion at the velocity of light with respect to O [5]. It is
defined using the Hubble expansion law as

RH = c
a

ȧ
=

c

H
, (1.38)

and it can be interpreted as the proper distance travelled by light in the characteristic expansion
time of the Universe, the Hubble time

τH =
a

ȧ
=

1

H
. (1.39)

In the standard FRW models the value of RH coincide at least to order of magnitude with dp(t)
(1.34). In fact, using equations (1.38) and (1.37)

dp '
2

1 + 3w
RH ∼ RH, (1.40)

The key difference between the particle horizon and the Hubble radius is that the former takes
account of the entire past history, i.e. the past light cone, of the observer at time t, while the
latter describes the causal connection between regions in the Universe at a specific time.

1.2 The Dark Matter problem

In this section we address the problem of the nature of dark matter. According to the ΛCDM
model, about 26% of the contents of the Universe is made of non-luminous matter, i.e. matter
that does not interact with observable electromagnetic radiation, therefore extremely difficult to



14

detect with standard astronomical equipment. Historically, this component was introduce to
explain observations of galaxy velocity curves. The luminous mass density of a spiral galaxy
decreases as one goes from the center to the outer region, therefore from the Kepler’s second law
one expects the rotation velocities of stars moving around the center of the galaxy to decrease
with distance from the center. The predicted velocity curve is in conflict with the observed
one. There is in fact strong experimental evidence that the rotation curves of spiral galaxies
remains flat well outside the region in which most of the luminous material resides [6, 5]. This
discrepancy is resolve once we assume that spiral galaxies are surrounded by large dark matter
haloes, whose mass is thought to be between 3 and 10 times the mass of the luminous component
of the galaxy.

Other evidences of the presence of dark matter in the Universe are given by the analysis of
galaxy clusters, where the gravitational mass that keeps the galaxies in orbits does not coincide
with the luminous mass, leading to the need of an additional component; by weak gravitational
lensing observations, namely the observation of angular distortions in the positions of galaxies
due to the distribution of dark matter around galaxy clusters ; by the power spectrum of
temperature anisotropies in the CMB, which would have a different structure in the absence
of dark matter. Finally, another strong evidence of dark matter comes from the observed
structures that characterized the present Universe. In fact, during the radiation domination
epoch density perturbations are washed out by the radiation pressure. Dark matter, however,
does not interact with radiation and provides the gravitational potential wells within which gas
cools and condenses to form galaxies.

The nature of dark matter is still unknown and many are the proposed candidates, such as
baryonic candidates involving neutral hydrogen gas and massive compact halo objects (MACHOs),
which are however in strong disagreement with observations, and non-baryonic candidates that
invoke hypothetical particles such as axions, sterile neutrinos, weakly interacting massive particles
(WIMPs), gravitationally-interacting massive particles (GIMPs), or supersymmetric particles.
Nonetheless, these possibilities have found no experimental evidence so far.



Chapter 2

The inflationary mechanism

The standard Hot Big Bang model reviewed in section 1.1 is incomplete since it does not explain
why the present Universe is homogeneous and isotropic on large scales without a fine-tuned
set of initial conditions and how were generated the seed perturbation that lead to structure
formation. In this chapter we explore two of the main problems of the HBB model, the horizon
problem and the flatness problem, and we explain how inflation, an early period of accelerated
expansion, drives the primordial Universe towards homogeneity and isotropy, even if it starts in
a more generic initial state.

In the second part of this chapter, we show how the quantum fluctuations that arise during
the inflationary period generate the seeds for the primordial black holes formation.

2.1 The Hot Big Bang Model Problems

Despite the outstanding successes achieved by the standard cosmology (see e.g. Ref. [5]), there
remain certain problems remain unsolved. Here we discuss two of them, the horizon problem
and the flatness problem.

2.1.1 The horizon problem

In Chapter 1 we introduced the particle horizon dH(t) in equation (1.34) and showed that all
the Friedmann models with equation-of-state parameter w > −1/3 possess a finite? particle
horizon. On the other hand, cosmological principle requires homogeneity and isotropy in regions
of the Universe which are outside each other’s particle horizons at early times and which,
therefore, have never been in causal contact. An example of the isotropy property is the observed
isotropy of the Cosmic Microwave Background radiation. The horizon at photon decoupling
is only 205 Mpc while its present value is 4000 Mpc, consequently microwaves coming from
regions that were outside the horizon at decoupling could have never communicate by causal
processes [4]. The inflationary mechanism provides a dynamical mechanisms that explains why
these causally-disconnected regions show such similar physical properties.

In section 1.1.3 we showed that the particle horizon coincided with the Hubble radius
RH (1.38) at least to order of magnitude. From now on we do not distinguish between them and
we shall use the more practical Hubble radius. Its comoving size is given by

rH =
c

ȧ
=

c

aH
, (2.1)

15
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therefore, using the time-dependence of the scale factor (1.18) for w 6= −1, we see that the
Hubble radius changes as

ṙH ∝ −ä ∝ (1 + 3w). (2.2)

Clearly, for models with a finite cosmological horizon ṙH > 0 hence ä < 0.
Let us suppose that there exists a period ti < t < tf of the evolution of the Universe during

which the Hubble radius suffers a shrinking ṙH < 0, namely a period of accelerated expansion
ä > 0. Under this assumption, consider regions with a comoving scale l0 which is not causally
connected before a time t1 < ti, as pictured in Figure 2.1. It becomes causally connected in the
interval t1 < t < t2, with ti < t2 < tf , and leaves the horizon at t2. After tf the horizon will
continue to grow and it will exist a time t3 when the scale l0 enters the horizon again.

Figure 2.1: Evolution of the comoving cosmological horizon rH(t) assuming a phase of accelerated
expansion (inflation) from ti to tf [5].

The horizon problem is then solved if the causal connected scale at the beginning of the
expansion is greater than the present scale of the horizon, which means that the period of
accelerated expansion has to be long enough for

rH(ti) ≥ rH(t0), (2.3)

to happen. The duration of inflation can be quantified by means of the numbers of e-folds,
defined as

N = ln

(
a(tf)

a(ti)

)
=

∫ f

i
dt′ H(t′). (2.4)

From the requirement in equation (2.3), we obtain a minimum Nmin ≈ 60.

2.1.2 The flatness problem

Observations assert that the present Universe is nearly flat, in other words the present density
parameter including the contributions from all components Ωtot,0 ' 1. Given the definition of
the density parameter in equation (1.22) at an arbitrary time t, we can rewrite it using in terms
of the comoving Hubble radius (2.1)

Ω(t)− 1 =
k

(aH)2
= k r2

H, (2.5)
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where we set c = 1. In standard cosmology the comoving Hubble radius grows with time,
therefore from equation (2.5) one expects the quantity |Ω(t) − 1| to grow with time and the
geometry of the present Universe to be curved. The near-flatness observed today requires an
extreme fine-tuning of Ω(t) close to the value 1 in the early Universe. This fine-tuning can be
estimated as [5]

Ω(tP) ' 1 + (Ω(t0)− 1)10−60, (2.6)

where tP ≈ 10−43 s is the Planck time and t0 indicates the present time. The deviation from the
flatness at Planck scale in a Universe without inflation should have been of order 10−60.

If we assume that there was a period ti < t < tf in which the Hubble radius decreases with
time, then the Universe would be driven towards flatness. As it is shown in Figure 2.2 for an
open Universe (a) and closed Universe (b), during the inflationary stage the density parameter
Ω(t) tends to the value 1 and, if the period of accelerated expansion is sufficiently long then the
divergence from the flatness should be delayed well beyond the present time t0. As in the case

Figure 2.2: Evolution of the Ω(t) for an open Universe (a) and closed Universe (b) [5].

of the horizon problem, the flatness problem is solved if the period of accelerated expansion is
long enough. In terms of the number of e-folds (2.4), again one obtains Nmin ≈ 60.

2.2 The dynamics of inflation

As we saw in section 2.1, a sufficiently long stage of the evolution of the Universe characterized
by an accelerated expansion, i.e. inflation, can solve the horizon and the flatness problems. The
crucial assumption of the inflationary mechanism is that the observable Universe is far inside
the horizon at the beginning of inflation and far outside the horizon at the end of inflation. In
this chapter we describe such a mechanism from a theoretical point of view and we explore the
main assumptions required for inflation to happen.

Before moving on the quantum field theory description of inflation, we remark the analogy
between the de Sitter Universe and the inflationary mechanism. From the Friedmann equa-
tion (1.13), we have that the stress-energy tensor associated to the expansion has a negative
pressure

ä

a
= −4πG

3
(%+ 3p) > 0 ⇒ p < −%

3
. (2.7)

We encountered a cosmological model with negative pressure when we introduced the de Sitter
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model in section 1.1.2, where the scale factor grows exponentially

a(t) ∝ e

√
Λ
3
t
, (2.8)

and the expansion is driven by the cosmological constant Λ. In the modern interpretation, Λ is
linked to the quantum fluctuations of vacuum. The energy generated by these fluctuations is
given by the vacuum expectation value (vacuum expectation value) of the stress-energy tensor

〈Tµν〉 = −〈pΛ〉gµν ,

=
Λ

8πG
gµν ,

(2.9)

where we used equations (1.10) and (1.29). Therefore, in this case the vacuum expectation value
of the stress-energy tensor acts like the cosmological constant that drives the expansion. This
gives a hint of what we should expect from a theory that describes the inflationary mechanism.

In the following we will study the dynamics of a scalar field, the inflaton, which is characterized
by a non-zero vacuum expectation value, in the FRW Universe. We will show that it provides
the mechanism by which the evolution of the Universe experiences a period of rapid expansion.

2.2.1 The inflaton field and the slow-roll paradigm

The simplest models of inflation involve a single scalar field φ(t,x), whose Lagrangian is given by

Lφ = −1

2
gµν∂µφ∂νφ− V (φ) , (2.10)

where the potential V (φ) describes the self-interactions of the field. The dynamics of the field is
governed by the action

Sφ =

∫
d4x
√−g Lφ[φ, gµν ]. (2.11)

For a complete action describing a scalar field (which we assume minimally coupled to gravity
for simplicity) in a curved spacetime we should add the Hilbert-Einstein action

SHE [R] =
1

16πG

∫
d4x
√−g R. (2.12)

Moreover, one should include an action for the matter component, i.e. fermions, bosons, which
can be described as a fluid, but this can be safely neglected during inflation thanks to the no-hair
theorem [5]. In fact, a general property of inflationary Universes is that any inhomogeneity
present at the initial time is smoothed out by the expansion.

Replacing the Lagrangian (2.10) in equation (1.9), we derive the stress-energy tensor associ-
ated to the inflaton

T φµν = − 2√−g
δ
√−g
δgµν

Lφ −
2√−g

δLφ
δgµν

√−g

= − 2√−g

(
−1

2

√−ggµνLφ
)

+ ∂µφ∂νφ

= ∂µφ∂νφ+ gµνLφ.

(2.13)

The equation of motion of the inflaton field can be derived from the action in equation (2.11)
using the principal of least action and it is given by the Klein-Gordon equation

�φ(t,x) =
∂V (φ)

∂φ
, (2.14)
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where in the left-hand side (LHS) there is the d’Alembertian operator in a curved spacetime

�φ =
1√−g∂ν

[√−g gµν∂µφ] = gµν∂µ∂νφ− gµνΓ%µν∂%φ. (2.15)

In the FRW geometry (1.2), the LHS of equation (2.14) becomes

1√−g∂ν
[√−g gµν∂µφ] =

1

a(t)3
∂0

[
a(t)3 g00∂0φ

]
+

1

a(t)3
∂i
[
a(t)3 gii∂iφ

]
=

1

a(t)3

[
−3a2ȧ∂0φ− a3∂0∂0φ

]
+

1

a(t)2
∂i∂iφ

= −3H(t)φ̇− φ̈+
1

a(t)2
∇2φ,

(2.16)

therefore the equation of motion of the inflaton in the FRW Universe reads as

φ̈+ 3H(t)φ̇− 1

a(t)2
∇2φ = −∂φV, (2.17)

where the term 3H(t)φ̇ is called friction term. It is caused by the expansion of the Universe and
it represents the redshift of the momentum φ̇ caused by this expansion.

