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Abstract

This thesis explores one possible application of the concept of In Situ Resource Utilization (ISRU)
for space exploration: the transport and handling of regolith through the use of vibratory con-
veyors. A vibratory conveyor with piezoelectric actuators was identified as being the ideal setup
for use on the surface of the Moon, due to its low-power requirements and low number of mov-
ing part. An experimental campaign was conducted on the model, investigating the effect of
vibration amplitude, frequency, and trough inclination on the bulk material flow, constituted of
monosized glass sphere. The results showed a more than linear relationship between frequency
and transport time, highlighting the effect of resonance in the conveyor discharge flow. A Discrete
Element Method (DEM) simulation was developed as a digital twin of the setup. The numerical
model was validated with both analytical and experimental results showing good accordance
with real-life experiments, with the model being able to predict the evolution of mass flow and
transport speed due to the variation of actuation frequency. The DEM model was then used to
obtain new results in the low-gravity environments of the Moon and Mars, resulting in the ob-
servation of a much higher predicted mass flow than what observed under Earth’s gravity. This
thesis provides a basis for the development of a more advanced simulation setups to help in the
design of vibratory conveyors specialized for ISRU on extraterrestrial environments.



Abstract

Questa tesi si focalizza su una possibile applicazione pratica del concetto di In Situ Resource
Utilization (ISRU) nell’ambito dell’esplorazione spaziale: il trasporto e la gestione della regolite
lunare tramite l’utilizzo di trasportatori vibranti. I trasportatori vibranti, attuati tramite attua-
tori piezoelettrici, sono stati identificati come soluzione ideale per future operazioni logistiche
sulla superficie lunare, grazie al loro basso consumo energetico e al ridotto numero di compo-
nenti mobili soggetti all’erosione causata dalla regolite. Al fine di comprendere le capacità di
trasporto di tali strumenti, è stata condotta una campagna sperimentale su un modello in scala,
studiando le variazioni del comportamento di trasporto del materiale in base all’ampiezza e alla
frequenza di vibrazione, nonché all’inclinazione del trasportatore stesso. I test sono stati effet-
tuati utilizzando un particolare materiale granulare composto da sfere di vetro di dimensioni
uniformi e conosciute, al fine di limitare la variabilità sperimentale. I risultati hanno dimostrato
una relazione non lineare tra la frequenza di vibrazione e il tempo totale di trasporto per una
determinata quantità di materiale, evidenziando l’effetto positivo della risonanza meccanica tra
l’attuatore e i giunti elastici sul flusso di scarico del trasportatore. Allo stesso tempo, è stato
sviluppato un modello numerico basato sul Discrete Element Method (DEM) per simulare il com-
portamento del setup sperimentale. Il modello numerico è stato implementato utilizzando il
linguaggio di programmazione scientifica ad alte prestazioni Julia e successivamente validato
utilizzando sia risultati analitici che sperimentali, mostrando una buona corrispondenza con i
risultati ottenuti dagli esperimenti. La simulazione è stata in grado di predire con un buon liv-
ello di precisione l’evoluzione del flusso di massa trasportato e della velocità di trasporto in base
alla variazione della frequenza di vibrazione. Una volta calibrato e validato, il modello DEM è
stato utilizzato per ottenere nuovi risultati sulle prestazioni di tali sistemi in ambienti a bassa
gravità, come la superficie della Luna e di Marte. In generale, per tali ambienti, è stata osservata
una previsione di flusso di massa molto più elevata rispetto a quella prevista in gravità terrestre,
a causa delle diverse interazioni tra le particelle, le vibrazioni di attuazione e l’accelerazione di
gravità locale. Questa tesi si propone di fornire una base per lo sviluppo ulteriore di simulazioni
più avanzate, che possano fungere da strumenti di supporto nella progettazione di trasportatori
vibranti specializzati per l’ISRU in ambienti extraterrestri.



LIST OF FIGURES 2



Chapter 1

Introduction

The ability to efficiently perform In Situ Resource Utilization (ISRU) is a critical requirement for
long-term exploration of the Moon and Mars, where the establishment of a future planetary base
is becoming more and more of a reality. ISRU is the process of using the resources found on a
planet or moon to support human exploration, settlement, and scientific advancement. This is an
essential approach to the exploration of celestial bodies where transporting materials from Earth
can be difficult and expensive. A variety of materials can be useful to humans: water found on the
surface of a planet can be processed into breathable oxygen and fuel, while other resources such
as metals, minerals, and gases can be used in a wide range of construction and manufacturing
processes. By harnessing and utilizing locally available resources, ISRU can help reduce the cost
and risk of space exploration and enable humans to establish sustainable bases on other planets.

In this process, solving the problem of material conveyance proves to be an essential necessity,
especially for granular materials such as lunar regolith. Considering the constraints that exist
on the lunar surface, a vibratory conveyor proves to be a more suitable logistical solution for
transporting bulk materials than a belt conveyor due to its simple configuration, low number
of moving parts, and reduced energy consumption [1]. In addition, this type of system can be
manufactured from heat- and corrosion-resistant materials, making it an ideal solution for harsh
environments such as the lunar surface. Therefore, a vibratory conveyor was chosen as an ideal
candidate to solve the problem of bulk material handling for ISRU application. A particularly
interesting application for vibratory conveyors is their use as a sensor feed system in rovers or
other planetary installations, where a small and precise amount of material is required, necessi-
tating a precise flow control system. In particular, piezoelectric actuators were chosen as the main
actuation system for the conveyor since, being practically devoid of moving parts, they offer the
best chance at surviving the harsh erosive effect of lunar regolith.

While the utilization and study of these logistic solutions has been going on for decades, their
operation in extraterrestrial environments is still an open research field, with a lack of availability
of experimental data on which to base the design of future systems. Therefore, the development
of a suitable simulation code is of high research interest, allowing researchers and engineers to
test and predict the behavior of their systems without the need to build expensive experimental
setups for each iteration. Simulations prove to be an invaluable tool in the early design phase,
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where many different configurations and designs need to be tested, making this process much
faster than it would be if there was a need to experimentally test all the different approaches. In
the case of bulk solids, the most common simulation algorithms are based on the Discrete Element
Method developed by Cundall in 1979 [2]. Many different variations have been devised over the
years, but the basic idea has remained the same: to simulate the evolution of bulk materials by
computing and evolving over time the motion of thousands of virtual particles that can collide
and interact with each other.

Therefore, this thesis will focus on both aspects of the problem: on the one hand, a large part of
the work will be focused on the study of vibratory conveyors and on an extensive experimental
campaign carried out on an existing conveyor setup, while at the same time, a discrete element
model simulation code will be developed from scratch to be used as a new tool for the preliminary
study of these systems. The newly acquired experimental knowledge on the discharge behavior
of vibratory conveyors will be used to calibrate the numerical model and to validate its results,
providing insight into the errors introduced by the simulation code with respect to the experi-
mental data. Finally, the calibrated model will be used to simulate the performance of vibratory
conveyors installed under lunar and Martian gravity, providing new insights into the possibil-
ity of using these systems for ISRU applications. The main topic of interest will be the analysis
of the effect of different actuation parameters on the transport performance of the system, with
particular emphasis on the possibility of controlling the discharged mass flow via simple control
systems acting on the frequency and amplitude of the excitation system.

1.1 State of the art

Vibratory conveyors have been in use for over a century, with the first patent filed in 1886 by
Oliver Evans for a vibratory feeder. However, it wasn’t until the 1950s that vibratory conveyors
became popular for industrial use due to their ability to efficiently transport materials while being
low maintenance and durable.

In a vibratory conveyor, a vibration motor generates a force that causes the conveyor to vibrate,
which, in turn, propels the material along the conveyor bed. Such conveyors can be designed
to move materials in a straight line or to rotate them in a circular motion, offering a versatile
solution commonly implemented in various industrial settings. Indeed, vibratory conveyors,
often referred to as vibration feeders, are used across many different industries, including food
processing, pharmacy, mining, and recycling. One of their key advantages lies in their capability
to handle a wide range of materials, from powders to large pieces, while being relatively low-
maintenance and easy to clean. This is primarily attributed to the presence of fewer moving
parts compared to other types of mechanical conveyors. They can also operate at high speeds
and with high precision, making them ideal for applications where accuracy is critical, as well as
being relatively energy efficient [3]. In recent years, advances in technology have led to numerous
improvements in the design of vibratory conveyors: the use of electromagnetic drives has allowed
more precise control of vibration frequency and amplitude [4] [5], while the use of advanced
materials and coatings has improved the durability and longevity of this type of system.

On the other hand, the evolution of simulations regarding the behavior of bulk materials is still
an open field with a lot of research efforts still dedicated to it. The Discrete Element Method
(DEM) has been used for decades to model the behavior of granular materials with an increasing
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level of detail. In a DEM approach, bulk solids are treated as a collection of discrete particles,
each governed by the laws of mechanics, that can move and interact freely in a meshless en-
vironment. This numerical model was first developed by Cundall and Strack in 1979 [2] and
applied to the study of geomechanics. These early approaches made use of virtual rigid disks,
as they were initially limited to two-dimensional simulations, but as time went on and the com-
putational resources available increased, Cundall proposed a new three-dimensional approach
in 1988 [6] which made use of rigid spheres. At the same time he worked on another aspect of
the problem resulting in the paper by Hart et al [7] which presented the first implementation of a
discrete element model code that could work with two-dimensional polygons of arbitrary shape,
paving the way for much more complex and realistic simulations. These new methods quickly
evolved to handle three-dimensional polyhedral particles with both rigid and elastic material re-
sponses. As the technique evolved and matured, it was applied to various fields of research and
engineering, ranging from engineering mechanics, to the study of rocks and soils. It has been
applied to the study of statistical micromechanics by Cundall [6], to the study of the behavior of
granular soils by Ting et al. [8], and to the analysis of the structure in jointed rocks by Morris et
al. [9].

Due to its flexibility, DEM is ideally suited to implement more sophisticated particle interactions
in the simulation, such as long-range electromagnetic effects. An example of this application
was first proposed by Laurentie et al. [10], who implemented a tribocharging model in a two-
dimensional DEM simulation to study its effect on polyamide and polycarbonate particles in a
vibrating bed. The work was further developed by Rasera et al. [11] who extended the tribocharg-
ing model to three-dimensional DEM simulations. All these approaches in different topics show
the incredible flexibility and power of this kind of computational simulations, which prove to be
an invaluable tool to study the behavior of bulk and granular materials.
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Chapter 2

Theoretical Background

This chapter delves into the fundamental physical principles necessary for the development and
implementation of the methods presented in the subsequent parts of this thesis. The focus cen-
ters on the theory background essential for comprehending the Discrete Element Method (DEM)
which utilizes a collision model that incorporates springs and dampeners to simulate particle
interactions. Therefore, a clear understanding of the underlying physical laws holds significant
importance for the thesis continuation.

Furthermore, the chapter explores the concept of the harmonic oscillator, a fundamental model
employed to study systems exhibiting periodic motion. This system is relevant to the Discrete El-
ement Model implementation due to the fact that inter-particle interactions mimic the behavior of
a dampened harmonic oscillator. The chapter further discusses the distinctions between damped
and undamped oscillators and their applications in various physical systems, with the hope of
providing a clear and solid understanding of the physical principles underlying these models.

2.1 Spring, dampeners and harmonic oscillators

As will be explained in the following chapters, the theoretical impact model for DEM simulations
describes the interaction between two particles with a mass-spring-damper model. It is therefore
useful to quickly present here the mathematical description of these two key components, the
spring and the dampener, to provide a complete theoretical background to understand the inner
workings of the simulation algorithm.

2.1.1 Springs

Springs are common mechanical components utilized in a wide range of applications, such as sus-
pensions, shock absorbers, and mechanical watches. They consists of an elastic, but still largely
rigid, material shaped into a particular form that can return into its original shape after being
compressed or extended. The amount of energy stored is directly proportional to the degree of
deformation. In an ideal scenario, where the spring possesses a perfectly constant stiffness, it ex-
erts a force that corresponds to its change in length. but, in the real world, this relationship is still
applicable in the case of small deflections. To quantify the behavior of a spring, we introduce the

7
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concept of the spring constant. The spring constant represents the ratio between the mechanical
deflection of the spring and the force generated and it is typically dependent on the geometry
and material properties of the spring. The spring constant is typically expressed in units of force
divided by distance, such as Newton per meter (N m−1).

The mathematical description of an ideal spring follows Hooke’s Law, which states that the force
with which the spring reacts to the deformation is linearly proportional to the distance from its
equilibrium length:

F = −kx (2.1)

where x represents the displacement, k is the spring constant and F is the exerted force. This
description can be considered a good representation of the behavior when the springs are not
stretched or compressed beyond their elastic limit.

2.1.2 Dampeners

Dampeners, also known as dashpots, are another class of mechanical devices that resists motion
via viscous friction employing this effect to dissipate energy. They are often used to reduce the
amplitude of oscillations in mechanical systems and to prevent damage caused by excessive vi-
brations. The analysis of dampers is a little more elaborate compared to the one of springs since
it is necessary to consider peculiar properties such as damping coefficient, damping ratio, and
energy dissipation.

The main descriptor for typical viscous dampeners is the damping coefficient that is the defined
as the ratio between the force applied by the dashpot and the velocity with which its output is
moving:

c =
F

v
(2.2)

where F is the force and v is the velocity of the damper. The energy dissipated per unit time by a
dampener is proportional to the damping coefficient and the square of the velocity:

P = cv2 (2.3)

Another important coefficient that helps to describe the behavior of this component is the damping
ratio, which is used as an indication of the effectiveness of a damper in reducing the amplitude of
oscillations in a particular mass-spring-dampener system. This parameter is defined as the ratio
between the aforementioned damping coefficient c and the critical damping coefficient ccr that
will be better defined in the next chapter.

ζ =
c

ccr
=

c

2
√

mk
(2.4)

2.1.3 Harmonic oscillators

The combination of a mass, a spring and, eventually, a dampener, generates one of the most
basic model used in physics, the harmonic oscillator. This kind of models can be applied to wide
variety of natural events and can be used to describe pendulums, acoustical systems, RLC circuits
or waves. Typically an harmonic oscillator is a system that, when displaced from its equilibrium
position is subjected to a restoring force F that is oriented in such a way to push the system back to
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its equilibrium position. This kind of systems can be either an ideal oscillator, with no frictional
forces, or a dampened oscillator, where some kind of damping proportional to the velocity is
added to the system.

Simple harmonic oscillator

A simple example of an harmonic oscillator could be a mass connected on a spring bouncing back
and forth without any kind of friction. In general an harmonic oscillator is a system that is neither
driven nor damped, that is to say that there are no other forces acting on the mass apart from the
restoring force F which always tend to pull the mass m towards the direction of the equilibrium
point (x = 0) with a magnitude that depends only on the position x of the mass and a constant k.
By imposing the balance of the forces, as per Newton’s second law, the system yields:

F = ma = m
d2x

dt2 = −kx (2.5)

By solving this differential equation it is possible to obtain the equation of motion for the point
mass:

x(t) = A cos(ωt + ϕ) (2.6)

where ω is the angular frequency of the harmonic motion, defined as:

ω =

√

k

m
(2.7)

This motion, being described by a sinusoidal function, is periodic with a period T = 2π/ω and
frequency f = 1/T, and a constant amplitude A. The position at a given time also depends on
the phase ϕ, which is used to determine the starting point on the sine wave. From Equation 2.7 it is
clear that the period and the frequency of the oscillation depend on the mass m and the constant
k, while amplitude and phase are determined by the starting conditions. The total mechanical
energy stored in an harmonic oscillator is constant over the course of the movement, since there
is no kind of energy dissipation, while the potential energy in a generic position x is expressed as:

U =
1
2

kx2 (2.8)

Damped harmonic oscillator

The harmonic oscillator that are observed in real life always shows signs of friction and/or damp-
ing, that progressivly slows the motion of the system toward an equilibrium point. In this sce-
nario, in addition to the aforementioned restoring force, the mass is subject to a new frictional
force that is acting always against the direction of motion. The friction force Ff can typically be
modeled as proportional to the velocity v of the object, according to a proportionality term called
damping coefficient c:

Ff = −cv (2.9)

Just as before, to analyze the system, it is useful to impose the balance of the forces, according to
Newton’s second law:

F = −kx − c
dx

dt
= m

d2x

dt2 (2.10)
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2.2 Inclined plane

The problem of studying the motion of objects moving along an inclined plane is a classic physics
problem. It involves an object that is sliding down an incline of tilt θ due to the effect of gravity.
The problem can include, or not, the presence of friction between the object and the surface. Its
solution is straightforward and requires the use of some trigonometry and the laws of motion.

