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Abstract

Recently, Hidden Markov Models (HMM) have been used to reduce the dimensionality of
complex and high-dimensional data. In particular, it is known that neural activity recorded
through electroencephalogram (EEG) displays low-dimensional global patterns of coordinated
activity, termed“microstates”. In this thesiswewill first review the frameworkofHMMto then
apply it on EEG data recorded from healthy subjects on 64 channels at rest (and during task).
Finally, we will characterize the statistics on the low dimensional space, such as the average
duration, the frequency of occurrence and the transition probabilities.

Recentemente, gli Hidden Markov Models (HMM) sono stati usati per ridurre le dimen-
sioni di dati complessi e ad alta dimensionalità. In particolare, è noto che l’attività neurale reg-
istrata tramite elettroencefalogramma (EEG) presenta pattern globali di attività coordinate a
bassa dimensionalità, chiamati ”microstati”. In questa tesi esamineremo prima il framework
degli HMMper poi applicarlo ai dati EEG registrati in soggetti sani su 64 canali a riposo (e du-
rante lo svolgimento di un compito). Infine, caratterizzeremo la statistica dello spazio a bassa di-
mensionalità, come la duratamedia, la frequenza di occorrenza e le probabilità di transizione.
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1
Introduction

Neural activity comprises networks of individual neurons that perform sensory, cognitive, and
motor functions, or perform non-trivial dynamics even when the brain is at its resting state.
Neural populationdynamics expresses howthe activity of theneural population evolves through
time and lives in principle in a high dimensional space (one dimension per neuron considered).
However, in recent years, evidence is mounting that both spontaneous [1] and during task [2]
neural activity is low-dimensional. This implies that the high dimensional neural activity in
the empirical data can be described by clusters living in lower dimensional spaces [3]. Inferring
such clusters is a complex unsupervised task, and typically can be done by use ofmachine learn-
ing algorithms.
In neuroscience, these techniques are applied both to animal [4, 5] and human [6] data, ob-
tained by different techniques (e.g., local field potential and imaging, respectively). For in-
stance, with magnetic resonance (MRI) data we are able to observe resting state networks [6].
These are macroscopic regions, co-activating in a synchronous way, even those that are struc-
turally distant to each other.

Anotherwidespread technique to studyneural activity inhumans is through electroencephalog-
raphy signals (EEG). EEG enables the identification of finite numbers of brainmaps represent-
ing simultaneous activation states of different parts of the brain, called microstates. They are
stable for 100 − 200 ms [7], with nearly simultaneous exchanges between one map at time t
and another at time t+ 1 and are typically found through clustering algorithms (e.g. k-means,
hierarchical).

However these algorithms are ”black boxes” and based on the minimization of high dimen-
sional distance among data-points.

Recently, an alternative way to find microstates has been proposed, based on a family of
stochastic process called HiddenMarkovModels (HMM).
In this work we aim to study these microstates applying the HMMmethod to EEG data.

In Chapter 2 we will give an overview of the mathematics behind HMMs, with a particular
focus on the Gaussian kind. We will also introduce the Expectation Maximization method
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(EM) to infer the hidden parameters of our HMM.
In Chapter 3, we will apply the theoretic framework of Chapter 2 to our problem of study

. We will manipulate our EEG data to infer the microstates of our system by reinterpreting
our data as signals of a HMM. Finally, we will consider their importance in the study of brain
activation states and their link to neuropsychological diseases.

In Chapter 4, all the data manipulation and experimental results will be presented. The
results will provide a reference for the properties of the microstates that we expect to find in a
healthy subject at rest.
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2
Mathematical Introduction

2.1 HiddenMarkovModels

AMarkov chain is a stochastic process described by the sequence of successive states Z = (Zn)

with n = 0, 1, 2, ... in which the value z of Zn at time n only depends on the value of Zn−1

at time n − 1. This property is called memorylessness, or Markov property. In mathematical
terms:

p (Zn|Zn−1,Zn−2, ...,Z0) = p (Zn|Zn−1) , (2.1)

where p describes the probability distribution of the random variable Zn at step n conditioned
to the previous history, that because of theMarkov property, is simply the state at the previous
time step Zn−1.