It is convenient to consider separately two contributions to the scalar field φ(t,x): the
spatially homogeneous background φ(t) and the quantum fluctuations δφ(t,x)

φ(t,x) = φ(t) + δφ(t,x), (2.18)

such that ∣∣∣∣δφ(t,x)

φ(t)

∣∣∣∣� 1, (2.19)

where the background contribution is the vacuum expectation value of the inflaton

φ(t) = 〈φ(t,x)〉. (2.20)

We now restrict our discussion to the study of the dynamics of the background contribution and
describe that of the fluctuations in section 2.4.

The contribution of φ(t) to equation (2.17) reads as

φ̈+ 3H(t)φ̇+ ∂φV = 0, (2.21)

and we show that φ(t). As regards the stress-energy tensor of φ(t), we have for the energy
density

%φ = T 0
0 = −∂0φ∂0φ+ g0

0Lφ

= φ̇2 −
[
−1

2
(−1)φ̇2 − V (φ)

]
=

1

2
φ̇2 + V (φ),

(2.22)

and for the pressure density
pφδij = T ij = ∂iφ∂jφ+ giiLφ

= δij

[
−1

2
g00φ̇2 − V (φ)

]
=

[
1

2
φ̇2 − V (φ)

]
δij .

(2.23)
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Putting together the results of equations (2.22) and (2.23), we have that the resulting equation
of state is given by

wφ ≡
pφ
%φ

=
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
, (2.24)

which yields the negative pressure required to have an accelerated expansion in the slow-roll
limit

φ̇2 � V (φ), (2.25)

i.e. if the potential energy V (φ) dominates over the kinetic energy term (1/2)φ̇2 For a more
intuitive point of view, we simplify the system and assume the vacuum expectation value of the
inflaton to be constant

φ̄ ≡ 〈φ(t,x)〉. (2.26)

Then, the stress-energy tensor become (2.13)

T φµν = −gµνV (φ̄). (2.27)

Comparing this result to what we found for the cosmological constant in equation (2.9), we see
that the potential of the inflaton V (φ) represents the vacuum energy associated to φ(t) which
drives the accelerated expansion.

The slow-roll condition (2.25) leads to the conclusion that since the kinetic energy of the
inflaton has to be extremely low with respect to the potential, the particle moves slowly along it.
As a consequence, a good candidate of an inflationary potential should be flat enough to allow the
slow-roll of the inflaton and the acceleration of the field should be negligible in equation (2.21).
This last condition translates in

|φ̈| � |3Hφ̇|, |∂φV |, (2.28)

Figure 2.3: A possible shape of the potential for the slow-roll inflation [7].

Using equation (2.28), the equation of motion of inflation (2.21) can be approximated by

3Hφ̇ ' −∂φV (φ), (2.29)
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and the Friedmann equation (1.13) reads as

H2 ' 8πG

3
V (φ), (2.30)

Clearly, under the slow-roll regime the Hubble parameter is nearly constant, therefore the
evolution of the scale factor is given by the following equation

a(t) ∝ eHt. (2.31)

The slow-roll conditions (2.25) and (2.28) necessary for a successful inflation can be parametrized
introducing the slow-roll parameters ε and η. The definition of ε is related to the evolution of
the Hubble parameter and it is given by

ε ≡ − Ḣ

H2
. (2.32)

In addition to this, ε is also related to the acceleration of a Universe dominated by the inflaton

ä = ȧH + aḢ = a(H2 + Ḣ)

= aH2

(
1 +

Ḣ

H2

)
= aH2(1− ε).

(2.33)

From this result, we have that the period of accelerated expansion occurs as long as ε� 1.

We now show that this last requirement is equivalent to the slow-roll condition in equa-
tion (2.25), which can be rewritten in another form using equations (2.29) and (2.30). In
particular we obtain that

(∂φV (φ))2

V (φ)
� H2 ⇒ 1

16πG

∂φV (φ)2

V (φ)2
� 1. (2.34)

We employ equations (2.29) and (2.30) to write ε in an approximate form

ε ' −1

2

√
8πG

3
V (φ)

∂φV (φ)φ̇

H2

=
1

2

∂φV (φ)

H

∂φV (φ)

3H
=

1

16πG

∂φV (φ)2

V (φ)2
,

(2.35)

which is clearly equivalent to the slow-roll condition in equation (2.34).

The second slow-roll parameter η is defined as

η ≡ 1

3

∂2
φV

H2
, (2.36)

which can be further rewritten in the following form

η ' 1

3

∂2
φV

8πG
3 V

=
1

8πG

∂2
φV

V
, (2.37)

where we used equation (2.30).
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Consider now the condition |φ̈| � |∂φV |, it can be shown that it is equivalent to requiring
|η| � 1. In fact, deriving both sides we get

3Hφ̈ ' ∂2
φV (φ)φ̇ ⇒ φ̈ '

∂2
φV (φ)φ̇

3H
� 3Hφ̇, (2.38)

which, being H ' constant during inflation, leads to the condition

∂2
φV

H2
� 1. (2.39)

In conclusion, the slow-roll approximation given in equations (2.25) and (2.28) imply the
conditions (2.34) and (2.36) on the flatness of the inflationary potential.

2.3 Inflationary models

In our previous discussion, we did not specify the shape of the inflationary potential which
determines the dynamics of the inflaton field. In the framework of single-field inflation, the
different possibilities for V (φ) can be classified using the difference between the inflaton at the
time when CMB fluctuations were created at φcmb to the end of inflation at φend

∆φ = φcmb − φend, (2.40)

measured in Planck units. In this section, we briefly review the main models.

Small-Field Inflation In small-field models ∆φ < MP, which means that the inflaton has a
small variation, called sub-Planckian. The correspondent potential can be locally approximated
by

V (φ) = V0

[
1−

(
φ

µ

)p]
+ . . . , (2.41)

where the dots represent higher-order terms that become important near the end of inflation [7].
This kind of model arises typically in mechanisms of spontaneous symmetry breaking, where the
field rolls off an unstable equilibrium toward a displaced vacuum.

Large-Field Inflation In such models we have ∆φ > MP, namely the field evolution is
super-Planckian. The inflaton starts with large values and then moves towards a minimum at
the origin φ = 0. The typical large-field model is chaotic inflation characterized by

V (φ) ∝ φp. (2.42)

2.4 Cosmological perturbations from inflation

We think that cosmological perturbations have their origin in the quantum fluctuations that
arise during inflation. In section 2.2, we explored the dynamics of the homogeneous inflaton
field in the expanding Universe using the decomposition in equation (2.18). In this section, we
focus on the effects of quantum fluctuations δφ(t, ~x) around the background evolution φ(t). We
will show that they constitute the seed of the inhomogeneities in the present Universe.
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2.4.1 Dynamics of quantum fluctuations: qualitative solution

In this section, we give a qualitative overview of the solutions to give a basic understanding of
the physics behind the dynamics of quantum fluctuations.

The Klein-Gordon equation for the quantum fluctuations is given by

δ̈φ+ 3H ˙δφ− 1

a2
∇2δφ = −∂φV (φ(t))δφ. (2.43)

It is convenient to go to the Fourier space, where we rewrite the fluctuations as a superposition
of plane waves of wavenumber k

δφ(t,x) =
1

(2π)3

∫
d3k eik·xδφk(t), (2.44)

where this decomposition is valid only in a flat spacetime, which is a reasonable assumption
during inflation. Since δφ(t,x) is real, we have that (δφk)∗ = δφ−k.

In Fourier space, equation (2.43) becomes

δ̈φk + 3H ˙δφk +
1

a2
k2δφk = −∂2

φV δφk. (2.45)

In order to simplify the problem, we consider a massless scalar field, i.e. ∂2
φV ≈ 0, which

corresponds to the requirement of a small η parameter

η =
1

3

∂2
φV

H2
� 1. (2.46)

Under this assumption, equation (2.45) approximates as

δ̈φk + 3H ˙δφk +
1

a2
k2δφk ' 0. (2.47)

We distinguish between two regimes depending on the comoving wavelength of the fluctuations

λphys '
2π

kphys
= a(t)λcom, (2.48)

that is the sub-horizon regime if λ is smaller than the Hubble horizon radius (2.1)

λ� 1

aH
⇒ k

aH
� 1, (2.49)

and the super-horizon regime when λ is greater than the Hubble horizon radius

λ� 1

aH
⇒ k

aH
� 1. (2.50)

Sub-horizon regime

In this regime, we show that we can neglect the friction term. In fact, in Fourier space such
reads as

3H ˙δφk ' 3H2δφk, (2.51)
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where we used the Hubble time scale τH = H−1 as the time reference. Comparing this result
with the Fourier transform of the Laplacian term in equation (2.97) in the sub-horizon regime
k � aH we obtain the following relation

3H2δφk �
1

a2
k2δφk, (2.52)

therefore (2.47) becomes

δ̈φk +
1

a2
k2δφk ' 0. (2.53)

This is an harmonic oscillator equation with a time dependant frequency given by the factor
k/a(t). In conclusion, we have found that in the sub-horizon regime the Fourier transformed
quantum fluctuations δφk oscillate with an amplitude which decays with time as a(t)−2 (see
equation (2.31)), which is not unexpected knowing that at small scales, such as those inside the
horizon, we locally recover the flat Minkowski spacetime where the expansion of the Universe is
negligible.

Super-horizon regime

In this regime, we proceed as in the sub-horizon regime and see that

3H2δφk �
1

a2
k2δφk, (2.54)

namely in this case the friction term is dominant with respect to the Laplacian term. Therefore,
equation (2.47) becomes

δ̈φk + 3H ˙δφk ' 0, (2.55)

a second order linear differential equation, whose solution is given by

δφk = A+Be−3Ht. (2.56)

After an opportune amount of time, the exponential term decays and the fluctuations freeze out.
There is an intuitive way to understand the physics behind this result. In fact we are considering
fluctuations much bigger than the Hubble horizon, which gives the maximum distance of casual
connection between events (for more details see section 1.1.3). Therefore, fluctuations bigger
than that cannot interact nor grow. We are interested in finding out the amplitude of the
fluctuations which, as we shall see, connects the theoretical results with observations.

2.4.2 Dynamics of quantum fluctuations: exact solution

We can now focus on a more exact solution that includes quantum field theory effects and
the mass term given by ∂2

φV . As done in the previous section, we explore the solution in the
sub-horizon and super-horizon limit.

We first introduce the operator δ̂φ(τ,x) defined as

δ̂φ(τ,x) = a(τ)δφ(τ,x), (2.57)

where we use the conformal time τ (1.5) instead of the cosmic time. Then, δ̂φ(τ,x) can be

written as a linear combination of the creation-annihilation operators (ak, a
†
k)

δ̂φ(τ,x) =
1

(2π)3

∫
d3k

[
uk(τ)ak e

ik·x + u∗k(τ)a†k e
−ik·x

]
, (2.58)
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and time-dependant mode functions uk(τ) obey a normalization condition

u′∗k (τ)uk(τ)− u∗k(τ)u′k(τ) = i, (2.59)

such that commutation rules are given by

[ak, ak′ ] = [a†k, a
†
k′ ] = 0,

[ak, a
†
k′ ] = ~δ(3)(k− k′).