The first step in the solution of this problem is to draw a free body diagram of the object on the
tilted plane, as in Figure 2.2. In the diagram the force of gravity is acting on the center of mass of
the object, creating its weight force P⃗, always acting vertically downward. Along the surface of
the incline, in a direction opposed to the one in which the object is sliding, it is possible to observe
the presence of a frictional force f⃗a. Firstly, the weight can be resolved in its two components: one
parallel to the inclined plane P⃗∥ and the other perpendicular to the surface P⃗⊥. The component
of the weight that is parallel to the inclined plane surface is the force that is dragging the object
down the incline, while the perpendicular component is equal and opposite to the normal force.
These two components can be computed with simple trigonometry as:

P⃗∥ = P⃗ sin(θ) = mg sin(θ) (2.12)

P⃗⊥ = P⃗ cos(θ) = mg cos(θ) (2.13)

Where m is the mass of the object and g is the gravitational acceleration constant.

In the presence of friction between the object and the surface, it is important to consider both
types of frictional forces: static friction, opposing the motion of the object while it is at rest, and
kinetic friction, which opposes the motion of the object while it is moving. The magnitude of the
static frictional force is given by:

Fstatic ≤ µsP⊥ (2.14)

where Fstatic is the static frictional force, µs is the coefficient of static friction, and P⊥ is the mag-
nitude of the normal force. If the force dragging the object down is less than or equal to the
maximum static frictional force, the object will remain at rest while, if the applied force is greater
than the maximum static frictional force, the object will begin to move.

The magnitude of the kinetic frictional force is given by:

Fkinetic ≤ µkP⊥ (2.15)

where Fkinetic is the kinetic frictional force, µk is the coefficient of kinetic friction, and P⊥ is the
normal force. It is important to remember that the kinetic frictional force always acts in the oppo-
site direction to the motion of the object. In the case of a non-rolling objects, the solution is pretty
much done at this point. If P∥ results to be bigger than Fstatic, the object will start to slide down
the incline. Knowing that, it is possible to sum the two forces that are acting along the inclined
surface P∥ and fa = Fkinetic to obtain the total net force acting on the object Fnet = F∥ − fa. By using
Newton’s second law it is possible to compute the downward acceleration of the object as:

a =
Fnet

m
(2.16)

The other important configuration is the one considering a rolling motion, without slipping, as
in Figure 2.3. This kind of motion is the one observed for example in a disk rolling down an
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Figure 2.2: Force decomposition for a non ro-
tating object on an inclined plane

Figure 2.3: Force decomposition for a rotating
object on an inclined plane

incline with enough surface static friction to guarantee that the condition of ideal rolling motion
is satisfied. The presence of friction is what enables the disk, in this example, to roll down without
slipping thanks to a torque generated by friction itself on the disc. Given the equilibrium of the
forces, following Newton’s second law:

P∥ − fa = ma (2.17)

=⇒ mg sin(θ)− fa = ma (2.18)

it is possible to express the torque τ acting on the disk as:

τ = faR = Iα (2.19)

where R is the radius and I is the inertia moment of the disk, while α indicates the angular
acceleration generated by the torque on the disk itself. Knowing that the object is rolling without
slipping it is possible to link the angular and linear acceleration to each other through the radius
R as:

α =
a

R
(2.20)

Knowing that, for a disk, the moment of inertia is equal to I = 1/2mR2, it is possible to substitute
the definition of α in Equation 2.19, obtaining:

faR =
1
2

mR2 a

R
(2.21)

=⇒ fa =
ma

2
(2.22)

By substituting the expression of the frictional force in Equation 2.18 it is possible to solve for the
acceleration of the disk:

mg sin θ − ma

2
= ma (2.23)

mg sin θ =
3
2

ma (2.24)

a =
2
3

g sin θ (2.25)
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2.3 The nature of bulk materials

Bulk solids, or bulk materials, are a class of materials composed of a large amount of particles
of possibly different size, chemical composition, density and shape, that are grouped together to
form a bulk. The mechanical behavior of these materials depends upon many different factors but
the main ones can be identified as the size, the shape and the density of the particles comprising
the bulk.

Understanding the nature of bulk solids is essential when designing equipment for its handling
or storage since these materials present some peculiar characteristics that are not often found in
others. That is why this this chapter will focus on a broad overview of bulk solids with the aim
of providing a starting base for the evolution of this work.

In the case of bulk solids, the first big difference with other classes of materials is the fact that it is
possible to characterize them on two levels:

1. By features describing the behavior of the material in its bulk form, such as the flow prop-
erties, moisture content, compaction behavior and electrostatic charging

2. By features describing the characteristics of the constituent particles such as their density,
hardness, size, shape and texture

Both approaches will be explored more in depth in this chapter, focusing on achieving a basic
understanding of the main numerical parameters used to describe both bulk materials in their
bulk form and their constituent particles.

2.3.1 Voids and bulk density

When considering a bulk solid as an arrangement of particles of different shapes and sizes packed
together, it is easy to see how there will always be a certain amount of free space between them.
The percentage of the total volume not occupied by the particles is the first important parameter
for the description of this class of material and is usually referred as voidage or void fraction ϵ. It is
computed as:

ϵ =
Vvoids

Vpart + Vvoids
(2.26)

It is obviously possible to use the complementary term, the fractional solid content computed as
(1 − ϵ). The void fraction is obviously subject to continuous changes as the bulk moves around,
so its value is typically considered to be the voidage in static conditions, with the material at rest.
It is important not to confuse the void fraction of the bulk solids with the porosity, which is a term
usually used to describe the ration of the volume of pores within a single particle of the bulk, with
respect to the particle’s total volume.

Typical values of voidage in static bulk materials composed of spheres of the same size can range
from about 0.26 for a regular tridimensional hexagonal packing (Figure 2.4a), to around 0.48 for
regular cubic packing (Figure 2.4b). In general the voidage usually lies between these two ex-
tremes, with a high voidage value corresponding to a loosely packed bulk. This parameter heav-
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(a) Regular 3D hexagonal arrangement: ϵ =
0.26

(b) Regular 3D cubic arrangement: ϵ = 0.48

Figure 2.4: Possible regular packing arrangements for spherical particles of the same size

ily depends on the shape and size of the constituent particles since, bulks composed by extremely
irregular shapes with small particles, can present much higher void fractions.

The presence of voids in the bulk will make it so that the bulk material will present a macroscopic
density that is different from the one of its constituent particles. This apparent density is usually
called bulk density ρb and can be naturally defined as the ratio between the mass of the material
and its total volume, comprising the voids:

ρb =
msolids + mvoids

Vsolids + Vvoids
(2.27)

If the density of the fluid ρ f that is filling the voids and the density of the particles ρp are known,
it is possible to obtain the bulk density as:

ρb = (ρp − ρ f )(1 − ϵ) + ρ f (2.28)

In the case of dry bulk solids in a terrestrial environment the voids are usually filled with air
and thus the effect of the fluid’s density ρ f would be negligible compared with ρp, so that the
relationship between bulk and particle density can be rewritten as:

ρb = ρp(1 − ϵ) (2.29)

This equation proves to be valid in vacuum environment, since the voids can be considered al-
most completely empty with ρ f ∼ 0.

As previously noted, both the voidage and the bulk density are dependent on the packing ar-
rangement of the bulk. It is thus necessary to pair any stated value of the bulk density with
an indication of the condition of the material at the time of measurement. Usually the main two
configurations are the loose or poured state, where the bulk material was simply poured in the mea-
suring device, and the packed state, where the material was packed by dropping the measuring
cylinder a couple of times on to a table.
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Table 2.1: Qualitative categorization of bulk materials’ particle size

Descriptive term Typical size range Examples
Coarse solid 5-100 mm Coal, aggregates, ecc
Granular solid 0.3-5 mm Granulated sugar,rice, cereals, ecc

Particulate solid:
Coarse powder 100-300 µm Table salt
Fine powder 10-100 µm Icing sugar
Superfine powder 1-10 µm Face powder
Ultrafine powder <1 µm Paint pigments

The determination of the density of the constituent particles, on the other hand, can prove to be
particularly difficult, since it requires knowledge of the total particle volume not including the
voids. This measurement can be easily obtained when considering larger particles, since it is only
necessary to measure the volume of liquid that is displaced by a known mass of particles poured
in a measuring cylinder. However, it can prove to be particularly challenging to obtain this value
in the case of fine powders that could also face some partial solubilization in the chosen reference
liquid. To analyze this types of particles it is almost always necessary to utilize a air-comparison
pycnometer [12], a commercially available instrument that works by comparing the buoyancy of
a known volume of air with that of the sample, which is placed inside a sealed chamber after
an initial calibration made using a reference sample with a known density. The volume of air
displaced by the reference sample is measured and compared to the volume of air displaced by
the sample of bulk material. Once the displaced volume is known it is possible to compute the
density of the bulks’ particles even in the case of very fine powders.

2.3.2 Particle size

In the context of bulk solids it is difficult to define a precise meaning of the word size of the
constituent particles. Particle size is generally used to indicate some kind of average dimension
across the particles, often depending on the different industry’s standards. It is however useful to
introduce the typical size ranges in which bulk materials are typically categorized, using generic
terms such as "coarse solid", "fine powder" and so on. An example of a possible classification
of bulk materials with respect to the constituent particle’s size can be seen in Table 2.1, extracted
from the work of Woodcock and Mason [12]. This table contains a possible qualitative description
of bulk solids based on the size range of their particles.

Considering the "loose" definition of particle size it is useful to refer back to the simplest ideal
particle: the perfectly spherical particle. A mass of monosized, spherical particles can be clearly
described by a single dimension, which is the particle diameter. In the same way, a bulk of spher-
ical particles with different sizes can be described by an average particle diameter, together with
some information on the distribution of the varying sizes around the average value. When parti-
cles are non-spherical it becomes more difficult to clearly define a set of parameters to describe the
size and shape distribution. In industrial application it is common to approach this problem by
representing the size of an irregularly shaped particle with a single, arbitrarily defined quantity,
usually some kind of equivalent diameter that corresponds to the diameter of a sphere that behaves
in the same way under certain conditions, or that offers the same value of some characteristic.
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The sphericity can be also linked to the volume and surface diameter, as defined in the previous
Chapter, as follows:

Φs =
πd2

v

Asp
=

(

dv

ds

)2

(2.31)

where Asp is the surface area of the particle. Knowing that Φs must be always less than unity, it
is easy to conclude that the volume diameter dv will always be smaller than the surface diameter ds.

Clearly, experimental determination of sphericity requires knowledge of both the volume and
surface area of the particle, which can both be quite challenging to measure. However, it is impor-
tant to note that in the majority of storage and conveying applications, such detailed information
on the shape of the particle is often not required. A more general knowledge of the shape is often
sufficient for the design of such systems and is easily obtained with a simple optical microscope
analysis. If the particles appear fragile, it could indicate possible degradation of the material dur-
ing transport; a fibrous appearance may indicate a tendency for the particles to clump together
during transport, causing flow problems; while the presence of sharp particles may warn of the
possibility of high wear damage to various components in contact with them.

2.3.4 Cohesion and adhesion

One of the most common qualitative terms used to describe the behavior of a moving bulk solid
is its flowability, a generic term used to indicate whether one of these materials is free-flowing or
cohesive. This behavior can be influenced by a number of different effects but it’s mainly due to
the effect of attraction forces, or cohesion forces, between the constituent particles. These forces can
have numerous different origins, such as moisture, electrostatic charging, magnetism, shape of
the particles ecc [16]. When these attraction forces are low, the bulk material can flow easily, with
the particles moving freely with respect to one another but, in the case of high cohesive forces,
the particles tend to aggregate forming bigger lumps generating an erratic flow behavior [17].
Quantitative analysis of cohesion in bulk solids are made through the use of shear cell, where the
shear resistance of a sample of bulk solid at zero compressive normal stress is measured [12] [18].

Another important aspect of the flowability of bulk solids is the interaction between them and
a fixed boundary surface on which they slide. In this kind of situations the adhesion is the main
parameter controlling the flowability of the material. While cohesion describes the inter-particle
forces, adhesion is defined in terms of the forces that make the particles stick to some kind of
containing surface, such as hoppers or channels’ walls and can be measured with similar means
as cohesion [18].

Angle of repose

A measurement that is often used to give a first indication of the flow behavior of a bulk solid
is the so called angle of repose. This angle is observable when a certain sample quantity of a bulk
material is poured, or let to slip, as to form a heap. The angle of repose is the angle of the natural
slope of the free surface of a bulk solid heap, produced with specified test procedure, and can be
considered a property of the material itself [12]. The value of the angle of repose is dependent on
both the nature of the bulk solid and the way the heap is formed but, using a set of standardized
tests, it is possible to obtain reasonably consistent values for a given sample material.
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While the angle of repose can not be directly used as a quantitative measure of the flowability
of a bulk material, it can prove to be a crude evidence of its likely flow behavior, as presented in
Table 2.2 from Woodcock and Mason [12].

Table 2.2: Qualitative relationship between angle of repose and flowability of a bulk solid

Angle of repose
25-30◦ Very free-flowing
30-38◦ Free-flowing
38-45◦ Fair flowing
45-55◦ Cohesive

>55◦ Very cohesive

Arching

The cohesiveness of a bulk solid is a significant factor on the material’s ability to form a stable
arch or bridge over an opening. This phenomenon can be observed even when the opening is
significantly larger than the particle size of the bulk solid. Hence, knowledge about the flow and
arching behavior of bulk solids is crucial in designing storage containers and other components of
bulk handling installations such as hoppers that must be able to discharge their contents smoothly
under gravity without any obstruction to the flow.

The main factors that enable the phenomenon of arching to occur are the presence of very fine
particles and moisture, both of which have the tendency to increase the cohesion of the bulk. Also
the compaction that naturally happens during storage of this kind of materials helps to increase
the cohesion between particles increasing the strength of eventual arches and thus aggravating
the flow.

It is possible to distinguish two forms of stable arch that can be observed in bulk solids handling:
the first one is a simple mechanical arch that develops when particles with a size comparable to the
one of the opening interlock with each other, while the second is a cohesive arch that results from
consolidation and cohesion of the bulk solid, and is typical of materials with very fine particle
size [19]. An example of these two types of arches can be seen in Figure 2.7, where the case of
arching in a hopper was considered. While the former case can be easily solved by using a bigger
opening that is at least ten times larger than the size of the largest particle size [12], the latter has
proven much more difficult to model and predict, making the design of hoppers and conveyors
for this kind of applications more challenging.

2.3.5 Moisture content

As previously highlighted, bulk materials are characterized by the presence of empty space be-
tween the particles that constitute the bulk. These voids make it possible for water and other
fluids to enter the volume of the bulk and interact with the particles changing the overall be-
havior of the materials. The moisture content can produce drastic changes on the flow behavior
of bulk solids, in addition to other effects such as chemical reaction, deterioration of material
qualities and so on [20][21]. Therefore moisture analysis represents one of the most frequently
performed tasks in the characterization of this class of materials.
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Inherent moisture which describes the presence of crystallized water within the structure of the
particles composing the bulk solid

The moisture content can increase until when all the inter-particle voids are filled with water, the
bulk material is thus said to be saturated.



Chapter 3

Vibratory Conveyors Technology

As mentioned earlier, this work is focused on expanding the knowledge of possible logistic so-
lutions for local transportation of planetary and lunar regolith for In-Situ Resource Utilization
(ISRU). The ISRU approach, applied in the sense of planetary exploration and colonization, in-
volves the use of locally available resources as building materials or as sources of oxygen, metals,
and other useful elements. In order to enable the full extraction and utilization of these materials,
it is necessary to develop and deploy a reliable system for transporting these granular raw ma-
terials from the point of extraction to the required destination, which could also be located at a
certain altitude with respect to the starting zone. Considering the constraints of lunar and plane-
tary engineering, a vibratory conveyor, with its simple design and configuration, lack of moving
parts, and low power consumption is a suitable solution for this kind of logistic problems. This
type of transport technology presents a lot of interesting capabilities in terms of planetary ISRU. It
can easily transport high-temperature or corrosive materials by using a trough specially designed
for this kind of operations. At the same time it enables the use of actuators without moving parts
that are, in this way, less subject to the strong abrasive power of lunar regolith. The next chapters
will focus on a complete description of this type of material transport method with a strong focus
on the design characteristics to be considered when designing this kind of system for planetary
operations.

3.1 Vibratory conveyors

Vibratory conveyors are a logistical solution commonly used in industry to transport a wide vari-
ety of particulate and granular materials. When considering the goal of using this type of technol-
ogy for In-Situ Resource Utilization (ISRU) on the surface of other planets and moons, they become
an interesting technology thanks to their simplicity and ease of control.

