

 UNIVERSITÁ DEGLI STUDI DI PADOVA __

FACOLTÁ DI INGEGNERIA
CORSO DI LAUREA IN INGEGNERIA DELL’INFORMAZIONE

Tesi di laurea Triennale

Neural networks for
Medical decision

Reti neurali per la
diagnosi in medicina

Studente: Relatore:
Francesco RIGOBELLO Prof.ssa Gianna Maria TOFFOLO

Anno Accademico 2011/2012 - Padova, 27 Settembre 2012

Index

1. Introduction to neural networks

 1.1 Historical notes

 1.2 Models of a neuron

 1.2.1 Types of activation function

 1.3 Neural networks as directed graphs

 1.4 Feedback

 1.5 Network architectures

2. Learning process

 2.1 Inside a learning process

 2.2 An example of learningprocess algorithm: error-correction learning

 2.3 An example of learningprocess paradigm: supervised learning

 2.4 Procedure to set network parameters and performance

3. The Perceptron

4. Multilayer perceptrons

 4.1 Back-propagation algorithm

 4.1.1 Derivation of the Back-Propagation Algorithm

 4.1.2 Momentum

 4.2 MLP functional capabilities

5. Neural networks as medical decision support

 5.1 Neural networks for risk stratification following

 uncomplicated myocardial infarction

 5.1.1 Decisional process

 5.1.2 Classification

 5.1.3 ROC plots

 5.1.4 Analysis and results of the test

6. Conclusions

7. References

1. Introduction to neural networks

1.1 Introduction

Research on neural networks has been motivated right from its inception by the recognition of the

fact that the brain computes in an entirely different way from the conventional digital calculator.

The brain is a highly complex, nonlinear, and parallel computer information processing system, that

has the capability of organizing neurons so as to perform certain computation such as pattern

recognition, perception or motor control, many times faster than a conventional computer.

1.1.1 Biological model of a neuron

Let us introduce the biological model of a neuron

Fig. 1.1: Dendrites and synapses

The nervous cells, known ase neurons, are the building blocks of the nervous system.

A neuron is composed of a cell body and a large number of receptive zones, called dentrites,

through which a neuron may receive electrical signals from other neurons.

Moreover, each neuron has a fine extension, called axon, used to transmitt electrical signals to

other cells (e.g. to dentrites of other neurons).

The connection point between an axon terminal and a dentrite is called synapse. A synapse is a

functional unit that mediates the interactions between neurons by enabling electrical trasmission

through a chemical process in which neurotransmitter substances are liberated.

If the electrical signal that excitates a neuron is sufficiently large compared with its inhibitory

input, the neuron "activates" and it is able to send a spike of electrical activity down its axon

towards other cells.

A crucial property of the brain is its ability to learn, by modifying neurons connections according to

experience aknowledged.

Moreover, the brain has not a centralized control; in fact, different parts work together affecting

each other to realize a specific task.

All these brain features, suggested the evolution of models capable to emulate its behavior.

1.1.2 Artificial neural networks

An artificial neural network is a computational model that is inspired by the structure and

functional aspects of biological neural networks.

To reproduce artificially such a biological model, we introduce a network architecture in which

informations processing units, referred to as artificial neurons, are richly interconnected by

weighted connection lines, known as synapses, which are structures that mediates interaction

between neurons.

"Knowledge" is aquired by a network through a learning or training process in which connection

strenghts, known as weights, are adjusted according to the input data examples and the relative

outputs.

A well trained neural network is able to perform tasks such as predicting an output value,

classyfying an object, approximating a function and recognizing or completing a known pattern,

and thus constitutes a valid mathematical instrument in many fields to face problems that classical

approach cannot solve.

1.1.3 Historical notes

The modern era of neural networks is said to have begun with the pioneering work of McCulloch

and Pitts. McCulloch was a psychiatrist and neuroanatomist who had spent some 20 years thinking

about the representation of an event in the nervous system; he was joined in 1942 by Pitt , a

brilliant mathematician, and togheter, in 1943, they wrote a fundamental paper, in which a logical

calculus of neural network was described.

Some 15 years after the publication of McCulloch and Pitt's classic paper, a new approach on the

patter recognition problem was introduced by Rosenblatt in his work on the perceptron (1958).

Roseblatt perceptron was a network with two layers of computational nodes and a single layer of

interconnections. This model, however, was limited to the solution of linear problems whereas

many problems in discrimination and analysis cannot be solved by a linear capability alone.

The capabilities of neural networks were expanded from linear to non linear domains in 1974 by

Werbos. These multilayered perceptrons were trained via gradient descents methods, and the

original algorithm became known as "back-error propagation".

The great computational potentialities of the multilayer perceptron were proved by Hornik, who

showed how a network, with appropriate internal parameters, could approximate an arbitrary

nonlinear function. Because classification tasks, prediction and decision support problems can be

restated as function approximation problems, this discovery showed that neural networks have the

potential for solving major problems in a wide range of application domains.

Neural networks are nowadays used in many different fields: from military application to medical

image analysis, from financial industry to medical decision systems.

In this work, after a theoretical description of the neural networks models, we will focus on a

diagnostical application.

http://en.wikipedia.org/wiki/Computational_model
http://en.wikipedia.org/wiki/Biological_neural_network

1.2 Models of a neuron

A neuron is an information-processing unit that is fundamental to the operation of a neural

network.

 Fig. 1.2: model of a neuron

We may indentify three basic elements of the neuron model:

1. A set of synapses or connecting links, each of which is characterized by a wieght or strenght

of its own. Specifically, a signal 𝑥𝑗 at the input of synapse j connected to neuron k is

multiplied by the synaptic weight 𝑤𝑘𝑗.

2. An adder for summing the input signals, weighted by the respective synapses of the

neuron; the operations described here constitute a linear combiner.

3. An activation function for limiting the amplitude of the output of a neuron. We can also

refer to the activation function as a squashing function in that it squashes (limits) the

permissible amplitude range of the output signal to some finite value. Typically, the

normalized amplitude range of the output of a neuron is written as the closed interval

[0,1].

The model shown in figure also includes an externally applied threshold 𝜃𝑘 that has the effect of

lowering the net input of the activation function.

In mathematical terms, we may describe a neuron k by writing the following pair of equations:

uk = ∑ wkjxj

p

j=1

and

yk= φ(uk − θk)

where

 𝑥1, 𝑥2, .., 𝑥𝑝 are the input signals;

 𝑤𝑘1, 𝑤𝑘2, .., 𝑤𝑘𝑝 are the synaptic weights of neuron k;

 𝑢𝑘 is the linear combiner output;

 θ𝑘is the threshold;

 φ(-) is the activation function;

 𝑦𝑘 is the output signal of the neuron.