Whenever the process is in state zi at time n, there is a fixed probability, Pij (one-step transi-
tion probability), that it will be in state zj at time n+ 1:

Pij = P
(

Zn+1 = zj|Zn = zi
)

(2.2)

Since probabilities are non-negative, and since the process must move from one state to an-
other, we impose:

Pij ≥ 0 i, j ≥ 0
∞
∑

j=0

Pij = 1 i = 0, 1, ... (2.3)

A Hidden Markov Model (HMM) is a Markov chain in which the states are not directly
observable. More precisely, the chain has a certain number of states that evolve as a Markov
chain. Every state generates with a certain probability distribution a signal x from an either
continuous or discrete set, only depending on the state. The signal is observable but the state
is not. A depiction of the process is shown in Figure 2.1:
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Figure 2.1: A representation of a HMM with K = 4 hidden microstates. In black: zi are the hidden states that form the
Markov chain and the Pij are the probabilities of moving from state i to state j. Only some of them are represented in this
figure. In red: x is the observed signal at time t (it could be continuous or discrete) and P(x|zi) are the probabilities of
observing signal x at given state zi. In blue: π is the initial probability distribution while π(zi) is the probability that the
HMM will start at microstate i.

AHMM is completely determined by its three parameters (π,A,B).
Parameter A is defined as the transition probability matrix, a matrix in which each cell aji ex-
presses the probabilityPij tomove from themicrostate i to themicrostate j via subsequent time
steps.
Parameter B is defined as the emission probability P(x|z), which is the conditional probabil-
ity to observe a signal x if the hidden state is z. This probability can either be discrete (e.g. a
Bernoulli) or continuous (e.g. a Gaussian or a t-Student).
The last parameter, π, is the initial probability distribution, associated to probability of being
in the different states at time n = 0.

As states cannot be observed directly, our goal is to get information on them by observing
the sequence of signals X = (Xn).
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The signals in our study are multivariate observation sequences, that is at time t we have a
signalXt=x=(x(0), x(1), ..., x(N)), withN being the dimension of our signal. Hence, the emis-
sion probabilities are multivariate Gaussian densities and B represents the emission probability
distributions, i.e. B is a set of continuous multivariate probability distributions (one for each
state z), each dictating the probability of the HMM to generate a signal x, given the current
state z.
The probability distributions will be in the form:

P(x|z) = ND(μz,Σz) (2.4)

whichmeans that every hidden state zwill emit amultivariate signal withD-dimensional mean
μz andDxD covariance matrix Σz.

2.2 Expectation-Maximization algorithm

To learn the parameters of the HMM, namely (π,A,B), one can exploit the ExpectationMax-
imization algorithm. Given a statistical model that depends on hidden variables, the EM algo-
rithm is an iterative method to find maximum likelihood local estimates of the parameters of
the model so that the HMM generate a signal that match the empirical signal X.
Let l(θ|X,Z)be the complete-data log likelihood,whereX represents the complete signal dataset,
Z represent the corresponding hidden state sequence and θ is the unknown vector of parame-
ters that we want to find (in our study case, θ = (π,A,B)).
The iteration of the EM algorithm alternates two steps:

• Expectation (E): estimates the expected value of l(θ|X,Z), at given X, and the current
estimate on parameters θold. We define

Q : = E[l(θ|X,Z)|X, θold] (2.5)

=

∫

l(θ|X, z)p(z|X, θold)dz (2.6)

with p(z|X, θold) being the conditional density of z given the signals X andΘold is the old
vector parameter.

• Maximization (M): maximizes equation 2.5 over θ. We set:

θnew := max
θ
Q(θ|θold) (2.7)
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and then θold = θnew

These estimates of the parameters are used to determine the distribution of the latent vari-
ables at the next Expectation step. The algorithm stops after a fixed number of iterations or
when θ converges.

The hidden variables Z form the latent space that is the actual low dimensional space where
we can embed the high dimensional signal X. In the next chapter we are going to apply this
HMMmethod to EEG data.
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3
EEGmicrostates

The Hidden Markov Models will be useful to study the resting state activity of the human
brain, measured via multichannel electroencephalography (EEG). What we are looking for are
the electrical microstates of the brain, defined as “global patterns of scalp potential topogra-
phies recorded usingmultichannel EEG arrays that dynamically vary over time in an organized
manner” [8]. EEG consists in the recording of the electric potential associated to the sponta-
neous electrical activity of the brain by means of a set of N electrodes. Each one of them is
collecting data from a different region of the scalp. The observation of all the signals at once
is characterized by oscillations in time that are not completely random. Instead, it can be ob-
served a repetition of global patterns that correspond to the activation of different parts of
the brain, visualized via scalp topography maps. The scalp topographies, from now on called
maps, typically remain stable for a time period of 60-120 ms [9], then change abruptly to an-
other map. Each one of these map is correspondent to what is called a microstate and reflects
the momentary state of global neural activity, while the switching between microstates reflects
a reorganization of it over time. The sequence of microstates alternating over time can be de-
scribed by means of a HMMwhere the signals are given by a manipulation of the EEG data.

