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 Introduction 

 

 

 

When, in 1990, the book “The Machine That Changed the World” written by James P. 

Womack, Daniel T. Jones and Daniel Ross was first published, it immediately caught the 

attention of the entire economic world. The new, revolutionary management approach that 

is presented in the book, born around the 50’s in Japan and named lean production, really 

represented a turning point in all the manufacturing industry of that time. The lean system 

spread very rapidly all over the world and the knowledge about this new production system 

grew constantly. Basically, it represented a totally new way of managing a company, 

banishing all kinds of waste and focusing every activity on the pursuit of satisfying 

customers’ needs in the best way possible. What was really striking about lean management 

is that, through it, Japanese companies were able to overcome the main trade-offs of the old 

manufacturing production system (e.g. high product quality opposed to high production 

time, small batches opposed to long changeovers, product diversification opposed to high 

unit costs, etc.), adopting a series of notions headed in the direction of process 

standardization, banishing waste, and involvement of people, in order to be able to provide 

the customers with perfect products, at the right time, in the exact quantity that was 

required. 

The “lean universe” comprehends a huge amount of operational techniques or notions (pull 

system, Kanban, TQM, 5S, Just in Time, Kaizen, and many others), all consistent with the 

lean principles, but, at the same time, each aimed at improving a different aspect of the 

company. Although different each other, some of these lean techniques are similar, in the 

sense that they share some common aspects; for example, two different techniques can both 

have the purpose of aligning operational goals and strategic goals, or can be aimed at 

improving process efficiency, or waste elimination, or can have the effect of making people 

more responsible or more involved in some projects. Furthermore, it was demonstrated that 

the simultaneous application of these interrelated techniques often leads to higher benefits 

than those gained through the application of single separated activities; there is, hence, a 

synergetic effect when applying lean notions, that amplifies the overall benefits for the 
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company. For all these reasons, researchers are more and more focused on the study of lean 

practices as bundles of techniques, where every bundle is made of separated and distinct 

techniques, but strongly correlated each other, that, therefore, can be grouped under the 

same construct. For what regards Improvement, analogue considerations can be drawn. As 

Peng et al.(2007)  assess, the ability to carry on improvement initiatives is a very important 

form of capability, or, more precisely, of dynamic capability. According to Peng, these 

capabilities consist of bundles of interrelated yet distinct routines. We can see, then, how 

the notion of routine bundles is strictly related to Improvement and, in general, to the lean 

philosophy. Another significant contribution in the area of Improvement comes from 

Anand (2009), who assesses the importance, when adopting improvement initiatives, to 

comprehend an adequate organizational infrastructure.  

Therefore, the aim of this work was to represent Improvement in terms of bundles of 

different routines; these routine bundles, then, in accordance to Anand, should represent, in 

the best way, the organizational infrastructure of the company. Once this task was 

accomplished, a model was built where Improvement is causally related to the bundles of 

the Improvement infrastructure; in other words, our model assumed that growing 

performances in one or more of these bundles automatically caused growing performances 

in the Improvement activities. Finally, the validity of the overall model and of the causal 

relations within it were tested.  

Of course, these theoretical implications are based on a series of quantitative analysis. The 

statistical instruments that have been used are those regarding factor analysis and Structural 

Equation Modeling (SEM). The data on which the statistical analysis were carried out come 

from the third round of the High Performance Manufacturing (HPM) database, a wide 

survey on 266 manufacturing production plants located in 9 different countries (Finland, 

USA, Japan, Germany, Sweden, South Korea, Italy, Austria, Spain) and belonging to three 

different types of industry (transportation, electronics, machinery). 

This work is divided into five chapters. In the first one the lean production system is 

presented, showing how the manufacturing world shifted from the old mass production 

system to the new Japanese way; in particular, lean synchronization is described in detail 

through its five fundamental principles: value, mapping value, flow, pull, and perfection. 

The second chapter is dedicated to Continuous Improvement: first what it consists of and 

what are the tools for improvement activities, and then its role as a dynamic capability and 
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its organizational infrastructure summarized by its three elements (Purpose, Process, and 

People). The third chapter is pure statistical theory: factor analysis (both exploratory and 

confirmatory) and Structural Equation Modeling, that will be used in the following part. 

The fourth chapter is very long and represent the core of the research. After a brief 

description of the database and some preliminary analysis, the necessary items were 

extracted and divided, through factor analysis, into two parts: the first one regarding the 

three categories of the Improvement infrastructure (Purpose, Process, and People) and the 

second one regarding Improvement and its meta-routines (Process Management, 

Leadership Involvement, and Continuous Improvement). Afterwards, through confirmatory 

analysis, the validities of these grouping processes were tested. 

In the final chapter, then, the overall SEM model is illustrated, comprehending the causal 

relations between Purpose-Process-People and Improvement. The validities of these 

relations are tested in the form of a system of hypothesis, as follows: 

- H1: The bundle of activities named Purpose has a statistically significant effect on 

Improvement; 

- H2: The bundle of activities named Process has a statistically significant effect on 

Improvement; 

- H3: The bundle of activities named People has a statistically significant effect on 

Improvement. 

Finally, the conclusions and the interpretations of the quantitative outcomes have been 

discussed in the conclusions paragraph. 
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Chapter 1 
 

Lean management 

 

1.1 Antecedents of the Lean production: craftsmanship and mass 

production 

 

The philosophy known as “lean production” was born in Japan in the ‘50s, more precisely, 

in the Toyota production plant, thanks to the visionary ideas of a young engineer called 

Taiichi Ohno, who was working for the company since its foundation. Essentially, Toyota 

may be considered as the father of the Lean thinking, because up to that period nobody else 

had put in practise anything similar, and this is the reason why this innovative way of 

production is also called Toyota Production System (TPS).  

Indeed, until 1990 nobody had ever given a name or provided a detailed explanation of 

what this new philosophy consisted of. It was in this year, in fact, that James P. Womack, 

Daniel T. Jones and Daniel Ross first published a new book that became a real milestone in 

this field: “The Machine that changed the world”. The primary purpose of this book was to 

give a clear explanation of the reasons underlying the trend of the auto industry of that time. 

In those years, in fact, data were clearly showing that North American and European 

automobile companies were facing a period of deep crisis, while there was an opposite 

situation for Japanese companies, that were steadily gaining market shares. In order to 

understand the phenomenon, some members of the MIT (Massachusetts Institute of 

Technology) set off with a very challenging program called International Motor Vehicle 

Program (IMVP). This was a sort of analytical study of the automobile industry through a 

very detailed analysis of a huge amount of motor companies, both in North America, 

Europe and Asia. The outcome of a sustained effort undertaken by researchers of MIT was 

that (in a few words) the auto industries of North America and Europe were relying on a 

production method that not only had hardly changed from Ford’s mass-production system, 

but also had become too old to face the new challenges of that time. On the other side, 
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Japanese companies, with Toyota as their pioneer, were setting out advanced and much 

more efficient methods of production that represented a turning point not only in the auto 

industry, but also in the entire global economy. 

Nevertheless, to fully understand the ideas of the Lean management we have to briefly go 

through its antecedents, going further back in time, starting from the very first car 

companies and their craft production methods. 

At the end of the nineteenth century the car was not a common good, it was something 

completely unique, and there were very few companies that were able to produce 

automobile. One of these was the French Panhard and Levassor (P&L). The automobile 

production system of companies like P&L was very different from what we are used to 

nowadays. Those cars were pure handicrafts. They were produced in extremely low 

volumes (1000 or fewer automobiles a year) and were expressively built to satisfy their 

customers. In fact, there wasn’t enough know-how to allow a reasonable price for those 

products and car was still a product that very few fairly well-off people could afford. The 

low production volume and the high price resulted in the possibility of tailoring each 

product to the precise desires of individual buyers. The consequence was that there weren’t 

two identical cars coming out of the factory and the standardization was totally absent. 

Moreover, low volumes mixed with high level of personalization resulted in the 

impossibility to move through the learning economies (to learn how to work better) and 

through the scale economies (to reduce unitary cost), thus getting expensive and little 

reliable products. Finally other particular aspects of this kind of production were: high 

decentralized organization and high skilled workforce. Each worker, in fact, was a 

craftsman who was able to accomplish a wide range of tasks. 

The first step that the economy had to take was to move from a craft production system to a 

mass production system. This was possible thanks to Henry Ford, founder of the American 

Ford Motor Company, who, in 1908 with his Model T, completely revolutionized the way 

of manufacturing cars. Ford’s Model T, in fact, was totally designed for manufacturing and 

was, as we would say today, user friendly: virtually anyone could afford, drive and repair it. 

Ford’s most remarkable discovery wasn’t the continuous assembly line, but “the complete 

and consistent interchangeability of parts and the simplicity of attaching them to each 

other” (Womack et al., 1990). Ford’s idea was that if any component of the car had been 

totally identical and standardized, it wold have been much easier for workers to assemble 
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them, thus saving time and money. The introduction of the assembly line occurred in 1913 

when Ford realized that the continuous movement of workers from one assembly deck to 

the other was too time-consuming. 

The interchangeability and standardization of the components allowed Ford to soar sales 

volume and to move very fast through economies of scale thus reducing costs. 

Unfortunately there was almost no degree of personalization and the customers had no 

opportunity to have a product specifically tailored to their needs. Briefly, Ford was able to 

reach incredible sales volumes and to reduce costs, but at the expense of personalization. 

Such a high level of standardization goes hand in hand with the notion of the division of 

labour. We have immediately to emphasize that Ford brought this concept to its ultimate 

extreme. Every worker in Ford’s factory “was responsible for just one single task, such as 

to put two nuts on two bolts or perhaps to attach one wheel to each car. […] The fact that he 

might not even speak the same language as his fellow assemblers or the foreman was 

irrelevant” (Womack et al, 1990). The task cycle of the average Ford assembler was just 2.3 

minutes. The main consequence of this extreme division of labour was that (just like the car 

components) every worker was completely interchangeable: the task they were asked to 

accomplish were so narrow and simple that every other worker was able to perform. Each 

worker, then, was perfectly replaceable. 

Coming back to the product, it’s necessary to remark a very important aspect: the easiness 

of use. Although it was made of many components Model T was actually a very simple 

product. It was easy not only to drive but also to be fixed up. In case of any problems, in 

fact, the car was equipped with a manual, written in question-and-answer form, explaining 

how owners could use very simple tools to solve any of the problems that were likely to 

crop up with the car. And it didn’t matter if the owner was a farmer with a modest tool kit 

available, he was always able to solve the problem on his own. 

Of course, Ford’s mass production system was not free of disadvantages. The strong 

standardization and the necessity to reach economies of scale made the product 

differentiation impossible, thus giving the customers no opportunity to choice among a 

range of products or to customize the existing ones. Moreover, the extreme division of 

labour created malcontents among the workforce, who was forced into accomplishing the 

same task all day long. The mass production required also a very centralized organization, 

where everything had to be made in the same place. Finally, Ford’s shop floor was full with 
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high-specialized equipment to fully exploit benefits of big volumes. These machineries 

were able to keep high work pace but implied high set-up costs. 

A step forward in the mass production system was taken when Alfred Sloan became 

president of General Motors. He somehow made the system Ford had pioneered complete. 

Firstly, Sloan reorganized GM creating decentralized divisions and profit centres, that were 

asked to provide reports based on numbers describing the situation of each division; hence 

he decentralized decisions to manage more efficiently the organization. He also developed 

stable sources of outside funding linking the company with banks and credit firms. (Ford, 

on the other side, had never relied on loans by banks, but has always been financially 

independent). Finally, Sloan was also able to widen the range of products offered by GM, 

without losing the advantages of the economies of scale. His plan was to standardize some 

mechanical items and alter the external appearance of each car, introducing a series of 

“hang-on features” (automatic transmissions, air conditioning, radios, …) which could be 

installed in existing body designs. 

Although Sloan’s ideas represented a sort of innovation from many points of view, it didn’t 

take the distance from the concept of mass production, and its limits were still evident also 

in Sloan’s GM. Anyhow, everything was enough good for that time and Ford’s mass 

production methods brought a lot of success. In the half of the twentieth century US car 

companies dominated the world automotive industry and the US market accounted for the 

largest percentage of the world’s auto sales. In 1955 the three main American enterprises: 

Ford, General Motors and Chrysler, gained 95 percent of world sales, and six models 

accounted for 80 percent of all cars sold.  

By 1973 something changed, as the petrol crisis put in troubles the entire automotive 

industry. It was in this period that in Japan we could see something new coming to life, 

something that represented a real leap in the field of manufacturing. 

 

 

 

1.2 The Lean leap 

 

Since its foundation in 1937, by Kiichiro Toyoda, up to the middle of the twentieth century, 

Toyota was a relatively small Japanese motor company with a level of production 
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remarkably lower than its American competitors like Ford or GM. Nevertheless in 1950 

Eiji Toyoda and his production engineer Taiichi Ohno started thinking and developing a 

new production philosophy that brought a striking success to the company. 

First of all, Toyoda and Ohno realized that the typical mass production system that Ford 

had applied in his firms was not congruous for the Japanese market. The market was 

smaller and more inclined to offer more product variety rather than big volumes. The 

economy was weak, suffering the consequences of the World War II and the workforce was 

unwilling to be treated as an interchangeable component, good to accomplish one small 

single task for numerous times a day. At the same time the previous crafts production 

system was inadequate too: it required high costs, high skills and it was not suitable for the 

introduction of innovative technologies. Another path needed to be found. And they did 

manage: that’s how the lean production was invented. 

The core idea of the lean production can be summarized as “banish waste”, and for waste 

we mean every possible activity that is not adding any value to the product or service. 

Value, as we will more clearly understand, is defined by the customer, that can be either 

internal or external. Every activity that is not adding any value for the customer has to be 

eliminated, since it represents waste. Furthermore, the output of any operation has to be 

created and delivered when it’s required, in the exact amount required, and with no defects 

(just in time). The consequence is that in a production plant every component is produced 

just if the following operation downstream requires it. This is the “revolution” embodied in 

the lean thinking, and it carries a series of both theoretical and practical consequences that 

will be discussed later on. The main and probably most immediate consequence of this 

revolution is the elimination of a huge part of the inventory (raw materials, work in 

progress and finished products). Taiichi Ohno believed that the tendency to accumulate 

stocks was an outdated state of mind, no more suitable for the economy of that time and 

that had to be overcome.  

Generally speaking, the lean thinking is strictly related to the elimination of waste (or 

muda, in Japanese); but unnecessary stocks is just one of the possible muda in a production 

process. Ohno identifies 7 types of waste (Ohno, 1988): 

 

 Over-production: level of production superior to what is required by the 

customer; 
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 Waiting time: time when no modifications are applied to the product; for 

example when workers are waiting for necessary materials to be available; 

 Transport: unnecessary movements of components within the assembly plants 

of the factory; 

 Process: production processes not adequately designed and therefore producing 

products that do not match customer’s desires; 

 Inventory:  goods in stock (in the form of work in progress (WIP) or finished 

goods) that represent a capital investment that still hasn’t realized its return; 

 Motion: time when workers or machinery are moving; it does not add any value 

and could be used for other activities; 

 Defective goods: not adequate product quality. 

 

In addition to these muda Taiichi Ohno identifies other two types of waste: 

 

 Muri (Excessive loading):overload of workforce or machinery utilization; it can 

cause injuries and illnesses for the first and wear and breakdown for the latter; 

 Mura (Excessive variability): alternation of moments of high and low workload due 

to the not-standardized demand. 

 

Focusing on waste elimination and trying to optimize those activities that add value to the 

customer, Toyota simultaneously managed to: reduce costs significantly, raise the quality 

level and improve efficiency. 

Ohno believed also that mass production system was not centred  enough on product 

defects, since the main concern was just to let the line flow instead of solve problems. In 

case of any problems or defects that occurred with the product in a typical mass production 

plant, in fact, nothing was done until the product reached the final stage. It was just in that 

moment when some inspectors checked the entire product up, only then if they discovered 

some defects those were solved. This problem-solving approach of passing on errors to 

keep the line running caused errors to multiply endlessly and was massively more 

expensive and time-consuming compared to Toyota’s approach of solving problems 

immediately when they are detected. Indeed, once a defective part had become embedded 

in a complex vehicle, an enormous amount of rectification work was needed to fix it. And 
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because the problem would not be discovered until the very end of the line, a large number 

of similarly defective vehicles would have been built before the problem was found. On the 

other hand, of course, solving problems at the source implies stopping the line. For this 

reason, Ohno decided to give every worker the right and the means to stop the line 

whenever a problem emerged by placing a cord above every work station. When it 

happened, an entire team of worker came to the assembly station where the problem had 

been identified and started thinking of how to solve it. The workers were also taught not to 

treat problems as random events, but to always trace them back to their ultimate cause, thus 

finding a solution that prevented errors to occur again. This was possible through a system 

called “the five why’s”: by asking why five times it was possible to get back to the real 

starting cause of the problem, that was, very often, an organizational issue. Initially, these 

experiments were stopping the production line, rendering the workers discouraged. 

Nonetheless, as the work team gained experience identifying and tracing problems back to 

their ultimate cause, the number of errors dropped dramatically; and little by little it reached 

a situation where in Toyota assembly plant the line never stopped, although every worker 

had a possibility to do it. 

Afterwards, Toyota implemented a new approach to the system of suppliers, in order to 

enhance cooperation between the firm and its suppliers to simultaneously reduce costs and 

improve quality. Suppliers were divided in different tiers, where first-tier suppliers were in 

strict relation with the company (almost part of it), and used to take part of activities 

involving e.g. the design of new products. 

The design process itself underwent significant changes. It was carried out by a team, 

headed by a team leader, and through a constant interaction of people and knowledge new 

ideas took shape faster and more frequently. 

Even though long and full of obstacles, the process of transformation from a mass 

production to a Lean production system brought amazing results. In Figure 1.1 we can 

notice some emblematic data showing the width of the gap that occurred at the beginning of 

‘80s between US and Japanese car companies. 
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Figure 1.1: Productivity gap between USA and Japan at the beginning of ‘80s 

(Source: Womack, Jones and Roos, The Machine that changed the world) 

 

 

The most significant conclusion to be drawn from this data is that Toyota was able to 

overcome the trade-off between productivity and quality, showing that a high level of 

productivity (that means low costs) did not necessarily affects quality, and vice versa; a 

very efficient definition of Lean synchronization provided by Slack et al. (2010) clearly 

explain this aspect: “The key principle of lean operations is relatively straightforward to 

understand: it means moving towards the elimination of all stocks (muda) in order to 

develop an operation that is faster and more dependable, produces higher quality products 

and services and, above all, operates at low cost”. 

 

 

 

1.3 The five Lean principles 

 

Once identified the guidelines of the rise of Lean production, we go through its basic ideas 

and principles. A theorization of this new approach has been provided by James P. 

Womack e Daniel T. Jones in their book “Lean Thinking”. In this book the authors express 

their opinion that Lean management represents the evolution of the Toyota Production 

System and it is based on the notion of “lean thinking”, that promotes “a way to do more 
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and more with less and less – less human effort, less equipment, less time, and less space – 

while coming closer and closer to providing customers with exactly what they want” 

(Womack and Jones, 2003). 

An operation can be defined lean when, within it, all materials move in a continuous flow 

passing through processes that constantly add value. 

Lean philosophy embraces three main concepts: 

 

 Eliminate waste: every muda must be banished, that is every activity that, although 

resources-absorber, does not add any value to the product represents waste and 

therefore has to be eliminated; 

 Involve everyone: the system has to encourage every worker to a strong sense of 

responsibility and commitment. It requires team groups for problem-solving, job 

enrichment, job rotation, job enlargement, in order to convey a sense of ownership 

in the work place. Everyone has to be aware of his/her important role in the reach of 

organization’s goals; 

 Continuous improvement: the notion that big-scale improvements in the 

organization come from small step-by-step improvements conducted in the form of 

a rigorous cycle activity where new ideas constantly question the previous way of 

doing things. 

 

 

Lean synchronization, then, consists of five main and very important principles (Womak 

and Jones, 2003), that are listed below and that will be faced afterwards one by one in 

detail: 

 

1. Specify value 

2. Mapping the value stream 

3. Flow 

4. Pull 

5. Perfection 
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1.3.1 Specify Value 

 

The starting point for lean thinking is the notion of value. Value can only be defined by the 

ultimate customer. And it’s only meaningful when expressed in terms of a specific product 

(a good or service, and often both at once) which meets the customer’s needs at a specific 

price at a specific time. 

Value is created by the producer. From the customer’s standpoint, this is why producers 

exist. Nevertheless, it is not easy for the producer to come to a clear definition of value, 

mainly because it is often skewed everywhere by pre-existing organizations, technologies, 

and undepreciated assets, along with outdated thinking about economies of scale. Many 

managers around the world tend to say, “This product is what we know how to produce 

using assets we’ve already bought, so if customers don’t respond we’ll just adjust the price 

or add bells and whistles”. So, defining value is not so straightforward, as producers mainly 

tend to keep on doing what they already do. On the other hand, many customers are not 

able to express they are clearly interested in, it occurs frequently that they just ask for 

variants of something already existing. When producers or customers decide to rethink 

about value they often get into simplistic formulas like “less cost”, “more product variety”, 

“additional services”, “faster deliveries”. What they should be doing, instead, is 

fundamentally rethink value from the perspective of the customer. They should ask 

themselves: what do the customers want? Which product features are really important? It’s 

very common, in fact, to fall into problems of over-design, that is a product too 

sophisticated for the customer needs, as well as under-design, that is a too simple product. 

Both these two kind of mismatch between demand and offer represent muda, and should be 

avoided. Companies that do really care about value definition set out all the possible tools 

to avoid incongruences between producers and customers; one of these tools is, for 

example, the Quality Function Deployment (QFD) or House of quality, which is a purely 

efficient instrument that allows the final structure of the product to be effectively aligned to 

customers’ needs. 

Another reason why defining value is such a tough nut to crack, lays in the fact that it is 

often the result of activities accomplished by different companies, every of which tends to 

define value in a different way, thus focusing mostly on self-interest rather than looking 

through the customer’s eyes. 
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The search for value necessarily starts by challenging the traditional definition of value, it 

needs to be redefined in the light of the relations between the company and the customers, 

as well as its suppliers (kaiaku). Afterward, the actual concept of value has to be constantly 

put in discussion, questioning if it is still the best definition possible (kaizen)
1
. 

Having specified the value of a product, the next step is to identify a target cost, based on 

the amount of resources that were utilized. Traditional companies fix the selling price 

basing on a margin of profit and then working backward to find out what is the price that 

ensures that profit. Lean companies, in contrast, fix the price by asking “What the product 

cost is, once eliminated all the unnecessary activities and made the production line flow?”. 

In this way, this kind of companies can bear a much lower target cost than the others. 

 

 

 

1.3.2 Mapping the value stream 

 

The value stream is the set of all the specific actions required to bring a specific product 

(whether a good, a service, or a combination of the two) to the final customer through three 

critical management tasks of any business: the problem-solving task (from concept to 

product launch), the information management task (from order taking to delivery) and the 

physical transformation task (from raw materials to finished product). 

The next step in lean thinking, is to identify the entire value stream for each product (or 

product family), in order to detect and eliminate possible muda. 

Specifically, this analysis will almost always show three types of activities along the value 

stream: 

 Activities that intrinsically create value; 

 Activities that do not create value, but are unavoidable with current technologies 

and production assets (Type One muda); 

 Activities that don’t create value and are avoidable (Type Two muda). 

 

                                                           
1
 Kaiaku means a radical change (breakthrough) to eliminate muda 

Kaizen means a gradual and continuous improvement of an activity to eliminate muda 
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Companies must identify the value stream in order to eliminate first the type two muda, and 

subsequently develop new techniques to eliminate (or reduce as much as possible) type one 

muda, thus channelling efforts to the first type of activities. 

Through the value stream mapping, it is possible to map the entire flow of both materials 

and information, to appropriately discriminate between value-adding and non-value-adding 

activities, as well as to identify where future improvement activities should be focused 

(kaizen). 

Moreover, the value stream mapping has to be leaded in loco, where the production 

processes takes place, usually with a real “walk” around the production plant (Gemba 

walk). 

 

 

 

1.3.3 Flow 

 

Once value is precisely specified, the value stream for a specific product is fully mapped, 

and obviously wasteful steps eliminated, here comes the time for the next step in lean 

thinking: make the remaining, value-creating steps flow. This step, however, requires a 

complete mental rearrangement. 

It seems a common-sense conviction that activities ought to be grouped by types (functions, 

department, …) so they can be performed more efficiently and managed more easily. In 

addition, it seems like further common-sense that these activities have to be performed in 

batches. This batch-and-queue production mode implies high resources utilization rate, 

therefore it seems an efficient way of doing things.  

Actually, the truth is that batches always mean long waits, as the product patiently waits for 

the department’s changeover to the type of activity the product needs next. Tasks can 

almost always be accomplished much more efficiently and accurately if the focus is 

represented by the product itself and is worked on continuous flow from raw materials to 

finished goods; this new approach gives several benefits, among which the drastic 

reduction of inventories and the drop of throughput time
2
 both in production processes and 

in design and delivery processes. 

                                                           
2
 Throughput time: the total period a component requires to pass through the entire process 
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To create a continuous flow it is essential, as already mentioned, to focus on the product 

itself. What is more, the company also needs to break the old schemes of departments and 

functions that represent an obstacle to the flow creation, and to generally rethink all the 

processes in a way that avoids backwards, line stops and scraps. 

The introduction of flow is possible only when the cycle time
3
 coincides with the takt time, 

that is the available production time divided for the demand rate. The takt time sets the pace 

the production must have to meet customer’s demand. In the lean organization the takt time 

is clearly declared, so that every worker is acknowledged for the necessary work rhythm. 

