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Abstract

Multiple dimension reduction techniques, whether preserving global or local

structures, demonstrate impressive visualization performance on many real-

world datasets. Techniques such as T-SNE, UMAP, and TriMap are popular

choices. However, the main challenge remains the running time, especially

when working with large, high-dimensional data. One potential solution is to

take a sample subset of the original data to start the embedding process. While

this approach might not yield results as accurate as those obtained from the full

dataset, it significantly reduces computation time. Center-based clustering is a

fundamental primitive in data analysis, which allows to identify key landmark

points that are representative of the entirety of the dataset. This thesis intro-

duces a technique combining UMAP and clustering focusing on global structure

preservation. We propose four metrics, each providing a different perspective

on applying UMAP over k centers. Our results are supported by a series of

experiments on both real-world and synthetic datasets, containing up to 15

million points. These experiments demonstrate that our algorithm produces

higher-quality solutions than the standard UMAP method.
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1
Introduction

The increasing availability of large-scale, high-dimensional datasets across

various fields, such as bioinformatics, finance, and computer vision, has in-

troduced new challenges for data analysis. As datasets grow in both size and

complexity, they demand more sophisticated tools for meaningful interpretation

and visualization. High-dimensional data often contain rich structures that are

difficult to observe directly due to the so-called curse of dimensionality" [7]. This

phenomenon highlights the difficulties that arise when analyzing and visualiz-

ing data in high-dimensional spaces, where the number of features far exceeds

the number of observations, leading to challenges in computational efficiency,

data sparsity, and model overfitting [2].

Dimensionality reduction techniques have emerged as a powerful tool to

address these challenges. By transforming data from a high-dimensional space

into a lower-dimensional representation, these techniques make it easier to vi-

sualize and interpret complex datasets while retaining the important structures

within the data. There are two primary types of structures that these meth-

ods aim to preserve: local and global [1]. Local structure preservation ensures

that points close to each other in high-dimensional space remain close in the

low-dimensional embedding. Global structure preservation, on the other hand,

ensures that the overall arrangement of clusters and groups within the data is

retained.

Among the most popular dimensionality reduction techniques are t-Distributed

Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and

Projection (UMAP), and Principal Component Analysis (PCA). Each of these
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methods has strengths and weaknesses. For instance, t-SNE is widely used

for preserving local structures and is particularly effective at revealing clusters

within data. However, it struggles with scalability and tends to distort global

structures as dataset sizes increase. PCA, applying a linear transformation to

the data, is computationally efficient but may fail to capture nonlinear rela-

tionships within complex datasets [14]. UMAP, introduced in recent years, has

gained prominence due to its ability to preserve both local and global structures,

making it a highly effective tool for large-scale visualization tasks [8].

Despite the advantages of UMAP, its application to large-scale datasets re-

mains computationally intensive, mainly when dealing with millions of data

points. The high time complexity of UMAP makes it impractical for real-time

or interactive data exploration on large datasets [1]. This leads to a need for

optimization strategies that can reduce the computational burden without sac-

rificing the quality of the visualization. One promising approach to this problem

is the use of coresets: small, representative subsets of the data that approximate

the properties of the original dataset [4]. By selecting a strategically chosen core-

set, it is possible to reduce the size of the data that needs to be processed, thus

improving computational efficiency while still maintaining the key structures of

the data.

The concept of coresets was first introduced as a method in computational

geometry for approximating large datasets with a smaller, weighted subset of

points. These subsets retain the essential geometric properties of the larger

dataset, allowing for efficient approximation algorithms to be applied [4]. In the

context of dimensionality reduction, coresets can be applied to preprocess data,

selecting a small number of points that are representative of the larger dataset.

These points are then used as input to methods such as UMAP, reducing both

memory and time requirements. The challenge, however, lies in selecting a

coreset that not only reduces the data size but also preserves the underlying

structure that dimensionality reduction techniques seek to capture.

This thesis explores the combination of UMAP with k-center clustering for

the creation of coresets, focusing on whether this approach can accelerate di-

mensionality reduction while preserving both local and global data structures.

K-center clustering is an efficient clustering algorithm that selects k points (cen-

ters) in such a way that the maximum distance between any point and its nearest

center is minimized [4]. By leveraging k-center clustering, we ensure that the

coresets contain points that are representative of the entire dataset, capturing the
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CHAPTER 1. INTRODUCTION

diversity and overall structure of the data. Furthermore, this thesis introduces a

custom metric designed to optimize the embedding of these coresets in UMAP,

which takes into account both the location and spread (radius) of the selected

data points.

The custom metric proposed in this research augments the traditional Eu-

clidean distance by incorporating a radius component, which adjusts the weight

of each data point based on its relative importance. This allows UMAP to better

capture both local neighborhoods and larger, global structures when applied

to the reduced dataset. This thesis systematically evaluates the performance of

this approach on both synthetic and real-world datasets, including large-scale

datasets. These datasets, which contain millions of data points, provide a robust

testing ground for examining the trade-offs between computation time and the

quality of the embedding when using coreset-based methods.

The outline of this thesis is as follows: In Chapter 2, we will discuss several

dimension reduction techniques and propose a new classification method at the

end. Chapter 3 will present a new approach based on clustering for large-scale

high-dimensional data. Chapter 4 will delve deeper into the implementation and

validation part. Finally, in Chapter 5, we will conclude and discuss potential

future work.
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2
Related Works

Traditional dimensionality reduction techniques such as Principal Compo-

nents Analysis (PCA) [12] and classical multidimensional scaling (MDS) [3] are

linear techniques that focus on keeping the low-dimensional representations of

dissimilar datapoints far apart.