(2.60)

We know that in the Minkowski spacetime, mode functions are described by plane waves such as

uk(τ) ∼ e−iωkτ

√
2ωk

, ωk =
√
k2 +m2. (2.61)

However, in a curved spacetime, as the expanding FRW Universe, we expect a more complicated
expression for uk(τ). As a matter of fact, in quantum field theory on curved spacetime there
is an ambiguity with the choice of the vacuum state, therefore uk(τ) is not a priori fixed. We
employ the Bunch-Davies condition on the vacuum state, which states that in the limit of small
scales and for initial times the mode functions uk(τ) are given by equation (2.61).

Before rewriting equation (2.45) in the Fourier space, we explicitly change time coordinate
going from the reference time t to the conformal time τ such that

d

dt
−→ d

dt

dτ

dτ
=

1

a

d

dτ
(2.62)

We perform the calculations term by term using the coordinate change in equation (2.62). On
the left-hand side of equation (2.45) we have

¨δφk =
1

a

d

dτ

[
1

a

d

dτ

(
δφ̂k
a

)]

=
1

a

d

dτ

[
1

a

(
δφ̂′k
a
− a′

a2
δφ̂k

)]

=
1

a

(
δφ̂′′k
a2
− 2

a′

a3
δφ̂′k −

a′′

a3
δφ̂k − 3

a′2

a4
δφ̂k −

a′

a3
δφ̂′k

)

=
δφ̂′′k
a3
− 2

a′

a4
δφ̂′k −

a′′

a4
δφ̂k + 3

a′2

a5
δφ̂k −

a′

a4
δφ̂′k,

(2.63)

and

3H ˙δφk = 3
1

a2

da

dτ

1

a

d

dτ

(
δφ̂k
a

)

= 3
a′

a4
δφ̂′k − 3

a′2

a5
δφ̂k.

(2.64)

Finally, putting all the results together, we obtain

δφ̂′′k −
a′′

a
δφ̂k + k2δφ̂k = −∂2

φV a
2δφ̂k, (2.65)

which in terms of the mode functions becomes

u′′k(τ) +

(
k2 − a′′

a
+ ∂2

φV a
2

)
uk(τ) = 0. (2.66)
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We find another equation for an harmonic oscillator with time-dependent coefficients. Let us
look at the behaviour of the mode function in the sub-horizon and super-horizon regimes for a
de Sitter Universe and a quasi-de Sitter Universe.

Solution in de Sitter

In this case, we assume that the inflaton is massless (∂2
φV = 0) and the de Sitter phase fully

describes inflation, i.e. ε→ 0 and H = constant. Under these conditions the conformal time (1.5)
is given by

dτ =
dt

a(t)
= dt e−Ht, (2.67)

where we used equation (2.31). After integration we obtain

τ = − 1

H
e−Ht = − 1

aH
, (2.68)

which plugged in equation (2.66) gives

u′′k(τ) +
(
k2 − 2a2H2

)
uk(τ) = 0. (2.69)

In the sub-horizon limit k � aH, equation (2.69) becomes

u′′k(τ) + k2uk(τ) = 0 ⇒ uk(τ) =
e−ikτ√

2k
(2.70)

where we chose the Bunch-Davies vacuum state. As predicted in the qualitative analysis given
in section 2.4.1, the behaviour of quantum fluctuations of the inflaton are approximated by the
usual flat spacetime quantum field theory.

In the super-horizon regime k � aH, equation (2.69) approximates as

u′′k(τ)− a′′

a
uk(τ) = 0, (2.71)

whose solution is simply given by

uk(τ) = B(k)a(τ) + C(k)a(τ)−2. (2.72)

Since the second term on the right hand side decays in time as a(τ)−2, the amplitude of the
fluctuation reads as

|δφk| '
|uk|
a(τ)

= |B(k)|, (2.73)

which is indeed constant in time beyond the horizon, as predicted in section 2.4.1. Since we are
interested in studying perturbations on cosmological scales, |B(k)| represents a link between
quantum perturbations at horizon exit time during inflation and perturbations at horizon re-
entering time during radiation or matter dominated eras. We thus evaluate |B(k)| at the time
of horizon crossing during inflation, denoted with an index I, by matching the sub-horizon and
the super-horizon regimes

e−ikτ

a
√

2k

∣∣∣∣
kI=(aH)

≡ B(k) ⇒ B(k) =
i

a
√

2k
, (2.74)
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that leads to

|δφk| =
HI√
2k3

, (2.75)

where we used kI = (aH).
As shown above, the physics beneath the horizon, at small scales, is the one of special

relativity and the quantum fluctuations around the vacuum expectation value of the scalar
field were treated according to quantum field theory in a flat spacetime. The mean value of
these fluctuations is zero since by definition the vacuum state is characterized by creation
and annihilation of particles and a net number of particles equal to zero. As the comoving
Hubble radius rH(t) (2.1) shrinks, the rapid expansion stretches the wavelength of the quantum
fluctuations in such a way that all fluctuations generated at sub-horizon scales exit the horizon.
Here, their amplitude cannot not be affected by causal contact therefore they freeze. After
inflation, the comoving horizon starts to grow again, so eventually all fluctuations re-enter the
horizon with an imprinting of the primordial fluctuations generated by inflation but with a much
larger physical wavelength.

Solution in quasi-de Sitter

Here, we keep the assumption of a massless scalar field but we assume that the expansion is
described by a quasi-de Sitter stage, therefore ε 6= 0 but still small.

Using the slow-roll parameters defined in equations (2.32) and (2.36), we rewrite the equation
(2.66) in the form of a Bessel equation. In fact, the term a′′/a becomes

a′′

a
=

2

η2

(
1 +

3

2
ε+O(ε2, η2)

)
, (2.76)

which replaced in the massless approximation of equation (2.66) gives

u′′k(τ) +

(
k2 − ν2 − 1/4

η2

)
uk(τ) ' 0, (2.77)

where we defined ν2 = 9/4 + 3ε. Assuming ν constant, a generic solution of equation (2.77)
given by

uk =
√
−τ
[
c1(k)H(1)

ν (−kτ) + c2(k)H(2)
ν (−kτ)

]
, (2.78)

with H
(1)
ν and H

(2)
ν are the Henkel function of first and second kind.

In the sub-horizon limit −kτ � 1, equation (2.78) can be approximated as

uk(τ) '
√
π

2
ei(ν+π/4)

√
−τH(1)

ν (−kτ), (2.79)

whereas in the super-horizon limit −kτ � 1 we have

uk(τ) ' 2ν−
3
2√

2k
ei(ν+π/4)

(
Γ(ν)

Γ(3/2)
(−kτ)

1
2
−ν
)
. (2.80)

Going back to the field fluctuation we obtain the following solution

|δφk| ' 2ν−
3
2

(
Γ(ν)

Γ(3/2)

)
H√
2k3

(
k

aH

) 3
2
−ν
. (2.81)
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Notice that ν can be expanded as

ν =

√
9

4
+ 3ε =

3

2

(
1 +

4

3
ε

)
' 3

2
+ ε, (2.82)

therefore in the limit ε� 1, equation (2.81) can be approximated as

|δφk| '
H√
2k3

(
k

aH

)−ε
. (2.83)

We recover the solution (2.75) found in the de Sitter case by putting ε = 0.

2.5 The power spectrum

In this section we introduce some fundamental aspects of the statistical properties of a perturba-
tion in order to connect theoretical prediction with observations.

Let us consider a Gaussian random field δ(t,x) that describes a generic fluctuation in a point
of the spacetime. It could be for example the fluctuation of the density field. The statistical
properties of such a field are determined by an infinite set of correlation functions defined as

〈δ(t,x1)δ(t,x2)〉 = ξ(x1,x2),

〈δ(t,x1)δ(t,x2)δ(t,x3)〉 = ξ(x1,x2,x3),

...

〈δ(t,x1)δ(t,x2) . . . δ(t,xN )〉 = ξ(x1,x2, . . . ,xN ),

(2.84)

where the 〈·〉 symbol refers to the ensemble average.
Gaussian processes are determined only by the two-point correlation function, i.e. the first

definition in equation (2.84). In fact, the correlation function for odd value of N are null, whereas
those characterized by even N can be written as a combination of ξ(x1,x2). Since the Universe
is homogeneous and isotropic, we expect the two-point correlation function to depend only on
the relative distance ξ(r) = ξ(|x1 − x2|).

Knowing that the Fourier transform of the fluctuation reads as

δ(t,x) =
1

(2π)3

∫
d3k eik·xδk(t), (2.85)

we define the power spectrum P (k) as

〈δk1(t)δk2(t)〉 = (2π)3δ(3)(k1 + k2)P (k), (2.86)

and we show that the power spectrum is the Fourier transform of the two-point correlation
function ξ(r). In fact

ξ(r) = 〈δ(t, x+ r)δ(t, x)〉

= 〈 1

(2π)3

∫
d3k eik·(x+r)δk(t)

1

(2π)3

∫
d3k′ eik

′·xδk′(t)〉

=
1

(2π)6

∫
d3k

∫
d3k′ eik·(x+r)eik

′·x〈δk(t)δk′(t)〉

=
1

(2π)3

∫
d3k

∫
d3k′ eik·(x+r)eik

′·xδ(3)(k + k′)P (k)

=
1

(2π)3

∫
d3k eik·rP (k).

(2.87)
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Another relevant quantity is the variance of the fluctuations defined as

σ2 ≡ 〈δ2
k〉 =

1

(2π)3

∫
d3k P (k). (2.88)

We further introduce the dimensionless power spectrum

P(k) ≡ k3

2π2
P (k), (2.89)

by which equation (2.88) becomes

σ2 =

∫ ∞
0

dk

k
P(k). (2.90)

The scale dependence of P(k) is given by the spectral index

n(k)− 1 =
d lnP(k)

d ln k
. (2.91)

If the spectral index is scale-invariant, i.e. n(k) = const, then the power spectrum P(k) can be
generally written as

P(k) = P(k0)

(
k

k0

)n−1

, (2.92)

where k0 is a pivot scale. We distinguish between different classes of power spectra based on the
spectral index: if n(k) = 1, then the power spectrum is the so-called Harrison-Zel’dovich power
spectrum and it does not depend on the cosmological scale k; if n(k) > 1 then we have a blue
tilted power spectrum, namely perturbations have more power on small scales than on large
scales; on the contrary the red tilted power spectrum has n(k) < 1 which means less power on
small scales compared to large scales.

The power spectrum of the fluctuations of the inflaton field at lowest order in the slow-roll
parameters. Using the fact that δφk(t)∗ = δφ−k(t) and that it can be written as a combination
of creation-annihilation operators, we obtain

〈δφk(t)δφ∗k′(t)〉 = (2π)3δ(3)(k− k′)|δφk|2. (2.93)

Comparing this result with equation (2.86) we have that

Pδφ(k) = |δφk(t)|2, Pδφ(k) =
k3

2π2
|δφk|2. (2.94)

In particular, using the result in (2.75) we find that at super-horizon scales the power spectrum
reads as

Pδφ(k) =

(
H

2π

)2( k

aH

)3−2ν

. (2.95)

2.6 From quantum to cosmological fluctuations

In section 2.4 we showed that fluctuations δφ of the inflaton field arise at sub-horizon scale and
are stretched by the rapid expansion of the Universe until they exit the horizon and freeze at
super-horizon scale. At later times, this fluctuations re-enter the region of causal connection and
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interact through physical processes. In this section we examine how the quantum perturbations
that have occurred during inflation are related to the primordial density perturbations that
constitute the seeds of the present cosmic structure.

