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Abstract

The study of wireless sensor networks (WSNs) with the use of energy harvesting (EH) tech-

nologies is become more and more recurring and evaluated, to the detriment of the traditional

networks with non-rechargeable batteries. This change on the subject matter of the research

is due to the need of planning more versatile and autonomous devices and placing them also

in hostile environments. In this work, we take into account such network in order to study

the energy allocation for data transmission and sensing. We consider a single wireless sensor

node characterized by a rechargeable energy battery with finite capacity and a data buffer

with finite size; in addition, we evaluate the operation in the presence of a processing en-

ergy cost and an efficiency constant. The aim is to maximize the total number of data really

transmitted, i.e. the instantaneous rate, and, for this purpose, we propose an algorithm, based

on a Markov decision process (MDP) and solved using value iteration in order to find the

optimal action in terms of transmitted and sensed data. Finally, we compare the results of

our optimal policy with the results of other empirical policies.
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Sommario

Lo studio delle reti di sensori wireless con l’uso di tecnologie per la raccolta di energia è

diventato sempre più frequente ed esaminato, a discapito delle tradizionali reti con batterie

non ricaricabili. Il cambio dell’oggetto di studio è dovuto l bisogno di progettare meccani-

smi più versatili e autonomi e posizionarli anche in ambienti ostili. In questa tesi, prendiamo

in considerazione una tale rete per studiare l’allocazione di energia per la trasmissione e

il sensing di dati. Consideriamo un singolo sensore wireless caratterizzato da una batteria

ricaricabile con capacità finita e un buffer dati di dimensioni limitate; in aggiunta, valutia-

mo il funzionamento in presenza di un costo di processo e una costante di efficienza. Lo

scopo è massimizzare il numero totale di dati realmente trasmessi; a tal fine, proponiamo

un algoritmo basato su un processo di decisione di Markov e, risolto usando la value itera-

tion, troviamo l’azione ottima in termini di dati trasmessi e ricevuti. Infine, confrontiamo i

risultati della nostra soluzione con quelli di altre soluzioni empiriche.



x



Chapter 1

Introduction

A wireless sensor network (WSN) is a large set of autonomous sensor nodes powered by

limited batteries. It can be implemented for many applications, such as traffic monitoring,

military tracking, building safety, pollution monitoring, wildlife monitoring, patient security

and can be also placed in hostile and unreachable environments, so that batteries can’t be

changed very often. Moreover, nodes can’t use large batteries because of their weight and

volume. In such a scenario, the recent EH technology becomes established in order to enable

sensor nodes in a self-powered mode for a long time period. Energy is harvested from the

environment, as solar or wind energy for example, and then is converted to electrical energy.

However, the energy sources aren’t active at all time, we just think to the solar energy that

isn’t available during the night or in a rainy day. So the rate of energy generation can be

limited and the energy arrivals haven’t a deterministic distribution. Therefore, it is necessary

to find an intelligent management of the harvested energy in order to well play the WSN.

Another weak point of a wireless transmitter is the energy consumption because, in ad-

dition to the transmission power, we should take into account the battery inefficiencies, [1],

[2]; the finite capacity battery, [3], [4]; the sensing cost, [3], [5]; the processing energy cost,

[6], [7]. In particular, the last one, the processing energy cost, depends on the communica-

tion range and the processing circuitry and heavily conditions the performance. In effect, if

the processing cost is negligible, increasing the transmission time and lowering the transmis-

sion power is energy efficient if the rate-power functionis non-negative, strictly concave and

monotonically increasing. On the other hand, if the processing cost isn’t negligible, the opti-

mal transmission scheme becomes bursty because this cost dominates the consumed energy

until a certain point, [8], as shown in Fig.1.1.

In this paper, we consider a wireless sensor node, characterized by a finite capacity

rechargeable battery and a finite size data buffer, that communicates with a receiver over
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Figure 1.1: Throughput versus energy without and with processing cost

an additive white Gaussian noise (AWGN) fading channel. The objective is to maximize the

online throughput, taking into account also the sensing energy process, a constant processing

cost and an efficiency parameter. In this way, we want to find an optimal online policy, using

value iteration, [9], in order to analyze a more realistic system model.

Looking at the recent literature, many papers focus on at most one or two system in-

efficiencies; for example, in [10], they consider an additional processing cost and a finite

capacity battery; in [11], they consider again a finite capacity battery and a sensing process;

in [6], only a non-ideal circuit power. Moreover, most of them propose an offline optimal

policy, that assumes the full knowledge of energy arrivals and channel states. Instead, we

examine an online solution, characterized by a causal knowledge of the energy arrivals and

the channel conditions, given by stochastic processes at transmitter.

This work is organized as follows:

• in Chapter 2 we describe other studies found in the recent literature, based on the

analysis of a WSN and then, we introduce our system model;

• in Chapter 3 we analyze more inside two proposed algorithms, the optimal energy al-

location (OEA) algorithm of [3] and the directional backward glue-pouring algorithm

of [10], in order to better present some other concurrent works;

• in Chapter 4 we first explain the mathematical background of our analysis, represented

by the MDP, then, we formulate our policy;

• in Chapter 5 we give some theoretical results of our proposed policy and we prove

them;
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• in Chapter 6 we first set up the useful parameters, choosing a specific device and a

particular application and then we give the numerical results of our policy and we

make some comparisons with other empirical policies;

• in Chapter 7 we give some conclusions about our work.





Chapter 2

Related works and our system model

2.1 Related works

Recently, the study of EH has achieved a lot of interest in order to draw “green” techniques

and to efficiently manage the harvested energy. In these terms, many different works have

been proposed, that can be differentiated depending on the implemented system model or on

the choosen policy.

A practical solar EH system model is described in [12], in which they propose a two

nested optimization steps solution, providing the optimal operating point and the optimal

energy management policy to make the system self-sufficient and taking into account the

different exposure to the sun during the day or in different months. They employ the results

given in [13], which presents a methodology to model the energy inflow as a function of time

through stochastic Markov processes.

More theoretical works are [1], [2], [4], [14], [15], [11], [3], [16], [7], [10], [17], [5] and

[6]. First of all, not all the system models include a fading channel, that brings itself some

inefficiencies. On the contrary, [4] considers the fading level as a Poisson counting process

with rate λα, that changes at countable time instants and is known by the transmitter. In [14],

they study three different channel models:

• known fading values for each instant;

• random and independent across time fading with a log-normal distribution function;

• fading modeled as a Markov chain, using Rician and Rayleigh distribution functions.

In [15] too, they consider a block fading channel, where the channel gain is a random variable

with exponential, Nakagami or log-normal distribution.
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Rajesh, in [1] and [2], inserts sleep-wake modes in order to conserve energy when the

system has some inefficiencies in energy storage. In effect, every time the sensor node has

less energy than that it consumes, it sleeps; every time the sensor node has enough energy

than that it consumes, it can decide to sleep and to harvest energy only with probability p.

In some other works, [11] and [3], they take into account also the process of energy

allocation for sensing, as in our model. In this way, the sensor node requires a method to

decide how much energy it should allocate for sensing and for transmission, depending on

the battery energy level, the data buffer level, the energy arrivals and the channel conditions.

The process of energy allocation for sensing can be viewed as a process that consumes energy

to the detriment of energy for transmission in a throughput maximization policy. More often,

instead, as in [2] and [10], data are already available in the data buffer.

Another way to save energy is to use two energy storage devices, as [7] and [16]. [7]

considers an hybrid energy storage unit composed of an ideal super-capacitor (SC), that has

a finite capacity, and of an inefficient battery with unlimited capacity. The battery can only

store energy and transfer it to the SC instantaneously; however, not all the available energy

in it can be drained, due to the efficiency parameter η, 0 ≤ η < 1. On the other hand, the SC

can store energy from the environment and from the battery, ensuring to not have overflows,

and can use it to transmit data. Moreover, in data transmission, the transmitter’s circuitry

has an additional processing cost ξ, given by both the devices. In [16] too, two rechargeable

energy storage device (ESD)s form the model: the main ESD receives power and uses it to

transmit data, while the secondary ESD stores energy when the main ESD transmits, and, at

the end of transmission, transfers its stored energy to the main. Also in this paper, the main

ESD is an high-efficient SC and the secondary ESD is a low-efficiency rechargeable battery,

charactherized by the parameter η, 0 ≤ η < 1.

However, it is more realistic to consider a single device with some inefficiencies in energy

storage or with additional energy costs. Examples of such studies are [10], [17], [5], [6], [1]

and [2]. In [10], [17], [5], Orhan et al. take into account a constant processing energy cost ξ

every time the transmission power is positive, independently of its value. In [6], they consider

an on-off transmitter model with non-ideal circuit power, i.e., when the transmitter is on, its

consumed power is the sum of the transmission power and a constant circuit power. In [1]

and [2], they study two different system models, one in which they include only the energy

consumed by sensing and processing, modeled as a random variable; and the other, in which

they take into account the inefficiency in storing energy in the buffer and the leakage from

the energy buffer, using two different multiplicative parameters, β1 and β2, with 0 < β1 ≤ 1

and 0 < β2 <∞.
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In terms of policies we can first divide them into two approaches, offline and online. The

offline policies assume that the sensor node has full knowledge of the arrival process and

the channel gain to find the optimal solution. This setting is unrealistic because it is non-

causal and it can’t be implemented in practical designs; however, the complete knowledge

of the system gives us the instruments to find the optimal solution and the upper bound of

the corresponding online policy. On the other hand, the online approaches assume a causal

and statistical knowledge about the energy and data arrivals and the channel states, i.e., the

transmitter knows only the past and the present of the system features. In such a scenario,

the optimal online policy can be found using a dynamic programming (DP) solution, as

[9], but these algorithms usually require an high computational complexity. Then, many

reseachers propose less complex heuristic online algorithm, that are based on the properties

of the corresponding optimal offline policies and perform very close to them.

Most of the papers previously mentioned adopt an offline approach and so a convex

optimization problem. A directional water-filling has been studied in [4], in which the walls

are placed at the points of energy arrival and the water taps are in the right part of each wall.

The aim is to maximize the number of bits sent by a deadline. Based on it, in [7], [10] and

[5], a directional glue-pouring algorithm is adopted, in which each harvested energy packet

is allocated to subsequent epochs using the glue-pouring algorithm, [18]. Therefore, [7] and

[10] solve the throughput maximization problem and [5] apply it to the remaining energy

maximization problem by a deadline and the transmission completion time minimization

problem. Differently, [6] considers as an optimal solution a two-phase transmission, where

the first phase is an energy efficiency maximizing on-off power allocation and the second is

a spectrum efficiency maximing power allocation.

Regarding the online policies, [3] formulates the energy allocation and the transmission

energy allocation problems as an infinite-horizon MDP and proposes optimal algorithms us-

ing the value iteration. In [16], a save-and-transmit protocol is introduced, in which in a

fraction of time energy is harvested and in the remaining time energy is used for data trans-

mission, so that the aim of it is to minimize the outage probability, i.e., the probability to not

transmit data. Finally, some online studies have been proposed, inspired by the correspond-

ing offline solutions, such as [4], [5] and [6].

2.2 Our system model

Our system is a point-to-point model, composed by a transmitter and a receiver that commu-

nicate over an AWGN fading channel, as shown in Fig. 2.1. The transmitter is an EH sensor
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node TX, connected by two finite queues:

• a rechargeable battery with a finite capacity b in [J];

• a data buffer with a finite size q in [Mbit].

dk
qk TX

ek

tk ×

αk

+

wk

RX

hk
bk

sk

Figure 2.1: System model

We take the system time-slotted, where the duration of each slot is fixed and equal to T , so

that for each slot k, with k ∈ K = {0, 1, 2, . . .} = Z, the time interval, called epoch, is equal

to [kT, (k + 1)T ) and all the characteristics of the system remain the same within the current

slot but may change between two consecutive slots. To be more realistic, we assume that

the sensor node is an on-off node, that alternates periods in which it is on, so it can collect

energy from the environment and consume it, and transmit data with periods in which it is

off and it does no action. For instance, a photovoltaic panel is on and works during the day

and is turned off during the night, when there is no light source. On the other hand, we don’t

take into account any probability of survival from physical destruction or hardware failure,

as in [3].

Looking at Fig. 2.1, when data are transmitted, they are sent through a channel that is

characterized by a random channel gain αk and an additive white Gaussian noise wk with

zero mean and variance σ2 = N0W , for every slot k. At the end, when data are received, we

assume that the receiver RX sends back to the transmitter a causal channel state information

(CSI) of the previous instant. So, at each epoch k we know:

• qk, the amount of stored data in the buffer at the beginning of the slot;

• bk, the battery level at the beginning of the slot;

• αk, the channel gain known at TX, for which we consider two cases:

(a) the channel gain αk is that of the current epoch k (ideal case);
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(b) the channel gain αk is that of the previos epoch k − 1 (estimated case);

• hk, the energy collected from the environment during slot k and available for next slot

k + 1.

Then, during slot k, in addition to hk and αk, other quantities are fundamental:

• ek, the energy allocated for transmission at slot k;

• tk, the amount of data trasmitted at slot k;

• sk, the energy needed to sense data that arrive in the data buffer at slot k;

• dk, the amount of data sensed at slot k;

• pk, the total consumed energy at slot k, where the sum ek +sk, is the consumed energy

for data sensing and transmission;

Moreover, in order to consider a more practical model, such useful amount of energy is then

divided by an efficiency term η, 0 < η ≤ 1, and we take into account another constant

quantity of dissipated energy, as considered in [1] and in [6], due to the fact that the sensor

node itself consumes energy when it is on. We call this dissipated energy ξ and the energy

consumption model for the transmitter becomes

pk =


ek+sk
η

+ ξ if node is ON, i.e., ek + sk > 0

0 if node is OFF, i.e., ek + sk = 0
(2.1)

So pk is a function of the sum between ek and sk and we can simply write (2.1) as

pk = f(ek + sk) =
ek + sk
η

+ ξ1(ek + sk).