(a) Channels position (b) Scalp topography map

Figure 3.1: Panel (a) is an example, taken from our data, of a 2‐D representation of the scalp with the points corresponding
to the position of the electrodes in it. Panel (b) represents one of the possible topographical maps, with the different colors
representing a different value of the voltage.
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Figure 3.2: An example, taken from our data, of a EEG signal, with oscillation of voltage for the 64 different channels.

3.1 Problem modelization

3.1.1 Data manipulation

First of all, the signal is manipulated by calculating what is called the Global Field Power (GFP)
at each instant of time t, correspondent to the spatial standard deviation of the signal, defined
as:

GFP(t) =

√

∑N
n=1(Vn(t)− V̂(t))2

N
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with Vn being the potential at the electrode n and V̂ the mean of the potential over the N
electrodes.

What we are interested in are the peaks of the GFP (its local maxima), that represent the
instants of highest topographical signal-to-noise ratio. Inmicrostate analysis, the local maxima
of the GFP are interpreted as discrete states of the EEG and to each one of them corresponds a
different map. A clustering algorithm is then employed to group similar maps into K different
clusters. Each cluster is one of the actualmicrostates and is associated to a representative map.

The evolution of the GFP is then reinterpreted as a sequence of these microstates, with each
GFP peak mapped to the microstate that it best correlates to.

Figure 3.3: An example of microstate clustering and analysis. Multichannel EEG signal is used to calculate the GFP curve
(drawn in red). To each maximum of the GFP is associated a topographical map and a microstate. In this case 4 maps are
enough to explain most of the signal [10] and each one is labeled with a name: A,B,C or D. After that, to the maxima of the
GFP signal are assigned the microstates that they best correlate to. [11]

Different values of K explain a different value of the global explained variance (GEV), which
measures the percentage of data variance (i. e. the sum of the GFP values calculated at each
time step) explained by a given set of microstates [9]. However, even if there is a large number
of topographical maps that can explain the data, most (58−84% [9]) of the signal is usually de-
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scribed by just a few of them. Indeed, the value of K has commonly been identified in literature
to be of a few units, typically in the range 2− 15 [9, 7].

The choice of K can be made according to a variety of criteria (e.g. Marriot’s criterion, sim-
metrized distance, hierarchical clustering) andmust be performed such to reach a compromise
between the needs for specificity, that would give a higher value of GEV and that typically
benefits from a higher number of maps, and generalizability, so that the intrinsic differences
between individuals will not tamper our results.

3.1.2 Application of HMM

To infer the sequence of microstates over time from our EEG signals, we describe our data by
means of aHiddenMarkovModel. In this particular case, the hiddenmicrostates assume their
values in a discrete and finite set {z0, ..., zK−1}, while the signal X corresponds to the sequence
of the discrete peaks of the GFP.

The emission probability for state zt is described by anN-dimensionalGaussian distribution
—withN being the number of EEG channels — of means μk and covariance matrix Σk:

P(x|z) = NN(μz,Σz) (3.1)

Once the model has been formalized, via the Expectation Maximization algorithm we can
infer the emission and transition probabilities from the data.

Via the transition probabilities, the average voltage of the signal associated to a microstate
can be inferred and from a combination of that information and the transition probabilities,
the hidden sequence of microstates is reconstructed.

Finally, to understand the activity of the brain at rest or during specific tasks, from the se-
quence of microstates one would infer the following parameters:

• Mean lifetime: the average time during which a microstate is stable;

• Fractional occupancy: the fraction of time during which a microstate is active compared
to the total data acquisition time;

• Occupancy probability: the probability for a microstate to be active regardless of its du-
ration;

• Transition probability matrix: the matrix in which each entry is the transition probabil-
ity between microstates.
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3.2 Microstate study applications

In previous works [12, 13, 14], studying the brain activity microstates allowed to understand
that the brain at rest is not inactive, but active in an organized way, so that it is always ready to
process different stimuli.