The use of threshold θk has the effect of applying an affine transformation to the output 𝑢𝑘 of the

linear combiner of the model, as shown by

 𝑣𝑘 = 𝑢𝑘 − θ𝑘

In particular, depending on whether the threshold θk is positive or negative, the relationship

between the effective internal activity level or activation potential 𝑣𝑘 of neuron k and the linear

combiner output 𝑢𝑘 is modified in the manner illustrated in figure.

Fig. 1.3: Transformation produced by the presence of a threshold

The threshold θk is an external parameter of artificial neuron k. We may formulate equivalently the

combination of the previous equations as follows:

uk = ∑ wkjxj

p

j=0

and

𝑦𝑘 = φ(𝑣𝑘)

In the last equation we have added a new synapse, whose input is

𝑥0 = −1

and whose weight is

𝑤𝑘0 = 𝜃𝑘

We may therefore reformulate the model of neuron k as in the following figure.

Fig. 1.4: another model of a neuron

The effect of the threshold is represented by doing two things:

 adding a new input signal fixed at −1,

 adding a new synaptic weight equal to the threshold θk.

1.2.1 Types of Activation Function

The activation function denoted by φ(-), defines the output of a neuron in terms of the activity

level at its input. We may identify three basic types of activation functions:

1) Threshold Function

Fig. 1.5: Threshold function

 We have

 Correspondingly, the output of neuron k employing such a threshold function is expressed

 as

 where vk is the internal activity level of the neuron; that is,

 Such a neuron is referred to in the literature as the McCulloch-Pitts model (1943). In this

 model, the output of a neuron takes on the value of 1 if the total internal activity level of

 that neuron is nonnegative and 0 otherwise (all-or-none property).

2) Piecewise-Linear Function

Fig. 1.6: Piecewise-linear function

 We have

 where the amplification factor inside the linear region of operation is assumed to be unity.

 This form of an activation function may be viewed as an approximation to a nonlinear

 amplifier.

 The following two situations may be viewed as special forms of the piecewise-linear

 function:

 A linear combiner arises if the linear region of operation is maintained without running into

saturation.

 The piecewise-linear function reduces to a threshold function if the amplification factor of

the linear region is infinitely large.

3) Sigmoid Function

Fig. 1.7: Sigmoid function

 The sigmoid function is by far the most common form of activation function used in the

 construction of artificial neural networks. It is defined as a strictly increasing function that

 exhibits smoothness an asymptotic properties.

 An exemple is the logistic function, defined by

 where a is the slope parameter of the sigmoid function.

 By varing the parameter a, we obtain sigmoid of different slopes. In fact, the slope at the

 origin equals a/4. In the limit, as the slope parameter approaches infinity, the sigmoid

 function becomes simply a threshold function. Whereas a threshold function assumes the

 value of 0 or 1, a sigmoid function assumes a continuous range of values from 0 to 1.

 It is sometimes desiderable to have the activation function range from −1to +1,

 in which case the activation function assumes an antisymmetric form with respect to the

 origin.

 Specifically, the threshold function is redefined as

 which is commonly referred to as the signum function.

 For a sigmoid we may use the hyperbolic tangent function, defined by

1.3 Neural network as directed graphs

Signal-flow graphs with a well-defined set of rules were originally developed by Mason (1953,

1956) for linear networks. The presence of nonlinearity in the model of a neuron, however, limits

the scope of their aplication to neural networks, but they still provide a neat method for the

portrayal of the flow of signals in a neural network.

A signal-flow graph is a network of directed links (branches) that are interconnected at certain

points called nodes:

 A node j has an associated node signal xj.

 A directed link originates at node j and terminates on node k; it has an associated transfer

 function that specifies the manner in which the signal yk at node k depends on the signal xj

 at node j.

The flow of signals in the various parts of the graph is dictated by three basic rules:

RULE 1. A signal flows along a link only in the direction defined by the arrow on the link.

 Two different types of links may be distinguished:

 Synaptic links, regulated by a linear input-output relation: the node signal xj is multiplied by

the synaptic weight wkj to produce the node signal yk.

 Activation links, regulated in general by a nonlinear input-output relation: φ(-) is the

nonlinear activation function.

RULE 2. A node signal equals the algebraic sum of all signals entering the pertinent node via the

incomnig links.

RULE 3. The signal at a node is transmitted to each outgoing link originating from that node, with

the transmission being entirely indipendent of the transfer functions of the outgoing links.

Using these rules we may construct the signal-flow graph corresponding to the model of a neuron.

We may now introduce a mathematical definition of a neural network, based on the signal-flow

graph of the model of a neuron:

A neural network is a directed graph consisting of nodes with interconnecting synaptic and

activation links, characterized by four properties:

1. Each neuron is represented by a set of linear synaptic links, an externally applied threshold,

and a non linear activation link. The threshold is represented by a synaptic link with an

input signal fixed at a value of−1.

2. The synaptic links of a neuron weight their respective input signals.

3. The weighted sum of the input signals defines the total internal activity level of the neuron

in question.

4. The activation link squashes the internal activity level of the neuron to produce an output

that represents the state variable of the neuron.

When the focus is restricted to signal flow from neuron to neuron, and not inside each neuron, we

may use a reduced form of graph, which is characterized as it follows:

1. Source nodes supply input signals to the graph.

2. Each neuron is represented by a single node called a computation node.

3. The communication links interconnecting the source and computation nodes carry no

weight; they only provide direction of signal flow in the graph.

Fig. 1.8: Architectural graph of a neuron

A partially complete directed graph defined in this way is referred to as an architectural graph

describing the layout of the neural network.

1.4 Feedback

Feedback, in a dynamic system, is a process in which the output of an element in the system

influences in part the input applied to that particular element.

It plays a major role in the study of a special class of neural networks known as recurrent networks.

Fig. 1.9: Single-loop feedback system

The figure above shows the signal flow graph of a single-loop feedback system, where the input

signal xj(n), internal signal x'j(n), and output signal yk(n) are functions of the discrete-time variable

n. The system is assumed to be linear, consisting of a forward channel and a feedback channel that

are characterized by the operators A and B, respectively. In particular, the output of the forward

channel determines in part its own output throught the feedback channel.

We can now state the following input-output relationships:

 𝑦𝑘(𝑛) = 𝐴[𝑥𝑗
′(𝑛)]

𝑥𝑗
′(𝑛) = 𝑥𝑗(𝑛) + 𝐵[𝑦𝑘(𝑛)]

from the previous equations, eliminating 𝑥𝑗
′(𝑛):

𝑦𝑘(𝑛) = [𝑥𝑗(𝑛)]

where 𝐴/1 − 𝐴𝐵 is referred to as the closed-loop operator of the system, and to 𝐴𝐵 as the open-

loop operator.

