
University of Padova

Department ofMathematics

Master Thesis in Data Science

I SpyWithMy Little Eyes: A

Convolutional Deep Learning Approach

toWeb Eye Tracking

Supervisor Master Candidate
Dr. Lamberto Ballan Ivan Dragomirov Padezhki
University of Padova

Co-supervisors
Dr. Antonia Krefeld-Schwalb
Dr. Sebastian Gabel
Rotterdam School ofManagement

Academic Year
2022-2023

ii

Thisthesis isdedicatedtothepeoplearoundmethatremindedmethatthe
feeling of not knowing anything is only temporary. Feeling incapable is not
to be confusedwith feeling newto a topic of research. I don’t remember the
number of times I called friends and family to relieve some of the insecuri-
tiesortoaskforsomeonetobody-doublemewhen Icouldnotshutdownthe
many voices in my head that toldme to go back to bed and give up. I dedicate
this thesis to the people that lifted me up in these moments.
Y’all know who you are. I can’t wait to see everyone be successful. Hon-

estly, work.

iv

Abstract

Eye-tracking is the study of eye movements, blinks, and fixations, and it aims to give insight
into visual attentionmechanisms. Being common inmarketing, usability research, as well as in
cognitive science, there are well-established methods for lab eye tracking, yet web eye tracking
uses webcams of much lower quality. If the accuracy of web methods would improve, users’
engagement with digital content can be analyzed from the comfort of their own homes. This
gives designers, developers, and researchers the chance to inform their decisions from data and
optimize e.g. user experience while connecting to large and demographically diverse samples
without the necessity for lab-level equipment. The limited tools for web eye-tracking are also
accompanied by uncertainties coming from the setup environment that need to be addressed
before using them for scientific research. The project aims to develop a deep learning solution
building on CNNs capable of predicting gaze x/y screen coordinates from the webcam video
of users. A new dataset collected in the eye-tracking lab consists of face images and reliable
eye-tracker coordinate predictions for each image. Models trained on the dataset achieve lower
prediction errors in terms of pixels compared to existingmethods for web eye-tracking. Future
studies should focus on validating the methods in different experimental conditions.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xiii

1 Introduction 1

2 RelatedWork 5
2.1 Studying human eyes . 5
2.2 Eye tracking in the lab . 7
2.3 Eye tracking outside of the lab . 9
2.4 Deep learning solutions . 11

3 Methods 17
3.1 Experiment and data collection . 17
3.2 Dataset and preprocessing . 22
3.3 Machine Learning baseline . 24
3.4 Deep Learning architectures . 26

3.4.1 Convolutional Neural Network 27
3.4.2 CNN and dilated convolution . 27
3.4.3 CNN and recurrent modules . 27

3.5 Training procedure . 28

4 Results and discussion 29
4.1 Machine LearningMethods: XGBoost . 29
4.2 Network performance on full face images 30

4.2.1 Simplified VGG . 31
4.2.2 Simplified VGGwith dilated convolution 31
4.2.3 LSTM-VGG . 31

4.3 Network performance on eye patches . 32
4.3.1 Simplified VGG . 33
4.3.2 Simplified VGGwith dilated convolution 33
4.3.3 VGG-LSTM . 34

vii

4.4 Comparison withWebGazer predictions 36

5 Conclusion 39
5.1 Summary of results . 39
5.2 Relevance and applications . 39
5.3 Limitations and suggestions . 40
5.4 Concluding words . 42

References 43

Acknowledgments 51

Appendix A First appendix 53
A.1 Characteristics of the participant sample 53
A.2 Neural Network Architectures . 53

viii

Listing of figures

2.1 Model of the eye and gaze in eye tracking. 6

3.1 Experiment trials . 19
3.2 WebGazer calibration screen . 19
3.3 Task elements in order of presentation . 20
3.4 Setup of lab equipment . 21

4.1 XGBoost Regression: Training and Validation 30
4.2 VGG-like architecture: Training for 50 epochs 31
4.3 VGG-like architecture with dilated convolution: Training for 50 epochs . . . 32
4.4 VGG-like architecture with LSTMmodule: Training for 50 epochs 32
4.5 VGG-like architecture: Training for 50 epochs 33
4.6 VGG-like architecture with dilated convolution: Training for 50 epochs . . . 33
4.7 VGG-like architecture with LSTMmodule: Training for 50 epochs 34
4.8 VGG-like architecture with LSTM module: Test set predictions and targets

comparison . 35
4.9 Visual comparison of EyeLink andWebGazer 36
4.10 Illustration of prediction accuracy . 38

A.1 Extra variables observed for the participant sample. 54
A.2 Simplified VGG architecture with normal convolution. 55
A.3 Simplified VGG architecture with normal convolution and LSTMmodule. . 56

ix

x

Listing of tables

4.1 Test set MAE and accuracy for all NNs . 34

xi

xii

Listing of acronyms

OCR Optical Character Recognition

P-CR Pupil-Corneal Reflection

DL Deep Learning

ML Machine Learning

NN Neural Network

LSTM Long Short-TermMemory

CNN Convolutional Neural Network

VAE Variational Autoencoder

GAN Generative Adversarial Network

VR Virtual Reality

AR Augmented Reality

LoG Line of Gaze

LoS Line of Sight

IR Infrared

xiii

xiv

1
Introduction

Starting fromabroader introduction of the focus of this study, eye tracking is often used in neu-
romarketing research. As a branch of neuroeconomics, neuromarketing uses the study of the
functioning of the human mind concerning decision-making, more specifically in economic
tasks, and intends to improve traditional marketing techniques. With eye tracking spreading
fast in goggles, laptops, VR, and AR headsets [1], it is predicted to become even more relevant
soon [2]. Consumers and their different types of responses to marketing stimuli, be they sen-
sorimotor, cognitive, or affective responses, are the focus of such studies. Additionally, there is
the possibility to predict consumers’ behavior and alsomanipulate their needs. Predicting user
intent and interest is driven by gaze estimation and can be used in marketing analysis [3].
An ongoing effort in marketing, psychology, and neuroscience is to expand research to on-

line data collection. For behavioral data, even with high timing precision [4], various software
makes online testing possible (jsPsych [5], PsychoPy [6]), while platforms like Prolific Aca-
demic andMTurk ease the contact to large and diverse participant groups [7, 8]. Nevertheless,
lab-based experiments often include methods that require special technology. Thus, develop-
ing online solutions for researchers is a challenge, especially in the case of eye-tracking. The cur-
rent study aims to provide an overview of existing options for online eye tracking and develop
a novel technique inspired by lab technology. As there are concerns regarding the accuracy, va-
lidity, and privacy of web-based eye tracking, further studies are needed to bring thesemethods
to wider use.

In practice, this information can help with the evaluation of reactions and interactions with

1

websites and the improvement of usability (especially in combination with mouse behavior:
clicks andmovement). Brands can thus focus on developing features of their products that are
most attractive and usable by clients. Specifically, assuming there is a correlation between gaze
movement and degree of attention [9] on a visual stimulus, one can optimize the effectiveness
of advertising communication [10]. In practice, this canmean improving the product life cycle
by utilizing gaze-based preference for products, say on a website, to avert unsuccessful prod-
uct launches [11]. Use cases of this nature apply to product placement for improving brand
recognition[12]; predicting user experience in VR locomotion [13]; and also further develop-
ing automatic driving by considering gaze location of both drivers and pedestrians (suggested
in [3]). Furthermore, such a product could be used in educational settings [14] in [15]. It can
also be extended to populations of people who rely on human-computer interaction devices to
communicate or perform certain activities [3].

After covering some application examples of why webcam eye tracking is a valuable tool to
improve, a brief introduction of eye tracking methods is necessary to motivate the purpose
of the current study. The techniques generally investigate eye movements, gaze behavior, and
pupil dilation among others [16]. Different movement types are covered in 2.1. There are
three main methods for gaze estimation – 3D eye model recovery, 2D eye feature regression,
and appearance-based methods [17, 18]. Each has its strengths and weaknesses, depending
on the physical implementation that can sometimes be costly, or on the constraints related to
the testing environment. The details of each method can be found in Chapter 2, however,
to position the analyses developed in the current story to the three methods, some primary
explanations are necessary.

3Dmodel recovery relies on using a geometrical model of the eye to extract features (the cen-
ter of the cornea and certain axes of the eye [17]) and requires technology such as infrared light
sources and high-resolution cameras, as well as controlled testing conditions [16]. A 2D regres-
sionmodel maps the pupil center and corneal reflection vector to eye coordinates on screen us-
ing a polynomial function [17]. Lastly, appearance-based methods use predefined algorithms
for extracting a person’s face, eye regions, and pupil. This can often be done with commercial-
grade cameras. An extension of this is deep learning appearance-based methods, which rely on
images or videos and on the ability of neural networks to extract features automatically and to
learn a function from the image space to the space of screen coordinates. This last technique re-
quires large data sets with annotated images, which are not trivial to obtain [18, 17, 19]. Simul-
taneously, such solutions for eye tracking with affordable web cameras would allow researchers
to collect data simply by sending their participants a link.

2

Todate and to thebest ofmyknowledge, there areno studies that try to combine the strengths
of these in-lab and web-based methods to provide researchers with an easy-to-use solution for
web eye tracking. Therefore, the novelty of this study lies in using collected webcam videos as
input for a neural network, while giving the high-quality predictions of a lab-level eye tracker
as labels. First of all, this ensures a higher level of reliability of the targets compared to man-
ually annotated data sets. Secondly, combined with data from a promising online solution
for eye tracking, namely WebGazer, the study aims to provide a comparison between the ac-
curacy of the lab-based tracker EyeLink and WebGazer, as well as between WebGazer and the
presented model. Thus, the general contribution of the study lies in expanding the range of
online eye-trackingmethods with a novel idea for training a neural network while maintaining
a strict reporting practice when comparing different methods. This entails a clear description
of all data collection, and processing steps, ensuring transparency of the method. This way,
researchers can reproduce and personalize the algorithms to their needs. The careful consid-
eration of privacy guidelines is also relevant for any eye-tracking research and is considered at
every step of the process.
The thesis is structured as follows. The basics of eye tracking, including frequently used

methods are detailed in Chapter 2. Then, the experiment and data collection, as well as data
processing and algorithms are introduced in Chapter 3. The following Chapter 4 reports the
results and evaluationof the algorithmswith a discussion. These are summarized and expanded
with their implications in Chapter 5 which also provides concluding remarks and limitations
of the work.

3

4

2
RelatedWork

This chapter has the goal of providing all necessary preliminary knowledge to readers from
any background: data science, marketing, and psychology. Therefore, the first step is a brief
description of how eyes are studied. Then, lab and online eye-tracking methods are detailed,
followed by an overview of deep-learning solutions for eye-tracking. This way, the reader is
capable of understanding the positioning of the current research in this framework for eye-
tracking studies and methods.

2.1 Studying human eyes

There is much known about how the human visual systemworks. Specifically, the field related
to eye movements has been researched since the 1900s albeit with invasive technologies, such
as scleral coils on an eye lens [17, 16]. The study of eye movements has been developed since
and is crucial to understanding visual attention and cognition [17, 19].
With some idea of the eye anatomy given in Figure 2.1, the next important aspect tomention

is the different types of eye movements that have been extensively studied. Firstly, there are
saccades, short (10-100 ms) moves, usually indicating a visual search between fixations. The
latter is described in relation to information acquisition and processing and is comprised of
three smaller eyemovements: microsaccades, tremor, anddrift [19]. Additionalmarkers are the
blink rate, smooth pursuits, and changes in pupil size, usually indicative of cognitive workload.
For a detailed overview, the reader is advised to consult Table 1 in [17].

