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1. Introduction to neural networks 
 

1.1 Introduction 
 

Research on neural networks has been motivated right from its inception by the recognition of the 

fact that the brain computes in an entirely different way from the conventional digital calculator. 

The brain is a highly complex, nonlinear, and parallel computer information processing system, that 

has the capability of organizing neurons so as to perform certain computation such as pattern 

recognition, perception or motor control, many times faster than a conventional computer. 

 

1.1.1 Biological model of a neuron 

 

Let us introduce the biological model of a neuron 

 
Fig. 1.1: Dendrites and synapses 

 
The nervous cells, known ase neurons, are the building blocks of the nervous system. 

A neuron is composed of a cell body and a large number of receptive zones, called dentrites, 

through which a neuron may receive electrical signals from other neurons. 

Moreover, each neuron has a fine extension, called axon, used to transmitt electrical signals to 

other cells (e.g. to dentrites of other neurons). 

The connection point between an axon terminal and a dentrite is called synapse. A synapse is a 

functional unit that mediates the interactions between neurons by enabling electrical trasmission 

through a chemical process in which neurotransmitter substances are liberated. 

If the electrical signal that excitates a neuron is sufficiently large compared with its inhibitory 

input, the neuron "activates" and it is able to send a spike of electrical activity down its axon 

towards other cells. 

 

A crucial property of the brain is its ability to learn, by modifying neurons connections according to 

experience aknowledged. 

Moreover, the brain has not a centralized control; in fact, different parts work together affecting 

each other to realize a specific task. 

 

All these brain features, suggested the evolution of models capable to emulate its behavior. 



1.1.2 Artificial neural networks 
 
An artificial neural network is a computational model that is inspired by the structure and 

functional aspects of biological neural networks. 

 

To reproduce artificially such a biological model, we introduce a network architecture in which 

informations processing units, referred to as artificial neurons, are richly interconnected by 

weighted connection lines, known as synapses, which are structures that mediates interaction 

between neurons. 

"Knowledge" is aquired by a network through a learning or training process in which connection 

strenghts, known as weights, are adjusted according to the input data examples and the relative 

outputs. 

A well trained neural network is able to perform tasks such as predicting an output value, 

classyfying an object, approximating a function and recognizing or completing a known pattern, 

and thus constitutes a valid mathematical instrument in many fields to face problems that classical 

approach cannot solve. 

 

1.1.3 Historical notes 

 

The modern era of neural networks is said to have begun with the pioneering work of McCulloch 

and Pitts. McCulloch was a psychiatrist and neuroanatomist who had spent some 20 years thinking 

about the representation of an event in the nervous system; he was joined in 1942 by Pitt , a 

brilliant mathematician, and togheter, in 1943, they wrote a fundamental paper, in which a logical 

calculus of neural network was described. 

Some 15 years after the publication of McCulloch and Pitt's classic paper, a new approach on the 

patter recognition problem was introduced by Rosenblatt in his work on the perceptron (1958). 

Roseblatt perceptron was a network with two layers of computational nodes and a single layer of 

interconnections. This model, however, was limited to the solution of linear problems whereas 

many problems in discrimination and analysis cannot be solved by a linear capability alone. 

The capabilities of neural networks were expanded from linear to non linear domains in 1974 by 

Werbos. These multilayered perceptrons were trained via gradient descents methods, and the 

original algorithm became known as "back-error propagation". 

The great computational potentialities of the multilayer perceptron were proved by Hornik, who 

showed how a network, with appropriate internal parameters, could approximate an arbitrary 

nonlinear function. Because classification tasks, prediction and decision support problems can be 

restated as function approximation problems, this discovery showed that neural networks have the 

potential for solving major problems in a wide range of application domains. 

Neural networks are nowadays used in many different fields: from military application to medical 

image analysis, from financial industry to medical decision systems. 

 

In this work, after a theoretical description of the neural networks models, we will focus on a 

diagnostical application. 

 

http://en.wikipedia.org/wiki/Computational_model
http://en.wikipedia.org/wiki/Biological_neural_network


1.2 Models of a neuron 
 

A neuron is an information-processing unit that is fundamental to the operation of a neural 

network. 

 

     Fig. 1.2:  model of a neuron 

 

We may indentify three basic elements of the neuron model: 

 

1. A set of synapses or connecting links, each of which is characterized by a wieght or strenght 

of its own. Specifically, a signal 𝑥𝑗 at the input of synapse j connected to neuron k is 

multiplied by the synaptic weight 𝑤𝑘𝑗. 

2. An adder for summing the input signals, weighted by the respective synapses of the 

neuron; the operations described here constitute a linear combiner. 

3. An activation function for limiting the amplitude of the output of a neuron. We can also 

refer to the activation function as a squashing function in that it squashes (limits) the 

permissible amplitude range of the output signal to some finite value. Typically, the 

normalized amplitude range of the output of a neuron is written as the closed interval 

[0,1]. 

 

The model shown in figure also includes an externally applied threshold 𝜃𝑘   that has the effect of 

lowering the net input of the activation function. 

In mathematical terms, we may describe a neuron k by writing the following pair of equations: 

uk = ∑ wkjxj

p

j=1

 

and 

yk= φ(uk − θk) 

where 

 𝑥1, 𝑥2, .., 𝑥𝑝  are the input signals; 

 𝑤𝑘1, 𝑤𝑘2, .., 𝑤𝑘𝑝  are the synaptic weights of neuron k; 



 𝑢𝑘 is the linear combiner output; 

  θ𝑘is the threshold; 

 φ(-) is the activation function; 

 𝑦𝑘 is the output signal of the neuron. 

 

 

 

The use of threshold  θk has the effect of applying an affine transformation to the output 𝑢𝑘 of the 

linear combiner of the model, as shown by 

  

      𝑣𝑘 = 𝑢𝑘 − θ𝑘 

 

In particular, depending on whether the threshold θk is positive or negative, the relationship 

between the effective internal activity level or activation potential 𝑣𝑘 of neuron k and the linear 

combiner output 𝑢𝑘 is modified in the manner illustrated in figure. 

Fig. 1.3: Transformation produced by the presence of a threshold 

 

The threshold θk is an external parameter of artificial neuron k. We may formulate equivalently the 

combination of the previous equations as follows: 

uk = ∑ wkjxj

p

j=0

 

and 

𝑦𝑘 = φ(𝑣𝑘) 

In the last equation we have added a new synapse, whose input is 

 

𝑥0 = −1 

 

 



and whose weight is 

 

𝑤𝑘0 = 𝜃𝑘 

 

We may therefore reformulate the model of neuron k as in the following figure. 