For high-dimensional data that lie on or near a low-dimensional, non-linear

manifold (In simpler terms, a manifold is a geometric object that is "locally flat".)

it is usually more important to keep the low-dimensional representations of very

similar datapoints close together, which is typically not possible with a linear

mapping [5].

The challenges that were found among the mentioned algorithms can be

noted as 1) not being very successful at visualizing real data. 2) Not being

capable of retaining both the local and the global structure of the data in a single

map.

In this chapter, we will explore various techniques used for dimensionality

reduction. We will thoroughly examine their individual strengths and weak-

nesses and provide a comprehensive classification to summarize the leading

approaches. This exploration will pave the way for the discovery of new meth-

ods for visualization and dimensionality reduction.

2.1 T-SNE

T-SNE, which stands for T-Distributed Stochastic Neighbor Embedding, is

a powerful technique for visualizing high-dimensional data by mapping each

5



2.1. T-SNE

data point to a location in a two- or three-dimensional map. This method is

an extension of the SNE (stochastic neighbor embedding) technique, which we

will explore further in the next section to better understand its principles and

applications.

T-Distributed Stochastic Neighbor Embedding (T-SNE) [9] focuses on two key

aspects: (1) representing dissimilar data points with large differences in distance,

and (2) representing similar data points with small differences in distance. The

t-SNE cost function is simpler to optimize due to these characteristics and the

approximate scale invariance of the Student t-distribution, compared to the cost

functions of SNE and UNI-SNE. Specifically, t-SNE introduces long-range forces

in the low-dimensional map, which can bring two clusters of similar points back

together if they become separated early in the optimization process.

The SNE and UNI-SNE algorithms do not incorporate long-range forces, so

they rely on simulated annealing to produce reasonable solutions. Conversely,

t-SNE utilizes long-range forces to identify favorable local optima without the

need for simulated annealing.

2.1.1 SNE

SNE method transforms the high-dimensional Euclidean distances between

data points into conditional probabilities, which are used to process the sim-

ilarities between the data points [9]. Specifically, the conditional probability

𝑝 𝑗 |𝑖 represents the similarity of data point 𝑥 𝑗 to data point 𝑥𝑖 . The probability

definition is formulated in equation 2.1.

𝑝 𝑗 |𝑖 =
exp

(

−


𝑥𝑖 − 𝑥 𝑗




2 /2𝜎2
𝑖

)

∑

𝑘≠𝑖 exp
(

− ∥𝑥𝑖 − 𝑥𝑘 ∥2 /2𝜎2
𝑖

) (2.1)

• For a given data point 𝑥𝑖 , a Gaussian with a variance 𝜎𝑖 selects 𝑥 𝑗 as its
neighbor, based on reasonable values.

• Because of considering pairwise similarity, we have 𝑝𝑖 |𝑖 = 0.

𝑞 𝑗 |𝑖 =
exp

(

−


𝑦𝑖 − 𝑦 𝑗




2
)

∑

𝑘≠𝑖 exp
(

−


𝑦𝑖 − 𝑦𝑘




2
) . (2.2)
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CHAPTER 2. RELATED WORKS

It is possible to calculate a similar conditional probability 𝑞 𝑗 |𝑖 and 𝜎 =
1√
2

for

low-dimensional data, and 𝑞𝑖 |𝑖 = 0. It is explained in equation 2.2.

SNE aims to discover a low-dimensional representation of data that mini-

mizes the difference between 𝑝 𝑗 |𝑖 and 𝑞 𝑗 |𝑖 .

MEASURE: KullbackLeibler divergence (which is in this case equal to the

cross-entropy up to an additive constant).

Stochastic Neighbor Embedding (SNE) [9] minimizes the sum of Kullback-

Leibler divergences for all data points using gradient descent. SNE conducts a

binary search to find the value of 𝜎𝑖 that produces a 𝑃𝑖 with a specified perplexity

defined in equation 2.3, which is a smooth measure of the effective number of

neighbors between 5 and 50, as specified by the user.

Perp (𝑃𝑖) = 2𝐻(𝑃𝑖) (2.3)

The parameter H (Shannon entropy) in the above equation has the follow-

ing definition explained in equation 2.4. Shannon entropy is calculated using

the probabilities of different outcomes in a given set of data and provides a

quantification of the amount of information inherent in the data.