5

Figure 2.1: The model used commonly to understand eye physiology in the context of tracking gaze. Relevant parts are
labeled in the image. The angle between the Line of Gaze (LoG) and the Line of Sight (LoS) is called kappa (κ) and is unique
for each person. The anatomy of the human eye is essential for allowing light to hit the fovea, which is the central point of
focus humans see. Figure is adapted from [19] .

Studying these types of movements has inspired a wide variety of eye-tracking solutions,
both invasive and non-invasive. [16] offers a summary of many of them, including a concrete
guideline for reporting the procedures and setup followed in eye tracking research. The differ-
ent solutions implement algorithms that mostly fall into three ways for estimating gaze: 2D
regressions, 3D models, and appearance-based methods. As this study is not considering 3D
model recovery methods, these are briefly explained here, while the other methods are detailed
in the following sections with examples of implementations.

3Dmethods aim to compute the center of the cornea and two relevant axes (LoG, LoS) with
the help of a geometric 3Dmodel of the eye. The place where the optical and visual axes inter-
sect the scene/screen [17] is what these models are trying to compute. The cited review study
reports better accuracy for setups with multiple cameras and involved calibration procedures,
potentially due to increased tolerance to headmovement resulting from the extensive hardware
setups. Related to this, it is important to note that due to the unique characteristics of the eyes
(the kappa angle), personal calibration is also required. Despite [20] arguing that the lack of
3Dmodel-based reasoningmay cause less stable predictions, this method relies heavily on high-
resolution images, and as already mentioned, custom camera setups.

In the next section, a common method for eye tracking is presented: an example of a 2D re-
gressionmethodwith its physical implementation is the EyeLink by SRResearch (Mississauga,
ON, Canada).

6

2.2 Eye tracking in the lab

One widely-used method is the Pupil-Corneal Reflection video-based system which includes
one or more cameras and infrared illuminators. This type of eye tracking system is accompa-
nied by high costs, sometimes up to 40,000 euros [15]. The procedure consists in detecting
one or both eyes in video frames and mapping the extracted information from eye geometry,
pupil, and corneal reflection to screen coordinates. 2D regression methods rely on a mapping
with a polynomial transformation function, such as f : (Xeye, Yeye)− > (Xscreen, Yscreen).
The polynomial equations forX,Y are optimized to the minimal value of the mean squared
difference between real and predicted screen coordinates related to the calibration points in the
calibration procedure, explained further below.

EyeLink is an example of this type of tracking. The IR light illuminates the eyes sufficiently
for the distinction of different features of the eye by the tracker’smodel [21]. It uses the corneal
reflection (CR) induced by the IR light, and the pupil coordinates (P), all captured by a camera
as images or video. The relative displacement between the two is used to compute gaze direc-
tion, thus giving the method the name P-CR: the corneal reflection coordinate is subtracted
from the pupil center coordinate [22, 23]. One reason for choosing this tracker for the study is
that there is the biggest number of comparative studies which use the EyeLink 1000 or 1000+
as a benchmark [16]. Furthermore, EyeLink uses feature recognition to track the gaze – dis-
covering the pupil and corneal reflection by thresholding, which is part of the process which
should be modeled by a neural network. Thus, comparing EyeLink with the presentedmodels
allows a comparison of the underlying algorithms: 2D regression methods and deep learning
appearance-based methods.

In practice, a minimal lab setup includes an eye tracker, a computer screen, a chair for the
participant, and a desk [24]. The specific EyeLink setup additionally has a host PC,which runs
onDOS and is connected to the eye tracker with an Ethernet cable. This allows for the built-in
camera to log data points at very high speed: settings canbe changedbetween1000 and2000Hz
for most EyeLink models. For any eye tracking research, it is crucial to report the geometry of
the setup, defined as the absolute position and orientation of the eyes and the tracker [25] and
also of the screen. One argument why reporting these technical specifications is crucial for
replicating study results is that if the screen size is too large, it leads to poorer precision of gaze
estimation in the outer parts of the screen [26, 27] reported in [16]). Furthermore, the distance
to the eye tracker should be considered a relevant factor (approximately 60-70 cm in most lab
settings). Overall, one can summarize sources of errors into a list of categories, such as head

7

pose, display and camera properties, user distance and set-up geometry, illumination, and user
characteristics [17].

With many individual and environmental sources of variation to consider, a crucial step in
this type of eye tracking is calibration. As mentioned, each individual has unique eye param-
eters [17], so adapting the model to these parameters takes place during a task in which the
user/participant follows a point jumping or moving to predetermined locations on the screen
and fixating on them. This allows the tracker to compute a mapping function from the eye
positions to screen locations.

As both characteristics of the eye and the geometry of the setup determine the quality of the
recording, it is likely that variations in these are linked to artifacts in the data. Relevant artifacts
stem from factors such as pupil size, pupil occlusion, and mascara: i.e. very thick eyelashes
can obscure the proper detection of the pupil. Lighter eye color is also commonly connected
to lower accuracy and precision [28]. Illumination in the room can also cause bad quality of
the data. Light changes during recording affect the size of the pupil, leading to a decrease in
gaze accuracy [29, 16]. Direct sunlight also negatively affects the quality of the data [30, 31] as
infrared radiation can interfere with the one coming from the tracker itself.

Another source of variation comes from the head position. For a specific formulation of the
head-eye correspondence, the reader is referred to [17]. Inmany lab scenarios, the participant is
sitting in a chair that does not allow for considerable bodymovements, and their head is placed
on a chin rest. There is some evidence that using a chin/ forehead rest can help against small
movements as it restricts the position of the head inside what is called a head box (the relative
position of the head to the eye-tracker), thus making it less likely that the tracker will lose the
position of the eye [28].

With various sources of error described, it is accepted that methods relying on IR light and
high-resolution and high-frequency cameras to have high accuracywith the limitations that the
equipment should be acquired first and the participants should be in a controlled environment
[3]. Cameras with high sampling frequencies such as the EyeLink (1000Hz and above) allow
researchers to track saccades and the even faster micro saccades [32]. The required minimum
for recording saccades is 100 Hz, while micro saccades require a minimum of 200 Hz to be
recorded [33]. On the other hand, some methods use visible light cameras. Instead of the
EyeLink setup, some researchers construct their setup using IRLEDs andwebcamswhich have
much lower frequency. Because most web cameras available at home have a sampling rate of
about 30Hz, it is not a plausible goal of the current research to develop a method for studying
saccades with a webcam.

8

2.3 Eye tracking outside of the lab

Next, we turn to appearance-based or feature-based methods, which include the transforma-
tion of pixels in the eye region to abstract features i.e. pupil, cornea, limbus, eye corners, or also
histograms of oriented gradients and other computer vision descriptors. These descriptors are
mapped to predicted gaze points or directions [17]. Commonly required components of an
appearance-based method are a feature extractor, a regression function, and training samples
to optimize the function. A feature extractor has to efficiently compute low-level gaze features
such as histograms of oriented gradients [18]. Machine learning algorithms are used as regres-
sion functions. Besides many other options, one can name adaptive linear regression [34, 18],
support vector regression [35], Gaussian process regression [36, 37], and convolutional neural
networks (CNN) [38, 39] have been proposed. Since the last mentioned study demonstrates
that thismethod is not disrupted by low-resolution eye images compared tomodel-basedmeth-
ods, a CNN is chosen for the modeling in the current study.

Furthermore, [3] summarizes that 2D and 3D model-based methods tend to be better for
gaze estimation when the user is at a greater distance and the camera images are of high res-
olution. Therefore, this research investigates deep learning appearance-based methods. DL-
based methods are reported to have the ability to extract high-level gaze features and to learn
non-linear functions, thus becomingmore robust and accurate than conventional appearance-
based methods [18].

Before turning to DL extensions, the current subsection introduces common appearance-
basedmethods. From a broad perspective, thesemethods attempt to solve the issue of studying
eye movements remotely, via an online experiment. There are certain available options - some
tools are proprietary and have to be bought from a company, while others are open-source
libraries. One option is to approximate the gaze estimation process. An example of this is man-
ual gaze scoring, which includes trained raters evaluating which area on screen a participant is
looking at from a webcam video. There is also a method for automating the scoring presented
in [40]. This type of paradigm comes with a low spatial resolution (e.g. the scoring of gaze
location could be divided into left, middle and right sections of the screen). Yet the automated
scoring is supported by evidence to be appropriate for this type of research: GazeScorer is re-
ported to agree with the human scorer both in children and adult samples, with the advantage
of requiringmuch less time. Therefore, more complexmodels are expected to improve the spa-
tial resolution of the predictions. Another option for online tracking is the use of a proxy for
gaze location: this entails the study of mouse tracking and is possible through packages such as

9

Mouseview.js [41].

The previously mentioned example of webcam tracking that also utilizes an appearance-
based method is WebGazer [20]. It is an open-source project written in JavaScript, which can
be integrated into any web page to track people’s eye movements. WebGazer uses the webcam
video stream as input. However, unlike the lab eye tracking described previously, the calibra-
tionworks by fixating on a dot on the screenwhile clicking it with themouse. This is due to the
underlying assumption that during web browsing, the gaze location is highly correlated with
the click location at the time of a mouse click. Some support for this comes from findings on
gaze-cursor distance being smaller in screen areas attended by the user, [42] in [20]. Therefore,
clicks are used as weights in the regression to calibrate the model and also to ensure continu-
ous adjustment of the gaze location estimations in the period between clicks. Sometimes, this
calibration process can be very involved. In many cases, it has to be repeated throughout the
experiment and it also does not prove that the assumption holds. Studies investigating the gaze-
cursor distance report 74 pixels distance when a click occurs [43], and also a larger distance for
x-axis coordinates [44].

Nevertheless, as an example of an appearance-based method, WebGazer is the tool chosen
to investigate in the current study. The model first finds the face and eye regions. The original
paper reports that three libraries are tested for this, including dlib’s 68-point facial landmark
detector. Then, a median blur filter is applied for noise reduction followed by thresholding to
find the iris area. This uses the assumption that within the eye region, the pupil is expected to
be located in the center of the iris. The latter is circular and darker than its surroundings. After
applying a grayscale color transform and histogram equalization, the model’s input is ready.
The weight vector is represented as:

w = (XTX + λI)−1XTY. (2.1)

whereX is a matrix with eye features and Y is the target vector of screen coordinates, while
the regularisation term aims to prevent overfitting (λ = 10−5). As already mentioned, We-
bGazer uses information about the clicks to calibrate the model. Added to the regression are
the predictions within 500ms time windows from a click and 72 pixels distance from the click
location. The authors name these variations of the algorithms ridge regression and a fixation
buffer. In addition to this, WebGazer is expanded by including a cursor movement matrixK
in the calculation of the weight vector:

10

w = (XTKX + λI)−1XTKY. (2.2)

The matrix has an entry of 1 if a click occurred and 0.5 during the movement of the cursor.
A decaying rule is applied, decreasing the cursor location’s weight by 0.05 after 20 ms. The
results in [45] are based on 802 predictions from the simple linear regression model and 866
predictions from the model variations (cursor behavior, clicks, ridge regression, and fixation
buffer). According to the analysis, considering additional information on cursor movements
can improve the accuracy of predictions and decrease the error (quantified as the distance be-
tween the click and coordinate prediction made by the model).

In addition to the calibration, the WebGazer might also require high experimenter involve-
ment and also lead to high attrition rates [46]. Sometimes it is enough that the lighting con-
ditions in the participant’s room are bad and the algorithm will report that the user should
try again later. Unstable environments are something that developers of methods for online
research should be aware of. Nevertheless, there are big advantages of tools like WebGazer –
they allow researchers to reach demographically diverse samples. With extensive validation of
the method not present yet, there is only some evidence of its accuracy. WebGazer has been
tested in some behavioral and cognitive tasks and has led to discovering effects like the ones
found with other eye tracking methods [47, 48]. It has been compared to manual gaze scoring
in infant populations [46], yet as the study underlines, until improved deep learning tools for
gaze coordinate prediction are developed,WebGazer is the tool that researchers have to rely on.