Fig. 1.4: another model of a neuron 

 

The effect of the threshold is represented by doing two things: 

 adding a new input signal fixed at −1, 

 adding a new synaptic weight equal to the threshold θk. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.2.1 Types of Activation Function 

 

The activation function denoted by φ(-), defines the output of a neuron in terms of the activity 

level at its input. We may identify three basic types of activation functions: 

 

1) Threshold Function 

   

Fig. 1.5: Threshold function 

 

 We have 

 

 Correspondingly, the output of neuron k employing such a threshold function is expressed  

 as 

  

 where vk is the internal activity level of the neuron; that is, 

 

 Such a neuron is referred to in the literature as the McCulloch-Pitts model (1943). In this 

 model, the output of a neuron takes on the value of 1 if the total internal activity level of 

 that neuron is nonnegative and 0 otherwise (all-or-none property). 

 

 

 

 

 



 

2) Piecewise-Linear Function 

 

Fig. 1.6: Piecewise-linear function 

 We have 

 

 where the amplification factor inside the linear region of operation is assumed to be unity. 

 This form of an activation function may be viewed as an approximation to a nonlinear 

 amplifier. 

 The following two situations may be viewed as special forms of the piecewise-linear 

 function: 

 

 A linear combiner arises if the linear region of operation is maintained without running into 

saturation. 

 The piecewise-linear function reduces to a threshold function if the amplification factor of 

the linear region is infinitely large. 

 

 

 

 

 

 

 

 

 

 

 

  



3)  Sigmoid Function 

Fig. 1.7: Sigmoid function  
  

 The sigmoid function is by far the most common form of activation function used in the  

 construction of artificial neural networks. It is defined as a strictly increasing function that 

 exhibits smoothness an asymptotic properties. 

 

 An exemple is the logistic function, defined by 

 

 where a is the slope parameter of the sigmoid function. 

 By varing the parameter a, we obtain sigmoid of different slopes. In fact, the slope at the 

 origin equals a/4. In the limit, as the slope parameter approaches infinity, the sigmoid 

 function becomes simply a threshold function. Whereas a threshold function assumes the 

 value of 0 or 1, a sigmoid function assumes a continuous range of values from 0 to 1. 

 

 It is sometimes desiderable to have the activation function range from −1to +1, 

 in which case the activation function assumes an antisymmetric form with respect to the 

 origin. 

 Specifically, the threshold function is redefined as 

 

 

 which is commonly referred to as the signum function. 

 For a sigmoid we may use the hyperbolic tangent function, defined by 

 



 

1.3 Neural network as directed graphs 
 

Signal-flow graphs with a well-defined set of rules were originally developed by Mason (1953, 

1956) for linear networks. The presence of nonlinearity in the model of a neuron, however, limits 

the scope of their aplication to neural networks, but they still provide a neat method for the 

portrayal of the flow of signals in a neural network. 

 

A signal-flow graph is a network of directed links (branches) that are interconnected at certain 

points called nodes: 

 A node j has an associated node signal xj. 

 A directed link originates at node j and terminates on node k; it has an associated transfer 

 function that specifies the manner in which the signal yk at node k depends on the signal xj 

 at node j. 

 

The flow of signals in the various parts of the graph is dictated by three basic rules: 

 

RULE 1. A signal flows along a link only in the direction defined by the arrow on the link. 

 

 Two different types of links may be distinguished: 

 

 Synaptic links, regulated by a linear input-output relation: the node signal xj is multiplied by 

the synaptic weight wkj to produce the node signal yk. 

 

 

 Activation links, regulated in general by a nonlinear input-output relation:  φ(-) is the 

nonlinear activation function. 

 

 

RULE 2. A node signal equals the algebraic sum of all signals entering the pertinent node via the 

incomnig links. 



 

 

RULE 3. The signal at a node is transmitted to each outgoing link originating from that node, with 

the transmission being entirely indipendent of the transfer functions of the outgoing links. 

 

Using these rules we may construct the signal-flow graph corresponding to the model of a neuron. 

 

 

We may now introduce a mathematical definition of a neural network, based on the signal-flow 

graph of the model of a neuron: 

 

A neural network is a directed graph consisting of nodes with interconnecting synaptic and 

activation links, characterized by four properties: 

 

1. Each neuron is represented by a set of linear synaptic links, an externally applied threshold, 

and a non linear activation link. The threshold is represented by a synaptic link with an 

input signal fixed at a value of−1. 

2. The synaptic links of a neuron weight their respective input signals. 

3. The weighted sum of the input signals defines the total internal activity level of the neuron 

in question. 

4. The activation link squashes the internal activity level of the neuron to produce an output 



that represents the state variable of the neuron. 

 

When the focus is restricted to signal flow from neuron to neuron, and not inside each neuron, we 

may use a reduced form of graph, which is characterized as it follows: 

 

1. Source nodes supply input signals to the graph. 

2. Each neuron is represented by a single node called a computation node. 

3. The communication links interconnecting the source and computation nodes carry no 

weight; they only provide direction of signal flow in the graph. 

 
Fig. 1.8: Architectural graph of a neuron  

 

A partially complete directed graph defined in this way is referred to as an architectural graph 

describing the layout of the neural network. 

 

1.4 Feedback 
 

Feedback, in a dynamic system, is a process in which the output of an element in the system 

influences in part the input applied to that particular element. 

It plays a major role in the study of a special class of neural networks known as recurrent networks. 

Fig. 1.9: Single-loop feedback system 

 

The figure above shows the signal flow graph of a single-loop feedback system, where the input 

signal xj(n), internal signal x'j(n), and output signal yk(n) are functions of the discrete-time variable 

n. The system is assumed to be linear, consisting of a forward channel and a feedback channel that 

are characterized by the operators A and B, respectively. In particular, the output of the forward 

channel determines in part its own output throught the feedback channel. 

 

 

 



We can now state the following input-output relationships: 

 

 𝑦𝑘(𝑛) = 𝐴[𝑥𝑗
′(𝑛)] 

 

𝑥𝑗
′(𝑛) = 𝑥𝑗(𝑛) + 𝐵[𝑦𝑘(𝑛)] 

 

from the previous equations, eliminating 𝑥𝑗
′(𝑛): 

 

𝑦𝑘(𝑛) = [𝑥𝑗(𝑛)] 

 

where 𝐴/1 − 𝐴𝐵 is referred to as the closed-loop operator of the system, and to 𝐴𝐵 as the open-

loop operator. 

 

For example, we consider the single-loop feedback system shown in figure,  where A is a fixed 

weight w, B is a unit-delay operator 𝑧−1, whose output is delayed with respect to the input by one 

time unit. 

Fig. 1.10: Single-loop feedback system 

 

We may then express the closed-loop operator of the system as 

 

𝐴

1 − 𝐴𝐵
=

𝑤

1 − 𝑤𝑧−1
= 𝑤(1 − 𝑤𝑧−1)−1 

 

Using the binomial expansion for (1 − 𝑤𝑧−1)−1, and subsituting eq.X in Y we get 

𝑦𝑘(𝑛) = 𝑤 ∑ 𝑤𝑙𝑧−𝑙

∞

𝑙=0

[𝑥𝑗(𝑛)] 

From the definition of 𝑧−1 we have 

𝑧−𝑙 = 𝑥𝑗(𝑛 − 𝑙) 

 

where 𝑥𝑗(𝑛 − 𝑙) is a sample of the input signal delayed by 𝑙 time units. 