Workers should have a clear idea of the work pace and if the production is aligned to the 

takt time, and they can do this fast, with a glance. Therefore, lean thinking comprehends a 

series of visual control boards, called andon, all along the line to satisfy this necessity as 

well as to be aware of possible errors or line stopping. 

Another essential notion in a lean company that aims at creating flow is Just in Time (JIT). 

JIT depicts the philosophy of delivering a product to a customer exactly in the time  it is 

demanded by aforementioned, additionally, what is vital, the product must be perfectly 

prepared and available, representing impeccable quality with no waste, right away in the 

moment one asks for it. Just in Time works efficiently only when the set-up times of 

machines are drastically reduced. To do so Lean thinking promotes the use of several small 

machines rather than one large one, since they allow simultaneous processing, thus being 

more robust, flexible, and easier to move and manage. Moreover, the use of SMED 

techniques (Single Minute Exchange of Dies) to reduce set-up times is highly 

recommended. 

Even if machines allow fast set-up times, JIT is not efficient if the workload is not 

adequately levelled. Heijunka, in fact, means this: smooth the workload to reduce the 

unevenness. Making the same amount of different products each interval has multiple 

benefits over producing one type of product as long as possible to reduce changeovers. 

Apart from reducing the risk of unsold products and being more flexible producing at 

customer demand, that means sequencing the orders according to a repetitive pattern 

(single-piece flow)
4
, levelling out the workload creates a balanced use of labour and 

machines, and a smooth demand of upstream processes and suppliers. 

                                                           
3
 Cycle time: the time between the conclusion of an output and the conclusion of the following one 

4
 Single-piece flow: a state where operations work on one product at a time, instead of working on batches 
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In this system machines must be 100% reliable, otherwise all the efforts to reduce 

variability and reach standardized processes would be vanished. To prevent machines to 

stop working and to make them totally reliable, a set of techniques called Total Productive 

Maintenance (TPM) has to be put in practice. They are all based on the idea that operators 

have to be the responsible of the correct work of machines. Their duty is to take care of 

maintenance, lubricating, cleaning, adjusting problems, collecting data. Operators are asked 

to do so as they know the best machines they work with. As regards conditions monitoring, 

operator’s tasks are made easier in the situation when some fail-saving techniques are 

adopted, so-called Poka joke. Thanks to Poka-Joke it is possible to prevent a single wrong 

component from going on to the next stage, by making mistakes absolutely visible and 

forcing operators (even the distract ones) to solve the problem. 

A strictly connected notion in this topic is what is called Jidoka (Automation human touch); 

it implies a transfer from human intelligence to machines, allowing machineries to detect 

defective components and automatically stop waiting for the operator to come and fix it. 

All this new elements in the production processes need an adequate working environment. 

The 5S system (Sort, Straighten, Shine, Standardize and Sustain) can be seen as a 

continuous process of improving the working environment, thus making workers operate in 

the best conditions: 

 

 Sort (Seiri): Eliminate what is not needed and keep what is needed; 

 Straighten (Seiton): Position things in such a way that they can be easily reached 

whenever they are needed; 

 Shine (Seiso): Keep things clean and tidy; no refuse or dirt in the work area; 

 Standardize (Seiketsu): Maintain cleanliness and order, perpetual neatness; 

 Sustain (Shitsuke): Develop a commitment and pride in keeping to standards. 
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1.3.4 Pull 

 

The pull system is a core revolutionary notion in lean management. It allows an 

organization to design, produce and deliver what a customer demands in the exact moment 

when he/she asks for it. To do so it is necessary to let the customer pull the product from 

the company, rather than pushing it onto the customer (push strategy). The pull doctrine 

could be summarized simply as “don’t make anything until it’s needed, then make it very 

quickly”. 

The best way to understand the logic of pull thinking is to focus on a customer expressing 

demand for a product, and to work backwards through all the steps required to bring the 

desired product to the customer. The production process on a certain stage has to be 

activated only if the following stage downstream requires it. 

One of the most important tools for achieving the pull strategy is the Kanban system. The 

Kanban is properly an instruction card that works as a signal to start production (or 

purchasing) of a component only when required by the demand. Kanban is sent from one 

production stage to the upstream stage to signal that components are needed. It achieves 

pull in the sense that, when a Kanban is sent, it tells the upstream process to make parts, so 

it activates production only when it is needed. 

There are three types of Kanban: move Kanban, production Kanban and sale Kanban. The 

move Kanban indicate which component has to be moved, in which quantity and where it 

has to be moved; the production Kanban signals which and how many components has to 

be produced; the sale Kanban is similar to the move Kanban but it’s generally used for 

external customers. 

 

 

 

1.3.5 Perfection 

 

Once an organization fully embraces the four principles we have talked above, the 

improvement in all kind of processes never stops. Indeed, the four principles interact each 

other in a virtuous circle that makes the identification of muda easier, thus paving the way 

for potential further improvements. Indeed, getting value to flow faster always exposes 
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hidden muda in the value stream; and the harder you pull, the more the impediments to 

flow are revealed and can be removed. 

What emerges from this virtuous interaction of the lean principles is that total perfection 

can never be reached. It looks to be impossible, but the effort to try provides inspiration and 

direction essential to make progress. This endless pursue for better ways of doing things is 

fundamental for the entire lean thinking; it is believed, in fact, that in absence of this stress 

for perfection, improvement is temporary, more than stable and continuous, since the 

tendency to do in the old (and wrong) way would prevail. 

It is essential  in a lean organization that this state of mind inclined to perfection through 

continuous and ceaseless improvement is shared by all the people within, not just by the top 

management that takes the most important decisions. The concept of involvement of 

everyone is very strong in the lean thinking, and is emblematic to describe the lean 

approach to people management. An approach strongly based on the respect for humans, 

through politics that encourage equality, autonomy, discipline, quality of the working life 

and responsibility. Workers are taught to exploit their personal capabilities and skills for the 

organization’s sake. A famous Toyota slogan says: “Build people before building cars”. 

(Licker, 2004). 
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Chapter 2 
 

Continuous Improvement 

 

2.1 The elements of Continuous Improvement 

 

Before starting talking about what Continuous Improvement is, we’d better go one step 

back and talk about improvement. Improvement is properly an activity aimed at filling the 

gap between real performance and desired performance within operations or processes 

(Slack N. et al., 2007). It means closing the gap between what “we are doing” and what “we 

want to do”. Actually, improvement is not that simple to be carried out, and even well-

implemented improvement strategies can lose their burst after some time. To make it work 

efficiently you need a detailed strategy of the improvement activity (defining roles, 

responsibilities, resources, …), as well as an environment that creates the conditions for 

everyone to contribute to improve (not only a top-down strategy) and a state of mind that 

considers improvement not as an intermittent exercise, but as a continuous evolutionary 

cycle. 

However, the fundamental driver for every improvement activity is, as it was clarified 

above, the gap between the actual performance and that required for meeting the 

organization’s goals. To face this challenge in the right way the starting point consists of 

three tasks: analyse the current performance, define a series of target performance goals, 

and systematically compare the current performances to the target ones. 

To analyse the current performances it’s fundamental to have a clear idea of what Key 

performance indicators (KPI) take into account, whether detailed measures or more 

aggregated ones (in this field the Balanced Scorecard can turn out to be a very useful tool). 

To set the performance goal, an organization can choose different kinds of targets: on 

historical base, strategic targets, external targets (benchmarking). Finally, there are also 

tools used to correctly compare current and target performance, like the importance-

performance matrix. 
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Once determined how to analyse performances, there are two possible ways to put in 

practise the improvement, and this two ways reflect two different improvement 

philosophies: radical improvement (Kaiaku, or breakthrough) and continuous improvement 

(kaizen). 

Radical improvement consists of improvement based on innovations; it asserts that the 

main driver of improvement is a radical change in the way of doing things, that brings 

massive performance improvement. These changes happen to be really expensive for an 

organization and their purpose in to unsettle the previous operational structure. Examples of 

breakthrough constitute: the introduction of a new ERP (Enterprise Resource Planning) to 

completely reconfigure production, or BPR (Business Process Reengineering) that can be 

defined as “the fundamental rethinking and re-design of processes to obtain substantial 

improvements in KPI like cost and quality” (Hammer and Champy, 1993). 

The other improvement philosophy is much more interesting to us, given the purpose of 

this work. Continuous improvement adopts an approach based on a series of small but 

endless incremental performance improvements of existing products/processes, that become 

permanent part of an organization’s processes. The collection of this steady “small wins” 

plays a fundamental role in the global performance of the organization. The performance 

goals are seen as a moving target and are the main driver that stimulates the creation of 

these small ceaseless improvements. What is really important in the continuous 

improvement philosophy is not the improvement activities rate, but the burst towards them. 

In this sense, continuous improvement can be defined as “an ongoing activity aimed at 

raising the level of organization-wide performance through focused incremental changes in 

processes” (Bessant and Caffyn, 1997; Wu and Chen, 2006).  

Continuous improvement is not revolutionary, and its aim is to transfer its mentality into 

the organization’s culture. Therefore, it involves everyone in the company, from managers 

to workers, from suppliers to customers. It focuses on the experience gained on the 

workplace and stresses the attention on adaptability and team work. 

As the reader might have already understood, continuous improvement goes hand in hand 

with lean thinking. Indeed, if we looked for some origins of this improvement philosophy, 

we would probably find out that Taichii Ohno and his Toyota Production System (TPS) 

have very much to share with it. All the notions discussed in the paragraph dedicated to the 

lean principles are strictly related to continuous improvement. The pull and JIT principles 
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(to make just what customers want when they ask for it), Jidoka (to level out production), 

one-piece flow, Poka-Yoke (mistake-proof processes) are all techniques adopted to 

continually improve existing products and processes, hence can be categorized under the CI 

scheme. The idea that efforts to adopt lean techniques result in an endless pursue for 

perfection seems to coincide with the continuous improvement definition as a collection of 

small ceaseless steps to expose waste and eliminate it. 

 

 

 

2.2 The continuous improvement techniques 

 

The lean thinking promotes the use of continuous improvement (kaizen) to deliver better 

products and processes and fully meet customer needs. To do so, an approach based on 

quality is undertaken, since quality can only be reached (and actually this is its definition) 

when there is full correspondence between the product/service specifications and the 

customer expectations. Therefore, a prerequisite for CI is that all the organization 

understands the importance of quality and the way it can be improved to completely satisfy 

customer needs. 

Many different approaches to quality have been studied, always arising considerable 

interest. Among these, the most important is probably the Total Quality Management 

(TQM), developed between the 70’s and 80’s. TQM is an approach aimed at guiding the 

organization towards improvement through the search for total, global quality. This means 

that quality is the real bulk of operations and the organization must no longer think about 

how to avoid defective products to reach the customers, but how to avoid the creation of 

defective products. Every process has to be improved focusing on quality, trying to reach 

the so-called error-free production. There is, then, a shift from a reactive approach towards 

quality (correct errors when detected) to a more proactive approach (prevent errors form 

happening). TQM also stresses the attention on the contribution of everyone in the search 

for total quality. Not only those people who are directly involved in the production 

processes, but everyone in the entire organization must have clear awareness of their role in 

achieving high quality, and everyone must actively contribute to it. 
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Working for total quality means also monitoring and reacting when performance indicators 

are too distant from the levels considered acceptable. In this sense, TQM promotes the use 

of Statistical Process Control (SPC). SPC consists of analysing a sample or a group of 

samples of a product or a process indicator for a certain time range, to asses if the process is 

under control or not. To do so, a set of statistical tools are usually used (histograms, 

correlation matrices, …), but the most important one is the control charts. The control 

charts are graphs monitoring the trend of a certain aspect of production over time to 

determine if that process is in a state of statistical control, or in the opposite case, if it needs 

some corrective actions (Slack et al., 2007). The control charts’ purpose it not only to 

monitor processes, but also to improve them reducing their variability. Variability, in fact, 

is something undesirable, since it hides the trend and makes difficult to understand the 

process performance. SPC is able to reduce variability by discriminating between variations 

coming from sources common to the process and variation coming from special sources. 

Eliminating the latter, it’s possible to reduce the process variability. Finally, we have to add 

that SPC is not just a way to monitor and control processes. Statistical control, in fact, 

allows a greater knowledge of products and processes that can be an important source of 

competitive advantage. 

Although very efficient, a continuous improvement activity can turn to be unsuccessful if 

it’s not adequately standardized. In order to make a CI activity organization-wide and over 

time, in fact, it should be defined with a scientific method, through a standard set of steps. 

In particular, the burst through improvement never stops only if the CI is represented by an 

endless cycle of constant rethinking of current processes. 

There are two mainly used models: 

 

 

a) PDCA cycle: it is also known as Deming cycle, from D. Edwards Deming, who is 

considered by many to be the father of modern quality control. It is an iterative four-

step used for the control and continuous improvement of products and processes. 

The  four steps of the cycle, that we can see in Figure 2.1 (a), are the following: 

 

- Plan (P): it consists of an analysis of the situation, collecting and analysing data, 

to define an action plan aimed at improving the actual performance; 
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-  Do (D): it means implementing the action plan; in this phase other PDCA 

micro-cycle might be needed to solve possible implementation problems; 

- Check (C): it means study the outcomes and compare them to the expected 

results to find out if the new solutions that were implemented has brought 

significant improvements; 

- Act (A): After the Check step, if the plan has proved successful it can be 

consolidated and standardized, otherwise a new PDCA cycle starts, aimed at 

determining the root causes that lead to the failure. 

 

 

b) DMAIC cycle: it is a data-driven improvement cycle used for improving and 

stabilizing processes. Unlike the PDCA cycle, the DMAIC cycle is made of five 

steps. It is often used in Six-Sigma projects (we will discuss Six-Sigma later), 

although it’s not exclusive of this approach, and it embodies a stronger scientific 

approach. The five steps, that we can see in Figure 2.1 (b) are the following: 

 

- Define (D): in this step the problem is clearly articulated and it’s usually fixed a 

formal improvement target; 

- Measure (M): it is the validation of the problem through data collection (to see if 

it’s actually worth resolving). There is decided what should be measured and 

how it should be measured it, because real improvement will be evaluated 

comparing these measures at the beginning and at the end of the improvement 

process; 

- Analyse (A): the purpose of this step is to identify, validate and select root 

causes of the problem, through an analysis of a number of potential root causes; 

- Improve (I): The purpose of this step is to identify, test and implement a solution 

to the problem. A number of possible solutions are tested and those successful 

are implemented; 

- Control (C): Finally improvement has to be monitored to ensure continued and 

sustainable success. Then, the cycle restarts defining problems that avoid further 

improvement. 
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In both PDCA and DMAIC cycles the last step ends with “the cycle restarts”. Indeed, a 

correct improvement philosophy can be implemented only accepting the idea that 

improvement cycles never stops, since improvement is integral part of the organization. 

 

 

 

Figure 2.1: The PDCA cycle (a) and the DMAIC cycle (b) 

(Source: Slack et al., Operations Management, 2007) 

 

 

Talking about the DMAIC cycle mentioned the Six Sigma approach. Going briefly into it, it 

is noticed what does it consist of. Six Sigma is a set of techniques and tools for process 

improvement that mixes elements of both radical and continuous improvement and it is 

strictly related to Statistical Process Control (SPC). It was developed by Motorola in 1986, 

Jack Welch made it central to his business strategy at General Electric in 1995. Today it is 

used in many industrial sectors. Six Sigma seeks to improve the quality of process outputs 

by identifying and removing the causes of defects and minimizing variability in 

manufacturing and business processes. When in 1980 Motorola was trying to improve its 

quality levels through elimination of defects, it was realized that there were some processes 

that produced defects in any case, since they were embodied in the real design of the 

process. The only way to eliminate those latent defects was to make process specifications 

extremely detailed, reducing tolerances as much as possible. Hence, the password became 

“standardization”, and variability became synonymous of “bad”. The term "Six Sigma" 

comes from the notion that if one has six standard deviations (σ) between the process mean 

and the nearest specification limit, practically no items will fail to meet specifications. The 

Six Sigma philosophy assesses that improvement activities can be successful only if they 
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are supported by adequate resources and staff training. Hence, it promotes a special 

infrastructure of people within the organization ("Champions", "Black Belts", "Green 

Belts", "Yellow Belts", etc.) who are experts in these improvement methods. 

 

 

 

2.3 Continuous improvement as a dynamic capability 

 

Continuous improvement initiatives have massively proliferated among manufacturing 

organizations worldwide. Organizations nowadays seem to compete no longer on 

processes, but on the ability to continually improve processes (Teece, 2007). Nevertheless, 

not all the CI initiatives that have been deployed have been successful. Results of a 2007 

survey of US manufacturers depicted that among those plants that had deployed lean 

manufacturing techniques, only 11% of them considered their CI initiatives to be successful 

(Mendelbaum, 2006). 

In order to understand what key elements of a continuous improvement activity led to 

success, we have to start from the very essence of CI, that is its role as a capability and, in 

turn, as a bundle of interrelated routines. 

Continuous improvement represents a key capability in every organization. When we talk 

about “capability” we intend the strength or proficiency for performing specific tasks. 

Following the Resource Based View of the firm (RBW)
5
, resources and capabilities are the 

constituents of sustained competitive advantage for the company. But what are these 

capabilities made of? Peng et al. (2007) asses that capabilities, including continuous 

improvement and innovation, consists of a bundle of interrelated yet distinct routines, 

which are significantly related to operational performances. We can define routines as 

“regular and predictable patterns of behaviours” (Grant, 1991); through routines, certain 

clusters of resources are utilized to achieve desired outcomes. Nevertheless, capabilities do 

not reside in routines taken individually; they emerge from the synergistic interplay among 

multiple interrelated routines that are complementary and they reinforce each other. This 

approach is absolutely revolutionary: speaking about routines as the foundation of 

                                                           
5
 The Resource-Based View (RBV) of the firm is a model that assesses that the  basis for the competitive 

advantage of a firm lies primarily in the application of a bundle of valuable tangible or intangible resources at 

the firm's disposal 
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capabilities, Peng et al. (2007) show a completely new perspective of looking at operation 

capabilities. The innovative element of this perspective lies in the fact that capabilities are 

mostly inimitable. Since routines are the repetition of regular patterns, their force comes 

from the experience; through experience people within the organization can develop a 

range of tacit skills that enables experience and are the source of capabilities. Moreover, 

when these routines are difficult to observe and are the result of synergies between other 

routines, the inimitability-effect is amplified and becomes more and more difficult for 

competitors to observe them. In other words, “the difficulty of observing the complex 

interplay between the multiple interrelated routines in a capability, coupled with the path 

dependent and tacit nature of each individual routines creates significant barriers to 

imitation or substitution of comparable capabilities (Peng et al., 2007).  

In particular, talking about continuous improvement capabilities and its underlying 

routines, we can identify three groups of routines: 

 

 Continuous improvement: it refers to sustained incremental improvements of 

existing products/processes. It includes activities aimed at modifying and refining 

existing products, equipment, process technologies and operational practices; 

 Process management: it involves efforts to map and improve organizational 

processes through cost reduction and more efficiency; 

 Leadership involvement: it aims at stimulating improvement capabilities through 

leadership involvement at all levels of the organization. Leadership is seen as the 

driving force of quality improvement efforts and managers should motivate 

employees’ participation in continuous improvement. 

 

As we’ve just explained, the continuous improvement capability is the ability to 

consistently improve current processes and learn new ones to increase efficiency. It is, 

hence, a continuous and dynamic activity that systematically produces new ways of doing 

things, it is not a one-time change. In this sense CI fits into the notion of “dynamic 

capability”, where, by “dynamic capability” we mean “a learned and stable pattern of 

collective activity through which the organization systematically generates and modifies its 

operating routines in pursuit of improved effectiveness”(Zollo and Winter, 2002).  
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However, for dynamic capabilities to generate competitive advantage, it is critical that they 

include a comprehensive organizational context, a coherent infrastructure, in order to 

coordinate and execute improvement projects (Figure 2.2). It is proved, in fact, that CI 

deployments that lack adequate coordination lose traction and become ineffective after 

realizing initial gains (Choo et al., 2007). 

 

  

 

Figure 2.2: Relationship between CI initiatives and CI infrastructure 

(Source: Journal of Operations Management, 27 (2009) 444–461) 

 

 

 

2.4 Continuous improvement infrastructures 

 

Traditional management methods typically involved top-down strategic planning, where the 

responsibility for the formulation and implementation of organizational strategies belonged 

exclusively to the top management. Such method was inadequate for the development of 

dynamic capabilities, firstly because of its slowness (there are several layers from top-

management to front-line employers) and second because it inhibits bottom-up learning. 

In order to facilitate the dynamic creation of front-line capabilities that provide successful 

and coherent response to environmental changes, the Bartlett and Ghoshal’s scheme of 

organizational infrastructure seems to be more suitable. According to this scheme the 

organizational framework is in the form of “purpose-process-people”. People are treated as 

knowledge resources that cooperate in the discovery of better ways to execute processes, 

thus accomplishing broader organizational purposes (Figure 2.3). By allowing and even 
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facilitating proactive changes at the middle and front-line levels while maintaining strategic 

congruence, such management approach provides an effective framework for 

organizational learning and the development of dynamic capabilities. (Teece et al., 1997). 

Below the analysis, one by one, of the three categories that this framework is made of. 

 

 

 

Figure 2.3: The purpose-process-people CI infrastructure 

(Source: Journal of Operations Management, 27 (2009) 444–461) 

 

 

 

2.4.1  Purpose 

 

The purpose category covers the formulation and communication of organizational and 

project goals for CI. In particular, it regards the need to translate the overall organization 

strategy into smaller operational goals, avoiding any bias or incongruence in this process. 

Therefore, infrastructures under this category are aimed at supporting decentralized sub-

goals determination while maintaining an overall strategic vision. 

According to the scheme of CI infrastructure decision areas provided by Anand et 

al.(2009), the decision areas under this category and their relative intents are (Figure 2.4): 

 

 Organizational direction and CI goals: facilitating participation of middle- and 

lower-level managers in the formulation of strategic goals and assure their 

consistency; 
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 Balanced innovation and improvement: keep up the ability both to innovate and to 

improve processes, balancing these two activities. 

 

 

 

2.4.2 Process 

 

The process category regards the adoption of uniform methods for the discovery and 

execution of continuous improvement initiatives. The infrastructure of CI has to stimulate 

people not only to correct process defects, but also to prevent them modifying these 

processes. The CI infrastructure has also to be concentrated on value-adding processes 

eliminating waste and adopting a customer-oriented approach. In order to make process 

changes permanent, the organization has to promote a framework in which standardization 

is totally embodied in any CI initiative. 

The decision areas under the process category are (Figure 2.4): 

 

 Culture of constant change: Continually scanning the environment looking for 

improvement opportunities and challenging the existing way of ding things; training 

people to remove any fears that may prevent them from suggesting changes; 

 Parallel participation structure: Lateral structures  (e.g. team infrastructures for 

executing projects) for cross-functional cooperation; 

 Standardized processes: Standardize processes in order to make CI activities 

routinized and facilitate experience-learning; 

 Standardized improvement method: Utilize a standard set of steps for a scientific-

approach to CI (e.g. PDCA and DMAIC cycles): 

 

 

 

2.4.3 People 

 

The learning capabilities of individual employees have an impact on organizational 

dynamic capabilities: they determine an organization’s ability to make changes to its 
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operational processes in response to environmental demands (Ghoshal and Bartlett, 1994; 

Kraatz and Zajac, 2001). Therefore, under the people category of CI infrastructure 

decisions we can find all those practices that facilitate organizational learning through 

individual learning.  

The decision areas under the people category are (Figure 2.4): 

 

 Training and career paths: Adequate training in the use of scientific methods for 

problem-solving and for other CI initiatives and define roles, career paths and 

incentives to motivate employees in CI activities; 

 Information technology support: Presence of repositories of CI project reports in 

order to gather information, record and track the results of repeated cycles of 

knowledge creation (Bendoly and Swink, 2007). 
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Figure 2.4: CI infrastructure decision areas 

(Source: Journal of Operations Management, 27 (2009) 444–461) 
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Chapter 3 
 

Structural Equation Modeling 

 

In this chapter the topic of Structural Equation Modeling (SEM) will be examined. We will 

discuss both about Factor analysis, that is a way to reduce the amount of data grouping 

variables into a series of unobserved variables called factors, and about the Structural 

Equation Modeling in a narrow sense, that is the study of the casual relations between 

unobserved variables. The common purpose of these methods is the effort to reduce the 

amount of data and to understand the complex relations between variables thanks to the 

analysis of some unobserved (latent) constructs. 

 

3.1 Historical background 

 

Structural Equation Models (SEM), also known as ACOVS (Analysis of Covariance 

Structure) or LISREL
6
 (Linear Structural Relations), were not actually discovered by one or 

more scientists; they were rather implemented little by little by different researchers who, 

using different statistical methods, contributed to its definition as we know it nowadays.  

The Linear regression model was widely utilized before SEM was born. It studies the linear 

dependencies between one dependent variable and one or more independent variable. 

Unfortunately it does not help explaining the existence of some unobserved constructs or 

reducing the amount of data to get to a simpler model.  

Charles Sperman (1904-1927) was the first to use the linear correlation coefficient among 

variables to understand which variables were strictly correlated each other and therefore 

could be summarized by one single factor, thus reducing the data complexity. 

But it was only at the beginning of the ‘60s that Structural Equation Models have been 

properly studied and utilized. In these years, in fact, the Swedish statistician- psychometric 
                                                           
6
 Lisrel is also the name of a software for the analysis of structural equation models with latent variables. 
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Karl Jöreskog first showed a procedure to represent a model based on structural equations, 

both maintaining the distinction between manifest and latent variables and measuring the 

casual relations between them. Jöreskog also implemented the Lisrel software, whose 

original purpose was to estimate the coefficients of the factor analysis using the maximum 

likelihood method. Unlike factor analysis, this new approach carried on by Jöreskog 

brought two main advantages. First it allowed measurement of variables that were not 

directly observable since they represent theoretical and non-quantitative concepts, like, in 

the psychological field, racism, desires, and satisfaction. Second, it provided means to 

evaluate the hypothesis of causality among these unobserved variables. 