We consider energy with discretized values according to a given step δ, and when we talk

about units of energy we refer to an amount of fixed quantity δ of energy. For the processes

of arrivals of data and energy units we follow different approaches:

• the amount of generated data d(sk) = dk is a function of the units of energy used

for sensing and it is reasonable to keep a monotonically non-decreasing and concave

function in sk, such that as many units of energy are dedicated for sensing as the data

that can be accepted and put in the buffer, accordingly with the buffer size. In this way,

data that arrive to the system but can’t be stored, are discarded. An example of function

d(sk), k = 0, 1, . . ., can be a linear function of sk, as assumed in [3], dk = βsk, with β

called data-sensing efficiency parameter.
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• the energy units hk that arrive from the environment and must be stored in the battery

are modeled as a Poisson process with rate λh, as commonly assumed in literature, in

particular in [4]. However, since we have assumed a discrete-time model with a fixed

slot duration, we consider in hk all the energy arrivals that occur in the current time

interval [kT, (k + 1)T ) and are available for slot k + 1.

With regards to the channel, its gain αk remains constant during each slot, but it may

change from one slot to another, according with a continuos probability density function

(PDF). Given that at epoch k the channel gain is αk and the allocated transmission energy is

ek, for case (a), the sensor node is able to transmit tk bits of data, called instantaneous rate,

tk = r(ek, αk) = TW log2

(
1 +

α2
kηek

N0WT∆Γ

)
[bit], (2.2)

where ηek
T

is the associated average instantaneous transmission power in [W] and ∆Γ is the

signal-to-noise ratio (SNR) gap, which depends on the code length, as proved in [19]. For

case (b), we postpone to Section 4.2 and Appendix A.1. We note that the instantaneous rate

is a concave function because it is a logarithmic function.

By inverting (2.2), we also have

ek =
N0WT∆Γ

ηα2
k

(2
tk
TW − 1) ∀ k. (2.3)

On the other hand, we can simply write sk as a function function of dk, i.e.,

sk = β−1dk ∀ k. (2.4)

Therefore, equation (2.1) changes as a function of tk and dk too and we refer to it in the

following through f̃(tk, dk, αk);

pk = f̃(tk, dk, αk) =


N0WT∆Γ

(ηαk)2 (2
tk
TW − 1) + dk

βη
+ ξ if tk + dk > 0

0 if tk + dk = 0
(2.5)

It is important to underline the reliance on the channel gain αk too, derived from the definition

of instantaneous rate r(ek, αk).

Furthermore, we consider all quantities limited in a positive interval, such as,

0 ≤ bk ≤ b;

0 ≤ qk ≤ q;

0 ≤ hk ≤ h;

0 ≤ αk ≤ α;

0 ≤ tk ≤ t;

0 ≤ dk ≤ d.
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The values x will take particular expressions, that we will discover in Section 6.1.





Chapter 3

Other proposed projects

In this chapter, we focus in particular on two different proposed policies, that can be com-

pared with ours. For this purpose, we consider the approach of [11] and [3], from which we

have taken the basic structure of their system model; and the offline glue-pouring algorithm,

[18], adapted then to an online optimization. For each one, we show the system model,

the problem formulation and some results. In the following, we adopt our notation, where

possible, to be more clear.

3.1 The optimal energy allocation (OEA) algorithm and re-

lated works

First, we want to analyze the works, which represent the base of our system model, [11] and

[3]. Compared with other recent projects, Mao et al., in [11] and [3], consider also the energy

consumed for data sensing, and so they assume to have a finite data buffer.

Their system model is the same of ours and is shown in Fig. 2.1. It is composed by a

single EH sensor node, characterized by a rechargeable battery with capacity b and a finite

data buffer with size q. At each time slot k the transmitter harvests hk energy from the

environment into the battery; after, by an OEA algorithm, the amount of available energy for

transmission (ek) and for sensing (sk) is decided. Data are then transmitted over an AWGN

channel with block flat fading, whose channel gain values are specified by αk for slot k.

However, they don’t consider any other energy cost except for sensing and transmission,

while, in [3], they take into account also the probability ν that the sensor node survives after

the physical destruction or an hardware failure and continues to function.

In this scenario, they want to maximize the expected total amount of transmitted data
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and, for this purpose, they formulate the OEA for sensing and transmission through a MDP

and using value iteration, that will be explained in Section 4.1 and following. Concentrating

on the OEA given in [3], the objective function of infinite-horizon MDP with discounted

reward is

Jπ(x0) = E

[
∞∑
k=0

νkγ(ak,xk)
∣∣∣x0, π

]
, (3.1)

where

• π is a general policy, that contains the decision rules to be used at all slots k, i.e.,

π = (δ0, δ1, . . .) ∈ Π;

• xk = [bk, qk, hk−1, αk−1] is the system state at slot k, that includes

– bk, the current battery energy state;

– qk, the current data buffer state;

– hk−1, the previous harvested energy state;

– αk−1, the previous channel state;

• ak = (ek, sk) is the action taken at slot k for transmission and sensing energy alloca-

tion;

• ν is the discount factor, that is the probability of sensor node to survive;

• γ(ak,xk) is the expected amount of data transmitted at slot k, i.e.,

Eαk [min{r(ek, αk), qk}|αk−1]

with r(ek, αk) = TW log2

(
1 + αkek

N0TWΓ

)
.

At the end, the optimal expected total discounted reward and the optimal policy are defined

as

J(x0) = max
π ∈ Π

Jπ(x0) and π∗ = argmax
π ∈ Π

Jπ(x0). (3.2)

To solve the optimal policy, they propose an OEA algorithm based on the value iteration,

[9]. Therefore, to find the optimal expected total discounted reward J(x), they compute the

Bellmann’s equation, [9],

J(x) = max
a∈A(x)

[
γ(a,x) + ν

∑
y∈ X

px,y(a)J(y)

]
, (3.3)

where y is the future state, characterized by
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• bk+1 = min{bk − (ek + sk) + hk, b};

• qk+1 = min{[qk − r(ek, αk)]+ + dk, q};

• hk;

• αk.

The OEA algorithm, [3], is then composed by two phases, the planning phase and the sensing

and transmission phase, whose crucial points are the following:

1. Planning phase

2. Arbitrarily select J0(x) for each x ∈ X , specify ε > 0, and set k = 0.

3. For each x ∈ X , compute Jk+1(x) by

Jk+1(x) = max
a∈A(x)

[
γ(a,x) + ν

∑
y∈ X

px,y(a)Jk(y)

]
.

4. If ||Jk+1 − Jk|| < ε(1−ν)
2ν

go to step 5; otherwise increment k by 1 and go to step 3.

5. For each x ∈ X , choose stationary ε−optimal policy

δ∗(x) = arg max
a∈A(x)

[
γ(a,x) + ν

∑
y∈ X

px,y(a)Jk+1(y)

]
and stop.

6. Sensing and Transmission phase

7. Set again k = 0.

8. while k ≤ K − 1 do

9. Track the energy harvesting rate of the previous slot hk−1.

10. Track the energy available for use in the battery bk.

11. Track the amount of data in the buffer qk.

12. Obtain the channel gain αk−1 from the receiver.

13. Set x = (bk, qk, hk−1, αk−1).

14. Obtain action δ∗(x) = (e∗(x), s∗(x)) based on the optimal policy.

15. Consume e∗(x) for transmission and s∗(x) for sensing.
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16. Update the battery energy bk+1 and the data in the buffer qk+1.

17. Set k = k + 1

18. end while.

In order to evaluate some performance, they consider a special case too, in which they don’t

take into account the energy for sensing and the data buffer has an infinite size. This al-

gorithm is called optimal transmission energy allocation (OTEA) algorithm and it is able

to reduce the computational complexity because the system state is characterized by three

elements, x = (b, h, α), and the action corresponds to the e energy units choosen for trans-

mission. However, to compare the OTEA algorithm with the OEA, they assume that the

sensor node allocates a fixed percentage of battery energy for sensing in each slot and they

find that the best percentage to transmit the largest amount of data is around 50%, as shown

in Fig. 3.1 (Fig. 4 in [3]). Fixed the percentage of 50% for sensing, they study the impact of

Figure 3.1: total amount of transmitted data of OTEA algorithm under different percentage

of energy allocated for sensing

some system parameters on the total amount of transmitted data using both algorithms. For

example, they examine the impact of discount factor ν, as in Fig. 3.2 (Fig. 12 of [3]). We

can observe that, increasing ν, the lifetime becomes longer and the total amount of trans-

mitted data increases. On the other hand, however, increasing ν requires a larger number of

iterations for the value iteration algorithm and a greater computational complexity.
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Figure 3.2: Total amount of transmitted data of for different different values of discount

factor ν

3.2 The glue-pouring algorithm and related works

We present now the glue-pouring algorithm, a policy based on the well-known water fill-

ing algorithm and applied to a bursty Gaussian transmission in multiple parallel channels

with different noise levels. It has been introduced by [18] and then it has been developed,

for example, by Orhan et al. in [10], [17] and [5], for different optimization problems.

This technique is adopted in offline optimization problems, where the system is completely

known; however, in [17] an online policy is also proposed as a less complex heuristic online

algorithm based on the structure of the offline one.

Going in order, when the processing energy cost becomes not negligible, the optimal

signal should only transmit in a fraction of the entire time period in order to save energy

because increasing the time spent to transmit means increasing also the energy spent for the

processing; so the best solution is to apply a bursty transmission. In these terms, the classical

water filling is a power allocation process that successively allocates the total signal energy

to parallel channels or to consecutive time slots. During the process, each increment of signal

energy is done in that sub-channel (or time slot) with the lowest sum of the noise power and

the signaling power already allocated. In the glue-pouring algorithm, when the processing

cost is considered, a new degree of freedom is used if the sum of signal and noise levels

already used is strictly larger than (1 + Γ) times the noise level, where Γ the average signal

power.

In [10], they consider an EH point-to-point communication system, in which the trans-

mitter has a rechargeable battery with finite capacity b. The transmitter receives energy

packets hi of finite size at time instants ti, i = 0, . . . , N ; at the same instants, the channel
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gains αi, modeled as an AWGN channel with unit variance, change. The processing en-

ergy cost ξ is consumed every time slot the transmitter is on, i.e., the transmission energy is

strictly positive.

In such a scenario, the aim is to maximize the throughput; at the same time, we remember

that, with non negligible processing cost, the transmission duration in each slot is θi, 0 ≤
θi ≤ τi, where τi = ti − ti−1 is the epoch, [18]. Therefore, the optimization problem is the

following

max
ei,θi

N∑
i=1

θi
2

log
(

1 +
αiei
θi

)
st.

i∑
j=1

(hj−1 − ej − ξθj) ≥ 0 ∀ i

i+1∑
j=1

hj−1 −
i∑

j=1

(ej + ξθj) ≥ b ∀ i

0 ≤ θi ≤ τi ∀ i

ei ≥ 0 ∀ i

(3.4)

where ei = θipi is a new variable, that indicates the transmission energy in order to obtain

a convex optimization problem. About the constraints, the first one is the energy causality

constraint and the second is the no battery overflows constraint, because of the finite capacity

of battery. Therefore, since (3.4) is a convex optimization problem, they resolve it using the

Lagrangian of (3.4) with Lagrange multipliers λi ≥ 0, µi ≥ 0, γi ≥ 0, νi ≥ 0 and σi ≥ 0,

for i = 1, . . . , N ,

L =
N∑
i=1

θi
2

log
(

1 +
αiei
θi

)
−

N∑
i=1

λi

( i∑
j=1

(ej + ξθj − hj−1)

)

−
N∑
i=1

µi

( i+1∑
j=1

hj−1 −
i∑

j=1

(ej + ξθj)− b
)

−
N∑
i=1

γi(θi − τi) +
N∑
i=1

νiθi +
N∑
i=1

σiei.

(3.5)

Taking the derivatives of (3.5) with respect to ei and θi and the corresponding complementary

slackness conditions, they obtain the optimal transmission power p∗i , based on the optimal

θ∗i .

• if θ∗i = 0, then e∗i = 0 and no power is allocated to epoch i, i.e., p∗i = 0;
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• if 0 < θ∗i < τi and e∗i > 0, then p∗i = v∗i , that is

log
(

1 +
αie
∗
i

θ∗i

)
=
αi(e

∗
i + ξθ∗i )

θ∗i + αie∗i
;

• if θ∗i = τi and e∗i > 0, then p∗i > v∗i , that is

log
(

1 +
αie
∗
i

θ∗i

)
>
αi(e

∗
i + ξθ∗i )

θ∗i + αie∗i

because now λi > 0.

Moreover, λi and µi can’t be simultaneously positive, so, calling the sum of the inverse

channel gain and the optimal power level at epoch i, i = 1, . . . , N , i.e.
(

1
αi

+ pi

)
the glue

level ρi, they get

• λi > 0 and µi = 0 whenever the battery at transmitter depletes, therefore the glue level

at epoch i+ 1 is greater than that of current epoch;

• λi = 0 and µi > 0 whenever the battery at transmitter is full, so that glue level at epoch

i+ 1 is less than that of current epoch.