On a functional level, a vibratory conveyor consists of three main components: a trough dedicated
to the transport of the material, a support system for the trough, usually consisting of springs
or articulated links, which allows it to vibrate at a high frequency, and an appropriate excitation
mechanism capable of generating the desired motion patterns. The trough is the part dedicated to
holding and transporting the material. It can have different shapes that can modify the transport

21
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Figure 3.1: Conceptual sketch of a generic linear vibratory conveyor

behavior of the bulk, but it usually has a rounded or flat cross section and has the main objective
of transmitting the motion from the actuator to the particles of the bulk material. Since the trough
must be able to vibrate in order to generate the movement of the particles that make up the
bulk material, it must be supported by some kind of flexible structure that, while connected to
the conveyor’s base, must provide the necessary mechanical flexibility to obtain an adequate
transmission of motion from the actuator to the trough. This structure usually takes the form of
simple springs, as in [25], or leaf springs made of thin metal plates, as in [26] and [27]. The active
part of any vibratory conveyor is the actuator, that acts as a driving (or excitation) mechanism
producing the vibration needed for the transport to happen. A conceptual sketch of the model
can be seen in Figure 3.1 where all of the main features can be seen in their reciprocal relation. It
is also possible to identify the angle β, defined between the actuator’s excitation direction and the
base of the conveyor, considered to be parallel to the transport track. This angle has a significant
influence on transport speed, since it determines the force components, along x and y directions,
to be transferred to the particles.

Since the widespread use of vibratory conveyors in various industrial settings, there are multiple
ways to produce the vibration, with different technologies at play depending on the requirements
for the conveyor [12][26]. The most common solutions can be seen in Figure 3.2. The actuation
mechanisms can take the form of a standard electric motor as in 3.2a and 3.2b, or it can be done
with electromagnetic coils as in 3.2c and, finally, with piezoelectric actuators, as in 3.2d.

3.1.1 Electric motor actuators

The more traditional types of excitation mechanisms use a standard electric motor attached to the
conveyor structure. As can be seen in Figure 3.2a and 3.2b, the motor can generate the vibrations
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either through a crank mechanism or by spinning an unbalanced mass. These simple methods, while
widely used in Earth conditions, present some shortcomings when used in a lunar environment.
The high abrasive power of the lunar regolith will have a detrimental effect on the moving parts
used for this solution, requiring frequent maintenance interventions that may be difficult or even
impossible in a planetary exploration mission.

3.1.2 Electromagnetic actuators

A first approach to solving the presence of moving parts would be to use electromagnetic ac-
tuators as the excitation mechanism. This type of actuator uses an alternating electromagnetic
field, generated by AC powered coils, to generate the vibratory motion of the trough. This de-
sign ensures that there is no contact between the two parts of the electromagnets, one of which
is mounted on the support frame and the other on the vibrating trough. Electromagnetic drives
are usually designed to operate at the standard frequency of the electrical grid, 50 or 60 Hz, de-
pending on the local standard, and thus operate at a frequency of 100 Hz to 120 Hz, given that
each electrical cycle corresponds to two vibration pulses [12]. Contactless excitation has some
nice advantages in terms of wear and maintenance, but this technology still has some serious
shortcomings regarding its potential application in space exploration missions. The transport
capabilities of a vibratory conveyor powered by this type of technology are limited by the mag-
nitude of the excitation forces that can be generated by the electromagnets. To generate a force
strong enough to move the entire conveyor trough with the material inside, it is necessary to use
large and therefore heavy electromagnets, which cannot be made lighter due to their intrinsic
manufacturing process. This can be a problem in space applications, where the mass of the sys-
tems plays a critical role in mission planning. In addition, as shown by Despotovic et al. [4][5], it
can be difficult to accurately predict the motion generated by electromagnetic excitation because
electromagnetic forces are the result of a nonlinear interaction between a metallic moving part
and an electromagnetic field, making it difficult to design and implement precise and reliable
control systems to be used for ISRU missions.

3.1.3 Piezoelectric actuators

One of the most recent technologies for the actuation of vibratory conveyors is based on the use
of piezoelectric actuators. These mechanisms are able to convert electrical energy into mechanical
energy based on the principle of piezoelectricity, a property of certain dielectric materials to phys-
ically deform when subjected to an electric field [28]. Compared to the more traditional actuation
mechanisms previously discussed, a piezoelectric actuation system can provide some advantages
when used for vibratory conveyors for ISRU:

• The technology offers a high degree of flexibility in terms waveform, amplitude, and fre-
quency modulation of the excitation motion, all of which can be easily modified by changing
the input voltage.

• The ability to generate vibration without any moving parts reduces the effects of wear from
the highly abrasive lunar regolith, increasing reliability and reducing the need for frequent
maintenance.

A piezoelectric actuator is therefore highly suitable for space applications because of its simple
configuration, absence of frictional parts, and no requirement of a significant amount of power.
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Furthermore these components are usually really small and lightweight, making them an ideal
choice for this kind of applications. That is why a piezoelectric actuator was chosen as the ac-
tuation method for the development of this work. More information about piezoelectricity and
piezoelectric actuators will be given in Chapter 3.2.

3.2 Piezoelectric Actuation

As mentioned above, a piezoelectric actuator is a type of actuator that converts electrical energy
into mechanical energy based on the principle of piezoelectricity, which is the property of cer-
tain dielectric materials to physically deform in the presence of an electric field or, conversely,
to produce a macroscopic change in their electric polarization when subjected to mechanical de-
formation. Given the bidirectionality of the piezoelectric effect, it is possible to exploit it for the
design and construction of both sensors, which measure the mechanical deformation while pro-
viding an electrical current output, and actuators, which generate a physical deformation when
subjected to an electrical current [29]. Typical examples of materials that exhibit this type of ef-
fect to some degree are: natural quartz crystals, semi-crystalline polyvinyldiene, poly-crystalline
piezoceramics, bone, and even wood [28].

This effect is due to the spontaneous separation of charge within a particular crystal structure
under the right conditions. This phenomenon is called spontaneous polarization and is caused by
the displacement of electron clouds relative to their atomic centers. It is particularly visible in
poly-crystalline ceramics, one of the most active piezoelectric materials [28], which consists of
randomly oriented small crystallites. Each of these crystallites is then further divided into do-
mains, which simply refers to small regions of the crystallites characterized by having the same
dipole arrangement. Typically, the domains’ dipoles are randomly oriented, resulting in a macro-
scopic lack of piezoelectric behavior. In order to get the ceramic to exhibit piezoelectric effect, it
is first necessary to induce a macroscopic polarization of the material. This is done by subjecting
the ceramic to a strong electric field that orients all the dipole domains in the same direction, as
can be seen in Figure 3.3. Once polarized, the material will remain so until it is depolarized by
the same process with an opposite charge or until it is exposed to a high temperature. This po-
larization process causes the material to permanently elongate in the direction of the polarization
field, also called polarization axis, while causing it to contract in the transverse direction. When
voltage is then applied to the polarized material in the direction of the polarization axis the piece
experiences further elongation along the polar axis and a subsequent transverse contraction, as
per the material’s Poisson’s ratio, instead, if an opposite voltage is applied, the piece will contract
along its polarization axis and expand along its transverse direction. When the external voltage is
removed the piece reverts back to its original polarized dimensions. This process is summarized
in Figure 3.4, where the physical deformation caused by the piezoelectric effect is showed. The
application of this materials for the production of vibrational actuators is straightforward, by ap-
plying an alternate current of given amplitude, frequency, and waveform, it is possible to cause
the reciprocal expansion and contraction of the piezoelectric component along its polarization
axis.

Piezoelectric transducers, which convert electrical energy to mechanical energy acting as a motor,
can come in a wide variety of shapes and sizes with different characteristics in terms of force-
displacement relationships, from really stiff transducers to highly compliant ones. The most
common piezoelectric actuator is the bending motor. It is typically composed of two layers of
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piezoceramic that is then bonded to a thin metal shim sandwiched in the middle [28]. The ap-
plication of voltage on the piezoelectric elements makes the whole component to behave like a
bimetallic strip when subjected to heat. One layer expands while the other contracts resulting in
a strong curvature of the component. A nice property of this kind of motors is that they can be
energized proportionately to the desired curvature and can be held in that position with negligi-
ble consumption of energy and generation of heat. The combination of this simple components
can be used to obtain different kind of actuation movement. Furthermore since piezoelectric ac-
tuators are solid state devices, they lend themselves to high vacuum operations making them an
ideal choice for ISRU applications.

3.3 Movement of a bulk solid in a vibrating trough

This chapter presents a simple analytical procedure for theoretically estimating the average con-
veying velocity, and thus the mass flow rate, of a given material in a vibratory conveyor. The
analysis presented here is based on the work of Woodcock and Mason [12], and Gaberson [30],
who developed this approach for industrial application. Since the study and development of
an analytical method is not the main scope of this thesis, this chapter aims to provide a brief
overview of these methods to give the reader a basic understanding of the phenomenon of bulk
solids transport. However, it is important to treat the results obtained with these analytical mod-
els with caution, as the extreme complexity of the bulk material evolution in a vibrating conveyor
means that only limited confidence can be placed in such analysis. It will however prove to be
useful as another method of comparison to be used in conjunction with both simulation and ex-
perimental data presented in the following sections.

3.3.1 Motion of the trough

The first step in studying the motion of the particles that make up the bulk material is to under-
stand the motion of the trough in which the material resides. The most typical arrangement for
the trough of a vibratory conveyor, and the one adopted in the experimental setup used in this
thesis, is the directionally constrained trough, such as the ones shown in Figure 3.2. In this config-
uration, the trough can only move in a direction perpendicular to the springs that hold it to the
base. The angle β formed by the line of motion sT and the horizontal is called the angle of oscil-
lation or drive angle [12]. This angle has a really strong influence on the transport capabilities of
the setup, since it determines the force components to be transmitted to the particles along the
x and y directions. For sinusoidal excitation it usually has a value in the range of 20-30°, since
as demonstrated by Chen et al. [3], excitation parallel to the axis of the conveyor trough, corre-
sponding to β = 0°, is only possible with non-sinusoidal vibrations (shocks) or with the help of a
specially designed surface structure, such as a saw-tooth profile.

Since the trough follows a harmonic motion of frequency f and amplitude λ, the position and
acceleration of the trough at a given time t can be expressed as

sT = λ(1 − cos 2π f t) (3.1)

s̈T =
d2sT

dt2 = λ(2π f )2 cos(2π f t) (3.2)

It is now possible to compute the horizontal and vertical displacement component of the trough
by simply projecting sT and s̈T along the x and y axis using the drive angle β. The position
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components become then:

xT = λ(1 − cos(2π f t)) cos β (3.3)

yT = λ(1 − cos(2π f t)) sin β (3.4)

While the acceleration component along x and y will be equal to:

ẍT = λ(2π f )2 cos(2π f t) cos β (3.5)

ÿT = λ(2π f )2 cos(2π f t) sin β (3.6)

The bulk material that is conveyed on the trough will lift off the surface the moment when the
acceleration of the trough, in the downward vertical direction, becomes equal to the gravitational
acceleration g. By imposing ÿT = −g it is possible to use Equation 3.6 to compute the lift off
time t1:

t1 =
1

2π f
cos− 1

[ −g

λ(2π f )2 sin β

]

(3.7)

Once the particles are in the air they will follow a parabolic trajectory until the next impact point,
where the cycle will repeat with the particles being carried forward and upward before being
thrown again as the trough decelerates along its harmonic cycle. This form of transport, the one
where the particles are launched in the air along the transport direction before falling back to
the trough, is called oblique hopping or micro throw, and is characterized by a really small contact
time between particles and the trough’s surface. In order to achieve maximum efficiency in the
operation of the conveyor, it is essential to ensure that particles do not move backward during
any part of the cycle. To achieve this, the impact point should align with the beginning of the
subsequent flight phase.

It is now clear the importance of the ratio between the vertical acceleration of the trough and the
gravitational acceleration of the environment on which the conveyor is working for the modeling
of this mechanisms. The maximum value of this parameter in a given motion cycle is called
dynamic material coefficient or, more simply, throw factor:

Γ =
ÿT,max

g
=

λ(2π f )2 sin β

g
(3.8)

It’s easy to see that at the start of the flight phase, as defined previously, yT/g = −1 thus, if
the maximum positive value of Γ is less than one, the bulk solid will not leave the surface of
the conveyor’s trough resulting in limited forward motion. By substituting the definition of the
throw factor into Equation 3.7 it is possible to express the time at which the flight phase begins as
a function of Γ:

t1 =
1

2π f
cos−1 1

Γ
(3.9)

Once the start of the flight phase is known, the next problem becomes the determination of the
time of impact, at which the particles goes back in contact with the trough. This second part of the
problem is definitely more difficult and must be considered as an important part of the conveyor
tuning process, as to maximize the efficiency of the transport process. In general the conveyor’s
vibration pattern must be designed to match the particle’s trajectories with the vibration of the
trough itself.
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on the size distribution of the particles in the bulk material

• The depth of the bulk bed on the trough, with a coefficient Fh that varies from unity for
small depth up to about 0.75 for depths of around 300 mm

• The slope of the trough, with a coefficient Fj that shows a values around unity for upward
angles smaller than 15°, and then decreases rapidly with greater angles. For downward
angles, Fj is greater than unity, reaching values of around 1.8 for a 15° downward slope. It
is important to keep in mind that this parameter is greatly affected by friction between the
bulk solid and the trough surfaces.

Given all of these considerations it is possible to express the transport velocity of the bulk solid
on the trough with a new expression including all of empirical factors:

us = ηuFmFhFjλ2π f cos β = ηuFeλ2π f cos β (3.18)

Once the transport velocity is known, the determination of the mass flow rate of the conveyor
becomes trivial. It is sufficient to introduce the cross-sectional area A of the bulk material bed in
the trough and its bulk density ρb, obtaining:

ṁs = ρb Aus (3.19)
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Chapter 4

Numerical Simulation

In this section, the description of the DEM simulation code will be presented in detail. After an in-
troduction explaining the importance of a simulation tool, the whole algorithm will be presented
in great detail giving appropriate importance to the various aspects that come in to play while de-
scribing interactions between small solid particles. To help reduce the computation time required
to complete the simulation a simple neighborhood algorithm was implemented producing a no-
ticeable reduction in the computation time, given the same starting condition. An important
section will be dedicated to the choice of an appropriate integration scheme used to evolve the
simulation in time while also presenting a preliminary method to evaluate the integration time
step needed to correctly compute all of the interactions.

4.1 Introduction

The creation of a digital twin of an experimental setup can be an important tool for researchers
and engineers to test and optimize their designs before conducting expensive and time-consuming
real-world experiments. In many cases, experimental setups can be complex and involve a range
of variables that may be difficult to control or replicate. Thus, by creating an appropriate simula-
tion tool, it is possible to simulate different scenarios and conditions in a controlled environment,
allowing to explore the behavior of the system and identifying potential problems or areas for
improvement. Furthermore, physical experiments are often constrained by the limitations of the
experimental setup, so the use of a simulation setup can be particularly useful to simulate condi-
tions that are impossible to create in a physical experiment, such as the one contemplated here,
where the testing of a vibrational conveyor in lunar of martian environment is not yet possible.
Given that the behavior of bulk materials is still an open research field, simulations offer an in-
valuable tool to study and understand this kind of discontinuous solids.

The simulation of discontinuous system such as bulk materials is a research area that has been
in active development since the 70’ with the progressive implementation of numerous different
approaches. From the many numerical models available to simulate the behavior of these kind
of systems, the Discrete Element Methods, chosen for this work, are characterized by having the
following properties: they must allow finite displacements and rotations of discrete bodies, in-
cluding a total detachment, and it must be able to recognize new contact automatically as the

35
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simulation progresses [9]. In the case of the Distinct Element Method here presented, we refer to
a particular implementation of those methods, which uses an explicit scheme to evolve the equa-
tions of motion of discrete bodies directly. This meshfree method finds a widespread application
in various research topics such as rock mechanics, mining sciences, and the study of the stability
of underground structures [9]. In this particular implementation the Distinct Element Model will
be used to describe the mechanical behavior of an assembly of discs evolving inside of a virtual
vibrational conveyor.

The whole simulation and data analysis algorithm was written in Julia programming language [31].
Julia is a high-performance and high-level programming language that is well-suited for scien-
tific computing and simulation. Its Just-In-Time (JIT) compiler makes it fast, often comparable to
or faster than statically-typed languages like C or Fortran while the simple, familiar syntax and
large library of packages, including many specifically designed for scientific computing and sim-
ulation, make it accessible and easy to use for scientists and engineers. Julia also offers built-in
support for GPU computing, making it possible to perform high-performance simulations result-
ing in significant performance gains or certain types of problems. It also offers straightforward
parallel computing capabilities, making it easy to perform simulations in parallel on a single ma-
chine or across a cluster of machines thanks to its ability to automatically manage the shared
memory. Additionally, Julia can easily interface with other programming languages, including
C and Python, allowing for the leveraging of existing code and libraries. Given the ease of use,
together with the speed, and the vast library of packages available, Julia was selected as the lan-
guage of choice for the development of the simulation algorithm.