Another significant contribute to the development of SEM comes from biometric, 

particularly from Sewall Wright who first defined path analysis, that is a way to identify 

relations between a set of variables, as well as to quantify the impact on a certain variable 

through the path coefficients. 

In 1970 a general formulation of SEM as we know it was provided by Jöreskog in a 

seminary at Madison University, in the USA. In the following years many articles about 

SEM and its applications were published, showing the wide utilization perspectives of this 

technique. Moreover there was a remarkable growth in the number of software available for 

the numerical analysis of SEM: EQS, AMOS (in association with SPSS), CALIS and so on. 

Today Structural Equation Modeling is widely used in many fields (econometric, 

psychology, sociology, biology, …) and thanks to other correlated techniques (e.g. path 

analysis, exploratory factor analysis, confirmatory factor analysis, causal models) it 

represents a valid tool for researchers of every discipline. 

 

 

3.2  Factor analysis 

 

A fundamental prerequisite for SEM is Factor Analysis. It is a statistical method used to 

describe variability among observed, correlated variables in terms of a lower number of 

unobserved variables called factors. For example, it is possible that variations in four 

observed variables mainly reflect the variations in two unobserved (also called latent) 

variables. Factor analysis searches for such joint variations in response to unobserved latent 

variables. Once the factors have been identified and their connection to the manifest 
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variables has been empirically proved, it is possible to significantly reduce the amount of 

data and come to a model that is more parsimonious and that provides a better 

comprehension of the underlying phenomenon. 

Factors explaining the manifest variables are extracted through the analysis of the 

covariance between these variables. Therefore the starting point of the factor analysis is the 

variance-covariance matrix between the manifest variables, and the point of arrival is the 

coefficients explaining the relations between manifest and latent variables. 

The factor analysis technique implies that every observed variable is modelled as a linear 

combination of the potential factors, plus an error term. In a mathematical form: 

 

𝑋 = Λ𝑥𝜉 + 𝛿 

 

In this formula: 

𝑋  is the manifest variables’ vector; 

Λ𝑥 is the matrix of factors’ coefficients; 

𝜉  is the vector of factors; 

𝛿  is the vector of error terms. 

 

The assumptions of factor analysis are: 

 

E[𝑋] = E[𝜉] = E[𝛿] =0   both manifest variables and factors and error terms have average 

value equal to 0; 

E[𝜉 𝛿′]=0 factors and error terms are uncorrelated; 

E[𝛿 𝛿′]=0 error terms are uncorrelated each other. 

 

Explaining the above-written formula for every manifest variable 𝑋𝑖 we have that: 

 

𝑋𝑖 =  𝜆𝑖1𝜉1 +  𝜆𝑖2𝜉2 +  𝜆𝑖3𝜉3 + ⋯ + 𝜆𝑖𝑛𝜉𝑛 +  𝛿𝑖 

 

Mind that: 

q = number of variables X; 
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n = number of factors 𝜉; 

n < q 

 

The 𝜆 coefficients are called factor loadings. It is possible to decompose every equation of 

X variables in two uncorrelated parts:  

𝑋𝑖 = 𝑐𝑖 + 𝛿𝑖 

 

Where 𝑐𝑖 is the sum of all the factors multiplied by their respective factor loadings, and it’s 

called common part: 

𝑐𝑖 =  𝜆𝑖1𝜉1 + 𝜆𝑖2𝜉2 + ⋯ + 𝜆𝑖𝑛𝜉𝑛 

 

 While 𝛿𝑖 is the error component. It is the unique part, since it is unique of every 𝑋𝑖 and 

represents the share of variability of 𝑋𝑖 that cannot be explained by factors (Corbetta, 

2002). 

Similarly, it is possible to decompose the variance of every 𝑋𝑖 in two components: 

 

𝑉𝑎𝑟(𝑋𝑖) = 𝑉𝑎𝑟(𝑐𝑖) + 𝑉𝑎𝑟(𝛿𝑖) 

 

Where 𝑉𝑎𝑟(𝑐𝑖) is called common variance, and 𝑉𝑎𝑟(𝛿𝑖) is called unique variance, or 

uniqueness.  

The common variance can also be expressed in terms of share of the total variance, and in 

this case it is called communality: 

𝑉𝑎𝑟(𝑐𝑖)

𝑉𝑎𝑟(𝑋𝑖)
= 𝑐𝑜𝑚𝑚𝑢𝑛𝑎𝑙𝑖𝑡𝑦 

 

Communality of a certain 𝑋𝑖 is the percent of variance explained by all the factors jointly, 

while unicity is the remaining part of total variance after that factors explained it. If 

variables are standardized, communality and uniqueness sum up to 1. 

Adopting a factor analysis, everyone has two possible approaches to adopt: 

 

 Exploratory factor analysis (EFA); 

 Confirmatory factor analysis (CFA). 
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3.2.1 Exploratory factor analysis (EFA) 

 

Exploratory factor analysis (EFA) is used to identify interrelationships among manifest 

variables through a number of latent factors. In this approach the researcher makes no “a-

priori” assumptions about relationships among factors and observed variables. In particular, 

he makes no hypothesis about: the number of factors, relationships among factors, 

relationships among factors and manifest variables. He, hence, has no idea about the 

characteristics of the model that is being tested, and he wants to “explore” every possible 

structure made of different relationships among variables. In the EFA every manifest 

variable can be explained by every factor, since there are no constrains. We can see a 

graphical example of a EFA here below (Figure 3.1): 

 

 

Figure 3.1: Graphical example of EFA: 𝑋𝑖 are the manifest variables, 𝛿𝑖 the error terms, and 𝜉𝑖 the factors. (Source: 

Corbetta P., Metodi di analisi multivariate per le scienze sociali, 2002) 

 

 

The starting point of the EFA is the variance-covariance matrix of the observed variables. 

Then, through an appropriate software, factors are estimated (factor extraction). To do so, 

different statistical methods can be applied: Maximum Likelihood, Least Squares, Principal 

Component Analysis (PCA). At this point the researcher has to choose the appropriate 

number of factors, assuring that they are enough to explain a good portion of variability, 

but at the same time in a quantity that allows a parsimonious simplification of the 

phenomenon. Different methods can be applied to determine the number of factors: Kaiser 

criterion, variance explained criteria, screeplot, … Once determined how many factors to 
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adopt, it is possible to allocate every variable to its respective factors, checking the factor 

loadings matrix: every variable is allocated to the factor with the highest factor score 

coefficient. 

Sometimes, however, the estimated loadings from the model can give a large weight on 

several factors for some of the measured variables, making it difficult to interpret what 

those factors represent. Therefore, in order to make the output more understandable, the 

researcher should adopt the so-called “factor rotation”. The goal of factor rotation is to find 

a solution for which each variable has only a small number of large loadings, that is, is 

affected by a small number of factors, preferably only one. The observed variables should, 

therefore, load more strongly on one factor, and much more weakly on the other factors. 

This is possible because factors geometrically represent a n-dimensional space (n is the 

number of factors), where each of the observed variables represents a point in this space, 

factor loadings represent the points’ coordinates, and factors represent a coordinate axis. 

Factor rotation is equivalent to rotating those axis, and computing new loadings in the new 

rotated coordinate system. There are two main types of factor rotation. Orthogonal rotations 

(e.g.: Varimax, Quartimax) leave the axis orthogonal and keeps factors uncorrelated each 

other, while oblique rotations (e.g.: Promax) change the angle between the axis and allows 

factors to have a certain degree of correlation (Bracalente et al., 2009). 

Afterwards, the researcher has to analyse the model to give a logical interpretation to the 

factors. 

Finally, the last step consists of evaluating the model fit. Through a number of indices (that 

will be shown later) it is possible to assess whether the model adequately fits empirical 

data. 

 

 

3.2.2  Confirmatory factor analysis (CFA) 

 

Confirmatory factor analysis (CFA) is a more complex approach aimed at testing a well-

defined factor model based on a series of assumptions made by the researcher. It is very 

common, in fact, that the researchers have in mind an hypothetical structure that he/she 

wants to test. Those hypothesis can come from previous researches, theoretical issues, 

sampling methods, or simply from a quick inspection of the variance-covariance matrix of 
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manifest variables. Therefore, in the CFA the number of factors and the relationships 

between variables are already established. Manifest variables are restricted to load on 

specific factors. The researcher only wants to test the model and to check, through a series 

of appropriate indicators, if it fits empirical data.  

This approach is widely used after a EFA, in order to evaluate the goodness of the 

outcomes, based on data.  

In the graphical example below (Figure 3.2) we can see a model of CFA: the researcher 

established through some a-priori assumptions that there are two correlated factors (𝜉1and 

𝜉2) and that 𝑋1, 𝑋2, 𝑋3 and 𝑋4 are influenced by the first factor, while 𝑋5 and 𝑋6 by the 

second factor. 

 

Figure 3.2: Graphical example of CFA. (Source: Corbetta P., Metodi di analisi multivariate per le scienze sociali, 2002) 

 

 

It should be added, however, that there are very often blurred borderlines between 

exploratory and confirmatory approach to factor analysis. Even a total CFA embodies 

somehow an exploratory nature. A widely adopted technique consists of splitting the 

sample in two parts and using the first half to conduct a EFA and the second half for a 

validation of the model that has been obtained in the previous stage. 

 

 

 

 

 



42 

 

3.3 Structural Equation Modeling (SEM) 

 

Structural equation modeling is a technique to specify, estimate, and evaluate models of 

linear relationships among a set of observed variables (also called measured or manifest) in 

terms of a generally smaller number of unobserved (latent) variables. The SEM model is an 

a priori hypothesis about a pattern of linear relationships among observed and unobserved 

variables. The objective in using SEM is to determine whether this a priori model is valid 

or not, rather than to find a suitable model (Shah R, Goldstein S.M., 2006). 

A SEM model starts from a theoretical relationship model among variables. Subsequently, 

basing on this model, a theoretical variance-covariance matrix is built, that will be then 

compared to the variance-covariance matrix of the observed variables, to understand if the 

model that has been taken in consideration fits the empirical data. 

The fundamental set of hypothesis in a SEM model is: 

 

 Continuous and normal variables distributions; 

 Linear equations to describe dependencies among variables; 

 Randomly-selected sample. 

 

Once appropriately defined the model, it is possible to estimate the latent variables and their 

relationships. 

Every SEM model is made of two sub-models: the measurement model and the structural 

model. The former allows measurement of unobserved latent variables through a series of 

observed variables, while the latter describes the casual relationships among latent 

variables. The model specification in matrix notation is as follows: 

 

(1) 휂 = B 휂 + Γ𝜉 + 휁 Structural model  

(2) 𝑌 = Λ𝑦휂 + 휀 

(3) 𝑋 = Λ𝑥𝜉 + 𝛿 

 

The variables are indicated through the letters x, y, 휂 and 𝜉. In particular: 

Measurement model 
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y represents the observed endogenous variables
7
; 

x represents the observed exogenous variables
8
; 

휂 represents the latent endogenous variables; 

𝜉 represents the latent exogenous variables. 

 

The error components are indicated through the letters 휁, 휀 and 𝛿. In particular: 

휁 is the error component of 휂; 

휀 is the error component of y; 

𝛿 is the error component of x. 

 

The structural coefficients are: 

𝐵 is the coefficient matrix between 휂 and 휂; 

Γ is the coefficient matrix between 휂 and 𝜉; 

Λ𝑦 is the coefficient matrix between 휂 and y; 

Λ𝑥 is the coefficient matrix between 𝜉 and x. 

Finally we have all the possible variance-covariance matrix: 

Φ is the variance-covariance matrix between variables 𝜉 

Ψ is the variance-covariance matrix between the error terms 휁 

Θ  is the variance-covariance matrix between the error terms ε 

Θ𝛿  is the variance-covariance matrix between the error terms δ 

 

Note that the Ψ matrix plays an important role: it allows to take into account of all the 

relationships that have been excluded from the model. In almost every case, in fact, there 

are always some kind of connections among variables that are not specified. Through the Ψ 

variance-covariance matrix it is possible to explain the effects on the dependant variable of 

all those variables that have been omitted for some reasons, thus allowing a better 

specification. 

 

The assumptions of SEM models are: 

 All variables are measured in terms of mean deviation, that is: 

                                                           
7
 An endogenous variable is a variable generated within a model and, therefore, whose value is determined by 

one of the functional relationships in that model (it can be both dependent and independent) 
8
 An exogenous variable is an independent variable that affects a model without being affected by it 
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𝐸[ 𝑌 ] = 𝐸[ 𝑋 ] = 𝐸 [ 휂 ] = 𝐸 [ 𝜉 ] = 𝐸[ 휀 ] = 𝐸[ 𝛿 ] = 𝐸 [ 휁 ] = 0 

 

 Variables are independent and error terms are uncorrelated with variables both 

within the same equation 

𝐸 [ 𝜉휁′ ] = 𝐸 [ 휂휀′ ] = 𝐸 [ 𝜉𝛿′ ] = 0 

 

And between different equations 

 

𝐸 [ 휂𝛿′ ] = 𝐸 [ 𝜉휀′ ] = 0 

 

 Error terms of different equations are uncorrelated 

 

𝐸 [ 휁휀′ ] = 𝐸 [ 휁𝛿′ ] = 𝐸[ 휀𝛿′ ] = 0 

 

 Every structural equation has to be non-redundant, namely B has to be a non-

singular matrix. This condition assures that no endogenous variable is a linear 

combination of other endogenous variables. 

 

As previously mentioned, the purpose of Structural Equation Modeling is to compare a 

theoretical variance-covariance matrix based on the model to the real variance-covariance 

matrix of the manifest variables (Σ). The theoretical variance-covariance matrix will be 

obtained from the estimate values of the parameters that make up the model; for this reason 

we will indicate it with Σ(휃) (and Σ(휃̂) its estimate). Therefore, the fundamental equation 

is: 

 

Σ = Σ(휃) 

 

Where θ is the vector containing all the parameters of the SEM model, Σ(휃) is the variance-

covariance matrix written in function of the structural parameters, and Σ is the real 

variance-covariance matrix. 
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Unfortunately the above-written equation can be solved only if the model is perfectly 

specified and if the parameters are all known. Nevertheless, in almost every case the 

variance-covariance matrix is not available, and the researcher has at his disposal only the 

sample covariance matrix (S). Moreover, not all the parameters can be identified together.  

This led to two main problems: 

 

- Model identification: starting from S (or Σ) it is not possible to univocally 

determinate the parameters of the structural model. Although, given a structural 

model, it generates one single covariance matrix, it is also true that two different 

variance-covariance matrix can provide the same SEM parameters estimates. 

Therefore, further restrictions will be needed to univocally determinate parameters 

estimates from S (or Σ); 

- Estimate: the structural parameters will be estimated so that they minimize the 

distance between the theoretical covariance matrix Σ(휃̂) and the sample covariance 

matrix S. Therefore the problem lies in finding a mathematical function that 

minimize the distance between these two matrices, and finally valuate whether the 

difference between the two matrices is due to the sampling process or to a model 

misspecification. 

 

There are three possible ways to represent a SEM model: 

 

 System of equations: all the equations composing the structural and measurement 

model are explained; 

 Path diagram: graphic representation of the variables and the relationships among 

them. In particular, manifest variables are shown within a rectangle, latent variables 

within a circle, while error components are not within any figure. Relationships 

among variables are represented by arrows (one-directional arrows for casual 

relations and bidirectional arrows for covariance) and coefficients are shown aside. 

The absence of any arrow means no relationship between those variables. 

 Implicated covariance structure: the model is represented directly explaining the 

equation Σ = Σ(휃). 
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Let’s go now into the two sub-models that make up a SEM model, that is the structural 

model and the measurement model. 

 

 

3.3.1 The measurement model 

 

The measurement model analyses dependencies between latent variables and their 

associated manifest variables, thus “measuring” the model. 

It is made of two equations: 

 

(a) 𝑌 = Λ𝑦휂 + 휀 

(b) 𝑋 = Λ𝑥𝜉 + 𝛿 

 

The first equation (a) refers to the relationship between latent and manifest endogenous 

variables. It is composed of: the vector of endogenous manifest variables (𝑌), the vector of 

endogenous latent variables (휂), the error term of  𝑌 (휀), the structural coefficients’ matrix 

(Λ𝑦) and the variance-covariance matrix of the error term 휀 (Θ ). 

The second equation (b) refers to the relationship between latent and manifest exogenous 

variables. It is composed of: the vector of exogenous manifest variables (𝑋), the vector of 

exogenous latent variables (𝜉), the error term of 𝑋 (𝛿), the structural coefficients’ matrix 

(Λ𝑥) and the variance-covariance matrix of the error term 𝛿 (Θ𝛿). 

 

 

 

3.3.2 The structural model 

 

The structural model deals with the causal relationship between latent variables (both 

endogenous and exogenous) and therefore represents the “causal” part of the model. It is 

represented by the equation: 

 

휂 = B 휂 + Γ𝜉 + 휁 
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It is composed of: the vector of endogenous latent variables (휂), the vector of exogenous 

latent variables (𝜉), the error term of 휂 (휁), the structural coefficients’ matrix between 휂 and 

휂 (B), the structural coefficients’ matrix between 휂 and  𝜉 (Γ), the variance-covariance 

matrix of 𝜉 (Φ) and the variance-covariance matrix of the error component 휁 (Ψ). 

Note that the Ψ matrix has zeros in the entire main diagonal, since they represent the 

regression coefficients of a variable on itself.  

 

 

3.4 Estimation 

 

After the model has been adequately identified, the following step is the structural 

parameters estimation. Parameters estimation is done by comparing the actual covariance 

matrix representing the relationships between variables (S) and the estimated covariance 

matrix of the model (Σ(휃)). This is possible because the covariance matrix of the X and Y 

variables can be written in terms of the matrices that define the SEM model. Explicating the 

equations that define the model and using some algebraic calculations, it can be 

demonstrated that the (symmetric) variance-covariance matrix of the manifest variables X 

and Y, in the form shown here below: 

 

  

 Can be written in terms of the model parameters, as follows: 
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This complex formula is fundamental, because it allows, once all the parameters of the 

model are known, to calculate the covariance matrix between the manifest variables (X and 

Y) starting from the model parameters. In other words, it let us know the covariance matrix 

that our model implies. 

The next problem to face is how to adequately estimate the parameters of our model, in 

such a way that the “distance” between the actual covariance matrix and the one implied by 

the model is minimized. This process is possible through the numerical maximization of a 

fixed criterion. The most widely adopted criterion is the Maximum Likelihood (ML). In this 

approach the matrices of the model can contain either fixed values (that are fixed by the 

researcher and cannot be modified) or free values (that can change in order to maximize the 

ML criterion). The bulk of the ML method is trying to estimate the model parameters in a 

way that the probability that the actual covariance matrix derives from the estimated Σ is 

maximized. Such probability is determined using a particular statistical distribution called 

“Wishart’s distribution” (we will not go into the description of this distribution, since it is 

complex and goes beyond the purpose of this work). 

Finally, once the free parameters have been estimated, the last step consists of evaluating 

the difference between the actual covariance matrix and the one implied by the model. If 

such distance is enough small to be considered due to the sampling process, then the 

estimation stops; otherwise, through an iterative process, the estimates are furtherly 

improved. The estimation stops when every step does not bring considerable improvements 

in the model’s fit. If, even after the last step, the distance between the two matrices is too 

big, then the model has to be rejected. 
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3.5 Model identification 

 

The analysis of the model identification consists of assessing whether the set of parameters 

that are going to be estimated uniquely identifies the model; in other words we have to 

make sure that the same model cannot provide more than one single possible solution. We 

define a model as “identified” if its parameters are uniquely identified. Generally speaking, 

in order to demonstrate that a model is identified, the researcher should be able to express 

all the unknown parameters in terms of the variances-covariances among manifest 

variables, showing that all the equations are solvable. If this is true, the model is identified. 

Unfortunately this task is not as easy as it seems: the system of equations is often non-linear 

and solving it can require a massive amount of calculations. 

A necessary (but not sufficient) rule known as “t-rule” can help solving this problem. This 

rule requires that the model does not contain more unknowns than equations, that is that the 

number of parameters must not exceed the number of variances-covariances among 

manifest variables. The t rule formula is as follows: 

 

𝑡 ≤
1

2
(𝑝 + 𝑞)(𝑝 + 𝑞 + 1) 

 

Where t is the number of unknown parameters, p is the number of Y variables, and q is the 

number of X variables. The right part of the formula represents the number of non-

redundant elements of Σ. 

Actually, applying the t rule is equivalent to saying that the number of degrees of freedom 

has to be non-negative. In a system of equations, in fact, the degrees of freedom are defined 

as the difference between the number of equations and the number of unknowns. In our 

case, since we have as many equations as covariances, we have that: 

 

𝑑𝑓 = n. equations − n. unknowns 

= n. variances/covariances − n. unknown parameters 

=  
1

2
 (𝑝 + 𝑞)(𝑝 + 𝑞 + 1) − 𝑡 
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Therefore saying that 𝑡 ≤
1

2
(𝑝 + 𝑞)(𝑝 + 𝑞 + 1) is equal to saying that degrees of freedom 

have to be non-negative.  

When the degrees of freedom are zero, the number of free parameters is exactly equal to the 

number of equations, and the model is said to be “just-identified” or “saturated”. Just-

identified models provide an exact solution for parameters. But its overall fit cannot be 

tested, since the S matrix coincides with Σ, and there are no residuals to use for fit tests. 

Such a model is actually useless, because it is not parsimonious, since it contains the same 

number of parameters as the variance-covariance matrix. 

When the effective number of free parameters is greater than the number of equations, the 

degrees of freedom are less than zero, and the model is “under-identified” and sufficient 

information is not available to uniquely estimate the parameters. Under-identified models 

may not converge during model estimation, and when they do, the parameter estimates they 

provide are not reliable and overall fit statistics cannot be interpreted. In this case the 

researcher should reduce the number of unknowns adopting some constraints on the 

parameters. 

For models in which there are fewer unknowns than equations (degrees of freedom are one 

or greater) the model is “over-identified”. An over-identified model is highly desirable 

because more than one equation is used to estimate at least some of the parameters, 

significantly enhancing reliability of the estimate (Bollen, 1989). Nevertheless mind that, as 

previously mentioned, this does not implies that the model is always identified. The 

condition 𝑑𝑓 ≥ 0 is a necessary but not sufficient condition for model identification. 

Another possible method consists of analyzing model identification in two steps. First 

analyzing identification of the measurement model (as if it were a CFA model), and then of 

the structural model (as if it were a SEM model with only manifest variables). If the model 

is identified in both of the two parts, then the overall model is identified; otherwise, if 

model identification is not accepted in one of the two parts, no conclusions can be drawn. 

The two-steps method for model identification is, indeed, a necessary but not sufficient 

condition. 

A particularly important problem when it comes to model identification is the latent 

variables’ parameterization. Latent variables are, in fact, unobserved and lack of unit of 

measurement. Therefore it is necessary to fix a metrical parameterization to give sense to 
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numerical relations between latent and manifest variables. There are two mainly adopted 

criteria for this problem: 

 Assign 1 as the value of the latent variables’ variance. In this way latent variables 

result standardized. This criteria is applicable only to latent variables 𝜉, since the 

variance of 휂 is not one of the parameters that have to be estimated. 

 Assign to the latent variable the same metrical system of one of the manifest 

variables connected to it (a random one). This implies assigning 1 as the value of 

the 𝜆 that defines the relation between the latent variable and the manifest variable 

that we chose. Note that this can be valid only for one of the manifest variables 

related to the latent variable. This criteria can be applied both to variables 𝜉 and 휂. 

These two methods are equivalent and interchangeable. What is fundamental is, once one of 

the two has been chosen, keep on using it and don’t change. 

To sum up, the problem of model identification is almost always faced with the help of 

software. Nevertheless, the researcher has to be completely acknowledged of it since the 

very first phase of model specification. Using high complex models, with lots of parameters 

and paths among variables, can often let to model misspecification. For this reason, a 

highly recommended technique consists of starting from simple models and getting them 

little by little more sophisticated once the identification has been verified. 

 

 

3.6  Model fit 

 

Having estimated a model and having verified its identification, it is important to examine 

the “fit” of an estimated model to determine how well it models the data. Assessing a 

model’s fit is one of the most complicated aspects of SEM because, unlike traditional 

statistical methods, it relies on non-significance. This means that the “correctness” of a 

model cannot be tested (there might always be different models that are better than our 

one), it can only be tested its “non-falsification”. 

All measures aimed at evaluating model fit are based on the comparison between the 

sample variance-covariance matrix S and the variance-covariance matrix implied by our 

model 𝚺(�̂�) and therefore are based on the residual quantity 𝑺 − 𝚺. 
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There are different measures to assess model fit, each capturing a different element of the 

model. The most popular index used to assess goodness of fit is the 𝜒2- statistic. It is based 

on a specific T function that is function of the residual 𝑺 − 𝚺 . T distribution is a 𝜒2 with 

degrees of freedom: 

𝑑𝑓 =
1

2
(𝑝 + 𝑞)(𝑝 + 𝑞 + 1) − 𝑡 

 

Where p is the number of Y variables, q is the number of X variables, and t is the number 

of free parameters. The value of this index is confronted with the 𝜒2distribution; if the null 

hypothesis is accepted it means that the residual quantity 𝑺 − 𝚺 is enough small to be due to 

the sampling process and not to a model misspecification. 

However, the 𝜒2- statistic embodies some kind of problems. First of all it is highly 

influenced by the sample size: if the sample is large, the 𝜒2 - statistic might lead to the 

rejection of the tested model, even if it actually fits well the data. Moreover, this index is 

influenced by the distribution of the observed variables: in particular, if they have high 

kurtosis (higher than that of a normal-distributed variable), T does not distribute like a 𝜒𝑑𝑓
2 . 