Finally, they use the above results to play the optimal transmission policy, called directional

backward glue-pouring algorithm, in which they are able to allocate the harvested energy to

epochs starting from the last non-zero energy packet to the first. The steps to find the optimal

transmission policy are the following:

1. initialize the glue level for each epoch j, j = 1, . . . , N to ρj = 0 and set i = N ;

2. allocate the energy arrivals hi of epoch i using the glue pouring algorithm and compute

the glue level ρi, while satisfying the condition p∗i > v∗i ;

3. set m = i. If m = N go to step 6;

4. if ρm > ρm+1, reallocate previously allocated energies to epochs i, . . . ,m+ 1, so that

the transferred energy to epoch j, j = i + 1, . . . ,m + 1 is less than or equal to the

energy into the battery, i.e. b− hj;

5. if m = N , go to step 6; otherwise increase m by one and go to step 4;

6. if i = 1 stop; otherwise, decrease i by one and go to step 2.
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Figure 3.3: Directional backward glue-pouring algorithm
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In Fig. 3.3 (Fig. 1 of [10]) there is an example of the directional backward glue-pouring

algorithm. Non-zero energy packet arrivals Ei (our hi) are indicated by thick downward ar-

rows, while the thin downward arrows indicate the zero energy arrivals and, simultaneously,

the channel gain changes. The inverse of channel gain 1
hi

(
our 1

αi

)
are shown with solid

blocks and the optimal power levels v∗i correspond to the blocks from the end of solid blocks

to the dashed horizontal lines. Fig. 3.3(a) describes the initial stage; then, the algorithm

begins from the last non-zero energy arrival E2 (our h2) and the new configuration is shown

in Fig. 3.3(b), in which E2 is allocated to the third and the fourth epochs using glue pouring

algorithm. Finally, energy arrival E0 (our h0) is considered and is allocated to the first four

epochs, as shown in Fig. 3.3(c).
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Figure 3.4: Throughput maximization with processing energy cost

In Fig. 3.4 (Fig. 3(b) of [17]) it is shown an example of the optimal transmission pol-

icy for the throughput maximization problem, where the blue blocks indicate the optimal

power levels. It is important to note that, with non-zero processing energy cost, the optimal

transmission policy becomes bursty.

Since we are interested to optimal online policies, we focus on the results given in [17]

about the throughput maximization. They use the directional backward glue-pouring al-

gorithm so that the transmitter continues its transmission following the algorithm until the

battery depletes or a new event occurs. To evaluate the performance of the online algorithm,

they choose an exponential distribution with parameter λ for the channel gain and a uniform

distribution in the interval [0, E], with E a random value in a specific energy range, for the

energy packets size. They compare the performance of the proposed online algorithm with

the corresponding offline algorithm and a DP based solution and the results are given in Fig.

3.5 (Fig. 9(a) of [17]). We can note from it that the offline performance represents the upper
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bound for the online policies; on the other hand, the proposed online policy performs close

to the DP solution, despite with high energy rates, where the probability of battery overflows

increases.
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Figure 3.5: Average performance of online and offline throughput maximization



Chapter 4

Dynamic Programming solution

4.1 Markov decision processes

As defined in [20], a MDP is a mathematical framework to model decision making problems

in stochastic systems where the state evaluation is partly random and partly under the control

of a decision maker. Infact, a MDP is a discrete-time stochastic control process and can be

modeled as an extended Markov chain characterized by (in this section we don’t use the bold

font for states and actions to be more general):

• a countable finite set X of possible states x, X = {1, 2, . . . , n};

• a finite admissible region A(x) of all possible actions a that must be chosen, by ob-

serving the state of the process;

• a transition probability p(y|x, a) = pxy(a) from state x at time k to state y at time

k + 1, given that at time k action a has been chosen;

• an immediate cost function γ(a, x), for each transition.

The aim of this problem is to find the policy π that minimizes a particular objective function

and this policy is no more than the action associated with the state x, π(x) = a. However,

the set of all possible policies is Π = {π(·) : π(x) ∈ A(x) ∀ x ∈ X}.
An important subclass of all policies is the class of stationary policies: a stationary

policy is such that is nonrandomized and the chosen action at time k only depends on the

state x of the process at time k. Then, if the policy is stationary, the sequence of states

xk, k = 0, 1, 2, . . ., describes a Markov chain and the MDP satisfies the Markov property. To

meet the aim of this problem, there are different optimality criteria, including the discounted



24 CHAPTER 4. DYNAMIC PROGRAMMING SOLUTION

problem with bounded cost per stage and the average cost per stage problem, both applied in

a infinite horizon, i.e., where the number of decision stages is infinite.

4.1.1 Discounted problem with bounded cost per stage

Given an initial state x0, as in [9] and [20], we want to find the policy π that minimizes the

expected total discounted cost function

Jπ(x0) = lim
N→∞

Eπ

[
N−1∑
k=0

αkγ(π(xk), xk)

]
(4.1)

where α is called discount factor, α ∈ (0, 1); and Eπ is the expectation given a particular

policy π, among all the actions π(xk) associated with the possible transition from state xk.

The meaning of the discount factor α is that, as the time elapses, the corresponding cost

function γ becomes less influential than those taken in previous instants.

Given the set of admissible policies π, that corresponds to the set A(x) of the possible

actions, only when an action x is given, the optimal cost function is defined by

J∗(x) = min
π∈Π

Jπ(x) x ∈ X (4.2)

and the optimal policy, for a given initial state x0, is the policy that allows to obtain the

optimal cost J∗(x). Moreover, if the policy is stationary, we can write that π is optimal if

Jπ(x) = J∗(x), ∀ x, independently of the initial state. Note that, this and the following

definitions are rather a system of equations, one for each state, and so, for each state we want

to find the optimal cost.

For any function J : X → R, we consider now the mapping to J , T : X → X , defined

as

(TJ)(x) = min
a∈A(x)

[
γ(a, x) + α

n∑
y=1

pxy(a)J(y)

]
x ∈ X , (4.3)

where n is the number of states, recalling that the set X is a countable finite set. We observe

that, (TJ)(·) is itself a function and indicates the optimal cost function for the one-stage

problem with immediate cost γ and terminal cost αJ . Associating the policy π, for any

funtion J : X → R and for any policy π, the referring mapping Tπ for the one-stage problem

is

(TπJ)(x) =

[
γ(π(x), x) + α

n∑
y=1

pxy(π(x))J(y)

]
x ∈ X (4.4)

We can define also the optimal cost for the k-stage, (T kJ)(x), and the cost of a given policy

π, (T kπJ)(x), namely

(T kJ)(x) = (T (T k−1J))(x) with (T 0J)(x) = J(x) x ∈ X (4.5)
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(T kπJ)(x) = (Tπ(T k−1
π J))(x) with (T 0

πJ)(x) = J(x) x ∈ X (4.6)

A fundamental result is the following Monotonicity Lemma, reported by [9] as Lemma 1.1.1.

Lemma 1. For any functions J : X → R and J ′ : X → R such that

J(x) ≤ J ′(x) ∀ x ∈ X

and for any stationary policy π : X → A, we have

(T kJ)(x) ≤ (T kJ ′)(x) ∀ x ∈ X , k = 1, 2, . . .

(T kπJ)(x) ≤ (T kπJ
′)(x) ∀ x ∈ X , k = 1, 2, . . .

Moreover, if the cost per stage γ is bounded, i.e. satisfies, for a scalar M ,

|γ(a, x)| ≤M ∀ (a, x) ∈ A× X

the DP algorithm converges to the optimal cost function J∗, given an arbitrary bounded

starting function J . This result is called Convergence of the DP algorithm (Proposition 1.2.1

in [9]) and says that

Theorem 2. For any bounded function J : X → R, the optimal cost function satisfies

J∗(x) = lim
N→∞

(TNJ)(x) ∀ x ∈ X ,

and this is true also for every stationary policy π, whose associated cost function satisfies

J∗π(x) = lim
N→∞

(TNπ J)(x) ∀ x ∈ X .

To compute the optimal cost function J∗(x), we must apply the Bellmann’s equation

J∗(x) = min
a∈A(x)

[
γ(a, x) + α

n∑
y=1

pxy(a)J∗(y)

]
∀ x ∈ X , (4.7)

that is equivalent to

J∗ = TJ∗.

Moreover, J∗ is the unique solution of the Bellmann’s equation in the class of bounded

functions. As a corollary, for every stationary policy π, the associated cost function is the

unique solution of the Bellmann’s equation, that is

Jπ(x) =

[
γ(π(x), x) + α

n∑
y=1

pxy(π(x))Jπ(y)

]
∀ x ∈ X , (4.8)
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or, equivalently,

Jπ = TπJπ.

Then, a stationary policy π is optimal if and only if, ∀ x ∈ X , we obtain the minimum in

the Bellmann’s equation, using that policy π(x), i.e.

TJ∗ = TπJ
∗,

and this is a necessary and sufficient condition for optimality.

To numerically solve the solution of the discounted problem with bounded cost per stage,

we apply the Value Iteration, that takes the Bellmann’s equation and iteratively computes its

value to find the optimal cost function, in order to obtain it

lim
k→∞

(T kJ)(x) = J∗(x). (4.9)

The value iteration algorithm works as follows

(T k+1J)(x) = min
a∈A(x)

[
γ(a, x) + α

n∑
y=1

pxy(a)(T kJ)(y)

]
∀ x ∈ X , (4.10)

until it converges to the optimal cost function J∗(x) ∀x, starting from arbitrary initial condi-

tions J0(x).

To improve the algorithm, we add an error bounds condition, such that when the error

|(T kJ)(x)− J∗(x)| is small enough, according to a given target ε, for each state x ∈ X , the

iteration ends. For this purpose, we define the minimum and the maximum error values as

ck =
α

1− α min
x∈X

[
(T kJ)(x)− (T k−1J)(x)

]
(4.11)

ck =
α

1− α max
x∈X

[
(T kJ)(x)− (T k−1J)(x)

]
, (4.12)

such that ck ≤ J∗(x) − (T kJ)(x) ≤ ck. If ∆k = ck − ck < ε, then the algorithm can stop

and J∗(x), ∀ x, is the optimal cost for the discounted problem.

4.1.2 Relation between discounted and average cost problems

In many situations, it is more practical and useful to consider the average cost problem rather

than the discounted one; however, we can prove that, there is a connection between them,

[9]. Starting from the Laurent series expansion, for any stationary policy π and a discount

factor α ∈ (0, 1), we can connect the cost of π for a α-discounted problem, Jα,π, with the

average cost of π, Jπ, via the equivalence

Jα,π = (1− α)−1Jπ + gπ +O(|1− α|), (4.13)
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where gπ can be viewed as a relative cost, i.e., the difference of the total cost of π and the

total cost that would be incurred if the cost per stage were the average Jπ; and O(|1− α|) is

an infinitesimal with respect to α→ 1. We can rewrite the Laurent series expansion in terms

of Jπ

Jπ = (1− α)Jα,π − (1− α)gπ +O(|1− α|2), (4.14)

observing that, the term (1−α)Jα,π tends to dominate for α ≈ 1. A stationary policy π is said

to be Blackwell optimal if it is simultaneously optimal for all the α−discounted problems

with α in a interval (ᾱ, 1), where ᾱ is some scalar with 0 < ᾱ < 1. A Blackwell optimal

policy is optimal over all policies and, furthermore, it minimizes both the average cost per

stage and the α−discounted cost for α ≈ 1. Additionally, for any 2 different Blackwell

optimal policies π and π′, we have the same total and relative costs

Jπ = Jπ′ gπ = gπ′ .

Finally, given a Blackwell optimal policy π∗, the couple of costs J∗ and g∗ satisfies the

following pair of equations

J∗(x) = min
a∈A(x)

n∑
y=1

pxy(a)J∗(y) x ∈ X (4.15)

J∗(x) + g∗(x) = min
a∈A(x)

[
γ(a, x) +

n∑
y=1

pxy(a)g∗(y)

]
x ∈ X , (4.16)

and, in particular, J∗ is the optimal average cost vector, that includes the optimal average

costs for each state of X .

4.1.3 Average problem

As defined in [9] and in [21], given an initial state x0, the average cost per stage is

Jπ(x0) = lim
N→∞

1

N
E

[
N−1∑
k=0

γ(πk(xk), xk)

]
(4.17)

but, as in discounted problems, the average cost per stage of a policy and the optimal average

cost per stage are independent of the initial state. Moreover, for a stationary policy π, it no

longer depends of the instant k but it is the same ∀ k.

Then, we can reduce the pair of equations for the Blackwell optimal policies in a single

equation, that is called the Bellmann’s equation: if a scalar λ and a function g satisfy the

Bellmann’s equation

λ+ g(x) = min
a∈A(x)

[
γ(a, x) +

n∑
y=1

pxy(a)g(y)

]
x ∈ X , (4.18)
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then λ is the optimal average cost J∗(x)

λ = min
π
Jπ(x) = J∗(x).

Moreover, if for the policy π∗(x) we obtain the minimum of Bellmann’s equation ∀x ∈ X ,

this stationary policy π is the optimal. On the other hand, considering a single stationary

policy π, if a scalar λπ and a function g satisfy

λπ + g(x) = γ(π(x), x) +
n∑
y=1

pxy(π(x))g(y) x ∈ X

then λπ = Jπ(x) ∀ x. As before, we define also the mapping T : X → X for the relative

cost g

(Tg)(x) = min
a∈A(x)

[
γ(a, x) +

n∑
y=1

pxy(a)g(y)

]
x ∈ X , (4.19)

so that, ∀ x, we have (Tg)(x) = J∗ + g(x). For a stationary policy π, the referring mapping

Tπ is

(Tπg)(x) =

[
γ(πx, x) +

n∑
y=1

pxy(π(x))g(y)

]
x ∈ X (4.20)

and satisfies the Bellmann’s equation (Tπg)(x) = Jπ + g(x), ∀ x.