4.2 Simulation domain and particles

As for a lot of mechanical simulations, the Discrete Element Model is based on the simulation of
physical bodies evolving inside of a well defined virtual domain, which represents the "world"
in which the they are able to move and interact with each other. In order to accurately replicate
real-world phenomena, it would seem logical for the simulation domain to be three-dimensional,
mirroring the tridimensional reality in which the transport phenomena takes place. However,
due to specific constraints that will be clarified shortly, this thesis work has opted for a two-
dimensional simulation domain, which proves to be a more suitable choice in this particular
application.

In particular, using a 2D simulation domain has a series of advantages for this kind of preliminary
analysis tool. For one, the numerical implementation is generally easier, since there are fewer vari-
ables at play and less complex calculation, furthermore the collision’s mechanics are much easier
to analyze and implement due to the lower number of collision’s modes. Moreover, 2D simu-
lations are generally faster to run than their 3D counterpart, due to a lower number of particles
needed, as will be explained in Chapter 5.2.1, making them a particularly useful instrument to
quickly analyze large-scale systems. Running a 3D simulation can prove to be much more com-
putationally intensive, and even small increases in the simulation domain size or particle number
can significantly increase the total computational time required to complete the simulation. As
for the results, Chapter 6 will show that the 2D simulation can provide a reasonable approxima-
tion of the physical behavior of the system studied, while allowing for faster simulation times
than what would be offered by an equivalent 3D simulation model.
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It is however important to note that reducing the number of dimensions from 3 to 2, introduces
some important limitations. First of all the interactions between particles in a bidimensional do-
main are reduced. In particular, this type of simulation cannot capture certain physical phenom-
ena that are inherently three-dimensional, such as rotations along the three axis or transversal
movement of the particle on the trough. Furthermore there is one less dimension for the particle
shape to evolve, limiting the shape description of the particles while, as said before, reducing the
number of possible collisions and thus changing the overall energy distribution. It is therefore
important to always consider the specific requirements of the simulation when choosing between
a 2D and 3D domain. Given that this work will focus on developing a simple model for prelim-
inary studies, a bidimensional simulation domain, calibrated and validated through the use of
experimental data, is deemed acceptable.

As is common for this kind of DEM simulations, the interaction between the particles inside of the
domain are purely mechanical, meaning that this model will not introduce long range forces such
as electromagnetic effects due, for example, to tribocharging or to external fields. These kind of
effects would still be easy to implement in the future, given the modularity of the produced code.
Another simplification that is quite common in the field of Discrete Element Model simulations
is the assumption of absence of air in the simulated domain. This make it so that the particles are
free to move without any kind of aerodynamic drag and are not affected by air viscosity, humidity
or other atmospheric effects. Even if there are available models that are able to simulate this kind
of coupled phenomena, they are used for much more precise applications were even this small
disturbances could have an important effect.

Following the same approach as before at simplifying the numerical model, all the simulated
particles are assumed to be perfectly circular. This is an obvious simplification of the reality
of all the naturally occurring bulk materials, since all of the particles composing this types of
solids are characterized by at least some asphericity in their geometrical shape. As presented by
Matuttis and Chen in their work "Understanding the Discrete Element Method" [32], this kind of
assumption leads to peculiar particle’s behavior, making it more difficult for the numerical model
to be used as predictive tool. As it will be seen in the Chapter 6, this kind of simplification could
be to blame for the higher discrepancies between simulation and experimental transport data that
will be observed when studying the upward transport capabilities of the setup.

4.3 Calculation cycle

The DEM approach proposed in this work allows the description of the evolution of an assembly
of discs of arbitrary dimension. The behavior is derived by computing and tracing the move-
ments of every single particle over time, including their interactions with each other and with the
boundaries of the simulation domain.

The heart of the whole system is the calculation cycle. Its purpose is to numerically and dy-
namically describe the state of every particle, and its evolution at each time step. The discrete
element method, as it is described in this work, is based on the assumption that the time step
chosen for the integration is so small that disturbances cannot propagate from any disc further
than its immediate neighbors therefore, at each time step, the forces acting on any of the discs are
determined exclusively by their interaction with the other disc with which it is in contact. These
forces are used to compute the acceleration acting on the particles which is, in turn, employed
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by the cinematic solver to compute the new positions of all of the particles at the next time step,
evolving the simulation in time.

The most fundamental part of the whole simulation is the mechanical description of the interac-
tions between different particles: the collision code. The numerical description of these interac-
tions must be able to correctly describe the main characteristics of a collision between what are
considered to be rigid bodies, which are:

• Elastic response

• Damping

• Friction

All of these mechanical interactions are modeled in the collision algorithm and will be described
in the following chapters.

A big computational advantage of DEM is the fact that the deformation of individual particles is
usually really small in comparison with the deformation of the whole granular assembly, since
the total bulk deformation is due primarily to the relative movement of the single particles acting
as rigid bodies [2]. This observation makes it clear how it is possible to completely neglect par-
ticle deformation in the simulation while still being able to obtain a good approximation of the
macroscopic mechanical behavior of the bulk. Since all the simulated particles are assumed to
be rigid bodies, their shape is considered to be invariant, removing the additional computational
load that would be necessary to also compute this deformation. However, in the method, when a
collision is observed, the two particles are allowed to overlap each other. The overlap in the simu-
lation takes the place of the deformation observed in real particles. The magnitude of the overlap
is then used as the main collision descriptor to compute the elastic forces acting on the particles
as a response to the collision. The use of a finite overlap prevents the need of detecting the point
of contact in a "numerically exact" way, with the precision necessary for a ideal rigid body sim-
ulation, while at the same time enabling the use of a rigid body set of coordinates, comprised of
only a few kinematic variables.

4.3.1 Force-Displacement Law

To model the physical interactions between different particles and with the walls, the work by
Cundall and Strack [2] makes use of a force-displacement law computed only at contact points.
As the name implies, the force-displacement law is used to compute the forces on the particles,
generated by the collision, using their respective positions and velocities as input. In this chapter
both the "linear law", proposed initially in Cundall and Strack [2], and its non-linear evolution
will be presented. The basic construction is based on a simple spring-dashpot model modeled by
a set of appropriate coefficients.

The linear law proposed by Cundall and Strack [2] is used to compute the forces acting between
two discs in contact, called disc 1 and 2 in Figure 4.1, respectively of radius R1 and R2 and mass
m1 and m2. The centers of the discs are indicated as P⃗1 = (x1, y1) and P⃗2 = (x2, y2) where x and
y refer to the coordinate axis of a Cartesian system. The movement of the discs is described by
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and friction.

V̇n = (V⃗1 − V⃗2) · e⃗ (4.5)

V̇t = (V⃗1 − V⃗2) · t⃗ − (θ̇1R1 + θ̇2R2) (4.6)

In the case of a perfectly elastic response, the forces acting on the two particles are only due to the
elastic coefficient kn. In the case of a linear force-displacement relation the normal force acting on
particle 1 will be computed as follows:

F⃗1,n = F⃗e = kn∆Vn · e⃗ (4.7)

F⃗2,n = −F⃗1 (4.8)

The force acting on particle 2 will be the same in magnitude but along the opposite direction as
per Newton’s third law. By adjusting the value of the elastic constant kn it is possible to make
the system response more or less "rigid". Meaning that an increase of the elastic constant will
decrease both the penetration length and the contact time, while a lower value of the coefficient
will result in bigger penetrations and longer contact times between particle and floor. As showed
by Woodcock and Mason [12], for an increase of the elastic constant of two orders of magnitude, a
reduction of penetration depth and contact of about one order of magnitude should be expected.

4.3.2 Friction

Another important mechanical interaction between different particles and with the walls of the
simulation is friction. Since the coefficient of friction is of order 1, this phenomenon cannot be
considered a small perturbation to the system and thus ignored, but must be modeled and sim-
ulated in all of the interactions. In a calibrated DEM simulation, a heap of particles should be
able to be created on a flat surface only thanks to the effect of friction between the particles and
the floor since this is a typical behavior observed in granular materials in real life. Since there is
currently no analytical computation method available for many-particle friction, it is necessary to
use some kind of modelization to describe this phenomenon.

Just as for the elastic force computation, friction can be modeled using the model proposed by
Cundall and Strack [2]. Assuming that the relative tangential speed vt at the contact point is
known, then the tangential force F⃗f can be incremented from the previous time step while there
is still sliding:

F⃗f (t) = F⃗f (t − τ)− µvt · t⃗ (4.9)

Where µ is the coefficient of friction and t⃗ is the tangential vector between the two colliding
particles. To represent the real behavior of friction it is important to impose a limit on the total
tangential force generated by friction, since it cannot exceed the total static friction, obtained as
the product of the normal force with the static friction coefficient. If Ff happens to exceed this
limit value, in a given time step, it will be truncated by the numerical model to µS∥F⃗n∥:

F⃗f (t) = sgn(F⃗f (t)) · µs∥F⃗n∥ if ∥F⃗f ∥ > µs∥F⃗n∥ (4.10)

As observed by Matuttis and Chen [32] the behavior of this model is oscillatory, as it behaves
essentially as an harmonic oscillator. This poses a problem since it could happen that, due to the
inertia of this fictional "harmonic oscillator", friction may act in the direction of the velocity of the
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Figure 4.2: Static friction computed with the Cundall-Strack model against the behavior of exact
friction. The gripping is delayed for the Cundall-Strack model - from Matuttis and Chen [32]

particles. To prevent this from happening, it is necessary to introduce a damping term also to
the tangential forces with its magnitude proportional to the relative velocity. The mathematical
description and implementation of damping in the code will be presented in the next chapters.
The absence of this damping term has some intereeting side effects, as it causes the particle to
accelerate along their direction of motion. In the presence of hundreds or thousands of particles
interacting with each other this peculiar behavior might cause the whole simulation to become
deeply unstable, with the whole set of particles just accelerating out of the simulation’s boundary
in an explosion-like evolution.

But, as it is known, while the damping effect in an oscillator might help to reduce the oscillations it
also introduces a certain amount of delay between the excitation and the response of the system.
This phenomenon can be observed in Figure 4.2, taken from the work of Matuttis and Chen
"Understanding the Discrete Element Method" [32], where it can be seen how the modeled friction
acts with a sliht delay when compared to the ideal "exact friction" model. Nevertheless, going
beyond the time scale of these little oscillations, the results obtained by using the Cundall-Strack
model are overall satisfying.

The introduction of friction makes the presence of tangential forces possible. In turn, these forces
causes the particles to turn around their center which makes it essential to introduce another kind
of friction in the model: rolling friction.

4.3.3 Rolling Friction

To accurately depict the behavior of rolling particles, it is essential to consider the influence of
rolling friction. Rolling friction is a common phenomenon observed when objects are in a rolling
motion. It is responsible for causing a rolling ball to gradually slow down and eventually come
to a stop, even when the force of sliding friction between the ball and the surface is absent.

In the case of perfectly rigid bodies engaged in pure rolling, the relative velocity at the contact
point between the particle and the surface is zero, resulting in zero sliding friction. However, in
reality, rolling friction is observed due to the deformation of the material at the contact point. It
is to say that rolling friction is a characteristic of elastic bodies [32] In DEM simulations, where
the deformation of both the particle and the surface is not calculated, the action of rolling friction
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can only be analytically modeled using parameters. This approach allows for the incorporation
of rolling friction effects into the simulations, despite the absence of detailed deformation com-
putations.

Figure 4.3: Force decomposition for a disc rolling down an incline with rolling friction. Disc’s
deformation is here emphasized for clarity

As presented in the work by Maslova et al. [33], the rolling friction effect due to the deformation
of the material can be analytically described by the generation of a torque acting in the opposite
direction to the rotational movement. The only way of generating this torque, for a ball rolling
on a plane, is through a component of the surface reaction force that is acting orthogonally to
the surface itself but is not directed to the center of mass of the particle. In this configuration
the surface reaction force is applied at a distance d, with respect to the center of mass, along the
direction of the translational motion resulting in the generation of torque. In the bidimensional
case considered in this work, the shifted reaction force of a ball rolling down an incline can be
decomposed in two components, as shown in Figure 4.3: one component that runs parallel to the
surface and determines the effective static friction, and another component that runs orthogonal
to the surface and represents the normal force.

Given that Fs is the effective static friction, d is the shift of the normal from the center of mass of
the particle, R is the sphere’s radius and I = γmR2 is the moment of inertia, it is possible to write
the equations of motion of a rolling round particle as follows:

mg sin θ − f = ma (4.11)

N = mg cos θ (4.12)

− f R ± Nd = −I
a

R
(4.13)

where θ is the incline angle. The sign of the second term of Equation 4.13 should be positive in the
case of a particle rolling downward, since the normal force gets shifted to the right of the center
of mass, while it should be negative when the particle is rolling upward, given that the normal
force is shifted to the left of the center of mass.
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By means of substitution it is then easy to obtain that:

f = − γmg

γ + 1
sin θ ∓ 1

(γ + 1)
d

R
mg cos θ (4.14)

a =
g

γ + 1
sin θ ∓ 1

(γ + 1)
d

R
g cos θ (4.15)

Where it is possible to isolate the rolling friction coefficient µR that will be equal to:

µR =
1

γ + 1
d

R
(4.16)

It is interesting to note that the coefficient of rolling friction does not depend on the inclined
plane’s angle. This is in accordance with the findings of various authors who, validated by ex-
perimental results, concluded that for small angles and velocities the rolling friction coefficient
should remain constant, such as Cross [34], Mungan [35], and Doménech et al. [36].

As will be shown in Chapter 5.2, a simple experiment was carried out to estimate the rolling
friction coefficient µR of the glass particles used in the transport experiments. From this data
it was possible to obtain a value of µR to be used in the computation cycle where, firstly, the
displacement d is computed using the known radius of the particle and then, in the next step, the
rolling friction torque is determined as follows:

d = µR(1 + γ)R (4.17)

MR = −|Fn| sgn(θ̇)d (4.18)

where Fn is the normal reaction force between the surface and the particle and θ̇ is the rotational
speed of the particle. The same approach is used in the case of two colliding particles, but θ̇

will simply become the relative rotational speed and Fn the elastic force between the two. The
computed torque MR is then added to the total torque acting on that particular particle, and the
total is then used for the motion computation, which will be presented in Section 4.3.5.

4.3.4 Damping

When attempting to depict the behavior of real materials, a basic elastic collision response falls
short, as collisions between real materials typically involve a dampened response, even under
ideal conditions. In such collisions, a portion of the kinetic energy is inevitably dissipated as
heat, sound, or plastic deformation of the objects involved. To account for this phenomenon, a
"damping factor" D is introduced into the force-displacement relationship.

In the context of linear force-displacement laws, the damping force is directly proportional to the
relative velocity in both the normal and tangential directions.

FD,n = −Dnṅ · e⃗ (4.19)

FD,t = −Ds ṫ · t⃗ (4.20)

Where Dn and Ds represent the damping factor in the normal and tangential directions respec-
tively. It is possible to sum this newly computed damping force to all the other forces acting on
the particle to obtain the final equation of the force. This equation, comprising all the different
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where e = 1 would indicate a perfectly elastic collision, but it can take values higher than one in
the case of an energy gain during the collision from a chemical reaction or a reduction in rotational
energy. In general, the coefficient of restitution is to be intended as a property of a pair of objects
in a collision, not of a single one, and presents dependence on particle materials, angle of collision
and impact speed, being really difficult to characterize in a standardized manner [39] [40].

If nonlinear powers of the penetration depth are instead considered, the overall picture of the
discussion remains unchanged. Many studies make use of the Hertzian force law (∝ x3/2) and
the corresponding Kuwabara–Kono force law (∝ v3/2) for damping [41], however, if these forces
are added together without proper precautions, the same problem in the damping computation
discussed earlier will occur.

4.3.5 Motion computation

The last step in the calculation cycle is the computation of the motion of all the particles during
that time step caused by the forces computed in the previous steps. The end result will be the
position of all the particles to be used in the force-displacement law on the next time step.