𝐻 (𝑃𝑖) = −
∑

𝑗

𝑝 𝑗 |𝑖 log2 𝑝 𝑗 |𝑖 (2.4)

The gradient descent of the equation-2.5 is:

𝛿𝐶

𝛿𝑦𝑖
= 2

∑

𝑗

(

𝑝 𝑗 |𝑖 − 𝑞 𝑗 |𝑖 + 𝑝𝑖 | 𝑗 − 𝑞𝑖 | 𝑗
)

(

𝑦𝑖 − 𝑦 𝑗
)

. (2.5)

The present gradient is combined with a gradually decreasing total of past

gradients. This guides the adjustments in map point coordinates during each

iteration of the gradient search. The gradient update with a momentum term

represented in equation 2.6:

𝒴(𝑡) = 𝒴(𝑡−1) + 𝜂 𝛿𝐶

𝛿𝒴 + 𝛼(𝑡)
(

𝒴(𝑡−1) −𝒴(𝑡−2)
)

(2.6)

where 𝒴(𝑡) indicates the solution at iteration 𝑡, 𝜂 indicates the learning rate

and 𝛼(𝑡) represents the momentum at iteration 𝑡.
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2.2. CLUSTER VISUALIZATION IN NONLINEAR DIMENSIONALITY REDUCTION

2.2 Cluster Visualization in Nonlinear Dimension-

ality Reduction

T-SNE, as explained in the previous section, is a widely used technique for

visualizing high-dimensional data, which is particularly effective at preserv-

ing local neighborhood structures [9]. T-SNE minimizes the Kullback-Leibler

divergence between distributions representing pairwise similarities in high-

dimensional and low-dimensional spaces. While this approach works well for

local structures, it often fails to reveal large-scale patterns, such as distinct clus-

ters, especially in datasets with complex, high-dimensional relationships [14].

Current efforts to enhance t-SNE’s performance by adjusting hyperparam-

eters or using early exaggeration techniques [9] do not completely resolve the

challenge of visualizing clusters. This is because t-SNE focuses mainly on pre-

serving local neighborhood structures, which can lead to misrepresentations of

larger-scale patterns, as highlighted in recent research studies [14].

2.2.1 Stochastic Cluster Embedding (SCE) for Improved Cluster

Visualization

To address these limitations, Stochastic Cluster Embedding (SCE) was pro-

posed by Yang et al. [14]. SCE builds on the Neighbor Embedding (NE) frame-

work by introducing a generalization of Stochastic Neighbor Embedding (SNE),

which adjusts the scale of output similarities using a flexible scaling factor.

Unlike t-SNE, which uses a fixed scale for neighborhood similarities, SCE dy-

namically adjusts this parameter based on both local and global structure. This

allows SCE to better balance preserving local neighborhoods and highlighting

large-scale patterns such as clusters.

The key innovation in SCE is the adaptive scale factor, which is optimized

through an efficient asynchronous stochastic block coordinate descent algo-

rithm. This method not only improves visualization quality but also makes

the algorithm highly scalable and capable of handling large datasets through

parallel processing.
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2.2.2 SCE Experimental Results and User Study

Yang et al. [14] demonstrated the effectiveness of SCE across a range of

real-world datasets. Compared to state-of-the-art methods like t-SNE, LargeVis,

and UMAP, SCE consistently produced clearer and more distinct clusters. For

instance, in datasets where t-SNE failed to visualize any apparent clusters, SCE

was able to reveal distinct groups with clear separations.

Additionally, a user study involving over 300 participants confirmed that the

SCE visualizations were more intuitive and better aligned with human percep-

tion of clusters than those generated by t-SNE. SCE’s adaptive scaling factor

plays a critical role in enhancing the clarity of cluster visualizations.

Stochastic Cluster Embedding represents a significant advancement over t-

SNE for cluster visualization tasks in high-dimensional data. By generalizing

the SNE framework and introducing an adaptive scaling factor, SCE addresses

the core limitations of t-SNE, providing clearer and more accurate visualizations

of large-scale patterns. This method is particularly useful for applications that

require discovering global structures, such as clustering in large datasets.

2.3 Uniform Manifold Approximation and Projec-

tion (UMAP)

Uniform Manifold Approximation and Projection (UMAP) is a dimension-

ality reduction technique introduced by McInnes et al. [8]. UMAP is based

on Riemannian geometry and algebraic topology, using fuzzy simplicial sets to

model both local and global structures in the data. It is known for being scalable

and competitive with t-SNE, while often preserving more global structure.

2.3.1 Mathematical Foundations of UMAP

UMAP assumes that high-dimensional data lies on a manifold ℳ. The

algorithm first constructs a weighted 𝑘-nearest neighbor graph based on the

distances between data points. The local distances for each point 𝑥𝑖 are deter-

mined by calculating the distance to its nearest neighbors. For each point 𝑥𝑖 , the

local radius 𝜌𝑖 is defined as:

𝜌𝑖 = min{𝑑(𝑥𝑖 , 𝑥 𝑗) | 1 ≤ 𝑗 ≤ 𝑘, 𝑑(𝑥𝑖 , 𝑥 𝑗) > 0} (2.7)

9



2.3. UNIFORM MANIFOLD APPROXIMATION AND PROJECTION (UMAP)

where 𝑑(𝑥𝑖 , 𝑥 𝑗) is the distance between points 𝑥𝑖 and 𝑥 𝑗 which is explained in

2.7.

Next, the fuzzy membership strength between points 𝑥𝑖 and 𝑥 𝑗 is deter-

mined using a smooth exponential kernel in equation 2.8. This membership

strength is defined as:

𝑤(𝑥𝑖 , 𝑥 𝑗) = exp

(

−
max(0, 𝑑(𝑥𝑖 , 𝑥 𝑗) − 𝜌𝑖)

𝜎𝑖

)

(2.8)

Where 𝜎𝑖 is a scaling factor that normalizes the membership values by ensuring

that the sum of the memberships across 𝑘-nearest neighbors is:

𝑘
∑

𝑗=1

exp

(

−
𝑑(𝑥𝑖 , 𝑥 𝑗) − 𝜌𝑖

𝜎𝑖

)

= log2(𝑘) (2.9)

This normalization ensures that the resulting fuzzy simplicial set is locally con-

nected.