On a last note, there is a variety of methods available online that researchers could purchase.
Unfortunately, the algorithms behind these tools are unknown, and so are the databases used
for training them. One example is a gaze detection classifier available on the Amazon Rekogni-
tion software [49]. As parts of the algorithm are not open-source, a direct comparison to this
method is not possible. Therefore, the next section is concernedwith presenting deep-learning
solutions which are not proprietary software or require the acquisition of expensive data sets.

2.4 Deep learning solutions

An extension of appearance-basedmethods is the use ofDL algorithms. These have to perform
well under a variety of conditions: occlusion, eye size, head pose, and illumination to name a
few. In any case, a DL model most commonly receives an RGB image as input, I ∈ RW×H×3

usually pre-processed to include the face or eye regions. TheDLarchitecture is then responsible

11

for learning a representation of eye features and mapping them to gaze coordinates.
In practice, studies differentiate between single-path architectures and multi-path ones. In

the first case, the network receives only the face, or only the eyes as input, while in the latter,
it can be a combination. Furthermore, one can also include other inputs such as head pose
and eye models. A natural extension of such architectures considers the dynamic nature of
gaze movement, thus working with video as input and including recurrent elements in the net-
work. Lastly, some studies have proposed transformer designs, autoencoders, and adversarial
networks as solutions (overview in [18, 19]). In the following paragraphs, these examples will
be detailed and their strengths and weaknesses summarized.

Before presenting relevant studies, a first note related to the factor of head position is im-
portant. Deep learning architectures and specific techniques have been proposed to tackle the
issue of head movement, such as clustering input images with similar head positions ([50] in
[19]), or image synthesis ([51] in [19]). Besides existing techniques for dealing with this issue,
one study [38] suggests that a CNN is capable of detecting eyes in images as long as the head is
positioned in a way that is usually seen when using a computer system. Since the current study
does not consider head movement, as it will be detailed in Chapter 3, the reader is referred to
these studies for the description of the techniques.

As already mentioned, to estimate gaze coordinates, a model requires an element that ex-
tracts features from the visual input and one that maps them to coordinate values. The section
begins with a study that separates the two tasks and continues with end-to-end methods.

A paper that illustrates the separation of the feature extraction and coordinates prediction
parts of a DL model addresses real-time gaze tracking from video. After extracting facial land-
marks related to facial and eye features with a separate open-source toolbox (DeepLabCut), the
authors of [52] use the coordinates of these landmarks as input to a shallow feed-forward NN
with one hidden layer of 200 neurons, followed by a sigmoid activation function and two out-
put neurons for the coordinates. The authors report using StochasticGradientDescent (SGD)
with a learning rate of 0.3 and momentum of 0.6. The error function is a derivation of the L2
loss. The full data set used in the study has 3569 frames. Their system is reportedly compara-
ble to the accuracy of previous studies with similar approaches, reaching a median error of one
degree of visual angle, even observing the effect that x-axis coordinate predictions have larger
errors compared to the y-axis. A similar effect was reported for theWebGazer algorithm above
- larger errors for the x-axis predictions. While this study serves as an example of the abilities of
neural networks to learnmappings, it also suggests that with a stronger feature extractor, there
could be a single network that does all the work.

12

Thus, convolutional neural networks are discussed next. Firstly, [15] use an IR LED light
to illuminate the eyes but a simple webcam to capture images. This low-cost solution for on-
line gaze monitoring is tested by using YOLOv3 to detect the gaze position. Despite the low
cost of the method, it still includes an infrared light used to determine the head position in
relation to the screen by classic computer vision techniques such as thresholding in OpenCV.
Furthermore, according to the authors, considering the pose of the head did not influence the
results. While large-scale datasets exist, the authors describe them as unsuitable for developing
a low-cost solution, as the images in these datasets have very high resolution. Therefore, a cus-
tom dataset of 3000 manually labeled images is used to further train the last three layers of the
pre-trained YOLOv3 network. The achieved accuracy is 2 degrees of visual angle. While the
authors report higher accuracy for a Mask-RCNN, they warn that using a recurrent network
lacks the speed necessary for the tool to be deployed in real-time.

With certain CNN architectures already tested for eye tracking, specifically for iris recogni-
tion, it is reasonable to assume that this architecture can be used as a feature extractor [53].
Recent studies include modified versions of the VGG family ([54]), AlexNet, ResNet-18, and
ResNet-50 which all learn fromRGB images, either presented in one stream (only face or only
eyes) or multiple branches (left eye, right eye, face). Commonly, these networks rely on the
convolution operation to extract features.

Firstly, GazeNet is a classic CNN example for gaze estimation. Its input is in the form of an
eye patch which is processed by a VGG-13 network before having the head pose concatenated
to the first fully connected layer. ([55] in [18]). During training, the tracked loss is the sum of
individual L2 losses between predicted and true gaze angle vectors [18]. The model reportedly
outperforms LeNet [56].
In a further effort to increase the receptive fields without further reduction in the spatial res-

olution of images due to the high number of convolutional layers, the authors ([57] in [18]) use
dilated convolution while keeping the VGG-like architecture. Specifically, it has four blocks
of stacked dilated convolutional layers, a max-pooling layer, and two fully connected ones. An-
other important difference in this study is the multi-input nature of the CNN - each eye patch
as well as an image of the full face goes through the whole network and the results are concate-
nated before the fully connected layers. The decision to use dilated convolution is motivated
also by the fact that some eye movements lead to very small changes in pixel appearance, thus
the authors wanted the network to extract these features from the images with higher resolu-
tion. The formulation of dilated convolution is expressed as follows. The output feature map
v is:

13

v(x, y) =
K∑
k=1

M−1∑
m=0

N−1∑
n=0

u(x+ nr1, y +mr2, k)wnmk + b. (2.3)

where U is a feature map of kernel sizeN ×M ×K , which are height, width and channel
respectively. The parameters (r1, r2) stand for dilation rates. The network is trained using
Euclidean distance as the error, Adam as an optimizer, and a learning rate of 0.001, which was
decreased according to a fixed scheme.

Similarly to the previous study others consider that including multiple inputs improves the
inferential ability of the network [19]. So, there have been various combinations of input data.
Some refrain from including images of the whole face, as it may contain unnecessary infor-
mation ([58] in [19]), keeping a branch for each eye patch. Others, such as the iTracker [59]
include a binary mask indicating the face location as additional input besides the eye patch
branches. Lastly, some studies propose mechanisms such as spatial weighting that learns to
encode the face location in the input images [60].

Next, to consider the dynamic nature of the gaze, recurrent architectures are employed for
modeling this temporal aspect. This turns the input from images to videos, notwithstanding
that in practice, each frame undergoes a static CNN for feature extraction. Then, the features
are fed into anRNN. For this, common recurrent structures have been explored, such as GRU
[61] in [62]. Recurrent modules are supposed to additionally improve gaze estimates of the
model given the high correlation between subsequent frames [57, 19]. The first mentioned
study [57] reports an improved accuracy of 2.49 degrees angular error over similar static meth-
ods by using a ResNet-18 component for feature extraction and a GRU cell. The study addi-
tionally evaluates an LSTM [63], a convolutional recurrent cell [64], andRNN [65]. Similarly,
[66] takes advantage of pinball LSTM, using a window of seven frames for predicting the gaze
directionof the frame in themiddle. Like [61], themainCNNis inspiredbyResNet-18, which
receives the full facial region as input. Overall, despite comparable results from studies consid-
ering temporal information, reported open issues remain to be addressed, among these the gaze
directions, velocities, and trajectories [19].

On a last note, [19] summarizes transformer-based efforts in the field of gaze estimation,
revealing a potential application of fast-spreading transformer architectures. Two main explo-
rations in this field are GazeTR-Pure and a hybrid version, which combines a CNN with a
transformer [67]. Themainmotivation behind this choice of a hybrid network is the attention
mechanism, which is expected to consider information beyond the local correlation in patches
that the pure transformer computes. According to the authors, the hybrid network produces

14

better results in gaze estimation than the pure transformer and than a simple CNN (ResNet-
18). Since this is one of the few reviewedmethods from the last years, transformer architectures
seem to be a promising path for gaze estimation. Other networks include GAN and VAE solu-
tions, which reportedly suffer from time complexity issues [19].

Overall, the choice of eye tracking method and gaze estimation algorithm should be based
on what is required for one’s research questions. Before experimenting, one should get famil-
iar with the available tools and their limitations. Another issue accompanying the develop-
ment and popularization of tools for remote eye tracking is the ethical and legal concerns of
web eye tracking. Most methods described above are based on the user’s webcam stream as in-
put. This raises considerable privacy concerns, as researchers should value the subjects’ right to
anonymity. A review study [68] has discussed the possibility of extracting unique biometric
data and personal attributes such as age, personality traits, and cognitive processes from eye-
tracking data. Fraser et al., 2021 suggest precautions in every step – from collecting the data to
storing and retaining it. Therefore, following the GDPR is crucial for this type of project. The
section about data collection covers the privacy procedure followed during the current study.

15

16

3
Methods

Motivated by the purpose of the study, which is to develop an alternative low-cost solution
for web eye-tracking, and by existing experiments with DL approaches, a clear description of
the research process is required. Past review studies have pointed out the lack of consistent
reporting of experimental conditions [16]. Therefore, this chapter covers the specifics of the
data collection, including the task, setup, and experimental protocol. Then, the dataset and
its preprocessing are described. The final section is concerned with the algorithms chosen for
tackling the task of learning to predict screen coordinates from images. As the focus of this
study is to expand the range of online eye-tracking solutions, supervised algorithms are selected
as the learning strategy. This decision is further motivated by the goal of comparingWebGazer
with a lab-based method, EyeLink, and identifying limitations in both approaches. Data from
these sources is collected simultaneously, further enabling the comparisonbetweenWebGazer’s
predictions and the trained models’ predictions. To this end, a simple online choice task is
created and administered to participants in the Erasmus Behavioral Lab.

3.1 Experiment and data collection

As an open-source package, WebGazer can be added to any webpage. This way, on top of any
normal functions of the web page, a user can record the location of their gaze on the screen.
Therefore, a choice task was adapted to a web page. Common experiment builder software
and packages, including the EyeLink Experiment Builder, are not equipped for presenting a

17

web page as a stimulus while recording gaze data. However, EyeLink has a new software, We-
bLink, which is specifically designed for this purpose. The software was acquired by the Eras-
mus Behavioral Lab. It enables the synchronized collection of EyeLink data as well as a video
recording of the participant while they interact with a web page. WebLink itself is responsible
for triggering the EyeLink tracker, the webcam video stream, and for opening the web pages in
Chrome. WebGazer collects task choices and predictions in a separate database. The process is
explained in detail in the following paragraphs.

The task given to participants consists in selecting between two options, each presenting a
sum of money that would be received after some period of time. In 36 trials in a randomized
order, participants had time to observe the options and make a choice by clicking on a button
located below the information boxes. AsWebGazer was discovered to suffer from a decreasing
accuracy with experiment duration, another student in the same faculty (Rotterdam School of
Management) aimed to tackle this issue by creating two conditions. One sees the choice but-
tons in a fixed location, the other condition randomizes the location of the buttons. The latter
is expected to lead to increased accuracy ofWebGazer’s predictions, as participants would have
to look at the button’s new locationwhile clicking it, hence utilizing the continuous calibration
functionality of the tool.