To reduce the effect of sample size some researchers divide the model 𝜒2 by its degrees of 

freedom. In this case there seems to be no clear-cut guideline about what value is minimally 

acceptable; however, values between 1 and 3 are desirable as they indicate reasonable fit. 

However, given the above-mentioned problems dealing with the 𝜒2, other indices have 

been suggested. 

The Goodness of fit index (GFI) is calculated standardizing T (dividing it by its maximum 

value): 

 

𝐺𝐹𝐼 = 1 −
𝑇𝑖

max (𝑇𝑖)
 

 

It varies within the interval [0,1], where 0 means bad model fit and 1 means perfect model 

fit. GFI is easily interpretable and allows comparisons between different data, but it does 

not take into account of degrees of freedom. For this reason the Adjusted goodness of fit 

index (AGFI) has been proposed. It is defined as follows: 
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𝐴𝐺𝐹𝐼 = 1 − (
𝑘

𝑑𝑓
) (1 − 𝐺𝐹𝐼) 

 

Where df is the degrees of freedom and k is the input variances-covariances. As well as the 

GFI, the AGFI varies within [0,1]. These indices, however, have a serious drawback: their 

statistical distribution is unknown and therefore no significance tests can be accomplished. 

Another index for evaluating model fit is the Root mean squared residuals (RMR): 

 

𝑅𝑀𝑅 = √
1

𝑘
∑(𝑠𝑖𝑗 −  𝜎𝑖𝑗)

2
 

 

It provides the distance between the actual covariance matrix and the one implied by the 

model in terms of mean squared residuals. It is equal to 0 if the two matrices are identical 

and grows if the two matrices result more different. Its lower value is 0 but it does not have 

an upper limit; a standardized version of RMR (SRMR) is also used: it is calculated using 

standardized residuals and varies within [0,1]. Values of the SRMR less than 0.10 are 

generally considered favourable. Also in this case the statistical distribution is unknown. 

The RMSA (Root Mean Square Error of Approximation) is an index that takes in 

consideration both the sample size and the parsimoniousness of the model. It is: 

 

𝑅𝑀𝑆𝐸𝐴 =
√

𝑀𝑎𝑥 {𝐹𝑚𝑖𝑛 − [
𝑑𝑓

(𝑁 − 1)
] , 0}

𝑑𝑓
 

 

Where 𝐹𝑚𝑖𝑛 is the minimum possible value of the fitting function (the function that 

minimize discrepancy between S and Σ), df is the degrees of freedom, and N is the sample 

size. RMSEA estimates the amount of error approximation per model degree of freedom, 

taking sample size into account. Browne and Cudeck (1993) assessed the rules for drawing 

correct conclusions when using this index: 

• 𝑅𝑀𝑆𝐸𝐴 ≤ 0.05 indicates close approximate fit 

• 0.05 ≤ 𝑅𝑀𝑆𝐸𝐴 ≤ 0.08 suggest reasonable error of approximation 

• 𝑅𝑀𝑆𝐸𝐴 ≥ 0.08 suggests poor model fit. 
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The Comparative fit index (CFI) and the Tucker-Lewis index (TLI) are two of the most used 

indices that undergo the category of incremental indices. They assess the relative 

improvement in fit of the model compared with a baseline model, that is typically the 

independent model (also known as null model) which assumes zero covariances among the 

observed variables. A rule for the CFI is that values greater than roughly 0.90 may indicate 

reasonably good fit of the model, while for the TLI values close to 1 are signals of close 

model fit. 

In using SEM it is important to analyze not only the overall model goodness of fit, but also 

the significance of single parameters or residuals, in order to decide if some of them can be 

eliminate from the model. Parameters’ significance can be tested either with a simple t-test , 

or through the Square Multiple Correlation Coefficient (𝑅2) that show the portion of 

variance of a manifest variable explained by a specific latent variable. 

Another index useful for testing a limited part of the model is the Modification Indices 

(MI). Modification indices report the change in χ² that result from freeing fixed parameters. 

Modifications that improve model fit may be flagged as potential changes that can be made 

to the model. A high value of the MI for a certain parameter means that, if that parameter 

were freed, there would be a significant reduction of the 𝜒2 statistic. 

Another aspect worth mentioning talking about model fit regards comparing two different 

models. For comparing nested models
9
 the 𝜒2statistic can be used. As some parameters are 

fixed, the model fit to the data usually becomes progressively worse, while as parameters 

are freed, its fit to the data usually becomes progressively better. The goal is to find a 

parsimonious model that still fits the data reasonably well. To do so it is necessary to 

evaluate if the growth in the T statistic that results from the “fixing” process of certain 

parameters is significant or not. Therefore, the distribution of the 𝜒2 statistic has to be 

checked, with number of degrees of freedom equal to the difference of the degrees of 

freedom of the two parameters. 

Model comparisons can be also made through two other important indices: AIC (Akaike 

Information Criterion) and CAIC (Consistent Akaike Information Criterion). The former is 

calculated in this way: 

𝐴𝐼𝐶 = 𝑐 − 2𝑑𝑓 

                                                           
9
 Two models are nested if one is a subset of the other 
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Where c is the value of the 𝜒2 statistic and df is the degrees of freedom. The latter is 

calculated keeping into account of correlations. The best model is usually the one with 

minor AIC or CAIC. These indices can be used also to evaluate the overall model goodness 

of fit, because they can compare the actual model with the independent (all variables are 

independent each other) or with the saturated model (as many variables as many 

covariances). In addition to Akaike Information Criterion, many software provide also the 

Schwarz Criterion (SC) and the BIC Criterion. Their application is analogue to the AIC: the 

smaller the value, the better the fit. 
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Chapter 4 
 

Data description and factor analysis 

 

In this chapter, after a qualitative and quantitative description of the dataset, the items used 

for the analysis will be selected; then, some preliminary operations on data will be 

accomplished, and, finally, exploratory and confirmatory factor analysis will be carried out 

to pave the way for the future SEM model. 

 

 

4.1 Data description 

 

The dataset that has been used to accomplish our analysis is the third round of the High 

Performance Manufacturing (HPM). The first round of this project conducted by Roger G. 

Schroeder and Barbara B. Flynn started in 1989, with the purpose of collecting and 

analysing data that might explain the reasons why Japanese manufacturing companies 

(especially in the automobile market) were performing significantly better than many other 

European and American companies. In particular, researchers were interested to understand 

if copying the same set of practices/routines of the Japanese could led to the same 

performance levels. The project raised interest in many other foreign researchers that were 

willing to cooperate. Data from foreign countries were therefore collected, thus obtaining a 

broader representation of the manufacturing industrialized world. After the first round a 

second one began in 1996 and involved a sample of 165 plants in five countries: UK, USA, 

Germany, Italy and Japan (Flynn and Flynn, 2004). The third round of the HPM project 

was conducted in 2005 and collected data on a variety of manufacturing practices and 

performances. 

The unit of analysis is the manufacturing plant where lean practices and routines are 

actually implemented. The sampling process is based on a stratified sample consisting of 

traditional and high performance manufacturing plants. The list of high performance 

manufacturing plants was limited to those that had won one or more industry awards. 
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Traditional plants were randomly selected from ReferenceUSA, a large-scale online 

business database. In this way it was possible to ensure a sufficient number of high 

performing plants in the sample along with the more representative traditional plants. 

Unfortunately, it was not possible to use the same set of plants across different rounds of 

the HPM project, since some plants were closed over time and some other plants were no 

longer willing to or able to participate. Therefore, each round of the HPM survey used a 

different sample of manufacturing plants (Peng et al., 2007). 

For the third round data were collected from 2005 to 2007 from 266 manufacturing plants 

located in nine countries: Finland, USA, Japan, Germany, Sweden, South Korea, Italy, 

Austria, and Spain; and belonging to three different industries: Electronics, Machinery, 

Transportation. The distribution of plants by country and by industry is shown in Figure 

4.1. 

 

Country 
Industry  

Electronics Machinery Transportation Total 

Finland 14 6 10 30 

USA 9 11 9 29 

Japan 10 12 13 35 

Germany 9 13 19 41 

Sweden 7 10 7 24 

South Korea 10 10 11 31 

Italy 10 10 7 27 

Austria 10 7 4 21 

Spain 9 9 10 28 

Total 88 88 90 266 

  

Figure 4.1: Plants distribution by country and industry 

 

Once the plants had been identified, their participation to the survey were assured by phone 

calls and emails. Then, managers of the participating plants each appointed a research 

coordinator to serve as the link with the HPM research team. The collection of data was 

made through questionnaires that were sent to the plants along with the instructions in a 

sealed envelope. Thirteen different questionnaires were directed to 21 informants in each 
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plant (10 managers, 6 supervisors and 5 direct labours). The research coordinator 

distributed the questionnaires to the named managers and randomly selected workers and 

supervisors. In return for participating, each plant was provided with a detailed profile of its 

own manufacturing operations and benchmark data in its industry. With this approach, the 

third round of the HPM project yielded a response rate of 65% (Peng et al., 2007). 

The questionnaires were divided in different areas, each regarding a specific lean technique, 

or a specific performance. The areas in which the questionnaires were divided are: 

 Environment 

 Supply chain 

 Human resources 

 Improvement 

 Information system/ Information technology 

 Just In Time 

 Manufacturing strategy 

 Performance 

 Quality 

 Total Productive Maintenance 

 Technology 

 New product development. 

 

 

4.2  Exploratory data analysis 

 

Before going into the analysis of the questionnaires and their relative items, it is necessary 

to have a look at the sample distribution. In this paragraph we will examine the main 

characteristics of the respondent plants, such as their dimensions, the countries where they 

are located, the industry they belong to. This outlook derives from the fact that many 

researchers have always very clearly underlined the importance of some environmental 

variables (like the ones we have listed above) in the study of lean techniques within firms, 

and, in particular, in the analysis of the effects that such techniques lead to. 

Let’s then proceed with an exploratory analysis of the sample. The first variable we have to 

take into account is, of course, the country. Data are collected from 266 plants located in 9 
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different countries spread all over the world. We can see the distribution of plants by 

country in the histogram in figure 4.2: the country that is more represented in the survey is 

Germany (41 plants), followed by Japan (35) and South Korea (31). On the other side, the 

country with the lowest number of plants is Austria (21). Unfortunately, we are not able to 

assess which is the country with the highest response rate, since the number of initial 

questionnaires that have been sent is unknown. 

 

 

Figure 4.2: Plants distribution by country 

 

For what regards the type of industry, the overall situation looks very homogenous: the 

number of plants of the three sectors (electronics, machinery, transportation) is almost the 

same (88 for electronics and machinery, 90 for transportation) (Figure 4.3). 

 

 

Figure 4.3: Plants distribution by industry 
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Nevertheless, if we look at the plant distribution both by industry and by country, the 

situation looks far less homogenous, and there are considerable differences in the number 

of plants among countries (Figure 4.4). The electronic sector is most highly represented by 

Finnish plants, while machinery and transportation sectors are more represented in 

Germany. A remarkably high number of machinery and transportation plants can be seen 

also for Japan. 

 

 

Figure 4.4: Plants distribution by country and by industry 

 

After analysing the country and the industry of the plants of our sample, we should focus 

on other variables that are important in describing the sample and that significantly 

influence the adoption of lean techniques. One of these is, for sure, plant dimension. This 

variable has been studied by looking at the number of employees of every plant. All firms 

have been categorized in three groups: 

 Small-sized plants: those with less than 250 employees; 

 Medium-sized plants: those with a number of employees between 250 and 1000; 

 Large-sized plants: those with more than 1000 employees. 

 

As we can see in Figure 4.5 the majority of the plants is medium-sized (40% of the 

sample), whereas there is an 18% of plants that didn’t provide this data. 
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Figure 4.5: Plants distribution by dimensions 

 

In Figure 4.6 and 4.7 there is plants distribution respectively by dimensions and country, 

and by dimensions and industry, thus allowing comparisons between different countries and 

industries. Note that large firms are located mostly in Japan and South Korea, medium 

firms are mostly in Germany and USA, while small firms in some European countries like 

Finland and Italy. For what regards industries, there seems to be no clear distinction: in 

each of the three industries large, medium and small plants coexist. 

  

Figure 4.6: Plants distribution by dimensions and country         Figure 4.7: Plants distribution by dimensions and industry 

 

Finally, let’s end our descriptive analysis analysing the variable “age”. This variable has 

been calculated as: year of questionnaire filling minus year of firm foundation; and firms 

have been divided in three categories: 

 Young plants: those less than 10 years old; 

 Adolescent plants: those between 10 and 20 years old; 

 Adult plants: those more than 20 years old. 
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The majority of the plants (64%) of our sample have been founded more than 20 years ago, 

whereas adolescent and young plants represent only the 12% and 8% respectively. Also in 

this case, there is a significant share of the sample that didn’t provide this piece of 

information in the questionnaire (16%). 

 

 

Figure 4.8: Plants distribution by age 

 

If we look at the plants’ age by country and industry (Figure 4.9, 4.10) we can see that the 

oldest plants are located in Germany and Japan, while the youngest ones in Italy and Spain; 

for the industry we have that the oldest plants are those of the machinery sector, while the 

youngest belong to the electronic sector, although these distinctions do not emerge very 

clearly. 

 

Figure 4.9: Plants distribution by age and country  Figure 4.10: Plants distribution by age and industry 
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4.3 Item selection 

 

The HPM dataset consists of a large series of items, given to 266 different firms. Although 

some of these items are in the form of multiple-choice or open questions, the major part are 

in the form of a seven-level Likert scale (or five-level, sometimes) and these kinds of 

variables are more interesting to us, given the purpose of our research. The answers of the 

items vary from 1 to 7, where 1 means a very low level of application of the specific 

technique (or high disagreement with the sentence of the item) and 7 means very high level 

of application of that technique (or complete agreement with the sentence of the item). 

However, some of the items in the dataset don’t follow this pattern, but the opposite  one: 

they are, therefore, reverse-scale items. In these cases the value 1 corresponds to a high 

level of application of that technique, whereas 7 means a low level of application. 

Fortunately, as we will see later, among the items that have been selected to conduct our 

analysis there are no reverse-scale items. If some had been, we would have to make a 

conversion, in order to allow reasonable comparisons between normal and reverse-scale 

items. 

While the sample size is not considerably big (266 plants), the number of variables that 

have been drawn from the questionnaires is huge. The HPM project provides information 

about a massive amount of plant details and techniques, especially lean techniques: from 

Kanban system to JIT, from TPM to Poka-Joke, and so on. Basically every lean technique 

that was discussed in the first and second chapters appears in the questionnaire. The reason 

why the HPM project goes so much into the application of lean techniques is that the aim of 

the project itself is to describe the diffusion of the “lean thinking” among companies all 

over the world. To do this, the HPM researchers have adopted a multidimensional 

approach, analysing all the possible fields in which lean philosophy is rooted. We don’t 

have to forget, in fact, that a powerful impulse for the success of lean techniques comes 

from the synergetic interplay among different bundles of activities. 

With such a high level of variables and a relative small sample size, it was not possible to 

keep into account all the items, but we needed to do a selection. In particular, we needed to 

select those items that were strictly related to improvement (and its related routines: process 

management, leadership involvement, and continuous improvement) and to the elements of 

the improvement infrastructure: Purpose, Process, and People. The items were selected 
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based on a review of the relevant literature pertaining to manufacturing routines for 

improvement and its infrastructure (Peng et al., 2007). 

So, starting from the complete list of the items, we have selected 13 items that represent in 

the best way the notion of improvement (and its relative routines). The same procedure was 

adopted to extract the 29 items of the improvement infrastructure model; in particular, 8 

items have been selected for the category “Purpose”, 12 items for the category “Process” 

and 9 for the category “People”. The complete scheme of the selected items is shown in 

Figure 4.11 and 4.12 below. Note that the 42 items, in total, that have been extracted 

(13+29) still represent a too big amount of variables; however, in the exploratory factor 

analysis and, most of all, in the confirmatory factor analysis, the number of items will be 

further reduced to improve model fit, as we will see later. 

 

IM
P

R
O

V
E

M
E

N
T

 

Code 
Database 

code 
Item Description 

Meta-

routine 

A QSPSN06 
Statistical techniques to reduce 

process variance 

We make extensive use of statistical techniques to reduce variance 

in processes 

P
ro

cess m
a

n
a

g
em

en
t 

(P
M

) 

B QSPSN03 Statistical quality control 
A large percent of the processes on the shop floor are currently 

under statistical quality control. 

C QSPSN08 Use of control charts 
We use charts to determine whether our manufacturing processes 

are in control 

D QSPSN09 Statistical Process Control (SPC) We monitor our processes using statistical process control 

E QSTPN02 

provide personal leadership for 

quality products and quality 

improvement 

Plant management provides personal leadership for quality 

products and quality improvement 

L
ea

d
ersh

ip
 in

vo
lvem

en
t (L

I) 

F QSTPN06 
Creation and communication of a 

vision of quality improvement 

Our plant management creates and communicates a vision focused 

on quality improvement. 

G QSTPN07 
Management involved in quality 

improvement projects 

Our plant management is personally involved in quality 

improvement projects 

H QSTPN01 
Department heads responsible for 

quality 

All major department heads within the plant accept their 

responsibility for quality 

I TSEIN05 Continued learning and improvement 
We search for continued learning and improvement, after the 

installation of new equipment 

C
o

n
tin

u
o

u
s im

p
ro

vem
en

t (C
I) 

J QSVIN03 Performance as a moving target 
Continuous improvement makes our performance a moving target, 

which is difficult for competitors to attack 

K QSVIN04 Incremental improvement 
We believe that improvement of a process is never complete; there 

is always room for more incremental improvement 

L QSVIN05 Continuous improvement 
Our organization is not a static entity, but engages in dynamically 

changing itself to better serve its customers 

M QSVIN01 Dynamic approach 
We strive to continually improve all aspects of products and 

processes, rather than taking a static approach. 

Figure 4.11: Selected items for improvement (and its meta-routines) 
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 Code Database code Item Description 

P
U

R
P

O
S

E
 

Z SSCSN04 Long-run strategy I understand the long-run competitive strategy of this 

plant 

AA SSCSN01 Communicate strategy In our plant, goals, objectives, and strategies are 

communicated to me. 

AB SSR3N04 Investments consistent with strategy Potential manufacturing investments are screened for 

consistency with our business strategy. 

AC SSR3N05 Manufacturing consistent with strategy At our plant, manufacturing is kept in step with our 

business strategy. 

AD SSVLN03 Long-run focus 

We believe that focusing on the distant future will lead 

to better overall performance than worrying about 

short-term goals. 

AE SSFPN04 Strategic plan reviewed and updated Plant management routinely reviews and updates a 
long-range strategic plan 

AF SSINN05 Functions interaction Our plant’s functions work interactively with each 

other. 

AG SSINN02 Functions cooperation The functions in our plant cooperate to solve conflicts 
between them, when they arise. 

P
R

O
C

E
S

S
 

AH HSFLN01 Flat organization Our organization structure is relatively flat. 

AI HSHAR03 Freedom in decision-making This plant is a good place for a person who likes to 
make his own decisions. 

AJ HSVCN02 Employees cooperation 

We encourage employees to work together to achieve 

common goals, rather than encourage competition 

among individuals 

AK HSDMN02 Communication among departments Departments in the plant communicate frequently with 

each other 

AL HSTMN03 Team creation Our plant forms teams to solve problems. 

AM HSTMN09 Team for problem-solving Employee teams are encouraged to try to solve their 

own problems as much as possible 

AN HSVFN05 Management based on facts In this organization, management is based on facts, 
not on intuition or tradition 

AO HSESN02 Encouraging suggestions for improvement We are encouraged to make suggestions for improving 

performance at this plant. 

AP HSIFN02 Ideas exchanging Our supervisors encourage the people who work for 
them to exchange opinions and ideas 

AQ HSIFN01 Encouragement to work as a team Our supervisors encourage the people who work for 

them to work as a team. 

AR SSLFN01 Importance of inter-functional relationships Our top management emphasizes the importance of 
good inter-functional relationships 

AS SSLFN03 Encouraging communication We are encouraged to communicate well with 

different functions in this plant. 

P
E

O
P

L
E

 
AT HSTWN011 Multiple-tasks training Our employees receive training to perform multiple 

tasks. 

AU HSMFN03 Cross-training Employees are cross-trained at this plant so that they 

can fill in for others, if necessary 

AV HSPCN03 Reward people contribution Our reward system really recognizes the people who 
contribute the most to our plant 

AW HSPCN02 Reward accomplished objectives The incentive system at this plant is fair at rewarding 

people who accomplish plant objectives. 

AX HSPCN04 Incentives for reaching plant goals The incentive system at this plant encourages us to 
reach plant goals. 

AY HSPCN01 Incentives for pursuing plant goals Our incentive system encourages us to vigorously 

pursue plant objectives. 

AZ HSTWN08 Importance of training 
Management at this plant believes that continual 

training and upgrading of employee skills is 

important. 

BA HSTWN10 Continuous training Our employees regularly receive training to improve 
their skills. 

BB HSVFN03 Better decisions after training Our employees will make better decisions if they are 

trained in data gathering and analysis 

 

Figure 4.12: Selected items for Purpose, Process, and People 
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In the tables above, under the name “code” there are the letters that identify the different 

items, and represent the identification system that we will use from now on for our 

research; under the name “Database code” there is the identification code as it appears in 

the Codebook of the dataset; under the label “item” there is the title of the item, while under 

the label “description” there is the sentence of each item as it appears in the original 

questionnaire. Finally, for the part regarding improvement, there is also, on the very right, a 

column that identifies the meta-routines of improvement, that is a bundle of different 

routines that derives from the general notion of improvement, and includes groups of 

different items. In particular they are: Process Management (PM), Leadership Involvement 

(LI), ad Continuous Improvement (CI) (see Chapter 2). 

 

 

4.4 Preliminary data analysis 

 

Before starting doing any kind of analysis regarding Structural Equation Modeling, it is 

important to check the validity of the data matrix, searching possible out-range or missing 

values. 

While, for the items that were chosen for our research, there is no trace of out-range values 

(every value is within the interval [1,7]), some missing values have been detected for 16 

items. To solve this problem two possible solutions are applicable: the elimination of the 

statistical unit (the plant, in our case) in which missing values are detected, or the 

imputation of a plausible value. Since our sample size is not too large, the former solution 

seems little desirable; we, therefore, chose to adopt the technique of imputation. Since the 

data matrix at our disposal shows a structure divided by country, and since this variable 

seems to significantly impact on the effect of lean techniques adoption, we chose to 

substitute the missing values with the conditional mean by country, in case it is 

significantly different from the general mean.  

We have therefore listed, in Figure 4.13, the variables in which one or more missing values 

have been detected, and, for each of them, the conditional means by country and the general 

mean have been calculated for each variable. Then, the values of the F test (for the analysis 

of the difference of the conditional means) are shown, along with the degrees of freedom. 
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V
a
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Ite
m

 

F
IN

 

U
S

A
 

JP
N

 

G
E

R
 

S
W

E
 

K
O

R
 

IT
L

 

A
U

T
 

S
P

A
 

T
O

T
 

O
b

serv
atio

n
s 

F-

test 
df p-value 

Z 
Long-run 

strategy 
5,86 5,25 5,23 5,40 5,42 5,35 4,82 5,64 5,38 5,37 265 4,19 (8;256) 0,0001 

AB 

Investments 

consistent with 

strategy 

5,97 5,54 5,84 5,90 5,62 5,49 5,79 6,36 5,96 5,82 263 3,61 (8;254) 0,0005 

AC 

Manufacturing 

consistent with 

strategy 

5,67 5,14 5,82 5,50 5,03 5,40 5,69 5,75 5,68 5,53 264 3,91 (8;255) 0,0002 

AD Long-run focus 4,72 4,05 4,77 4,64 5,75 5,33 4,70 5,06 4,79 4,83 264 8,05 (8;255) 0,000 

AE 

Strategic plan 

reviewed and 

updated 

5,41 5,41 5,26 5,41 5,41 5,60 5,17 5,71 5,41 5,41 99 1,66 (3;95) 0,1816 

AF 
Functions 

interaction 
5,45 5,61 5,81 5,14 5,04 5,44 5,51 5,59 5,62 5,46 264 3,76 (8;255) 0,0004 

AG 
Functions 

cooperation 
5,43 5,43 5,68 5,76 5,34 5,30 5,39 5,73 5,72 5,54 264 2,35 (8;255) 0,0187 

AJ 
Employees 

cooperation 
5,86 5,93 5,73 5,98 6,03 5,51 5,70 6,15 5,77 5,84 265 3,43 (8;256) 0,0009 

AK 

Communication 

among 

departments 

5,53 5,36 5,12 5,42 5,58 5,37 5,15 5,63 5,35 5,38 265 1,67 (8;256) 0,1075 

AN 
Management 

based on facts 
5,40 5,40 5,29 5,78 4,96 5,22 5,15 5,47 5,59 5,39 261 2,43 (8;252) 0,0151 

AO 

Encouraging 

suggestions for 

improvement 

5,58 5,81 5,76 5,55 5,45 5,59 4,77 5,53 5,32 5,50 265 5,6 (8;256) 0,000 

AP 
Ideas 

exchanging 
5,19 5,51 5,47 5,48 5,72 5,17 4,83 5,66 5,30 5,36 265 5,58 (8;256) 0,0000 

AQ 

Encouragement 

to work as a 

team 

5,22 5,70 5,35 5,41 5,80 5,32 4,95 5,53 5,47 5,40 265 3,54 (8;256) 0,0007 

AR 

Importance of 

inter-functional 

relationships 

5,58 5,52 5,62 5,84 5,58 5,67 5,49 5,99 5,72 5,67 264 1,1 (8;255) 0,3635 

AS 
Encouraging 

communication 
5,23 5,78 5,67 5,63 5,50 5,38 5,61 5,56 5,74 5,57 264 1,57 (8;255) 0,1334 

BB 
Better decisions 

after training 
6,05 6,04 5,10 4,71 5,21 5,56 5,78 4,87 5,71 5,42 258 9,6 (8;249) 0,000 

 

Figure 4.13: F-test for evaluating the significant difference of conditional means by country 
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For those items where the F-test suggested that conditional means by country were 

significantly different, at 0.05 level, from the general mean, the missing values were 

substituted with the conditional mean (not-enlightened p-values in the table); while, if 

conditional means were not significantly different from the general mean, missing values of 

that item were substituted with the general mean (enlighten p-values in the table). 