During inflation, the fluctuations δφ generate fluctuations in the expansion of the Universe
such that different regions will end inflation at slightly different times. To show this, recall the
equation of motion of the homogeneous inflaton field (2.21). If we derive with respect to the
cosmic time ...

φ + 3Hφ̈ = −∂2
φV (φ)φ̇ ⇒ (φ̇)̈ + 3H(φ̇)̇ = −∂2

φV (φ)φ̇, (2.96)

we notice that the resulting equation has the same form of equation (2.43) except for the
Laplacian term. In the limit where this term can be neglected, δφ and φ̇ obey to the same
equation. In particular, taking the Fourier transform of the Laplacian term

1

a2
∇2(δφ)

F−→ −k
2

a2
δφ~k, (2.97)

we have that it vanishes in the limit of large scales, i.e. for k that tends to 0. This corresponds
to a coarse-graining process that we will assume valid throughout the following discussion.

In order to study this system, we employ the Wronskian operator, which, given a differential
equation and a set of solutions, allows to determine if such solutions are linearly independent or
linearly dependent. Given two homogeneous fields ϕ(t) and ψ(t), the Wronskian is defined as

W (ϕ,ψ) = ϕ̇ψ − ψ̇ϕ
{
6= 0 two linearly independent solutions,

= 0 two linearly dependent solutions.
(2.98)

In our case, the Wronskian has the following form

W (δφ, φ̇) = ˙(δφ)φ̇− φ̈δφ. (2.99)

If we further derive with respect to time, we obtain that

Ẇ (δφ, φ̇) = ¨(δφ)φ̇+ ˙(δφ)φ̈−
...
φδφ− φ̈ ˙δφ

= −3H ˙(δφ)φ̇− ∂φV ′(φ(t)δφφ̇+ 3Hφ̈δφ+ ∂φV
′(φ)φ̇δφ

= 3H[φ̈δφ− ˙(δφ)φ̇]

= −3HW (δφ, φ̇),

(2.100)

which has solution decaying with time given by

W (δφ, φ̇) = e−3Ht, (2.101)

Thus, using the conditions (2.98), at large scales δφ and φ̇ are related. In particular

δφ(t,x) ∝ φ̇ ⇒ δφ(t,x) ' (−δt(x))φ̇, (2.102)

where the proportional constant −δt(x) has the dimensionality of time and x represents a large
region of the Universe. To simplify the system, we consider a linear dependence on time for the
inflaton field given by φ(t) = φ∗ · t, hence δφ(t, ~x) ' (−δt(~x))φ and the decomposition of the
scalar field (2.18) becomes

φ(t,x) = φ(t) + δφ(t,x)

' φ[t− δt(x)].
(2.103)
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The inflaton field is subject to a temporal shift given by

δt(x) ' −δφ(t,x)

φ̇(t)
. (2.104)

which corresponds to a local time delay in the time at which inflation ends. As a consequence,
also the expansion of the Universe is different in different parts of the Universe. We introduce
the fluctuations in the number of e-folds N (2.4) given by the primordial curvature perturbation
ζ

ζ = δN = Hδt ' −Hδφ

φ̇
, (2.105)

where in the last passage we used (2.104). We now show that during inflation the primordial
curvature perturbation induce fluctuations in the density field. Let us consider the expression of
% in equation (2.22), then

−Hδ%

%̇
' −H ∂φV (φ)δφ

−3H(%+ p)
,

' H 3Hφ̇δφ

−3Hφ̇2
' −Hδφ

φ̇
,

(2.106)

where in the first passage we used the continuity equation (1.15) during inflation. Therefore,
ζ ' −Hδ%/%̇. An important property of ζ is that it remains constant outside the horizon for
adiabatic matter perturbations [8]. Therefore, given a scale k, we can evaluate ζ at the time of
horizon crossing t(k)exit, knowing that it maintains the same value until it re-enter the horizon
at t(k)en during radiation or matter domination.

The power spectrum of the curvature perturbation can be derived using equation (2.105)

Pζ '
H2

φ̇2
Pδφ =

(
H

2πφ̇

)2( k

aH

)3−2ν

. (2.107)

and at the time of horizon exit we have

Pζ =

(
H

2πφ̇

)2 ∣∣∣∣
t(k)exit

. (2.108)

We conclude this section mentioning that the curvature perturbation ζ introduced in (2.105) is a
particular form of the gauge-invariant curvature perturbation on uniform-density hypersurfaces
defined as

ζ ≡ −ψ −Hδ%

%̇
, (2.109)

where ψ is the scalar perturbation of the diagonal spatial component of the FRW metric. In
fact, in equation (2.105) we considered the gauge choice ψ = 0, called uniform curvature gauge.
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Chapter 3

Primordial Black Holes Formation

The detection of binary black hole mergers through gravitational waves by the LIGO-Virgo
instrument [9] brought a significant increase of interest in models where Primordial Black Holes
constitute a relevant fraction of dark matter. Indeed, the detected signal was generated by two
merging black holes of mass approximately 30M�, which is the mass range of interest for dark
matter to comprise PBHs [10].

In this chapter we provide an introduction to the general relativistic formation of primordial
black holes during radiation-dominated era and we summarize the main findings of Musco’s
work [11, 12, 13, 14].

The possibility that black holes could have formed in the early Universe was first raised
by Bernard Carr and Stephen Hawking in Ref. [15]. PBHs could have been produced due to
various mechanisms involving primordial density fluctuations generated during inflation (see
section 2.4), or spontaneous formation due to a phase transition, for example from bubble
collisions [16, 17, 18, 19], collapse of cosmic strings [20, 21, 22, 23, 24], necklaces [25, 26] or
domain walls [27, 28].

We work on the first scenario, where very large primordial inhomogeneities, generated by
quantum fluctuations in the inflaton field and stretched by the rapid inflationary expansion,
eventually collapse gravitationally into a black hole. At zero order approximation, assuming that
the primordial black hole forms immediately after the perturbation enters the horizon, denoting
with MH the horizon mass at horizon crossing, we find an estimation of the time of formation tf

MPBH ∼MH =
4π

3
%HR

3
H

=
4π

3

3H2

8πG

( c
H

)3

=
c3tf
G
,

(3.1)

where we used the fact that H ∝ 1/(2t) during the radiation domination era. In equation (3.1),
c is the speed of light, G is the gravitational constant, H is the Hubble constant, RH is the
Hubble radius and %H is the horizon energy density. We then obtain

tf =
mPBHG

c3
. (3.2)

This simple derivation gives us a rough glimpse on the mass range of PBHs, which is wide:
while black holes resulting from astrophysical processes, such as the collapse of stars, cannot be

33
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smaller than a certain mass (around 3M�), PBHs may be super-massive like stellar BHs (for
example, those formed at 1 s would have a mass of order 105 M�) but also as light as the Planck
mass (those formed at Planck time 10−45 s would have mass 10−5 g).

3.1 Gradient Expansion Approximation

In the following section we review the main features of gradient expansion approximation [29,
30, 31], which are useful in the following discussion.

While cosmological perturbation theory expands the exact equations in powers of the
perturbations keeping only terms of a finite order, the gradient expansion method is an expansion
in the spatial gradient of these inhomogeneities. In particular, this procedure consists in
multiplying each spatial gradient ∂i at a fixed time by a fictitious parameter ε and in expanding
the exact equations as a power series in ε. Finally, one keeps only the zero- and first-order terms
and set ε = 1 (see e.g., [29, 32, 33]).

We employ the metric in the standard (3 + 1)-decomposition of the ADM formalism [34]

ds2 = −N2dt2 + γij(dx
i + βidt)(dxj + βjdt), (3.3)

where N is the lapse function, βi the shift vector and γij the 3-dimensional spatial metric. In
general, this last term can be written as a product of two terms [29, 35]

γij = a2(t)e2ζ(t,xi)γ̃ij , det[γ̃ij ] = 1 , (3.4)

where ζ(t, xi) is the curvature perturbation, here interpreted as the perturbation to the scale
factor, and γ̃ij is time independent. We assume that ζ(t, xi) vanishes somewhere in the observable
Universe such that a(t) is the scale factor of that region and ζ(t, xi) is a small perturbation
throughout the observable Universe [29].

The gradient expansion approximation is useful to study non-linear perturbations whose
characteristic scale L is much bigger than the horizon scale 1/(aH) [33]. In other words, every
quantity can be assumed to be smooth on some sufficiently large scale with coordinate size
k−1. Focusing on the observable Universe, we can relate the perturbation length-scale L to the
cosmological scale by k = a(t)/L, and conveniently identify [29, 33]

ε ≡ k

aH
. (3.5)

The key assumption of this approach is that at a fixed time, in the limit ε → 0, which
corresponds to k → 0, the Universe becomes locally homogeneous and isotropic. Locally means
that the region is smaller than the characteristic scale of the perturbation but larger than the
horizon scale.

As a consequence of this assumption, there exist an appropriate set of coordinates which
reduces the metric to the spatially flat FRW metric

ds2 = −dt2 + a2(t)δijdx
idxj . (3.6)

For the element of the metric in equation (3.3), this implies that β = O(ε) whereas the time
independent γ̃ij can be removed by means of a local transformation of spatial coordinates.
Therefore, we can rewrite equation (3.3) as

ds2 = −N2dt2 + βidxidt+ γijdx
idxj . (3.7)
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Throughout the discussion, we assume to work with a perfect fluid, characterized by an equation
of state of the form of equation (1.16)

p = w%. (3.8)

3.2 The curvature profile

Simulations of PBH formation have played a relevant role in understanding the relativistic
aspects of critical collapse. Such simulation are performed working in the comoving gauge [35].
Here we give an overview of the main theoretical tools used to perform such simulations. First,
we give a brief description of the Misner-Sharp equations, then we see how they provide the
initial conditions for the numerical computations in terms of the curvature profile, K(r). The
physical properties of the curvature profile and its relation with the curvature perturbation will
be discussed in the final part of the chapter.

Assuming spherical symmetry, we consider the metric [36]

ds2 = −A2(t, r̃)dt2 +B2(t, r̃)dr̃2 +R2(t, r̃)dΩ2, (3.9)

where r is the radial coordinate comoving with the fluid, A, B and R are positive definite
functions of the time and radial coordinate. In the case of homogeneous and isotropic Universe,
equation (3.9) reduces to the well-known FRW metric (1.2). Following the notation of Ref. [36],
we introduce two basic differential operators

Dt ≡
1

A

∂

∂t
,

Dr̃ ≡
1

B

∂

∂r̃
.