Examples of both types of trials can be seen in Figure 3.1. More specifically, the randomized
button positions are calculated each time the user presses ”Next”. For the left button, its new
position is calculated as a distance from the bottom and left border of the page:

Math.floor(Math.random() * 25 + 10) (3.1)

. The JavaScript functionMath.random() returns a float between 0 and 1. For the bottom
offset, the randomnumberwasmultiplied by 5 instead of 25. This has the goal of guaranteeing
the choice buttons do not appear on the wrong side of the ”Next” button. The location of the
right button is determined in amirrored way. The contents of each trial are predetermined, yet
the order of their presentation is randomized.

The 36 trials are interrupted by frequent calibration steps every 5 trials. As already men-
tioned, the calibration process forWebGazer is different compared to standard lab-based track-
ers. The user is asked to fixate on each red dot and click it 5 times until it changes color to yellow,
see Figure 3.2. Once all 5 dots have been completed, an accuracy estimation is performed: the
participant has to fixate on a central dot for 5 seconds without moving the cursor. This step
records an accuracy measurement (distance between estimated gaze location and actual dot

18

Figure 3.1: The fixed button condition is on the left, and an example of a potential randomized position is on the left. The
base experiment was created by Paul Kievits, a ScientificDeveloper at Rotterdam School ofManagement, Erasmus University,
who adapted an experiment from the Brown HCI Group. The button positions and trial information was added by the
experimenter.

location). The involved, and repeated, calibration process aims to continuously improve the
prediction accuracy.

Figure 3.2: In the process of calibration participants initially see the four dots on the blue background and only once these
have been completed, the central one appears. The location of the central calibration dot is the same as the accuracy
estimation dot.

The WebGazer functionality is embedded into a web page study. In turn, the study, in-
cluding the database, is hosted on a personal server on the experimenter’s computer. As this
would ensure higher privacy of the data by directly sendingWebGazer’s coordinate predictions,
a private connection was chosen for this purpose. The study is accessed via a link that has cer-
tain URL parameters determining the participant ID and the condition. Again, due to data
protection reasons (keeping data from different sources separately), certain demographic ques-
tions such as age, gender, and education level were presented using a Qualtrics study, which
assigns a random condition and increments the participant ID. These parameters are passed
to WebGazer while the participant is automatically redirected to the experiment page. The
Qualtrics dataset is stored separately and it additionally includes the participant consent and
demographic information. Once subjects have finished theWebGazer task, they are redirected

19

to a separate Qualtrics questionnaire on impulsive behavior. The questionnaire serves more
purpose for the graduation project of the other student, whose focus is the analysis of accu-
racy between the two experimental conditions. Figure 3.3 presents the order of task elements
schematically.

Figure 3.3: The experiment begins with a standard 9‐point calibration and validation of the EyeLink. Then, participants are
asked for their consent and demographic details. Following theWebGazer task, subjects are asked to fill out a self‐controlling
behavior questionnaire.

While the WebGazer task is the source for x and y coordinate predictions for this tool, Eye-
Link predictions are stored as well. The lab uses the EyeLink 1000 eye-tracking hardware, soft-
ware version 4.56. The tracker has a sampling frequency of 1000 Hz and is set to track the
right eye. In the calibration of EyeLink, participants are asked to follow and fixate on targets
that appear on the screen. As seen in the top-left corner of Figure 3.3, there are 9 locations for
the calibration dot to appear in. It jumps between these points in a randomized order. If the
calibration is satisfactory, the predictions are validated and the participant is redirected to the
first Qualtrics survey. A desired validation accuracy for the EyeLinkmethod entails two recom-
mendations: an average error value below 0.5 degrees visual angle and a maximum error below
1.0 degrees. The visual angle is a measure of quantifying the size of an object on one’s retina.
It considers the size of the object and the distance to the retina. For example, if an object has
a size of 2 cm on screen and its distance to the retina is approx. 57 cm, the visual angle is the
object is 2 degrees. For a more direct interpretation of the results from the methods tested for
this thesis, the error is computed as the distance between the validation dots on the screen and
the estimated gaze position.

20

The eye-tracker is positioned between the participant (eye-tracker-to-eye distance is 51cm)
and the monitor, and the webcam is placed on top of the monitor (Webcam-to-eye distance is
84cm). The distance from the eye to the top of the screen is 85 cm and to the bottom is 87 cm.
This smaller distance to the top is dictated by practical instruction in the EyeLink manual that
the participant should be facing the upper half of the screen. Figure 3.4 provides a concrete idea
of the geometric characteristics of the setup. Further technical details include the resolution
of the screen, 1920 by 1200 pixels, with a refresh rate of 60 Hz and physical size of 52x32.5cm
or a diagonal of 61 cm. As uncontrolled light conditions can influence the data, the lab has its
windows blackened and additionally covered by blinds. The light source is a cold ceiling light
above the participant.

Figure 3.4: The experiment is carried out in the eye‐tracking lab of the Erasmus Behavioral Lab. The setup consists of a chair
with adjustable height for the participant, a headrest, the EyeLink device, the experiment display, and two identical webcams.

As the video stream from one camera could only be utilized by one application at a time, the
setup includes two webcams with the same characteristics, one next to the other with a 12 cm
distance between the centers of the camera lenses. The camera used for collecting video data is
the same as the one used by WebGazer: a Logitech Webcam C925e, 1080p quality, 16:9 ratio,
and 30 fps.

21

3.2 Dataset and preprocessing

To summarize, there are three main data sources. WebGazer stored x and y coordinate pre-
dictions with epoch clock timestamps along with the choices participants make in the task.
The frequency of predictions is determined by the webcam, so 30 frames per second. Eye-
Link collects coordinate predictions, mouse and click data at 1000Hz, which is a considerably
higher frequency thanWebGazer and the video. EyeLink has an internal clock and these times-
tamps are saved together with the predictions. The video of the participants is collected by
WebLink, the overarching experiment builder, with timestamps following the same internal
EyeLink clock. The timestamps are embedded into the frames as pixel values in the top left
corner. Additionally, to prepare a dataset for training any DL algorithms, multiple processing
steps are applied to the three data sources. This entails the use of a character recognitionmodel
for reading out timestamps from the frames. These are then matched to EyeLink coordinates,
discarding a large part of the EyeLink recording. In the next step, the epoch clock stamps ofWe-
bGazer are alignedwith the EyeLink stamps. This ensures that the same amount of data points
that are used for training the network are also available for comparing EyeLink andWebGazer.

The process begins with parsing every video frame using the OpenCV library. Then, a re-
gion of interest (top left corner) is defined and the area is transformed to grayscale, followed by
the application of a binary threshold to ensure the result is black digits on white background.
This pre-processing step increases the success of the Tesseract library, created for optical char-
acter recognition. (https://github.com/tesseract-ocr/tesseract) TesseractOCR uses an LSTM
architecture to read out characters from images. The algorithm receives small rectangles of the
image as input. Multiple networks (a forward and backward LSTM) are used on the pixels in
these rectangles and their outputs are stacked afterward. Tesseract then classifies the charac-
ters by comparing them to its existing language model. Amodel parameter asserts that a single
uniform block of text should be present in the frame. These decisions were dictated by the
fact that this configuration lead to the highest number of frames extracted successfully. After
a video has been processed, the faces are cropped out of each frame and saved as key-value pairs
with the respective timestamps. Unlike other online eye-tracking solutions which have to ap-
ply some technique for searching the face region, in the present study subjects have their head
positioned in the same location due to the headrest. Further arguments for this decision is the
reduction of the computational complexity of the CNN [69].
Next is the matching between video frames and coordinate predictions. Starting with Eye-

Link, the data is saved in its proprietary .edf format, which is then transformed to .asc using

22

the EyeLink data converter tool. The files are then read in R using the ”Eyelinker” library. As
EyeLink data is commonly analyzed using EyeLink’s DataViewer, there aren’t well-supported
solutions for easy processing in Python and R. However, the Eyelinker library allows access to
the raw data with little manual processing. After reading in the .asc file, rows withmissing data
(e.g., due to out-of-bound gaze coordinates or undetected pupil) are removed. The stamps in
the EyeLink recording thatmatch the extracted frame stamps are added to a dictionary contain-
ing the frame, timestamps, and two predicted screen coordinates.
To be able to compare these values with the ones predicted by WebGazer, the two different

clocks have to be aligned. The EyeLink recording has as one of its first entries a line matching
its internal clock with the epoch time clock of the Windows System of the display PC. There-
fore, adding this offset to the EyeLink timestamps allows for finding the exact or closest match
between the already aligned frames and EyeLink coordinates, and theWebGazer predictions.
When it comes to the dataset collected for this study, it contains data frommore participants

than previous studies. Compared to publicly available datasets for iris recognition or gaze es-
timation, the current one has a large amount of data points, albeit not as many as MPIIGaze.
In total, 56 participants were invited to the Erasmus Behavioral Lab. The data collection took
place in spring 2023 and continued for around two months to reach this sample size. Three
of these 56 participants did not have their data recorded: one due to a technical error in the
EyeLink Host PC, and the other two due to poor calibration. For these two participants, the
experiment was interrupted after the calibration, as the EyeLink tracker was not able to dis-
cover their pupils, thus leading to error values above 3 degrees visual angle for multiple valida-
tion points even after repeated attempts to calibrate. The resulting 53 participants all have full
datasets recorded and are subject to further exploratory data analysis.
These 53 participants have different video lengths, as some people require longer to read the

instructions or need time to understand the WebGazer calibration process. After parsing the
videos through Tesseract OCR, only 169 frames were not successfully read. For these frames,
the model was not able to recognize the full string of digits, instead returning non-numeric
characters. Considering that the full dataset after aligning all data sources based on the timings
is 447241 data points, not a large portion of the data is lost to the optical character recognition
step. In other words, the total duration of the dataset, if considered in terms of a video with
30 fps, is 4.14 hours, or 4.68 minutes on average per person. This period includes only the
duration of the WebGazer task.

As mentioned previously, the accuracy measurement was described when introducing the
WebGazer calibration procedure. Across participants and conditions (button position fixed or

23

randomized), themean accuracy is 83.98 with aSD = 5.087. As themanipulation of the but-
ton position is subject to another student’s graduation project, the conditions will not be sepa-
rately considered in themodels trained here. However, to provide somemotivation for collaps-
ing the data across the two conditions, a simpleWelch Two sample t-test was performed to test
for significant differences in the accuracy estimates between conditions. The number of partic-
ipants is 27 in the randomized versus 26 in the fixed position condition. The resulting p-value
of 0.912 (n = 53, df = 48.887, 95%CI = (−3.049, 2.764)) fails to confirm the hypothesis
that the two groups differ inmean validation accuracy. The test is repeated for the EyeLink val-
idation accuracy. With a p-value of 0.746, (df = 48.406, 95%CI = (−0.105, 0.075)), the
null hypothesis cannot be rejected. Thus, it is assumed that data from the two conditions can
be collapsed to train a neural network and compare the results withWebGazer’s predictions.

Another reason why the conditions are not essential to the analysis presented in this study is
the random nature of the train-test split. Splitting the whole dataset essentially means treating
any differences between the images andpredictions in the two conditions as randomnoise. The
split is performed on the full set of 447241 points. Starting from the commonly used train-
test split of 75% of the data for the training set, the full set is divided and the mean, standard
deviation, and standard error are computed for each division. These statistics are computed
for the labels and pixel intensities in the grayscale images. This procedure is repeated until the
mentioned statistics were comparable between the train and test set. This aims to ensure that
both sets are representative of each other. The final train set contains 335430 points, while the
test set has the other 111811.

3.3 Machine Learning baseline

To provide a baseline for comparing the performance of deep learning methods, a common
tool from machine learning is used. The purpose of this is also to give the reader an idea of
the quality of specific preprocessing methods often used for eye detection in appearance-based
eye-tracking literature, namely Haar cascades.