For example, we consider the single-loop feedback system shown in figure, where A is a fixed

weight w, B is a unit-delay operator 𝑧−1, whose output is delayed with respect to the input by one

time unit.

Fig. 1.10: Single-loop feedback system

We may then express the closed-loop operator of the system as

𝐴

1 − 𝐴𝐵
=

𝑤

1 − 𝑤𝑧−1
= 𝑤(1 − 𝑤𝑧−1)−1

Using the binomial expansion for (1 − 𝑤𝑧−1)−1, and subsituting eq.X in Y we get

𝑦𝑘(𝑛) = 𝑤 ∑ 𝑤𝑙𝑧−𝑙

∞

𝑙=0

[𝑥𝑗(𝑛)]

From the definition of 𝑧−1 we have

𝑧−𝑙 = 𝑥𝑗(𝑛 − 𝑙)

where 𝑥𝑗(𝑛 − 𝑙) is a sample of the input signal delayed by 𝑙 time units.

According to this, we may express the output signal 𝑦𝑘(𝑛) as an infinite weighted summation of

present and past samples of the input signal 𝑥𝑗(𝑛):

𝑦𝑘(𝑛) = ∑ 𝑤𝑙+1

∞

𝑙=0

𝑥𝑗(𝑛 − 𝑙)

Finally, we may distinguish two specific cases, depending on the value of the weight w, which

influences the dynamic behavior of the system:

 1. |𝑤| < 1: the signal 𝑦𝑘(𝑛) is exponentially convergent, and we state that the system is

 stable. (FIG a)

 2. |𝑤| ≥ 1: the output 𝑦𝑘(𝑛) is divergent, and the system is unstable. If |𝑤| = 1 the

 divergence is linear, if |𝑤| > 1 the divergence is exponential. (FIG

1.5 Network architectures

1) Single-Layer Feedforward Networks

Fig. 1.12: Single-layer feedforward network

A layered neural network is a network of neurons organized in the form of layers.

In its simplest form we have an input layer of source nodes that projects onto an output layer of

neurons (computation nodes), but not vice versa. So we may say that this network is strictly of a

feedforward type.

The designation "single layer" refers to the output layer, because we do not count the input layer

since no computation is performed there.

A linear associative memory is an example of a single-layer network, where an output pattern

(vector) is associated to an input pattern (vector), and information is stored in the network by

virtue of modifications made to the synaptic weights.

2) Multilayer Feedforward Networks

This class of feedforward networks distinguishes itself by the presence of one or more hidden

layers, whose computation nodes are correspondingly called hidden neurons or hidden units;

their function consists in intervening between the external input and the network output.

Typically, the neurons in each layer of the network have as their inputs the output signals of the

preceding layer only. The set of output signals of the neurons in the final layer constitutes the

overall response of the network to the activation pattern supplied by the source nodes in the first

layer.

Fig. 1.13: Fully connected feedforward network with one hidden layer

The architectural graph of the figure illustrates the layout of a multilayer feedforward network for

the case of a single hidden layer. This network is referred to as a 10-4-2 network in that it has 10

source nodes, 4 hidden neurons, and 2 output neurons.

This neural network is also said to be fully connected in the sense that every node in each layer of

the network is connected to every other node in the adjacent forward layer. If, however, some of

the communications links are missing we say that the network is partially connected .

A form of partially connected network of particular interest is a locally connected network.

Fig. 1.14: Partially connected feedforward network

Each neuron in the hidden layer is connected to a partial set of source nodes that lies in its

immediate neighborhood; such a set of localized nodes is said to constitute the receptive field of

the neuron. Similarly, each node in the output layer is connected to a local set of hidden neurons.

This network has the same nodes of the previous one, but we may say that it has a specialized

structure, in which each hidden neuron responds essentially to local variations of the source signal.

3) Recurrent Networks

A recurrent neural network is a feedforward network that has at least one feedback loop.

Fig. 1.15: Recurrent network with hidden neurons

For example (see figure), we consider a recurrent network consisting of two layers of neurons.

In this structure there are feedback and self-feedback loops, originated from the hidden neurons;

those feedback connections have a strong impact on the learning capability of the network, and on

its performance.

Moreover, we notice the use of unit-delay elements (denoted by 𝑧−1), with a nonlinear dynamical

behavior.

2. Learning process

One of the most interesting properties of a neural network is its ability of learning from its

environment, and improving its performance throught learning. This improvement is realized(?)

throught an iterative process of adjustement applied to its synaptic weights and thresholds.

A correct definition of learning in the field of neural networks may be:

Learning is a process by which the free parameters of a neural network are adapted throught a

continuing process of stimulation by the environment in which the network is embedded. The type

of learning is determined by the manner in which the parameter changes take place.

According to this definition, a learning process follows this sequence of events:

1. The environment stimulates the neural network.

2. The neural network undergoes changes as a result of this stimulation.

3. The neural network responds in a new different way to the environment, because of the

changes that have occurred in its internal structure.

Fig. 2.1: A pair of neurons imbedded in a neural network

To be more specific, consider the situation depicted in the figure, which represents a pair of node

signals 𝑥𝑗 and 𝑣𝑘connected by a synaptic weight 𝑤𝑘𝑗.

Signals 𝑥𝑗 and 𝑣𝑘 play the role respectively of the output of neuron j and of the internal activity of

neuron k, and in this context they are commonly referred to as presynaptic and postsynaptic

activities.

Let 𝑤𝑘𝑗(𝑛) be the value of the synaptic weight 𝑤𝑘𝑗 at time n; at time n an adjustement 𝛥𝑤𝑘𝑗(𝑛) is

applied to the synaptic weight, yielding the updated value 𝑤𝑘𝑗(𝑛 + 1).

Considering 𝑤𝑘𝑗(𝑛) and 𝑤𝑘𝑗(𝑛 + 1) as the old and new values of the synaptic weight 𝑤𝑘𝑗,

respectively, we may write:

𝑤𝑘𝑗(𝑛 + 1) = 𝑤𝑘𝑗(𝑛) + 𝛥𝑤𝑘𝑗(𝑛) (2.1)

The equation sums up the overall effect of events 1 and 2 of the definition presented above:

 The adjustement 𝛥𝑤𝑘𝑗(𝑛) is calculated as a result of stimulation by the environment (event

1).

 The updated value 𝑤𝑘𝑗(𝑛 + 1) defines the change made in the network as a result of this

stimulation (event 2).

The third event corresponds to the reevaluation of the new network's response, when operating

with the updated set of parameters {𝑤𝑘𝑗(𝑛 + 1)}.