According to this, we may express the output signal 𝑦𝑘(𝑛) as an infinite weighted summation of 

present and past samples of the input signal 𝑥𝑗(𝑛): 

 

𝑦𝑘(𝑛) = ∑ 𝑤𝑙+1

∞

𝑙=0

𝑥𝑗(𝑛 − 𝑙) 

 

Finally, we may distinguish two specific cases, depending on the value of the weight w, which 



influences the dynamic behavior of the system: 

 

 1. |𝑤| < 1: the signal 𝑦𝑘(𝑛) is exponentially convergent, and we state that the system is 

 stable. (FIG a) 

 2. |𝑤| ≥ 1: the output 𝑦𝑘(𝑛) is divergent, and the system is unstable. If |𝑤| = 1 the 

 divergence is linear, if |𝑤| > 1 the divergence is exponential. (FIG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.5 Network architectures 
 

1) Single-Layer Feedforward Networks 

Fig. 1.12: Single-layer feedforward network 

 

A layered neural network is a network of neurons organized in the form of layers. 

In its simplest form we have an input layer of source nodes that projects onto an output layer of 

neurons (computation nodes), but not vice versa. So we may say that this network is strictly of a 

feedforward type. 

The designation "single layer" refers to the output layer, because we do not count the input layer 

since no computation is performed there. 

A linear associative memory is an example of a single-layer network, where an output pattern 

(vector) is associated to an input pattern (vector), and information is stored in the network by 

virtue of modifications made to the synaptic weights. 

 

2) Multilayer Feedforward Networks 

 

This class of feedforward networks distinguishes itself by the presence of one or more hidden 

layers, whose computation nodes are correspondingly called hidden neurons or hidden units; 

their function consists in intervening between the external input and the network output. 

Typically, the neurons in each layer of the network have as their inputs the output signals of the 

preceding layer only. The set of output signals of the neurons in the final layer constitutes the 

overall response of the network to the activation pattern supplied by the source nodes in the first 

layer. 



Fig. 1.13: Fully connected feedforward network with one hidden layer 

 

The architectural graph of the figure illustrates the layout of a multilayer feedforward network for 

the case of a single hidden layer. This network is referred to as a 10-4-2 network in that it has 10 

source nodes, 4 hidden neurons, and 2 output neurons. 

This neural network is also said to be fully connected in the sense that every node in each layer of 

the network is connected to every other node  in the adjacent forward layer. If, however, some of 

the communications links are missing we say that the network is partially connected . 

A form of partially connected network of particular interest is a locally connected network. 

 

 

 
Fig. 1.14: Partially connected feedforward network 

 



Each neuron in the hidden layer is connected to a partial set of source nodes that lies in its 

immediate neighborhood; such a set of localized nodes is said to constitute the receptive field of 

the neuron. Similarly, each node in the output layer is connected to a local set of hidden neurons. 

This network has the same nodes of the previous one, but we may say that it has a specialized 

structure, in which each hidden neuron responds essentially to local variations of the source signal. 

 

3) Recurrent Networks 

 

A recurrent neural network is a feedforward network that has at least one feedback loop. 

 

Fig. 1.15: Recurrent network with hidden neurons 

 

For example (see figure ), we consider a recurrent network consisting of two layers of neurons. 

In this structure there are feedback and self-feedback loops, originated from the hidden neurons; 

those feedback connections have a strong impact on the learning capability of the network, and on 

its performance. 

Moreover, we notice the use of unit-delay elements (denoted by 𝑧−1), with a nonlinear dynamical 

behavior. 

 

 

 

 

 

 

 

 

 

 



2. Learning process 
 

One of the most interesting properties of a neural network is its ability of  learning from its 

environment, and improving its performance throught learning. This improvement is realized(?) 

throught an iterative process of adjustement applied to its synaptic weights and thresholds. 

 

A correct definition of  learning in the field of neural networks may be: 

 

Learning is a process by which the free parameters of a neural network are adapted throught a 

continuing process of stimulation by the environment in which the network is embedded. The type 

of learning is determined by the manner in which the parameter changes take place. 

 

According to this definition, a learning process follows this sequence of events: 

 

1. The environment stimulates the neural network. 

2. The neural network undergoes changes as a result of this stimulation. 

3. The neural network responds in a new different way to the environment, because of the 

changes that have occurred in its internal structure. 

 

Fig. 2.1: A pair of neurons imbedded in a neural network 

 

To be more specific, consider the situation depicted in the figure, which represents a pair of node 

signals 𝑥𝑗 and 𝑣𝑘connected by a synaptic weight 𝑤𝑘𝑗. 

Signals 𝑥𝑗 and 𝑣𝑘 play the role respectively of the output of neuron j and of the internal activity of 

neuron k, and in this context they are commonly referred to as presynaptic and postsynaptic 

activities. 

Let 𝑤𝑘𝑗(𝑛) be the value of the synaptic weight 𝑤𝑘𝑗 at time n; at time n an adjustement  𝛥𝑤𝑘𝑗(𝑛) is 

applied to the synaptic weight, yielding the updated value  𝑤𝑘𝑗(𝑛 + 1). 

Considering 𝑤𝑘𝑗(𝑛)  and 𝑤𝑘𝑗(𝑛 + 1) as the old and new values of the synaptic weight 𝑤𝑘𝑗, 

respectively, we may write: 

𝑤𝑘𝑗(𝑛 + 1) = 𝑤𝑘𝑗(𝑛) + 𝛥𝑤𝑘𝑗(𝑛) (2.1) 

 

The equation sums up the overall effect of events 1 and 2 of the definition presented above: 

 



 The adjustement 𝛥𝑤𝑘𝑗(𝑛) is calculated as a result of stimulation by the environment (event 

1). 

 The updated value 𝑤𝑘𝑗(𝑛 + 1)  defines the change made in the network as a result of this 

stimulation (event 2). 

 

The third event corresponds to the reevaluation of the new network's response, when operating 

with the updated set of parameters {𝑤𝑘𝑗(𝑛 + 1)}. 

 

2.1 Inside a learning process 
 

Before we study learning processes, we have to make a foundamental distintcion between learning 

algorithms and paradigms.  

 

A learning algorithm (rule) is a prescribed set of well defined rules for the solution of a learning 

problem. There are several learning algorithms, each of which offers advantages of its own. They 

essentially differ from each other in the way in which the adjustement 𝛥𝑤𝑘𝑗 is formulated. 