In order to identify the value iteration algorithm for the average cost problem, we must

introduce the definition of weak accessibility (WA) and, for this purpose, we can consider 2

different classes of models:

• Single-Chain class, if there are a closed set of states, where each state is reachable

from all the other states of the set under some stationary policy, and a possible set of

transient states;

• Multi-Chain class, if the stationary policy contains 2 or more closed recurrent classes.

Starting from this classification, the Single-Chain class satisfies the WA condition, which

says that the set of states can be partitioned into 2 subsets, St and Sc such that:

• all states in St are transient under every stationary policy;

• for every 2 states x and y in Sc, y is accessible from x.

Then, when the WA condition holds, the optimal average cost is the same for all initial

states. In the following, we consider only this case, that is the more reasonable case for

our purpose, and so, we can describe the Value Iteration algorithm. First, to avoid that

some components of (T kg) diverge to ∞, so that we are not able to find the asymptotical
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result, we subtract a fixed value, called δk, from all (T kg)(x), x ∈ X , every instant k. We

take δk = (T kg)(t), where t indicates a particular fixed state, and this variant on the value

iteration method is called relative value iteration. Chosen an arbitrary terminal cost function

g0, we can calculate by recursion

gk+1(x) = (Tgk)(x)− (Tgk)(t) ∀x ∈ X , (4.21)

so that, as the time horizon grows to infinity, the value iteration algorithm leads up to the

optimal average cost J∗ = (Tg∗)(t),

(Tg∗)(t) = (Tg∗)(x)− g∗(x) ∀x ∈ X . (4.22)

Finally, as in the discounted problem, we add an error bounds condition and we define the

minimum and the maximum error values:

ck = min
x∈X

[
(Tgk)(x)− gk(x)

]
(4.23)

ck = max
x∈X

[
(Tgk)(x)− gk(x)

]
, (4.24)

such that ck ≤ J∗(x) ≤ ck. If ∆k = ck − ck < ε, for an arbitrary ε > 0 then the algorithm

can stop and J∗(x) = λ, ∀ x, is the optimal cost for the average cost problem.

4.2 Problem formulation and policy definitions

We are able now to describe how the model evolves among the time slots and to characterize

it by the definitions of state and action.

At each epoch k, as shown in Fig. 4.1, the energy stored in the battery satisfies

bk+1 = min{bk − pk + hk, b} ∀ k, (4.25)

because the battery has a finite capacity, so if both a large amount of energy arrives and the

energy consumption is limited, only b units of energy can be accepted. Moreover, there is

another constraint because the consumed energy for transmission, sensing and dissipation at

slot k can not exceed the available energy bk, been left from the previous slot, that is,

pk ≤ bk ∀ k (4.26)

On the other hand, also for the amount of data in the buffer there is a bound,

qk+1 = min{qk − tk + dk, q} ∀ k, (4.27)
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Figure 4.1: Energy arrivals

implying that, if the number of bits that can be transmitted is greater than the number of

available bits in the buffer at that slot, due to the large amount of available energy, the buffer

empties because the data, that are arriving in it, can’t be used until the next epoch. Alterna-

tively, we can set

qk+1 = qk − tk + dk ∀ k

subject to

dk ≤ q − qk + tk;

(4.28)

where the constraint allows not to waste data, because sensed data can’t exceed the available

space of the data buffer, represented by the free space at the beginning of the slot k, q − qk,
and the transmitted data tk during slot k. From (4.28), we obtain another constraint for the

transmitted data, i.e.,

tk ≤ qk ∀ k, (4.29)

because the node isn’t able to transmit more data than those that are stored in the buffer.

Finally, for both buffers, we assume to have an initial amount of energy b0 and data q0,

respectively, that is arbitrary because the cost function for a MDP is independent of the

initial state. Given the update fuctions, we continue characterizing states and actions of our

system.

The state xk is identified by those quantities that are fundamental to describe the node at

slot k and that are available during slot k. Therefore, xk is denoted as xk = (bk, qk, αk, hk)

because

• with bk we take into account the actual stored energy that depends on the quantities

achieved until instant kT , as written in (4.25);

• with qk we take into account the amount of data stored in the buffer at instant kT that

depends on the quantities achieved until it, as written in (4.27);

• with αk we allow for the characteristics of the fading channel.
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• with hk we include the energy harvested in the current slot k, added in the buffer and

available starting from slot k + 1;

Then the knowledge of hk is determined by the Poisson process and αk depends on the case

we consider: for case (a), we know it and it is a constant for the entire slot k; otherwise, for

case (b), it refers to the value of the previous slot and we must chosen αk+1 accordingly the

transition probability P (αk+1|αk). Regarding action ak, that is taken by the system during

slot k, it is established observing the current state xk and describes how the available energy

can be divided for data sensing and transmission, so ak = (tk, dk).

The second step is to find the state transition probabilities P [xk+1|ak,xk] = pxk,xk+1
(ak),

which describes the probability to go into a specific state at slot k + 1 from state xk, given

that the action ak is been chosen at slot k. Then, we proceed with the definition of this

probability to find out a simpler expression.

pxk,xk+1
(ak) = P [xk+1|ak,xk] = P [bk+1, qk+1, αk+1, hk+1|tk, dk, bk, qk, αk, hk]

First of all, we note that all quantities at slot k + 1 are independent from each other, given

the state and the action at slot k; so,

pxk,xk+1
(ak) = P [bk+1|ak,xk]P [qk+1|ak,xk]P [αk+1|ak,xk]P [hk+1|ak,xk] .

Then, looking at the definitions of those quantities, we can simplify again, removing the

variables of slot k, from which they are independent; therefore the final expression is

pxk,xk+1
(ak) = P [bk+1|bk, tk, dk, αk, hk]P [qk+1|qk, tk, dk]P [αk+1|αk]P [hk+1|hk] .

(4.30)

At this point, given the PDFs of αk and hk, we know P [αk+1|αk] and P [hk+1|hk]; for the

other two probabilities we can observe that they can be easily written as

P [bk+1|bk, tk, dk, αk, hk] =

1 if (4.25) is satisfied

0 otherwise
(4.31)

P [qk+1|qk, tk, dk] =

1 if (4.28) is satisfied

0 otherwise
(4.32)

because we know all the conditioning quantities, since they come from the previous slot, and

if they satisfy equations (4.25) and (4.28) respectively, it means that it is possible to continue,

otherwise, if something doesn’t respect its bounds, the system must stop. Combining all
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these results, we have

pxk,xk+1
(ak) = δbk+1,min{bk−f̃(tk,dk,αk)+hk,b}δqk+1,qk−tk+dk

· P [αk+1|αk]P [hk+1|hk] .
(4.33)

To obtain the Bellmann’s equation (4.18), we need to define the immediate cost function

γ(ak,xk), ∀ k, as a function of the current state and the action. The cost function describes

the instantaneous reward of the system in terms of total number of bits really transmitted;

in other words, what we want to maximize is the instantaneous rate, that depends on the

energy allocated for the transmission and the channel gain of the considered slot, so that the

immediate cost function is equal to

γ(ak,xk) = γ(tk, dk, bk, qk, αk, hk) = tk. (4.34)

The last important step to define our policy is to find the set A(xk) of all possible ac-

tions that can be taken starting from state xk at slot k. Looking at the definition of action

ak = (tk, dk), we observe that tk and dk can assume values limited by intervals [0, t] and

[0, d]. Moreover, they are correlated since their respective energy quantities are correlated

through their sum, being the available energy in the battery distributed among sensing and

transmission; therefore, we need to take the intersection between their possible values. Fi-

nally, since tk depends on the data stored in the buffer at slot k, i.e. qk, we need to take into

account this limit too. Then

A(xk) =
{

(tk, dk)
∣∣∣ 0 ≤ tk ≤ min{qk, t}, 0 ≤ dk ≤ min{q − qk + tk, d},

N0WT∆Γ

(ηαk)2
(2

tk
TW − 1) +

dk
βη

+ ξ1(tk + dk) ≤ bk

}
. (4.35)

In particular, we can consider two cases, so that the resulting region A(xk) is the union of

two sets;

• if bk ≤ ξ, then we can’t trasmit or receive any data, so tk = 0 and dk = 0, obtaining

A1(xk) = {(0, 0)}; (4.36)

• otherwise, if bk > ξ, then dk ≤ h(tk, bk, αk), where h(tk, bk, αk) is a concave function

in tk,

h(tk, bk, αk) = βη
(
bk − ξ −

N0TW∆Γ

(ηαk)2
(2

tk
TW − 1)

)
, (4.37)
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obtaining

A2(xk) =
{

(tk, dk) : tk ≤ min{qk, t}, dk ≤ min{q − qk + tk, d, h(tk, bk, αk)}
}
.

(4.38)

Therefore, as illustrated in Fig. 4.2, the resulting region (4.38) is convex. However, we

postpone the theoretical proof to Section 5.3.

tk

d
k

A(xk)

A1(xk)
h(tk)
upper bound d
upper bound t
q − qk + tk
qk

Figure 4.2: Sets that compose A(x)

Finally, after we have defined all the necessary quantities, the Bellmann’s equation of our

policy is

g(xk) = max
ak∈A(xk)

γ(ak,xk) +
∑

xk+1∈ X

pxk,xk+1
(ak)g(xk+1)

 xk ∈ X . (4.39)





Chapter 5

Policy properties

In this chapter, we give some theoretical results about the properties of our policy, in order

to make the analysis easier and computationally less complex. We first recap some useful

definitions given above and then we prove the monotonicity and the concavity of our opti-

mization problem.

5.1 Summary of useful variables and functions

First of all, the state at slot k is characterized by four variables,

• b energy buffer level;

• q data queue level;

• α channel gain;

• h energy arrivals;

so the global state is x = [b, q, α, h]. We can divide it into two parts:

• internal state xi = [b, q];

• external state xe = [α, h];

The action is represented by data that can be transmitted and data that can be received by the

system at slot k, a = [t, d]. Knowing the action a and the channel gain α, the power used

for transmission and sensing is given by (2.5), that is a convex function in a for a fixed α, as

represented in Fig. 5.1.
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Figure 5.1: f̃(t, d, α) for any possible value α

The action set contains all possible actions, i.e. all possible pairs (t, d), that can be

applied in order to satisfy the bounds imposed by the system and the choosen application, so

it is

A(x) =
{

(t, d)
∣∣∣ 0 ≤ t ≤ min{q, t}, 0 ≤ d ≤ min{q − q + t, d},

f̃(t, d, α) ≤ b
}
.

(5.1)

The action set can be written as the union of two sets, as we have already seen,

• A1(x) = {(0, 0)} if b ≤ ξ;

• A2(x) =
{

(t, d) : t ≤ min{q, t}, d ≤ min{q − q + t, d, h(t, b, α)}
}

otherwise;

and, by construction, A2(x) is a convex set.

The purpose of this analysis is to maximize the transmitted data, so the reward is simply

γ(a,x) = t. (5.2)
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Then, given an action map a = π(x) ∈ A(x), the state update function at slot k is expressed

by

[t, d] = π(b, q, α, h)b̃
q̃

 = f(t, d, b, q, α, h)
(5.3)

where [b̃, q̃]T = yi at slot k + 1 and f(a,x) is

f(a,x) =

min(b− f̃(a, α) + h, b)

q − t+ d

 (5.4)

Defined all these quantities, we go on with the value iteration for selecting the optimum

action at slot k. Calling y = [yi,ye] = [b̃, q̃, α̃, h̃] the state at slot k + 1, the steps to execute

are

G(x) =

∫
gk(xi,ye)p(ye|xe)dye

U(a,x) = G(f(a,x),xe)

(5.5)

Then, the corresponding Bellmann’s equation is

g̃k+1 = max
a ∈ A(x)

γ(a) + U(a,x), (5.6)

and, normalizing it for example with its value at state 0, we obtain

gk+1(x) = g̃k+1(x)− g̃k+1(0) (5.7)

starting from g0(x) = 0. At the same time, the optimum action at slot k is given by

π∗(x) = arg max
a ∈ A(x)

γ(a) + U(a,x). (5.8)

For the details of how we have found (5.5) and following, we postpone to Appendix B.1.

5.2 Properties of f (a,x)

Lemma 3. The mapping function f(a,x), (5.4), is non decreasing in xi for fixed [a,xe] and

is a concave function in [a,xi] for fixed xe.
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Figure 5.2: min(x+ ε0, ε1)

Proof. We can easily prove the monoticity property from the fact that function min(x+ε0, ε1)

is concave and non decreasing for any choice of ε0 and ε1. In effect, taking the first entry of

function f(a,x), that we call mb̃(b, t, d, α, h), and fixing a value for xe, we can observe its

properties from Fig. 5.2. On the other hand, to prove the concavity property, we first define

x̌ = ux1 + (1 − u)x2, with 0 ≤ u ≤ 1 and x any variable, that is the convex combination.