2.1 Inside a learning process

Before we study learning processes, we have to make a foundamental distintcion between learning

algorithms and paradigms.

A learning algorithm (rule) is a prescribed set of well defined rules for the solution of a learning

problem. There are several learning algorithms, each of which offers advantages of its own. They

essentially differ from each other in the way in which the adjustement 𝛥𝑤𝑘𝑗 is formulated.

However, another important factor to be cosidered is the way in which a learning machine (a

neural network) relates to its environment: in this context we speak of a learning paradigm,

referring to a model of the environment in which the neural network operates.

Now we will make an example of a learning rule and a learning paradigm that will be useful in

future, when considering the back-propagation algorithm for multilayer perceptrons.

2.2 An example of learning process algorithm: Error-Correction learning

Consider a neuron k at time n and let 𝑑𝑘(𝑛) denote some desired response for it. Let the

corrisponding value of the actual response of this neuron be denoted by 𝑦𝑘(𝑛), this response is

produced by a stimulus (vector) 𝒙(𝑛) applied to the input of the network in which neuron k is

embedded.

Typically, the actual response 𝑦𝑘(𝑛) of neuron k differs from the desired response 𝑑𝑘(𝑛). Hence,

we may define an error signal as the difference between the target response and the actual

response:

𝑒𝑘(𝑛) = 𝑑𝑘(𝑛) − 𝑦𝑘(𝑛) (2.2)

Error-correction learning may be considered as an optimization problem, with the aim of

minimizing a cost function, based on the error signal 𝑒𝑘(𝑛).

A commonly used criterion for the cost function is the mean-square-error criterion, defined as the

mean-square value of the sum of squared errors:

𝐽 = 𝐸 [
1

2
∑ 𝑒𝑘

2(𝑛)

𝑘

] (2.3)

where E is the statistical expectation operator, and the summation is over all the neurons in the

output layer of the network. Note that the factor ½ is used so as to simplify subsequent derivations

resulting from the minimization of J with respect to free parameters of the network; moreover, we

assume that the underlying processes are wide-sense stationary.

However, this optimization procedure requires knowledge of the statistical characteristics of the

processes, and we try to overcome this practical difficulty by settling for an approximate solution

to the optimization problem.

To realize this intention we use the istantaneous value of the sum of squared errors as the criterion

of interest:

ξ(𝑛) =
1

2
∑ 𝑒𝑘

2(𝑛)

𝑘

(2.4)

We may thus optimize the network by minimizing ξ(𝑛) with respect to the synaptic weights.

According to the error-correction learning rule, the adjustement 𝛥𝑤𝑘𝑗(𝑛)) is now given by:

𝛥𝑤𝑘𝑗(𝑛) = 𝜂𝑒𝑘(𝑛)𝑥𝑗(𝑛)(2.5)

where η is a positive constant that determines the rate of learning.

The three equations (2.1), (2.2), (2.5), are represented in the signal flow graph below:

Fig. 2.2: Signal-flow graph of error-correction learning

Error signal 𝑒𝑘(𝑛), computed from eq. (2.2), is used to get the correction 𝛥𝑤𝑘𝑗(𝑛) applied to the

synaptic weight 𝑤𝑘𝑗 of neuron k (eq. (2.5)). Finally, throught eq. (2.1) we compute the new

updated value 𝑤𝑘𝑗(𝑛 + 1) of the synaptic weight considered.

Furthermore the graph includes a storage element represented by the unit-delay operator 𝑧−1:

𝑧−1[𝑤𝑘𝑗(𝑛 + 1)] = 𝑤𝑘𝑗(𝑛) (2.6)

and also the representation of the equations of the model of a neuron k

𝑣𝑘(𝑛) = ∑ 𝑥𝑗(𝑛)𝑤𝑘𝑗(𝑛)

𝑗

 (2.7)

𝑦𝑘(𝑛) = 𝜑(𝑣𝑘(𝑛)) (2.8)

The learning-rate parameter 𝜂 plays a major role: its value has to be chosen very carefully, since

the stability of the whole process depends on it.

In fact, stated that error-correction learning behaves like a closed feedback system, 𝜂 has a

profound impact on the performace of the process, affecting both the the rate of convergence of

learning and the convergence itself:

 if 𝜂 is small, the learning process proceeds smoothly, but it may take a long time for the

system to converge to a stable solution;

 if 𝜂 is large, the rate of learning is accelerated, but there is a danger that the learning

process may deverge and the system therefore becomes unstable.

We may visualize the cost function J as a multidimensional surface referred to as an error-

performance surface.

The objective of error-correction learning algorithm is to start from a point on the surface,

determined by the initial values of the synaptic weights, and then, step-by-step, move toward a

point of global minimum.

2.3 An example of learning process paradigm: Supervised learning

The main resource of supervised or active learning is the presence of an external teacher, which

has the knowledge of the environment, in terms of input-output examples. The environment,

however, is unknown to the neural network of interest.

We define as desired or target response of the network, the response provided by the teacher

corrisponding to a training vector drawn from the environment. Indeed, the desired response

represents the optimum action to be performed by the network.

We define as error signal, the difference between the actual response of the network and the

desired one.

The network parameters are adjusted under the action of the training vector and the error signal,

with the aim of making the neural network emulating the teacher. This form of supervised learning

is indeed the error-correction learning considered previously.

As a misure of the performance of the system, we may think in terms of the mean-squared error

defined as a function of the free parameters of the network and this function may be visualized as

an error surface, with the free parameters as coordinates. The true error surface is averaged over

all possible input-output examples.

For such a system, the operating point moves torward a point of local or global minimum, to get

the best performance over time and therefore learn from the teacher.

A foundamental element to reach this aim is the information carried by the gradient of the error

surface; the gradient is a vector that points in the direction of steepest descendent, and the

extimation of its istantaneous value is used by the system in the case of supervised learnig from

examples.

2.4 Procedure to set network parameters and performance

We presented as a foundamental task for a neural network its ability to learn a model of the world

in which is embedded.

Knowledge about the environment in interest is given by a set of examples, consisting of input-

output pairs: an input signal and the corrisponding desired response of the neural network.

These data examples are then dived in three sets:

 the training set

 the validation or testing set

 the verification set

The training procedure consists firstly of a preliminary design of an appropriate architecture for the

neural network, followed by a phase in which the training set is used for the adjustement of

weights by means of a learning algorithm.

Secondly, the validation data set is used to decide when to stop the training, so as to avoid the so

called "overtraining", which could make the network unable to identify new data belonging to the

same classes of the training examples.