At this point, a further observation has to be made. Table 4.13 reports also the number of 

observations for every variable where missing values have been detected. While for the 

majority of these variables, the number of observation is little less than 266 (meaning a 

restricted number of missing values), there is one variable where observations are too little: 

for variable AE (“Strategic plan reviewed and updated”) the number of observation is only 

99. This means that there are 167 missing values, so the number of missing values is much 

bigger than the number of observations. It looks obvious, then, that such a variable, with 

such a high number of missing data, is useless for any kind of statistical analysis. By 

substituting missing values with the general mean, the outcomes would be that for almost 

every plant the value of the variable AE would be pretty much the same (equal to the 

average value of the 99 data). Therefore, it was immediately decided to drop this variable 

from the dataset, and focusing on the remaining variables. 

After “cleaning” the data matrix, we started looking at the main summary and descriptive 

statistics for the variables in question. In Tables 4.14 and 4.15 mean, median, standard 

deviation, minimum value, maximum value, skewness and kurtosis were calculated for 

each variable, both for Improvement and for Purpose-Process-People. 
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 Variable Item Mean Median Std. Dev. Min Max Skewness Kurtosis 

IM
P

R
O

V
E

M
E

N
T

 

A 

Statistical techniques to reduce 

process variance 
4,50 4,51 1,07 2 7 -0,07 2,47 

B Statistical quality control 4,75 4,895 1,16 1,73 6,93 -0,36 2,48 

C Use of control charts 4,83 5 1,08 1,93 6,9 -0,43 2,73 

D 

Statistical Process Control 

(SPC) 
4,72 4,73 1,21 1,67 6,96 -0,40 2,54 

E 

provide personal leadership for 

quality products and quality 

improvement 

5,69 5,67 0,73 3,67 7 -0,37 2,74 

F 

Creation and communication of 

a vision of quality improvement 
5,56 5,67 0,87 3 7 -0,72 3,26 

G 

Management involved in 

quality improvement projects 
5,67 5,67 0,79 2,33 7 -0,80 3,97 

H 

Department heads responsible 

for quality 
5,83 6 0,74 3 7 -0,80 3,72 

I 

Continued learning and 

improvement 
5,51 5,53 0,71 3 7 -0,42 3,03 

J Performance as a moving target 5,22 5,395 0,88 2,63 6,92 -0,69 2,98 

K Incremental improvement 6,09 6,155 0,50 4 7 -0,87 4,42 

L Continuous improvement 5,47 5,5 0,64 3,58 7 -0,22 2,64 

M Dynamic approach 5,51 5,6 0,69 3,27 7 -0,47 3,08 

 

Figure 4.14: Summary and descriptive statistics for items of the category Improvement 
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 Variable Item Mean Median Std. Dev. Min Max Skewness Kurtosis 

P
U

R
P

O
S

E
 

Z Long-run strategy 5,37 5,42 0,77 1,94 6,88 -0,77 4,37 

AA Communicate strategy 5,58 5,67 0,76 2,67 7 -0,79 3,71 

AB 

Investments consistent with 

strategy 
5,82 6,00 0,72 3,33 7 -0,85 3,53 

AC 

Manufacturing consistent 

with strategy 
5,53 5,67 0,76 3,33 7 -0,63 3,18 

AD Long-run focus 4,84 5,00 0,95 2 7 -0,39 3 

AF Functions interaction 5,46 5,67 0,72 2,67 7 -0,69 3,85 

AG Functions cooperation 5,54 5,67 0,68 3,33 7 -0,54 3,38 

P
R

O
C

E
S

S
 

AH Flat organization 4,62 4,60 1,02 2 7 0,03 2,48 

AI Freedom in decision-making 3,60 3,58 0,72 1 5,89 -0,17 3,53 

AJ Employees cooperation 5,84 5,92 0,57 3,89 7 -0,69 4 

AK 

Communication among 

departments 
5,38 5,50 0,72 3 7 -0,45 3,32 

AL Team creation 5,24 5,37 0,90 1,33 7 -0,71 3,64 

AM Team for problem-solving 5,11 5,15 0,76 3,21 7 -0,10 2,77 

AN Management based on facts 5,38 5,50 0,88 2 7 -0,83 4,29 

AO 

Encouraging suggestions for 

improvement 
5,50 5,67 0,73 3,11 7 -0,75 3,36 

AP Ideas exchanging 5,36 5,40 0,64 3,67 6,9 -0,25 2,56 

AQ 

Encouragement to work as a 

team 
5,41 5,44 0,71 2,67 6,87 -0,63 3,85 

AR 

Importance of inter-functional 

relationships 
5,67 5,67 0,79 2,33 7 -0,84 4,3 

AS Encouraging communication 5,57 5,67 0,77 3 7 -0,92 4,18 

P
E

O
P

L
E

 

AT Multiple-tasks training 5,21 5,33 0,82 2,67 7 -0,42 3,16 

AU Cross-training 5,20 5,33 0,75 2,5 7 -0,61 3,54 

AV Reward people contribution 4,12 4,20 1,08 1 7 -0,27 2,72 

AW 

Reward accomplished 

objectives 
4,35 4,50 1,11 1 7 -0,49 3,22 

AX 

Incentives for reaching plant 

goals 
4,46 4,60 1,14 1 7 -0,46 3,07 

AY 

Incentives for pursuing plant 

goals 
4,36 4,42 1,15 1 7 -0,24 2,94 

AZ Importance of training 5,72 5,78 0,73 2,67 7 -0,89 4,02 

BA Continuous training 4,98 5,00 0,88 2,67 7 -0,28 2,61 

BB Better decisions after training 5,43 5,50 0,98 2 7 -0,76 3,7 

 

Figure 4.15: Summary and descriptive statistics for items of the categories Purpose, Process, People 
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We can immediately observe that for almost every variable, in both of the two groups, the 

average values, as well as the medians, are higher than the average values of a generic 7-

levels Likert scale (that is 4). This fact means that, in the manufacturing firms of our 

sample, the lean techniques that the items refer to are strongly embraced. 

Finally, in order to allow reasonable comparisons among different items and to avoid that 

different average values or levels of variability could lead to misleading conclusions, every 

variable was standardized. The standardization process that was adopted consists of a two-

stages standardization: 

 A first standardization made by country: every value was standardized using mean 

and standard error of the country the specific item referred to: 

 

𝑊𝑖𝑗 =
𝑋𝑖𝑗 − 𝑋𝐶

𝑗

𝜎𝐶
𝑗

 

 

In this formula 𝑋𝑖𝑗 is the single value that plant i (i =1,…,266) assigned to the item j 

(j=1,…,54), 𝑋𝐶
𝑗  is the conditional expected value of the item j calculated considering just 

the plants located in the same country as plant i, while 𝜎𝐶
𝑗  is the standard deviation of the 

item j calculated considering just the plants located in the same country as plant i. 

 A second standardization by industry: the values of the first standardization were 

further standardized using mean and standard error of the industry the specific item 

referred to: 

𝑍𝑖𝑗 =
𝑊𝑖𝑗 − 𝑋𝐼

𝑗

𝜎𝐼
𝑗

 

In this formula 𝑊𝑖𝑗 is the value of plant i and item j after the first standardization, 𝑋𝐼
𝑗 is the 

conditional expected value of the item j calculated considering just the plants of the same 

industry as plant i, while 𝜎𝐼
𝑗  is the standard deviation of the item j calculated considering 

just the plants of the same industry as plant i. 

In Figure 4.16 and 4.17 we can have a look at the descriptive statistics of the variables after 

the two-stages standardization. 
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 Variable Item Mean Median Std. Dev. Min Max Skewness Kurtosis 

IM
P

R
O

V
E

M
E

N
T

 

A 

Statistical techniques to reduce 

process variance 
0,00 -0,02 1,00 -2,69 2,48 -0,04 2,43 

B Statistical quality control 0,00 0,01 1,00 -2,75 2,24 -0,24 2,62 

C Use of control charts 0,00 0,02 1,00 -3,36 2,31 -0,51 3,06 

D 

Statistical Process Control 

(SPC) 
0,00 0,12 1,00 -2,71 2,12 -0,32 2,50 

E 

provide personal leadership for 

quality products and quality 

improvement 

0,00 0,06 1,00 -3,19 2,02 -0,34 2,66 

F 

Creation and communication of 

a vision of quality improvement 
0,00 0,19 1,00 -2,93 1,85 -0,65 2,90 

G 

Management involved in 

quality improvement projects 
0,00 0,13 1,00 -3,79 2,20 -0,57 3,56 

H 

Department heads responsible 

for quality 
0,00 0,14 1,00 -2,80 2,17 -0,50 2,99 

I 

Continued learning and 

improvement 
0,00 0,12 1,00 -2,79 2,18 -0,42 2,78 

J Performance as a moving target 0,00 0,19 1,00 -3,04 2,35 -0,33 2,92 

K Incremental improvement 0,00 0,14 1,00 -3,13 1,85 -0,74 3,22 

L Continuous improvement 0,00 0,11 1,00 -3,04 2,57 -0,32 2,93 

M Dynamic approach 0,00 0,05 1,00 -2,79 2,47 -0,22 2,76 

 

Figure 4.16: Summary and descriptive statistics for standardized variables of the category Improvement 
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 Variable Item Mean Median Std. Dev. Min Max Skewness Kurtosis 

P
U

R
P

O
S

E
 

Z Long-run strategy 0,00 0,09 1,00 -3,75 3,04 -0,60 3,68 

AA Communicate strategy 0,00 0,23 1,00 -3,73 2,42 -0,77 3,70 

AB 

Investments consistent with 

strategy 
0,00 0,11 1,00 -3,03 1,86 -0,63 3,05 

AC 

Manufacturing consistent 

with strategy 
0,00 0,09 1,00 -3,03 2,45 -0,32 2.99 

AD Long-run focus 0,00 -0,02 1,00 -3,01 2,61 -0,30 2,84 

AF Functions interaction 0,00 0,08 1,00 -3,24 2,60 -0,36 3,09 

AG Functions cooperation 0,00 0,04 1,00 -3,18 2,32 -0,46 3,18 

P
R

O
C

E
S

S
 

AH Flat organization 0,00 0,03 1,00 -2,42 2,69 0,00 2,68 

AI Freedom in decision-making 0,00 0,04 1,00 -3,51 2,98 -0,32 3,37 

AJ Employees cooperation 0,00 0,13 1,00 -3,06 2,82 -0,59 3,23 

AK 

Communication among 

departments 
0,00 0,04 1,00 -3,15 2,50 -0,39 3,03 

AL Team creation 0,00 0,04 1,00 -3,66 2,08 -0,59 3,31 

AM Team for problem-solving 0,00 0,13 1,00 -2,70 2,26 -0,24 2,61 

AN Management based on facts 0,00 0,19 1,00 -3,45 2,81 -0,69 3,71 

AO 

Encouraging suggestions for 

improvement 
0,00 0,14 1,00 -3,04 2,16 -0,41 2,80 

AP Ideas exchanging 0,00 0,01 1,00 -2,60 2,67 -0,13 2,38 

AQ 

Encouragement to work as a 

team 
0,00 0,02 1,00 -2,94 2,22 -0,39 3,01 

AR 

Importance of inter-functional 

relationships 
0,00 0,11 1,00 -3,26 2,04 -0,64 3,31 

AS Encouraging communication 0,00 0,16 1,00 -3,36 2,12 -0,78 3,61 

P
E

O
P

L
E

 

AT Multiple-tasks training 0,00 0,08 1,00 -3,06 2,23 -0,41 3,07 

AU Cross-training 0,00 0,15 1,00 -2,66 2,34 -0,44 2,66 

AV Reward people contribution 0,00 0,00 1,00 -2,72 2,26 -0,15 2,61 

AW 

Reward accomplished 

objectives 
0,00 0,07 1,00 -3,00 2,08 -0,34 2,66 

AX 

Incentives for reaching plant 

goals 
0,00 0,01 1,00 -2,90 2,08 -0,19 2,51 

AY 

Incentives for pursuing plant 

goals 
0,00 -0,02 1,00 -2,98 2,39 -0,10 2,55 

AZ Importance of training 0,00 0,18 1,00 -3,12 1,84 -0,64 3,07 

BA Continuous training 0,00 -0,01 1,00 -2,86 2,21 -0,32 2,62 

BB Better decisions after training 0,00 0,13 1,00 -3,06 2,13 -0,50 2,91 

 

Figure 4.17: Summary and descriptive statistics for standardized variables of the categories Purpose, Process, People 
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4.5 Exploratory factor analysis 

 

What has been done in the last two paragraphs of this chapter was to reduce the massive 

amount of variables of the dataset to come to a smaller and easier-to-manage set of 

variables. Each of these variables, that, as we’ve already said, are nothing but the items of 

the questionnaire of the HPM project, represents a specific lean technique, or even an 

aspect of a technique. Although, of course, there are not two or more items that are exactly 

equal one another or that measure exactly the same aspect of a lean technique, there are 

many items that are strictly related each other. Indeed, the structure of the questionnaires of 

the HPM project is made in a way that, for one lean technique, more than one items are 

needed. It looks reasonable, therefore, to group these items under one larger construct that 

comprehends them. Moreover, even if there are items that measure two different lean 

techniques, in many cases adopting one lean technique intrinsically implies adopting 

another one. We, therefore, need to create these bundles of lean activities in order to keep 

into account of those techniques that are strictly related one another and that it’s likely they 

will be adopted together within the firm. This idea of grouping different activities (or 

aspects of the same activity) into one or more larger constructs perfectly fits into the notion 

of capability as a bundle of interrelated routines, that we have been discussing in the second 

chapter. Thanks to this process, it is possible to reduce the 41 variables at our disposal and 

come to a significantly smaller number of elements that will be helpful to provide 

significance to the statistical model that will be examined. 

As the reader might have noticed, this item-grouping process has already taken place. 

Selecting the two groups of items, in fact, they have been divided into respectively: the 

three elements of Continuous Improvement infrastructure (Purpose, Process, and People) 

and into the three meta-routine of Improvement (Process Management, Leadership 

Involvement, and Continuous Improvement) (see Figure 4.11 and 4.12). As it was 

explained in the second chapter, the three elements of CI infrastructure consist of: 

 

 Purpose: it covers the formulation and communication of organizational and 

project goals for CI, translating the overall organization strategy into smaller 

operational goal and supporting decentralized sub-goals determination; 
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 Process: regards the adoption of uniform methods for the discovery and execution 

of continuous improvement initiatives at process level (modify and correct 

processes, focus on value-adding activities, …); 

 People: comprehends those practices that facilitate organizational learning through 

individual learning. 

 

While the three meta-routines underlying Improvement consist of: 

 

 Process Management: involves efforts to map and improve organizational processes 

through cost reduction and more efficiency; 

 Leadership Involvement: aims at stimulating improvement capabilities through 

leadership involvement at all levels of the organization, motivating employees’ 

participation in improvement activities; 

 Continuous Improvement: refers to sustained incremental improvements of existing 

products/processes, modifying and refining them. 

 

However, allocating items to these categories, we based purely on theory, in particular on a 

review of the relevant literature about improvement initiatives and CI infrastructures. What 

we need to do now is to check if the data provided by the questionnaires of the HPM 

project fits this theoretical structure. We, therefore, need to set off a factor analysis (first 

exploratory and then confirmatory) to assess if the item division that our literature suggests 

is confirmed by data at our disposal. 

In the exploratory factor analysis we take the 13 items regarding improvement and the 28 

items regarding its infrastructural elements and try to explore if there could be one or more 

latent (i.e. not measured) factors that can summarize them, thus coming to a more 

parsimonious model. In this step, no assumptions are made on the number of these factors 

or the strength of the relations with the measured items.  

What we expect to find out, is that: 

- The group of 28 items could be summarized by 3 latent factors, corresponding to 

the Purpose-Process-People groups; 
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- The group of 13 items could be summarized by 3 latent factors, corresponding to 

the three meta-routines of Improvement: Process Management, Leadership 

Involvement, and Continuous Improvement. 

 

 

4.5.1 Purpose, Process, People 

 

Starting from the 28 items of the CI infrastructure, the first step to take is to calculate the 

variance-covariance matrix of these variables. In this matrix (displayed in Appendix A1) 

we can detect some high correlation values, especially for those items that should be 

grouped under the same construct. 

Afterwards, it is time to estimate a factor analysis model for the variables in question
10

, 

using the maximization method of Maximum Likelihood. If no restrictions on the 

maximum number of factors are set, the software automatically adjusts it to 20 factors. 

Nevertheless, in our case, a factor analysis model with so many factors is not valid: 20 

factors are actually too many to extract, and the size of the sample does not justifies such a 

big number. This fact, that often led to some kind of estimation problems, is quite frequent 

in factor analysis estimation procedures, and goes under the name of Heywood Case
11

. 

Therefore, to overcome this problem, a factor analysis model has been estimated fixing the 

maximum number of factors to 5. The output of the software is displayed below. 

 

                                                           
10

 For the exploratory and confirmatory factor analysis, as well as for all the future analysis regarding SEM, 

the software that has been used is Stata (12). 
11

 Technically, a Heywood case occurs in factor analysis when the iterative maximum likelihood estimation 

method converges to variance values that are less than a prefixed lower bound value, for example less than 

zero, or correlation estimates greater than 1 in absolute value. 
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The first column of the table shows the eigenvalues of the five factors, the second column 

the difference between each eigenvalue and the previous one, the third shows the 

proportion on the sum of the eigenvalues, and the last one the cumulative sum of 

eigenvalues. Obviously, Stata provides also the table of the factor loadings; however, in this 

phase it is not interesting to us, first because factors are still unrotated (and therefore  

uninterpretable), and also because we want first to understand which is the most appropriate 

number of factors to use; after this, the table of the (rotated) factor loadings will be 

discussed. So, how many factors? To answer this question, statistical literature provides a 

series of criterion, that can be used along with some a-priori theoretical hypothesis on the 

topic under analysis. One of the most used is the Kaiser criterion: it assesses that the 

appropriate number of factors to be retained is equal to the number of factors whose 

eigenvalues are greater than 1. In this case, we have that for the first three factors 

eigenvalues are greater than 1 (9.15, 1.84, 1.51), while for the fourth and fifth factors 

eigenvalues are smaller than 1 (0.84, 0.50). Therefore, Kaiser Criterion suggests that the 

number of factors should be 3.  

It was then estimated a factor model fixing the maximum number of factors to 4, but no 

relevant differences with the previous case with 5 factors were spotted. Kaiser Criterion 

still suggests 3 factors, and the values of the eigenvalues are quite equal to the previous 

ones. The outcome is displayed here below. 

 

    LR test:   5 factors vs. saturated: chi2(248) =  406.12 Prob>chi2 = 0.0000

    LR test: independent vs. saturated: chi2(378) = 3709.65 Prob>chi2 = 0.0000

                                                                              

        Factor5         0.50395            .            0.0364       1.0000

        Factor4         0.84168      0.33773            0.0608       0.9636

        Factor3         1.51208      0.67040            0.1092       0.9028

        Factor2         1.84474      0.33267            0.1332       0.7936

        Factor1         9.14634      7.30160            0.6604       0.6604

                                                                              

         Factor      Eigenvalue   Difference        Proportion   Cumulative

                                                                              

    Log likelihood = -213.9192                     (Akaike's) AIC   =  687.838

                                                   Schwarz's BIC    =  1153.69

    Rotation: (unrotated)                          Number of params =      130

    Method: maximum likelihood                     Retained factors =        5

Factor analysis/correlation                        Number of obs    =      266
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It was, then, estimated another factor model with the constraint of having not more than 3 

factors, and again all of them show eigenvalues greater than 1. The outcome is displayed 

below. 

 

 

Another decision criterion that can be taken into account while choosing the number of 

factors is the scree plot of eigenvalues. It consists of representing in a graph of Cartesian 

axis the factors and their respective eigenvalues: on the Y axis there are the eigenvalues of 

the factors, and on the X axis their order of extraction. Connecting the dots of the graph, a 

line will appear. The scree plot criterion assesses that the appropriate number of factors 

should be the one in correspondence of which the line starts becoming flat, almost parallel 

to the horizontal axis (Bracalente et al., 2009). In Figure 4.18 the scree plot of eigenvalues 

(with no restrictions on the maximum number of factors) is displayed: it can be observed 

    LR test:   4 factors vs. saturated: chi2(272) =  494.48 Prob>chi2 = 0.0000

    LR test: independent vs. saturated: chi2(378) = 3709.65 Prob>chi2 = 0.0000

                                                                              

        Factor4         0.83987            .            0.0633       1.0000

        Factor3         1.47462      0.63475            0.1111       0.9367

        Factor2         1.84160      0.36698            0.1388       0.8256

        Factor1         9.11512      7.27352            0.6868       0.6868

                                                                              

         Factor      Eigenvalue   Difference        Proportion   Cumulative

                                                                              

    Log likelihood = -259.7744                     (Akaike's) AIC   =  731.549

                                                   Schwarz's BIC    =   1111.4

    Rotation: (unrotated)                          Number of params =      106

    Method: maximum likelihood                     Retained factors =        4

Factor analysis/correlation                        Number of obs    =      266

    LR test:   3 factors vs. saturated: chi2(297) =  636.92 Prob>chi2 = 0.0000

    LR test: independent vs. saturated: chi2(378) = 3709.65 Prob>chi2 = 0.0000

                                                                              

        Factor3         1.48799            .            0.1199       1.0000

        Factor2         1.87058      0.38258            0.1508       0.8801

        Factor1         9.04692      7.17634            0.7293       0.7293

                                                                              

         Factor      Eigenvalue   Difference        Proportion   Cumulative

                                                                              

    Log likelihood = -333.7234                     (Akaike's) AIC   =  829.447

                                                   Schwarz's BIC    =  1119.71

    Rotation: (unrotated)                          Number of params =       81

    Method: maximum likelihood                     Retained factors =        3

Factor analysis/correlation                        Number of obs    =      266



80 

 

that after the third factor, the line of the eigenvalues starts smoothing, and becoming flat, 

coming progressively closer to the horizontal axis. 

 

 

Figure 4.18: Scree plot of eigenvalues for factor analysis of Purpose-Process-People 

 

Having determined that the appropriate number of factor should be 3, it is time to go deeper 

and have a look at the matrix of the factor loadings provided by the model. Taking the last 

estimated model (the one with the condition of maximum 3 factors) as the definitive model, 

we could easily look at the factor loading matrix that is provided as output of the estimates, 

under the table of eigenvalues. However, as it has already been specified, these factors are 

unrotated, and therefore the factor loading matrix gives high weights to the first factor for 

many of the variables, thus making the output not understandable. In order to overcome this 

problem, factors need to be rotated. Among all the possible choices of factor rotation it was 

chosen the Promax rotation: it looked appropriate in our case because it is an oblique 

rotation, and therefore implies a certain degree of correlation among factors. It is 

reasonable, in fact, to assume that the three categories in which these variables are grouped, 

somehow influence each other. Here below (Figure 4.19) the table of rotated factor loadings 

is displayed, along with the values of uniqueness (last column on the right). 
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Rotated Factor loadings (pattern matrix) and unique variances 

      
Variable Item Factor 1 Factor 2 Factor 3 Uniqueness 

Z Long-run strategy 0.5006 0.0611 0.1861 0.5525 

AA Communicate strategy 0.5338 0.1057 0.0665 0.5823 

AB 
Investments consistent with 

strategy 
0.0301 0.7139 -0.0126 0.4734 

AC 
Manufacturing consistent with 

strategy 
0.0289 0.7331 -0.0184 0.4510 

AD Long-run focus -0.0824 0.2179 0.0653 0.9541 

AF Functions interaction 0.0482 0.6958 -0.0181 0.4874 

AG Functions cooperation 0.0008 0.8048 -0.0968 0.4261 

AH Flat organization 0.2675 0.1347 0.0230 0.8558 

AI Freedom in decision-making -0.4170 -0.0681 -0.1283 0.6987 

AJ Employees cooperation 0.2826 0.2674 0.0290 0.7388 

AK 
Communication among 

departments 
0.2489 0.2445 0.1482 0.7007 

AL Team creation 0.6329 0.0529 -0.0702 0.6076 

AM Team for problem-solving 0.7166 -0.0329 -0.2082 0.6383 

AN Management based on facts -0.0374 0.3475 0.0966 0.8523 

AO 
Encouraging suggestions for 

improvement 
0.6926 -0.0096 -0.0226 0.5459 

AP Ideas exchanging 0.7456 0.0256 -0.0371 0.4526 

AQ Encouragement to work as a team 0.7911 0.0489 -0.1575 0.4550 

AR 
Importance of inter-functional 

relationships 
-0.0353 0.6629 0.0878 0.5207 

AS Encouraging communication -0.0132 0.7422 0.0881 0.3841 

AT Multiple-tasks training 0.5458 -0.0921 0.2360 0.5706 

AU Cross-training 0.5097 -0.0510 0.1699 0.6477 

AV Reward people contribution -0.0161 0.0721 0.7366 0.4101 

AW Reward accomplished objectives -0.0770 -0.0105 0.9342 0.2154 

AX Incentives for reaching plant goals -0.0597 -0.0142 0.9299 0.2099 

AY 
Incentives for pursuing plant 

goals 
-0.0016 -0.0357 0.9060 0.2143 

AZ Importance of training 0.5178 -0.0199 0.2574 0.5265 

BA Continuous training 0.4943 -0.0015 0.3250 0.4628 

BB Better decisions after training 0.0161 0.1512 0.0584 0.9600 

 

Figure 4.19: Rotated factor loadings and uniqueness for factor analysis of Purpose-Process-People (1) 

 

 

For every variable, the highest factor loadings among the three factors has been enlightened 

in red (in some cases there are two enlightened values for the same variable), because every 

variable has to be located to the factor with the highest weight. It can be assessed that the 

loadings seems to distribute quite well among the three factors: for almost every variable 
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there is a significant gap between the highest weight and the other two weights. 