It has been proven that transition probabilities are non-random [15, 16], that in people with
schizophrenia they are altered [15, 17] and that in patients with dementia the sequence of mi-
crostates is indistinguishable from a random process [18]. Therefore, “the time-course of the
information flow between different brain states is crucial for ensuring the perception of incom-
ing stimuli, proper cognitive processing and adequate action in a conscious manner” [9]. The
EEG microstate sequence can be observed at different time scales and at each of one they re-
veal the same information (scale free property). It has been observed that variations in lifetime
duration of specific microstates have been associated to several neuropsychiatric diseases, in-
dicating that failure of the scale-free property and changes in microstate lifetimes impact on
neurological and psychiatric conditions.

Different studies focused on schizophrenia [19, 20, 15, 18], both in medicated and unmed-
icated patients, as well in patients with hallucinations and in people at risk of developing the
disease. These studies used K=4 and the microstates were named A, B, C and D. It has been
observed, in patients with schizophrenia, that microstate C appears more frequently and that
microstates B,Dmean lifetimes are shorter. Based on the studies of microstates in altered states
of consciousness (e.g. hypnosis, meditation, sleep), it seems that there is a functionally relevant
balance between states C and D and that “a preponderance of microstate C may result in a
progressive detachment of mental states from environment input” ([9]).

Other applications of microstate analysis were used for other diseases e.g. narcolepsy, de-
mentia, panic disorder, head injury, diplegia, stroke and multiple sclerosis. In most of these
cases a decrease in duration of C and changes in A and B have been observed, while the balance
between C and D seems to be conserved. This suggests that variations of C and D are specific
to schizophrenia.
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4
Data analysis

4.1 Experiment setup and data preprocess

Thedata used in our experimentwere collected from44healthy subjects at rest, via a 64 channel
electrode cap, at a frequency of 500 Hz and filtered through a bandpass filter with range 1 −
100Hz.
Afterwards, the data were cleaned via artifact removal algorithms, used to remove the main
sources of interference in our EEG data, specifically ocular, muscular and cardiac artifacts.
Additional preprocessing done on every subject data:

1. A 4− 30Hz bandpass filter was applied;

2. The signal was downsampled, meaning that the sampling rate of the signal was reduced,
at 200Hz;

3. The amplitude envelope was calculated via the Hilbert transform;

4. The signalwasdownsampled again at 40Hzwith a slidingwindowof 100ms (20 timestep)
with 75% overlap;

5. Standardizationwas applied: from the signal it was subtracted the average and afterward
it was divided by the standard deviation;

6. The data of every subject was concatenated in a single array;

7. Thedataset dimensionalitywas reduced via PrincipalComponentAnalysys (PCA) from
N = 64, the number of electrodes, toM = 10. The value ofN of the previous chapters
will be from now onM = 10, and every dimension j ∈ (0, ...,M − 1) will be referred
to as channel j;

8. The whitening transformation was applied.

PCA is a dimensionality-reduction algorithm, used to infer from large set of variables a
smaller set that still containsmost of the previous information. Someof the variables belonging
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to the set obtained by PCA could be correlated with each other then, via whitening transfor-
mation, we obtain a set of uncorrelated variables each of variance 1.

All the preprocessing was done by Dr. Barzon of LIph LAB.
The data that we obtain after the preprocess was a 10 dimensional array, lasting 440000

timesteps which corresponds to more or less 3 hours.

Figure 4.1: An example of the data obtained after the preprocess. Only a part of it is shown to clearly see the signal

4.2 Data analysis

The dataset obtained after the preprocess (a fraction of which is shown in Figure 4.1), is used
as the signal in our HMM. K, the number of microstates, was chosen as equal to 6, following
a choice made in different studies (e.g. [7]). The microstates are referred to as 0, 1, 2, 3, 4, 5.
After fixing K, we implemented the EM algorithm, from which we inferred the mean voltage
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(Table 4.1) and the covariance matrix (Figure 4.3) for each microstate. The algorithm was run
for 50 iterations andwe see in Figure 4.2 that it converges after 10− 15 iterations. In Figure 4.2
the log probability is another way of calling the log-likelihood l(θ|X,Z), introduced in chapter
2. The results are shown below:

Figure 4.2: Plot of the log probability versus the step in the EM iteration, created to visualize the converge of the EM
algorithm, with the number of maximum iterations set at 50. We see that it converges after the first 10− 15 iterations.