2.3.2 Optimization of the Low-Dimensional Embedding

UMAP optimizes the low-dimensional representation 𝑌 by minimizing the

cross-entropy between the high-dimensional fuzzy simplicial set and the low-

dimensional one. Let 𝑤(𝑥𝑖 , 𝑥 𝑗) and �̃�(𝑦𝑖 , 𝑦 𝑗) denote the fuzzy memberships

in the high- and low-dimensional spaces, respectively. The cross-entropy loss

function is given by:

𝐶(𝑋,𝑌) =
∑

𝑖≠𝑗

(

𝑤(𝑥𝑖 , 𝑥 𝑗) log
𝑤(𝑥𝑖 , 𝑥 𝑗)
�̃�(𝑦𝑖 , 𝑦 𝑗)

+ (1 − 𝑤(𝑥𝑖 , 𝑥 𝑗)) log
1 − 𝑤(𝑥𝑖 , 𝑥 𝑗)
1 − �̃�(𝑦𝑖 , 𝑦 𝑗)

)

(2.10)

The fuzzy membership in the low-dimensional space is approximated by:

�̃�(𝑦𝑖 , 𝑦 𝑗) =
1

1 + 𝑎∥𝑦𝑖 − 𝑦 𝑗 ∥2𝑏
(2.11)

Where 𝑎 and 𝑏 are hyperparameters that control the embedding layout.
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2.3.3 Embedding Initialization

UMAP uses a spectral embedding to initialize the low-dimensional coor-

dinates of the points. This is done using the eigenvectors of the normalized

Laplacian matrix 𝐿, which is computed as:

𝐿 = 𝐷−1/2(𝐷 − 𝐴)𝐷−1/2 (2.12)

Where 𝐴 is the adjacency matrix of the graph, and 𝐷 is the degree matrix. The

top 𝑑 eigenvectors of 𝐿 are used to initialize the embedding.

UMAPs ability to balance both local and global structure preservation and

its efficient optimization and scalability makes it a powerful tool for manifold

learning tasks. The mathematical foundation ensures theoretical soundness and

practical effectiveness.

2.4 State-of-art dimension reduction techniques

One significant study that contributes to the field of dimensionality reduction

(DR) is the work by Wang et al. [10], which provides an in-depth empirical

analysis of leading dimensionality reduction techniques such as t-SNE, UMAP,

TriMap, and a novel approach, PaCMAP. Wang et al. highlight a major challenge

in DR: the trade-off between preserving local and global structure. In visualizing

high-dimensional data, these methods often excel in one area but struggle in

another, making it difficult to achieve a holistic representation of the data in a

lower-dimensional space.

Moreover, it provides detailed insights into the mechanics behind each algo-

rithm and proposes a new approach, PaCMAP, that seeks to balance both local

and global structure preservation. Specifically, the study explores how different

algorithms handle neighborhood structure and emphasizes the importance of

understanding the loss functions that govern the attractive and repulsive forces

between data points in DR methods.

2.4.1 Algorithm Comparisons

t-SNE converts pairwise Euclidean distances between high-dimensional data

points into conditional probabilities. However, its sensitivity to hyperparame-

ters, particularly perplexity, can lead to spurious clusters that are not present in

11



2.4. STATE-OF-ART DIMENSION REDUCTION TECHNIQUES

the original data. The t-SNE loss function is expressed as:

Losst-SNE =

∑

𝑖

∑

𝑗

𝑝𝑖 𝑗 log

(

𝑝𝑖 𝑗

𝑞𝑖 𝑗

)

Where 𝑝𝑖 𝑗 and 𝑞𝑖 𝑗 represent the probability distributions of distances in high and

low dimensions, respectively.

UMAP uses a force-directed graph layout approach to model the relation-

ships between neighbors. Its optimization process involves pulling neighbors

closer in low-dimensional space while repelling distant points. UMAP’s loss

function is structured as:

LossUMAP =

∑

𝑖, 𝑗

𝑤𝑖 𝑗 log
(

1 + 𝑎∥𝑦𝑖 − 𝑦 𝑗 ∥2
)

where 𝑤𝑖 𝑗 represents edge weights, and 𝑎 is a parameter governing the scale of

attractive forces.

TriMap [1] takes a triplet-based approach, simultaneously preserving the

relative distances between three points. This algorithm excels in maintaining

global structure, but it can sometimes struggle with local structure. Its loss

function focuses on ensuring that the relative ordering of distances between

triplets is preserved:

LossTriMap =

∑

(𝑖 , 𝑗 ,𝑘)
𝜔𝑖, 𝑗 ,𝑘

𝑠(𝑦𝑖 , 𝑦𝑘)
𝑠(𝑦𝑖 , 𝑦 𝑗) + 𝑠(𝑦𝑖 , 𝑦𝑘)

where 𝑠(𝑦𝑖 , 𝑦 𝑗) =
(

1 + ∥𝑦𝑖 − 𝑦 𝑗 ∥2
)−1

represents similarity, and 𝜔 is a weighting

function based on the distances in the original space.

PaCMAP (Pairwise Controlled Manifold Approximation Projection), intro-

duced in [10], combines elements from both local and global preservation tech-

niques. By dynamically adjusting the forces applied to neighbors, mid-near

pairs, and further points, PaCMAP achieves a more balanced representation.