However, another important factor to be cosidered is the way in which a learning machine (a 

neural network) relates to its environment: in this context we speak of a learning paradigm, 

referring to a model of the environment in which the neural network operates. 

 

Now we will make an example of a learning rule and  a learning paradigm that will be useful in 

future, when considering the back-propagation algorithm for multilayer perceptrons. 

 

2.2 An example of learning process algorithm: Error-Correction learning 

 

Consider a neuron k at time n and let 𝑑𝑘(𝑛) denote some desired response for it. Let the 

corrisponding value of the actual response of this neuron be denoted by 𝑦𝑘(𝑛), this response is 

produced by a stimulus (vector) 𝒙(𝑛) applied to the input of the network in which neuron k is 

embedded. 

 

Typically, the actual response 𝑦𝑘(𝑛) of neuron k differs from the desired response 𝑑𝑘(𝑛). Hence, 

we may define an error signal as the difference between the target response and the actual 

response: 

 

𝑒𝑘(𝑛) = 𝑑𝑘(𝑛) − 𝑦𝑘(𝑛) (2.2) 



 

Error-correction learning may be considered as an optimization problem, with the aim of 

minimizing a cost function, based on the error signal 𝑒𝑘(𝑛). 

A commonly used criterion for the cost function is the mean-square-error criterion, defined as the 

mean-square value of the sum of squared errors: 

 

𝐽 = 𝐸 [
1

2
∑ 𝑒𝑘

2(𝑛)

𝑘

] (2.3) 

 

where E is the statistical expectation operator, and the summation is over all the neurons in the 

output layer of the network. Note that the factor ½ is used so as to simplify subsequent derivations 

resulting from the minimization of J with respect to free parameters of the network; moreover, we 

assume that the underlying processes are wide-sense stationary. 

 

However, this optimization procedure requires knowledge of the statistical characteristics of the 

processes, and we try to overcome this practical difficulty by settling for an approximate solution 

to the optimization problem. 

To realize this intention we use the istantaneous value of the sum of squared errors as the criterion 

of interest: 

ξ(𝑛) =
1

2
∑ 𝑒𝑘

2(𝑛)

𝑘

(2.4) 

 

We may thus optimize the network by minimizing ξ(𝑛) with respect to the synaptic weights. 

According to the error-correction learning rule, the adjustement 𝛥𝑤𝑘𝑗(𝑛)) is now given by: 

 

𝛥𝑤𝑘𝑗(𝑛) = 𝜂𝑒𝑘(𝑛)𝑥𝑗(𝑛)(2.5) 

 

where η is a positive constant that determines the rate of learning. 

 

The three equations (2.1), (2.2), (2.5), are represented in the signal flow graph below: 

 

Fig. 2.2: Signal-flow graph of error-correction learning 

 

Error signal 𝑒𝑘(𝑛), computed from eq. (2.2), is used to get the correction 𝛥𝑤𝑘𝑗(𝑛) applied to the 

synaptic weight 𝑤𝑘𝑗 of neuron k (eq. (2.5)). Finally, throught eq. (2.1) we compute the new 



updated value 𝑤𝑘𝑗(𝑛 + 1) of the synaptic weight considered. 

Furthermore the graph includes a storage element represented by the unit-delay operator 𝑧−1: 

 

𝑧−1[𝑤𝑘𝑗(𝑛 + 1)] = 𝑤𝑘𝑗(𝑛)  (2.6) 

 

and also the representation of the equations of the model of a neuron k 

 

𝑣𝑘(𝑛) = ∑ 𝑥𝑗(𝑛)𝑤𝑘𝑗(𝑛)

𝑗

 (2.7) 

 

𝑦𝑘(𝑛) = 𝜑(𝑣𝑘(𝑛)) (2.8) 

 

The learning-rate parameter 𝜂 plays a major role: its value has to be chosen very carefully, since 

the stability of the whole process depends on it. 

In fact, stated that error-correction learning behaves like a closed feedback system, 𝜂 has a 

profound impact on the performace of the process, affecting both the the rate of convergence of 

learning and the convergence itself: 

 

 if 𝜂 is small, the learning process proceeds smoothly, but it may take a long time for the 

system to converge to a stable solution; 

 if 𝜂 is large, the rate of learning is accelerated, but there is a danger that the learning 

process may deverge and the system therefore becomes unstable. 

 

We may visualize the cost function J as a multidimensional surface referred to as an error-

performance surface. 

The objective of error-correction learning algorithm is to start from a point on the surface, 

determined by the initial values of the synaptic weights, and then, step-by-step, move toward a 

point of global minimum. 

 

2.3 An example of learning process paradigm: Supervised learning 

 

The main resource of supervised or active learning is the presence of an external teacher, which 

has the knowledge of the environment, in terms of input-output examples. The environment, 

however, is unknown to the neural network of interest. 



We define as desired or target response of the network, the response provided by the teacher 

corrisponding to a training vector drawn from the environment. Indeed, the desired response 

represents the optimum action to be performed by the network. 

We define as error signal, the difference between the actual response of the network and the 

desired one.  

The network parameters are adjusted under the action of the training vector and the error signal, 

with the aim of making the neural network emulating the teacher. This form of supervised learning 

is indeed the error-correction learning considered previously. 

As a misure of the performance of the system, we may think in terms of the mean-squared error 

defined as a function of the free parameters of the network and this function may be visualized as 

an error surface, with the free parameters as coordinates. The true error surface is averaged over 

all possible input-output examples. 

For such a system, the operating point moves torward a point of local or global minimum, to get 

the best performance over time and therefore learn from the teacher. 

A foundamental element to reach this aim is the information carried by the gradient of the error 

surface; the gradient is a vector that points in the direction of steepest descendent, and the 

extimation of its istantaneous value is used by the system in the case of supervised learnig from 

examples.  

 

2.4 Procedure to set network parameters and performance 
 

We presented as a foundamental task for a neural network its ability to learn a model of the world 

in which is embedded.  

 

Knowledge about the environment in interest is given by a set of examples, consisting of input-

output pairs: an input signal and the corrisponding desired response of the neural network. 

These data examples are then dived in three sets: 

 the training set 

 the validation or testing set 

 the verification set 

 

The training procedure consists firstly of a preliminary design of an appropriate architecture for the 

neural network, followed by a phase in which the training set is used for the adjustement of 

weights by means of a learning algorithm. 

Secondly, the validation data set is used to decide when to stop the training, so as to avoid the so 

called "overtraining", which could make the network unable to identify new data belonging to the 

same classes of the training examples. 

Finally, the recognition performance of the trained network is tested with data that has never been 

seen before: the verification set. The results on the verification set can be considered a true 

prediction of the neural network response on new data and the performance of the network on 

these data provides a proper benchmark evaluation metric for its performance as a predictor or 

classifier. 