Channel State 0 State 1 State 2 State 3 State 4 State 5
1 −0.2± 0.7 2± 1 0.1± 0.8 0.3± 0.8 0.0± 0.8 −0.9± 0.6
2 0.2± 0.9 1± 1 −0.3± 0.9 −0.6± 0.9 0.6± 0.9 −0.2± 0.7
3 0.3± 0.9 0± 1 0.3± 0.9 −0.9± 0.8 0.3± 0.9 −0.1± 0.7
4 0.6± 0.8 0± 1 −0.7± 0.9 0.2± 0.9 0.0± 0.9 −0.1± 0.7
5 0.2± 0.9 0± 1 0± 1 0.0± 0.8 0± 1 −0.1± 0.7
6 −0.1± 0.9 0± 1 −0.2± 0.9 0.2± 0.9 0± 1 −0.1± 0.7
7 −0.7± 0.8 0± 1 −0.2± 0.9 0.1± 0.8 0.8± 0.9 0.1± 0.7
8 0.4± 0.9 0± 1 0.2± 0.9 0.0± 0.9 −0.2± 0.9 −0.1± 0.7
9 −0.1± 0.9 0± 1 0.2± 0.9 0± 1 0± 1 0.0± 0.7
10 0.0± 0.9 0± 1 −0.4± 0.9 0.2± 0.9 0± 1 −0.1± 0.7

Table 4.1: Mean voltage and standard deviation associated to each state and each channel. Each entry is expressed inmV
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Figure 4.3: The covariance matrices, one for every microstate. Each entry is a different channel. Colorbar is inmV2

Another thing we can infer through the EM algorithm is the transition probability matrix,
also known as the parameterA of our HMM.

Figure 4.4: Plot showing the log transition probability matrix between state at time t and state at time t + 1. It’s clearly
visible that a state almost always evolves into itself, and if we tried to compute the normal transition probability matrix we
would just see the principal diagonal being different from all the other entries. For a better visualization of the processes, we
need to compute the log matrix
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From these results, we can finally infer the sequence of hidden microstates of the whole
dataset.

Figure 4.5: Plot of the sequence of microstates. Each color corresponds to a different microstate.

We then calculate some typical parameters of microstate analysis: themean lifetime in Fig-
ure 4.6, the occupancy probability in Figure 4.7 and the fractional occupancy in Figure 4.8.
Noting the presence of values in our dataset that are far from the mean, we remove outliers

by considering as such the numbers that are more than 1.5 times the interquartile range (IQR)
away from themean. We define quartiles as those values that divide the data into four portions,
each containing approximately the same amount of points. 25% of the data is below the first
quartile and 75% of the data is below the third quartile. The IQR is a quantity defined as the
difference between the first and third quartiles. Thus, within the IQR there will be 50%of the
data, those that we consider most relevant to our statistics.

Figure 4.6: Violinplot showing the microstate mean lifetime. The white dot indicates the median, the thick black line is the
IQR, the thin black line is 1.5∗IQR and the colored shapes the probability density of the variable, simmetrically mirrored
along the y axis.
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Figure 4.7: The plot of the occupancy probability of every microstate. The data is represented as before.

Figure 4.8: The plot of the fractional occupancy of every microstate.The data is represented as before.

Finally, we infer from the sequence in Figure 4.5 the activation and deactivation array of
each state over time, meaning an array that is 1 if the microstate at that time step t is active, 0
otherwise. Once for everymicrostate, every time step of its activation/deactivation arraywill be
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correlated to the correspondent time step in each one of the 64 channel of the original dataset,
obtaining at the endK = 6 arrays of correlation coefficients, shown below.

Figure 4.9: The plot of the 6 correlation coefficients with respect to the channel.

This lets us knowwhich electrodes, and consequentlywhichparts of the brain, are active dur-
ing the activation of a certain microstate, and we infer the topographical maps in Figure 4.10.

Figure 4.10: The topographical maps associated to each microstate. Red is associated with a +1 correlation coefficient
between the activation and the signal arrays, meaning an activation of that part of the brain in that microstate, while blue is
associated with−1 and a deactivation of that part of the brain.
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5
Discussion

First of all, we proved the EM algorithm used to infer the HMM parameters A and B, respec-
tively the transition probability matrix and the emission probabilities, converges very quickly,
after the first 10− 15 iterations, as can be seen in Figure 4.2.
We then found via the transition probability matrix that if a microstate is i at time t, it will re-
main i at time t + 1 with a probability close to 1. This is explained by the fact that for most of
the time themicrostates are stable and that the switching between two of them is practically in-
stantaneous. Another interesting fact we can infer from the matrix is that State 1 almost never
evolves into State 5, and vice versa.