Moreover, we note that the second entry is linear, hence is straightforwardly concave. Then,

we have to prove concavity of f by only proving that it holds for its first entry. Since f̃(a, α)

is a convex function in a for fixed α, it verifies

f̃(ǎ, α) = f̃(ua1 + (1− u)a2, α) ≤ uf̃(a1, α) + (1− u)f̃(a2, α), (5.9)

∀ a1, a2 ∈ A(x) and ∀ u ∈ [0, 1]. At the same time, we recall that mb̃(b, t, d, α, h) =

w(τ) = min(τ + h, b) is concave and non decreasing in [b, a] for fixed xe. Moreover, we

take two values τ̌ and τ̂ such that

τ̌ = b̌− f̃(ǎ, α) = ub1 + (1− u)b2 − f̃(ǎ, α)

≥ u(b1 − f̃(a1, α)) + (1− u)(b2 − f̃(a2, α)) = τ̂ ,
(5.10)

where the inequality is due to the convexity on f̃ . Therefore, since w(τ) is non decreasing,
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we also have w(τ̌) ≥ w(τ̂). Applying these results, we have for the first entry of f

f1(ǎ, x̌i,xe) = w(τ̌ + h) = w(b̌− f̃(ǎ, α)) = w(ub1 + (1− u)b2 − f̃(ǎ, α) + h)

≥ w(u(b1 − f̃(a1, α)) + (1− u)(b2 − f̃(a2, α)) + h)

≥ uw(b1 − f̃(a1, α) + h) + (1− u)w(b2 − f̃(a2, α) + h)

= uf1(a1,xi1,xe) + (1− u)f1(a2,xi2,xe),

(5.11)

where the first inequality is given by the convexity of f̃(a, α), proved in (5.9), and by the

monotonicity of w(τ); the second inequality is due to the concavity of w(τ). From (5.11),

we prove the concavity of f .

5.3 Properties of A(x)
For the action set A(x) we are able to prove the following results. First of all

Lemma 4. Let x1, x2 be the global states that differ in the value of internal state xi. Choosen

any admissible action pair (a1, a2), such that a1 ∈ A(x1) and a2 ∈ A(x2), then it is

ǎ ∈ A(x̌). (5.12)

Proof. To prove this statement, we take advantage of the concavity and monotonicity of

function w(τ) and of the convexity of function f̃ in a for fixed α. Hence, by observing (5.1),

we separately analyze its three upper bounds.

• about the first bound, we have

min(q̌, t) = min(uq1 + (1− u)q2, t)

≥ umin(q1, t) + (1− u) min(q2, t)

≥ ut1 + (1− u)t2 = ť ≥ 0,

where the first inequality is due to the concavity of minimum function, and the second

is given by the upper bound of t in the action set definition.

• about the second bound, we have

min(q − q̌ + ť, d) = min(q − uq1 − (1− u)q2 + ut1 + (1− u)t2, d)

≥ umin(q − q1 + t1, d) + (1− u) min(q − q2 + t2, d)

≥ ud1 + (1− u)d2 = ď ≥ 0,

where, again, the first inequality is due to the concavity of minimum function, and the

second is given by the upper bound of d in the action set definition.
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• finally, about the third bound, we have

b̌− f̃(ǎ, α) = ub1 + (1− u)b2 − f̃(ua1 + (1− u)a2, α)

≥ u(b1 − f̃(a1, α)) + (1− u)(b2 − f̃(a2, α)) ≥ 0,

where the inequality derives from the convexity of f̃ , and so the concavity of −f̃ .

Therefore, the convexity of A2(x) is proved, observing all the inequalities from rigth to left,

and consequently the statement of Lemma 4

About the monotonicity,

Lemma 5. Let x1, x2 be the global states that differ only in the value of b. By assuming

b1 ≤ b2, then

A(x1) ⊂ A(x2). (5.13)

Proof. We exploit once again the fact that function w(τ) is concave and non decreasing.

Then, we take an action a ∈ A(x1); since a is an admissible action for state x1, we have

from (5.1)

f̃(a, α) ≤ b1.

Moreover, by assumption we know that b1 ≤ b2, therefore

f̃(a, α) ≤ b2

and a ∈ A(x).

To summarize the results of this section, the action set A(x) is non decreasing in b for

fixed xe and, in particular, A2(x) is also convex in xi for fixed xe.

5.4 Properties of g(x)

Theorem 6. The function gk(x) is concave in xi for fixed xe and it is non decreasing in b for

fixed [q,xe].

Proof. We proceed by induction. Since the statement is true for g0, we prove that, if it holds

for gk, it holds for gk+1 too. In other words, we assume that concavity and monoticity hold

for gk. Thanks to this, also G(x) i a concave and non decreasing function because integration

is applied on xe and maintains the same properties.

We now prove that also U(a,x) is a concave function in [a,xi] for fixed xe and a non

decreasing function in b for fixed [a, q,xe]. Beginning from the non decreasing property for
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U(a,x), it derives from the non decreasing property of f , that we have proved in Lemma 3

and for which f1(a, b1, q,xe) ≤ f1(a, b2, q,xe) for b1 ≤ b2. Hence, we find

U(a, b1, q,xe) = G(f(a, b1, q,xe),xe) ≤ G(f(a, b2, q,xe),xe) = U(a, b2, q,xe), (5.14)

where the inequality derives from the fact that G(x) is non decreasing and so preserves the

non decreasing property of f . To derive the concavity of U , we now need to recall the

concavity of f in [a,xi] for fixed xe. Therefore,

U(ǎ, x̌i,xe) = G(f(ǎ, x̌i,xe),xe) = G(f(ua1 + (1− u)a2, uxi1 + (1− u)xi2,xe),xe)

≥ G(uf(a1,xi1,xe) + (1− u)f(a2,xi2,xe),xe)

≥ uU(a1,xi1,xe) + (1− u)U(a2,xi2,xe),

(5.15)

where the first inequality is due to the concavity of f , and the second is given by the concavity

of G. As a result, U is concave in [a,xi] for fixed xe.

Then, we need to study the properties of g̃k+1, which correspond to those of gk+1 because

they differ from each other only by a summation of a constant value for normalization. First

of all, we denote

• a∗ = π∗(x̌i,xe) the optimum action for state x̌ = [x̌i,xe], where x̌i is the convex

combination of xi1 and xi2;

• a1 = π∗(xi1,xe) the optimum action for state x1 = [xi1,xe];

• a2 = π∗(xi2,xe) the optimum action for state x2 = [xi2,xe];

• ǎ = ua1 + (1 − u)a2 the convex combination of a1 and a2, but not necessarly the

optimum action for state x̌.

The fact that, in general, ǎ 6= a∗ is due to the non linearity of the action map π. Recalling

the result of Lemma 4, we have

g̃k+1(x̌i,xe) = γ(a∗) + U(a∗, x̌i,xe)

≥ γ(ǎ) + U(a∗, x̌i,xe)

= γ(ua1 + (1− u)a2) + U(ua1 + (1− u)a2, uxi1 + (1− u)xi2,xe)

≥ u(γ(a1) + U(a1,xi1,xe)) + (1− u)(γ(a2) + U(a2,xi2,xe))

= ug̃k+1(xi1,xe) + (1− u)g̃k+1(xi2,xe);

(5.16)
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where the first inequality derives from the optimum action definition, and the second is due

to the concavity of U and the linearity of γ. To prove the monotonicity of g̃k+1 in b, we take

b1, b2 such that b1 ≤ b2 and then we have

g̃k+1(b1, q,xe) = max
a∈;A(x1)

γ(a) + U(a,xi1,xe)

≤ max
a ∈ A(x1)

γ(a) + U(a,xi2,xe)

≤ max
a ∈ A(x2)

γ(a) + U(a,xi2,xe)

= g̃k+1(b2, q,xe),

(5.17)

where the first inequality derives from the monotonicity of U and the second is due to Lemma

5.

Corollary 7. The function U(a,x) is a concave function in [a,xi] for fixed xe and it is non

decreasing in b for fixed [a, q,xe].
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Numerical results

6.1 Numerical parameters

Before we go on with the simulation results, a fundamental point is to set up the numerical

parameters that characterize the system in order to have a more realistic scenario. Therefore,

we focus on a Universal Mobile Telecommunications System (UMTS) technology applied

in a latest generation smartphone. A smartphone can be considered as a small sensor node,

of dimensions 12 × 5 cm2 (typical of a display of 4 inchs), characterized by a battery of

1500 mAh capacity and of 3.5 V voltage. About the connectivity, we concentrate on a

UMTS network with 5 MHz bandwidth, whose maximum uplink transmission rate is fixed

to 11 Mbit/s. On such a device, an application of weather forecast through a webcam is

applied; we consider, for example as in [22] and [23], a webcam composed by a mobile

camera with image resolution of 160 × 120 pixel and 24 bpp, i.e. ' 460 Kbit/image, and

compression format JPEG, so that a compressed image is about 40 Kbit.

To find the suitable numerical parameters for our model, we start from the solar irradi-

ance, that is a measure of the irradiance produced by the sun in the form of electromagnetic

radiation. We consider a constant and fixed value for the solar irradiance, 300 W/m2, that

is the maximum solar irradiance at midday. However a solar panel has an efficiency of 20%,

therefore the real solar irradiance on it is ’only’ of 60 W/m2. Then we examine a device of

dimensions 12 × 5 cm2, as introduced before, so that the real maximum power that it can

receive is P = 60 · 12 × 5 · 10−4 = 0.36 W. From this result, we are able to fix one by one

the other parameters.

First, we set up the time slot T to 10 ms, that is a reasonable coherence time in the

presence of a Rayleigh channel, then we can derive the rate of energy arrivals in a slot into
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the system battery,

λ̄h = P · T = 0.36 J/s · 10−2 s/slot = 3.6 · 10−3 J/slot.

Moreover, as introduced in the previous section, we set the energy arrival in a slot as a sum

of some δ−units of energy that arrive to the system according to a Poisson process of rate

λh. For this purpose, we take δ = 3.6 · 10−3 J and we can derive the average number of

δ−unit energy arrivals into the system as

λh =
λ̄h
δ

=
3.6 · 10−3 J/slot

3.6 · 10−3 J
= 1 arrival/slot.

A fundamental parameter that characterizes the system model and conditions the system

performance is ξ. ξ is the amount of energy that is dissipated in a slot of 10 ms, everytime

some energy for data sensing and/or transmission is sent from the battery. To set up its value,

we consider the battery capacity of 1500 mAh, that typically lasts 24 h; then, taking into

account the standard voltage 3.5 V, we find the average current that flows on the battery and

the average consumed power.

Ī =
1500 mAh

24 h
= 62.5 mA P̄c = 3.5 V · 62.5 mA = 0.21875 W.

Knowing that [W] = [J/s], the average consumed energy in a slot T is

p̄c = P̄cT = 0.21875 J/s · 10−2 s = 2.1875 · 10−3 J.

Therefore, it is reasonable to fix ξ = δ.

As done for energy, we must give a δd−unit for the amount of data, that is thesize of

one packet, that we assume to be constant and known; for example, in order to have simple

calculation, we set δd = 3.6 Kbit, that is a reasonable parameter too, because usually the

Maximum Transmission Unit (MTU) of an IP packet that can be transmitted without frag-

mentation is 1500 byte = 12 Kbit over Internet. This number is comparable to the size of

an image taken by a webcam (for example to monitor the weather in a particular mountain

place), with the characteristics given above, which generates about 11δd bit per image.

Regarding the value of β, that connects data and energy needed for the data sensing, first,

we assume that the relation between sensing energy and data is a linear relation managed by

β, dk = βsk, ∀ k. We now suppose that in a slot of 10 ms a single energy δ−unit arrives into

the system; in this case, if the battery is empty and this energy amount is dedicated to the

data sensing, only one δd−unit of data can arrive, that is only one packet. So, we are able to

find the correct β,

β =
δd
δ

=
3.6 · 103 bit

3.6 · 10−3 J
= 1 Mbit/J.
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This result can be proved also as follows: to read 10 bits on average we need 1 mW in a slot

T , therefore we need 1 mW · 10−2 s = 10−5 J. Then the number of bits arriving into the

system when a Joule of energy is available is exactly β, that is 10 bit/10−5 J = 1 Mbit.

Starting from the above considerations, another important energy parameter is the capac-

ity of the battery b; it tells us the maximum amount of energy that it is able to support in a

time slot because every 10 ms the battery state bk changes acconding to the energy arrivals

and departures, as given in (4.25). Therefore b must be compatible with the Poisson arrivals

rate λh, that we have found, and with the actions that can be taken during a slot T . For this

purpose, in general, we need:

• 1δ of energy to store δd data that are sensed;

• 1δ of dissipated energy;

• 1δ of energy to transmit δd data;

in other words, we need on average 3δ every slot to read and transmit data. Given this result,

it is sufficient to have a battery capacity of b = 50δ, to be sure to store enough energy.

Then, we choose an appropriate value for q, the maximum possible amount of bits that

can be stored into the data buffer every time slot of 10 ms. In order to find it, we can fix

a greater bound, considering the maximum battery bound b and the value of β, that relate

them; therefore,

q = βb = 1 Mbit/J · 50δ = 180 Kbit = 50δd.

We can find also an upper bound for the sensing data, d; to set up it, we observe the

chosen application: on average, the system can receive and store one δd-packet and, at the

same time, can transmit one δd-packet. However, the complete JPEG-image takes about

40 Kbit, i.e. ' 11δd, so the upper bound for the sensed data can be set up to d = 11δd.

Finally, we look for an upper bound also for the trasmitted data, i.e., t; for this purpose,

we consider the maximum transmission rate for uplink v = 11 Mbit/s of a UMTS technol-

ogy, so that the maximum amount of bits that can be transmitted from the system in a slot T

is

t = v · T = 11 Mbit/s · 10−2 s = 110 Kbit/slot ' 30δd.