The chosenMLmethod isXGBoost (Version1.7.6), widely used for classification and regres-
sion tasks due to its computational power. It is a gradient-boosting ensemble method combin-
ing the output of multiple decision trees. The latter represent features as nodes and branches
as decisions, leading to predictions in the leaf nodes. Learning typically occurs through the
minimization of the squared error, however, eye-tracking results are interested in the absolute
deviation of a prediction from the real gaze location. So, the mean absolute error is the desired

24

objective function. Yet, it hasmathematical limitations during training, as its second derivative
is zero. Therefore, the XGBoost implementation offers an alternative, the Pseudo-Huber loss,
used for the training and validation procedure in this paper. This loss function is a twice dif-
ferentiable approximation of the absolute loss. While the Pseudo-Huber loss function is used
for training and validation, the evaluation metric reported in the results is the mean absolute
error. This aims to ease comparability with the rest of the results.
Due to limited computational resources, the input had to be changed before running the

algorithm. The DLmodels use full-face grayscale images of size 100x100 pixels which is possi-
ble due to the GPU and batch-wise processing. In the case of XGBoost, the available RAM of
25GB ran out almost immediately when trying to prepare the input, evenwhen processing it in
batches. This is one reason why the XGBoost is trained on eye patches instead of face images.
The other reason is, as mentioned, to illustrate the abilities of eye detection methods such

asHaar cascades. Appearance-based algorithms for eye-tracking often include an initial model-
informed search for the eye region. Haar cascades come from the object detection literature in
machine learning and can be used in the form of pre-trained cascade classifiers. The OpenCV
library offers such models which return boundary points for the discovered eyes. While the
commonorder of processing beginswith face detection, the input images in the current project
already contain the faces of participants, therefore the eye detection cascades are applied to the
images after histogram equalization and image denoising (OpenCV’s fastNlMeansDenoising
function with recommended parameters: h = 10, a template window size of 7 and a search
window size of 21). These two preprocessing techniques are applied to the original image in
order to increase the success of theHaarCascadeClassifier. On a side note, without these steps,
the resulting dataset after applying Haar Cascades is 8.78% of the size of the original set.

The Haar Cascade function requires manual tuning of parameters, such as the scale factor
(= 1.1), the minimum number of neighboring pixels classified as part of the eye (= 5), and
the minimum size of the eyes (= 10x10). To gain a better idea of the accuracy of this method,
the original size of the complete data set (independent of train or test split) is 447241 while
the resulting set contains 75925 data points, which is 17% of the original set. It is also worth
noting that independent runs of the eye-detection algorithm lead to slightly varying numbers
of eye patches. The preprocessing is separately applied to the train, validation, and test sets
(70 − 10 − 20%). Although this method can commonly be used on images with a higher
success rate, this is determined by conditions such as illumination and image quality, which
varies across previous datasets.

Once the borders are found, the two eye patches are compared in size and one is paddedwith

25

black pixels in case it is smaller. Then, the patches are concatenated and compared throughout
the whole set. In case of varying sizes, the minimum patch size is taken and the rest of the
patches are reshaped to match the minimum. This step ensures uniform input size across the
dataset. Last, the input is flattened before starting the training.

Finally, the pixel values are scaled and normalized by the computedmean (62.238) and stan-
dard deviation (25.228) of the training set images. Standard scalers are trained separately for
the horizontal and vertical targets of the training set and applied to the data. A grid search
is implemented over the following parameters: number of boosted trees (100, 200, 300, 500),
learning rate (0.1, 0.01, 0.001), andmaximumdepth of each tree (3, 5, 7, 15, 20). This aims to
also inform the starting learning rate for the DL architectures used in the next sections. After
finding the best model in terms of mean absolute error, the regressor is trained and validated.
Accuracy is measured as the number of predictions falling within 10% of the target value di-
vided by the total number of samples.

3.4 Deep Learning architectures

Acommonly suggestednetwork architecture is the convolutional neural network. Partly due to
its ability to extract features, a CNN is a good network to apply to the data first. The operation
this type of network relies on is the computation of cross-correlation of the pixels in a given
neighborhood:

out(Ni, Coutj) = bias(Coutj) +

Cin−1∑
k=1

weight(Coutj , k) ∗ input(Ni, k) (3.2)

This operation has many advantages over a feed-forward NN in the context of computer
vision. The small filters ensure parameter sharing, locality, and certain translational invariance.
In CNNs, fully connected layers are used after the convolutional blocks and consist of all neu-
rons in layer l receiving input from all neurons in layer l − 1. Other important elements are
pooling layers such as the max-pool, which is commonly used in VGG architectures after the
ReLu activation function is applied on top of the convolutional layers. Lastly, a dropout op-
eration is often used to increase generalization and prevent overfitting.

26

3.4.1 Convolutional Neural Network

The first architecture tested to predict screen coordinates from webcam images is inspired by
the VGG family. However, unlike the very deep versions, the current one does not extend the
full depth. The reason for this is the size of the input images, which is cropped to be 100x100
pixel patches of the face of participants. The croppingwasperformed automaticallywhen align-
ing the datasets. Amanual check ensured that for every participant their face is still in the patch.
Furthermore, the small size of the input images means that the dataset was rather small in size
for the amount of data points inside. The input images have a shape of (1, 100, 100), as they
only have one channel (grayscale). The tested VGG consists of 6 convolutional layers, each
followed by a ReLU activation function, and a Max pool layer after every two convolutional
layers. The exact parameters and a visualization of the architecture can be seen in theAppendix.
Following the convolutional part of the network, which aims to extract features of the eyes, the
outputs are flattened and fed into two fully connected layers, the last of which has two output
neurons for each coordinate axis of the screen. A dropout operation was applied after the first
two FC layers with the default value of 0.5.

A weight initialization is also part of the training, where for convolutional and FC layers, a
Kaimingnormal initializationwas applied. Theparameters of theKaiming function inPytorch
are set to use the ReLU function and preserve the magnitudes of the variance of the weights in
the backward pass (fan_out). Biases are initialized to zero.

For the version of the network tested only on manually cropped eye patches, the convolu-
tional blocks are reduced to 4, as otherwise, the images become too small.

3.4.2 CNN and dilated convolution

For the dilated convolution architecture, the VGG-inspired network and training regimes were
kept, the only difference being the change in the convolution operation. The PyTorch conv2d
function has a parameter that directly determines the dilation rate and is set to 3. In the case
of eye patches as train data, the architecture is the same as the CNNwith normal convolution:
consisting of four blocks of convolution instead of 6 as the full-face network.

3.4.3 CNN and recurrent modules

To account for the characteristic of the data that gaze movements are a continuous signal, a
recurrent componentmay be beneficial to the learning process. To this end, the original CNN

27

tested within this project is expanded with an LSTM layer that receives frames output by the
CNN part blocks. Considering the temporal aspect of the data is expected to provide better
predictions. Besides the addition of this LSTM layer of size 512, the architecture and training
regime remains the same as for theCNNs explainedbefore. In the experiment using eye patches
as inputs, the convolutional blocks are only 4, the rest of the network remains the same.

3.5 Training procedure

For the VGG-like network, the following training regime is implemented. The optimizer is
chosen to beAdam [70] as it combinesmomentumand adapted learning rate (RMSProp) [71].
The motivation behind the added momentum is the smooth weight update.

As the dataset is large and the computational resources available for analysis were limited,
the training is performed on Colab Premium + GPU engines. A batch size of 30 data points
is defined. The model is trained for 50 epochs with an adaptive learning rate, which in the be-
ginning is 1e−4. The function responsible for tracking the L1 loss isReduceLROnPlateau,
which reduces the learning rate by a factor of 0.1 if the loss has not changed for 5 epochs in a
row. The function is part of torch.optim.lr_scheduler. TheMAE cost function is chosen as
we are interested in finding out the absolute deviation of a predicted point on the screen from
the target. The cost is computed for the horizontal and vertical predictions separately and the
sum of the individual losses is backpropagated during training. The accuracy is computed as
the number of samples within 10% absolute difference between the true and predicted coordi-
nates divided by the total number of samples.

28

4
Results and discussion

The present chapter of the thesis is concerned with providing an overview of the experiments
introduced in the previous Chapter 3. Eachmethod’s training and testing results are presented
separately, followed by an evaluation of the performances. The bestmodel in terms of accuracy
and time complexity is then compared with the performance of an online tool for low-cost eye
tracking, the WebGazer.

4.1 Machine LearningMethods: XGBoost

The previously described grid search was applied in the same way for both the horizontal and
vertical coordinate models. The search took 4.21 hours and 4.28 hours respectively and found
the bestmodel parameters to be a learning rate of 0.001, themaximumdepth of trees of 20, and
the training duration - 500 epochs. For horizontal coordinate learning, which took 52minutes
on a train set of 51286 samples, the learning curves can be seen in Figure 4.1. The graph on the
right shows the training on the vertical coordinates for a duration of 57 minutes. The plotted
error function is the MAE computed on the scaled values.

Making predictions on the test set (18887 images) was very fast for bothmodels: 1.9 seconds
for both predictors. The test set MAE is 210.689 pixels for the horizontal coordinates and
174.972 pixels for the vertical ones. The achieved accuracy, however, is 0.007 for the horizontal
coordinates and 0.01 for the vertical ones.

29

0 100 200 300 400 500
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
ea

n
Ab

so
lu

te
 E

rro
r

XGBoost for horizontal coordinate prediction
Train
Validation

(a) Training on horizontal coordinates

0 100 200 300 400 500
Epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
ea

n
Ab

so
lu

te
 E

rro
r

XGBoost for vertical coordinate prediction
Train
Validation

(b) Training on vertical coordinates

Figure 4.1: Learning and validation curves of the Mean Absolute Error for the best model resulting from the grid search.

The XGBoost algorithm does not reach an acceptable performance on the test set, despite
the evident decrease in training loss. The model is visibly not converging for the number of
training epochs. The loss curves are not yet stable. Nevertheless, this result suggests that with
longer training, better performance is to be expected, yet even if the performance multiplies
compared to the observed values after 500 epochs, it still will not be satisfactory. Nevertheless,
there is a sign of learning from the input data. Thus, the results fromDLmethods are expected
to achieve lower error.

4.2 Network performance on full face images

Moving on to the deep-learning methods selected for the analysis of the data, there are three
modelswhich are trainedbothusing the images of participants’ faces and themanually cropped
eye patches. The first set of experiments concerns the full facial images. While these images
might contain unnecessary information besides the eye region, it is also possible that slight
changes in the head position (within the limits of the chin rest)might have a positive impact on
the results. In each subsection, the training curves are plotted and the time requirements are
described. The graphs illustrate the accuracy and the MAE computed on the standard scaled
targets and predictions. This only serves the purpose of combining both metrics in a single
graph. In order to gain a concrete idea of the MAE, the absolute values in terms of pixel dis-
tance are presented in Table 4.1. The table contains the test set performance of each model.

30

4.2.1 Simplified VGG

The simplified VGG architecture is trained for 50 epochs with a mean duration of 373.370
seconds. The total duration is 18668.520 s (5.186 hours). The testing time is 94.106 seconds.

0 10 20 30 40 50
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002

LR: 1.0000000000000004

Horizontal Loss and Accuracy Progression

Horizontal Loss (Standard Scaled MAE)
Horizontal Accuracy

(a) Training on horizontal coordinates

0 10 20 30 40 50
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002

LR: 1.0000000000000004

Vertical Loss and Accuracy Progression

Vertical Loss (Standard Scaled MAE)
Vertical Accuracy

(b) Training on vertical coordinates

Figure 4.2: VGG: Learning curves of the Mean Absolute Error and accuracy. Red dots represent changes in the learning rate.