3. The Perceptron 
 

The perceptron is the simplest form of a neural network used for the classification of a special type 

of patterns said to be linearly separable.  

Basically, such a network consists of a single neuron with adjustable synaptic weigths and 

thresholds. 

 Fig. 3.1: Single-layer perceptron 

 

The first developer of an algorithm used to set this free parameters was Rosenblatt in 1958, who 

proved that if the vectors used to train the perceptron are chosen from two linearly separable 

classes, then the perceptron algorithm converges and positions the decision surface in the form of 

a hyperplane between the two classes. 

 

As said before the perceptron is used to perform pattern classification; the number of classes that 

can be classified depends on the fact that the output layer includes one or more than one neuron. 

 

We initially consider a single-layer perceptron with a single neuron. 

 

Recalling the McCulloch-Pitts model of a neuron, consisting of a linear combiner followed by a hard 

limiter, we may write the linear combiner output (i.e. hard limiter input) as: 

 

𝑣 = ∑ 𝑤𝑖𝑥𝑖 − 𝜃

𝑝

𝑖=1

 

 

Fig. 3.2: Signal-flow graph of the perceptron 

 

 



The purpose of the perceptron is to classify the set of externally applied stimuli 𝑥1, 𝑥2, .., 𝑥𝑝 into 

one of the two classes 𝐶1 or 𝐶2. The decision rule for the classification is to assign the point 

represented by the inputs 𝑥1, 𝑥2, .., 𝑥𝑝 to class 𝐶1if the perceptron output y is +1 and to class 𝐶2 if 

it is -1. 

 

The p input variables 𝑥1, 𝑥2, .., 𝑥𝑝 span a p-dimensional signal space, in which it is customary to 

represent a map of the decision regions. 

In we consider an elementary perceptron, there are two decision regions separated by a 

hyperplane defined by the equation: 

 

∑ 𝑤𝑖𝑥𝑖 − 𝜃

𝑝

𝑖=1

= 0 

 

Fig. 3.3: Linear reparability for a two dimensional, two-class pattern-classification problem 

 

The example in Fig.(3.3)  shows the case of two input variables x1 and x2. 

We assign to class  𝐶1 and  𝐶2 all the points (𝑥1𝑥2) that lie respectively above and below the 

boundary line. 

The synaptic weights 𝑤1, 𝑤2, .., 𝑤𝑝  can be fixed or adapted on an iteration-by-iteration basis. 

For the adaptation we may use an error-correction rule known as the perceptron convergence 

algorithm. 

 

 

 



4. Multilayer Perceptrons 
 

Multilayer perceptrons (MLPs), represent a generalization of the single-layer perceptron 

considered before. We refer to them as a class of multilayer feedforward networks,  consisting of a 

cascade of a set of sensory units (source nodes) that constitute  the input layer, one or more 

hidden layers of computation nodes, and an output layer of computation nodes. 

Fig. 4.1: Multilayer perceptron with two hidden layers 

 

The main distinctive characteristics of a multilayer perceptron are: 

 

1.  Each neuron in the network is modelized at the output as including a nonlinearity. 

It is important to notice that this nonlinarity is smooth (i.e. differentiable everywhere), 

differently from the hard-limiting used in Rosenblatt's model. 

A function that satisfies nonlinearity in the form of sigmoidal nonlinearity is the logistic 

function: 

𝑦𝑗 =
1

1 + 𝑒−𝑣𝑗
 

 

where 𝑣𝑗  is the net internal activity level of neuron j, and 𝑦𝑗 is the output of the neuron. 

Nonlinarity is foundamental, because, otherwise, the input-output relation of the network 

could be reduced to that of a single layer perceptron. 

Moreover, the use of this function is biologically motivated, since it attempts to account 

for the refractory phase of real neurons. 

2. The network contains layers of hidden neurons, that enable to learn complex tasks by 

extracting progressively more meaningful features from the vectors in input. 

3. The network has a high degree of connectivity, determined by the synapses. 

 

All this elements together with the training ability of a multilayer perceptron, contribute to his 

computing power. 



However, the presence of forms of nonlinearity,  the high connectivity of the network and the 

presence of hidden layers make the theoretical analysis of such a network harder to undertake. 

Moreover, the learning process gets more difficult because the search has to be conducted in a 

much larger space of possible functions. 

 

The succes of multilayer perceptrons is due to their capability of solving difficult and diverse 

problems by training them in a supervised manner with an algorithm, based on the error-

correction learning rule, known as the error back-propagation algorithm. The learning process 

performed with the algorithm is called back-propagation learning. 

 

4.1 Back-Propagation Algorithm 
 

First of all, we identify two kinds of signals used in multilayer perceptrons: 

 

 Function signals. We refer to a function signal as an input signal (stimulus), that comes in at 

the input end of the network, propagates forward neuron-by-neuron, and emerges at the 

output end of the network as an output signal. 

Such a signal is a "function signal" in the sense that it provides a useful function at the 

output, and that it is calculated as a function of the inputs and associated weigths at each 

neuron of the network through which it passes. 

 Error signals. This kind of signal originates at the output end of a neuron and propagates 

backward, layer-by-layer,  through the network; it is foundamental to notice that its 

computation by every neuron involves an error-dependent function. 

 

Fig. 4.2: Directions of two basic signal flows in a multilayer perceptron 

 

Furthermore, neurons from hidden or output layers are designed to perform two computations: 

 

1. The computation of the function signal at the output of a neuron, which is expressed as a 

continuous nonlinear function of the input signals and synaptic weight associated with that 

neuron 

2. The computation of an istantaneous estimate of the gradient vector, which is needed for 

the backward pass through the network 

 



 

 

Before we derive the back-propagation algorithm, let us introduce the following notation: 

 

ξ(𝑛): istantaneous sum of error sqares at iteration n 

𝑑𝑗(𝑛): desired response for neuron j 

𝑒𝑗(𝑛): error signal at the output for neuron j for iteration n 

𝑦𝑗(𝑛): function signal at the output of neuron j 

𝑤𝑗𝑖(𝑛): synaptic weight connecting the output of neuron i to the input of neuron j at iteration n 

𝛥𝑤𝑗𝑖(𝑛): correction applied to the previous weight 

𝑣𝑗(𝑛): net internal activity level of neuron j; it constitutes the signal applied to the nonlinearity 

associated with neuron j 

 

Also, in order to account for the bias weight we define the 0-th component of the input vector to 

each layer to be equal to 1; that is 𝑢𝑙,0 = 1 (𝑤𝑙,𝑗,0 are the bias weights). 

 

4.1.1 Derivation of the Back-Propagation Algorithm 

 

The error signal at the output of neuron j at n-th iteration is defined by: 

 

𝑒𝑗(𝑛) =  𝑑𝑗(𝑛) − 𝑦𝑗(𝑛),       neuron j is an output node (4.1)               

 

The istantaneous sum of squared errors of the network is: 

 

ξ(𝑛) =
1

2
∑ 𝑒𝑗

2(𝑛)(4.2)𝑗∈𝐶  

 

where the istantaneous value of the squared error for neuron j is defined as  
1

2
𝑒𝑗

2(𝑛), and C is the 

set that includes all the neurons in the output layer. 