To resume all the numerical parameters needed for the analysis, we can look at the fol-

lowing table.
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Variable Meaning Value

T time slot duration 10 ms

δ energy unit 3.6 · 10−3 J

δd packet length 3600 bit

λh energy arrival rate 1δ/slot

b battery capacity 50δ

ξ dissipated energy δ

β linear coefficient for data sensing 1 Mbit/J

q data buffer size 50δd

η efficiency 90%

N0 power spectral density 10−8 W/Hz

W bandwidth 5 MHz

∆Γ SNR gap 1

t maximum trasmission energy 30δd

d maximum sensing data 11δd

Table 6.1: Summary of numerical parameters
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6.2 Simulations for the optimal action

In this section, we figure the obtained results of our proposed policy in order to graphically

prove the properties stated in Chapter 5. In effect, the following figures show the optimal

actions, in terms of transmitted and sensed data, on varying the energy arrivals and the chan-

nel state and as functions of the battery and data buffer states. To perform them, we have

implemented a Matlab code, reported in Appendix B.2, in which we compute the reward and

the optimal action of our policy using a mex function to implement the value iteration, until

the reward converges. In all the following figures, we denote X axis with the percentage of

the energy battery or the data buffer; Y axis with the number of δd−units of data and the

curves represent the optimal action for different values of q or b, with respect to the X axis.

From Fig. 6.1, where we plot the optimal transmitted data action as a function of the en-

ergy battery state, we observe that, the transmitted data increase as the channel gain becomes

higher, i.e., the channel becomes better. On the other hand, the increase is less perceptible,

when the number of energy arrivals increases. Therefore, the transmitted data are indepen-

dent of the energy arrivals because the useful energy for transmission depends on the energy

already saved on the battery, while the energy arrivals become usable from next slot. Regard-

ing channel state, when the channel gain is null (i.e. −∞dB), no data can be transmitted, so

the optimal action t is always null, even if the data buffer is full. Increasing the channel gain,

data can be transmitted only when there is enough energy in the battery and enough data in

the buffer. Finally, we can note that, when the channel gain reachs its maximum value (i.e.

10dB), the transmitted data can’t exceed the upper bound t, imposed by the choosen device,

even if the battery and the data buffer are full.

In Fig. 6.2 we plot the optimal sensed data action as a function of the data buffer state,

again for different values of energy arrivals and channel state. We observe that, the sensed

data too don’t depend on the energy arrivals for the same reason. Moreover, the optimal

action d is quite independent of the channel gain because sensed data are first stored in the

data buffer, so they don’t pass through the channel. Increasing the data buffer state q, the

curves follow now a decreasing trend, in order to not waste data, because when data buffer

is quite full, no other data are accepted and this is due to the constraint in (4.28). Another

time, we can note that the maximum number of sensed data units that arrive into the system

is that imposed by the choosen application.

It is interesting to observe also the sum of the optimal transmitted data and sensed data

action, i.e. the amount of data operating in a time slot inside the system. For this purpose,

Fig. 6.3 shows the optimal sum as a function of the energy battery state. We can note that,
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Figure 6.1: Optimal action t as a function of b
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Figure 6.2: Optimal action d as a function of q
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when the channel is null, only sensing is allowed, and starting from a sufficient level of en-

ergy battery, that is approximately 25%; moreover, according to the data buffer state, the

sensed data are almost always the maximum possible because energy is exclusively dedi-

cated to sensing. Then, increasing the channel gain, the optimal sum is non-decreasing as

a function of b, reaching the upper bound t + d when the channel gain takes its maximum

value; however the upper bound is variable, depending on the constraints given by 4.29 and

4.28.
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Figure 6.3: Optimal sum t+ d as a function of b

In the same way, we can observe Fig. 6.4, where the optimal sum of transmitted and

sensed data is plotted as a function of the data buffer state q. In Fig. 6.4, there are two

different trends: when the channel state is bad, there is a non-increasing trend; when the

channel state becomes better, the curves are non-decreasing. In effect, when the channel

state is bad, data can’t be transmitted, they can be only sensed, so we find again the results
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of Fig. 6.2. Increasing the channel gain, the receiver is able to receive data, so increasing the

data buffer state allows to transmit more and more data up to the upper bound t.
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Figure 6.4: Optimal sum t+ d as a function of q

We can observe also the influence of the data-sensing efficiency parameter β on the per-

formance of the system. Considering the linear relation between sensing data and sensing

energy, i.e. dk = βsk ∀ k, we have found in Section 6.1 that, if we have a single energy

δ−unit arrival and it is dedicated to sensing, only one δd−unit of data can arrive to the sys-

tem and β is equal to 1Mbit/J. If we increase the value of β, keeping fixed δ and δd, we

increase the number of data packets that can be sensed with a single δ−unit energy; in other

words, we impose to the system to allocate less energy for sensing, in favour of transmission.

However, due to the finite size of data buffer, β can’t grow to infinity, because no more than

q data can be accepted. In addition, we have set also an upper bound for sensed data, d, that

is imposed by the choosen application. Therefore, in this particular setting, the maximum
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admissible value of β is given by the ratio between d = 11δd and 1δ of energy, that is the

minimum quantity of energy; so

βmax = 11 Mbit/J.

On the other hand, we can also decrease the value of β, so that we need more δ−units of

energy for a single sensed δd packet. For example, if we choose β = 0.1 Mbit/J, then, for a

single δd packet, we need

s =
δd
β

= 10δ.

In this way, we are able to find the minimum admissible value of β, imposing that all the

available energy into the battery, i.e. b, is dedicated for sensing a single δd data packet; so

we obtain

βmin = 2 · 104 bit/J,

with which the reward, in terms of transmitted data, is null. In fact, using a β < 106 bit/J,

the performance gets worse, because less data are available in the buffer and more energy is

necessary to sense the same amount of data; in other words, sensing becomes more influential

for the system performance and the reward is worse.

For this purpose, it is interesting to observe the optimal action d as a function of β values,

for different values of data buffer state, as in Fig. 6.5 (a), and for different values of battery

state, as in Fig. 6.5 (b), keeping fixed the channel gain and the energy arrivals states. In

Fig. 6.5 (a), we note that, independently of the data buffer state, as much as β is less than

1 Mbit/J, the action d is null because there is no much energy to allocate for sensing (we

have choosen b = 25δ, i.e. half-full battery). When β increases, less energy is necessary for

sensing the same amount of data, so the action d becomes different from 0; in particular, even

if the battery is not full, the maximum amount of data is sensed for βmax. In Fig. 6.5 (b), the

results are a little different because, when the battery is full or three-fourths full, the action d

is quite always the maximum because there is enough available energy, independently of the

value of β; however, when the available energy decreases, the system is able to sense data

starting from higher β values.

On the other hand, in Fig. 6.6 we plot the optimal action t as a function of battery state,

for different values of β, keeping fixed the channel gain, the energy arrivals and the data

buffer states. Focusing, for example, on the black curve for β = 105 bit/J, we observe that

we are able to transmit something only when battery is quite full, so the system has enough

energy for sensing and then transmitting. Increasing β, then more data are avilable, so we

can already transmit starting from lower battery states; however, we must note that the upper

bound for transmitted data is given by the data buffer state, that in this case is 25δd.
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For the reward performance, we postpone to next section, in which we compare the

optimal reward of our policy with the reward of other empirical policies.

6.3 Comparison with empirical policies

It is interesting and useful now to compare the results of our optimal policy with other em-

pirical policies in order to prove the optimality of ours. For this purpose, we choose two

different empirical policies, whose code is reported in Appendix B.2, which both use the

same features of ours in terms of energy arrivals and channel states to obtain the same be-

haviour for all the three policies. Before showing the graphical results, we need to describe

the operation of both the empirical policies.

Policy 1. The first policy decides slot by slot how much data the system is able to allocate

for transmission, choosing the minimum among the data available in the buffer, the data

that the system can transmit depending on how much energy there is in the battery and the

maximum of transmitted data. After that, depending on the real energy used for transmission,

the remaining available energy can be allocated for sensing. For this purpose, the sensed data

action is taken looking for the minimum between the data that the system can accept, based

on the available energy for sensing, the empty space available in the buffer and the maximum

of sensed data. Finally, given the action (t, d) of current slot k, we are then able to compute

the state update functions (4.25) and (4.27).

Policy 2. Contrary to the first, the second policy makes a decision based only on how

much energy is available, because the aim is to transmit as much data as possible as soon as

there is enough available energy in the battery. After that, depending on how much data can

still be stored in the buffer, the system chooses to accept as much data as possible. Again,

given the action (t, d) of current slot k, we are then able to compute the state update functions

(4.25) and (4.27).

Obtained the actions for all the three policies, we evaluate the performance in terms of

reward, i.e. average of transmitted data, computed in a long time period. First of all, we

observe Fig. 6.7, in which we plot the normalized reward for all the three policies as a

function of different energy battery capacities, keeping fixed the data buffer size at 50δd, as

imposed in table 6.1. We first note that, for all the three policies, the reward already saturates

with a small capacity of energy battery; so it is sufficient to have a smaller capacity to have

good performance for the choosen application. Moreover, we prove the optimality of our

policy against the other two proposed policies, because it achieves an higher reward. Policy

2 achieves a small reward because of its approach of transmitting as much as possible when
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there is enough energy. In effect, Policy 2 has a more marked burstiness because, when

there is enough energy into the battery, the system decides to use all of it in a slot, so that

the following slots are necessary to harvest energy and no data are transmitted. The same

behaviour is taken for sensing because sensing is also concentrated on a single slot, in which

the data buffer is filled up. So, in its entirety, Policy 2 is absolutely not efficient because it is

a too much aggressive policy, since it doesn’t save energy for future slots. On the other hand,

Policy 1 achieves a better reward because it evaluates how much energy and data can be

allocated in a slot in order to respect all the bounds given by the system. However, its reward

isn’t the optimal one, because it has a too much conservative behaviour since, in every slot, it

decides for the minimum in order to save as much energy and data as possible for next slots.

For these reasons, our policy achieves the optimal reward, because it reaches a compro-

mise between a too much aggressive policy, as Policy 2, and a too much conservative policy,

as Policy 1.
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Figure 6.7: Normalized reward γ for different energy battery capacities b

We find the same results also in Fig. 6.8, in which we plot the normalized reward as a

function of different data buffer sizes, keeping fixed now the energy battery capacity to 50δ,

as imposed in table 6.1. Once again, the reward saturates with a small size of data buffer and

our policy performs the best reward against the other two empirical policies.

Finally, we plot in Fig. 6.9 the reward, simultaneously, for different values of b and q. In

particular, focusing on the first figure, that shows the reward of our policy, we observe that
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Figure 6.8: Normalized reward γ for different data buffer sizes q

we can achieve the same best performance even with a smaller energy battery and a smaller

data buffer, for example we could set b = 20δ and q = 20δd.
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Figure 6.9: Reward for different values of b and q

As introduced in the previous section, we want now to compare the reward performance

as a function of the data-sensing efficiency parameter β for different policies. First of all, we

describe another empirical policy, that we have implemented for this particular comparison.

Policy 3. The third policy decides to sense data only when the data buffer is empty and

transmission isn’t possible; while, when there is even only one δd−packet, only transmission

is admissible, again, choosing the minimum among the data available in the buffer, the data

that the system can transmit depending on how much energy there is in the battery and the
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maximum of transmitted data. At the end, given the action (t, d) of current slot k, we are

then able to compute the state update functions (4.25) and (4.27).

Looking at Fig. 6.10, the reward is shown as the number of δd−packets that are transmit-

ted in a time slot. We observe that, increasing the value of β, the reward increases, except for

policy 2, because more data are available in the buffer. However, while for small values of β,

the first three curves have similar results; for high values of β, our policy achieves the best

reward, distancing itself always more from the empirical curves. Moreover, policy 3 is worse

than policy 1 because sensing is possible only when data buffer is empty and transmission

is limited by data before stored. Regarding the performance of our policy, we can note that,

even if the reward increases, increasing β, the best relation sensed data - transmitted data is

obtained with β = 1 Mbit/J, because for one sensed δd−packet, about one δd−packet is

transmitted.
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Figure 6.10: Normalized reward γ for different values of β





Chapter 7

Conclusions

In this work, we have studied an EH communication system, that transmits data over an

AWGN fading channel over a slotted time. To be more realistic, we have considered a sim-

plified model, in which we have taken into account the energy allocation for sensing data, a

constant non-negligible processing energy cost and a constant efficiency parameter. More-

over, the energy arrivals process is a causal stochastic process with a Poisson distribution and

the channel gain is modeled by a Rayleigh distribution function.

In this scenario, we have formulated the problem as a MDP and designed a policy to

find the optimal action in terms of transmitted and sensed data, respecting all the constraints

given by the finite capacity of the energy battery and the data buffer. The aim is to maximize

the total transmitted data and, to implement the problem, we have based our algorithm on

the value iteration, keeping the computational complexity low. Moreover, we have proved

some important theoretical results, as the convexity of the possible actions set, the concavity

of the optimal reward and the monotonicity of both of them. These results are useful in

order to improve the algorithm and reduce the computational complexity because we are

able to look for the optimal action around the previously found optimal action and no more

on the entire set of possible actions, but this improvement is left to future works. Solving

our problem with a Matlab code, we have plotted the optimal action in terms of transmitted

and sensed data and their sum as functions of the energy battery state and the data buffer

state for different values of energy arrivals and channel gains, proving the monotonicity of

the solutions. Finally, we have choosen and implemented two different empirical policies,

in order to compare them with our proposed policy and show the best results, in terms of

reward, of this last one.
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Appendix A

Proofs

A.1 Proof of relation between ek and tk

From the definition of instantaneous rate (2.2), that we report here,

tk = TW log2

(
1 +

α2
kηek

N0WT∆Γ

)
;

dividing both sides by TW and raising both to the power of 2, we obtain equation (2.3)

2
tk
TW = 1 +

α2
kηek

N0WT∆Γ

ek =
N0WT∆Γ

α2
kη

(
2

tk
TW − 1

)
,

where ek is a function of tk and αk and we can refer to it through

ek =
h̃(tk)

α2
k

. (A.1)

The obtained result means that ek is the minimum energy required at slot k to transmit tk

bits, knowing that the channel gain is αk. However this result is valid only if we know the

channel gain αk of slot k, i.e., the ideal case.