The computation of the motion is pretty straightforward and is made using Newton’s second law
of motion. Considering disc i on which are acting a certain number of forces Fj and torques Mj it
is possible to express the following laws of motion:

mi ẍi = ΣF⃗ (4.25a)

Ii θ̈i = ΣM⃗ (4.25b)

Where mi and Ii represent respectively the mass and the inertia of disc i. Keeping the assumption
of ẍi and θ̈i constant over a single time step ∆t it is possible to rewrite Equations 4.25a and 4.25b
to obtain the linear and rotational accelerations:

ẍi =
ΣF⃗

mi
(4.26)

θ̈i =
ΣM⃗

Ii
(4.27)

To consider the influence of gravitation force a term mi g is included in the force sum ΣFi in
Equation 4.26. The term g = (gx, gy) represents the components of the gravitational acceleration
vector with respect to the chosen coordinate axis of reference. The computed acceleration are then
used by the chosen integrator to compute position and velocities at the subsequent time step.

4.3.6 Nearest Neighbors Algorithm

Building upon the force-displacement law explanation presented in Chapter 4.3.1, it becomes ev-
ident that the entire physical interaction algorithm relies on knowledge of the relative positions
of the particles. In each calculation cycle, every particle needs to assess its position in relation to
all other particles to determine if a collision has occurred. However, as the number of particles
increases, this process becomes exponentially more demanding. Furthermore, since these calcu-
lations must be performed at every integration step, it significantly decreases the overall speed
of the simulation. Given that the simulation will involve in the order of thousands of particles,
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a binary tree structure where the particles, defined by their position on the 2D plane, are recur-
sively spit into different groups using hyper-planes [42]. By applying the function inrange() to
the previously built particle tree, it is possible to obtain a list of all of the particles within a given
range r from a given point. This procedure is made for all of the particles in the simulation thus
obtaining a matrix composed by the IDs of all of the particles within a given range from all of the
others.

The problem now becomes how to estimate an appropriate search range r given the distribution
of different particles’ dimensions inside of a generic simulation. A simple approach was followed
in this regard: given the maximum particle radius present in a given simulation, the search range
was be set to:

Rsearch = 2Rmax + 0.4Rmax = 2.4Rmax (4.28)

This radius ensures that the scanning area is big enough to include all of the possible colliding
particles while being small enough to not impact the computation time. A series of tests was
carried out to check for the validity of this choice and, given the chosen integration time step and
the typical velocities of the particles, the algorithm managed to correctly detect and compute all
of the collisions.

Furthermore a set of simulation was run to observe the effect of this optimization technique on
the total number of comparisons carried out inside of a simulation and the total computation time
by running the simulation on a single core for repeatability. The results can be seen in Figure 4.7,
where it is obvious how the introduction of the neighborhood algorithm grants a large decrease
in both number of comparisons and total simulation time. It is interesting also to see how this
positive effect gets more and more prominent as the number of total particles in the simulation
gets higher, as is to be expected given the differences in computational complexity between the
original and the optimized algorithm. Another interesting result is presented in Figure 4.6 where
the percentage reduction of computation time is plotted against the increasing number of discs
in the simulation. The reduction increases rapidly with the number of discs up until around 120,
where it settles to a reduction of around 80 % of the computational time. This is already a great
results which, together with the multithreading capabilities of Julia, makes the simulation of a
much higher number of particles possible in shorter time span.

4.3.7 Boundaries

As far as the simulation has been presented, the walls, or boundaries, of the simulation domain
were often referred to without giving a clear explanation of their role in the computation cycle.
The boundaries of the domain are defined as hard limits that surrounds the area in which the par-
ticles are free to move, making sure that no particle will just fly away from the central part of the
simulation domain itself. In this particular case they define a rectangular central region described
by four sides. The interaction between particles and walls are described in the same way as the
interaction between two particles, with the use of a spring-dampener system as explained previ-
ously. In the case of the particle-wall interaction, however, the reaction forces are only applied to
the colliding particle since the walls are considered to be unaffected by the collisions.

Apart from establishing the fixed boundaries of the simulation domain, it is also possible to in-
troduce moving boundaries that can generate inputs within the simulation through their motion.
This dynamic boundary feature proves to be particularly valuable in the context of the considered
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and the solution can exhibit sharp peaks or valleys. Numerical methods for stiff ODEs need to be
carefully designed, and often require a small time step to obtain accurate results.

Based on the work by Kruggel-Emden et al. [43], it was decided to proceed with an explicit nu-
merical integration scheme for their good performances within the discrete element method.
Referencing to the documentation of the high number of integration schemes available in the
DifferentialEquations.jl Julia package, it was decided to implement the AutoTsit5() al-
gorithm. This particular implementation of the Runge-Kutta 5/4 order algorithm, based on the
work by Tsitouras [44], has the ability to handle both stiff and non-stiff differential equations with
a special auto-switching algorithm. According to the documentation this kind of solvers allow
for efficient solution of both this types of problems with minimal added computational cost when
compared with more "classic" integration schemes.

The chosen integrator was compared to two other common integration schemes, the normal
Tsit5() and the Vern7(). When simulating the simple case of a ball bouncing in a perfectly
elastic manner on the floor by imposing the same absolute and relative tolerance and the same
integration timestep, it was noted that the AutoTsit5() provided similar results, with maximum
energy variation lower than 1 %, with a computation time about 5 to 10 % lower than the other
two methods. This difference could be explained by the ability of the integrator to better handle
the impacts since they are described by discontinuous events that could prove to be difficult to
numerically describe for pure non-stiff solvers.

4.4.1 Determination of integration time step

Another important aspect of the integration process and thus, of the whole simulation, is the
choice of an appropriate timestep for the integrator. This parameter can significantly influence the
accuracy and stability of the simulation results. The timestep represent the size of the discrete time
steps that are used to numerically integrate the equations of motion that describes the evolution
of the simulated system over time.

Its importance is reflected in 3 main aspects of the solution process:

Accuracy The choice of a too large timestep can lead to inaccurate simulation results since the
integrator may miss important dynamic changes or collisions that might occur during that
time interval. Conversely, a too small of a timestep will cause unnecessarily long simulation
times and an high computational expense.

Stability The stability of the whole solution process is also strongly influenced by the chosen
timestep. A large timestep could lead to unstable simulations due to accumulated numerical
errors and divergent results. At the same time using a smaller timestep could help improve
the stability of the simulation.

Computational Efficiency It is easy to see how the timestep is directly linked to the computa-
tional efficiency of the whole simulation process. By using a smaller timestep the time
needed to complete the simulation will increase drastically, whereas using a larger timestep
length can help reduce the computational cost but, as said before, could result in less accu-
rate or unstable results.
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The problem of the choice of the right timestep is shared between all the numerical solution
schemes and must be solved by trying to find a balance between these 3 aspects. It is often
necessary to perform some kind of sensitivity analysis to determine the optimal timestep for a
particular simulation scenario.

To get a rough idea of the timestep to be used in DEM simulation, it is useful to refer to the critical
timestep ∆tc as defined in the original paper by Cundall and Strack [2]. This critical time step is
estimated using the single degree of freedom system composed by a mass m that is connected to
the ground by a spring of stiffness k. For this type of system the critical time step is equal to:

∆tc = 2
√

m

k
(4.30)

Where the mass m is the mass of the smallest particle in the simulation while the stiffness k will
take the value of the higher elastic constants used in the collisions. By choosing a simulation
timestep that is smaller than the critical one it should be possible to obtain a stable and accurate
simulation. It is up to the user to define the fraction of the critical timestep to be taken as the
simulation timestep. To do that, a simple sensitivity analysis was carried out on the simplest setup
composed of a particle bouncing on the floor. It was noted how, with timestep shorter than ∆tc/5
there are no more important precision advantages when compared to analytical results. That
is why all of the simulation results that will be presented were computed using this particular
timestep.
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Chapter 5

Experimental Phase

Another important part of this work was the study and characterization of an existing vibratory
conveyor regarding its ability to transport materials under different actuation conditions and
orientations. This process has a dual purpose: primarily to better understand the transport me-
chanics of a real vibratory conveyor while, at the same time, obtaining important reference data
to be used for the calibration and validation of the numerical DEM simulation.

This chapter will present all the results obtained during the experimental campaign. Starting
from a description of the experimental setup and measuring instruments, the following chapter
will then delve in to the set of calibration experiments used to obtain estimates for the values
of the mechanical parameters to be implemented in the simulation code. Following that, an im-
portant chapter will be dedicated to a set of experiments aimed at characterizing the vibrational
amplitude response of the conveyor setup when actuated with different frequencies, revealing a
strong relationship between these two quantities that will have to be considered in the simulation
process to correctly model the behavior of the experimental setup. The last section will instead
present the bulk of the experimental results, focusing on the parametric study of the transport
behavior of the vibratory conveyor. The actuation parameters and the sample mass have been
varied within a certain range to study the effect of different parameters on the transport behavior.

5.1 Experimental Apparatus

Before presenting the experiments and their results, it is important to provide a comprehensive
overview of the experimental apparatus and setup used to perform the experiments. This chapter
will focus on a detailed description of the experimental equipment, including dimensions and
operational capabilities.

The main scope of this work will be to analyze and understand the behavior of vibratory con-
veyors for material transport through both experimental and simulation work. Since there is a
need to have experimental results to calibrate the simulation, a scaled down version of a vibratory
conveyor system was required to perform all the experiments. An existing rig, designed at the
Chair of Astronautics as part of previous research effort [27] was used for the entire experimental
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phase.

The experimental setup used for this work presents all the characteristics of vibratory conveyors
described in Section 3. The setup is equipped with a rectangular trough made of sheet steel.
This planar design helps to facilitate visual inspection, both in real time and with video post-
processing, of the material transported along the conveyor. The conveyor trough has an overall
length of 250 mm and an internal rectangular cross section of 50 x 40 mm. The trough is supported
by two plate springs mounted on an aluminum profile that acts as a base plate and is clamped to
the workbench. The leaf springs that support the trough, form an articulated quadrilateral with
the trough, allowing it to move slightly back and forth at a certain angle that can be set through
a set of nuts and bolts. The plates used for the leaf springs are made of 0.5 mm thick steel, with
a width of 50 mm and a length of 105 mm. The flexibility of the plates, which act as springs, is
the main factor that allows the conveyor trough to vibrate, bringing it back to a central resting
position with each vibrating cycle.

Figure 5.1: Photo of the conveyor experimental setup

The vibrations are generated by a piezoelectric actuator attached to the back of the conveyor
trough. The actuator used in this setup is the FPA-1000E-P-1054-150-SS-1M4 FlexFrame PiezoAc-
tuator™ from Dynamic Structures & Materials, LLC. The completed experimental setup is shown
in Figure 5.1, where it is possible to observe all the main components: the steel trough, the two
plate springs, and, in the center, the piezoelectric actuator. The actuator is controlled by a wave
generator that sends a control wave of a given frequency and amplitude to an amplifier that
boosts it to the correct magnitude before sending it to the piezoelectric drive. The actuator oper-
ating settings have been set to a voltage of 0±2 V - 100±5 V on an analog sine wave, resulting in
a stroke of about 0.3 mm, while the frequency can be freely varied from 0 Hz to about 70 Hz on
the wave generator.

The angle β between the actuator and the base of the conveyor can be easily adjusted mechani-
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cally by means of two screws that slide in the grooves of another aluminum profile that serves
as the actuator support. The angle α of the whole assembly with respect to the horizontal, useful
for testing the upward transport capabilities of the system, can be changed using some specially
made 3D-printed supports that can be easily mounted on the conveyor assembly to impose an
angle of 5 and 10 degrees respectively. A rendering of the entire conveyor setup tilted at a 5°
angle using these 3D printed supports can be seen in Figure 5.6.

The main sensor used in the experimental campaign was the high precision GRAM XTREM-F
scale, a fully digital and modular scale offering a resolution of 0.1 g with a sampling frequency of
5 Hz. The scale offers the ability to be connected to a computer running a specific software called
PC-XTREM to record and save the data in specifically formatted CSV files. The scale is positioned
on the desk, right below the discharge side of the conveyor and is used to measure the amount of
material discharged over time.

5.2 Calibration Experiments

When using numerical simulations, it is necessary to consider the various factors that can affect
the the results of the simulation in relation to the expected output in the case of known prob-
lems. Such factors can be the choice of different numerical methods, the quality of the input
data and, ultimately, the values of the model parameters. In particular, the parameters used in
a numerical simulation are used to represent various aspects of the simulation domain, such as
material properties, boundary conditions, and geometric dimensions, and are therefore critical
in determining the predictive power of the calculations. To ensure that the simulation produces
results that reflects reality, within unavoidable error margins, it is necessary to introduce appro-
priate parameters into the simulation code, as emphasized in Section 4. These parameters have a
strong influence in the result of the simulations so, any change in their values could yield totally
different results leading to inaccurate or completely incorrect predictions.

This discrepancy becomes apparent when comparing simulation and experimental data. If sim-
ulations are run with parameters that do not match the appropriate values that ensure corre-
spondence with reality, then the results will most likely not match the experimental data, thereby
defeating the purpose of the simulation as a predictive tool. It is therefore of great importance
to correctly evaluate and implement in the numerical simulation the appropriate values for the
mechanical parameters to ensure that the simulation remains a useful tool.

In order to estimate the main parameters to be used in the simulation routine, a series of exper-
iments were performed. First, to account for the differences between the sample mass used in
the experiments and the equivalent number of 2D particles to be simulated, a first-order approx-
imation of the number of simulated particles corresponding to a given sample mass is presented
in Chapter 5.2.1. Subsequently, Chapters 5.2.2 and 5.2.3 present two experiments that were used
to evaluate the shear and rolling friction coefficients, respectively. The results of the presented
experiments can only be considered as preliminary estimates of the real values of the coefficients,
since the measurements were performed with simple equipment and a simple methodology, with
the limited scope of providing approximate values for the coefficients used in the DEM analysis.
Nevertheless, the simulation results obtained with the parameter values discussed in this Chap-
ter will be examined in Chapter 6, where a comparison of the experimental results with analytical
predictions and with the results of actual transport experiments conducted on the experimental





57 CHAPTER 5. EXPERIMENTAL PHASE

ulation can be considered a "slice" of the real 3D experiment, the number of simulated particles
to be used in the simulation environment was simply determined by computing the number of
particles of known radius r that could fit inside a rectangle of dimensions L and h in a simple
rectangular arrangement, as in Figure 5.3.

Table 5.1: Conversion between experimental mass and number of simulated particle

Mass [g] h [mm] N° Simulated Particles
5 1.5 1875

10 3 3750
20 7 8750
40 12 15000
60 17,5 21875
80 24,5 30625
100 30 37500

Given this assumption it is possible to compute the number of simulated particle to be used
inside of the simulation environment given a certain "real" sample mass whose behavior must be
studied.

Np =
Lh

r2 (5.1)

The measured bed powder height and the computed total simulation particles for each sample
mass are presented in Table 5.1 where it can be easily seen how the number of particles to be used
in the simulation changes drastically from one mass to another. From the lower tested mass of
5 g and the highest of 100 g the number of simulated particles changes of more than one order of
magnitude going from around 1900 up to 37 500 particles.

5.2.2 Estimation of shear friction coefficient

One of the main parameters to be evaluated is the shear friction coefficient. This coefficient is used
in the simple linear model that was used to numerically describe the effect of friction on every
single simulated particle as presented in Section 4. Following this numerical implementation, a
linear relationship is constructed between the normal force FN , pressing a particle against some
kind of surface, and the shear force S that is required to cause the material to start sliding along
that surface. This relationship takes the form of:

S = µFN + C (5.2)

where µ is the aforementioned coefficient of friction and the constant C is the cohesion parameter
describing the adhesion between the particle and the surface with which it is colliding. Equa-
tion 5.2, when plotted, defines a line whose angle tan−1 µ is called angle of friction. This linear
model, while being analytically simple to understand and implement in a numerical form, is
found to be a reliable representation of the behavior of bulk solids [12].