4.2.2 Simplified VGGwith dilated convolution

The same VGG-inspired architecture is trained with a simple difference. Instead of a normal
convolution, a dilation factor of 3 is added. The training takes 350.208 s per epoch on aver-
age, and a total of 17510.39 s (4.864 hours). At test time, the model predicts within 106.962
seconds. The training curves are presented in Figure 4.3

4.2.3 LSTM-VGG

For the last network, the LSTM component is applied to the image frames after they pass
through the convolutional blocks. Themean training time per epoch is 1055.516 seconds. The
overall training time is 52775.790, or also 14.660 hours. The prediction of test data requires
115.278 seconds.

Out of the described models, the best-performing one on the test set is the CNN with a re-
current component. Overall, the presented learning curves illustrate continuous, but very slow
improvement in terms of the L1 loss and the accuracymetric. Furthermore, themetrics plateau
after a couple of learning rate decreases. One potential reason for this might be the quality and
size of the input images. The resolution and the fact that no preprocessing techniques were

31

0 10 20 30 40 50
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002

LR: 1.0000000000000004

Horizontal Loss and Accuracy Progression

Horizontal Loss (Standard Scaled MAE)
Horizontal Accuracy

(a) Training on horizontal coordinates

0 10 20 30 40 50
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002

LR: 1.0000000000000004

Vertical Loss and Accuracy Progression

Vertical Loss (Standard Scaled MAE)
Vertical Accuracy

(b) Training on vertical coordinates

Figure 4.3: VGG with dilated convolution: Learning curves of the Mean Absolute Error and accuracy. Red dots represent
changes in the learning rate.

0 10 20 30 40 50
Epoch

0.20

0.25

0.30

0.35

0.40

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002
LR: 1.0000000000000004

Horizontal Loss and Accuracy Progression

Horizontal Loss (Standard Scaled MAE)
Horizontal Accuracy

(a) Training on horizontal coordinates

0 10 20 30 40 50
Epoch

0.20

0.25

0.30

0.35

0.40

0.45

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002
LR: 1.0000000000000004

Vertical Loss and Accuracy Progression

Vertical Loss (Standard Scaled MAE)
Vertical Accuracy

(b) Training on vertical coordinates

Figure 4.4: VGG‐LSTM: Learning curves of theMean Absolute Error and accuracy. Red dots represent changes in the learning
rate.

applied to the input data to train this set of models, could further impact the performance of
these models.

4.3 Network performance on eye patches

In the next step, further simplified versions of aCNNarchitecture are applied to smaller images,
namely restricted regions of the eyes. As the position of the head remains fixed during the
experiment, so does the position of the eyes.

32

4.3.1 Simplified VGG

The convolutional neural network is simplified to only include four convolutional layers. For
this architecture, training on the eye patches continues for 18179.710 seconds, or 5.06 hours
(363.592 s on average per epoch). The prediction of test set data takes 89.526 seconds.

0 10 20 30 40 50
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002

LR: 1.0000000000000004

Horizontal Loss and Accuracy Progression

Horizontal Loss (Standard Scaled MAE)
Horizontal Accuracy

(a) Training on horizontal coordinates

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002

LR: 1.0000000000000004

Vertical Loss and Accuracy Progression

Vertical Loss (Standard Scaled MAE)
Vertical Accuracy

(b) Training on vertical coordinates

Figure 4.5: VGG: Learning curves of the Mean Absolute Error and accuracy. Red dots represent changes in the learning rate.

4.3.2 Simplified VGGwith dilated convolution

The dilated version of the network requires 14755.14 s, or 295.10 s per epoch, to be trained
and 94.995 seconds for the test set predictions. The training curves are presented in Figure 4.6

0 10 20 30 40 50
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002

Horizontal Loss and Accuracy Progression

Horizontal Loss (Standard Scaled MAE)
Horizontal Accuracy

(a) Training on horizontal coordinates

0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002

Vertical Loss and Accuracy Progression

Vertical Loss (Standard Scaled MAE)
Vertical Accuracy

(b) Training on vertical coordinates

Figure 4.6: Dilated VGG: Learning curves of the Mean Absolute Error and accuracy. Red dots represent changes in the
learning rate.

33

4.3.3 VGG-LSTM

Finally, the CNN with a recurrent module requires 14977.89 s to be trained (299.558 s per
epoch). The test time is 69.288 seconds.

0 10 20 30 40 50
Epoch

0.20

0.25

0.30

0.35

0.40

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002

LR: 1.0000000000000004

Horizontal Loss and Accuracy Progression

Horizontal Loss (Standard Scaled MAE)
Horizontal Accuracy

(a) Training on horizontal coordinates

0 10 20 30 40 50
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Va
lu

e

LR: 0.0001

LR: 1.0000000000000002

LR: 1.0000000000000004

Vertical Loss and Accuracy Progression

Vertical Loss (Standard Scaled MAE)
Vertical Accuracy

(b) Training on vertical coordinates

Figure 4.7: VGG‐LSTM: Learning curves of theMean Absolute Error and accuracy. Red dots represent changes in the learning
rate.

Horiz. MAE Vert. MAE Horiz. Accuracy Vert. Accuracy

VGG 44.258 35.349 0.6315 0.6741
VGG dilated 44.910 36.312 0.6267 0.6562
VGG-LSTM 43.932 35.052 0.6368 0.6817
VGG-Eyes 48.406 39.034 0.5690 0.5928

VGG-Eyes dilated 47.434 38.323 0.592 0.614
VGG-LSTM-Eyes 46.3842 37.4094 0.6028 0.6269

Table 4.1: Test set metrics for different models trained on face images and manually trimmed eye patches for 50 epochs. The
MAE is interpreted as the absolute distance between a target and the predicted value.

Overall, the best-performing model in terms of test loss and accuracy is the LSTM-CNN
using the full face as input. However, it is the slowestmodel to train. The recurrent component
was introduced to account for the continuous nature of gaze movements. The results support
the idea that this information is relevant for predicting the gaze location on the screen already
reported in [57, 19]. The following illustration 4.8 aims to show the alignment between the
target andpredictions on the test set, separately for the horizontal and vertical coordinates. The
graph shows that despite many points laying outside of the diagonal, there is already a level of
alignment after 50 epochs of training.

34

0 250 500 750 1000 1250 1500 1750 2000
Target

200

400

600

800

1000

1200

1400

1600

Pr
ed

ict
io

n

Horizontal coordinate

(a) Horizontal coordinate comparison on test set

0 200 400 600 800 1000 1200
Target

400

600

800

1000

1200

1400

1600

Pr
ed

ict
io

n

Vertical coordinate

(b) Vertical coordinate comparison on test set

Figure 4.8: VGG‐LSTM: Comparison of test set predictions versus targets

In terms of the results, all models achieve higher accuracy for the vertical coordinate, which
could be due to various factors such as the illumination, such as the smaller range of the values
compared to the horizontal coordinates. This finding fits with previously reported ones [52],
which see a larger error for horizontal predictions. In our case, the finding could also bepartially
driven by the experimental design. The areas of interest mostly visited by the participant’s
gaze during the experiment are concentrated in three columns (the information boxes and the
accuracy validationdot in themiddle). However, the two choice optionboxesmove around the
screen in one experimental condition. Considering the larger distance between the two option
boxes, the longer visual search in this horizontal direction might increase the error.

Another relevant point to discuss in relation to previous studies [57] is the performance of
the dilation factor in the VGG-like architecture. The dilated convolution was expected to lead
to better performance when applied to eye patches, as the authors hypothesize that the oper-
ation can detect smaller changes in pixel appearance better than normal convolution. In fact,
the dilated version of the CNN performs slightly better than the normal when eye excerpts
are used as input. Meanwhile, the performance of the dilation is almost identical to the nor-
mal convolution in the case of full-face input (Table 4.1) for the horizontal coordinate. For
the vertical coordinates, there is a slight decrease in the performance of the dilated CNN over
the normal one. Yet the difference is small, potentially accountable to irrelevant information
coming from the head pose.

Lastly, the performance between the models using the face images versus the eye patches
should be discussed. Previous studies either report no improvement in results when consider-
ingheadpose information [15], or refrain fromusingheadpose information as itmight contain

35

unnecessary information [58]. These studies, however, define the head pose information in a
different way than the inclusion of the full face as input. The head pose can be coded as a vec-
tor of head direction, or information about the face can be extracted previously (e.g. as a face
mesh) and then added to the fully-connected layers. In our case, the full-face image does not
necessarily convey information regarding the head pose. This is due to the fact that participants
use a headrest. Therefore, this slight improvement in prediction (between 1 and 4 pixels on the
test set) might be related to some other factors in the larger face image.

4.4 ComparisonwithWebGazer predictions

Finally, the results are compared to the existing open-source tool for online eye-tracking We-
bGazer. The following figure is concerned with providing the base comparison between Eye-
Link and WebGazer visually. The plotted values and the following metrics were calculated
for the matched indices of the test set. In terms of MAE, the horizontal coordinates differ by
144.75 pixels when comparing the full datasets. The vertical MAE amounts to 146.34 pixels.
In both cases, the error in theWebGazer predictions is large. Compared to the performance of
the available neural networks trained within this project, WebGazer is less accurate.

0 250 500 750 1000 1250 1500 1750 2000

0

200

400

600

800

1000

1200

Data from EyeLink

(a) Training on horizontal coordinates

0 250 500 750 1000 1250 1500 1750

0

200

400

600

800

1000

1200

Data from WebGazer

(b) Training on vertical coordinates

Figure 4.9: Visual comparison of EyeLink and WebGazer predictions on the test set. The EyeLink data is plotted on the left.

Lastly, to provide the reader with a concrete idea of the achieved performance improvement,
a website is chosen. In many eye-tracking experiments, there are predefined regions of interest
(ROI), which can differ in size. So, it is important for researchers to know the expected accu-
racy of different methods before choosing one for their analysis. The visual experiment aims
to show the difference between what WebGazer is capable of predicting versus the developed

36

methods. With a test set MAE of 146.34 pixels for a vertical coordinate prediction, WebGazer
could differentiate whether the user is looking at the logo of a university course (central panel
with course descriptions) or at the course name below the logo. However, if the researcher is
interested in the placement of the course names in the dashboard panel on the left side, We-
bGazer would not be able to provide accurate information. One course name section has a
height between 47-68 pixels approximately. As the tested neural networks have a verticalMAE
of 35.3 up to 39 pixels, they would be able to differentiate between two neighboring course
name sections in the dashboard panel.
.

37

Figure 4.10: Screenshot of an example website with overlaid coordinates in terms of pixels. The coordinate for a point is
placed to the top right of the dot itself.

.

38

5
Conclusion

5.1 Summary of results

In sum, the results confirm multiple previous findings. Most importantly, the idea is that a
neural network can be used as a feature extractor and a way to learn to predict screen coordi-
nates. Including information regarding the head position leads to lower error. Furthermore,
the long short-termmemory component increases the accuracy of thepredictions, andwith fur-
ther engineering prior to its deployment, it is a reasonable model to adopt in web eye-tracking
research.

On another hand, the experiment withHaar Cascades illustrates themethod’s slowness and
dependency on various characteristics of the data. The resolution of the images, the illumina-
tion, distance from the camera to the face, can all be detrimental to the success of this algorithm.
An additional review study of datasets and their respective conditions is necessary to quantify
their effects on eye-detection algorithms. The use of online tools such as WebGazer remains
under question, as its accuracy is also influenced by environmental conditions.