On the other hand, in the estimated case, αk is referred to the channel gain of the previous

slot k − 1. Since, at the beginning of slot k, we don’t have the value of αk+1, but only αk of

the previous slot, we must express αk+1 in function of αk through the transition probability

P [αk+1|αk]. In order to obtain this expression, we have to rewrite the instantaneous rate as

r(ek, αk+1) = TW log2

(
1 +

α2
k+1ηek

N0WT∆Γ

)
(A.2)

61



62 APPENDIX A. PROOFS

because the channel gain referred to slot k is αk+1, and

ek ≥
h̃(tk)

α2
k+1

, (A.3)

with the ≥-sign because we need to assure a minimum value of energy to successfully trans-

mit. Then, to find out the energy necessary for data transmission, we condition (A.3) with

respect to the known value of αk of previous slot, i.e.,

P

[
ek ≥

h̃(tk)

α2
k+1

∣∣∣αk] = P

αk+1 ≥

√
h̃(tk)

ek

∣∣∣αk
 ≥ 1− ε, (A.4)

that is the success probability of transmitting a packet, and we want it to be high with respect

to a target ε. At the same time, the probability of error, i.e. the probability to not transmit the

packet, is

P

αk+1 <

√
h̃(tk)

ek

∣∣∣αk
 ≤ ε. (A.5)

Equivalently, to resolve (A.5), we compute the integral

∫ √
h̃(tk)

ek

0

P [αk+1 = x|αk]dx = ε. (A.6)



Appendix B

Implementation with Matlab

B.1 Simplified expression of Bellmann’s equation

In this section, we show how we can simplify the Bellmann’s equation (4.39) to implement

it in Matlab.

First of all, we recall the Bellmann’s equation for our problem, expressed as

g(xk) = max
ak∈A(xk)

γ(ak,xk) +
∑

xk+1∈ X

pxk,xk+1
(ak)g(xk+1)

 xk ∈ X . (B.1)

We can work for a moment with the sum of the right part of (B.1) in order to simplify the

expression, that depends on ak and xk. Calling it U(a,x), where we omit the subscript k,

we have

U(a,x) =
∑
y∈ X

px,y(a)g(y)

=
∑

[b̃,q̃,α̃,h̃]

P (α̃|α) · P (h̃) · δ
b̃,min{b− f̃(t, d, α) + h, b}︸ ︷︷ ︸

m
b̃
(b,t,d,α,h)

· δ
q̃,q − t+ d︸ ︷︷ ︸

mq̃(q,t,d)

· g(b̃, q̃, α̃, h̃)

=
∑

[b̃,q̃,α̃,h̃]

P (α̃|α) · P (h̃) · g(mb̃(b, t, d, α, h),mq̃(q, t, d), α̃, h̃).

(B.2)

Defining

ḡ(b̃, q̃, α̃) =
∑
h̃

P (h̃)g(b̃, q̃, α̃, h̃), (B.3)

where we average the function g(b̃, q̃, α̃, h̃) with the PDF of energy arrivals h̃; and defining

ĝ(b̃, q̃, α) =
∑
α̃

P (α̃|α)ḡ(b̃, q̃, α̃), (B.4)
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where, given a value of the channel gain α at slot k, we take the average again with respect

to the transition matrix P (α̃|α) for all α̃ at slot k + 1; at the end, we have

U(a,x) = ĝ(mb̃(b, t, d, α, h), q − t+ d, α). (B.5)

The new functions, defined through the previous steps, are obtained in Matlab by simple

inner products between matrices and vectors, so that we are able to reduce the dimensions of

matrices. Therefore, the Bellmann’s equation becomes

g(b, q, α, h) = max
(t,d)∈ A(x)

[t+ ĝ(mb̃(b, t, d, α, h), q − t+ d, α)] . (B.6)

Before going on with the resolution of (B.5), we need to define the range of all six variables

and the functions that appear inside the cycles, i.e.

P (h̃) =
λh̃h · e−λh

h̃!
;

f̃(t, d, α) =
N0WT∆Γ

(ηα)2

(
2

t
WT − 1

)
+

d

βη
+ ξ1(t+ d);

mb̃(b, t, d, α, h) = min{b− f̃(t, d, α) + h, b} = b̃;

mq̃(q, t, d) = q − t+ d = q̃.

We start with the initial 6-dimensional matrix U(a,x) of type t
δd
× d

δd
× b

δ
× q

δd
× dmax(α)e

step ×
hmax−hmin

δ
, where step is the quantization step used in order to find the transition matrix that

characterizes the channel. Then we are able to compute U(a,x) with the following steps:

1. first, we calculate ḡ(b̃, q̃, α̃) through the inner product between the PDF of energy

arrival h̃, for all possible values of h̃, and the 4-dimensional matrix g(mb̃,mq̃, α̃, h̃);

the result is a 3-dimensional matrix of type b
δ
× q

δd
× dmax(α)e

step ;

2. we simplify again, taking the inner product between a row of the transition matrix

P [α̃|α], corresponding to a given value for α at instant k, and the matrix ḡ(b̃, q̃, α̃)

along the third dimension; we obtain a new 3-dimensional matrix ĝ(b̃, q̃, α) of type
b
δ
× q

δd
× dmax(α)e

step , for all possible values α of slot k;

Continuing the algorithm from that point, we compute the Bellmann’s equation (B.1):

1. we sum each value t with the corresponding element of matrix ĝ(b̃, q̃, α), obtained by

the two functions for b̃ and q̃, that depend on that specific value of t;

2. we take the maximum with respect to all admissible pairs (t, d) (the admissibility is

defined at the beginning of the cycles through the condition (4.26));
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3. Obtained the maximum, we write it in the corresponding cell of 4-dimensional matrix

g(b, q, α, h), of type b
δ
× q

δd
× dmax(α)e

step × hmax−hmin
δ

.

These steps characterize a single instant k, and we must repeat all the calculations for a long

time interval.

B.2 Matlab code

B.2.1 The main code

f u n c t i o n main_C ( )

s l o t =1000

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% main p a r a m e t e r s

5 T = 1e−2; % s l o t d u r a t i o n [ s ]

W = 5 e6 ; % bandwid th [ Hz ]

TW = T∗W; % c o n s t a n t

N_0 = 1e−8; % power s p e c t r a l d e n s i t y [W/ Hz ]

e t a = 0 . 9 ; % e f f i c i e n c y o f t h e s o l a r p a n e l

10 GammaL = 1 ; % s i g n a l−to−n o i s e r a t i o gap

K = N_0∗TW∗GammaL / e t a ; % c o n s t a n t

d e l t a = 0 . 0 0 3 6 ; % u n i t o f e ne rg y [ J ]

b_max = 50∗ d e l t a ; % [ J ] maximum e ne rg y b u f f e r c a p a c i t y

15 x i = d e l t a ; % [ J ] d i s s i p a t e d e ne rg y

h_max = 10∗ d e l t a ; % [ J ] maximum e ne rg y a t i n p u t

lambda_h = 1 ; % number o f d e l t a u n i t s o f power

d e l t a _ d = 3600 ; % u n i t o f da ta [ b i t ]

20 q_max = 50∗ d e l t a _ d ; % [ b i t ] maximum da ta b u f f e r s i z e

t_max = 30∗ d e l t a _ d ; % [ b i t ] maximum t r a n s m i t t e d b i t

d_max = 11∗ d e l t a _ d ; % [ b i t ] maximum da ta f o r s e n s i n g

b e t a = 1 e6 ; % [ b i t / J ] f r a c t i o n f o r da ta s e n s i n g

25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% i n i t i a l i z a t i o n

b _ i n t = f l o o r ( b_max / d e l t a ) +1 ; % # o f p o s s i b l e v a l u e s o f b

h _ i n t = f l o o r ( h_max / d e l t a ) +1 ; % # o f p o s s i b l e v a l u e s o f h

q _ i n t = f l o o r ( q_max / d e l t a _ d ) +1; % # o f p o s s i b l e v a l u e s o f q

30 t _ i n t = f l o o r ( t_max / d e l t a _ d ) +1; % # o f p o s s i b l e v a l u e s o f t

d _ i n t = f l o o r ( d_max / d e l t a _ d ) +1; % # o f p o s s i b l e v a l u e s o f d

a _ i n t = l e n g t h ( a ) ; % # o f p o s s i b l e v a l u e s o f a

b ( : , 1 ) = ( 0 : b _ i n t −1)∗ d e l t a ; % v e c t o r o f a l l p o s s i b l e v a l u e s o f b

35 h ( : , 1 ) = ( 0 : h _ i n t −1)∗ d e l t a ; % v e c t o r o f a l l p o s s i b l e v a l u e s o f e ne r gy a r r i v a l s

q ( : , 1 ) = ( 0 : q _ i n t −1)∗ d e l t a _ d ; % v e c t o r o f p o s s i b l e v a l u e s o f q

t ( : , 1 ) = ( 0 : t _ i n t −1)∗ d e l t a _ d ; % v e c t o r o f a l l p o s s i b l e v a l u e s o f t

d ( : , 1 ) = ( 0 : d _ i n t −1)∗ d e l t a _ d ; % v e c t o r o f a l l p o s s i b l e v a l u e s o f d

a = a ’ ; % v e c t o r o f a l l p o s s i b l e v a l u e s o f a
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40

% e ne rg y a r r i v a l p r o b a b i l i t i e s

P_h ( : , 1 ) = exp(− lambda_h ) ∗ lambda_h . ^ ( 0 : h _ i n t −1) . / ( f a c t o r i a l ( 0 : h _ i n t −1) ) ;

P_h ( end ) = 1−sum ( P_h ( 1 : end−1) ) ;

45 % c h a n n e l t r a n s i t i o n p r o b a b a b i l i t i e s ( a l r e a d y t a k e n from ’ channe l ’ f i l e )

p_kk1_a lpha ;

% s t a t e up da t e f u n c t i o n f ( )

[ a1 b1 c1 ] = n d g r i d ( 2 . ^ ( t /TW)−1,d / ( b e t a ∗ e t a ) +xi ,K . / ( e t a ∗a . ^ 2 ) ) ;

50 f _ t i l d e = c1 .∗ a1+b1 ;

f _ t i l d e ( 1 , : , 1 ) = b1 ( 1 , : , 1 ) ; % when t=a=0 −−> s i m p l i f i e d e x p r e s s i o n

f _ t i l d e ( 1 , 1 , : ) = 0 ; % when t=d=0 −−> no t r a n s m i s s i o n

% g_x f u n c t i o n

55 g_x = z e r o s ( b _ i n t , q _ i n t , a _ i n t , h _ i n t ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% main loop

60 f o r k = 1 : s l o t

t i c

% f i n d g_bar

tmp = r e s h a p e ( g_x , b _ i n t ∗ q _ i n t ∗ a _ i n t , h _ i n t ) ∗P_h ;

tmp = r e s h a p e ( tmp , b _ i n t , q _ i n t , a _ i n t ) ;

65 % f i n d g_ha t

tmp = r e s h a p e ( tmp , b _ i n t ∗ q _ i n t , a _ i n t ) ∗p_kk1_alpha ’ ;

tmp = r e s h a p e ( tmp , b _ i n t , q _ i n t , a _ i n t ) ;

% compute gx

[ tmp , a c t i o n ] = compute_gx ( b , q , h , a , t , d , d e l t a , d e l t a _ d , f _ t i l d e , tmp , b e t a ∗ e t a , x i ) ;

70 tmp = tmp−tmp ( 1 ) ;

d i f f e = norm ( g_x ( : )−tmp ( : ) ) ;

g_x = tmp ;

% d i s p l a y

d i s p ( [’End slot ’ , num2s t r ( k ) , ’, diff = ’ , num2s t r ( d i f f e ) ] )

75 t o c

% e x i t i f s m a l l d i f f

i f ( d i f f e <1e−40)

b r e a k ;

end

80 % save once i n a w h i l e

end

B.2.2 Function to compute the optimal action

# i n c l u d e "math.h"

# i n c l u d e "mex.h"

# i n c l u d e "matrix.h"

# i n c l u d e < s t d l i b . h>

5 # i n c l u d e < f l o a t . h>
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i n t round ( dou b l e number )

{

r e t u r n ( number >= 0) ? ( i n t ) ( number + 0 . 5 ) : ( i n t ) ( number − 0 . 5 ) ;

10 }

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Main f u n c t i o n

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

15 vo id mexFunct ion (

i n t n lhs , / / number o f o u t p u t s

mxArray ∗ p l h s [ ] , / / o u t p u t s v e c t o r

i n t n rhs , / / number o f i n p u t s

c o n s t mxArray ∗ p r h s [ ] / / i n p u t s v e c t o r

20 )