To experimentally evaluate the friction coefficient of the glass spheres used as reference material
the Tilting plate method is employed. This simple procedure, presented in the book by Woodcock
and Mason [12], requires: a thin layer of sample material, a tilting surface made of the same
material as the conveyor’s walls, and a way to measure the tilt angle. The sample material used
in this experiment was composed of glass spheres, sieved to ensure a diameter > 200 µm. The
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inclined surface, of magnitude a = g sin α due to the effect of its own weight. It is reasonable to
expect that the particles will behave in a similar fashion, rolling down the inclined conveyor at
a constant acceleration that will be smaller than the ideal one due to the effect of rolling friction.
Since the length of the conveyor’s trough is known, L = 250 mm, it is easy to compute the average
acceleration of the particles knowing the time span ∆t that was used to roll from the top to the
bottom, assuming that there is no dependence of the forces on the velocity of the particle and,
thus, no variation in acceleration:

aexp =
2L

∆t2 (5.8)

Remembering the acceleration equation (Equation 4.15) derived in Chapter 4.3.3, it is possible to
impose the equality between the acceleration obtained from the experimental measures and the
one obtained analytically from the description of the rolling friction phenomena.

aexp =
g

γ + 1
sin θ − 1

(γ + 1)
d

R
g cos θ (5.9)

=
g

γ + 1
sin θ − µRg cos θ (5.10)

Since the experimental acceleration in the formula is known, it is possible to rewrite the equation
to obtain the value of the rolling friction coefficient µR:

µR =
−aexp + [g/(γ + 1)] sin θ

g cos θ
(5.11)

This experiment was repeated for both 5° and 10° inclination using glass spheres with a diameter
of 200 µm, resulting in the data gathered in Table A.1 and A.2 in Appendix A.1. In the "Time"
column the time measured during the experimental phase in seconds is recorded while the last
two column are computed using Equations 5.8 and 5.11 and contain, respectively, the average
acceleration and the corresponding estimated value of the rolling friction coefficient µR. The last
row of both tables contains the average of the respective columns, resulting in a final average
value for the friction coefficient. It is interesting to see how the resulting coefficient of rolling
friction differs in the two experiments depending on the angle of the whole conveyor setup. With
an inclination angle of 5° the corresponding coefficient of rolling friction takes the value of about
µR,5 = 0.0618 while, for an angle of 10°, the coefficient is equal to about double the previous one,
at around µR,10 = 0.1205. This is in contrast with the results obtained by other authors [34] [35]
[36] who observed that the coefficient of rolling friction should be independent of the angle of the
surface. This discrepancy is probably due to the simplicity of the instrumentation used for the
experiment. In any case the standard deviation of the mean (SEM) was computed using the data
from the 14 runs of the experiment by first computing the standard deviation of the data (STD)
and dividing it by the square root of the total number of runs:

SEM =
STD(µi)√

Ni

(5.12)

where µi is the value of the coefficient of rolling friction computed at each run, and Ni is the
total number of measurements. Computing this value for both the experimental configuration
yields SEM5 = 5.59 × 10−5 and SEM10 = 3.08 × 10−4 that, when compared to the value of the
measurements seems to indicate a relative error lower than 0.5 %.
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Figure 5.7: Example frame from the video used to extract the vibration amplitude of the trough,
it is possible to see the measuring stick and the red marker used in Tracker to track the position of
the edge over time

These results will be used, together with the others obtained in the previous chapters, as a first
rough estimation of the values to be used in the simulation. The results of the simulations ran
with this set of parameters will be presented in Section 6, where they will be compared with
analytical reference cases and real transport experiments executed on the vibrational conveyor.

5.3 Vibration amplitude measurements

As presented in Chapter 5.1, the piezoelectric actuator is driven by an amplifier that is fed by
a wave generator that can generate sinusoidal voltage waves at a desired frequency. While the
instrument also enables the modulation of the total amplitude of the voltage wave, it was sug-
gested to keep that setting stable and to work only on the frequency, due to previous calibration
work that resulted in an estimated total vibration amplitude of 0.3 mm. During early phases of
the experimental campaign, as will be presented in Chapter 5.4.4, it was noted that the whole
conveyor setup showed some resonance zones inside the tested frequency domain, making it
important to check for variation in amplitude on the trough’s vibrations. That is why an experi-
mental procedure was set up to acquire vibration data to analyze with the help of some specially
made scripts.

The conveyor setup was fixed on the lab bench in an horizontal position (α =0◦) and an high-
speed camera was positioned as to get a side view of the trough. In particular, the frame was set
as to include one of the edges of the trough so that movements along both the x-axis and y-axis
could be appreciated as illustrated in an example shot in Figure 5.7. In the same image it is also
possible to appreciate the presence of a measuring stick that is used as a dimensional reference
to extract the position, in millimeters, of the edge from the video. The usual frequency range
was analyzed, from 30 Hz to 55 Hz with 5 Hz increments, thus obtaining data across the whole
range. It was not possible to analyze the last frequency point of 60 Hz due to the limitation of the
high-speed camera, that was shooting at only 120 frames per second.

The videos, taken for each actuation frequency, were then analyzed with Tracker [46], a powerful
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the frequency response of the system computed from the extracted data point through the use of
a Fast Fourier Transform (FFT) algorithm. It is possible to see how, in both cases, the peaks high-
lighted by the FFT correspond to the expected values of 40 and 50 Hz confirming that the video
recordings managed to represent the expected behavior of the system quite closely, resulting in
FFT plots with tight peaks and low harmonic noise.

By repeating this process for all the videos taken at different frequencies, twelve sinusoidal ap-
proximant functions, in the shape of Equation 5.13, were computed: given the six different fre-
quencies analyzed in the experimental run and the two direction, x and y, for each one of them.
Since this analysis is mainly focused on the variation of the vibration amplitude with the fre-
quency the term A of Equation 5.13 was extracted to be used as a measure of the measured vibra-
tion amplitude. The obtained amplitudes, for both x and y axis, are plotted in Figure 5.9 and 5.10
respectively where it is possible to appreciate how the amplitude tends to increase in a linear
fashion with the frequency. The error bars represent one standard error computed by comparing
the data points with the approximant sinusoidal function computed in the last step while the red
lines represent the linear approximant of the relationship between amplitude and frequency. By
means of a simple vector sum it is possible to compute the total vibration amplitude as:

A( f ) =
√

A2
x + A2

y (5.14)

which results in a the amplitudes shown in Figure 5.11. These plots seem to suggest the existence,
in this particular setup, of a linear relationship between the actuation frequency, set on the wave
generator, and the vibration amplitude observed on the trough during the vibration process. This
kind of dependence could originate from the different mechanical interactions on the whole ex-
perimental setup, starting from the leaf springs and up to the joints between the actuator and the
rest of the structure. It will be important, in the following analysis, to remember that each time
the experimental frequency will be changed, it will correspond to a change in the amplitude of
the excitation waveform.

To make use of all of the acquired data, the linear approximant function was computed for the
total amplitude and the single x, y axis amplitudes and implemented in the DEM simulator en-
vironment to account for these particular behavior. This should make it possible to describe the
evolution of the amplitude with the frequency also in the simulated environment to obtain better
fitting data between simulation and experimental results.
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5.4 Transport Experiments

After having acquired all of the necessary information regarding the sample particle’s coefficients
it was possible to begin the main bulk of the experimental work. In this second phase, a paramet-
ric study concerning the transport characteristics of the complete system was performed, consist-
ing in a set of experiments that were run on the setup described in Chapter 5.1, with the aim of
characterizing the transport capabilities in terms of vibration frequency, sample mass, and inclination
of the setup.

The main focus of this experimental phase was to get a deeper understanding of the transport
behavior of bulk materials on vibratory conveyors while, at the same time, collecting useful data
to be used as a reference for the performance of the DEM simulator. As previously stated, the
experiments were run on a preexisting vibratory conveyor setup that was fitted with a precision
scale, a GRAM Xtrem F, to record the discharged mass over time. This scale offers a resolution
of 0.1 g and an Ethernet interface to send the recorded weight data to a data acquisition system,
in this case a personal computer equipped with the X-Trem acquisition software. This particular
scale is able to record and send data with a frequency of 5 readings per seconds. This acquisition
frequency has proved to be enough for the scope of the work, given that the typical discharge
phenomena takes place in the span of some seconds up to two minutes for the sample masses
here employed. Having 5 readings per seconds was enough to obtain smooth discharge curves
for analysis purposes in all the different cases.

The recordings of the fallen mass over time provided by the scale for each experiments are saved
for later analysis. In addition to these numerical data, some experimental runs were recorded
with a camera to extract other useful qualitative and quantitative data, such as the shape of the
material and its speed during the transport process. The video analysis will be presented in
Section 6.3 of the Validation chapter, where a Tracker [46] was used to extract the transport speed
of the material on the conveyor’s trough.

The experiments here presented make use of glass particles sieved as to ensure a diameter greater
than 200 µm. The motivation for this choice are twofold: firstly big particles are faster to simulate
in a DEM environment since bigger timestep can be used to ensure the same maximum penetra-
tion length, secondly, smaller particles would have proven to be more difficult to handle without
specific safety devices such as masks or fume hoods to prevent their inhalation.

The basic parametric study was done with the conveyor set in an horizontal configuration (α =
0◦) where sample mass and frequency were progressively changed in the following ranges:

f = [10, 20, 25, 30, 32.5, 35, 37.5, 40, 45, 50, 55, 60]Hz

m = [5, 10, 20, 40, 60, 80, 100]g

Furthermore the whole experimental process was repeated for α = 5◦ on a slightly different
frequency and sample mass range to accommodate for the diverse transport behavior:

f = [10, 20, 25, 30, 32.5, 35, 37.5, 40, 45, 50, 55, 60, 65, 70]Hz

m = [10, 40, 60]g

All the possible combination of the previous parameters were tested with 6 different runs of the





5.4. TRANSPORT EXPERIMENTS 68

Step Description

1 The conveyor setup is set to the desired α angle using the custom-made wedges and
supports.

2 The desired amount of sample material is weighed on the scale.
3 The desired vibration frequency is set on the wave generator.
4 With the piezoelectric amplifier turned off, thus with no vibration on the trough, the

stopper is placed at a distance of 50 mm from the end of the trough, as shown in Fig-
ure 5.12.

5 The sample material is poured into the trough between the spacer and the end of the
trough itself.

6 The stopper is slowly removed, allowing the bulk material to settle, and the data record-
ing is enabled on the X-Trem software.

7 The piezoelectric amplifier is turned on, powering up the actuator and initiating vibra-
tion on the trough.

8 The sample material is transported along the trough and eventually falls onto the scale
inside a pre-placed container.

9 Once all the material has fallen onto the scale, the data recording on X-Trem is turned
off, and the amplifier is switched off, ceasing the vibrations.

time and then computing the average at each time interval:

m̄(τ) =
1
6

6

∑
i=1

mi(τ) (5.15)

where τ represent a generic timestep. An example of the six experimental acquisitions and the
average computed in this way can be seen in Figure 5.14 where the average run is plotted with a
thick black line.

In Figure 5.14 it is possible to distinguish the three main different parts that characterize the
behavior of all the recorded discharge data series:

• In the first part of the plot, for times lower than around 8 s for this particular configuration,
it is possible to see how the recorded weight is zero. During this period of time the vibratory
conveyor is turned on and the material is being transported along the trough but has yet to
reach the end of the conveyor;

• In the second part, starting from around 8 s up until 10 s, an initial transient in the mass flow
is observed with the first front of the material reaching the end of the trough and starting to
fall on the scale;

• The central part of the graph, from around 10 s up to around 22 s, makes up the bulk of the
transport time. In this period of time we reach an almost steady state condition with a more
or less linear discharge behavior over time;

• In the last seconds, after 22 s from the turning on of the vibration, another transient is ob-
served with the discharge flow slowing down until the total mass has been successfully
discharged.
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Where mN represents the normalized mass at time τ, ms is the total sample mass used in the
specific configuration, and m(τ) represents the mass at time τ. By performing this operation,
the mass is expressed as a percentage of the discharged mass with respect to the initial sample
mass. This ensures that the recorded mass data is comparable between different experiments and
configurations.

Once the mass has been normalized it is necessary to find a suitable way to also normalize the
time axis. All of the tested configuration exhibit drastically different discharge times, from the
slowest ones taking up to two minutes for a complete discharge, to the faster ones managing
to discharge the whole sample mass in a couple of seconds. To uniform this high variability of
transport times between different starting conditions it was decided to align the different time
axis to the same starting time: the instant τi at which the scale measured a discharged mass equal
to a certain percentage Pi of the initial mass.By changing the value of Pi it is possible to move the
starting point to exclude a smaller or bigger part of the initial transient region.

To define a final point that can be shared across all different experimental configurations a similar
approach has been followed. Each normalized mass data series has been analyzed to identify
the time step τf at which a certain percentage Pf of the total mass has been reached. As for the
previous case by changing the the desired value of Pf it is possible to fix the extension of the
central quasi-steady state zone, making it possible to stop the analysis before the onset of the
final transient.

Once this two point have been identified for each one of the average experimental data it is possi-
ble to scale the time between τi and τf using the value of τf for each of these timeseries, making it
so that the evolution of the mass-normalized discharge curve evolves from a normalized time 0,
which corresponds to an initial discharged mass percentage Pi, up to a normalized time 1, when
the normalized discharged mass takes the value of Pf .

The results of this normalization process for a particular experiment can be seen in Figure 5.15.
In this figure the y-axis represents the normalized mass, as defined in the previous paragraphs,
while on the x-axis the normalized time is expressed for a normalization mass percentage corre-
sponding to Pi = 10 % and Pf = 80 %. As explained before, the time step at which the normalized
mass reaches the value of 0.1 is aligned at 0 along the time-normalized x-axis, while the time
step corresponding to a measured normalized mass of 0.8 is aligned to 1. This implies that all
of the data related to initial transient, before τi, are placed on negative normalized time values,
conversely all the points related to the final transient gets pushed to x-axis values greater than 1.

By changing the two parameters Pi and Pf , it is possible to expand or reduce the amplitude of
what is considered to be the central part of the discharge envelope making the whole normalized
plot appear more squished or dilated depending on the chosen values. While the main focus of
this chapter will be the qualitative analysis of the discharge pattern shape that is not so sensitive
upon these limits, in the next chapters it will become clear how the determination of these two
values is critical in the computation of the experimental mass flow. That is why, considering the
comparison that will be made with the simulation results and presented in Chapter 6.4, it was
chosen to use Pi = 0.1 and Pf = 0.8, as to exclude the long transient tails that will be observed in
the simulation data.
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It is now possible to focus on the more interesting part of the graph, were transport was indeed
observed. While it is easy to see a definite upward trend for the average mass flow, which tends
to increase more than linearly with the frequency, it is also important to notice the peak located at
around 35 Hz. This peak was noticed early on in the experimental phase and was one of the first
clues that led to the discovery of the amplitude-frequency relationship in the experimental setup.
This particular frequency region corresponds to higher mass flows than all the other around it,
so it was assumed that it could correspond to a mechanical resonance frequency of the conveyor
setup. This hypothesis could explain the increased throughput of the conveyor, since energy
transmission is higher near resonance zones. This make this particular excitation regime a com-
mon choice for vibratory conveyors, as presented by Rade et al. [26]. The mechanical resonance
hypothesis was further consolidated by some qualitative observation that were made during the
experimental campaign. In particular, while working in this specific frequency range, the typical
vibration sounds became much louder and the desk, acting as a fixing point for the experimental
setup, was subjected to much stronger vibrations.

Considering that the observed peak in the mass flow plot is likely caused by a mechanical res-
onance of the setup, it is reasonable to expect a second peak at approximately double that fre-
quency. However, further investigation of this second resonance peak was not possible within
the experimental range, as vibrations became too strong at frequencies beyond that point which
could, indeed, confirm the presence of another resonance zone. The presence of this resonance
peak could also help to explain the strong correlation between actuation frequency and vibration
amplitude since the mechanical interaction between the leaf springs, trough body, and actuator
may result in different vibrational responses of the system at various frequencies. That is why the
vibrational amplitude analysis was conducted, with the help of a high speed camera, as presented
in Chapter 5.3.

To proceed and compare the same results presented in Figure 5.21 with the ones obtained with
different sample masses, all the experimental data was once again normalized by dividing the
mass flow by the initial sample mass of each experiment. This process produces a "dimensionless
mass flow" that can be interpreted as a mass fraction flow. In other words, the new normalized
data points indicates the fraction of the total initial mass is lost per each second of discharge. This
simple scaling process makes it possible to plot and compare all of the results in the same graph.
Furthermore it should help to highlight if the total sample mass plays an important role on the
transport behavior or if its effect is negligible up until a certain threshold. All the results thus
obtained are presented in Figure 5.22.

It is interesting to see how all of the different lines tend to follow the same trend, with all of them
having a more or less pronounced local maxima at around 35 Hz and then following a strong
increase in the mass fraction flow as the frequency increases. This seems to indicate that the
effect of the sample mass is indeed negligible, at least for the values tested in this experimental
campaign, since experimental lines with different total masses follows more or less the same path.
From the graph it can also be noted that the smallest tested sample mass, of only 5 g, seems to
be diverging from the other ones at higher frequencies maybe indicating the start of a new "low-
mass" regime where the behavior could be different. It is however important to remember that all
of these measurements have an error that has not been presented in the graph as to not overcrowd
it. As could be seen in the previous example of Figure 5.21, the error tends to increase at higher
frequencies and it would be reasonable to expect the same from the other configurations, making
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Chapter 6

Validation of the model

This chapter will be focused on showing a series of comparison between simulated, experimental,
and analytical results, to evaluate the performance of the numerical model in predicting what is
observed in a real experimental setting. This validation process is a crucial step in ensuring that
the numerical model that had been developed so far can actually be used as a predictive tool,
producing results with a close match with reality. These comparisons will be useful to understand
what are the main problems and limitations of the DEM model, providing a way to evaluate the
uncertainties ranges that should be expected when using this new numeric instrument to predict
the performance of real vibratory conveyors.