(3.10)

that when applied to the function R(t, r̃) define two more quantities

U ≡ DtR =
1

A

∂R

∂t
,

Γ ≡ Dr̃R =
1

B

∂R

∂r̃
,

(3.11)

where U is the radial component of the four-velocity (in a non-comoving frame with radial
coordinate R) and Γ is a generalization of the Lorentz factor. In the particular case of FRW
metric (??) we get

Γ =
√

1−Kr̃2, (3.12)

therefore we can interpret Γ as a measure of the spatial curvature. Given the equation of state
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describing the fluid (1.16), the set of Einstein’s equations to solve is given by [12]

DtU = −
(

Γ

(%0 + p)
Dr̃p+

M

R2
+ 4πRp

)
,

Dt%0 = − %

ΓR2
Dr̃(R

2U),

Dt% =
%+ p

%0
Dt%0,

DtM = −4πpUR2,

Dr̃A = − A

%+ p
Dr̃p,

Dr̃M = 4πR2Γ%,

DtΓ = − U

%0 + p
Dr̃p,

(3.13)

where %0 is the rest mass density. Furthermore, U and Γ can be related using the G0
0 and G1

0

components of the Einstein equations giving the so-called constraint equation

Γ2 = 1 + U2 − 2M

R
. (3.14)

Since the numerical simulations are done assuming spherical symmetry, in the case where the
spatial curvature K is position-dependent we conveniently introduce a generalized curvature
profile K(r̃) in the FRW metric [12, 37]

ds2 = −dt2 + a2

[
dr̃2

1−K(r̃)r̃2
+ r̃2dΩ2

]
, (3.15)

therefore, using equation (3.12), the constraint equation (3.14) can be rewritten in term of the
curvature profile as

−K(r̃)r̃2 = U2 − 2M

R
. (3.16)

Notice that in introducing K(r̃) in the FRW metric we loose homogeneity.
Following the gradient expansion approximation reviewed in section 3.1, we expand the

metric component in equation (3.9) as

A = 1 + ε2Ã,

B =
a(t)√

1−K(r̃)r̃2
(1 + ε2B̃),

R = a(t)r̃(1 + ε2R̃),

(3.17)

knowing that for ε� 1 it reduces to the metric in equation (3.15). We expand the hydrodynamical
quantities as well as

% = %̄(1 + ε2%̃),

U = HR(1 + ε2Ũ),

M = M̄(1 + ε2M̃),

(3.18)

where %̄ and M̄ = 4π/3%̄R3 are respectively the background energy density and mass. We then
replace these quantities in the equations (3.13) and in the constraint equation (3.14). Here, we
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do not go into the details of the calculations, which are explicitly performed in Ref. [12], but we
report the final expressions of relevance for our work.

From the gradient expansion approximation, the term of perturbation to the energy density
in the first equation of (3.18) is given by

%̃ =
3(1 + w)

5 + 3w

[
K(r̃) +

r̃

3
K ′(r̃)

]
r̃2
k , (3.19)

where r̃k is the comoving lengthscale of the perturbation associated to the wavenumber k.
Therefore, the energy density perturbation can be written as

δ(r̃) ≡ δ%

%̄
= ε2%̃ =

3(1 + w)

5 + 3w

(
1

aH

)2 [
K(r̃) +

r̃

3
K ′(r̃)

]
. (3.20)

Notice that a singularity appears in equation (3.15) when K(r̃)r̃2 = 1. In order to avoid it, we
should require that

1−K(r̃)r̃2 > 0 ⇒ K(r̃) <
1

r̃2
, (3.21)

which corresponds to require that a perturbed spherical region of comoving radius r̃ should not
be causally disconnected from the rest of the Universe.

We set the origin of our coordinate system at the peak and work with the isotropic metrics
defined in equation (3.15). In Refs. [12, 35] the authors analysed the behaviour of “Gaussian-like”
curvature profiles parametrised as

Kpeak(r̃) = Apeak exp

[
−1

2

(
r̃

∆

)2α
]
, (3.22)

where Apeak is the peak amplitude, ∆ is some typical scale of the perturbation and α is a
parameter that describes the shape of the peak. In this case the density perturbation in equation
(3.20) reads as

δpeak(r̃) =
3(1 + w)

5 + 3w

Apeak

(aH)2

[
1− α

3

(
r̃

∆

)2α
]

e−
1
2( r̃∆)

2α

(3.23)

In figures 3.1 and 3.2 we show the curvature and density profile given by equations (3.22)
and (3.23).

To give a complete overview, we derive the relation between the curvature profile K(r̃) and
the primordial curvature perturbation ζ (see Section 2.4). However, in the following sections we
employ only K(r̃).

We already saw that K(r̃) can be introduced in the FRW metric as in equation (3.15),
whereas in the gradient expansion approximation the primordial curvature perturbation ζ can
be interpreted as a perturbation to the scale factor a(t)

ds2 = −dt2 + a2e2ζ(r̂)
[
dr̂2 + r̂2dΩ2

]
, (3.24)

where the parametrisation of the radial comoving coordinate has now changed.
In order to find the relation between K(r̃) and ζ(r̂), we compare the angular and radial

components
r̂eζ(r̂) = r̃,

eζ(r̂)dr̂ =
dr̃√

1−K(r̃)r̃2
,

(3.25)
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Figure 3.1: Curvature profiles for different shapes. Here we normalized all the amplitude to the
unity.
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Figure 3.2: Density profiles for different shapes. Here we normalized all the amplitude to the
unity.

and by differentiation of the first expression in equation (3.25), we obtain

dr̃

dr̂
= eζ(r̂)[1 + ζ ′(r̂)r̂], (3.26)

where the prime ′ indicates a derivative with respect to the radial coordinate. By replacing this
equation into equation (3.25) we finally get

K(r̃)r̃2 = −r̂ζ ′(r̂)[2 + r̂ζ ′(r̂)]. (3.27)

Given this relation, we can rewrite equation (3.20) in terms of ζ(r̂) as [35]

δ(r̂) = −
(

1

aH

)2 2(1 + w)

5 + 3w
e−2ζ(r̂)

[
ζ ′′(r̂) + ζ ′(r̂)

(
2

r̂
+
ζ(r̂)

2

)]
. (3.28)

In the linear regime, where r̃ ' r̂, given the curvature profile K(r̃) of a spherically symmetric
perturbation, equation (3.27) reduces to [35]

K(r̂) ' −2

r
ζ ′(r), (3.29)
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and the derivative of the curvature is given by

K ′(r̂) ' 2

r2
ζ ′(r)− 2

r
ζ ′′(r). (3.30)

Finally, the density perturbation becomes

δ(r̂) ' −
(

1

aH

)2 2(1 + w)

5 + 3w

[
2

r̂
ζ ′(r̂) + ζ ′′(r̂)

]
= −

(
1

aH

)2 2(1 + w)

5 + 3w
∇2ζ , (3.31)

where

∇2ζ =
1

r̂2

d

dr̂

(
r̂2 d

dr̂
ζ(r̂)

)
. (3.32)

is the Laplacian in spherical coordinates.

3.3 The threshold criterion

In this section we introduce new useful quantities to gain insight on the properties of the
density perturbation profile. Let us define the background mass inside a cosmological horizon
by Mhor = 4πρ̄R3

hor/3 = 4πM2
P c

3/H. The mass excess inside some spherical region of radius r,
that we call δI , is defined as

M(r, t)−Mhor(t)

Mhor(t)
= δI(r, t) =

1

V (t)

∫
Ω
dΩ

∫ r

0
dr′(r′)2δ(r′, t) =

3

r3

∫ r

0
dr′(r′)2δ(r′, t), (3.33)

where r′ can be either r̃ or r̂, since the above quantity must be gauge-independent.
Replacing the results obtained for the density perturbation (3.20), we have that

δI(r) =

(
1

aH

)2 3(1 + w)

5 + 3w

3

r3

∫ r

0
dr′2

1

3r′2
[
r′3K(r′)

]′
=

(
1

aH

)2 3(1 + w)

5 + 3w

1

r3

[
r3K(r)

]r
0

=

(
1

aH

)2 3(1 + w)

5 + 3w
K(r).

(3.34)

Notice that the function K slightly depends on time since every portion of the perturbation that
is sub-horizon is evolving (see the discussion on the transfer function in section 4.2).

Before moving on, we explain the difference between compensated and non-compensated
density profiles. The former are characterized by a region of overdensity of comoving radius r0,
defined as the zero of the density perturbation (3.23)

δ(r0) = 0 ⇒ K(r0) +
r0

3
K ′(r0) = 0, (3.35)

surrounded by a region of underdensity. Non-compensated profile represent regions characterized
by an overdensity that asymptotically goes to zero without encountering an underdensity
region. In the case of compensated profile, it would be intuitive to integrate the mass excess in
equation (3.34) up to r0, namely assuming that all the mass in inside such radius. However, this
interpretation does not consider whether the perturbation is all inside the horizon or just a part
of it.
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In presence of a spherical symmetry, as the perturbation collapses, we see the formation of
an apparent horizon when the so-called compaction function [32]

C(r, t) = 2
M(r, t)−Mhor(t)

R(r, t)
(3.36)

reaches its maximum and this maximum is above a certain threshold. In the equation above R
is the areal radius. Because we are considering BHs, we have that the apparent horizon forms
where R = 2Mhor [38] in natural units, therefore our compaction function corresponds exactly to
our integrated profile δI defined in equation (3.34). The maximum of the compaction function,
called rm, is defined by the differential equation

C′(rm, tm) = δ′I(rm, tm) = 0 =⇒ K(rm) +
rm

2
K ′(rm) = 0, (3.37)

where tm is the horizon crossing time of the whole perturbation and it is defined implicitly by
a(tm)H(tm)rm = 1. Therefore the correct criterion to establish the formation of a PBH is given
by requiring that the integrated profile, calculated up to rm, is bigger than some critical value

δI(rm, tm) > δI,c, (3.38)

where perturbations that share the same rm share also the same threshold.
In the case of the profiles reported in equation (3.22), rm reads in terms of the typical scale

as rm = (2/α)1/2α ∆, therefore we can rewrite equation (3.20) as

δpeak(r̃, t) =
3(1 + w)

5 + 3w

Apeak

(aH)2

[
1− 2

3

(
r̃

rm

)2α
]
e
− 1
α

(
r̃
rm

)2α

(3.39)

and the threshold criterion reads as

3(1 + w)

5 + 3w

Apeak

a2
mH

2
m

e−1/α = δpeak(0, tm)e−1/α > δI,c, (3.40)

which can be approximately recast as

δpeak(0, tab) >

(
amHm

aabHab

)2

e1/αδI,c =

(
aab

am

)2

e1/αδI,c, (3.41)

where aab < am is the scale factor when the PBHs abundance will be calculated.



Chapter 4

Peaks Theory

As we showed in chapter 2, the density inhomogeneities that seed the formation of structure in
the Universe originated from quantum fluctuations arising during inflation. Cosmological density
fluctuations are often assumed to be Gaussian random fields and the statistical properties of
such fields are thoroughly addressed in Ref. [51]. Since the goal of Ref. [51] was to study Large
Scale Structure (LSS) formation and abundance, the authors had in mind the matter-dominated
era, where pressure effects are negligible. Nonetheless, the tools developed in Ref. [51] can be
conveniently applied to the theory of PBHs formation under opportune assumptions.

In this chapter we first give the basic notions of Gaussian statistics and then derive the PBHs
abundance in the framework of peaks theory.

4.1 The number density of extrema

In Ref. [51], the approach to the problem of non-linear evolution of structures focuses on the
study of the local maxima of the initial density perturbations.The density perturbations is a
Gaussian random field and in general in order to have a well-defined set of local maxima, the
field must be smooth and differentiable.

An n-dimensional random field F (r) is a set of random variables, one for each point r in the
n-dimensional real space, defined by the set of finite-dimensional joint probability distribution
functions

prob [F (r1), F (r2), . . . , F (rj)] dF (r1)dF (r2) . . . dF (rj). (4.1)

A Gaussian random field is one for which the various j-point probability distributions defined
above are multivariate Gaussians. A joint Gaussian probability distribution for random variables
yi reads as

P (y1, . . . , yn)dy1 . . . dyn =
e−Q

[(2π)ndet(M)]1/2
, Q =

∑
ij

(∆yi(M
−1)ij∆yj)/2, (4.2)

where only the mean values of the random variables 〈yi〉 and their covariance matrix

Mij = 〈∆yi∆yj〉, ∆yi = yi − 〈yi〉, (4.3)

are required to characterize the distribution.
For our purposes, we assume that initial density fluctuations are described by an isotropic,

homogeneous Gaussian random fields with zero mean. We also assume that the field has been
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previously smoothed out with some window function of radius R (for more details on the
smoothing procedure see section 5.2). Such a field is completely specified by the power spectrum
PR(k), or equivalently its Fourier transform, the correlation function ξR(r). Since the Gaussian
nature is retained throughout the linear regime, a complete statistical description of the local
maxima can be extracted from the power spectrum.