Nevertheless the division seems not to perfectly reflect the assumptions based on theory 

(see Figure 4.12). Furthermore, there are some variables (the ones whose rows are blue-

enlightened: AD, AH, AI, AJ, AK, AN, BB) for which some further considerations are 

needed: 

 

 All of these seven variables show relatively low values of factor loadings, between 

the 0.1512 of the variable BB (Better decisions after training) and the 0.4170 (in 

absolute value) of the variable AI (Freedom in decision making), meaning that none 

of the three factors clearly manages to represent those variables; 

 All of these seven variables show relatively high values of uniqueness, between the 

0.7007 of the variable AK (Communication among departments) and the 0.9600 of 

the variable BB (Better decisions after training), meaning that a considerable share 

of the variables’ variance cannot be explained by factors 

 Many of these seven variables show relatively low correlations with the remaining 

variables. 

 

Therefore, after these three considerations, it was decided to drop the above-mentioned 

variables, and focus the analysis only on the rest of the variables. 

Another factor analysis model was then estimated with the remaining set of variables. Here 

below (Figure 4.20) the table of factor loadings and uniqueness. 
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Rotated Factor loadings (pattern matrix) and unique variance 

 

Variable Item Factor1 Factor2 Factor3 Uniqueness 

Z Long-run strategy 0.4940 0.1915 0.0707 0.5561 

AA Communicate strategy 0.5237 0.0769 0.1128 0.5876 

AB 
Investments consistent with 

strategy 
0.0657 0.0080 0.6761 0.4831 

AC 
Manufacturing consistent 

with strategy 
0.0454 0.0084 0.7040 0.4605 

AF Functions interaction 0.0644 0.0022 0.6759 0.4888 

AG Functions cooperation 0.0129 -0.0724 0.7890 0.4174 

AL Team creation 0.6330 -0.0630 0.0548 0.6018 

AM Team for problem-solving 0.6778 -0.1883 -0.0172 0.6577 

AO 
Encouraging suggestions for 

improvement 
0.6755 -0.0189 0.0164 0.5453 

AP Ideas exchanging 0.7240 -0.0330 0.0584 0.4527 

AQ 
Encouragement to work as a 

team 
0.7759 -0.1525 0.0770 0.4461 

AR 
Importance of inter-

functional relationships 
-0.0172 0.1039 0.6510 0.5139 

AS Encouraging communication 0.0064 0.1070 0.7251 0.3815 

AT Multiple-tasks training 0.5513 0.2317 -0.0839 0.5627 

AU Cross-training 0.5070 0.1708 -0.0443 0.6472 

AV Reward people contribution 0.0005 0.7226 0.0807 0.4142 

AW 
Reward accomplished 

objectives 
-0.0587 0.9113 0.0119 0.2162 

AX 
Incentives for reaching plant 

goals 
-0.0506 0.9116 0.0108 0.2092 

AY 
Incentives for pursuing plant 

goals 
0.0057 0.8885 -0.0085 0.2122 

AZ Importance of training 0.5169 0.2571 -0.0095 0.5256 

BA Continuous training 0.5050 0.3203 0.0064 0.4555 

 

Figure 4.20: Rotated factor loadings and uniqueness for factor analysis of Purpose-Process-People (2) 

 

Also in this case the highest weights for every variable have been enlightened (red). Having 

dropped the variables with ambiguous factor loadings, our factor analysis seems to become 

more well-defined. However, some rows are blue-enlightened also in this case. As a matter 

of facts, for variables Z, AA, AT, AU, AZ, and BA the values of the factor loadings are still 

relatively low, around 0.5, while for the other variables factor loadings are equal to 0.7, 0.8 

or even 0.9. This fact means that also this variables are not adequately explained by factors. 

Moreover, if we keep in mind the item division that theory suggested (form Z to AG for 

Purpose, for AH to AS for Process, and from AT to BB for People, see Figure 4.12), these 
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variables do not fit it: they load on factors that are not the ones suggested by the theoretical 

model. Note that also variables AR and AS do not follow the theoretical item division that 

was hypothesized, but, unlike the previous variables, these two have quite high factor 

loadings (0.65 and 0.73) and therefore have not been enlightened. However, in this case it 

was decided not to immediately drop these variables, but to leave them and postpone the 

decision of whether to eliminate them or not to the Confirmatory Factor Analysis stage. If 

the goodness-of-fit indices will suggest a good model fit, there will be no necessity to drop 

them, otherwise, in the opposite case, we will eliminate those variables from the list. 

To sum up, after this exploratory steps, we have arrived to a first variables division, that 

will be then tested in the CFA. The items are grouped in three categories (factors), each 

comprehending some variables, as follows: 

 

 Factor 3 comprehending variables: AB, AC, AF, AG, AR, AS; 

 Factor 1 comprehending variables: Z, AA, AL, AM, AO, AP, AQ, AT, AU, AZ, 

BA; 

 Factor 2 comprehending variables: AV, AW, AX, AY. 

 

 

4.5.2 Improvement 

 

Passing to the variables describing Improvement and its meta-routines, we have to carry on 

a factor analysis on 13 items. As it was for the previous variables, the starting point is, also 

in this case, the variance-covariance matrix, thus making the first descriptive 

considerations. The matrix (fully displayed in Appendix A2) clearly shows that the highest 

correlation values (higher than 0.5) are those between the variables that belong to the same 

meta-routine (according to the qualitative division based on theory). 

After this quick matrix inspection, it is time to estimate a factor analysis model, to 

understand first how many factors to retain, and then how variables distribute among these 

factors. For models with more than four factors the software warns that the estimation 

procedures are affected by Heywood Case, therefore a model fixing maximum four factors 

was estimated using the Maximum Likelihood criterion (output below). 
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As we can see, the factors whose eigenvalues are greater than 1 are three on four, thus 

suggesting that the optimum number of factors should be 3. Another model was then 

estimated, fixing 3 factors, and analogue conclusions can be drawn. 

 

 

 

Not only the Kaiser criterion leads to this solution, but also the analysis of the scree plot as 

well. In Figure 4.21 it can be observed that from the fourth factor, the line of the scree plot 

tends to flatten over the horizontal axis. 

    LR test:   4 factors vs. saturated:  chi2(32) =   20.55 Prob>chi2 = 0.9411

    LR test: independent vs. saturated:  chi2(78) = 1750.66 Prob>chi2 = 0.0000

                                                                              

        Factor4         0.19074            .            0.0245       1.0000

        Factor3         1.07173      0.88099            0.1375       0.9755

        Factor2         1.75413      0.68240            0.2250       0.8381

        Factor1         4.77940      3.02527            0.6131       0.6131

                                                                              

         Factor      Eigenvalue   Difference        Proportion   Cumulative

                                                                              

    Log likelihood = -10.58652                     (Akaike's) AIC   =  113.173

                                                   Schwarz's BIC    =  278.014

    Rotation: (unrotated)                          Number of params =       46

    Method: maximum likelihood                     Retained factors =        4

Factor analysis/correlation                        Number of obs    =      266

    LR test:   3 factors vs. saturated:  chi2(42) =   46.06 Prob>chi2 = 0.3079

    LR test: independent vs. saturated:  chi2(78) = 1750.66 Prob>chi2 = 0.0000

                                                                              

        Factor3         1.04293            .            0.1380       1.0000

        Factor2         1.61836      0.57543            0.2141       0.8620

        Factor1         4.89886      3.28050            0.6480       0.6480

                                                                              

         Factor      Eigenvalue   Difference        Proportion   Cumulative

                                                                              

    Log likelihood =  -23.6683                     (Akaike's) AIC   =  119.337

                                                   Schwarz's BIC    =  248.342

    Rotation: (unrotated)                          Number of params =       36

    Method: maximum likelihood                     Retained factors =        3

Factor analysis/correlation                        Number of obs    =      266



86 

 

 

Figure 4.21: : Scree plot of eigenvalues for factor analysis of Improvement 

 

After having determined the number of factors to be retained, we have to look at the factor 

loadings. Similarly to the previous case, factor loadings provided by the software need to be 

rotated. Also in this case it seems correct to assume a certain degree of correlation among 

factors, therefore the Promax oblique rotation has been adopted. In Figure 4.22 the table of 

factor loadings and uniqueness. 

 

Rotated factor loadings (pattern matrix) and unique variances 

 
Variable Item Factor1 Factor2 Factor3 Uniqueness 

A 
Statistical techniques to reduce 

process variance 
0.8699 -0.0179 0.0407 0.2224 

B Statistical quality control 0.9078 -0.0763 -0.0040 0.2382 

C Use of control charts 0.5481 0.1173 0.0796 0.5668 

D Statistical Process Control (SPC) 0.9413 0.0252 -0.0796 0.1596 

E 

provide personal leadership for 

quality products and quality 

improvement 

-0.0987 0.8634 0.0554 0.2752 

F 
Creation and communication of a 

vision of quality improvement 
0.0005 0.8278 -0.0130 0.3258 

G 
Management involved in quality 

improvement projects 
0.0907 0.8014 -0.1088 0.3734 

H 
Department heads responsible for 

quality 
0.0150 0.6187 0.0949 0.5344 

I 
Continued learning and 

improvement 
0.1966 0.1706 0.3218 0.6765 

J Performance as a moving target -0.0677 0.0752 0.6861 0.5131 

K Incremental improvement 0.0393 -0.0417 0.6013 0.6409 

L Continuous improvement -0.0456 0.0477 0.7108 0.4872 

M Dynamic approach 0.0293 -0.0729 0.7802 0.4264 

 

Figure 4.22: : Rotated factor loadings and uniqueness for factor analysis of Improvement (1) 
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The analysis of the rotated factor loadings indicates that the distribution of the variables 

among the three factors is quite satisfactory. Every variable loads strongly on just one 

factor (values enlightened in red), and the gap between the highest factor loading and the 

two others is wide. The distribution of the variable is also in accordance with the division 

suggested by theory. The only exception is the variable I (Continued learning and 

improvement), in correspondence of which there is: low factor loading (0.3218), high 

uniqueness (0.6765) and very low correlation with the other variables of the group (all 

smaller than 0.41). For this reason variable I was eliminated from the list, and another 

factor model was estimated (Figure 4.23). 

 

Rotated factor loadings (pattern matrix) and unique variances 

 

Variable Item Factor1 Factor2 Factor3 Uniqueness 

A 
Statistical techniques to reduce 

process variance 
0.8631 -0.0107 0.0545 0.2187 

B Statistical quality control 0.8991 -0.0691 0.0098 0.2351 

C Use of control charts 0.5470 0.1242 0.0790 0.5695 

D Statistical Process Control (SPC) 0.9290 0.0329 -0.0692 0.1636 

E 

provide personal leadership for 

quality products and quality 

improvement 

-0.0883 0.8534 0.0652 0.2758 

F 
Creation and communication of a 

vision of quality improvement 
0.0068 0.8186 0.0038 0.3216 

G 
Management involved in quality 

improvement projects 
0.0946 0.7907 -0.0973 0.3759 

H 
Department heads responsible for 

quality 
0.0232 0.6145 0.0990 0.5353 

J Performance as a moving target -0.0503 0.0853 0.6765 0.5083 

K Incremental improvement 0.0545 -0.0273 0.5822 0.6464 

L Continuous improvement -0.0282 0.0573 0.7040 0.4785 

M Dynamic approach 0.0506 -0.0529 0.7523 0.4375 

 

Figure 4.23: : Rotated factor loadings and uniqueness for factor analysis of Improvement (2) 

 

Having dropped variable I, our factor analysis looks very well-defined. There are no low 

loadings and the distribution of variables fits the theoretical structure that had been 

hypothesized. The items are grouped in three categories (factors), each comprehending 

some variables, as follows: 

 Factor 1 comprehending variables: A, B, C, D; 
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 Factor 2 comprehending variables: E, F, G, H; 

 Factor 3 comprehending variables: J, K, L, M. 

 

 

4.6 Confirmatory factor analysis 

 

Through the exploratory factor analysis it has been possible to “explore” every potential 

structure of the factor model, without fixing any parameter and letting free every variable to 

load on every factor. We have, in this way, arrived to a model specification that seems to fit 

our data. However, the goodness of this model needs to be tested through a series of indices 

and other calculations that represent the core of the Confirmatory Factor Analysis (CFA). 

In the CFA, in fact, the researcher already has a well-defined model, comprehending both 

free and fixed parameters, and wants to “confirm” its validity. 

 

 

4.6.1 Purpose, Process, People 

 

For the first part of the variables, regarding the elements of CI infrastructure, the 

exploratory factor analysis led to a model made of 21 variables and 3 factors, divided as 

shown in Figure 4.24. 
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Figure 4.24: Confirmatory factor model for categories Purpose, Process, People (1) 
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The table of the overall goodness-of-fit indices provided by the software is: 

 

Fit statistics description value Close-fit value 

Likelihood ratio 
   

 

 
𝜒2_ms(186) model vs. satured 558,113 NA 

 
p>𝜒2 

 
0,000  

 
𝜒2_bs(210) baseline vs. satured 3316,367 NA 

 
p>𝜒2 

 
0,000  

 Normed 𝜒2 𝜒2/df 3,001 <3 

Population error 
   

 

 
RMSEA 

Root mean squared error 

of approximation 
0,087 <0.08 

Baseline 

comparison    
 

 
CFI Comparative fit index 0,880 >0.9 

 
TLI Tucker-Lewis index 0,865 ~1 

Size of residuals 
   

 

 
SRMR 

Standardized root mean 

squared residual 
0,060 <0.1 

 
CD 

Coefficient of 

determination 
0,998 >0.8 

 

Figure 4.25: Goodness-of-fit indices for Purpose-Process-People CFA model (1) 

 

In the figure above there is an outlook of all the most important fit indices, along with the 

close-fit values in the last column. What these indices suggest is that model fit is not 

excellent at all. A RMSEA value of 0.087 is beyond the borderline of acceptable levels; 

generally a value of RMSEA between 0.05 and 0.08 indicates acceptable model fit, and 

values higher than 0.08 indicate bad model fit. Here this index is higher than 0.08 and this 

fact scores a point for model misspecification. The Comparative fit index is also under the 

close-fit value (and the TLI as well), while the Normed 𝜒2 shows a borderline situation. For 

the rest of the indices the situation seems acceptable. However, it is sure that model fit can 

be improved. Therefore, it was decided to go one step backward and drop those six 

variables (Z, AA, AT, AU, AZ, BA) that in the EFA were not so satisfactory, since their 

factor loadings were relatively low and were not in accordance with the model structure 

suggested by theory . Having cancelled these variables from the factor model, another one 

was estimated, whose structure is displayed in Figure 4.26 and goodness-of-fit indices in 

Figure 4.27. 
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Figure 4.26: Confirmatory factor model for categories Purpose, Process, People (2) 
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Fit statistics description value Close-fit value 

Likelihood ratio 
   

 

 
𝜒2_ms(87) model vs. satured 174,159 NA 

 
p>𝜒2 

 
0,000  

 
𝜒2_bs(105) baseline vs. satured 2248,515 NA 

 
p>𝜒2 

 
0,000  

 Normed 𝜒2 𝜒2/df 2,002 <3 

Population error 
   

 

 
RMSEA 

Root mean squared error 

of approximation 
0.061 <0.08 

Baseline 

comparison    
 

 
CFI Comparative fit index 0.959 >0.9 

 
TLI Tucker-Lewis index 0.951 ~1 

Size of residuals 
   

 

 
SRMR 

Standardized root mean 

squared residual 
0.044 <0.1 

 
CD 

Coefficient of 

determination 
0.998 >0.8 

 

Figure 4.27: Goodness-of-fit indices for Purpose-Process-People CFA model (2) 

 

 

It looks evident at first glance that, after this slight model modification, the model fit has 

massively improved. First of all, the RMSEA dropped from an unacceptable 0.087 to a 

good 0.061; moreover, the Normed 𝜒2 has significantly improved (from 3.001 to 2.002), as 

well as the CFI and TLI indices.  

In order to be sure that the measurement model that has just been tested is the definitive 

one, we’d better look at other measures that allow some further considerations. First, for 

every equation of the measurement model, coefficients were analysed along with their 

relative standard errors, thus testing their significance through a Wald test. Moreover, the 

R-squared, for testing equation-level fit, was calculated (Figure 4.28). 
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Parameters’ significance and R-squared 

Variables Coefficient Standard error z p-value R-squared 

Measurement      

AB  Purpose 1 (constrained) 0.518 

AC Purpose 1.015 0.089 11.39 0.000 0.533 

AF Purpose 0.992 0.092 10.77 0.000 0.509 

AG Purpose 1.036 0.092 11..31 0.000 0.555 

AR Purpose 0.975 0.092 10.60 0.000 0.492 

AS Purpose 1.099 0.093 11.88 0.000 0.626 

AL Process 1 (constrained) 0.359 

AM Process 0.957 0.122 7.85 0.000 0.329 

AO Process 1.147 0.133 8.64 0.000 0.472 

AP Process 1.352 0.144 9.40 0.000 0.656 

AQ Process 1.347 0.143 9.44 0.000 0.651 

AV People 1 (constrained) 0.578 

AW People 1.168 0.075 15.66 0.000 0.789 

AX People 1.174 0.077 15.35 0.000 0.798 

AY People 1.166 0.077 15.09 0.000 0.786 

Covariances 
   

  

Purpose - Process 0.248 0.043 5.73 0.000  

Purpose - People 0.287 0.047 6.09 0.000  

Process - People 0.206 0.040 5.14 0.000  

overall     0.998 

 

Figure 4.28: Parameters’ significance and R-squared for equations for Purpose-Process-People CFA model 

 

 

The outcome of the test reveals that every manifest variable has a statistically significant 

effect on their respective factor, since all the z-values (resulting from the division of 

estimates by their respective standard error) are greater than the 5% quantile of a 

standardized Normal (1.64) and, therefore, led to the rejection of the null hypothesis 

(parameter equal to zero). Note that for variables AB, AL and AV the test was not 

calculated; that happens because these values of the parameters defining the relations 

between these manifest variables and their respective latent ones have been fixed to 1, thus 

providing a metrical parameterization to latent variables that are, by nature, unobserved and 

therefore with no measurement unit. Since this constrain is in place, no Wald test can be 
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carried out. The covariances between the three latent variables Purpose, Process and People 

are all significant as well. 

For what regards the R-squared, it can be observed that variables AL and AM have a 

relatively low value (0.359 and 0.329, respectively); however, it was decided not to drop 

these two variables. 

Finally, it is time to check the modification indices (MI) suggested by our software. 

Ignoring modification indices regarding covariances among manifest variables, the only 

additional path that is suggested is the one between the variable AG and the latent factor 

People. For this relation there is a reduction of the 𝜒2 statistic of 5.09 (remember that MI 

are significant at 5% level for values greater than 3.84). However, since in our model it was 

assumed that each item loads on only one of the three categories of CI infrastructure, it was 

decided not to keep into account of the additional path suggested by MI. 

 

 

 

At this point, both the exploratory and the confirmatory factor analysis for the elements of 

CI infrastructure have come to the end. The final model comprehends a set of 15 variables 

grouped into 3 categories, each referring to the Purpose-Process-People scheme. In 

particular: 

 Under the category Purpose there are the following variables: 

 AB: Investments consistent with strategy 

 AC: Manufacturing consistent with strategy 

 AF: Functions interaction 

 AG: Functions cooperation 

 AR: Importance of inter-functional relationships 

 AS: Encouraging communication; 

 Under the category Process there are the following variables: 

                                                             

      PEOPLE        5.090      1   0.02  -.1711151  -.1301389

  AG <-       

Measurement   

                                                             

                       MI     df   P>MI        EPC        EPC

                                                     Standard

                                                             

Modification indices
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 AL: Team creation 

 AM: Team for problem solving 

 AO: Encouraging suggestions for improvement 

 AP: Ideas exchanging 

 AQ: Encouragement to work as a team; 

 Under the category People there are the following variables: 

 AV: Reward people contribution 

 AW: Reward for accomplished objectives 

 AX: Incentives for reaching plant goals 

 AY: Incentives for pursuing plant goals. 

 

4.6.2 Improvement 

 

Passing to the second set of variables (Improvement), the exploratory factory analysis led to 

a model made of 12 variables grouped into 3 factors, as shown in Figure 4.29. 

 

 

Figure 4.29: Confirmatory factor model for Improvement 
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Nonetheless, for this part of the analysis, there is one further step to take. As a matter of 

facts, what the economic theory suggests (Peng (2007)) is that these three meta-routines 

that have been identified, are all consequences of another superior element, and therefore 

can be adequately explained by one single factor, that is Improvement itself. The result, 

then, is a second-level factor model, where Process Management (PM), Leadership 

Involvement (LI), and Continuous Improvement (CI) are the first-level factors, while 

Improvement is the  second-level factor, that explains them. The new model is displayed in 

Figure 4.30, and its respective goodness-of-fit indices in Figure 4.31. 

 

 

 

Figure 4.30: Second-level confirmatory factor model for Improvement 
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Fit statistics description Value Close-fit value 

Likelihood ratio 
   

 

 
𝜒2_ms(51) model vs. satured 75,112 NA 

 
p>𝜒2 

 
0,141  

 
𝜒2_bs(66) baseline vs. satured 1684,903 NA 

 
p>𝜒2 

 
0,000  

 Normed 𝜒2 𝜒2/df 1,473 <3 

Population error 
   

 

 
RMSEA 

Root mean squared error 

of approximation 
0,042 <0.08 

Baseline 

comparison   
  

 
CFI Comparative fit index 0,985 >0.9 

 
TLI Tucker-Lewis index 0,981 ~1 

Size of residuals 
   

 

 
SRMR 

Standardized root mean 

squared residual 
0,043 <0.1 

 
CD 

Coefficient of 

determination 
0,750 >0.8 

 

Figure 4.31: Goodness-of-fit indices for second-level confirmatory factor model for Improvement 

 

 

The above-listed statistics suggest that the second-level factor model adequately fits data. 

The most significant element in this, is the low value of RMSEA (0,042) below the 

borderline value of 0,05, meaning a close fit for our model. The SRMR is also very low 

(0,043) and the normed 𝜒2 is just 1,473; in general, apart for thee Coefficient of 

Determination, all the fit statistics have values that mean very good model fit. 

Afterwards, every equation was considered and the Wald test and R-squared were 

calculated, in order to test respectively parameters’ significance and model fit at equation 

level (Figure 4.32). The equations explaining the second-level factor Improvement through 

the first-level factors Process Management, Leadership Involvement, Continuous 

Improvement, were also considered, since they are real equations of a linear regression, and 

not only covariances (as the latent variables in the previous case). Tests confirm 

significance of both the manifest variables and the first-level factors for every equation (for 

variables A, E, J, PM it was not calculated because of the latent variables’ 

parameterization); the R-squared is almost always high, apart in a couple of cases (variables 

C, K, Process Management) where it is below 0.42. 
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Parameters’ significance and R-squared 

Variables Coefficient Standard error z p-value R-squared 

Measurement      

A PM 1 (constrained) 0.787 

BPM 0.982 0.050 19.69 0.000 0.759 

CPM 0.723 0.061 11.78 0.000 0.411 

DPM 1.022 0.049 20.91 0.000 0.821 

ELI 1 (constrained) 0.707 

FLI 0.988 0.066 15.02 0.000 0.690 

GLI 0.919 0.067 13.73 0.000 0.598 

HLI 0.812 0.068 11.90 0.000 0.466 

JCI 1 (constrained) 0.501 

KCI 0.843 0.101 8.36 0.000 0.355 

LCI 1.027 0.104 9.85 0.000 0.528 

MCI 1.031 0.106 9.71 0.000 0.532 

Structural 
   

  

PMIMP 1 (constrained) 0.380 

LIIMP 1.124 0.190 5.92 0.000 0.535 

CIIMP 0.960 0.168 5.70 0.000 0.551 

overall     0.750 
 

Figure 4.32: Parameters’ significance and R-squared for equations for second-level factor model for Improvement 

 

 

Finally, the modification indices were considered. Our software calculates that there are 

several additional paths that could be taken in consideration, in correspondence of which 

the modification indices are significant (greater than 3.84). However, these paths were not 

applied, not to alter the structure of the model and the hypothesis made at the beginning. 
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           G        4.268      1   0.04   -.117402   -.117402

  M <-        

                                                             

           M        4.534      1   0.03  -.1031118  -.1031118

           D        7.805      1   0.01   .1371351   .1371351

  G <-        

                                                             

          PM        5.113      1   0.02  -.1283608  -.1138801

           D        4.421      1   0.04   -.097257   -.097257

           B        5.347      1   0.02  -.1054227  -.1054227

           A        3.978      1   0.05  -.0915201  -.0915201

  E <-        

                                                             

           L        6.458      1   0.01    -.08899    -.08899

           G        4.956      1   0.03   .0785992   .0785992

  D <-        

                                                             

         IMP        9.585      1   0.00   .4970209   .2719521

          CI        6.017      1   0.01   .2190299   .1549637

          LI        8.376      1   0.00   .2049433   .1722952

           M        6.328      1   0.01   .1299886   .1299886

           H        8.402      1   0.00   .1481861   .1481861

           G        6.482      1   0.01   .1324017   .1324017

           E        6.537      1   0.01   .1349281   .1349281

           A        4.184      1   0.04  -.2727607  -.2727607

  C <-        

                                                             

          LI        4.533      1   0.03  -.1099292  -.0924171

           G        3.852      1   0.05  -.0737289  -.0737289

           E        4.481      1   0.03  -.0809529  -.0809529

  B <-        

                                                             

           C        4.184      1   0.04  -.0985996  -.0985996

  A <-        

Measurement   

                                                             

           D        4.768      1   0.03  -.2776874   -.392491

  CI <-       

                                                             

           C        4.767      1   0.03   .1385102   .1647564

           B        4.068      1   0.04  -.2266836  -.2696378

  LI <-       

                                                             

           G        4.623      1   0.03   .1925837   .2170723

           E        6.126      1   0.01  -.2865996  -.3230431

           C        9.585      1   0.00  -.4115822  -.4639183

  PM <-       

Structural    

                                                             

                       MI     df   P>MI        EPC        EPC

                                                     Standard
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Chapter 5 
 

The complete structural model 

 

 

Having concluded the entire factor analysis both for the elements of CI infrastructure and 

for Improvement and its meta-routines, the complete structural model is ready to be 

explained in this chapter.  