The performance evaluation of the DEM code will be conducted in several stages. Firstly, the
simulation results will be compared with analytical results obtained from simple configurations,
including scenarios such as a bouncing ball or a disc rolling down an incline. This will serve as
an initial benchmark for assessing the accuracy and reliability of the simulation in reproducing
known scenarios. Next, the focus will shift to a more experimental approach by comparing the
measured transport speed with the simulated results. This analysis will provide valuable insights
into the ability of the DEM code to accurately capture the dynamics of many-particle movement
and transport within the system. Finally, the most crucial aspect of the evaluation will involve
comparing the discharge curves and mass flows obtained from both the experimental measure-
ments and the simulation.

6.1 Comparison with simple analytical cases

The first step in validating the whole discrete element simulation model is to make sure that the
underlying numerical solution is correct and stable within acceptable margins. To do so it is
useful to simulate some simple cases such a simple bouncing ball, with and without damping, or
a ball rolling down an inclined plane. This initial study cases present a simple analytical model
that can be used as a reference to evaluate the predictive performance of the numerical solution
developed in Section 4.

83
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6.1.1 Perfectly elastic bouncing ball

The simplest discrete system that can be considered as a test of the reliability of the numerical
method is a simple bouncing ball that is falling without air resistance due to gravity acceleration.
This system can be even considered as a one dimensional problem, if we assume that the ball is
bouncing in place. From simple kinematics it is known that the vertical falling motion of the ball
z, plotted against time t, will result in a parabola. The bounce on the floor will happen when
the condition z − R = 0 is met, where R is the radius of the ball in question. For this example a
perfectly elastic response has been considered, with the ball conserving its total energy, and thus
speed, upon collision with the floor. It is easy to see how the ball should reach, at every bounce,
the same maximum height due to the lack of dissipation terms.

Given the analytical example, a simple simulation was ran with a particle of radius R = 1 mm
bouncing on the bottom boundary of the simulation domain without any damping, starting from
a height of 10 mm. Following the considerations in Chapter 4.4.1, the integration time step was
set at ∆tsim = 0.730 ms, and the simulation was evolved for a time length of 1 second, using an
elastic constant of kn = 3330 N m−1. The result for a perfectly elastic response are presented in
Figure 6.1 where the trajectory of the ball computed by the DEM simulation and by the analytical
model are compared. There is a good agreement between the two trajectories, indicating that the
numerical model can predict, with good accuracy, the trajectory that is expected from an ideal ball
bouncing in a perfectly elastic manner on a fixed surface. The comparison between the trajectory
obtained with the DEM simulation and the analytical one as a reference, offers a RMSE (Root
Mean Squared Error) of:

RMSE =

√

√

√

√

1
nts

t=1

∑
t=0

(zDEM − zan)2 = 0.122 mm (6.1)

Another observable quantity that can be used as a reference of the goodness of the simulation’s
results is the total mechanical energy of the system. In this simple case, the system is composed of
a single non-rotating particle, so its total energy should be constant throughout the simulation
evolution, and equal to the sum of its potential and kinetic energy components:

Etot = Ekin + Epot =
1
2

mv2 + mgh = 1.0889 × 10−6 J (6.2)

The evolution of the energy is showed in Figure 6.2 where it is possible to see some slight vari-
ations as time passes. The graph of the energy shows some steps where the energy changes
in a discontinuous way. These discrete steps corresponds to each collision of the particle with
the floor. The slight variations in total energy are due to the intrinsic numeric approach of the
method, since collisions are really fast phenomena it is difficult for the integrator to precisely an-
alyze them using discrete time steps. It is possible to observe some straight lines going down
at the beginning of some steps in the graph. Those are the timestep at which the the integrator
analyzed the particle near its maximum penetration depth, when the particle is almost still and is
starting to be accelerated out of the floor. Nonetheless the variations of the energy are still really
small in comparison to the initial value and they definitely lie inside the uncertainty due to other
limitations of this simulation approach. In fact, it is possible to see that the maximum energy
variation, in this example, has a value of 1.04 × 10−8 J resulting in a relative error of 0.952 %.
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6.2 Inclined plane experiment

Once established that the simulation and its numerical model are working as intended, as demon-
strated by the comparison with known analytical problem, it is possible to start comparing the
results of the simulations with real life data acquired through the experimental setup presented in
Chapter 5.1. Following the same approach as in the previous chapter, it is useful to start analyzing
simple system with just one particle. In particular, this chapter will focus on the comparison be-
tween the results of the DEM simulation and experimental data of a single particle rolling down
the inclined trough of the experimental setup.

The experimental reference data was the same obtained in Chapter 5.2.3 where single particles
were made to roll down the inclined trough to evaluate the rolling friction coefficient to be imple-
mented in the simulation, available in Table A.1 and A.2. The scope of this chapter is to compare
the time it takes for the particles to roll down the whole incline in the DEM simulation with the
data acquired on the experimental setup.

Now that is necessary to show the comparison between simulation and experimental data it is
necessary to employ all of the coefficients found through the calibration experiments showed in
Chapter 5.2. In particular, the values used are presented in Table 6.1. The density was chosen
based on a known value for the density of quartz, while the diameter of the sphere was set to
the same as the ones used during the experimental phase, 200 µm. The normal elastic coefficient
was chosen as to grant a penetration length between the particle and the surface that is less than
1 % of the particle diameter, in this case resulting in about 2 µm of maximum penetration. The
shear friction and rolling friction coefficients values are the ones obtained during the experimental
phase, while the normal and shear damping coefficients were derived using the empirical formula
presented in Equation 6.3, derived from papers by Ting and Corkum [38] and Ting et al. [8].

Table 6.1: Coefficients used in the validation simulations

Parameter Value Unit

Sphere diameter (D) 200 µm
Density (ρ) 0.002 65 g mm−3

Normal elastic coefficient (kn) 3300 g s−2

Shear friction coefficient (µ) 0.1126 g s−2

Cohesion (C) 5.83 g mm s−2

Shear angle (Φ) 6.43 ◦

Rolling friction coefficient (µR) 0.618 53 -
Restitution coefficient (e) 0.6 -
Normal damping (Dn) 0.012 23 g mm−2 s−1

Shear damping (Ds) 0.012 23 g mm−2 s−1

The simulation’s initial condition were set with a single particle generated right above the bot-
tom surface, without any initial velocity, with a trough downward inclination of respectively 5
and 10 degrees. The particle is left free to roll down the incline, under the influence of gravity,
until it reaches the edge of the trough where the total travel time is recorded. just like for the real
experimental setup, the length of the trough in the simulation was set to 250 mm. The simulation
was run numerous times to prevent possible numerical deviations from one run to the others,
obtaining some really stable results that seemed to perfectly overlap within the expected error
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frequency with the one measured experimentally.

As previously mentioned in Section 5.4, all the transport experiments were also captured with
the help of a camera placed directly above the experiment so as to frame the entire length of
the trough. This setup made it possible to acquire video footage of the sample material being
transported along the trough for different vibration frequencies. As for the data extraction it-
self, Tracker [46] was again used to analyze the movement, over time, of the forward front of the
moving sample mass. For this particular setup the X-axis of the software’s internal system of ref-
erence was aligned to the center line of the conveyor’s trough while a measuring stick, previously
aligned to the trough and visible in the video, provided a reference distance to calibrate the posi-
tion extraction process. The tracking of the forward front of the sample material was completed
employing the autotracking feature of the software that made it possible to automate this process
for each of the analyzed video sources. From the position data, it was then possible to extract the
movement speed of the bulk material along the trough axis, through the application of a simple
finite differences algorithm.

Since simulating a lower number of particles proved to be easier in terms of time and computa-
tional resources, the speed comparison were made with the lower experimental mass possible.
During the video analysis it was noted that sample masses lower than 20 g were difficult to track
with the software, given that they evolved in an elongated and dispersed shape along the trough.
That is why the experiments with a sample mass of 20 g were used as reference for the evaluation
of the transport speed, given that they provided the minimum possible mass while ensuring a
stable tracking procedure. An example of the position tracking along the trough can be seen in
Figure 6.7, the red diamond markers highlight the position of the forward front of the bulk ma-
terial over time. In the same image it is also possible to note the presence of the measuring stick
used as a dimension reference. Given the chosen mass of bulk material, the transport experiment
was repeated for the usual set of experimental frequencies presented in Chapter 5:

f = [30, 32.5, 35, 37.5, 40, 45, 50, 55, 60]Hz

A velocity plot was obtained for each one of these cases describing the evolution of the transport
speed overtime. Given the low contrast of the video frames, the vibrations of the trough, and the
dispersion of the bulk material during transport, the position extraction and the subsequent speed
computation presents high oscillations as can be seen in Figure 6.8. To obtain a more useful value
the average value of each sample set was computed, as can be seen in the same figure, indicated
with a red line. This process was repeated for all of the frequencies, obtaining the evolution of the
average transport speed as the frequency, and amplitude, of the vibration changes. It is indeed
important to remember again, as noted in Chapter 5.3, that this particular experimental setup
presented a strong dependence of the vibration amplitude with the actuation frequency, so all of
the measured quantities depends on the evolution of both these parameters.

Figure 6.9 illustrates the variations in the experimental average transport speed values, as black
circles, in response to changes in frequency and amplitude. This figure provides a clear visual
understanding of how the transport speed is affected by changes in the oscillatory motion pa-
rameters. It is possible to observe a visible peak at about 32.5 Hz followed by a segment of almost
constant transport velocity of about 20 mm s−1. A final zone is observed, for actuation frequen-
cies higher than 40 Hz, where the transport velocity continues to increase, reaching values above
100 mm s−1. This behavior may be related to the mechanical resonance frequencies of the ex-
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perimental setup when excited with sinusoidal waves. To further support this assumption, it is
useful to note that the first peak for the transport velocity occurs at about 32.5 Hz, so it would be
reasonable to expect another peak at twice that frequency which could be confirmed by the evo-
lution of the transport velocity with higher frequency. The strong increase of the velocity, visible
in Figure 6.9 for frequencies higher than 45 Hz, could be linked to another peak in the range of 65
to 70 Hz, which has not been studied experimentally, precisely because of the too intense vibra-
tions that occur on the whole setup in this actuation regime. It then seems justified to associate
these peaks with the presence of mechanical resonance frequencies in the experimental frequency
range.

The experimental values also present an error bar that was computed from the data acquired on
Tracker. For each set of measurements, each one at a different frequency, the 95 % confidence
interval CI was computed from the standard error SE as:

CI = SE × 1.96 (6.8)

Where the standard error SE was computed from using the definition:

SE =
σx√

N
(6.9)

σx =

√

√

√

√

1
N

N

∑
i=1

(xi − x̄)2 (6.10)

Where N is the total number of measurement for each data set, x̄ is the mean value of the transport
speed for each data set, and xi is a generic measurement of the data set. As can be expected the
amplitude of the confidence interval increases with the transport speed, possibly due to the use
of a low frequency camera as the video recording instrument. Fast moving objects in a low frame-
rate video are difficult to track correctly, increasing the overall error of the measurement itself.

Figure 6.9 also contains the results of two simulation sets: the first one was run with variable
frequency and fixed vibration amplitude of 0.321 mm, using the value originally measured on the
system, while the second set was run with bothe the variable frequency and vibration amplitude,
using the data obtained in Chapter 5.3. From the figure, it is clear how the simulations conducted
with a constant amplitude fail to reproduce both the first peak and the second part of the experi-
mental curve, where the measured transport speed increases drastically. These simulation results
still show a rising pattern for the transport speed at higher frequencies but with a much lower
slope than what was observed experimentally, reaching a maximum of about 40 mm s−1 for the
last actuation frequency of 60 Hz. This erroneous behavior prediction was to be expected since
the increase in amplitude with the frequency has a strong influence in the conveyor’s transport
speed, as was presented in the theory in Chapter 3.3. Using a constant amplitude, will thus result
in a high discrepancy between simulated and experimental results.

On the other hand, after the implementation of the variable amplitude, the simulations provided
results that were able to match the measured ones much more closely, confirming that this param-
eter has a high influence in the calibration of the numerical simulation. This new set of simula-
tion’s results, indicated by a triangle in Figure 6.9, are able to correctly predict the transport speed
peak at around 32.5 Hz, while being also able to describe the strong increase in transport speed for
higher frequencies with a much lower error when compared to the reference experimental data.
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To compare the two series of data with the experimental one the Root Mean Squared Deviation
RMSD was computed between the two:

RMSDconst =

√

1
N ∑(uexp − usimA,cost

)2 = 28.26 mm s−1 (6.11)

RMSDvar =

√

1
N ∑(uexp − usimA,var

)2 = 8.64 mm s−1 (6.12)

In this particular equation, N denotes the total number of measurements to be compared with
the reference, which corresponds to the 9 simulations conducted at different frequencies. Addi-
tionally, the variable u represents the transport speed that is obtained from either the simulation
(usim) or from experimental measurement (uexp). The RMSD is utilized as a metric to compare the
agreement between the simulated and experimental data, where lower values indicates a closer
match. The comparison between this two parameters shows how, the simulations with varia-
tions on both frequency and amplitude, provide results that are much more similar to the ones
observed experimentally presenting a reduction of about 70 % in RMSD. This observations acts as
a further point of confirmation and quantification of the importance of accounting for amplitude
variations in the calibration process of the model.

6.4 Comparison of transport behavior

The last chapter of this section will be focused on the comparison between the results of complete
transport simulations with the observations obtained during the experimental campaign and pre-
viously presented in Chapter 5.4. This kind of comparison proves to be really useful in evaluating
the performance of the numerical model since it is the only way to really assess the the accuracy
of the simulation in predicting the transport capabilities of an equivalent real vibratory conveyor
setup. In this specific scenario, the focus will be given to the discharge curves and the discharged
mass flow. It is important to note that these analyses take into account the considerations dis-
cussed earlier regarding the conversion between the total number of simulated particles in a 2D
domain and the actual 3D experimental setup.

By examining the discharge curves, it is possible to assess the ability of the simulation to accu-
rately replicate the behavior of many particles as they are transported along the conveyor. This
involves comparing the shape, trend, and overall characteristics of the discharge curves obtained
from the simulation and the experimental measurements. Additionally, the discharged mass flow
will be the other key metric for evaluating the performance of the DEM code. As previously ex-
plained, this parameter represents the amount of material that is successfully transported by the
conveyor system over a given time period. Comparing the simulated discharged mass flow with
the experimental data will provide insights into the accuracy and reliability of the simulation in
capturing the real-world transport phenomena.

The simulations were run with two different amounts of simulated 2D particles, a smaller amount
of around 1900 particles and a bigger simulation setup with 3750 discs. Keeping as a reference the
conversion presented in Chapter 5.2.1, the two amounts are considered to be the equivalent to a
real life quantity of sample material of 5 and 10 g respectively. Since the bulk material used in the
experiments was composed of glass spheres of around 200 µm of diameter, the same dimension
was used to generate a distribution of mono-sized circular particles in the simulation. Given the
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need to simulate a conveyor under Earth’s gravity condition, the gravitational acceleration con-
stant in the code was set to 9.807 m s−2 [45] oriented along a downward direction. The various
mechanical interactions are described using the same values for the coefficients presented in the
previous chapter. As previously explained, some of those values were evaluated experimentally,
such as the friction coefficient, others were chosen as to grant some kind of expected behavior,
such as the the elastic coefficient, while others were estimated using empirical formulas, such as
the damping coefficient. The elastic coefficient, in particular, was chosen as to insure a compene-
tration between particles during impacts that is always lower than 0.1 % of the particles diameter
in the typical speed regime observed in the simulation. At the same time, the specific value of the
elastic coefficient was used to set the required time step, as seen in Chapter 4.4.1. A review of all
the important parameters used in the simulation is shown in Table 6.2. The frequency range was
chosen to be the same as the one tested experimentally, from 30 Hz to 60 Hz, while the vibration
amplitude was set following the measurements taken on the experimental setup and presented
in Chapter 5.3, as a way to achieve a better match between simulation and experiment.