Let N denote the total number of patterns in the training set. We define the average squared error 

as the summation of ξ(𝑛) over all n and then normalizing with respect to the set size N: 

 

ξ𝑎𝑣 =
1

𝑁
∑ ξ(𝑛)

𝑁

𝑛=1

 (4.3) 

 

For a given training set, ξ𝑎𝑣  represents the cost function as the measure of training set learning 

performance. The objective of the learning process is to adjust the free parameters so as to 

minimize it. To do so, we use a simple method of training in which the weights are updated on a 

pattern-by-pattern basis. The adjustements to the weights are made in accordance with the 

respective errors computed for each pattern presented to the network. 

The arithmetic average of these individual weights changes over the training set is therefore an 

estimate of the true change that would result from modifying the weights based on minimizing the 



cost function ξ𝑎𝑣  over the training set. 

 

 

Fig. 4.3: Details of output neuron j 

 

Let us consider the situation depicted in fig (4.3), where neuron j is fed by a set of function signals 

coming from a layer to his left. 

The net internal activity level 𝑣𝑗(𝑛) at the input of the nonlinearity associated with neuron j is 

therefore given by: 

𝑣𝑗(𝑛) = ∑ 𝑤𝑖𝑗(𝑛)𝑦𝑖(𝑛)(4.4)

𝑝

𝑖=0

 

where p is the total number of inputs applied to neuron j. 

The synaptic weight 𝑤𝑗0 (corresponding to the fixed input 𝑦0 = −1) equals the threshold 𝜃𝑗  

applied to neuron j. Hence the function signal appearing at the output of neuron j at iteration n is 

 

𝑦𝑗(𝑛) = 𝜑 (𝑣𝑗(𝑛)) (4.5) 

 

Now the algorithm applies a correction 𝛥𝑤𝑗𝑖(𝑛) to the synaptic weight 𝑤𝑗𝑖(𝑛), which is 

proportional to the istantaneous gradient 𝛿𝜉(𝑛) 𝛿𝑤𝑗𝑖(𝑛)⁄ . According to the chain rule, we may 

express this gradient as follows: 

 

𝛿𝜉(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
=

𝛿𝜉(𝑛)

𝛿𝑒𝑗(𝑛)

𝛿𝑒𝑗(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑣𝑗(𝑛)

𝛿𝑣𝑗(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
 (4.6) 

 

This gradient represents a sensivity factor, determining the direction of search in weight space for 

the synaptic weight wji. 

 

Differentiating both sides of Eq.(4.2) with respect to 𝑒𝑗(𝑛), we get 

 



𝛿𝜉(𝑛)

𝛿𝑒𝑗(𝑛)
= 𝑒𝑗(𝑛)(4.7) 

 

Differentiating both sides of Eq.(4.1) with respect to 𝑦𝑗(𝑛), we get 

 

𝛿𝑒𝑗(𝑛)

𝛿𝑦𝑗(𝑛)
= −1 (4.8) 

 

Next, differentiating both sides of Eq.(4.5) with respect to 𝑣𝑗(𝑛), we get 

𝛿𝑦𝑗(𝑛)

𝛿𝑣𝑗(𝑛)
= 𝜑𝑗

′ (𝑣𝑗(𝑛)) (4.9) 

 

Finally, differentiating Eq. (4.4) with respect to 𝑤𝑗𝑖(𝑛) yields 

 

𝛿𝑣𝑗(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
= 𝑦𝑖(𝑛)(4.10) 

 

Hence, the use of Eqs. (4.7) to (4.10) in (4.6) yields 

 

𝛿𝜉(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
= −𝑒𝑗(𝑛)𝜑𝑗

′ (𝑣𝑗(𝑛)) 𝑦𝑖(𝑛) (4.11) 

 

The correction 𝛥𝑤𝑗𝑖(𝑛) applied to 𝑤𝑗𝑖  is defined by the delta rule 

 

𝛥𝑤𝑗𝑖(𝑛) = −𝜂
𝛿𝜉(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
 (4.12) 

 

where 𝜂 is a constant that determines the rate of learning: learning-rate parameter. 

The use of the minus sign in Eq. (4.12) accounts for gradient descent in weight space. 

Accordingly, the use of Eq. (4.11) in (4.12) yields  

 

𝛥𝑤𝑗𝑖(𝑛) = 𝜂𝛿𝑗(𝑛)𝑦𝑖(𝑛) (4.13) 

 

where the local gradient is itself defined by 

 

𝛿𝑗(𝑛) = −
𝛿𝜉(𝑛)

𝛿𝑒𝑗(𝑛)

𝛿𝑒𝑗(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑣𝑗(𝑛)
= 𝑒𝑗(𝑛)𝜑𝑗

′ (𝑣𝑗(𝑛)) (4.14) 

 

From the last two equations we note that a key factor involved in the weight adjustement 𝛥𝑤𝑗𝑖(𝑛) 

is the error 𝑒𝑗(𝑛) at the output of neuron j. 

We have to distinguish between two cases, depending on where in the network neuron j is 

located. 



 

1. Neuron j is an output node 

 

We know that each output node of the network is supplied with a desired response of its 

own. Hence we may use Eq. (4.1) to compute the error signal ej associated with this 

neuron. 

Now, by using Eq. (4.14), we can easily compute the local gradient 𝛿𝑗(𝑛). 

 

2. Neuron j is a hidden node 

 

In this case, we have no specified desired response for that neuron. Accordingly, the error 

signal for a hidden neuron would have to be determinated recursively in terms of the error 

signals of all the neurons to which that hidden neuron is directly connected. 

 

 
Fig. 4.4: Details of output neuron k connected to hidden neuron j 

 

 

Let us consider the situation of Fig. (4.4): neuron j is a hidden node of the network. 