The loss function of PaCMAP is a combination of three terms:

LossPaCMAP = 𝑤𝑁𝐵

∑

𝑖 , 𝑗

𝑑𝑖 𝑗

10 + 𝑑𝑖 𝑗
+ 𝑤𝑀𝑁

∑

𝑖 ,𝑘

𝑑𝑖𝑘
10000 + 𝑑𝑖𝑘

+ 𝑤𝐹𝑃

∑

𝑖,𝑙

1

1 + 𝑑𝑖𝑙

where 𝑑𝑖 𝑗 represents the distance between points 𝑖 and 𝑗 in the low-dimensional

12



CHAPTER 2. RELATED WORKS

space, and weights 𝑤𝑁𝐵, 𝑤𝑀𝑁 , and 𝑤𝐹𝑃 control the contributions from neigh-

bors, mid-near, and further pairs, respectively.

2.4.2 Contributions to Dimensionality Reduction

Wang et al. [10] contribute several key insights to the field of DR.

• First, the analysis reveals that preserving local and global structures si-
multaneously is crucial for generating accurate visualizations of high-
dimensional data.

• Second, the paper presents a set of design principles for DR algorithms,
particularly in how to balance the attractive and repulsive forces between
points to maintain both types of structure.

• Finally, PaCMAP is introduced as an algorithm that dynamically adjusts
its parameters during the optimization process, allowing it to transition
smoothly from local to global structure preservation.

In conclusion, this work provides not only a comparative analysis of existing

DR techniques but also a novel approach in PaCMAP that addresses long-

standing challenges in the field. By combining the strengths of t-SNE, UMAP,

and TriMap, PaCMAP offers a solution that balances both local and global

structural preservation, which is essential for reliable data visualization.

2.5 Methods classifications

After exploring various dimension reduction techniques, we aim to establish

a classification system to differentiate them based on specific criteria outlined in

the upcoming sections.

2.5.1 Classification based on the Challenge Addressed

The primary focus of this classification is to identify and address the main

challenge that the method aims to solve within the context of the dimension

reduction (DR) problem.

• Local Structure Preservation: These methods focus on preserving the re-
lationships between neighboring points in the high-dimensional space.
Example: t-SNE, UMAP

• Global Structure Preservation: Methods that focus on maintaining points’
overall distribution often aim to preserve the long-range distances between
points. Example: TriMap

13



2.5. METHODS CLASSIFICATIONS

• Balanced Approach (Local and Global Structure): Newer methods try
to preserve both local and global structures simultaneously. Example:
PaCMAP

2.5.2 Classification based on Algorithmic Innovation

In this scenario, the methods are categorized based on the primary innova-

tion that has been implemented.

• Graph-Based Methods: Methods that represent the high-dimensional data
as a graph, where nodes represent data points and edges represent dis-
tances or similarities. Example: UMAP (uses graph construction and
optimization over weighted graphs)

• Probabilistic Methods: These methods use probabilistic models to trans-
late the high-dimensional distances into low-dimensional spaces.

Example: t-SNE (uses a probabilistic framework for mapping high-dimensional
data)

• Triplet-Based Methods: Methods that rely on relationships between triplets
of points (e.g., distances between a focal point, its neighbor, and a far point).

Example: TriMap (uses triplet constraints to maintain global structure)

• Hybrid Methods: Methods that combine different innovations or ap-
proaches from the categories as mentioned earlier.

Example: PaCMAP (combines graph-based and pairwise loss approaches
to balance local and global structures)

2.5.3 Classification based on Parameter Sensitivity

Another approach to categorizing these methods is based on their sensitiv-

ity to hyperparameter tuning. This refers to how much the performance of the

methods can be influenced or altered by adjusting the hyperparameters. Some

methods may require extensive hyperparameter tuning to achieve optimal per-

formance, while others may be less sensitive and perform well with default or

minimal tuning.

• Highly Parameter-Sensitive: Methods that require careful parameter tun-
ing to work effectively and can produce unstable results if not tuned prop-
erly.

Example: t-SNE (highly sensitive to the perplexity parameter)

14
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• Moderately Parameter-Sensitive: Methods that require some parameter
tuning but are generally more robust to variations.

Example: TriMap

• Adaptive Methods: Methods that dynamically adjust parameters during
optimization, leading to less reliance on initial settings.

Example: PaCMAP (automatically adjusts weights between local and
global structure preservation)

2.5.4 Classification based on Dimensionality Reduction Goal

This classification centers on determining whether the method is better

suited for particular visualization purposes or embedding tasks.

• Data Visualization: Methods primarily designed for visualizing high-
dimensional data in 2D or 3D.
Example: t-SNE, UMAP

• Data Embedding: Methods aimed at embedding high-dimensional data
into lower dimensions for analysis, clustering, or classification.

Example: TriMap

• General Purpose: Methods that are flexible enough to work well for both
visualization and embedding tasks.

Example: PaCMAP

After detailing the various classification methods, we can consolidate them

in a hierarchical chart, viewable in Figure 2.1.

2.6 Conclusion

In this chapter, we have reviewed several dimension reduction techniques, in-

cluding Principal Components Analysis (PCA), t-SNE, Stochastic Neighbor Em-

bedding (SNE), and Uniform Manifold Approximation and Projection (UMAP).