Finally, the recognition performance of the trained network is tested with data that has never been

seen before: the verification set. The results on the verification set can be considered a true

prediction of the neural network response on new data and the performance of the network on

these data provides a proper benchmark evaluation metric for its performance as a predictor or

classifier.

3. The Perceptron

The perceptron is the simplest form of a neural network used for the classification of a special type

of patterns said to be linearly separable.

Basically, such a network consists of a single neuron with adjustable synaptic weigths and

thresholds.

 Fig. 3.1: Single-layer perceptron

The first developer of an algorithm used to set this free parameters was Rosenblatt in 1958, who

proved that if the vectors used to train the perceptron are chosen from two linearly separable

classes, then the perceptron algorithm converges and positions the decision surface in the form of

a hyperplane between the two classes.

As said before the perceptron is used to perform pattern classification; the number of classes that

can be classified depends on the fact that the output layer includes one or more than one neuron.

We initially consider a single-layer perceptron with a single neuron.

Recalling the McCulloch-Pitts model of a neuron, consisting of a linear combiner followed by a hard

limiter, we may write the linear combiner output (i.e. hard limiter input) as:

𝑣 = ∑ 𝑤𝑖𝑥𝑖 − 𝜃

𝑝

𝑖=1

Fig. 3.2: Signal-flow graph of the perceptron

The purpose of the perceptron is to classify the set of externally applied stimuli 𝑥1, 𝑥2, .., 𝑥𝑝 into

one of the two classes 𝐶1 or 𝐶2. The decision rule for the classification is to assign the point

represented by the inputs 𝑥1, 𝑥2, .., 𝑥𝑝 to class 𝐶1if the perceptron output y is +1 and to class 𝐶2 if

it is -1.

The p input variables 𝑥1, 𝑥2, .., 𝑥𝑝 span a p-dimensional signal space, in which it is customary to

represent a map of the decision regions.

In we consider an elementary perceptron, there are two decision regions separated by a

hyperplane defined by the equation:

∑ 𝑤𝑖𝑥𝑖 − 𝜃

𝑝

𝑖=1

= 0

Fig. 3.3: Linear reparability for a two dimensional, two-class pattern-classification problem

The example in Fig.(3.3) shows the case of two input variables x1 and x2.

We assign to class 𝐶1 and 𝐶2 all the points (𝑥1𝑥2) that lie respectively above and below the

boundary line.

The synaptic weights 𝑤1, 𝑤2, .., 𝑤𝑝 can be fixed or adapted on an iteration-by-iteration basis.

For the adaptation we may use an error-correction rule known as the perceptron convergence

algorithm.

4. Multilayer Perceptrons

Multilayer perceptrons (MLPs), represent a generalization of the single-layer perceptron

considered before. We refer to them as a class of multilayer feedforward networks, consisting of a

cascade of a set of sensory units (source nodes) that constitute the input layer, one or more

hidden layers of computation nodes, and an output layer of computation nodes.

Fig. 4.1: Multilayer perceptron with two hidden layers

The main distinctive characteristics of a multilayer perceptron are:

1. Each neuron in the network is modelized at the output as including a nonlinearity.

It is important to notice that this nonlinarity is smooth (i.e. differentiable everywhere),

differently from the hard-limiting used in Rosenblatt's model.

A function that satisfies nonlinearity in the form of sigmoidal nonlinearity is the logistic

function:

𝑦𝑗 =
1

1 + 𝑒−𝑣𝑗

where 𝑣𝑗 is the net internal activity level of neuron j, and 𝑦𝑗 is the output of the neuron.

Nonlinarity is foundamental, because, otherwise, the input-output relation of the network

could be reduced to that of a single layer perceptron.

Moreover, the use of this function is biologically motivated, since it attempts to account

for the refractory phase of real neurons.

2. The network contains layers of hidden neurons, that enable to learn complex tasks by

extracting progressively more meaningful features from the vectors in input.

3. The network has a high degree of connectivity, determined by the synapses.

All this elements together with the training ability of a multilayer perceptron, contribute to his

computing power.

However, the presence of forms of nonlinearity, the high connectivity of the network and the

presence of hidden layers make the theoretical analysis of such a network harder to undertake.

Moreover, the learning process gets more difficult because the search has to be conducted in a

much larger space of possible functions.

The succes of multilayer perceptrons is due to their capability of solving difficult and diverse

problems by training them in a supervised manner with an algorithm, based on the error-

correction learning rule, known as the error back-propagation algorithm. The learning process

performed with the algorithm is called back-propagation learning.

4.1 Back-Propagation Algorithm

First of all, we identify two kinds of signals used in multilayer perceptrons:

 Function signals. We refer to a function signal as an input signal (stimulus), that comes in at

the input end of the network, propagates forward neuron-by-neuron, and emerges at the

output end of the network as an output signal.

Such a signal is a "function signal" in the sense that it provides a useful function at the

output, and that it is calculated as a function of the inputs and associated weigths at each

neuron of the network through which it passes.

 Error signals. This kind of signal originates at the output end of a neuron and propagates

backward, layer-by-layer, through the network; it is foundamental to notice that its

computation by every neuron involves an error-dependent function.

Fig. 4.2: Directions of two basic signal flows in a multilayer perceptron

Furthermore, neurons from hidden or output layers are designed to perform two computations:

1. The computation of the function signal at the output of a neuron, which is expressed as a

continuous nonlinear function of the input signals and synaptic weight associated with that

neuron

2. The computation of an istantaneous estimate of the gradient vector, which is needed for

the backward pass through the network

Before we derive the back-propagation algorithm, let us introduce the following notation:

ξ(𝑛): istantaneous sum of error sqares at iteration n

𝑑𝑗(𝑛): desired response for neuron j

𝑒𝑗(𝑛): error signal at the output for neuron j for iteration n

𝑦𝑗(𝑛): function signal at the output of neuron j

𝑤𝑗𝑖(𝑛): synaptic weight connecting the output of neuron i to the input of neuron j at iteration n

𝛥𝑤𝑗𝑖(𝑛): correction applied to the previous weight

𝑣𝑗(𝑛): net internal activity level of neuron j; it constitutes the signal applied to the nonlinearity

associated with neuron j

Also, in order to account for the bias weight we define the 0-th component of the input vector to

each layer to be equal to 1; that is 𝑢𝑙,0 = 1 (𝑤𝑙,𝑗,0 are the bias weights).

4.1.1 Derivation of the Back-Propagation Algorithm

The error signal at the output of neuron j at n-th iteration is defined by:

𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑗(𝑛), neuron j is an output node (4.1)

The istantaneous sum of squared errors of the network is:

ξ(𝑛) =
1

2
∑ 𝑒𝑗

2(𝑛)(4.2)𝑗∈𝐶

where the istantaneous value of the squared error for neuron j is defined as
1

2
𝑒𝑗

2(𝑛), and C is the

set that includes all the neurons in the output layer.