We may define the local gradient delta for hidden neuron j as 

 

𝛿𝑗(𝑛) = −
𝛿𝜉(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑣𝑗(𝑛)
= −

𝛿𝜉(𝑛)

𝛿𝑦𝑗(𝑛)
𝜑𝑗

′ (𝑣𝑗(𝑛))  (4.15) 

 

We have to calculate the partial derivate 𝛿𝜉(𝑛) 𝛿𝑦𝑗(𝑛)⁄  

First of all we see that  

 

𝜉(𝑛) =
1

2
∑ 𝑒𝑘

2(𝑛)(4.16)

𝑘∈𝐶

 

 

In any event, differentiating Eq. (4.16) with respect to the function signal𝑦𝑗(𝑛), we get 

 



𝛿𝜉(𝑛)

𝛿𝑦𝑗(𝑛)
= ∑ 𝑒𝑘

𝛿𝑒𝑘(𝑛)

𝛿𝑦𝑗(𝑛)
(4.17)

𝑘

 

 

Next, by using the chain rule for the partial derivate𝛿𝑒𝑘(𝑛) 𝛿𝑦𝑗(𝑛)⁄  we can rewrite Eq. 17 

in the equivalent form 

 

𝛿𝜉(𝑛)

𝛿𝑦𝑗(𝑛)
= ∑ 𝑒𝑘(𝑛)

𝛿𝑒𝑘(𝑛)

𝛿𝑣𝑘(𝑛)

𝛿𝑣𝑘(𝑛)

𝛿𝑦𝑗(𝑛)
(4.18)

𝑘

 

 

However, from Fig. 4 we note that  

 

𝑒𝑘(𝑛) = 𝑑𝑘(𝑛) − 𝑦𝑘(𝑛) = 𝑑𝑘(𝑛) − 𝜑𝑘(𝑣𝑘(𝑛)) (4.19) 

Hence 

 

𝛿𝑒𝑘(𝑛)

𝛿𝑣𝑘(𝑛)
= −𝜑𝑗

′(𝑣𝑘(𝑛))  (4.20) 

 

We also note that for neuron k, the net internal activity level is  

 

𝑣𝑘(𝑛) = ∑ 𝑤𝑘𝑗(𝑛)𝑦𝑗(𝑛)

𝑞

𝑗=0

 (4.21) 

 

where q is the total number of inputs applied to neuron k. 

Here again, the synaptic weight 𝑤𝑘0 is equal to the threshold θ applied to the neuron k, and 

the corrisponding input 𝑦0 is fixed at the value -1. 

In any event, differentiating Eq. (4.21) with respect to 𝑦𝑗(𝑛) yields 

 

𝛿𝑣𝑘(𝑛)

𝛿𝑦𝑗(𝑛)
= 𝑤𝑘𝑗(𝑛) (4.22) 

 

Thus, using Eq. (4.20) and (4.22) in (4.18), we get the desired partial derivate 

 

𝛿𝜉(𝑛)

𝛿𝑦𝑗(𝑛)
= − ∑ 𝑒𝑘(𝑛)𝜑𝑘

′ (𝑣𝑘(𝑛))𝑤𝑘𝑗(𝑛) = − ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)

𝑘

 (4.23)

𝑘

 

 

where we have used Eq. (4.14). 

 

Finally, using Eq. (4.23) in (4.15), we get the local gradient 𝛿𝑗(𝑛) for hidden neuron j, after 

rearranging terms, as follows: 

 



𝛿𝑗(𝑛) = 𝜑𝑗
′ (𝑣𝑗(𝑛)) ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛) (4.24)

𝑘

 

 

The factor 𝜑𝑗
′ (𝑣𝑗(𝑛)) involved in the computation of the local gradient 𝛿𝑗(𝑛) in Eq. (4.24) 

depends only on the activation function associated with hidden neuron j. 

The first set of terms in the summation over k, the 𝛿𝑘(𝑛), requires knowledge of the error 

signals 𝑒𝑘(𝑛), for all those neurons that lie in the layer to the immediate right of hidden 

neuron j. 

The second set of terms, the 𝑤𝑘𝑗(𝑛), consists of the synaptic weights associated with these 

connections. 

 

The main relationship descending from the back-propagation algorithm are: 

 

 The correction 𝛥𝑤𝑗𝑖(𝑛) applied to the synaptic weight connecting neuron i to neuron j is 

defined by the delta rule 

 

(

𝑊𝑒𝑖𝑔ℎ𝑡
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝛥𝑤𝑗𝑖(𝑛)
) = (

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
𝑟𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝜂
) (

𝑙𝑜𝑐𝑎𝑙
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝛿𝑗(𝑛)
) (

𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙
𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗

𝑦𝑖(𝑛)
) 

 

 The local gradient delta depends on whether neuron j is an output or an hidden node: 

 If neuron j is an output node, 𝛿𝑗(𝑛) equals the product of the derivative φ and the 

error signal 𝑒𝑗(𝑛). 

 If neuron j is a hidden node, 𝛿𝑗(𝑛) equals the product of the associated derivative di 

and the weighted sum of the 𝛿 's computed for the neurons in the next hidden or 

output layer that are connected to neuron j.  

 

4.1.2 Momentum 

 

Let us consider the learning-rate parameter eta and the trajectory in wieght space computed by 

the method of steepest descendet, approximated by the back propagation algorithm. 

The smaller we make eta, the smaller will the changes to the synaptic weights be and the 

smoother will be the trajectory in weight space. In this case, however, we will have to pay the cost 

of a slower learning rate. 

On the other hand, if we increase the value of eta, the changes on the weights may bring the 

network to an instability status. 

To avoid the danger of instability we may modify the delta rule by introducing a momentum term: 

 

𝛥𝑤𝑗𝑖(𝑛) = α𝛥𝑤𝑗𝑖(𝑛 − 1) + 𝜂𝛿𝑗(𝑛)𝑦𝑗(𝑛)  (4.35) 

 

where a is number that takes values in the range [0,1] called the momentum constant. 

 



Solving(4.35) for 𝛥𝑤𝑗𝑖(𝑛) and substituting (4.11) and (4.14) we may rewrite it in the equivalent 

form: 

 

𝛥𝑤𝑗𝑖(𝑛) = −𝜂 ∑ α𝑛−𝑡
𝛿𝜉(𝑡)

𝛿𝑤𝑗𝑖(𝑡)

𝑛

𝑡=0

  (4.36) 

 

 

Considering the Eq. (4.36), we may make the following considerations: 

 

1. When the partial derivate de/dw has the same algebraic sign on consecutive iterations, Dw 

grows in magnitude, and so the weight w is adjusted by a large amount. Hence the 

inclusion of momentum in the back-propagation algorithm tends to accelerate descent in 

steady downhill directions. 

2. When the partial derivate de/dw has opposite signs on consecutive iterations, Dw shrinks 

in magnitude, and so the weight w is adjusted by a small amount. Hence the inclusion of 

momentum has a stabilizing effect in directions that oscillates in sign. 

 

The introduction of the momentum terms, enable the algorithm to get in gradient descent 

direction faster, avoiding oscillations due to the change of the sign. 

 

4.2 MLP functional capabilities 

 

The capabilities of the multilayer perceptron can be wiewed from three different perspectives: 

 

 The possibility to implement Boolean logic functions 

 The ability to implement non linear transformations for functional approximations 

problems 

 The capability to partition the pattern space for classification problems 

 

We will focus mainly on the last point giving an example of an application for medical decision. 

 

 

 

 

 

 

 

 

 

 

 

 



5. Neural networks as medical decision support 
 

Medical decision support with neural networks is a field exposed to a constant accelerating 

evolution and this fact is proved by the growing interest in the medical literature, during the last 

years. 