The inferred mean lifetimes and fractional occupancies are reported below (mean ± stan-
dard deviation):

Microstate Mean lifetimes (ms) Fractional occupancies (%)

0 160± 70 17± 9
1 200± 70 11± 3
2 150± 70 19± 7
3 150± 70 18± 6
4 180± 70 13± 9
5 210± 70 21± 5

Table 5.1: Mean lifetimes and fractional occupancies with STD of each microstate.

Comparing the results obtained byCoquelet et al. [7] where 6 microstates were employed as
well, it can be appreciated that the average durations of each microstate are in the same 130 −
230 ms time range and that the fractional occupancies are also compatible, even if it is not
possible to map 1 : 1 their microstates with those obtained from our dataset.
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Figure 5.1: Results for mean lifetimes and fractional occupancies for each microstates from Coquelet et al. [7], reported with
their standard deviation. Here the microstates have a different label butK is still equal to 6 [7]

Finally, a comparison canbemadebetween the activation areas highlightedbyourmicrostates
(red in Figure 4.10) and the functional areas of the cerebral cortex, shown in Figure 5.2.

Figure 5.2: A representation of the functional areas of the cerebral cortex, from the side and from above. [21]
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The microstates which have brain activation areas clearly correspondent to functional areas
of the cerebral cortex are S0, S1 and S3. In particular, the functional areas implicated in these
states are (the numbers corresponds to the ones in Figure 5.2):

• Visual area (1): corresponds to the occipital lobe and is responsible of sight, image recog-
nition and image perception;

• Association area (2): corresponds to the temporal lobe and is responsible for short term
memory, equilibrium and emotion;

• Motor function area (3): located between the parietal lobe and the cerebral cortex, re-
sponsible for the initiation of voluntary muscles;

• Sensory area (9) : located in the parietal lobe, it’s responsible for encoding the sensations
frommuscles and the skin;

• Somatosensory association area (10): it’s in the parietal lobe and it’s responsible for the
evaluation of parameters (e.g. weight, texture, temperature) for object recognition;

• Motor function area (12): corresponds to the cerebral cortex and is responsible for eye
movement and orientation;

• Higher mental function area (13): it corresponds to the frontal lobe and is responsible
of things as concentration, planning, creativity, inhibition, judgment and emotion ex-
pression.

Area
State

0 1 3
Visual(1) ⋆ ⋆

Association(2) ⋆ ⋆

Motor function (3) ⋆

Sensory (9) ⋆

Somatosensory association (10) ⋆

Motor function (12) ⋆

Higher mental function (13) ⋆

Table 5.2: Activated functional areas (indicated by ⋆) for microstates S0, S1, S3
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6
Conclusion

The goal of this research was to study the brain activity of healthy subjects at rest. We applied
the HMM and an EM algorithm to reduce the dimensionality of a 64-channel EEG. By doing
this we showed that the signal displays low-dimensional global patterns of coordinated activity,
termedmicrostates.

After fixing the number of microstates at K= 6, we inferred from our data the statistics of
the low dimensional space. In particular, we inferred the average duration, the frequency of
occurrence, the occupation probability of each microstate, as well as the transition probability
matrix.

Finally, we visualized the topographicalmaps of eachmicrostate and correlated someof them
to the different functional areas of the cerebral cortex.
Our research proved that different areas of the brain, even if distant and not connected, activate
at the same time for short periods of time. This leads us to conclude that the brain, even when
at rest, is always ready to react to different stimuli.

In futurework, themodel couldbe improvedby inferring thenumberofmicrostates through
Bayesian data-driven methods, or according to the procedures analyzed by Pohle et al. in [22].
In fact, in our case we just set the number of microstates based on previous literature, without
further explorations.

Despite these limitations, we were able to provide a reference for the microstates and their
properties that we expect in healthy subjects at rest. In future work, these could be used as
biomarkers to distinguish healthy subjects from those with neuropsychiatric diseases, or to dis-
tinguish subjects at rest from those who are performing tasks.
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