First of all, a global measurement model will be built, in order to assess the validity of the 

overall model; then, discriminant and divergent analysis will take place. In the discriminant 

analysis some nested models will be tested; these nested models are created merging 

constructs that were initially separated, and they will be subsequently analysed in order to 

determine which of the models (the complete one or one of the nested) better fits empirical 

data. In the convergent analysis the focus is represented by those variables that are already 

grouped under the same construct, and it will be tested whether data reasonably justify 

these different variables to be grouped together. 

Afterwards, it will be possible to assess which is the best model, and the structural 

coefficients will be analysed, in order to evaluate any significant relation between the 

exogenous and endogenous latent variables. What theory suggests is that there should be a 

significant positive relations between the adoption of techniques under one of the Purpose, 

Process, People categories and the Improvement. The discussion of these results, however, 

will take place in the final paragraph of this work. 

 

5.1 The measurement model 

 

In order to build a complete model that displays the relations between Improvement and its 

infrastructure, we need to link the two parts of the model that, until now, have always been 

kept divided. However, it is not time yet to create a structural model that describes relations 

between them in the form of linear regression equations. Before doing this, it is necessary 
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to analyse the complete measurement model, as it were still part of the Confirmatory Factor 

Analysis. In particular, the structure of the model should be nothing but the mix of the two 

confirmatory factor models for Improvement and its infrastructure, where the relations 

between them is in the form of covariances values, i.e., in the path-diagram representation, 

of double-arrowed curved lines. 

The complete measurement model is displayed in Figure 5.1 and the table of its goodness-

of-fit indices in Figure 5.2. 

 

 

 

Figure 5.1: Complete measurement model (and estimates) 
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Fit statistics description value Close-fit value 

Likelihood ratio 
   

 

 
𝜒2_ms(315) model vs. satured 538.926 NA 

 
p>𝜒2 

 
0,000  

 
𝜒2_bs(351) baseline vs. satured 4403.736 NA 

 
p>𝜒2 

 
0,000  

 Normed 𝜒2 𝜒2/df 1.711 <3 

Population error 
   

 

 
RMSEA 

Root mean squared error 

of approximation 
0.052 <0.08 

Baseline 

comparison    
 

 
CFI Comparative fit index 0.945 >0.9 

 
TLI Tucker-Lewis index 0.938 ~1 

Size of residuals 
   

 

 
SRMR 

Standardized root mean 

squared residual 
0.062 <0.1 

 
CD 

Coefficient of 

determination 
0.999 >0.8 

 

Figure 5.2: Goodness-of-fit indices for the measurement model 

 

 

The report of the goodness-of-fit indices suggests that model fit is good, since every index 

is within the range of close-fit values. In particular, the RMSEA is almost equal to 0.05 

(0.052) and the Normed 𝜒2 is far smaller than 3 (1.711). 

Having verified the overall model fit, we can have a look at the variables’ coefficients and 

their significance. In Figure 5.3 every regression coefficient is shown, along with their 

relative standard error and p-value (for significance test); in the last column there are also 

values of the R-squared. For the equations defining the latent variables through their 

respective manifest ones, tests on parameters confirm significance of all the variables at 1% 

level; the first level-latent factors (PM, LI, CI) that measure the second-level factor 

(Improvement) are significant as well. As regards the core of the measurement model, i.e. 

all the possible covariances between Purpose, Process, People and Improvement, tests 

confirm significance of each covariance drawn in the diagram. 
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Parameters’ significance and R-squared 

Variables Coefficient Standard error Z p-value R-squared 

Measurement      

A PM 1 (constrained) 0.787 

BPM 0.982 0.050 19.70 0.000 0.760 

CPM 0.722 0.061 11.7 7 0.000 0.411 

DPM 1.021 0.049 20.90 0.000 0.821 

ELI 1 (constrained) 0.718 

FLI 0.971 0.064 15.16 0.000 0.677 

GLI 0.907 0.066 13.83 0.000 0.591 

HLI 0.814 0.067 12.12 0.000 0.476 

JCI 1 (constrained) 0.470 

KCI 0.866 0.103 8.43 0.000 0.352 

LCI 1.078 0.106 10.13 0.000 0.546 

MCI 1.078 0.108 10.02 0.000 0.546 

AB  Purpose 1 (constrained) 0.522 

AC Purpose 1.024 0.088 11.58 0.000 0.547 

AF Purpose 1.001 0.092 10.94 0.000 0.522 

AG Purpose 1.029 0.091 11..34 0.000 0.552 

AR Purpose 0.961 0.091 10.56 0.000 0.482 

AS Purpose 1.081 0.091 11.84 0.000 0.609 

AL Process 1 (constrained) 0.450 

AM Process 0.921 0.102 9.02 0.000 0.382 

AO Process 0.998 0.110 9.10 0.000 0.448 

AP Process 1.147 0.116 9.91 0.000 0.591 

AQ Process 1.165 0.116 10.06 0.000 0.610 

AV People 1 (constrained) 0.578 

AW People 1.168 0.075 15.64 0.000 0.788 

AX People 1.175 0.077 15.34 0.000 0.798 

AY People 1.167 0.077 15.08 0.000 0.787 

Structural      

PMIMP 1 (constrained) 0.274 

LIIMP 1.291 0.191 6.75 0.000 0.502 

CIIMP 1.229 0.187 6.57 0.000 0.694 

Covariances 
   

  

Purpose - Process 0.281 0.047 6.00 0.000  

Purpose - People 0.288 0.047 6.09 0.000  

Process - People 0.231 0.043 5.31 0.000  

IMP - Purpose 0.228 0.042 5.40 0.000  

IMP - Process 0.276 0.048 5.71 0.000  

IMP - People 0.152 0.034 4.45 0.000  

overall     0.999 
 

Figure 5.3: Parameters’ significance and R-squared for the complete measurement model 
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5.2  Discriminant validity 

 

Discriminant validity is the first half of a more general procedure that goes under the name 

of “construct validity”. Construct validity can be viewed as an overarching term to assess 

the validity of the measurement procedure (e.g., a questionnaire) that is used to measure a 

given construct (Campbell & Fiske, 1959). The two main subcategories that compose the 

technique of construct validity, and that work together to strengthen their efficacy, are 

discriminant validity and convergent validity. In order to make immediately a clear 

distinction between convergent and discriminant validity it can be assessed that, while 

convergent validity refers to the degree to which two measures that theoretically should be 

related are, in fact, related, discriminant validity tests whether measures that are supposed 

to be unrelated are, in fact, unrelated. From a practical point of view: in the convergent 

validity we are interested in the extent to which certain fit-measures converge (i.e., we want 

to see a strong relationship between scores on the same construct), while in the discriminant 

validity we are interested in the extent to which these measures diverge (i.e., we want to see 

little or no relationship between scores from the two constructs). 

Whereas convergent validity will be more relevantly discussed in the next paragraph (1.3), 

in this part we will focus on discriminant validity, and we will exploit it to draw significant 

conclusions on our measurement model. 

With regard to our specific model, the measures that we want to “discriminate” are 

represented by the latent variables of the structural model, in particular by the three 

elements of Continuous Improvement infrastructure (Purpose, Process, People) and 

Improvement itself. Note that the first-level factors (Process Management, Leadership 

Involvement and Continuous Improvement) that explain the second-level factor 

Improvement have not been considered in the discriminant analysis, because they are part 

of the measurement model and not of the structural model (that will be examined in the end 

of the chapter). In order to properly affirm that these separated constructs represent, in fact, 

different concepts, we need to create a series of alternative models, where, by hypothesis, 

some of these constructs are merged together. The alternative models that are, in this way, 

created are nothing but constrained (and therefore nested) models of the complete one; in 

particular, the operation of merging two latent variables into a unique single one, is equal to 

constraining the correlation between these two variables equal to 1. In fact, when the 
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correlation between two variables is 1, it means that the variation of one of the variables 

exactly corresponds to the same variation of the other one, and therefore they can be 

considered as a unique variable. It was then decided to consider the four variables that form 

the structural model, group these latent variables two by two, and analyse the outcome 

compared to the complete model. 

Now, some issues need to be clarified. Since all the alternative models that are going to be 

tested are nested models of the general one (illustrated in Figure 5.1), they have a number 

of free parameters that is intrinsically lower (since some constraints are in place) . In 

statistics, whenever one or more parameters are detracted, the explanation power of the 

model automatically decreases. So, if on one hand a large number of variables seems 

desirable, on the other hand a model overloaded with parameters is not parsimonious at all, 

and does not satisfy the main requirement of a statistical model, i.e., its ability to provide a 

simplified representation of reality. We have then model fit as opposed to model 

parsimoniousness. Therefore, when some distance-measures, such as the 𝜒2-statistic are 

analysed, in order to evaluate model fit, each of the nested model will have, for sure, a 

higher value (i.e. worse model fit) than the one of the complete model. Nevertheless, if the 

model simplification that is gained through this parameters reduction justifies the (small) 

rise in the 𝜒2-statistic, then the nested model will be preferred over the general one. What 

makes all the difference in choosing a nested model over a more general one is, therefore, 

the difference of the 𝜒2-statistic between the two models. If this quantity is not statistically 

significant, then the reduction in the model fit is justified by the simplification gained and 

the nested model will be chosen; on the contrary, if the difference of the 𝜒2-statistic is 

statistically significant, the complete model will be chosen over the nested one. 

Grouping two by two a series of 4 different constructs, implies considering in total 6 

different cases, each of them composed by a different mixing combination of the four 

variables. Keeping in mind the complete model of Figure 5.1, we have graphically listed all 

of the different combinations. In Figures 5.4 (a and b) the same complete measurement 

model is displayed, but in every figure, within a dotted oval black line, the constructs that 

have been merged are enlightened. 
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Figure 5.4(a): Different mixing-combinations for the variables of the structural model (1) 
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Figure 5.4(b): Different mixing-combination for the variables of the structural model (2) 
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For each of the 6 different cases the 𝜒2-statistics have been calculated (Figure 5.5).  

 

𝜒2-statistic PURPOSE PROCESS PEOPLE IMPROVEMENT 

PURPOSE     

PROCESS 811.843    

PEOPLE 1025.862 980.916   

IMPROVEMENT 643.458 554.406 769.576  

 

Figure 5.5: 𝜒2-statistics for the nested models 

 

 

Afterwards, knowing the value of the 𝜒2-statistic of the complete model (538.926),  the 

differences of the 𝜒2-statistics (𝛥𝜒2) have been easily calculated as well. 

 

 

𝛥𝜒2-statistic PURPOSE PROCESS PEOPLE IMPROVEMENT 

PURPOSE     

PROCESS 272.917    

PEOPLE 486.936 441.99   

IMPROVEMENT 104.532 15.48 230.65  

 

Figure 5.6: 𝛥𝜒2-statistics for the nested models compared to the complete one 

 

 

In order to assess whether the values of the 𝛥𝜒2 are statistically significant or not, we need 

to compare them to the 𝜒2 distribution; but with how many degrees of freedom? Now, each 

of the constrained models has 318 degrees of freedom, exactly 3 more than the number of 

degrees of freedom of the complete model (315). When analysing the 𝛥𝜒2, the number of 

degrees of freedom to refer to is exactly equal to the difference of the number of the 

degrees of freedom of the models, in this case 3. Checking the tabulated 𝜒2 distribution 

with 3 df (the third row of the table here below), we can see that it is significant at 0.05 

level for values greater than 7.81, and at 0.01 for values greater than 11.34. Therefore, to 

draw some conclusions, we can say that all the values of the 𝛥𝜒2 shown in Table 5.6 are 

statistically significant and, therefore, when constraining the complete model, there is a 

significant reduction in the model fit, not enough justified by the simplification gained with 
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a simpler model. So, in the end, the complete model is better than all of the nested ones that 

have been considered. 

Note that, for almost all of the nested models, the values of the 𝛥𝜒2 are very high (higher 

than 100), meaning a strongly significant raise in the 𝜒2 when adding the constraints, and a 

clear preference for the complete model over one of the nested. However, in one case, i.e. 

when considering the model where Process and Improvement have been merged together, 

the value of the 𝛥𝜒2 is much lower (15.48). Although it still remains significant at 0.01 

level (it is still greater than 11.34), the situation is not as well-defined as in the previous 

cases, since this value is massively lower than the others 𝛥𝜒2. This fact will be the input of 

some interesting theoretical points that will be examined in the conclusion paragraph. 

 

 

 

 

The 𝛥𝜒2 analysis leads to the conclusion that the complete model is preferable over the 

nested ones, and, for this reason, that the four different, separated constructs that compose 

the structural part of the model (Purpose, Process, People, and Improvement) should 

remain, effectively, separated. 

In order to strengthen this position, there are some further elements that can be considered. 

The AIC (Akaike Information Criterion), for example, is another interesting tool used to 

compare groups of nested models. The concept under this measure is that, when two nested 

models are compared, the one with the lowest value of AIC is preferable over the other. In 

Figure 5.7 the AIC values are displayed for every combination of models. The value of the 

AIC for the complete model is 16642.823 and, as we can see, it is lower than any of the 

values of the AIC for the nested models. Therefore, not only the 𝛥𝜒2, but also the AIC goes 

in the same direction, suggesting that the complete model is preferable. As well as 𝛥𝜒2, 

then, also in this case, for the nested model where the variables Process and Improvement 

are mixed, the difference is not as evident as in the other cases, since the value of the AIC is 

just slightly higher than the one of the complete model (16652.303). 
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𝐴𝐼𝐶 PURPOSE PROCESS PEOPLE IMPROVEMENT 

PURPOSE     

PROCESS 16909.740    

PEOPLE 17123.760 17078.813   

IMPROVEMENT 16741.356 16652.303 16867.473  

 

Figure 5.7: AIC values for the nested models 

 

 

Finally, the RMSEA of the different combination of models was calculated (Figure 5.8) and 

compared to the RMSEA of the complete measurement model (0.052); also in this case 

analogue conclusions can be drawn. 

 

𝑅𝑀𝑆𝐸𝐴 PURPOSE PROCESS PEOPLE IMPROVEMENT 

PURPOSE     

PROCESS 0.076    

PEOPLE 0.091 0.089   

IMPROVEMENT 0.062 0.053 0.073  

 

Figure 5.8: RMSEA values for the nested models 

 

 

 

5.3  Convergent validity 

 

In the discriminant validity it has been demonstrated that those variables that were 

supposed to be separated (as indicators of different constructs) have to be, in fact, 

separated. Now, in order to complete the analysis of construct validity, we need to carry on 

a convergent analysis. 

Unlike discriminant validity, convergent validity refers to the degree to which two 

measures of constructs that theoretically should be related to each other, are in fact 

observed to be related to each other, i.e. a certain level of convergence and correspondence 

between them should be spotted. The extent to which convergent validity has been 

demonstrated is established by the strength of the relationship between the scores that are 
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obtained from the two different elements that have been used to collect data about a certain 

construct. The idea is that if these scores converge, despite the fact that we used two 

different measurement elements, we must be measuring the same construct. In this case, 

convergent analysis allows assessing that those separated elements actually correspond with 

one another. 

Having specified these basic notions, we have to understand how convergent validity can 

be applied to our model. As it has just been written, the focus of convergent validity is 

represented by those variables that, although separated from a technical point of view, are 

supposed to measure the same construct. In our model, those variables that are grouped 

under larger constructs are the manifest variables that measure the three elements of CI 

infrastructure (Purpose, Process, People) and the three meta-routines of Improvement 

(Process Management, Leadership Involvement, Continuous Improvement). These manifest 

variables are simply the expressions of the answers given to the items of the questionnaire. 

Therefore, convergent validity for our model has to be tested taking into account the 

manifest variables (or items) that are grouped under the same latent variable (or construct). 

What we expect to find, is that the values of some indices that measure the degree of 

connection between these variables confirm that they are effectively close-related, and that 

are generally different measures for the same unique single general construct. 

At this point, the only further tool needed is a series of indices that could provide a 

quantitative expression of the degree of association for the items. Statistical theory in this 

field suggests three main indices useful to test convergent validity: 

  

- Cronbach’s alpha: it is the most widely used measure of internal consistency; it is a 

function of the number of items and the average interitem covariance. It varies from 

0 to 1, and values of α equal or higher than 0.7 are generally considered evidences 

of good internal consistency. It is calculated as: 

 

𝛼 =  
𝑁 �̅�

1 + (𝑁 − 1) �̅�
 

 

Where N is the number of items and �̅� is the average interitem covariance. 
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- AVE (Average Variance Extracted): it is a statistic that states how much variance 

captured by the latent variable in a structural equation model is shared among other 

variables. In different terms, AVE is a measure of the error-free variance of a set of 

items. Values greater than 0.5 are desirable. It is: 

 

𝐴𝑉𝐸 =
∑(𝜆𝑖

2) 𝑉𝑎𝑟(𝑋)

∑(𝜆𝑖
2) 𝑉𝑎𝑟(𝑋) + ∑ 𝑉𝑎𝑟(휀𝑖)

 

 

Where 𝜆𝑖 is the loading of 𝑥𝑖 (item i) on X, 𝑉𝑎𝑟(𝑋) denotes variance of the latent variable, 

and 휀𝑖 is the measurement error of 𝑥𝑖. 

 

- Composite reliability (ρ): it is another, least frequently adopted measure of 

composite reliability, often used in substitution of Cronbach’s alpha. Its close-fit 

values are those greater than 0.6. Its formula is: 

 

𝜌 =
(∑ 𝜆𝑖)2

(∑ 𝜆𝑖)2 + ∑ 𝑉𝑎𝑟(휀𝑖)
 

 

 

The calculation of Average Variance Extracted, as well as Composite Reliability, requires a 

structural equation model to already exist, since it needs the loadings of the indicators for 

the latent variable for which it is to be calculated. The structural equation model to refer to 

is, in these cases, the measurement model, i.e. the model that has been used in the 

confirmatory factor analysis stage (Paragraph 4.6). 

Hence, these three indicators have been calculated, first for the three groups of items 

belonging to the CI infrastructure (Purpose, Process, People) (Figure 5.9) and then for the 

three meta-routines of Improvement (Process Management, Leadership Involvement, 

Continuous Improvement) (Figure 5.10). 
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Cronbach’s alpha 

[critical value: 0.7] 

AVE 

[critical value: 0.5] 

Composite Reliability 

[critical value: 0.6] 

PURPOSE 0.8746 0.5387 0.9311 

PROCESS 0.8259 0.4934 0.9300 

PEOPLE 0.9164 0.7377 0.9509 

 

Figure 5.9: Convergent validity for items of the categories Purpose, Process, People 

 

 

 
Cronbach’s alpha 

[critical value: 0.7] 

AVE 

[critical value: 0.5] 

Composite Reliability 

[critical value: 0.6] 

Process Management 0.8932 0.6946 0.9191 

Leadership 

Involvement 
0.8611 0.6151 0.8999 

Continuous 

Improvement 
0.7836 0.4791 0.8796 

 

Figure 5.10: Convergent validity for items of the categories Process Management, Leadership Involvement, Continuous 

Improvement 

 

For the first three latent variables, convergent analysis points out that the items belonging 

to the same group are consistent. Each of the three indices is over its critical value for every 

group; in particular, the values of Composite Reliability seem remarkably high. The only 

exception is represented by the AVE calculated for the items under the construct Process: 

AVE is equal to 0.4934, however, it is very close to 0.5. 

For the three meta-routines of Improvement the situation looks pretty analogue: indices 

above the close-fit values, very high composite reliability values. There is an exception also 

in this case, represented by the AVE for the latent variable Continuous Improvement, that is 

0.4791 and therefore below the critical value. Nevertheless, as well as for the three previous 

groups, also for these ones it can be assessed that the overall internal consistency for the 

different groups is very satisfactory. 
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5.4 The structural model 

 

The measurement model that was discussed in the first paragraph of this chapter, and 

whose structure is fully displayed in the diagram in Figure 5.1, is aimed at providing a 

global representation of the two measurement sub-models in a single graph where, on the 

left there is the factor model regarding the elements of Improvement infrastructure, and on 

the right the second-level factor model regarding Improvement and its routines. The 

connection between these two parts is represented by the covariances that link the latent 

variables Purpose, Process, People to the second-order latent variable Improvement. The 

above-mentioned measurement model is the best one of them all, and this can be assessed 

thanks to the results obtained in the discriminant and convergent analysis. In the former, in 

fact, it was demonstrated the consistency of constructs that had been kept separated, while 

in the latter it was demonstrated the consistency of constructs that had been grouped 

together. 

Once the measurement model is verified, the next step consists of estimating a real 

structural model for the latent variables of the structural part, creating precise regression 

equations that define the relations between the latent variables. In particular, these 

equations will explain the relations between Purpose, Process, People, and Improvement, 

since this part is the structural “core” of the model and is the one for which a certain type of 

causality pattern is assumed.  

Linking the statistical notions to the econometrical theory the model is based on, we can 

say that what is going be created, is a hypothetical model where the operational activities 

(or, more properly, bundles of activities) grouped under the categories Purpose, Process, 

People “cause” improvement, stimulate it, creates the conditions in which Improvement is 

more easily developed and spread. The statistical outcome of this model will help to 

understand if this is true, that translating into statistical language, if these causality relations 

are significant, if they are statistically justified by the data at our disposal. 

Therefore, the purpose of this final phase of this work can be summarized in a set of three 

hypothesis to be statistically tested: 

 

 The bundle of activities named Purpose has a statistically significant effect on 

Improvement (H1); 
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 The bundle of activities named Process has a statistically significant effect on 

Improvement (H2); 

 The bundle of activities named People has a statistically significant effect on 

Improvement (H3). 

 

The graphical structure of the hypothesis testing is displayed in Figure 5.11 here below. 

 

 

Figure 5.11: Hypothesis testing on the structural model 

 

 

Before starting with the estimation procedure, it is correct to provide a clear identification 

of the model, in particular through the definition of the four matrices that define the 

structural part of a SEM model: В, Г, Φ and Ψ. 

The matrix beta is a square matrix 4x4, with a number of rows and columns equal to the 

number of endogenous latent variables η. On the main diagonal there are just 0, because 

these values correspond with the regression coefficient of every variable with itself. The 

parameter 𝛽14 has been fixed to 1, because of the need for a metrical parameterization for 

the latent variable Improvement. All the remaining parameters are 0, except for 𝛽24 and  

𝛽34, that define the relations of respectively Leadership Involvement and Continuous 

Improvement, with Improvement; therefore, these two parameters are the only 

unconstrained values of В. 

 



117 

 

В = [

0 0 0
0 0 0
0 0 0
0 0 0

1
𝛽24

𝛽34

0

] 

 

The matrix gamma represents the regression of the latent exogenous variables on the latent 

endogenous variables. Its dimension are 4x3, i.e. number of rows equal to the number of 

latent endogenous variables and number of columns equal to the number of exogenous 

variables.  

𝚪 = [

0 0 0
0 0 0
0

𝛾41

0
𝛾42

0
𝛾43

] 

 

All values are constrained to 0, except 𝛾41, 𝛾42 and 𝛾43 that define the relations of the three 

latent exogenous variables Purpose, Process and People, with the second-level endogenous 

latent variable Improvement. 

The other two matrices of the structural model are in the form of variance-covariance 

matrices. The first is the matrix phi, comprehending covariances of the latent exogenous 

variables (ξ); it, therefore, expresses the variances-covariances of Purpose, Process and 

People and its dimension is 3x3. 

 

𝚽 =  [

φ𝟏𝟏 φ𝟏𝟐 φ𝟏𝟑

φ𝟐𝟏 φ𝟐𝟐 φ𝟐𝟑

φ𝟑𝟏 φ𝟑𝟐 φ𝟑𝟑

] 

 

None of the elements of this matrix are constrained, since in our model it was assumed that 

the covariances between Purpose, Process and People are free parameters and that have to 

be estimated. However, since it is a variance-covariance matrix, 𝚽 is symmetric and values 

below the main diagonal are symmetrical to those over the main diagonal (φ𝟐𝟏=φ𝟏𝟐, 

φ𝟑𝟏=φ𝟏𝟑, φ𝟑𝟐=φ𝟐𝟑). Note that, as a squared symmetric matrix, we could have written 𝚽 in 

the form of a triangular matrix, ignoring the upper triangle of the matrix. 

Finally, the matrix psi shows covariances between error terms ζ. Its dimension is 4x4, 

because 4 is the number of endogenous variables η, that, obviously, coincides with the 

number of the error terms  ζ. As well as matrix 𝚽, matrix 𝚿 is a squared symmetric matrix 
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too. In our model no covariances between endogenous latent variables are defined, so Ψ has 

0 in every place of the matrix out of the main diagonal, while in the main diagonal there are 

values of the variances. 