The number density of points p that specify the maxima of the random field F (r) is given
by the point process equation

npk(r) =
∑
p

δ(3)(r− rp). (4.4)

One can restrict that class of points considering for example only those maxima above a certain
threshold height. The number density (4.4) can be expressed in terms of the random field and
its derivatives. Consider the Taylor expansion of F (r) in the neighbourhood of a maximum
point rp

F (r) = F (rp) + ∂iF (r)|r=rp(r − rp)i +
1

2
∂i∂jF (r)|r=rp(r − rp)i(r − rp)j + . . .

≈ F (rp) +
1

2
θij(r − rp)i(r − rp)j ,

(4.5)

where the first derivative ηi(rp) = ∂iF (r)|r=rp = 0, the second derivative tensor θij =
∂i∂jF (r)|r=rp is negative definite given that rp is a maximum, and

ηi(r) ≈
∑
j

θij(r − rp)j . (4.6)

Since the θ-matrix is non-singular at the maximum point, we can invert equation (4.6)

r− rp ≈ θ−1(rp)η(r), (4.7)

and using the properties of the Dirac delta, we write

δ(3)(r− rp) ≈ |detθ(rp)|δ(3)(η(r)), (4.8)

where the δ-function selects all the extremal points that are zeros of η(r). Therefore, the number
density of extrema (minima and maxima) in terms of field derivative can be expressed as

next(r) = |detθ(rp)|δ(3)(η(r)). (4.9)

We find an identical expression for npk(r) (4.4) with the additional condition of negativity on
the three eigenvalues of θij Moreover, if one selects only those maxima whose heights are in the
range [F0, F0 + dF ] then a δ(F − F0)dF should multiply equation (4.9). The ensemble average
of next(r) is defined as

〈next(r)〉 =

∫
dFd6θ |detθ(rp)|P (F, η = 0, θ), (4.10)

where P is the joint probability distribution defined in equation (4.2) From equation (4.10) we
can derive the differential peak density that allows us to define the abundance of PBHs. The full
computation of the integral can be found in Ref. [51], here we discuss the result. The distribution
of fluctuations can be specified through the spectral moments

σ2
j (τ) =

∫
d3k

(2π)3
PR(k, τ)k2j , (4.11)
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where we notice that 0-th order spectral moment corresponds to the variance of the density
fluctuation

σ2
0(τ) ≡ σ2

R(τ) = ξR(0, τ) =

∫
d3k

(2π)3
PR(k, τ). (4.12)

From the spectral moments, we infer the spectral parameters

γ(τ) =
σ2

1(τ)

σ2(τ)σ0(τ)
, R?(τ) =

√
3
σ1(τ)

σ2(τ)
. (4.13)

Since in matter-domination, at linear order, the density field grows in a self-similar way, the
spectral parameters above are time-independent and the comoving density of peaks does not
depend on the time at which the density is measured, but this is not the case when pressure
effects are important. The issue will be further discussed in section 4.2.

Finally, notice that the integral in equation (4.11) should be performed over all the momenta,
since we are evaluating the statistical properties of the entire density field, so no sub- or
super-horizon considerations apply here.

By denoting the peak height as δpeak(r = 0) = δpeak,0 and introducing the parameter
ν = δpeak,0/σ0, the authors of Ref. [51] found that the differential comoving peak density
dncom.

peak/dν reads as

dncom.
peak

dν
=

1

(2π)2R3
?

e−ν
2/2G(γ, γν), (4.14)

where the function G(γ, γν), denoting ω = γν can be approximated by

G(γ, ω) ≈ ω3 − 3γ2ω + [B(γ)ω2 + C1(γ)]e−A(γ)ω2

1 + C2(γ)e−C3(γ)ω
(4.15)

for 0.3 < γ < 0.7 and for −1 < ω < +∞, keeping the error below the 1% level. The coefficients
of the above equation reads as

A(γ) =
5/2

9− 5γ2
, B(γ) =

432

(10π)1/2 (9− 5γ2)5/2
,

C1(γ) = 1.84 + 1.13
(
1− γ2

)5.72
, C2(γ) = 8.91 + 1.27e6.51γ2

, C3(γ) = 2.58e1.05γ2
.

(4.16)
Not all the peaks will correspond to site where a more complex structure will form. Typically we
have to introduce some threshold criterion, in our case we ask ν > νc to have PBHs formation,
where νc = e1/αδI,c/σ0 is given by equation (3.40).

4.2 PBHs Abundance from Peaks Theory

In this section, we derive the abundance of primordial black holes using the results of Ref. [51]
paying attention to when they should be applyed. In fact, as stated in Ref. [52], the number of
“high-enough” peaks that will form a PBH has to be calculated at some conformal initial time τab

when the perturbation is still super-horizon, in order for the results of Ref. [51] to be valid. For
instance, the relative height ν of the peaks we are going to use in the following parts has been
measure at τab (this is important especially for measuring the variance σ0).Moreover, we denote
with τm the time when the perturbation crosses the horizon and becomes causally connected
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for the first time and by defining as τf the time of the PBH formation, we have from numerical
simulations that τf/τm = af/am = (tf/tm)1/2 ' 3. The differential physical peak density reads as

dnphys.
peak (ν, τf)

dν
= a−3(τf)

dncom.
peak(ν, τab)

dν
. (4.17)

We define the relative energy density of PBHs with respect to radiation energy density at
formation as

βf = β(τf) =
ρPBH(τf)

ρr(τf)
' β(τeq)

af

aeq
= fPBH

af

aeq
, (4.18)

where τeq is the time of matter-radiation equality, fPBH = ρPBH/ρdm is the fraction of dark
matter made by PBHs and we have used the fact that at equality ρdm = ρr. Notice that our
definition of βf is slightly different from the one used in Ref. [52], where they define it as a ratio
between the PBHs energy density and the baryon energy density. Using the result from peaks
theory we have that

βf =
1

ρr(τf)

∫ ∞
νc

dν
dρphys.

PBH (ν, τf)

dν
, (4.19)

where
dρphys.

PBH (ν, τf)

dν
= MPBH(ν, τm)

dnphys.
peak (ν, τf)

dν
(4.20)

and the PBH mass has been calculated at horizon crossing and reads as [53, 54, 55, 13]

MPBH(ν, τm) = KpeakMhor(τm)(δpeak,0 − δpeak,0,c)
γ = KpeakMhor(τm)σγ0 (τab)(ν − νc)

γ , (4.21)

where Mhor(τm) = 4πM2
P c

3/H(τm) is the mass inside the horizon at horizon crossing, γ ' 0.36 is
a critical exponent that depends on the equation of state in the formation era [56] and Kpeak is
a numerical coefficient that depends on the specific density profile and on how we “measure” the
perturbation, namely through the height of the peak (as in our case) or through the integrated
profile. Notice that the two possibilities described differ only by a multiplicative factor e−1/α, as
can be seen in equation (3.40), that can be easily reabsorbed in the K coefficient. The result in
the above equation holds under the condition MPBH .Mhor.

Replacing equations (4.20) and (4.21) in the definition of βf given in equation (4.19), we
have

βf =
KpeakMhor(τm)σγ0 (τab)

ρr(τf)

∫ ∞
νc

dν(ν − νc)
γ
dnphys.

peak (ν, τf)

dν

=
KpeakMhor(τm)σγ0 (τab)

(2π)2ρr(τf)a(τf)3R3
?

∫ ∞
νc

dν(ν − νc)
γe−ν

2/2G(γ, γν),

(4.22)

where in the second line we used equation (4.14). The radiation energy density at the formation
time is given by %r(τf) ' 3H2/8πG, where H is the Hubble parameter in terms of the conformal
time.

Finally, using the saddle-point approximation in the limit of very high peaks, the authors of
Ref. [52] find that

βf = Cνce
−ν2

c /2 (4.23)

where for the sake of clarity we denoted the terms given by the integration that do not depend
on ν as

C =

√
2

π
KpeakMhor(τm)σγ0 (τab)k3

?γ
γ+1/2, (4.24)

where k? = γ(τ)/R? defined in equation (4.13).
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4.3 Profile Shape

In this section we discuss the average profile shape we expect the peak to have, following the
discussion in [51]. We define ν(r) = δR(r)/σ0 and

ψ(rij) = 〈ν(ri)ν(rj)〉 =
〈δR(ri)δR(rj)〉

σ2
0

=
ξR(rij)

σ2
0

, (4.25)

where the smoothing radius has been chosen smaller than the typical scale of the peak.
Let us suppose that at r = 0 there is a peak of height ν, then the mean value of the density

at distance r (and so the average shape around the peak), after averaging over all possible
curvatures (i.e., second derivatives) and orientations (i.e., ellipticity and prolateness/oblateness),
reads as [51]

δ̄peak(r)

σ0
= νψ(r)− θ(γ, γν)

γ(1− γ2)

[
γ2ψ(r) +

∇2ψ(r)

3

]
, (4.26)

where

θ(γ, ω) =
3(1− γ2) + (1.216− 0.9γ4)e−2γ/ω2[

3(1− γ2) + 0.45 + ω2

4

]1/2
+ ω

2

(4.27)

is accurate for γ ∈ [0.4, 0.7] and ω ∈ [1, 3]. On the other hand, the average density structure
around a point with the same height ν as the peak (but which is not a peak) reads as [57, 58]

δ̄no peak(r)

σ0
= νψ(r), (4.28)

where equations (4.26) and (4.28) coincide in the limit of high ν. Of course not all peaks share
the same shape, therefore we can associate to the mean profiles introduced in equations (4.26)
and (4.28) a variance of shapes σ2

shape(r) which is slightly different in the two cases. For high
peaks the variance is small, however at large enough distance it will be as large as the amplitude
of the peak in that point. When this happens, at some radial distance that we call rdec, the
fluctuation loses its coherence.

Since we consider high peaks (or alternatively, rare events) we can neglect the correction
given by θ(γ, γν) and work directly with

ξR(r) = σ2
0

δ̄peak(r)

δ̄peak(0)
, (4.29)

which is valid up to the decoherence radius rdec (see Ref. [58]). For greater distances the
density fluctuations are basically uncorrelated, but we do not have any estimate of the two point
correlation function ξ̃R(r) ≡ ξR(r > rdec). Equivalently, one can also work with the Fourier
transform of equation (4.29), which reads as1

PR(k) =

∫
d3rξR(r)e−ik·r

= 4π

[
σ2

0

∫ rdec

0
dr r2 sin(kr)

kr

δ̄peak(r)

δ̄peak(0)
+

∫ ∞
rdec

dr r2 sin(kr)

kr
ξ̃R(r)

]
.

(4.30)

1Recall that ∫
dΩe−ik·r = 4π

sin(kr)

kr
.
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Notice however that as long as we work with modes k & kdec = 1/rdec the second integral should
be negligible with respect to the first one because of the suppression given by the sin(x)/x factor.
Therefore we limit our analysis to those modes.