Table 6.2: Coefficients used in the validation simulations

Parameter Value Unit

Sphere diameter (D) 200 µm
Density (ρ) 0.002 65 g mm−3

Normal elastic coefficient (kn) 3300 g s−2

Shear friction coefficient (µ) 0.1126 g s−2

Cohesion (C) 5.83 g mm s−2

Shear angle (Φ) 6.43 ◦

Rolling friction coefficient (µR) 0.618 53 -
Restitution coefficient (e) 0.6 -
Normal damping (Dn) 0.012 23 g mm−2 s−1

Shear damping (Ds) 0.012 23 g mm−2 s−1

Gravitational acceleration (g) 9807 mm s−2

Simulation time step (ts) 0.232 ms

Some results are shown in Figure 6.10 where the discharge curves are presented for both experi-
mental (in red) and simulated data (in blue). To be able to compare the two results, it was again
necessary to scale them. The scaling on the experimental discharged mass was done by dividing
the recorded mass by the initial sample mass, as in the previous analysis. On the other hand
the simulation data was scaled by dividing the number of fallen particles at any given moment
by the total number of particles in the simulation. This different approach was needed due to
the intrinsic discrete approach of the DEM model. With this particular normalization both of the
dataseries will reach a value of 1 when the totality of the particles have been discharged.

The first row of Figure 6.10 shows three comparisons at different actuation frequencies between
the results obtained with an experimental sample mass of 5 g and the equivalent simulations run
with 1900 particles. In the second row, the discharge curves obtained with 10 g are compared
with the simulation results with 3750 particles. An interesting point to note is that, while the
inclination of the discharge curve might vary between experiment and simulation, the point in
time from the start of the vibration at which the first particles are discharged is pretty much
coincident between the two. Across various frequencies and for both of the tested masses, the
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to the experimental results presented in Chapter 5.4.5, the simulated scaled mass flow is overall
much lower with a reduced zone in which transport is observed. It is possible to appreciate a
reduction in the first transport frequency on the more extreme values of β, indicating that the
predictive power of the model deteriorates quickly outside of the actuation zone for which it was
calibrated. It is also interesting to note how the peak that was observed in the experimental data
for frequency of 55 Hz seems to be lost in the simulated data. As for the other comparisons, one
of the main factors that played in the reduction of the discharged mass flow was, probably, the
perfect circularity of the simulated particles. In this particular scenario, with the virtual trough
inclined of 5◦, the particles are free to roll down along the incline without any kind of stopping
action. Furthermore, the perfect circularity together with the low rolling friction makes it much
more difficult for the movement of the trough to be transformed in forward jumps for the parti-
cles, since part of the energy is lost to the rotational degree of freedom.

As a final point, the difference between the simulated and experimental scaled mass flow were
computed and the results plotted in the heatmap of Figure 6.17, where the values were computed
as follows.

∆ ¯̇ms = ¯̇msim − ¯̇mexp (6.13)

The biggest deviations are observed in the higher range of frequencies, with reduction in scaled
mass flow up to 0.5 s−1 from what was observed experimentally. As previously noted, another big
difference is along the column corresponding to a frequency of 55 Hz, where a strong reduction
in scaled mass flow is observed due to the absence of the peak in the simulated data.

In general, it must be noted that the model shows much greater discrepancies with the experimen-
tal results for this configuration with α = 5◦ than with the horizontal conveyor. The inclination
of the model plays an important role in the accuracy of the prediction and its influence on the
results must be evaluated further to better characterize the model to make it a reliable design tool
for vibrational conveyors.
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Chapter 7

Results

With the successful development, testing, and validation of the DEM code using real-life exper-
imental data, it is time to employ this new instrument as a method for studying and predicting
environments and configurations that have not been yet tested in real life. In this chapter some
new results, based only on the simulation developed so far, will be presented. Specifically, the
DEM code was employed to predict the behavior of a vibratory conveyor under the influence of
lunar and Martian gravity conditions. By simulating the vibratory conveyor in these different
gravitational environments, it is possible to gain important insights regarding its performance
and operation capabilities in extraterrestrial settings. These predictions will offer new impor-
tant information regarding the behavior of a conveyor system under reduced gravity conditions,
facilitating the understanding of potential challenges and opportunities that may arise during ex-
traterrestrial ISRU missions. Since the numerical model does not include any other environmental
effect, such as aerodynamic drag or charging, the only variation with respect to the simulations
presented so far will be a changed constant of gravitational acceleration that will take the values
measured on the surface of Moon and Mars, respectively.

In both lunar and Martian gravity conditions, the gravitational acceleration experienced by the
bulk material within the vibratory conveyor will be significantly lower compared to Earth’s grav-
ity. As discussed in Chapter 3.3, this difference in gravitational force will have an impact on the
transport speed of the bulk material along the trough. By conducting simulations under lunar
and Martian gravity, the DEM code will provide results specific to these extraterrestrial environ-
ments, which will then be compared to the findings obtained under Earth’s gravity to study and
comprehend the effects of gravity on the transport behavior of vibratory conveyors.

7.1 Simulations in lunar conditions

In the pursuit of expanding humanity’s presence beyond Earth’s boundaries, the Moon has be-
come an enticing target for scientific exploration and resource utilization. Considering the unique
characteristics of the Moon and the significance of utilizing available resources in-situ, the lunar
surface offers a interesting environment for the deployment of vibratory conveyor technology.
Such conveyors can play a crucial role in extracting and processing resources directly on the
Moon’s surface, minimizing the need for external supplies and enhancing self-sufficiency. That is
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scaled mass flow becomes higher than the one obtained on lunar conditions, producing a higher
discharge rate also at the maximum simulated frequency of 60 Hz. While under Mars gravity,
just like the results obtained in lunar condition, the mass flow is higher than the one observed on
Earth for the majority of the tested frequency range, also in this case in the last tested frequency
the predicted scaled mass flow in Earth gravity overcomes the one obtained on Mars, becoming,
again the highest predicted mass flow.

The motivation behind this behavior can be linked to the same argumentation made for the
Moon’s case. The lower gravity helps in the transport of the bulk material in the trough due
to the physical nature of the hopping transport. The particles are able to make bigger jumps
given the same excitation energy thus making faster progress in their movement along the con-
veyor. For the same reason it could be possible to speculate that the different trajectory plays in
favor of high frequencies on higher values of gravitational acceleration while, on celestial bodies
with lower gravity, it would be beneficial to work with lower actuation frequencies, enabling the
use of smaller, lighter and less powerful devices.
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Chapter 8

Conclusions and outlook

In the field of In Situ Resource Utilization for planetary exploration and colonization a big open
question is the identification of suitable logistical solutions for the transport of locally available
material for both experimental and construction purposes. The necessity of harnessing the mate-
rials that are present on the surface of other planets and moons sparks from both the necessity of
analyzing and transporting scientific samples of sand and rocks to various analysis instruments,
and from the difficulty and cost of sending construction material from the Earth with traditional
space launches. This thesis was aimed at addressing at least a part of the problem by focusing
on the study of vibratory conveyors as a possible solution for the transport of small amount bulk
materials in extraterrestrial environments, focusing on the possibility of utilizing them on the
surface of the Moon.

Vibratory conveyors are a common industrial solution to the problem of transporting granulate
materials being employed in a wide variety of application, from the movement of soils, to food
processing, to pharmaceutical industries. As it was presented, they offer a noticeable set of advan-
tages, being easy to clean, relatively low-maintenance than other types of mechanical conveyors,
and with a fewer moving parts that could be subject to abrasion. Small vibratory conveyors are
an ideal solution for moving modest amounts of material in a space application, being particu-
larly low-power and able to sustain abrasion and corrosion due to special coatings and materials
that can be used to build the trough. In the field of space application a particular interesting
solution to the problem of generating the necessary vibrations of the trough is the use of piezo-
electric actuators. In contrast to classical types of actuation based on the use of electric rotary
motors, piezoelectric actuators convert electrical energy to mechanical energy directly without
the use of moving parts, based on the principle of piezoelectricity, a property of certain materi-
als that are able to deform when subjected to an electric field. The absence of moving part, low
energy requirements, and the ability to work in a vacuum without major setbacks make this type
of actuation an ideal choice for space application, so that is why it was chosen to be the actuation
mechanism used in the experimental setup.

To help in the design of this kind of systems for future applications, a simulation framework
was written from scratch to simulate the behavior of bulk materials on the trough of a vibratory
conveyor. The numerical model was based on the Discrete Element Model (DEM) proposed by
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Cundall in 1979. It describes granular materials as an assembly of thousands of virtual particles
that are free to move in a mesh-less simulation domain and to interact and collide with each other.
The implementation of the algorithm was written in the high-performance Julia Programming
Language, as to optimize the performance of the code given the high computational load that
are typical of these kinds of simulations. The simulation was built in a bidimensional domain
to simplify the numerical scheme. To be able to utilize the code to obtain results that match
with what is observed in real life an important step is its calibration, meaning the evaluation of
the important parameters that must be changed in the code in order to make it produce results
that are similar to reality, with the desired level of accuracy. That is part of the reasons why an
extensive experimental campaign was conducted.

In particular, with the overall aim of increasing the knowledge regarding bulk material transport
on vibratory conveyors and to produce useful data for calibration, an experimental campaign
was conducted on a preexisting experimental setup at the Chair of Astronautics consisting on
a vibratory conveyor setup actuated with a piezoelectric motor. The conveyor setup was fitted
with a high-precision measuring scale to accurately evaluate the discharged mass released by the
conveyor over time. This rig was used to gain data regarding the transport capabilities of the
vibratory conveyor under different actuation configuration using, as a reference bulk material, a
variable amount of glass spheres with a diameter of about 200 µm. The piezoelectric motor was
excited as to produce vibrations at different frequencies, causing drastic changes in the transport
behavior of the material.

It was noted how the amount of sample material on the trough has an influence in the normalized
shape of the discharge pattern, with higher masses showing a higher mass flow in the first half
of the discharge process than what is observed later, while the experiments with a lower mass
showed the opposite. After scaling the time with the frequency, it was possible to observe that
the relationship between actuation frequency and time of total discharge is super-linear. This
proves to be an interesting starting point for future research since, the determination of a precise
relationship between this two quantities could prove to be particularly useful in the design of
control systems to be employed to precisely control the discharge flow of these systems.

All of the gathered data was put together to show the evolution of the discharged mass flow
with the actuation frequency, noticing the presence of a spike in the mass flow at around 35 Hz
which was attributed to the presence of some kind of mechanical resonance of the system. This
led to further analysis of the behavior of the conveyor leading to the discovery of an important
relation between the actuation frequency and the vibration amplitude, which were thought to be
unrelated up until that point. Without the knowledge of the changing amplitude, gained with the
additional experiments, it would have been impossible to correctly determine the origin of the
observed spike. Finally the upward transport capabilities of the setup were explored by inclining
the whole conveyor to a 5 deg angle showing that the system was able to easily transport material
upward along the trough as long as the frequency was sufficiently high. This could prove to be
particularly useful for ISRU application where the material will have to be gathered from the
ground and transported up, towards some kind of analysis apparatus.

A set of simple experiments were devised to evaluate important mechanical parameters to be
used in the simulation code. In particular, the coefficient of friction, friction angle, cohesion, and
the coefficient of rolling friction were experimentally evaluated, obtaining important values that



109 CHAPTER 8. CONCLUSIONS AND OUTLOOK

were then introduced in the code. Against what observed in previous research, the coefficient
of rolling friction was found to be related to the inclination angle of the surface. Given the low
resolution of the employed instruments, the data here presented is not sufficient in drawing any
kind of conclusions regarding that, but the data was still successfully used in the numerical sim-
ulation. Realizing that the 2D simulation could be considered as a longitudinal "slice" of the real
3D experiment, a simple conversion between the volume of sample material and an appropriate
number of virtual particles to be used in the simulation was derived.

After the acquisition of all of this data, the simulation was updated with the newfound values and
was then put to the test against a set of simple analytical cases, such as a bouncing ball or a ball
rolling down an incline. This validation process proved the accuracy of the DEM model and of the
underlying numerical scheme making it possible to test bigger simulations with a higher number
of particles. The results of these simulations were compared with the experiments in terms of
transport speed and mass flow. Even if a certain deviation was always present, the results of the
DEM simulation can be considered satisfactory for its use as a preliminary design tool. The main
sources of "error" between the simulation and the experimental data are to be attributed to the
limited 2D domain of the code and to the perfectly circular particles used in the simulation.

The calibrated and validated DEM simulation was finally used to generate new results regarding
the performance of the same vibratory conveyor under lunar and martian gravity. The simulated
data showed a much higher mass flow than what was observed on Earth-like conditions, which
was to be expected from the simple analytical theories that are commonly used for these sys-
tems. From the comparison of the discharged mass flow it was noted how it is possible to find an
optimal frequency for each gravitation constant. In particular, for higher frequencies, higher val-
ues of gravitation acceleration proved to generate a higher mass flow, while lower gravitational
accelerations worked best with lower actuation frequencies. This behavior is possibly linked to
the different cinematic of the bulk’s particles which, under different gravitational environment,
respond in a different way to the excitation frequency.

The work presented so far shows numerous areas that could be improved in the future. Firstly the
simulation code is in need of an important optimization work, including the integration of more
advanced neighborhood algorithm such as the sort and sweep algorithm based on the computa-
tion of bounding boxes for each particle. In regards to the complexity of the particles interaction
a big leap forward would be the integration of more advanced non-linear collision models which
could be able to more accurately describe the interaction between virtual particles. On the other
hand, the introduction of irregular polygonal particles could easily prevent all of the problems
associated with the use of perfectly circular particles, making the simulation able to better pre-
dict complex emergent behaviors such as arching or locking between particles. Other interesting
addition would be the introduction of the effect of tribocharging on the particles, a common long
range interaction that is typical of these types of bulk materials. As a final point, the extension of
the simulation to a tridimensional domain could prove to be the final step in increasing the quality
of the simulation results and in obtaining more useful results in a wider variety of applications.
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Appendix A

Experimental Data

A.1 Estimation of rolling friction coefficient

Table A.1: Results of the rolling friction coefficient experiment with a conveyor angle of 5°

Time [s] Acc [m/s2] µR

Run 1 12,9 0,0030 0,0622
Run 2 7,9 0,0080 0,0617
Run 3 8,5 0,0069 0,0618
Run 4 9,9 0,0051 0,0620
Run 5 9,2 0,0059 0,0619
Run 6 7,7 0,0084 0,0616
Run 7 7,9 0,0080 0,0617
Run 8 9,8 0,0052 0,0620
Run 9 9,3 0,0058 0,0619

Run 10 9,1 0,0060 0,0619
Run 11 8,2 0,0074 0,0617
Run 12 7,2 0,0096 0,0615
Run 13 6,9 0,0105 0,0614
Run 14 7,4 0,0091 0,0616

Avg 8,7 0,0071 0,0618

A.2 Tilting Plate experiment data
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Table A.2: Results of the rolling friction coefficient experiment with a conveyor angle of 10°

Time [s] Acc [m/s2] µR

Run 1 4,5 0,0247 0,1234
Run 2 2,9 0,0595 0,1198
Run 3 2,8 0,0638 0,1193
Run 4 3,1 0,0520 0,1206
Run 5 3 0,0556 0,1202
Run 6 3,2 0,0488 0,1209
Run 7 2,9 0,0595 0,1198
Run 8 2,8 0,0638 0,1193
Run 9 3,6 0,0386 0,1220
Run 10 3,4 0,0433 0,1215
Run 11 3 0,0556 0,1202
Run 12 3,1 0,0520 0,1206
Run 13 2,9 0,0595 0,1198
Run 14 2,8 0,0638 0,1193

Avg 3,1 0,0529 0,1205
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Table A.3: Experiment results for the evaluation of shear friction coefficients with tilting plate
method

ID Mass [g] L [mm] α [deg] mg/A cos ff mg/A sin ff

1 8,0 50 13,5 0,029 0,0071
2 8,0 80 19 0,018 0,0062
3 8,0 100 18 0,014 0,0047
4 16,9 60 11 0,052 0,0101
5 16,9 90 13,5 0,034 0,0082
6 16,9 100 13 0,031 0,0072
7 16,9 120 17 0,025 0,0077
8 32,1 50 10 0,119 0,0210
9 32,1 80 10 0,075 0,0131

10 32,1 100 12 0,059 0,0126
11 32,1 120 16 0,049 0,0139
12 32,1 140 14 0,042 0,0105
13 32,1 160 15 0,037 0,0098
14 32,1 180 17 0,032 0,0098
15 48,2 50 7 0,180 0,0221
16 48,2 80 8,5 0,112 0,0168
17 48,2 120 11 0,074 0,0144
18 48,2 100 10 0,089 0,0158
19 48,2 150 13 0,059 0,0136
20 48,2 170 15 0,052 0,0138
21 64,2 120 10 0,099 0,0175
22 64,2 140 11 0,085 0,0165
23 64,2 160 14 0,073 0,0183
24 64,2 180 16 0,065 0,0186