Let N denote the total number of patterns in the training set. We define the average squared error

as the summation of ξ(𝑛) over all n and then normalizing with respect to the set size N:

ξ𝑎𝑣 =
1

𝑁
∑ ξ(𝑛)

𝑁

𝑛=1

 (4.3)

For a given training set, ξ𝑎𝑣 represents the cost function as the measure of training set learning

performance. The objective of the learning process is to adjust the free parameters so as to

minimize it. To do so, we use a simple method of training in which the weights are updated on a

pattern-by-pattern basis. The adjustements to the weights are made in accordance with the

respective errors computed for each pattern presented to the network.

The arithmetic average of these individual weights changes over the training set is therefore an

estimate of the true change that would result from modifying the weights based on minimizing the

cost function ξ𝑎𝑣 over the training set.

Fig. 4.3: Details of output neuron j

Let us consider the situation depicted in fig (4.3), where neuron j is fed by a set of function signals

coming from a layer to his left.

The net internal activity level 𝑣𝑗(𝑛) at the input of the nonlinearity associated with neuron j is

therefore given by:

𝑣𝑗(𝑛) = ∑ 𝑤𝑖𝑗(𝑛)𝑦𝑖(𝑛)(4.4)

𝑝

𝑖=0

where p is the total number of inputs applied to neuron j.

The synaptic weight 𝑤𝑗0 (corresponding to the fixed input 𝑦0 = −1) equals the threshold 𝜃𝑗

applied to neuron j. Hence the function signal appearing at the output of neuron j at iteration n is

𝑦𝑗(𝑛) = 𝜑 (𝑣𝑗(𝑛)) (4.5)

Now the algorithm applies a correction 𝛥𝑤𝑗𝑖(𝑛) to the synaptic weight 𝑤𝑗𝑖(𝑛), which is

proportional to the istantaneous gradient 𝛿𝜉(𝑛) 𝛿𝑤𝑗𝑖(𝑛)⁄ . According to the chain rule, we may

express this gradient as follows:

𝛿𝜉(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
=

𝛿𝜉(𝑛)

𝛿𝑒𝑗(𝑛)

𝛿𝑒𝑗(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑣𝑗(𝑛)

𝛿𝑣𝑗(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
 (4.6)

This gradient represents a sensivity factor, determining the direction of search in weight space for

the synaptic weight wji.

Differentiating both sides of Eq.(4.2) with respect to 𝑒𝑗(𝑛), we get

𝛿𝜉(𝑛)

𝛿𝑒𝑗(𝑛)
= 𝑒𝑗(𝑛)(4.7)

Differentiating both sides of Eq.(4.1) with respect to 𝑦𝑗(𝑛), we get

𝛿𝑒𝑗(𝑛)

𝛿𝑦𝑗(𝑛)
= −1 (4.8)

Next, differentiating both sides of Eq.(4.5) with respect to 𝑣𝑗(𝑛), we get

𝛿𝑦𝑗(𝑛)

𝛿𝑣𝑗(𝑛)
= 𝜑𝑗

′ (𝑣𝑗(𝑛)) (4.9)

Finally, differentiating Eq. (4.4) with respect to 𝑤𝑗𝑖(𝑛) yields

𝛿𝑣𝑗(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
= 𝑦𝑖(𝑛)(4.10)

Hence, the use of Eqs. (4.7) to (4.10) in (4.6) yields

𝛿𝜉(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
= −𝑒𝑗(𝑛)𝜑𝑗

′ (𝑣𝑗(𝑛)) 𝑦𝑖(𝑛) (4.11)

The correction 𝛥𝑤𝑗𝑖(𝑛) applied to 𝑤𝑗𝑖 is defined by the delta rule

𝛥𝑤𝑗𝑖(𝑛) = −𝜂
𝛿𝜉(𝑛)

𝛿𝑤𝑗𝑖(𝑛)
 (4.12)

where 𝜂 is a constant that determines the rate of learning: learning-rate parameter.

The use of the minus sign in Eq. (4.12) accounts for gradient descent in weight space.

Accordingly, the use of Eq. (4.11) in (4.12) yields

𝛥𝑤𝑗𝑖(𝑛) = 𝜂𝛿𝑗(𝑛)𝑦𝑖(𝑛) (4.13)

where the local gradient is itself defined by

𝛿𝑗(𝑛) = −
𝛿𝜉(𝑛)

𝛿𝑒𝑗(𝑛)

𝛿𝑒𝑗(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑣𝑗(𝑛)
= 𝑒𝑗(𝑛)𝜑𝑗

′ (𝑣𝑗(𝑛)) (4.14)

From the last two equations we note that a key factor involved in the weight adjustement 𝛥𝑤𝑗𝑖(𝑛)

is the error 𝑒𝑗(𝑛) at the output of neuron j.

We have to distinguish between two cases, depending on where in the network neuron j is

located.

1. Neuron j is an output node

We know that each output node of the network is supplied with a desired response of its

own. Hence we may use Eq. (4.1) to compute the error signal ej associated with this

neuron.

Now, by using Eq. (4.14), we can easily compute the local gradient 𝛿𝑗(𝑛).

2. Neuron j is a hidden node

In this case, we have no specified desired response for that neuron. Accordingly, the error

signal for a hidden neuron would have to be determinated recursively in terms of the error

signals of all the neurons to which that hidden neuron is directly connected.

Fig. 4.4: Details of output neuron k connected to hidden neuron j

Let us consider the situation of Fig. (4.4): neuron j is a hidden node of the network.