5.2 Relevance and applications

As described in the introduction, web eye-tracking algorithms are a tool that requires further
improvement. The applications of such methods in usability, marketing, and behavioral re-

39

search are various. The example provided at the end of the previous section gives an idea of the
achieved improvement over existing methods. Researchers interested in evaluating the place-
ment of ads or certain website elements can rely onweb eye-trackingmodels to a certain extent.
Themodels, however, can for now be applied directly to a dataset that already has detected face
or eye regions. This is an aspect that limits the usability, yet does not refute the fact that such
prediction accuracy is achievable with relatively simple neural networks.
The algorithms presented in the current study rely on a new dataset, collected for the pur-

pose of using webcam images as input and EyeLink predictions as target values. One possible
application of this paradigm is the chance for researchers to first collect a small sample in a lab.
Then, training the aforementioned models, or using transfer learning can improve the predic-
tions in the context of the specific experiment. Finally, the optimized trained model can be
deployed for the researcher’s experiment online.
Pre-testing characteristics of stimuli (such as the size and valence) used for an online exper-

iment with a large at-home sample is a plausible use case of the algorithms. Although further
validation is necessary before this is possible, the results are promising.

Overall, the findings support the idea that eye-tracking with a webcam is possible. Neverthe-
less, there are limitations to the current study that argue for the difficulty of the task.

5.3 Limitations and suggestions

On one hand, the issue of varying experimental conditions is not solved. The algorithms need
to be validated for different head poses, illumination conditions, and camera resolutions.
As the head remains in a fixed position in the current study, no object detection algorithms

had to be applied to restrict the search area for the eyes in the image. As a continuation of the
research topic, twopaths can be laid out. In a lab experimentwithout the headrest, participants
can be instructed to refrain from sudden head movements in one condition. The other condi-
tionwould see subjects freelymoving their head. TheEyeLink algorithm is capable of detecting
the pupilwithin a certain range ofmovement (headbox). This studywould allowusing the data
from the first condition as training data for a NN, while the free head movements are used to
test whether the results can be generalized to different head poses. An alternative way for val-
idating the accuracy of neural networks for head movements is by relying on existing datasets.
Some contain images of different head poses that can be used for testing the presented NNs.
The issue is that these datasets do not contain the target labels for screen coordinates. There-
fore, this second suggestion would instead imply comparing the achieved predictions with pre-

40

viously published results from training certain algorithms on such datasets.

Similarly, the illumination conditions remained constant throughout the data collection. A
follow-up study canproceed inoneof three directions. Ononehand, one can attempt to collect
a newdataset in the labwith the same setup, yetwith a desktop light that is continuouslymoved
around to introduce a traceable variation in the illumination. This option, however, directly
affects the accuracy of the EyeLink predictions as well. The machine is sensitive to changes in
the light conditions. Thus, the reliability of the target data would suffer and its comparison
with NN predictions would not be as accurate. An artificial way to test the adaptability of
NN algorithms to illumination changes would be the introduction of image transformations.
The simplest solution is Adobe Photoshop which has tools for changing the light source in
an image. On a larger scale, DL methods can be used for relighting datasets: Deep Relight-
ing Network [72] is an example of this. This way the existing dataset collected in the lab can
be transformed to create images with different illumination conditions without affecting the
accuracy of EyeLink predictions.

A limitation stemming from the data collection process in the lab is the sharing of the room
with another set of students. Throughout the collectionperiod, the students repeatedly changed
the positioning of the eye-tracker. The geometric setup distances were initially recorded and
then continuously measured and readjusted back to the original. Nevertheless, it is possible
that certain angles of the camera were not the same as it is unknown if any untracked factors
were modified by the other group of students.

Moving on to the neural architectures themselves, a previous effort is to combine different
inputs, such as the extracted information regarding the head position, with the one from the
eyes. Having a multiple-channel network is something that can be tested as a follow-up to this
project: applying the convolutional parts to the face and eye patches and concatenating these
prior to the fully-connected layers might lead to higher prediction accuracy as hypothesized by
previous studies.

Lastly, the current study does not present a reason behind the low performance of the Haar
Cascades in the XGBoost algorithm. The datasets previously tested for eye detection algo-
rithms vary in head positions, lighting, and image quality to name a few factors. Additionally,
many algorithms for eye detection require manual tuning of parameters. Therefore, providing
a reliable prediction of the success rate for the Haar Cascade algorithm requires further explo-
ration of the available datasets.

41

5.4 Concludingwords

In sum, the topic of online eye-tracking gains importance with every new DL model for eye
detection, and also with every new piece of legislation concerning the use of artificial intelli-
gence in websites. From this point of view, the results that gaze location on screen can not yet
be accurately predicted in an uncontrolled home environment, gives institutions such as the
EU time to develop appropriate guidelines for data collectors and also for the users of websites.
Although the presented methods perform well on the presented novel dataset, their generaliz-
ability tomore flexible environmental conditions, such as an at-home setup, is not yet validated.
These issues are present in most eye-tracking methods, both in the lab and at home. Themany
categories of possible error sources require an extensive review and quantification. Ideally, with
the extensive description of the experimental setup, other researchers are capable of reviewing
findings in a reproducible way. Nevertheless, there is a certain level of usability of such tools for
webcam eye-tracking that can allow researchers to expand their efforts to collect reliable data
outside of the lab.

42

References

[1] A. Inc. Augmented reality - apple. [Online]. Available: https://www.apple.com/
augmented-reality/

[2] V. Clay, P. König, and S. Koenig, “Eye tracking in virtual reality,” Journal of eye move-
ment research, vol. 12, no. 1, 2019.

[3] K. Tamura, R. Choi, and Y. Aoki, “Unconstrained and calibration-free gaze estimation
in a room-scale area using a monocular camera,” IEEEAccess, vol. 6, pp. 10 896–10 908,
2017.

[4] D. Bridges, A. Pitiot,M.R.MacAskill, and J.W. Peirce, “The timingmega-study: Com-
paring a range of experiment generators, both lab-based and online,” PeerJ, vol. 8, p.
e9414, 2020.

[5] J. R. De Leeuw, “jspsych: A javascript library for creating behavioral experiments in a
web browser,” Behavior research methods, vol. 47, pp. 1–12, 2015.

[6] J. Peirce, J. R. Gray, S. Simpson,M.MacAskill, R.Höchenberger, H. Sogo, E. Kastman,
and J. K. Lindeløv, “Psychopy2: Experiments in behavior made easy,” Behavior research
methods, vol. 51, pp. 195–203, 2019.

[7] K. B. Sheehan, “Crowdsourcing research: data collection with amazon’s mechanical
turk,” CommunicationMonographs, vol. 85, no. 1, pp. 140–156, 2018.

[8] A. M. Turner, T. Engelsma, J. O. Taylor, R. K. Sharma, and G. Demiris, “Recruiting
older adult participants through crowdsourcing platforms: Mechanical turk versus pro-
lific academic,” inAMIA Annual Symposium Proceedings, vol. 2020. AmericanMed-
ical Informatics Association, 2020, p. 1230.

[9] A. L. Yarbus and A. L. Yarbus, “Eye movements during perception of complex objects,”
Eye movements and vision, pp. 171–211, 1967.

43

https://www.apple.com/augmented-reality/
https://www.apple.com/augmented-reality/

[10] R. d. O. J. dos Santos, J. H. C. de Oliveira, J. B. Rocha, and J. d. M. E. Giraldi, “Eye
tracking in neuromarketing: a research agenda for marketing studies,” International
journal of psychological studies, vol. 7, no. 1, p. 32, 2015.

[11] G. van Loon, F. Hermsen, andM. Naber, “Predicting product preferences on retailers’
web shops throughmeasurement of gaze and pupil size dynamics,” Journal of Cognition,
vol. 5, no. 1, 2022.

[12] J. Kongmanon and P. Petison, “What do you see and what do you recall?: Using eye
tracking to understand product placement,” Cogent Business & Management, vol. 9,
no. 1, p. 2120263, 2022.

[13] H. Gao and E. Kasneci, “Eye-tracking-based prediction of user experience in vr loco-
motion using machine learning,” in Computer Graphics Forum, vol. 41, no. 7. Wiley
Online Library, 2022, pp. 589–599.

[14] J. C.-Y. Sun and K. Y.-C. Hsu, “A smart eye-tracking feedback scaffolding approach to
improving students’ learning self-efficacy and performance in a c programming course,”
Computers in Human Behavior, vol. 95, pp. 66–72, 2019.

[15] I.Rakhmatulin andA.T.Duchowski, “Deepneural networks for low-cost eye tracking,”
Procedia Computer Science, vol. 176, pp. 685–694, 2020.

[16] K. Holmqvist, S. L. Örbom, I. T. Hooge, D. C. Niehorster, R. G. Alexander, R. Ander-
sson, J. S. Benjamins, P. Blignaut, A.-M. Brouwer, L. L. Chuang et al., “Eye tracking:
empirical foundations for a minimal reporting guideline,” Behavior research methods,
vol. 55, no. 1, pp. 364–416, 2023.

[17] A. Kar and P. Corcoran, “A review and analysis of eye-gaze estimation systems, al-
gorithms and performance evaluation methods in consumer platforms,” IEEE Access,
vol. 5, pp. 16 495–16 519, 2017.

[18] Y. Cheng, H. Wang, Y. Bao, and F. Lu, “Appearance-based gaze estimation with deep
learning: A review and benchmark,” arXiv preprint arXiv:2104.12668, 2021.

[19] S. Ghosh, A. Dhall, M. Hayat, J. Knibbe, and Q. Ji, “Automatic gaze analysis: A survey
of deep learning based approaches,” arXiv preprint arXiv:2108.05479, 2021.

44

[20] A. Papoutsaki, P. Sangkloy, J. Laskey, N. Daskalova, J. Huang, and J. Hays, “Webgazer:
Scalablewebcameye trackingusing user interactions,” inProceedings of theTwenty-Fifth
International Joint Conference on Artificial Intelligence-IJCAI 2016, 2016.

[21] D. W. Hansen and Q. Ji, “In the eye of the beholder: A survey of models for eyes and
gaze,” IEEE transactions on pattern analysis and machine intelligence, vol. 32, no. 3, pp.
478–500, 2009.

[22] J. Merchant, R. Morrissette, and J. L. Porterfield, “Remote measurement of eye direc-
tion allowing subjectmotionover one cubic foot of space,” IEEE transactions on biomed-
ical engineering, no. 4, pp. 309–317, 1974.

[23] E. D. Guestrin and M. Eizenman, “General theory of remote gaze estimation using
the pupil center and corneal reflections,” IEEE Transactions on biomedical engineering,
vol. 53, no. 6, pp. 1124–1133, 2006.

[24] R. S. Hessels and I. T. Hooge, “Eye tracking in developmental cognitive neuroscience–
the good, the bad and the ugly,”Developmental cognitive neuroscience, vol. 40, p. 100710,
2019.

[25] I.T.Hooge,D.C.Niehorster,R. S.Hessels,D.Cleveland, andM.Nyström, “Thepupil-
size artefact (psa) across time, viewing direction, and different eye trackers,” Behavior
ResearchMethods, pp. 1–21, 2021.

[26] D. C. Niehorster, R. Zemblys, T. Beelders, and K. Holmqvist, “Characterizing gaze
position signals and synthesizing noise during fixations in eye-tracking data,” Behavior
ResearchMethods, vol. 52, pp. 2515–2534, 2020.

[27] K. Schlegelmilch andA. E.Wertz, “The effects of calibration target, screen location, and
movement typeon infant eye-trackingdataquality,” Infancy, vol. 24, no. 4, pp. 636–662,
2019.

[28] R. S.Hessels, R.Andersson, I. T.Hooge,M.Nyström, andC.Kemner, “Consequences
of eye color, positioning, and head movement for eye-tracking data quality in infant
research,” Infancy, vol. 20, no. 6, pp. 601–633, 2015.