{

do ub l e ∗b , ∗q , ∗h , ∗a , ∗ t , ∗d , ∗ f _ t i l d e , ∗g_hat , ∗g_x , ∗ a c t i o n ;

do ub l e d e l t a , d e l t a _ d , e t a b e t a , x i , h_tk , q_t , y , max_v ;

do ub l e vb , vq , vt , vh , va , vd , q_max ;

25 i n t b _ i n t , q _ i n t , h _ i n t , a _ i n t , t _ i n t , d _ i n t , t _max in t , d_maxin t ;

i n t max_t , max_d , dims [ 5 ] , i , l , bk , qk , hk , ak , tk , dk , bk1 , qk1 , i n d ;

/∗ 1 . Check v a l i d i t y o f e x p r e s s i o n s ∗ /

/ / check i n p u t l e n g t h

30 i f ( n r h s ! = 1 2 )

mexErrMsgTxt ("Twelve input arguments required" ) ;

/ / check o u t p u t l e n g t h

i f ( n l h s != 2)

mexErrMsgTxt ("Two output arguments required" ) ;

35

/∗ 2 . Read i n p u t s ∗ /

/ / i n p u t a r r a y

b = mxGetPr ( p r h s [ 0 ] ) ;

q = mxGetPr ( p r h s [ 1 ] ) ;

40 h = mxGetPr ( p r h s [ 2 ] ) ;

a = mxGetPr ( p r h s [ 3 ] ) ;

t = mxGetPr ( p r h s [ 4 ] ) ;

d = mxGetPr ( p r h s [ 5 ] ) ;

/ / v e c t o r l e n g t h

45 b _ i n t = mxGetM ( p r h s [ 0 ] ) ;

q _ i n t = mxGetM ( p r h s [ 1 ] ) ;

h _ i n t = mxGetM ( p r h s [ 2 ] ) ;

a _ i n t = mxGetM ( p r h s [ 3 ] ) ;

t _ m a x i n t = mxGetM ( p r h s [ 4 ] ) ;

50 d_maxin t = mxGetM ( p r h s [ 5 ] ) ;

/ / maximum v a l u e s

q_max = q [ q _ i n t −1];

/ / u n i t s o f e ne rg y and da ta

d e l t a = mxGetSca la r ( p r h s [ 6 ] ) ;

55 d e l t a _ d = mxGetSca la r ( p r h s [ 7 ] ) ;

/ / a u x i l i a r y m a t r i c e s

f _ t i l d e = mxGetPr ( p r h s [ 8 ] ) ;

g _ h a t = mxGetPr ( p r h s [ 9 ] ) ;
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/ / i n p u t c o n s t a n t

60 e t a b e t a = mxGetSca la r ( p r h s [ 1 0 ] ) ;

x i = mxGetSca la r ( p r h s [ 1 1 ] ) ;

/∗ 3 . Prepare o u t p u t v e c t o r s ∗ /

dims [ 1 ] = b _ i n t ;

65 dims [ 2 ] = q _ i n t ;

dims [ 3 ] = a _ i n t ;

dims [ 4 ] = h _ i n t ;

dims [ 0 ] = 2 ;

p l h s [ 0 ] = mxCreateNumer icArray (4 ,& dims [ 1 ] , mxDOUBLE_CLASS, mxREAL) ;

70 g_x = mxGetPr ( p l h s [ 0 ] ) ;

p l h s [ 1 ] = mxCreateNumer icArray ( 5 , dims , mxDOUBLE_CLASS, mxREAL) ;

a c t i o n = mxGetPr ( p l h s [ 1 ] ) ;

/∗ 4 . Run t h e a l g o r i t h m ∗ /

75 f o r ( bk =0; bk< b _ i n t ; bk ++)

{

vb = b [ bk ] ;

f o r ( qk =0; qk< q _ i n t ; qk ++)

{

80 vq = q [ qk ] ;

f o r ( ak =0; ak < a _ i n t ; ak ++)

{

va = a [ ak ] ;

f o r ( hk =0; hk< h _ i n t ; hk ++)

85 {

vh = h [ hk ] ;

/ / p r e p a r e v a l u e o f t h e z e r o a c t i o n

max_v = g _ h a t [ min ( bk+hk , b _ i n t −1)+ b _ i n t ∗ ( qk+ q _ i n t ∗ak ) ] ;

max_t = 0 ;

90 max_d = 0 ;

/ / s e a r c h f o r maximum

i f ( vb> x i ) {

t _ i n t = ( ak ==0?1: min ( qk +1 , t _ m a x i n t ) ) ;

f o r ( t k =0; tk < t _ i n t ; t k ++)

95 {

v t = t [ t k ] ;

d _ i n t = round ( e t a b e t a ∗ ( d ou b l e ) ( vb−f _ t i l d e [ t k + t _ m a x i n t ∗(0+

d_maxin t∗ak ) ] ) ) / d e l t a _ d +1;

d _ i n t = min ( min ( q _ i n t−qk+ tk , d _ i n t ) , d_maxin t ) ;

f o r ( dk =0; dk< d _ i n t ; dk ++)

100 {

vd = d [ dk ] ;

/ / s e a r c h f o r maximum

bk1 = bk+hk−round ( ( f _ t i l d e [ t k + t _ m a x i n t ∗ ( dk+ d_maxin t∗ak ) ] /

d e l t a ) ) ;

bk1 = min ( max ( 0 , bk1 ) , b _ i n t −1) ;

105 qk1 = qk−t k +dk ;

y = v t + g _ h a t [ bk1+ b _ i n t ∗ ( qk1+ q _ i n t ∗ak ) ] ;

i f ( y>=max_v ) {

max_v = y ;
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max_t = v t ;

110 max_d = vd ;

}

}

}

}

115 / / s t o r e maximum

i n d = bk+ b _ i n t ∗ ( qk+ q _ i n t ∗ ( ak+ a _ i n t ∗hk ) ) ;

g_x [ i n d ] = max_v ;

a c t i o n [0+2∗ i n d ] = max_t ;

a c t i o n [1+2∗ i n d ] = max_d ;

120 }

}

}

}

/∗ 5 . E x i t ∗ /

125 r e t u r n ;

}

B.2.3 The empirical policies code

t ime = 1 e6 ;

%%%%%%%%%%%%%%%% p o l i c y 1 %%%%%%%%%%%%%%%%%%%%%%%%%%

%i n i t i a l v a l u e s

b_k = 0 ;

5 q_k = 0 ;

%known v a l u e s o f c h a n n e l ga in and e n er gy a r r i v a l s

h_k = a r r i v a l ;

%t o f i n d t h e l i n e a r v a l u e s o f c h a n n e l ga in

10 a l p h a _ d b = ( qa−12) ∗3 ; %i n dB

a l p h a = 1 0 . ^ ( ( a l p h a _ d b +10) / 2 0 ) ; %l i n e a r

a l p h a ( a lpha < 0 . 1 ) = 0 ;

f o r k =1: t ime

15 %c u r r e n t s t a t e

bk = round ( b_k / d e l t a ) +1 ; %i n d e x o f c u r r e n t b a t t e r y s t a t e

qk = round ( q_k / d e l t a _ d ) +1; %i n d e x o f c u r r e n t da ta b u f f e r s t a t e

ak = qa ( 1 , k ) ; %i n d e x o f c u r r e n t c h a n n e l ga in

a_k = a l p h a ( 1 , k ) ; %l i n e a r v a l u e o f c h a n n e l ga in

20 hk = h_k ( 1 , k ) +1 ;

%c u r r e n t a c t i o n

e n _ a v a i l = b_k−x i ; %a v a i l a b l e e ne rg y

d a t a _ a v a i l = q_k ; %a v a i l a b l e da ta t o t r a n s m i t

i f e n _ a v a i l >0 %i f enough e ne rg y i n b a t t e r y

25 i f d a t a _ a v a i l >0 %i f t h e r e are da ta i n b u f f e r

t _ k = min ( d a t a _ a v a i l , min (TW∗ l og2 ( 1 + ( a_k ^2∗ ( e n _ a v a i l ) /K) ) , t_max ) ) ;

e_k = K / ( a_k ) ^ 2∗ ( 2 ^ ( t _ k /TW)−1) ; %r e a l l y used e ne r gy f o r t r a n s m i s s i o n

s_k = max ( e n _ a v a i l−e_k , 0 ) ; %l e f t e ne rg y f o r s e n s i n g

d_k = min ( b e t a ∗s_k , min ( q_max−d a t a _ a v a i l + t_k , d_max ) ) ;

30 e l s e %i f no da ta i n b u f f e r
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t _ k = 0 ;

d_k = min ( e n _ a v a i l ∗ be ta , d_max ) ; %o n l y s e n s i n g

end

e l s e %i f no enough e ne rg y i n b a t t e r y

35 t _ k = 0 ;

d_k = 0 ;

end

t k = round ( t _ k / d e l t a _ d ) +1; %i n d e x o f c u r r e n t a c t i o n t

dk = round ( d_k / d e l t a _ d ) +1; %i n d e x o f c u r r e n t a c t i o n d

40

%f o l l o w i n g s t a t e and p a r a m e t e r s

f _ t i l d e _ k = f _ t i l d e ( tk , dk , ak ) ;

b_k = c o m p u t e _ b t i l d e _ v a l ( b_k , f _ t i l d e _ k , ( hk−1)∗ d e l t a , b_max , d e l t a ) ;

q_k = max ( d a t a _ a v a i l− t _ k + d_k , 0 ) ;

45 t x ( 1 , k ) = t _ k ; %t r a n s m i t t e d da ta a t s l o t k

end

re_1 = sum ( t x ( : ) ) / ( t ime∗ d e l t a _ d ) %n o r m a l i z e d reward

50 %%%%%%%%%%%%%%%% p o l i c y 2 %%%%%%%%%%%%%%%%%%%%%%%%%%

%i n i t i a l i n d e x o f s t a t e

bk = 1 ;

qk = 1 ;

f o r k = 1 : t ime

55 ak = qa ( k ) ; %i n d e x o f c u r r e n t c h a n n e l ga in

hk = h_k ( k ) ; %i n d e x o f c u r r e n t e ne r gy a r r i v a l s

pk = round ( f _ t i l d e ( 1 : min ( t _ i n t , qk ) , 1 , ak ) / d e l t a ) +1 ;

[ ~ , t k ] = max ( pk . ∗ ( pk<=bk ) ) ; % t r a n s m i t t e d b i t

pk = round ( f _ t i l d e ( tk , 1 : min ( d _ i n t , q _ i n t−qk +1) , ak ) / d e l t a ) +1 ;

60 [ ~ , dk ] = max ( pk . ∗ ( pk<=bk ) ) ; % s e n s e d b i t

pk = pk ( dk ) ; % t r a n s m i t t e d power

% up da te s t a t e −−> f o l l o w i n g i n d i c e s o f s t a t e

bk = min ( max ( 1 , bk−pk+hk ) , b _ i n t ) ;

qk = qk−t k +dk ;

65 % memory

r e ( k ) = tk −1;

end

re_2 = mean ( r e ) %n o r m a l i z e d reward

70

%%%%%%%%%%%%%%%% p o l i c y 3 %%%%%%%%%%%%%%%%%%%%%%%%%%

%i n i t i a l v a l u e s

b_k = 0 ;

q_k = 0 ;

75

f o r k =1: t ime

%c u r r e n t s t a t e

bk = round ( b_k / d e l t a ) +1 ; %i n d e x o f c u r r e n t b a t t e r y s t a t e

qk = round ( q_k / d e l t a _ d ) +1; %i n d e x o f c u r r e n t da ta b u f f e r s t a t e

80 ak = qa ( 1 , k ) ; %i n d e x o f c u r r e n t c h a n n e l ga in

a_k = a l p h a ( 1 , k ) ; %l i n e a r v a l u e o f c h a n n e l

hk = h_k ( 1 , k ) +1 ; %i n d e x o f c u r r e n t e ne rg y a r r i v a l s
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%c u r r e n t a c t i o n

e n _ a v a i l = b_k−x i ; %a v a i l a b l e e ne rg y

85 d a t a _ a v a i l = q_k ; %a v a i l a b l e da ta t o t r a n s m i t

i f e n _ a v a i l >0 %i f enough e ne rg y i n b a t t e r y

i f d a t a _ a v a i l >0 %i f da ta i n b u f f e r

t _ k = min ( d a t a _ a v a i l , min (TW∗ l og2 ( 1 + ( a_k ^2∗ ( e n _ a v a i l ) /K) ) , t_max ) ) ;

d_k = 0 ; %no s e n s i n g

90 e l s e

t _ k = 0 ; %no t r a n s m i s s i o n

d_k = min ( e n _ a v a i l ∗ be ta , d_max ) ;

end

e l s e

95 t _ k = 0 ;

d_k = 0 ;

end

t k = round ( t _ k / d e l t a _ d ) +1;

dk = round ( d_k / d e l t a _ d ) +1;

100

%f o l l o w i n g s t a t e and p a r a m e t e r s

f _ t i l d e _ k = f _ t i l d e ( tk , dk , ak ) ;

b_k = c o m p u t e _ b t i l d e _ v a l ( b_k , f _ t i l d e _ k , ( hk−1)∗ d e l t a , b_max , d e l t a ) ;

q_k = max ( d a t a _ a v a i l− t _ k + d_k , 0 ) ;

105 t x ( 1 , k ) = t _ k ; %t r a n s m i t t e d da ta a t s l o t k

end

re_3 = sum ( t x ( : ) ) / ( t ime∗ d e l t a _ d ) %n o r m a l i z e d reward
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