We may define the local gradient delta for hidden neuron j as

𝛿𝑗(𝑛) = −
𝛿𝜉(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑦𝑗(𝑛)

𝛿𝑣𝑗(𝑛)
= −

𝛿𝜉(𝑛)

𝛿𝑦𝑗(𝑛)
𝜑𝑗

′ (𝑣𝑗(𝑛)) (4.15)

We have to calculate the partial derivate 𝛿𝜉(𝑛) 𝛿𝑦𝑗(𝑛)⁄

First of all we see that

𝜉(𝑛) =
1

2
∑ 𝑒𝑘

2(𝑛)(4.16)

𝑘∈𝐶

In any event, differentiating Eq. (4.16) with respect to the function signal𝑦𝑗(𝑛), we get

𝛿𝜉(𝑛)

𝛿𝑦𝑗(𝑛)
= ∑ 𝑒𝑘

𝛿𝑒𝑘(𝑛)

𝛿𝑦𝑗(𝑛)
(4.17)

𝑘

Next, by using the chain rule for the partial derivate𝛿𝑒𝑘(𝑛) 𝛿𝑦𝑗(𝑛)⁄ we can rewrite Eq. 17

in the equivalent form

𝛿𝜉(𝑛)

𝛿𝑦𝑗(𝑛)
= ∑ 𝑒𝑘(𝑛)

𝛿𝑒𝑘(𝑛)

𝛿𝑣𝑘(𝑛)

𝛿𝑣𝑘(𝑛)

𝛿𝑦𝑗(𝑛)
(4.18)

𝑘

However, from Fig. 4 we note that

𝑒𝑘(𝑛) = 𝑑𝑘(𝑛) − 𝑦𝑘(𝑛) = 𝑑𝑘(𝑛) − 𝜑𝑘(𝑣𝑘(𝑛)) (4.19)

Hence

𝛿𝑒𝑘(𝑛)

𝛿𝑣𝑘(𝑛)
= −𝜑𝑗

′(𝑣𝑘(𝑛)) (4.20)

We also note that for neuron k, the net internal activity level is

𝑣𝑘(𝑛) = ∑ 𝑤𝑘𝑗(𝑛)𝑦𝑗(𝑛)

𝑞

𝑗=0

 (4.21)

where q is the total number of inputs applied to neuron k.

Here again, the synaptic weight 𝑤𝑘0 is equal to the threshold θ applied to the neuron k, and

the corrisponding input 𝑦0 is fixed at the value -1.

In any event, differentiating Eq. (4.21) with respect to 𝑦𝑗(𝑛) yields

𝛿𝑣𝑘(𝑛)

𝛿𝑦𝑗(𝑛)
= 𝑤𝑘𝑗(𝑛) (4.22)

Thus, using Eq. (4.20) and (4.22) in (4.18), we get the desired partial derivate

𝛿𝜉(𝑛)

𝛿𝑦𝑗(𝑛)
= − ∑ 𝑒𝑘(𝑛)𝜑𝑘

′ (𝑣𝑘(𝑛))𝑤𝑘𝑗(𝑛) = − ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛)

𝑘

 (4.23)

𝑘

where we have used Eq. (4.14).

Finally, using Eq. (4.23) in (4.15), we get the local gradient 𝛿𝑗(𝑛) for hidden neuron j, after

rearranging terms, as follows:

𝛿𝑗(𝑛) = 𝜑𝑗
′ (𝑣𝑗(𝑛)) ∑ 𝛿𝑘(𝑛)𝑤𝑘𝑗(𝑛) (4.24)

𝑘

The factor 𝜑𝑗
′ (𝑣𝑗(𝑛)) involved in the computation of the local gradient 𝛿𝑗(𝑛) in Eq. (4.24)

depends only on the activation function associated with hidden neuron j.

The first set of terms in the summation over k, the 𝛿𝑘(𝑛), requires knowledge of the error

signals 𝑒𝑘(𝑛), for all those neurons that lie in the layer to the immediate right of hidden

neuron j.

The second set of terms, the 𝑤𝑘𝑗(𝑛), consists of the synaptic weights associated with these

connections.

The main relationship descending from the back-propagation algorithm are:

 The correction 𝛥𝑤𝑗𝑖(𝑛) applied to the synaptic weight connecting neuron i to neuron j is

defined by the delta rule

(

𝑊𝑒𝑖𝑔ℎ𝑡
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝛥𝑤𝑗𝑖(𝑛)
) = (

𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔
𝑟𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝜂
) (

𝑙𝑜𝑐𝑎𝑙
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝛿𝑗(𝑛)
) (

𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙
𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗

𝑦𝑖(𝑛)
)

 The local gradient delta depends on whether neuron j is an output or an hidden node:

 If neuron j is an output node, 𝛿𝑗(𝑛) equals the product of the derivative φ and the

error signal 𝑒𝑗(𝑛).

 If neuron j is a hidden node, 𝛿𝑗(𝑛) equals the product of the associated derivative di

and the weighted sum of the 𝛿 's computed for the neurons in the next hidden or

output layer that are connected to neuron j.

4.1.2 Momentum

Let us consider the learning-rate parameter eta and the trajectory in wieght space computed by

the method of steepest descendet, approximated by the back propagation algorithm.

The smaller we make eta, the smaller will the changes to the synaptic weights be and the

smoother will be the trajectory in weight space. In this case, however, we will have to pay the cost

of a slower learning rate.

On the other hand, if we increase the value of eta, the changes on the weights may bring the

network to an instability status.

To avoid the danger of instability we may modify the delta rule by introducing a momentum term:

𝛥𝑤𝑗𝑖(𝑛) = α𝛥𝑤𝑗𝑖(𝑛 − 1) + 𝜂𝛿𝑗(𝑛)𝑦𝑗(𝑛) (4.35)

where a is number that takes values in the range [0,1] called the momentum constant.

Solving(4.35) for 𝛥𝑤𝑗𝑖(𝑛) and substituting (4.11) and (4.14) we may rewrite it in the equivalent

form:

𝛥𝑤𝑗𝑖(𝑛) = −𝜂 ∑ α𝑛−𝑡
𝛿𝜉(𝑡)

𝛿𝑤𝑗𝑖(𝑡)

𝑛

𝑡=0

 (4.36)

Considering the Eq. (4.36), we may make the following considerations:

1. When the partial derivate de/dw has the same algebraic sign on consecutive iterations, Dw

grows in magnitude, and so the weight w is adjusted by a large amount. Hence the

inclusion of momentum in the back-propagation algorithm tends to accelerate descent in

steady downhill directions.

2. When the partial derivate de/dw has opposite signs on consecutive iterations, Dw shrinks

in magnitude, and so the weight w is adjusted by a small amount. Hence the inclusion of

momentum has a stabilizing effect in directions that oscillates in sign.

The introduction of the momentum terms, enable the algorithm to get in gradient descent

direction faster, avoiding oscillations due to the change of the sign.

4.2 MLP functional capabilities

The capabilities of the multilayer perceptron can be wiewed from three different perspectives:

 The possibility to implement Boolean logic functions

 The ability to implement non linear transformations for functional approximations

problems

 The capability to partition the pattern space for classification problems

We will focus mainly on the last point giving an example of an application for medical decision.

5. Neural networks as medical decision support

Medical decision support with neural networks is a field exposed to a constant accelerating

evolution and this fact is proved by the growing interest in the medical literature, during the last

years.

Neural networks can play a key role in this field as they are effective at multifactorial analysis.

To be more specific, many medical decisions are made in situations in which multiple factors must

be weighted, and these mathematical tools provide an efficent manner to manage them.