 

𝚿 = [

𝜓11 0 0      0
0 𝜓22 0     0

0
0

0
0

𝜓33 0
0 𝜓44

]. 

 

 

Now that the complete structural model has been totally defined, both theoretically and 

statistically, we can proceed estimating the model. The model diagram is fully displayed in 

Figure 5.12. 

 

 

 

Figure 5.12: Complete structural model (and estimates) 
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Fit statistics description value Close-fit value 

Likelihood ratio 
   

 

 
𝜒2_ms(316) model vs. satured 538.926 NA 

 
p>𝜒2 

 
0,000  

 
𝜒2_bs(351) baseline vs. satured 4403.736 NA 

 
p>𝜒2 

 
0,000  

 Normed 𝜒2 𝜒2/df 1.705 <3 

Population error 
   

 

 
RMSEA 

Root mean squared error 

of approximation 
0.051 <0.08 

Baseline 

comparison    
 

 
CFI Comparative fit index 0.945 >0.9 

 
TLI Tucker-Lewis index 0.939 ~1 

Size of residuals 
   

 

 
SRMR 

Standardized root mean 

squared residual 
0.062 <0.1 

 
CD 

Coefficient of 

determination 
0.998 >0.8 

 

Figure 5.13: Goodness-of-fit indices for the complete structural model 

 

In Figure 5.13 we can see the table that summarizes the main goodness-of-fit indices for the 

structural model. If compared with the analogue table that had been calculated for the 

measurement model (Figure 5.2), we can see that these two outcomes are practically 

identical. Therefore, as well as in the measurement model, also in the structural model there 

is a very good model fit: every index is in the “close-fit area”, in particular Normed 𝜒2 is 

far less than 3 and RMSEA is just slightly higher than 0.05. 

Afterwards, we can go into the real essence of this study: the analysis of the regression 

coefficients of the structural model; in particular of the coefficients that define the relations 

between the elements of CI infrastructure Purpose, Process and People, and Improvement, 

thus making it possible to test the above-mentioned set of hypothesis (Figure 5.11) and to 

discover whether there is a significant causal effect between these constructs. These 

coefficients are shown in the matrix Γ, because it regards the regression coefficients of the 

latent exogenous variables on the latent endogenous variables. In Figure 5.14 there is the 

complete list of the coefficients of the model, along with Standard Error, Z value, p-value 

(for testing parameters’ significance) and R-squared. 
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Parameters’ significance and R-squared 

Variables Coefficient Standard error Z p-value R-squared 

Measurement      

A PM 1 (constrained) 0.787 

BPM 0.982 0.049 19.97 0.000 0.760 

CPM 0.722 0.062 11.60 0.000 0.411 

DPM 1.021 0.049 20.75 0.000 0.821 

ELI 1 (constrained) 0.718 

FLI 0.971 0.064 15.12 0.000 0.677 

GLI 0.907 0.067 13.57 0.000 0.591 

HLI 0.814 0.067 12.13 0.000 0.476 

JCI 1 (constrained) 0.470 

KCI 0.866 0.094 9.19 0.000 0.352 

LCI 1.078 0.093 11.59 0.000 0.546 

MCI 1.078 0.096 11.28 0.000 0.546 

AB  Purpose 1 (constrained) 0.522 

AC Purpose 1.024 0.088 11.58 0.000 0.547 

AF Purpose 1.001 0.092 10.94 0.000 0.522 

AG Purpose 1.029 0.091 11..34 0.000 0.552 

AR Purpose 0.961 0.091 10.56 0.000 0.482 

AS Purpose 1.081 0.091 11.84 0.000 0.609 

AL Process 1 (constrained) 0.450 

AM Process 0.921 0.102 9.02 0.000 0.382 

AO Process 0.998 0.110 9.10 0.000 0.448 

AP Process 1.147 0.116 9.91 0.000 0.591 

AQ Process 1.165 0.116 10.06 0.000 0.610 

AV People 1 (constrained) 0.578 

AW People 1.168 0.075 15.64 0.000 0.788 

AX People 1.175 0.077 15.34 0.000 0.798 

AY People 1.167 0.077 15.08 0.000 0.787 

Structural      

PMIMP 1 (constrained) 0.274 

LIIMP 1.291 0.143 9.02 0.000 0.502 

CIIMP 1.229 - - - 0.694 

IMP Purpose 0.173 0.056 3.09 0.002  

IMP Process 0.523 0.071 7.39 0.000  

IMP People -0.031 0.042 -0.76 0.450  

Covariances      

Purpose - Process 0.281 0.047 6.00 0.000  

Purpose - People 0.288 0.047 6.09 0.000  

Process - People 0.231 0.043 5.31 0.000  

overall     0.998 
 

Figure 5.14: Parameters’ significance and R-squared for the complete structural model (Γ coefficients enlightened) 
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In order to provide a clearer representation of the statistical model outcome, the four 

matrices of the structural part are displayed here below. 

 

В = [

0 0 0
0 0 0
0 0 0
0 0 0

1
1.291
1.229

0

]    𝚪 = [

0 0 0
0 0 0
0

0.173
0

0.523
0

−0.031

] 

 

𝚽 =  [
0.522 0.281 0.288
0.281 0.450 0.231
0.288 0.231 0.578

]      𝚿 = [

0.571 0 0      0
0 0.358 0     0
0
0

0
0

0.144 0
0 0.037

] 

 

Now that all the necessary elements have been collected, we are able to properly evaluate 

the three hypothesis made about the effects of CI infrastructure on Improvement. Let’s see 

them one by one: 

 

- H1: The bundle of activities named Purpose has a statistically significant effect on 

Improvement 

The coefficient 𝛾41 (that represents the causal relation of Purpose on Improvement) has a 

value of 0.173, with a standard error of 0.056, thus providing a p-value of 3.09. According 

to the standardized normal distribution critical values, 3.09 corresponds to a significance 

level of 0.002 (0.2%) , that is enough to confirm the significant effect of the parameter. The 

outcomes of the model, then, suggest that the bundle of activities named Purpose, 

characterized by the alignment between operational and strategic goals, has a statistically 

significant impact on Improvement and, in turn, on its meta-routines. 

 

- H2: The bundle of activities named Process has a statistically significant effect on 

Improvement 

For 𝛾42 there is a coefficient value of 0.523 with a standard error of 0.071, that gives a p-

value of 7.39, that is highly significant in the case of a standardized normal distribution. 

This fact denotes that not only has the bundle named Process a statistically significant 

effect on Improvement, but also has a remarkably high regression coefficient (0.523), 

meaning a strong causal effect; this strong relationship between Process and Improvement 
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represents an important clue that will be the input of some important observations drawn in 

the conclusions’ paragraph. 

 

- H3: The bundle of activities named People has a statistically significant effect on 

Improvement 

The situation of  𝛾43 looks different from the previous two cases. The coefficient value is 

low and, most important, denotes a negative effect (-0.031); with a p-value of -0.76 (-

0.031/0.042) it is NOT significant at all. Therefore, the hypothesis H3 is rejected by our 

structural model. As for the previous two hypotheses, also in this case the theoretical 

interpretations and implications of this result (in particular the important role that plays the 

element of reward in the People factor) are postponed to the conclusive part of this work. 

 

 

 5.4.1 Indirect effects 

 

All the coefficients of the structural model that have been shown in Figure 5.14 are all 

direct effects of one variable on another one. By direct effect we mean the variation of one 

variable caused by the variation of one unit of another variable, keeping all the others 

constant. Nevertheless, the causal effect of one variable on another one might be 

intermediated by a third variable that works as a link between the two variables and creates 

an indirect effect. In other words, there is an indirect effect between two variables X1 and 

X2 when the variation of X1 causes the variation of a third variable X3 that, in turn, causes 

the variation of the variable X2. In this way, the relationship between X1 and X2 is mediated 

by the variable X3. The apparently inexistent causal relation (in the output of the structural 

model) between X1 and X2 actually exists, in the form of a “causal chain” between 

variables, as shown in the graphical representation below. 

 

X1 X3 X2 

 

Linking this notion to our structural model, we can see that the three variables describing 

the Improvement infrastructure (Purpose, Process, People) have a causal effect on the 

latent variable Improvement that, in turn, has a causal effect on the three routine bundles of 



123 

 

Improvement (Process Management, Leadership Involvement, Continuous Improvement). 

This is an example of the above-mentioned indirect effects between variables: 

 

Purpose/Process/People Improvement  PM/LI/CI 

 

The model that was previously estimated, however, didn’t take into account of these 

indirect effects, and considered the total effect among variables only as direct effect
12

. For 

this reason, it was decided to estimate the indirect effects that the variables Purpose, 

Process and People might have on the three meta-routines of Improvement, and to test their 

significance, thus providing a more complete description of the causal relations in place in 

the model. The outcome of the estimates of the indirect effects is displayed in Figure 5.15. 

 

INDIRECT EFFECTS 

 
Coefficient Standard error Z p-value 

Process 

Management 
    

Purpose 0,1731 0,0561 3,09 0,002 

Process 0,5226 0,0708 7,39 0,000 

People -0,0314 0,0415 -0,76 0,450 

Leadership 

Involvement     

Purpose 0,2235 0,0788 2,84 0,005 

Process 0,6748 0,0908 7,43 0,000 

People -0,0405 0,0536 -0,76 0,450 

Continuous 

Improvement     

Purpose 0,2128 0,0689 3,09 0,002 

Process 0,6423 0,0870 7,39 0,000 

People -0,0386 0,0510 -0,76 0,450 

 

Figure 5.15: Indirect effects of Purpose/Process/People on the three meta-routines of Improvement 

 

What the estimates of the indirect effect suggest is that the constructs Purpose and Process 

have a significant indirect effect on PM, LI and CI (as we can see from the column of the p-

values) and this effects is positive. It seems, then,  that Purpose and Process has a causal 

relation both on Process Management, Leadership Involvement and Continuous 

Improvement, and that this relation is intermediated by the variable Improvement. These 

                                                           
12

 Total effect = Direct effect + Indirect effects 
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results are in accordance with the lean theory, according to which an increase in those 

activities regarding Purpose and Process actually fosters better performances in the areas of 

better process management, involvement of employees and kaizen activities. On the other 

side, the construct People shows something different. The p-values clearly suggest that the 

indirect effects of this category on any of the three meat-routines of Improvement are not 

statistically significant at any level. Note that, when analysing the structural model’s 

coefficients, the category People had a non-significant direct effect on Improvement; 

therefore, we can assess that the overall model analysis, comprehending both direct and 

indirect effects, clearly shows that this construct has a non-significant total effect in the 

structural model. 

At this point the final structural model has been fully studied, and the statistical model 

analysis comes to its end. In order to sum up the conclusions and provide a theoretical 

interpretation of the results that have been obtained, the conclusions paragraph was 

dedicated in the following part. 
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Conclusions 

 

 

 

The High Performance Manufacturing project represents an outstanding source of potential 

information for those who are interested in lean management and want to understand the 

dynamics and mechanisms that make this new revolutionary management approach so 

famous and aspired. Generally speaking, if on one side the benefits of the adoption of all 

the techniques that lean management promotes are well-known, the quantitative and causal 

relations that are in place are not frequently studied. The purpose of this work is, indeed, to 

understand the causal relations between bundles of lean activities and their impact on 

Improvement within a firm; and this is made thanks to the big amount of data that the HPM 

makes available. In particular, following the framework proposed by Anand (2009), the 

bundles of lean activities have been grouped into the three elements that compose the 

infrastructure of Continuous Improvement: Purpose, Process, People. Afterwards, it was 

tested whether variations in the adoption of techniques belonging to one of these three 

groups caused a significant variation in the level of those elements through which 

Improvement is measured. 

In order to provide a clear and general view of all the aspects embodied in the categories 

Purpose, Process, and People, a wide range of specific techniques and lean notions should 

have been considered. In this work, however, the three constructs regarding the 

Improvement infrastructure, as well as the three meta-routines into which Improvement has 

been decomposed, are latent variables each of them measured by a set of items extracted by 

the HPM questionnaires. This fact implies that a relatively small amount of items has been 

used to measure constructs that actually should comprehend more elements. This 

represented a sort of deficit for our model that had to be overcome. Since, as just 

mentioned, it would have been very laborious to keep into account all the items that could 

represent the three categories, it was decided to adopt a strict item selection process, and to 

consider a smaller set of items (related one another) that considered only some specific 

aspects of Purpose, Process or People, instead of considering them in their entirety. In 

simpler words, the notions of Purpose/Process/People are too general to be measured by a 
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small amount of items and, for this reason, it was decided to adopt an item selection 

procedure that focused on specific single aspects of these categories. The reader might 

dispute that this choice could be a bit too drastic, and he/she probably would be right; 

nevertheless, an empirical analysis where some specific aspects of more general constructs 

are causally related to Improvement and its routines is not be undervalued, since also in this 

case some important considerations can be drawn. 

Starting from the category Purpose, the final outcome of the model shows a statistically 

significant positive effect on Improvement. If we go backward and check the items that 

compose this category, we can see that Purpose is strongly related to the notion of 

alignment between operational and strategic goals, and is also related to the pursuit of an 

inter-functional cooperation and communication within the firm. Therefore these two 

aspects (operational and strategic goals alignment and inter-functional cooperation and 

communication) are those on which the category Purpose (as intended in this work) focuses 

on. The positive causal effect between Purpose and Improvement can be interpreted in the 

sense that, in order to gain some relevant benefits in the Continuous Improvement 

activities, an adequate strategy must be well-defined and understood. A business strategy 

correctly defined and properly communicated to all the employers represents the fundament 

for a sustainable CI initiative and a powerful impulse for a steady pursuit of better ways of 

doing things; without all this, in fact, it would be hard to head all the improvement efforts 

in the right direction, and these efforts would risk to be dispersed or weakened as time 

passes. In other words, the strategy works as a guiding light for the lean production system 

and all the techniques that it embodies, and it’s absolutely important that all of them are 

consistent with it. Moreover, the different functions of the firm have not to be considered as 

single isolated units, but have to work synergistically to achieve the strategic goals (as well 

as the operational goals that, as just said, have to be consistent with them). To make this 

possible, a constant interaction, communication and cooperation between the functional 

areas should be encouraged: they have to work together, share goals, help each other to 

solve problems, and so on, and not be treated as isolated boxes. After all, it is only though a 

constant knowledge exchanging that more supplementary knowledge emerges and leads to 

better performances. 

For what regards the construct Process and its causal relation with Improvement, our 

structural model showed a significant positive relation also in this case; moreover, the 
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coefficient between Process and Improvement was also particularly high (0.523). But what 

does the category Process focus on in our work? Again, looking backward at the items that 

form this category we can note that the attention is stressed on the notion of team work: 

team creation, encouragement to work as a team to solve problems, and so on. Besides, the 

notion of ideas exchanging and suggestions for improvement is present as well. Everyone 

who has at least a general knowledge about lean production system should know how 

utterly important “team” is in this management philosophy. Lean management strongly 

believes in the power of people as a source knowledge, useful for improving productivity 

and eliminating waste; and this is possible if people work not in separated, isolated 

departments, but if they merge together in teams. In this sense, the strict relationship 

between the bundle Process and Improvement is highly justified: working in teams, in fact, 

enhance commitment and responsibility in every production process, stimulates the creation 

of new and alternative solutions to problems, it is a source of job enrichment; and all this 

represents a powerful impulse for Continuous Improvement, because more efficient 

processes with no waste intrinsically mean better performances and, therefore, 

improvement. In addition to this, the fact that people have the possibility to express their 

ideas and suggestions for improvement is also very important. Remember that lean 

philosophy points out that the most important source for improvement in production 

processes is the workers located in the production plants; they have the processes in front of 

them all day and their suggestions for improvement activities within the firm must not 

absolutely be undervalued. Therefore, Process (as intended here) is a fundamental causal 

element of Improvement, because it represents some of the most important notions in lean 

system. A proof of this fact is the results of the discriminant analysis carried out in the 

paragraph 5.2: the 𝛥𝜒2 statistic showed a relatively low value (although still significant) 

when mixing the categories Process and Improvement, compared to the other nested 

models. This occurred because these two constructs are so strongly related each other that 

they almost tend to coincide, and therefore relatively little differences are spotted between 

models where Process and Improvement are separated or merged together. 

The last category to be analysed is People. As well as in the previous cases, we have first to 

look carefully at the items that have been used for this category. The four items that have 

been grouped (see Figure 4.12) are all related to the utilization of systems of reward and 

incentives for pursuing and accomplishing plant objectives; therefore, the aspect of People 
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we focused on is reward and compensation. And what does our statistical model say? The 

reader for sure remembers that the coefficient defining the causal relation between People 

and Improvement was not statistically significant at any level. Is this in accordance or not 

with what lean theory suggests? Certainly it is. Lean approach to human resources is 

concentrated on trying to obtain the best from workers through the involvement of 

everyone in the pursuit of perfection; in a lean enterprise everyone is aware of his/her own 

important role in achieving company’s goals and is stimulated towards commitment and 

responsibility for the company’s sake, not for a personal reward. From this point of view, 

indeed, reward and compensation do not foster the spirit of the group of workers that share 

knowledge and competences to constantly improve activities; they rather may have the 

opposite effect of growing individualistic behaviours among people, preventing the 

cooperation and communication, as it were an individual challenge between workers. The 

non-significant parameter between People and Improvement, in this sense, suggests that, in 

order to obtain relevant improvements in the operations, reward and compensation are not 

the right paths to follow; investing resources in such mechanisms might not be profitable, 

or, in worse cases, it can get the situation worse inhibiting that collaboration spirit that is 

precious in human resources management. 

In the end, to sum up, we can say that for every company that approaches lean management 

and wants to fully exploit the benefits that this production system can bring, the necessity to 

build an appropriate framework is an unavoidable prerequisite. The adoption of single 

techniques (or bundles of techniques) that are part of the lean philosophy is not efficient if 

the overall company infrastructure is not adequate. This work stresses the attention on how 

tightly the infrastructural framework is related to real improvement achievements. 

Everything, from the general business strategy to the way every single activity is managed, 

have to be consistent and satisfactorily prepared in order to gain real and concrete benefits 

from the improvement initiatives and, in general, from the lean production system. These 

considerations, that might seem a little obvious, are particularly important because they are 

supported by data, thanks to the HPM project and to the statistical tools that Structural 

Equation Modeling makes available. It is only through these kinds of quantitative elements 

that these conclusions can be drawn with certain sureness. The potential benefits of data 

analysis like this one are really noteworthy, and everyone should be mindful of this. I really 

hope that, years by years, the elements of Structural Equation Modeling and, in general, of 
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every statistical procedure may be always more helpful to provide a significant and 

quantitative support in the study of the lean management, both demonstrating its 

importance with a scientific approach and helping companies to exploit it in the best way 

possible. 
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Appendix 

 

A1  Correlation matrix of the variables of the CI infrastructure 

 

 

 
Z AA AB AC AD AF AG AH AI AJ AK AL AM 

Z 1 
            

AA 0.6208 1 
           

AB 0.3371 0.3609 1 
          

AC 0.4169 0.3639 0.6168 1 
         

AD 0.1145 0.0741 0.1440 0.1752 1 
        

AF 0.3209 0.2967 0.4681 0.5570 0.2226 1 
       

AG 0.3060 0.3283 0.5265 0.5378 0.0982 0.6168 1 
      

AH 0.2039 0.2205 0.1697 0.2843 0.0835 0.2208 0.2138 1 
     

AI -0.3527 -0.3507 -0.2337 -0.3015 -0.0362 -0.2996 -0.2806 -0.4012 1 
    

AJ 0.3763 0.3769 0.3678 0.3595 0.0796 0.2864 0.3175 0.1900 -0.2738 1 
   

AK 0.3836 0.3429 0.3012 0.3682 0.0389 0.4287 0.3957 0.1850 -0.3332 0.1640 1 
  

AL 0.3959 0.3837 0.3371 0.3047 0.0443 0.3166 0.2617 0.2064 -0.2855 0.2715 0.2942 1 
 

AM 0.3376 0.3570 0.2105 0.2423 0.0533 0.2201 0.1917 0.2910 -0.3298 0.3112 0.2603 0.5255 1 

AN 0.1900 0.1580 0.3454 0.2611 0.0426 0.2538 0.2694 0.1211 -0.1834 0.1866 0.1026 0.2552 0.0892 

AO 0.4501 0.4537 0.2525 0.2559 0.0692 0.3277 0.2966 0.2609 -0.3295 0.2753 0.3394 0.3946 0.3766 

AP 0.4680 0.4038 0.3422 0.2851 0.0498 0.3656 0.3451 0.2555 -0.3996 0.2940 0.3883 0.4408 0.4257 

AQ 0.4170 0.4019 0.3482 0.3545 0.0102 0.3411 0.3246 0.1860 -0.3523 0.3071 0.3353 0.4512 0.4621 

AR 0.3077 0.2932 0.4865 0.4690 0.1348 0.4529 0.4813 0.2380 -0.2608 0.3507 0.2558 0.2424 0.1921 

AS 0.3415 0.3915 0.5504 0.5277 0.1427 0.5240 0.5923 0.2531 -0.3172 0.3564 0.3819 0.3032 0.1904 

AT 0.3788 0.4035 0.2716 0.2377 0.0726 0.2685 0.2697 0.2276 -0.3317 0.3103 0.2712 0.3360 0.2347 

AU 0.3828 0.3240 0.2478 0.2482 0.0535 0.2331 0.2208 0.2248 -0.3339 0.3136 0.2686 0.3173 0.2476 

AV 0.3837 0.2975 0.3041 0.3118 0.1739 0.2952 0.2847 0.1963 -0.3332 0.2680 0.3770 0.2404 0.1557 

AW 0.4292 0.3697 0.2876 0.2969 0.1311 0.3402 0.2795 0.1886 -0.3180 0.2633 0.3566 0.2533 0.1244 

AX 0.4119 0.3042 0.3449 0.3575 0.1093 0.3277 0.2768 0.2334 -0.3657 0.2764 0.3570 0.2802 0.1508 

AY 0.4793 0.4235 0.3484 0.3313 0.0689 0.3132 0.2768 0.2072 -0.3482 0.3071 0.3771 0.2921 0.2011 

AZ 0.4251 0.4857 0.3494 0.3065 0.1040 0.3028 0.2792 0.2727 -0.3891 0.3325 0.3229 0.4043 0.2234 

BA 0.4439 0.4217 0.3626 0.4003 0.1145 0.3631 0.3133 0.2297 -0.3831 0.3083 0.3554 0.4427 0.3312 

BB 0.0945 0.2108 0.2547 0.1345 0.1549 0.0634 0.0426 0.0144 -0.1226 0.1243 0.0470 0.1038 0.0090 
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 AN AO AP AQ AR AS AT AU AV AW AX AY AZ BA BB 

Z                

AA  
              

AB  
              

AC  
              

AD  
              

AF  
              

AG  
              

AH  
              

AI  
              

AJ  
              

AK  
              

AL  
              

AM  
              

AN 1 
              

AO 0.1086 1 
             

AP 0.1209 0.5629 1 
            

AQ 0.0890 0.5522 0.6769 1 
           

AR 0.2425 0.2673 0.3176 0.3458 1 
          

AS 0.2999 0.3552 0.3962 0.3153 0.6552 1 
         

AT 0.2182 0.3760 0.3972 0.3931 0.2627 0.3185 1 
        

AU 0.1732 0.2996 0.3937 0.3821 0.2614 0.3391 0.6749 1 
       

AV 0.2375 0.3230 0.3336 0.2665 0.4217 0.4178 0.4010 0.3973 1 
      

AW 0.2241 0.3088 0.3613 0.2712 0.3677 0.4133 0.4211 0.3660 0.7254 1 
     

AX 0.2129 0.3171 0.3528 0.2744 0.3318 0.3835 0.3885 0.3357 0.6703 0.7763 1 
    

AY 0.2034 0.3176 0.3375 0.2855 0.3522 0.4022 0.4232 0.3454 0.6227 0.7861 0.8144 1 
   

AZ 0.2028 0.4193 0.4381 0.4017 0.3485 0.3452 0.5441 0.3948 0.4123 0.4046 0.4779 0.4792 1 
  

BA 0.2406 0.4083 0.4321 0.4034 0.2974 0.3885 0.6066 0.5075 0.4840 0.4843 0.5282 0.5242 0.6794 1 
 

BB 0.2249 0.0403 -0.0213 0.0859 0.1351 0.1800 0.1567 0.1986 0.1646 0.1173 0.0986 0.0980 0.1587 0.1909 1 
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A2  Correlation matrix of the variables of Improvement 

 

 

 

 
A B C D E F G H I J K L M 

A 1 
            

B 0.7799 1 
           

C 0.5348 0.5560 1 
          

D 0.8033 0.7891 0.5954 1 
         

E 0.2960 0.2372 0.3188 0.2949 1 
        

F 0.3713 0.2963 0.3106 0.3195 0.6985 1 
       

G 0.3338 0.2996 0.3637 0.4033 0.6450 0.6580 1 
      

H 0.2908 0.2599 0.3444 0.3243 0.5916 0.5477 0.5057 1 
     

I 0.3631 0.3325 0.3636 0.4030 0.3629 0.3178 0.3670 0.3342 1 
    

J 0.2706 0.2466 0.2546 0.2421 0.3640 0.3241 0.2998 0.3288 0.3416 1 
   

K 0.2934 0.2154 0.2483 0.2778 0.2622 0.2481 0.1937 0.2370 0.3324 0.4293 1 
  

L 0.3235 0.2711 0.2523 0.2377 0.3586 0.3353 0.3047 0.2955 0.3448 0.5199 0.4118 1 
 

M 0.3452 0.3136 0.3394 0.2940 0.3190 0.2950 0.2200 0.3251 0.3975 0.5034 0.4501 0.5360 1 
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