Each method offers distinct advantages, particularly in terms of either preserving

local or global structures in the data. However, these techniques often struggle

with balancing computational efficiency and maintaining the integrity of both

local neighborhoods and large-scale patterns in high-dimensional datasets.

Among the explored methods, UMAP is a highly effective tool due to its

strong mathematical foundations in Riemannian geometry and algebraic topol-

ogy. Its ability to construct a fuzzy topological representation of the data and

15



2.6. CONCLUSION

Figure 2.1: Different classification for the dimension reduction (DR) techniques
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its optimization techniques allow it to efficiently handle large datasets while

preserving both local and global data structures. Unlike t-SNE, which focuses

primarily on local neighborhood relationships and often fails to capture global

structures, UMAP balances the two. Moreover, UMAP’s computational effi-

ciency and scalability make it suitable for large-scale datasets, a key focus of this

thesis.
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3
Proposed Method

3.1 Introduction

Let us consider a scenario where we are dealing with a substantial number

of points, which can be quite expensive to process. Our main objective is to take

a high-dimensional object and map it onto a two-dimensional space for visual-

ization purposes. However, when working with a massive dataset containing,

for instance, tens of millions points, it may not be feasible to plot all of them due

to the limited number of pixels available on the screen.

One potential strategy involves minimizing the computational workload

needed to embed the complete set of tens of millions points by carefully selecting

a subset of representative data points. These representatives should be chosen

in such a way that each point in the original dataset is closely represented. After

this selection process, all non-representative points can be discarded. It may

be necessary to assign a weight to each representative based on the number of

original points it represents. Subsequently, the UMAP algorithm can be applied

to these carefully selected points, which we can refer to as "coreset points."

Our initial assumption is that using a smaller dataset will lead to improved

performance and reduced run-time due to the reduced data volume. However,

it is crucial to verify whether the resulting accuracy meets our requirements.

Furthermore, we need to assess the impact on visualization quality when using

UMAP, as the selection of K nearest neighbors for each point in UMAP is in-

fluenced by the parameter K, which determines the trade-off between local and
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global structure representation. If we decide to retain only the coreset points and

discard the majority of the points, the K nearest neighbors may extend beyond

the local structure, potentially distorting the visualization. We need to investi-

gate whether this distortion occurs and consider potential mitigation strategies,

such as incorporating weights. Additionally, we highlighted the importance of

evaluating our method against UMAP using appropriate evaluation metrics.

3.2 UMAP as baseline

UMAP will serve as the baseline dimensionality reduction technique for

this study due to several factors. First, its computational efficiency allows for

handling the large, high-dimensional datasets that are the focus of this the-

sis, where other methods like t-SNE may falter due to scaling issues. Second,

UMAP’s ability to preserve both local and global structures ensures that the

high-level relationships between data points are maintained, which is critical

for effective clustering and visualization.

In this research, UMAP’s flexibility in working well with custom distance

metrics aligns with the need to experiment with various clustering techniques

introduced in Chapter 3. The coreset-based clustering techniques proposed in

Chapter 3 and validated in Chapter 4 will benefit from UMAP’s properties,

making it a robust baseline for comparison in terms of accuracy and efficiency.

By employing UMAP as a baseline, we ensure that the dimensionality reduc-

tion is both computationally feasible and theoretically sound, providing a solid

foundation for the clustering techniques explored in the following chapters.

3.3 Coreset-based k-Center Clustering

Coreset clustering is an efficient method for solving the k-center clustering

problem, particularly useful for handling large datasets. The k-center clustering

problem is defined as follows: given a dataset 𝑆 with 𝑛 points in a metric space

and a parameter 𝑘, the goal is to select a subset 𝑇 ⊆ 𝑆 of 𝑘 points (centers) such

that the maximum distance between any point in 𝑆 and its closest center in 𝑇 is

minimized. Formally, the objective is:

𝑟𝑇(𝑆) = max
𝑠∈𝑆

min
𝑡∈𝑇

𝑑(𝑠, 𝑡) (3.1)

20



CHAPTER 3. PROPOSED METHOD

where 𝑑(𝑠, 𝑡) is the distance between the points 𝑠 and 𝑡.

This problem is NP-hard, so approximate algorithms are often employed.

The key idea behind coreset-based algorithms is to reduce the input size by

constructing a smaller subset, called a coreset, which can be used to approximate

the solution of the clustering problem on the original dataset [4].

3.3.1 Coreset Construction

A coreset is a small, weighted subset of the input dataset that approximates

the properties of the entire dataset with respect to the clustering objective. The

coreset size is a function of the desired approximation factor 𝜖 and the doubling

dimension 𝐷 of the metric space.

The size of the coreset 𝐶 is bounded by:

|𝐶 | ≤ 𝑘 ·
(

4

𝜖

)𝐷

(3.2)

where 𝐷 is the doubling dimension of the metric space, which measures

how well smaller balls can cover the space.

3.3.2 Algorithm for Coreset-based k-Center Clustering

The coreset-based k-center clustering algorithm is described in Algorithm1:

3.3.3 Final Optimization

The approximation guarantee of the coreset-based k-center clustering algo-

rithm is given by:

𝑟𝐶(𝑆) ≤ (2 + 𝜖) · 𝑟∗𝑘(𝑆) (3.4)

where 𝑟∗
𝑘
(𝑆) is the optimal radius for the k-center clustering on 𝑆, and 𝑟𝐶(𝑆)

is the radius obtained by running the algorithm on the coreset 𝐶.