Chapter 5

Primordial Power Spectrum

In this chapter we compute the primordial curvature perturbation power spectrum profile for
different shapes of the density perturbations provided by the relativistic numerical simulations
reviewed in chapter 3 and we show that the formation of PBHs in real space leads to a pronounced
bump in the power spectrum Pζ of the curvature perturbation. The goal is to use the constraints
on PBHs abundance deriving from experimental observations to put an upper bound limit on
the amplitudes of the primordial curvature perturbations that could collapse into PBHs.

5.1 The Transfer Function

So far we have applied the theory developed in Ref. [51] (see chapter 4) to derive fundamental
properties of PBHs, such as the abundance in section 4.2 and the profile shape of the density
perturbations in section 4.3. However, we emphasize that the results of Ref. [51] are valid for
some initial field or for some linearly evolved field, whereas the formation of primordial black
holes requires very large perturbations that might evolve in a non-linear way. Therefore, it is
crucial to decide when to apply the results of Ref. [51] in the context of PBHs formation.

According to the inflationary paradigm, density perturbation in the radiation field δ are
generated by curvature perturbation ζ at horizon re-entry via Poisson equation (see e.g., Ref. [6])

δ(x) =
2

3

1

a2H2
∇2Φ(x), (5.1)

where Φ is the Bardeen potential (also gravitational potential in Poisson gauge) at super-
horizon scales. Here, for adiabatic perturbation and neglecting non-linear corrections, Φ and the
primordial curvature perturbation ζ are related by

Φ(x) = −3(1 + w)

5 + 3w
ζ(x), (5.2)

therefore we have that equation (5.1) becomes

δ(x) =
2

3

1

a2H2
∇2Φ(x) = −2(1 + w)

5 + 3w

1

a2H2
∇2ζ(x), (5.3)

as we found in equation (3.31) at linear level. In Fourier space, this equation reads as

δ(k) = −2(1 + w)

5 + 3w

k2

a2H2
ζ(k). (5.4)
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Equation (5.2) tells us that the Bardeen potential is constant at super-horizon scales, however
Φ evolves differently at sub-horizon scale depending on whether the perturbations re-enter the
horizon during the radiation-dominated epoch or the matter-dominated epoch [6].

In the case of LSS formation (matter-dominated Universe), the pressure effects are negligible
and the linear equation for the gravitational potential Φ reads as [6]

Φ′′ + 3HΦ′ = 0, (5.5)

therefore the total evolution is going be determined by a growth factor D(τ) (solution of the
above equation) and by a transfer function T (k) that describes the evolution of perturbations
through the epochs of horizon crossing and radiation/matter transition. Notice that in this
context all modes k grow in the same way since there is no pressure or any mode coupling. This
also means that the statistical properties of the density field, i.e. the spectral moments, simply
evolves with the growth factor.

The same does not happen in radiation-domination, where we have pressure effects and the
gravitational potential evolves as

Φ′′ + 4HΦ′ + c2
sk

2Φ = 0, (5.6)

where c2
s = 1/3 is the sound speed of the relativistic fluid. In this case the statistical properties

of the density field change in time in a non-trivial way and we can only write a “global” transfer
function (see e.g., Ref. [59] and Refs. therein)

T (k, τ) = 3
sin(kτ/

√
3)− (kτ/

√
3) cos(kτ/

√
3)

(kτ/
√

3)3
, (5.7)

Nevertheless we may apply the results of Ref. [51] on super-horizon scales, where there are no
pressure effects, and we take account of the evolution of sub-horizon modes including the transfer
function (5.7) in equation (5.4) (see e.g., Ref. [60, 61, 59])

δ(k) = −2(1 + w)

5 + 3w

k2

a2H2
T (k, τ)ζ(k). (5.8)

5.2 The Window Function

In chapter 4 the results were derived assuming that all the density pertubation δ(x) had already
been smoothed on some scale R. In fact, as already emphasized in Ref. [51], since random fields
are not differentiable, a window function is absolutely necessary to define properties of random
fields as peaks or troughs. In this section, we introduce the concept of window function and we
discuss why it should be treated with special care in the framework of PBHs formation.

On the other hand, the window function is just a mathematical artefact we introduce to
treat analytically random fields. It is of primary importance to check that such procedure does
not bias the final result, or in case it does, to estimate the magnitude of such bias.

Going back to the equation (5.3) written in section 5.1, we point out that the real Gaussian
random field is ζ, however, since the Laplacian is a linear operator, the radiation field is Gaussian
too. Nevertheless the statistics of the radiation field will deviate from the Gaussian one once
higher order corrections are taken into account. In fact, the smoothing procedure is a highly
nonlinear and nonlocal procedure, hence statistics of smoothed fields can deviate from Gaussian
statistics, even if fields themselves are Gaussian.
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The smoothed density field is given by the convolution with a window function WR of
characteristic radius R

δR(x) =

∫
d3yWR(|x− y|)δ(y). (5.9)

Typical choices of window functions are the Top-hat window function

WTop Hat
R (|x− y|) =

(
4πR3

3

)−1

Θ

(
1− |x− y|

R

)
(5.10)

or the Gaussian window function

WGaussian
R (|x− y|) =

(
2πR2

)−3/2
e−|x−y|

2/(2R2), (5.11)

but other choices are also possible.
In principle there could be some ambiguity on which field has to be smoothed out, if the

radiation field δ or the curvature field ζ. However, at linear order, the two possibilities are
equivalent, in fact if we apply the smoothing procedure to equation (5.3) we obtain

δR(x) =

∫
d3yWR(|x− y|)δ(y)

=
2(1 + w)

5 + 3w

1

a2H2

∫
d3yWR(|x− y|)∇2

yζ(y)

=
2(1 + w)

5 + 3w

1

a2H2

∫
d3y

{
ζ(y)∇2

yWR(|x− y|)

+∇y · [WR(|x− y|)∇yζ(y)− ζ(y)∇yWR(|x− y|)]} ,

(5.12)

where we have used the relation ψ∇2φ = φ∇2ψ +∇ · (ψ∇φ− φ∇ψ) between two generic scalar
fields ψ(x) and φ(x). The second term in the integrand is a surface contribution and vanishes
using divergence theorem, under the fairly general assumption that WR and its derivative vanish
at large scales. Furthermore, at least for the two window functions in equations (5.10) and (5.11),
we have that ∇2

yWR = ∇2
xWR, therefore the above equation reads as

δR(x) =
2(1 + w)

5 + 3w

1

a2H2

∫
d3yζ(y)∇2

xWR(|x− y|) =
2(1 + w)

5 + 3w

1

a2H2
∇2

xζR(x), (5.13)

which is the smoothed version of equation (5.3), as we expected. This proves the equivalence
between smoothing out the density or the curvature field at linear level.

Since the smoothing procedure involves a convolution, we know from the convolution theorem
in Fourier analysis that in Fourier space this is a simple multiplication of Fourier transforms,
therefore

ζR(k) = WR(k)ζ(k), (5.14)

where WR(k) is the Fourier transform of the window function. In particular, in Fourier space
the two window functions introduced in equations (5.10) and (5.11) read as

WTop Hat
R (k) = 3

sin(kR)− (kR) cos(kR)

k3R3
, WGaussian

R (k) = e−
1
2
k2R2

. (5.15)

In the end, the complete relation between smoothed density field and curvature perturbation
reads as

δR(k, τ) = −2(1 + w)

5 + 3w

k2

a2H2
T (k, τ)WR(k)ζ(k). (5.16)
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We now address the issue of the determination of which modes k play a physical role in the
collapse, which in turn will determine the appropriate value of the smoothing radius. In fact,
the smoothing procedure may have non-trivial effects related to the choice of the smoothing
radius; we refer the interested reader to Refs. [59, 62] for effects on PBHs constraints and to
Ref. [63] for a similar effects applied to dark matter halos.

So far in the literature the smoothing radius has been chosen to be equal to the radius of the
horizon when the perturbation starts to collapse, namely R ∼ O(rm). On one hand this choice
is motivated by the fact that the mass of a PBH is proportional to the mass inside the horizon
when the collapse starts, so it seems natural to put a Top Hat window function to separate the
collapsing region from the non-collapsing one. On the other hand we should always keep in mind
that the window function is a mathematical artefact. When choosing the smoothing radius to
be of the same size of the perturbation, we are implicitly introducing significant uncertainties.
This is why some authors find that the constraint on PBHs are highly dependent on the choice
of the window function [59].

In our case, the typical scale of a perturbation is identified with rm in real space or km = r−1
m

in Fourier space (see equation (3.37)). Then, as in the large scale structure (LSS) framework, we
want to smooth out modes k � km or, equivalently, small scale fluctuations r � rm, to define the
characteristics of the peaks. Notice that the specifics details on how these modes are smoothed
out cannot influence the dynamics of the perturbation on scales O(rm), where the collapse is
happening; moreover this procedure is naturally implemented every time that the spacetime is
discretized, as in numerical simulations. Furthermore, in the radiation-dominated era, every
fluctuation on small scales, i.e. deeply sub-horizon, that is not close enough to the critical
threshold will be naturally washed out because of radiation pressure, as we see in section 5.1.
This is a crucial difference from what happens in the LSS framework, since in that context the
gravitational collapse happens in matter domination, where there are no pressure effect during
the first stages of the collapse1. The natural conclusion seems to be that the smoothing radius
should be chosen as R � rm, in order to not spoil artificially the shape of the peak, which
ultimately will determine the shape of the power spectrum. We emphasize that the of smoothing
radius is not “universal”, in the sense that different profiles that collapse at different times
require different smoothing radii. However, the requirement R� rm should be true for all of
this radii. The underneath assumption in this reasoning is that PBHs form only at one scale (i.e.,
we have no “black-hole-in-black-hole” problem, similar to the “cloud-in-cloud” issue in LSS).

In the study of PBHs collapse high k modes are not the only troublesome modes, in fact we
should worry also of low k ones. We know that modes k � km appear as a constant background
during the first stages of the collapse, therefore they should not play any role in determining
whether PBHs form or not. Also in this case we should smooth out these modes introducing a
second smoothing radius such that R′ � rm, and the details of such smoothing should not affect
the collapse. In conclusion, one cannot rigidly apply the LSS framework to the study of PBHs
collapse exactly because of this problem of the small k modes.

To be consistent with what explained before we have to smooth out scales much smaller and
much bigger than the typical scale of the perturbation, so in principle we need two smoothing
radii. As pointed out in section 4.3, for fluctuations described by high peaks there exists a
decohorence radius rdec where the fluctuation loses coherence. Since we do not go into the details
of the physics beyond the decoherence radius described by the second term on the right-hand-side
of equation (4.30), we do not introduce a second smoothing radius for small k modes.

1On the other hand pressure effects appear and are important during the latest phases, e.g., during virialization.
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As we discussed in Section 2.5 , the statistical properties of random fields, in this case of the
curvature perturbation, are given by the n-point correlators 〈ζ(k1) · · · ζ(kn)〉, in particular we
are interested in the two-point function in Fourier space specified by primordial curvature power
spectrum Pζ as in equation (2.86). In this particular case we have

〈ζ(k1)ζ(k2)〉 = (2π)3δ(3) (k1 + k2)Pζ(k1), (5.17)

At cosmological scales (k . 1 Mpc−1) we have measured that the power spectrum is almost
scale invariant and reads as

Pζ(k) =
2π2As
k3

(
k

kpivot

)ns−1

, (5.18)

where As is the scalar perturbations amplitude, ns is the scalar tilt and kpivot is the pivot scale2.
Finally, the power spectrum of the smoothed radiation density field reads as

PR(k) = W 2
R(k)Pδ(k) =

[
2(1 + w)

5 + 3w

k2

a2H2

]2

W 2
R(k)T 2(k, τ)Pζ(k), (5.19)

where Pδ is the power spectrum of the unsmoothed radiation density field. This key equation
allows us to connect PBHs to the primordial curvature power spectrum coming from inflation.
Moreover, this power spectrum is in turn the Fourier transform of the two-point correlation
functions in real space, in particular we have for the smoothed radiation field that

ξR(|x1 − x2|) = 〈δR(x1)δR(x2)〉 =

∫
d3k

(2π)3
PR(k)eik·(x1−x2). (5.20)

5.3 Constraints on the Curvature Power Spectrum

Given the assumptions and the results provided in the previous sections, in this section we first
compute Pζ(k) for two different shape of the density perturbation and then use the constraints
on PHBs abundance to limit the amplitude of the resulting power spectra.