The rapid development of this kind of "smart computing" is mainly due to three factors

 ever-increasing mediacal databases

 the proliferation of new medical markers

 the accumulation of experience by responsible neural network experts

An important application of neural netwoks as medical decision support is their use for prognostic

and diagnostic classification, since these computational supports can foresee the exit of a medical

operation or the progress of a diseas in an automatic and quite accurate manner.

5.1 Neural networks for risk stratification following uncomplicated

myocardial infarction

We want now to focus on a practical application of neural networks in medical decision support

systems, by presenting an example of artificial neural network for risk stratification following

uncomplicated myocardial infarction

We refer to a study about clinical risk stratification on a population of 496 patients recovering from

acute myocardial infarction.

Fig. 5.1: Characteristics of the study population

This population, whose clinical characteristics are reported in Table (5.1), had been selected on the

basis of different parameters and all patients had undergone exercise elecrtocardiography and

pharmacological stress echocardiography in random order within 14 days of the acute event off

therapy and were prospectively followed-up for a mean of 24 months.

5.1.1 Decisional process

Collected data are given as input to a feedforward neural network, made up of up to two hidden

layers composed of five to forty neurons for layer, and an output layer consisting of a sigle neuron.

To train the network it was used a function implementing the back propagation algorithm and as

activation function the logistic one had been used.

Accordingly, the output may assume any value in the range [0,1], and a validation criterion is

therefore needed to choice the continuous value to assign to one out of the N discrete values that

represent the output classes.

5.1.2 Classification

Pattern Classification is a learning task characterized by a fixed number of categories or classes,

into which input stimuli (activations) are to be classified.

To perform it, the neural network first udergoes a training session, during which the network is

repeatedly presented a set of input patterns along with the category to which each particular

pattern belongs. Then, a new pattern is presented to the network, which is part of the same

population of patterns but that has not been seen before. The problem is now for the network to

classify this new pattern correctly.

The main advantage of using a neural network consists in the fact that it can construct nonlinear

decision boundaries between the different classes in a non parametric fashion, and thereby offer a

practical method for solving highly complex pattern classification problems.

Note that pattern classification as described above is a supervised learning problem.

In the case of a network with a single output neuron, and then two output classes, an "high" value

is assigned to the elements belonging to a class, whereas a "low" value is assigned to the elements

of the other.

Fig. 5.2: Assignement criterion

The criterion consists thus, in setting a decision threshold in the range (0,1), so as to assign output

values greater than the threshold to the "high" class, and the other values to the "low" class.

Let us introduce some indexes to evaluate the quality of the classifier:

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑂𝑇𝐴𝐿

where the terms:

TP (true positives) outlines the number of patients belonging to the "high" class, that are

 correctly classified

FP (false positives) outlines the number of patients belonging to the "low" class, that are

 wrongly classified as "high" class elements

TN (true negatives) outlines the number of patients belonging to the "low" class, that are

 correctly classified

FN (false negatives) outlines the number of patients belonging to the "high" class, that are

 wrongly classified as "low" class elements

If we consider the class of patients with a particular disease as the "high" class, and the class of

the healthy patients as the "low" class:

Sensibility is the measure of the positiveness of the test, in presence of the considered desease;

Specificity is the measure of the frequency of the negativeness of the test, in absence of the

considered desease;

Accuracy of a test, outlines the rate of patients correctly classified, according to test's results.

5.1.3 Roc plots

To estabilish the value of the threshold that maximizes the probability of correct classifications we

can use the ROC plots: a ROC plot is typically graphed as a plot of sensivity on the ordinate and the

false-positive fraction on the abscissa.

Fig. 5.3: ROC plot

The optimum value of the threshold is the one associated to the point that gets closer to the

extremity (0,1) of the graph.

According to the plot, when the extremity (0,1) is reached, that means the network has correctly

classified all the patterns, since in this case we have P(TP)=1 and P(FP)=0.

5.1.4 Analysis and results of the test

Fifteen clinical (see table 5.1), exercise ECG and stress echocardiography variables were selected as

predictors of the cumulative endpoint of cardiac death, nonfatal infarction and unstable angina.

Shorts (200) days, medium (400 days) and long (1000 days) term observation intervals, including

50%, 75% and 90% of the events, respectively were considered. At each interval, any patient was

assigned to the "event" or "no event" class.

Fig. 5.4: Clinical and stress testing characteristics of patients with and without events at each observation interval

By analizing the results, we observe that the best performances are achieved when considering a

single hidden layer network and a lighter training.

Moreover, if we compare the prognostic accuracy provided by neural network (70% at 200, 67 at

400%, 64% at 1000 days respectively) with the default accuracy which was 74% at 200, 57% at 400

and 61% at 1000 days interval, we notice that 200-days classification gets the worst results,

whereas we have an improvement in the 400-days classification.

Fig. 5.5: ANNs vs default

Fig. 5.6: Outcome prediction by neural network

6. Conclusions

In this work we evaluated the computational technique of neural networks.

Based on the structure of the brain, these mathematical models can provide an efficient way to

handle multifactorial analysis, as they can employ multiple factors in solving several problems such

as prediction, classification and pattern recognition.

The main feature of the neural networks is their capability of changing the values of their internal

parameters by rearranging weights and layers, and being in this sense adaptive devices.

These changes are made according to learning rules, and we discussed a supervised learning rule:

the back-propagation algoritmh.

As far as practital aspects of neural networks is concerned, we focused on a medical application for

prognostic classification.

We studied a multilayered neural network, trained by the back-propagation algorithm, that

quantified the risk stratification for patients after uncomplicated myocardial infarction.

By changing network parameters, we may observe the different response of the network in terms

of performance measures (accuracy, sensivity and specificity).

In our example emerged an insufficent accuracy as far as short-term prognostic is concerned,

whereas a quite better performance is reached for longer-term prognostic.

We can conclude that neural network are nowadays beginning to play an important and hopeful

emerging role in medical decision system, since they can provide a methodology able to manage

the great availability of medical data, with databases rapidly expanding.

7. References

[1] Haykin S, "Neural Networks A Comprehensive foundation", MacMillan 1994.

[2] Bigi R, Gregori D, Cortigiani L, Desideri A, Chiarotto F, Toffolo G, "Artificial neural networks and

robust bayesian classifiers for risk stratification following uncomplicated myocardial infarction",

International Journal of Cardiology, Elsevier 2004; pp.481-487.

[3] Dayhoff J, DeLeo J, "Artificial neural networks: Opening the Black Box", CANCER supplement,

2001, volume 91, Number 8; pp.1615-1633.

[4] Hush D, Horne B, "Progress in Supervised neural networks", IEEE signal processing magazine,

1993; pp.8-33