3.3.4 Advantages of Coresets

The main advantages of using coresets are:
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Algorithm 1 Coreset-based k-Center Clustering

Input: Dataset 𝑆, number of centers 𝑘, precision parameter 𝜖
Output: Set of centers 𝑇

1: Partition the dataset 𝑆 into ℓ subsets: 𝑆1, 𝑆2, . . . , 𝑆ℓ
2: for each subset 𝑆𝑖 do
3: Initialize 𝑐1 ∈ 𝑆𝑖 as an arbitrary point
4: for 𝑗 = 2 to 𝑘 do
5: Select the next center 𝑐 𝑗 as:

𝑐 𝑗 = arg max
𝑠∈𝑆𝑖

min
𝑐∈𝑇

𝑑(𝑠, 𝑐) (3.3)

6: end for
7: Continue until the maximum distance between any point in 𝑆𝑖 and its

nearest center is less than 𝜖 times the radius of the current clustering.
8: end for
9: Merge the coresets 𝐶1, 𝐶2, . . . , 𝐶ℓ into a single coreset 𝐶

10: Apply the k-center algorithm on the coreset 𝐶 to select the final set of 𝑘
centers 𝑇

• Efficiency: By reducing the size of the dataset to a smaller coreset, the al-
gorithm becomes computationally efficient, especially when dealing with
large datasets.

• Scalability: The method scales well to big data applications, making it
feasible to apply clustering to large datasets using distributed systems like
MapReduce.

• Approximation Guarantee: The coreset-based algorithm provides a prov-
able approximation to the optimal clustering solution, with the approxi-
mation factor depending on 𝜖.

3.4 Pros and cons of using coreset clustering before

using Umap

Among the advantages we can consider:

• Reduced Computational Complexity: Coreset clustering techniques aim
to summarize the dataset by selecting a representative subset of points.
This reduction in data size can significantly reduce the computational
complexity of subsequent processing steps, including dimensionality re-
duction with UMAP.
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• Faster Processing Time: By working with a smaller subset of data, dimen-
sionality reduction techniques like UMAP can run much faster, making it
feasible to visualize large datasets in a reasonable amount of time.

• Preservation of Global Structure: Coreset clustering algorithms are de-
signed to preserve the global structure of the dataset. This means that the
selected subset of points retains the essential characteristics of the original
data, allowing dimensionality reduction techniques like UMAP to capture
the underlying relationships between data points.

among the disadvantages we have:

• Loss of Information: Discarding data points to create a corset inevitably
leads to some loss of information. Depending on the size and quality of
the corset, important features or patterns in the data may be overlooked,
potentially affecting the accuracy of the visualization.

• Sensitivity to Coreset Selection: The effectiveness of the coreset clustering
approach heavily depends on the choice of parameters and the algorithm
used to generate the coreset. Poorly selected parameters or algorithms
may result in a coreset that does not accurately represent the original data
distribution, leading to biased visualizations.

• Limited Scalability: While coreset clustering can help reduce computa-
tional complexity, processing extremely large datasets may still be chal-
lenging, especially if the coreset generation step requires significant com-
putational resources.

3.5 Understanding the Impact of Weights on Visual-

ization

Using coreset clustering to handle large, high-dimensional datasets can be an

efficient way to manage computational complexity. When it comes to visualizing

the data with UMAP or t-SNE, incorporating the weights of the coreset points

can indeed influence the accuracy and fidelity of the visualization.

• Weighted Visualization: By applying weights to the coreset points, you
can better represent the density and distribution of the original dataset
in the reduced-dimensional space. This is particularly important because
coresets are essentially representative subsets, and their influence should
reflect the original data’s distribution.
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• Accuracy of Visualization: Weights can improve the accuracy of visualiza-
tions by ensuring that regions of higher density in the original dataset are
proportionally represented in the low-dimensional embedding. Without
weights, the visualization might underrepresent or overrepresent certain
clusters, leading to misleading interpretations.

3.5.1 Applying Weights in UMAP and t-SNE

Both UMAP and t-SNE can incorporate sample weights, but their approaches

to integrating them differ.

Significance of Weights: Weights reflect the importance of each coreset

point. A point with a higher weight indicates that it represents a larger portion

of the original dataset. Hence, the distances in the reduced space should reflect

these densities.

Weighted Distance: In the context of dimensionality reduction, using weights

should influence the distance calculations such that points with higher weights

exert more influence on the resulting embedding.

Applying Weights in UMAP: UMAP does not natively support sample

weights in its distance metric. However, we can still incorporate weights ef-

fectively by adapting the distances through a custom metric. UMAP expects

metric functions to take only two arguments, hence a wrapper.