[29] K. W. Choe, R. Blake, and S.-H. Lee, “Pupil size dynamics during fixation impact the
accuracy and precision of video-based gaze estimation,” Vision research, vol. 118, pp.
48–59, 2016.

45

[30] D. W. Hansen and A. E. Pece, “Eye tracking in the wild,” Computer Vision and Image
Understanding, vol. 98, no. 1, pp. 155–181, 2005.

[31] K. Holmqvist and R. Andersson, “Eye tracking: A comprehensive guide to methods,”
paradigms and measures, 2017.

[32] R. Engbert, L. O. Rothkegel, D. Backhaus, and H. A. Trukenbrod, “Evaluation of
velocity-based saccade detection in the smi-etg 2w system,”Technical report, Allgemeine
und Biologische Psychologie, Uni-versität Potsdam,March, 2016.

[33] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and J. Van de
Weijer, Eye tracking: A comprehensive guide to methods and measures. OUP Oxford,
2011.

[34] F. Lu, Y. Sugano, T. Okabe, and Y. Sato, “Adaptive linear regression for appearance-
based gaze estimation,” IEEE transactions on pattern analysis and machine intelligence,
vol. 36, no. 10, pp. 2033–2046, 2014.

[35] Z. Zhu, Q. Ji, and K. P. Bennett, “Nonlinear eye gaze mapping function estimation
via support vector regression,” in 18th International Conference on Pattern Recognition
(ICPR’06), vol. 1. IEEE, 2006, pp. 1132–1135.

[36] O.Williams, A. Blake, andR.Cipolla, “Sparse and semi-supervised visualmappingwith
the s^ 3gp,” in 2006 IEEEComputer Society Conference onComputer Vision andPattern
Recognition (CVPR’06), vol. 1. IEEE, 2006, pp. 230–237.

[37] B. Noris, K. Benmachiche, and A. G. Billard, “Calibration-free eye gaze direction detec-
tion with gaussian processes,” in International Conference on Computer Vision Theory
and Applications, vol. 2. SCITEPRESS, 2008, pp. 611–616.

[38] C. L. L. Jerry and M. Eizenman, “Convolutional neural networks for eye detection in
remote gaze estimation systems,” inProceedings of the InternationalMultiConference of
Engineers and Computer Scientists, vol. 1. Citeseer, 2008.

[39] X.Zhang, Y. Sugano,M. Fritz, andA.Bulling, “Appearance-based gaze estimation in the
wild,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 4511–4520.

46

[40] A. Fraser, K. Hurman, M. Robinson, M. Duta, G. Scerif et al., “Automated gaze direc-
tion scoring from videos collected online through conventional webcam.” 2021.

[41] A. L. Anwyl-Irvine, T. Armstrong, and E. S. Dalmaijer, “Mouseview. js: Reliable and
valid attention tracking in web-based experiments using a cursor-directed aperture,” Be-
havior research methods, pp. 1–25, 2021.

[42] M. C. Chen, J. R. Anderson, andM. H. Sohn, “What can a mouse cursor tell us more?
correlation of eye/mouse movements on web browsing,” in CHI’01 extended abstracts
on Human factors in computing systems, 2001, pp. 281–282.

[43] J.Huang, R.White, andG. Buscher, “User see, user point: gaze and cursor alignment in
web search,” inProceedings of the sigchi conference on human factors in computing systems,
2012, pp. 1341–1350.

[44] Q. Guo and E. Agichtein, “Towards predicting web searcher gaze position frommouse
movements,” in CHI’10 Extended Abstracts on Human Factors in Computing Systems,
2010, pp. 3601–3606.

[45] A. Papoutsaki, “Scalable webcam eye tracking by learning from user interactions,” in
Proceedings of the 33rd Annual ACMConference Extended Abstracts on Human Factors
in Computing Systems, 2015, pp. 219–222.

[46] A. Steffan, L. Zimmer, N. Arias-Trejo, M. Bohn, R. D. Ben, M. A. Flores-Coronado,
L. Franchin, I. Garbisch, C. Grosse Wiesmann, J. K. Hamlin et al., “Validation of an
open source, remote web-based eye-tracking method (webgazer) for research in early
childhood,” 2023.

[47] K. Wisiecka, K. Krejtz, I. Krejtz, D. Sromek, A. Cellary, B. Lewandowska, and
A.Duchowski, “Comparison of webcam and remote eye tracking,” in 2022 Symposium
on Eye Tracking Research and Applications, 2022, pp. 1–7.

[48] K. Semmelmann and S. Weigelt, “Online webcam-based eye tracking in cognitive sci-
ence: A first look,” Behavior ResearchMethods, vol. 50, pp. 451–465, 2018.

[49] B. Chouinard, K. Scott, and R. Cusack, “Using automatic face analysis to score infant
behaviour from video collected online,” Infant Behavior and Development, vol. 54, pp.
1–12, 2019.

47

[50] Y. Sugano, Y. Matsushita, Y. Sato, and H. Koike, “An incremental learning method for
unconstrained gaze estimation.” in ECCV (3). Citeseer, 2008, pp. 656–667.

[51] F. Lu, Y. Sugano, T. Okabe, and Y. Sato, “Gaze estimation from eye appearance: A
head pose-free method via eye image synthesis,” IEEE Transactions on Image Processing,
vol. 24, no. 11, pp. 3680–3693, 2015.

[52] N. Zdarsky, S. Treue, and M. Esghaei, “A deep learning-based approach to video-based
eye tracking for human psychophysics,” Frontiers in human neuroscience, vol. 15, p.
685830, 2021.

[53] S. Nanayakkara and R. Meegama, “A review of literature on iris recognition,” Interna-
tional Journal of Research, vol. 9, pp. 106–120, 2020.

[54] S. Minaee, A. Abdolrashidiy, and Y. Wang, “An experimental study of deep convolu-
tional features for iris recognition,” in 2016 IEEE signal processing in medicine and bi-
ology symposium (SPMB). IEEE, 2016, pp. 1–6.

[55] X. Zhang, Y. Sugano,M. Fritz, and A. Bulling, “Mpiigaze: Real-world dataset and deep
appearance-based gaze estimation,” IEEE transactions on pattern analysis and machine
intelligence, vol. 41, no. 1, pp. 162–175, 2017.

[56] ——, “Appearance-based gaze estimation in thewild,” in2015 IEEEConference onCom-
puter Vision and Pattern Recognition (CVPR), 2015, pp. 4511–4520.

[57] Z. Chen and B. E. Shi, “Appearance-based gaze estimation using dilated-convolutions,”
in Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth,
Australia, December 2–6, 2018, Revised Selected Papers, Part VI. Springer, 2019, pp.
309–324.

[58] T. Fischer,H. J.Chang, andY.Demiris, “Rt-gene: Real-time eye gaze estimation innatu-
ral environments,” in Proceedings of the European conference on computer vision (ECCV),
2018, pp. 334–352.

[59] K. Krafka, A. Khosla, P. Kellnhofer, H. Kannan, S. Bhandarkar, W. Matusik, and
A. Torralba, “Eye tracking for everyone,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2016.

48

[60] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “It’s written all over your face: Full-face
appearance-based gaze estimation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, 2017, pp. 51–60.

[61] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[62] S. Park, E. Aksan, X. Zhang, and O. Hilliges, “Towards end-to-end video-based eye-
tracking,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XII 16. Springer, 2020, pp. 747–763.

[63] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[64] P. Linardos, E. Mohedano, J. J. Nieto, N. E. O’Connor, X. Giro-i Nieto, and
K. McGuinness, “Simple vs complex temporal recurrences for video saliency predic-
tion,” arXiv preprint arXiv:1907.01869, 2019.

[65] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural net-
works,” Advances in neural information processing systems, vol. 27, 2014.

[66] P. Kellnhofer, A. Recasens, S. Stent, W. Matusik, and A. Torralba, “Gaze360: Physi-
cally unconstrained gaze estimation in the wild,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 2019, pp. 6912–6921.

[67] Y. Cheng and F. Lu, “Gaze estimation using transformer,” arXiv preprint
arXiv:2105.14424, 2021.

[68] J. L. Kröger, O. H.-M. Lutz, and F. Müller, “What does your gaze reveal about you?
on the privacy implications of eye tracking,” Privacy and Identity Management. Data
for Better Living: AI and Privacy: 14th IFIP WG 9.2, 9.6/11.7, 11.6/SIG 9.2. 2 Inter-
national Summer School, Windisch, Switzerland, August 19–23, 2019, Revised Selected
Papers 14, pp. 226–241, 2020.

[69] A. S. Al-Waisy, R. Qahwaji, S. Ipson, S. Al-Fahdawi, and T. A. Nagem, “A multi-
biometric iris recognition system based on a deep learning approach,” Pattern Analysis
and Applications, vol. 21, pp. 783–802, 2018.

49

[70] D. P. Kingma and J. Ba, “Adam: Amethod for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[71] A. G. Govindaswamy, E. Montague, D. S. Raicu, and J. Furst, “Cnn as a feature ex-
tractor in gaze recognition,” in 2020 3rd Artificial Intelligence and Cloud Computing
Conference, 2020, pp. 31–37.

[72] L.-W.Wang,W.-C. Siu, Z.-S. Liu, C.-T. Li, andD. P. Lun, “Deep relighting networks for
image light source manipulation,” in Computer Vision–ECCV 2020 Workshops: Glas-
gow, UK, August 23–28, 2020, Proceedings, Part III 16. Springer, 2020, pp. 550–567.

50

Acknowledgments

The acknowledgment section regards people thatmade this project possible, beginningwith
my supervisor, Antonia, who arranged so many opportunities for me to explore projects at
Erasmus University and brought me onto the current one with Sebastian. I always had the
feeling that they relied on me to do my best effort and trusted me in all steps of the process. I
want to thank the team of the Erasmus Behavioral Lab for always being there to help with any
questions and issues before and during the data collection.

51

52

A
First appendix

A.1 Characteristics of the participant sample

A.2 Neural Network Architectures

53

No Lenses Yes
Glasses

0

10

20

30

40

F
re

q
u
e
n
c
y

43

6 4

No Yes
Beard

0

10

20

30

40

50

F
re

q
u
e
n
c
y

49

4

No Yes
Make-Up

0

10

20

30

40

F
re

q
u
e
n
c
y

40

13

Blonde Black Brown Colored Red
Hair color

0

5

10

15

20

25

F
re

q
u
e
n
c
y

27

8

15

1 2

White Darker East Asian
Skin color

0

10

20

30

40

F
re

q
u
e
n
c
y

47

4 2

Brown Green Black Blue
Eye color

0

5

10

15

F
re

q
u
e
n
c
y

16

10
8

19

Additional variables

Figure A.1: Extra variables observed for the participant sample.

54

Figure A.2: Simplified VGG architecture with normal convolution.
55

Figure A.3: Simplified VGG architecture with normal convolution and LSTM module.
56

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Related Work
	Studying human eyes
	Eye tracking in the lab
	Eye tracking outside of the lab
	Deep learning solutions

	Methods
	Experiment and data collection
	Dataset and preprocessing
	Machine Learning baseline
	Deep Learning architectures
	Convolutional Neural Network
	CNN and dilated convolution
	CNN and recurrent modules

	Training procedure

	Results and discussion
	Machine Learning Methods: XGBoost
	Network performance on full face images
	Simplified VGG
	Simplified VGG with dilated convolution
	LSTM-VGG

	Network performance on eye patches
	Simplified VGG
	Simplified VGG with dilated convolution
	VGG-LSTM

	Comparison with WebGazer predictions

	Conclusion
	Summary of results
	Relevance and applications
	Limitations and suggestions
	Concluding words

	References
	Acknowledgments
	Appendix First appendix
	Characteristics of the participant sample
	Neural Network Architectures