First of all, we have to establish the magnitude of rdec. For compensated profiles, as those
reported in equation (3.22), it always exists some radius r0 where the density perturbation
profile becomes zero. From equation (3.35) we have that r0 is defined as

r0 =

(
3

2

) 1
2α

rm. (5.21)

At this distance the profile has already lost its coherence (see section 4.3) since the density
perturbation structure at this point is far from that of the peak, therefore r0 is a good candidate
to identify with the decoherence radius. However, we point out that this is just an approximation,
in fact is very likely that the decoherence happens before, for example near rm. Nevertheless we
choose rdec = r0 and we study only modes k & k0 = r−1

0 .
Secondly, we expect the characteristic scale of formation in real space, rm, to have a

correspondent scale in the Fourier space, i.e. km such that rm = 1/km. Since rm implicitly
defines the time when the whole perturbation enters the horizon (see section 3.3), assuming
that the perturbation collapses immediately after horizon crossing km is the cosmological scale

2According to the latest Planck collaboration results [64], we have As = 2.105 · 10−9 and ns = 0.9665 measured
at kpivot = 0.05 Mpc−1.
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where the bump in the power spectrum forms and it is related to the mass MPBH defined in
equation (3.1). In particular, knowing that during radiation domination aH ∝ a−1 and expansion
at constant entropy gives %H ∝ a−4 (see e.g. [3], notice that a more complete computation take
into account also the contribution of the number of relativistic degrees of freedom g∗), then the
horizon mass evolves as

MH 'MH,eq

(
keq

k

)2

, (5.22)

where we used the fact that at horizon crossing k = aH. With “eq” we denote parameters at
matter-radiation equality, which are given by keq ' 0.01 Mpc−1 and MH,eq ' 1.3× 1045ω−2

m g,
with ωm = 0.14 [64]. Going into solar masses units, we have that [59]

MPBH ∼M�
(

km

4.2× 106Mpc−1

)−2

, (5.23)

which gives an estimation of km.

5.3.1 Primordial curvature power spectra

We compute the power spectra for primordial black holes of four different masses in units of
solar masses: MPBH = 10−2, 1, 102, 104, from which using equation (3.2) we derive the time of
formation tf . Combining equations (5.19), (4.30) and the density perturbation profile in (3.39),
we have that

W 2
R(k)T 2(k, τ)Pζ(k) ≈

(
aH

k

)4( 5 + 3w

2(1 + w)

)2

4πσ2
0

∫ r0

0
dr r2 sin(kr)

kr

[
1− 2

3

(
r

rm

)2α
]
e−(r/rm)2α/α

=

(
aH

k

)4( 5 + 3w

2(1 + w)

)2

4πσ2
0r

3
m

∫ (3/2)1/2α

0
dx x2 sin(krmx)

krmx

[
1− 2

3
x2α

]
e−x

2α/α

=

(
aH

k

)4( 5 + 3w

2(1 + w)

)2

4πσ2
0r

3
m × I(krm, α),

(5.24)
where in the second passage we used the coordinate transformation x = r/rm the integral I
depends only on the combination krm, once α, i.e. the shape of the profile, is fixed.

Moreover, using the definition of dimensionless power spectrum Pζ(k) in equation (2.89),
equation (5.24) reads as

Pζ(k) ≈ 2

πk

(
5 + 3w

2(1 + w)

)2 A2
peakr

3
m

log β−2
f

× I(krm, α)

W 2
R(k)T 2(k, τ)

. (5.25)

We have to estimate σ2
0. As seen in section 4.2, the PBH abundance βf is given by equation (4.23),

we can be roughly approximated as

βf ∼ exp

(
−ν

2
c

2

)
, (5.26)

therefore we have that

σ2
0(τ) ≈

A2
peak

log β−2
f

(aH)−4. (5.27)
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In our results, we use a Top-hat window function as in equation (5.10) with a smoothing radius
given by R = rm/10, the transfer function is that of equation (5.7). The last ingredient we need
is the abundance that can be evaluated using equation (4.18). For our results we assume that
primordial black holes provide all the dark matter, therefore we put fPBH = 1. In this case,we
expect the abundance to change with the value of the mass since PBHs with a smaller mass
need a smaller initial abundance to form. Again, from Ref. [64] we have that the scale factor
at matter-radiation equality time is given by aeq = 1/(1 + zeq) = 1/3402. The scale factor at
formation af is calculated using the condition km = afHf .

We consider here a couple of cases, corresponding to the profiles α = 1/2 and α = 1. In this
case, from numerical simulations we have that

Apeakr
2
m =

{
5.175 α = 1/2,

2.025 α = 1.
(5.28)

In table 5.1 we report the resulting values.

Mass (M�) tf (s) km (Mpc−1) rm (Mpc) βf

10−2 4.9× 10−8 4.2× 107 2.4× 10−8 1.4× 10−10

1 4.9× 10−6 4.2× 106 2.4× 10−7 1.4× 10−9

102 4.9× 10−4 4.2× 105 2.4× 10−6 1.4× 10−8

104 4.9× 10−2 4.2× 104 2.4× 10−5 1.4× 10−7

Table 5.1: Values of the parameters used in the computation of the power spectra.

In figures 5.1 and 5.2 we show the behaviour of power spectrum Pζ(k) for small and large
scales. For both figures, in the case of large scales, i.e. small k-modes (k < 10 Mpc−1), we
have the nearly scale invariant power spectrum (see equation (5.18)), whereas for small scale,
namely for k-modes greater than each km, we have the power spectrum of the peaks described
by equation (5.25). The intermediate scales are determined by processes of early clustering of
PBHs, whose treatment is beyond the scope of this work. We refer the interested reader to Refs.
[65, 66, 67, 68, 69], where a complete presentation of the topic is given. Here, we give a guess
of the behaviour of the power spectrum based on previous literature, where the formation of
PBHs leads to a spike or a bump in the primordial power spectrum in the neighbourhood of
km. Finally, we notice that all the power spectra on small scales present oscillations which are
more pronounced when α = 1. We are not sure why we observe such behaviour, but a probable
reason could lie in the computation of the density perturbation profiles in section 3.2. Here, in
order to be consistent with the numerical results we computed the density perturbation profiles
as a function of the curvature profile Kpeak, instead of the curvature perturbation ζ, which is
the true perturbation generated during inflation.

As predicted, both figures show an increase of the amplitude of the power spectra going from
smaller masses to bigger ones. This increment is subtle because of the logarithmic dependence
of the amplitude on the intial abundance βf , as seen in equation (5.25). However, the power
spectra computed from the density perturbation with α = 1/2 generally show larger amplitudes
than the profiles with α = 1. This is because the density profile with α = 1/2 is more peaked
than the one with α = 1, as it can be seen in figure 3.2.
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Figure 5.1: Power spectra for α = 1. From the right to the left we have 10−2M� (red), 1M�
(blue), 102M� (green) and 104M� (purple).
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Figure 5.2: Power spectra for α = 1/2. From the right to the left we have 10−2M� (red), 1M�
(blue), 102M� (green) and 104M� (purple).

5.3.2 Constraints on the amplitude of the power spectrum

In this subsection, we use the constraints on the fraction of PBHs in dark matter fPBH shown in
figure 5.3 to put an upper limit on the amplitude of the power spectrum Pζ(km) [46]. These
constraints are derived by investigating the observational effects given by gravitational lensing
caused by PBHs, and gravitational interactions of PBHs with astrophysical objects, such as
neutron stars and wide binaries.

In the previous subsection, we limited our analysis to the case of four different PBHs masses
and fPBH = 1. Here, instead, we expand the study to masses in the range [10−16, 104] M�, and
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Mass range (M�) Source

10−16, 10−15 Femtolensing
10−14 and [10−12, 10−9] Neutron Star Disruption

10−13 HSC (microlensing)
10−8, 10−7 Kepler (microlensing)

[10−6, 10−4] and [1, 102] EROS (microlensing)
[10−3, 10−1] and 104 Caustic (microlensing)

103 Wide Binaries Disruption

Table 5.2: Source of the constraint based on the mass of the PBH, extracted from 5.3.

we compare the amplitude of the power spectrum in equation (5.25) for each mass in the case
where fPBH = 1 with the amplitudes given by the values of fPBH extracted from figure 5.3. The
extracted constraints show that the in general PBHs constitute only a fraction of dark matter,
as fPBH < 1. In table 5.2 we list the origin of the constraints for each mass value.

Figures 5.4 and 5.5 show the amplitude of the power spectrum for respectively α = 1 and
α = 1/2; we notice that while there is a difference between the constrained and the unconstrained
amplitudes, such difference is suppressed because, as we already discussed, the contribution of
the abundance in the power spectrum is logarithmic. Finally, as previously observed, while both
graphs show the same behaviour, the amplitudes in the case of α = 1/2 are larger than the ones
in the case of α = 1.

Figure 5.3: Upper limit on fPBH for various PBH masses [46].
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Figure 5.4: Amplitudes of the power spectra at k = km for α = 1.

Figure 5.5: Amplitudes of the power spectra at k = km for α = 1/2
.



Chapter 6

Conclusions

This work aimed to constrain the amplitude of the power spectrum associated to the formation
of primordial black holes by means of current observational constraints on the PBHs abundance.
First, we computed the primordial curvature power spectrum including the details of PBHs
formation in real space obtained from numerical simulations. This methodology has the advantage
that it provides the initial density perturbation profile that generates PBHs starting from different
shapes of the curvature profile.

We applied the main results of peaks theory to the primordial black hole scenario in order to
derive the abundance and to predict the profile shape of the peaks that lead to PBHs formation.
In doing so, we paid attention to the assumptions needed for peaks theory to be valid.

We discussed some aspects of the window function that are essentials in our case. First of
all, we had to understand if the window function had to be applied to curvature perturbation
or density perturbation field. We proved that, at least at the linear level and in the case of
the top-hat window function and gaussian window function, it is equivalent to smooth out the
density or the curvature field. Moreover, we paid particular case in choosing the smoothing
radius, which it is crucial if one wants to avoid large uncertainties in the computation of the
power spectrum related to the choice of the window function. Indeed, if we take the smoothing
radius to be of the same order of the characteristic scale of the primordial black hole formation,
as done in previous literature, the peak associated to such formation is biased.

The power spectra resulting from our procedure show, as predicted, a bump at the character-
istic scale of PBHs formation. We then computed the amplitude of such peaks in the case where
PBHs constitute all of dark matter, and we compared the results with amplitudes obtained
employing observational constraints on PBHs abundance in dark matter. In this way, we find
the maximum amplitude of the bump in the power spectrum necessary to generate PBHs of a
certain mass.

The results of this work can be employed to discern the various inflationary models that
generate the perturbations need to PBHs formation, such as the running-mass model (see e.g.
Refs. [43, 44]) and the inflection-point model (see e.g. Refs. [45, 50, 39]). Indeed, we can
compare the enhancement in the primordial power spectrum predicted by these models with the
amplitudes we computed starting from gravitational collapse in real space.
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