 

Neural networks can play a key role in this field as they are effective at multifactorial analysis. 

To be more specific, many medical decisions are made in situations in which multiple factors must 

be weighted, and these mathematical tools provide an efficent manner to manage them. 

 

The rapid development of this kind of "smart computing" is mainly due to three factors 

 ever-increasing mediacal databases 

 the proliferation of new medical markers 

 the accumulation of experience by responsible neural network experts 

 

An important application of neural netwoks as medical decision support is their use for prognostic 

and diagnostic classification, since these computational supports can foresee the exit of a medical 

operation or the progress of a diseas in an automatic and quite accurate manner. 

 

5.1 Neural networks for risk stratification following uncomplicated 

myocardial infarction 
 

We want now to focus on a practical application of neural networks in medical decision support 

systems, by presenting an example of artificial neural network for risk stratification following 

uncomplicated myocardial infarction 

 

We refer to a study about clinical risk stratification on a population of 496 patients recovering from 

acute myocardial infarction. 

 

Fig. 5.1: Characteristics of the study population 

 

This population, whose clinical characteristics are reported in Table (5.1), had been selected on the 

basis of different parameters and all patients had undergone exercise elecrtocardiography and 



pharmacological stress echocardiography in random order within 14 days of the acute event off 

therapy and were prospectively followed-up for a mean of 24 months. 

 

5.1.1 Decisional process 

 

Collected data are given as input to a feedforward neural network, made up of up to two hidden 

layers composed of five to forty neurons for layer, and an output layer consisting of a sigle neuron. 

To train the network it was used a function implementing the back propagation algorithm and as 

activation function the logistic one had been used. 

Accordingly, the output may assume any value in the range [0,1], and a validation criterion is 

therefore needed to choice the continuous value to assign to one out of the N discrete values that 

represent the output classes. 

 

5.1.2 Classification 

 

Pattern Classification is a learning task characterized by a fixed number of categories or classes, 

into which input stimuli (activations) are to be classified. 

To perform it, the neural network first udergoes a training session, during which the network is 

repeatedly presented a set of input patterns along with the category to which each particular 

pattern belongs. Then, a new pattern is presented to the network, which is part of the same 

population of patterns but that has not been seen before. The problem is now for the network to 

classify this new pattern correctly. 

The main advantage of using a neural network consists in the fact that it can construct nonlinear 

decision boundaries between the different classes in a non parametric fashion, and thereby offer a 

practical method for solving highly complex pattern classification problems. 

Note that pattern classification as described above is a supervised learning problem. 

  

In the case of a network with a single output neuron, and then two output classes, an "high" value 

is assigned to the elements belonging to a class, whereas a "low" value is assigned to the elements 

of the other.  

Fig. 5.2: Assignement criterion 

 



The criterion consists thus, in setting a decision threshold in the range (0,1), so as to assign output 

values greater than the threshold to the "high" class,  and the other values to the "low" class. 

 

Let us introduce some indexes to evaluate the quality of the classifier: 

 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑂𝑇𝐴𝐿
 

 

where the terms: 

 

TP  (true positives) outlines the number of patients belonging to the "high" class, that are 

 correctly classified 

FP (false positives) outlines the number of patients belonging to the "low" class, that are 

 wrongly classified as "high" class elements 

TN (true negatives) outlines the number of patients belonging to the "low" class, that are 

 correctly classified  

FN (false negatives) outlines the number of patients belonging to the "high" class, that are 

 wrongly classified as "low" class elements 

 

If we consider the class of patients with a  particular disease as the "high" class, and the class of 

the healthy patients as the "low" class: 

 

Sensibility is the measure of the positiveness of the test, in presence of the considered desease; 

 

Specificity is the measure of the frequency of the negativeness of the test, in absence of the 

considered desease; 

 

Accuracy of a test, outlines the rate of patients correctly classified, according to test's results. 

 

 

 

 

 

 

 

 

 

 



5.1.3 Roc plots 

 

To estabilish the value of the threshold that maximizes the probability of correct classifications we 

can use the ROC plots: a ROC plot is typically graphed as a plot of sensivity on the ordinate and the 

false-positive fraction on the abscissa. 

 
Fig. 5.3: ROC plot 

 

The optimum value of the threshold is the one associated to the point that gets closer to the 

extremity (0,1) of the graph.  

According to the plot, when the extremity (0,1) is reached, that means the network has correctly 

classified  all the patterns, since in this case we have P(TP)=1 and P(FP)=0. 

  



5.1.4 Analysis and results of the test 

 

Fifteen clinical (see table 5.1), exercise ECG and stress echocardiography variables were selected as 

predictors of the cumulative endpoint of cardiac death, nonfatal infarction and unstable angina. 

Shorts (200) days, medium (400 days) and long (1000 days) term observation intervals, including 

50%, 75% and 90% of the events, respectively were considered. At each interval, any patient was 

assigned to the "event" or "no event" class. 

 

Fig. 5.4: Clinical and stress testing characteristics of patients with and without events at each observation interval 

 

By analizing the results, we observe that the best performances are achieved when considering a 

single hidden layer network and a lighter training. 

Moreover, if we compare the prognostic accuracy provided by neural network (70% at 200, 67 at 

400%, 64% at 1000 days respectively) with the default accuracy which was 74% at  200, 57% at 400 

and 61% at 1000 days interval, we notice that 200-days classification gets the worst results, 

whereas we have an improvement in the 400-days classification. 

 

Fig. 5.5: ANNs vs default  



Fig. 5.6: Outcome prediction by neural network 
 

 

 

 

 



6. Conclusions 
 

In this work we evaluated the computational technique of neural networks. 

Based on the structure of the brain, these mathematical models can provide an efficient way to 

handle multifactorial analysis, as they can employ multiple factors in solving several problems such 

as prediction, classification and pattern recognition. 

The main feature of the neural networks is their capability of changing the values of their internal 

parameters by rearranging weights and layers, and being in this sense adaptive devices. 

These changes are made according to learning rules, and we discussed a supervised learning rule: 

the back-propagation algoritmh. 

As far as practital aspects of neural networks is concerned, we focused on a medical application for 

prognostic classification. 

We studied a multilayered neural network, trained by the back-propagation algorithm, that 

quantified the risk stratification for patients after uncomplicated myocardial infarction. 

By changing network parameters, we may observe the different response of the network in terms 

of performance measures (accuracy, sensivity and specificity). 

In our example emerged an insufficent accuracy as far as short-term prognostic is concerned, 

whereas a quite better performance is reached for longer-term prognostic. 

We can conclude that neural network are nowadays beginning to play an important and hopeful 

emerging role in medical decision system, since they can provide a methodology able to manage 

the great availability of medical data, with databases rapidly expanding. 
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