Algorithm 2 UMAP with Weighted Euclidean Distance

Require: Coreset data 𝑋coreset ∈ R𝑛×𝑑, weights 𝑤 ∈ R𝑛
Ensure: Low-dimensional embedding 𝑌 ∈ R𝑛×𝑝

1: function weighted_euclidean(𝑎, 𝑏, 𝑤)

2: 𝑑←
√

∑𝑑
𝑖=1 𝑤𝑖(𝑎𝑖 − 𝑏𝑖)2

3: return 𝑑

4: end function

5: reducer ← UMAP(𝑚𝑒𝑡𝑟𝑖𝑐 = weighted_euclidean, 𝑚𝑒𝑡𝑟𝑖𝑐_𝑘𝑤𝑑𝑠 = {′𝑤′ :

𝑤})
6: 𝑌 ← reducer.fit_transform(𝑋coreset)
7: return 𝑌

When using weights to calculate distances for dimensionality reduction tech-

niques like UMAP or t-SNE, the goal is to ensure that the distances reflect the
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density and distribution of the original dataset. Simply multiplying the weights

in the Euclidean distance calculation might not always be sufficient or appropri-

ate.

A more appropriate method might be to adjust distances by considering

the relative importance of each point. This can be done through scaling dis-

tances or using a weighted distance metric that inherently considers the density

represented by the weights.

3.6 UMAP Clustering

The proposed method can be segmented into three distinct sections for better

understanding and organization.

• Data Preparation: We append an index to each data point to easily refer-
ence the corresponding weights.

• Custom Metric Function: WeightedEuclideanUMAP uses these indices to
look up weights and calculate a weighted Euclidean distance.

• UMAP Initialization: The custom metric is passed to UMAP, enabling it to
consider weights during embedding.

UMAP’s performance is strongly influenced by the choice of distance metric,

as this determines how data point similarity is calculated. We explored various

methods for using metrics, creating custom metrics based on the Euclidean

distance with added elements such as weights and radii.

3.6.1 weighted euclidean

Explanation: This metric calculates the weighted Euclidean distance between

two points. Each point has an associated weight (𝑤𝑒𝑖𝑔ℎ𝑡𝑎 , 𝑤𝑒𝑖𝑔ℎ𝑡𝑏), and the

average of these weights scales the distance between points. If points are closer

but have high weights, the distance is amplified. Usage: Use this metric when

each point has a different "importance" or "influence," as the weights represent.

It scales distances based on how much weight each point carries.

3.6.2 radius adjusted euclidean

Explanation: This metric introduces the concept of a radius for each point.

The distance between two points is inversely scaled by the sum of their radii:
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Algorithm 3 weighted euclidean

Input: 𝑎, 𝑏 - two data points, each consisting of a coordinate vector and a
weight
Output: Weighted distance 𝑑 between 𝑎 and 𝑏
Function CustomMetric(𝑎, 𝑏)
𝑝𝑜𝑖𝑛𝑡_𝑎 ← 𝑎[: −1] ⊲ Coordinates of point 𝑎
𝑤𝑒𝑖𝑔ℎ𝑡_𝑎 ← 𝑎[−1] ⊲ Weight of point 𝑎
𝑝𝑜𝑖𝑛𝑡_𝑏 ← 𝑏[: −1] ⊲ Coordinates of point 𝑏
𝑤𝑒𝑖𝑔ℎ𝑡_𝑏 ← 𝑏[−1] ⊲ Weight of point 𝑏
𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑠𝑡 ← squaredEuclidean(𝑝𝑜𝑖𝑛𝑡_𝑎, 𝑝𝑜𝑖𝑛𝑡_𝑏)
return

√

(𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑠𝑡) · (𝑤𝑒𝑖𝑔ℎ𝑡_𝑎+𝑤𝑒𝑖𝑔ℎ𝑡_𝑏)
2

points with large radii will appear closer to each other, while points with small

radii will appear further apart. Usage: This metric is ideal when each point

has a different "influence area" or "spread." For instance, in data with clusters

of varying density, points in denser regions can have smaller radii, while points

in sparser regions can have larger radii. Why it Works Better: Incorporating

radii allows for more nuanced control of distances between points, effectively

capturing both local and global relationships in the data. In the case of fashion

images, items like Shoes and Bottoms might naturally form denser clusters,

while Bags and Tops might be more diverse. The custom metric with radius can

account for these varying cluster densities, resulting in better preservation of

the underlying structure in the lower-dimensional space.

Algorithm 4 radius adjusted euclidean

Input: 𝑎, 𝑏 - two data points, each consisting of a coordinate vector and a
radius
Output: Distance 𝑑 between 𝑎 and 𝑏, considering radius
Function CustomMetricWithRadius(𝑎, 𝑏)
𝑝𝑜𝑖𝑛𝑡_𝑎 ← 𝑎[: −1] ⊲ Coordinates of point 𝑎
𝑟𝑎𝑑𝑖𝑢𝑠_𝑎 ← 𝑎[−1] ⊲ Radius of point 𝑎
𝑝𝑜𝑖𝑛𝑡_𝑏 ← 𝑏[: −1] ⊲ Coordinates of point 𝑏
𝑟𝑎𝑑𝑖𝑢𝑠_𝑏 ← 𝑏[−1] ⊲ Radius of point 𝑏
𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑠𝑡 ← squaredEuclidean(𝑝𝑜𝑖𝑛𝑡_𝑎, 𝑝𝑜𝑖𝑛𝑡_𝑏)
𝑟𝑎𝑑𝑖𝑢𝑠𝑆𝑢𝑚 ← 𝑟𝑎𝑑𝑖𝑢𝑠_𝑎 + 𝑟𝑎𝑑𝑖𝑢𝑠_𝑏
return

√

𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑠𝑡 · 𝑟𝑎𝑑𝑖𝑢𝑠𝑆𝑢𝑚
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3.6.3 relative weighted euclidean

Explanation: This metric calculates a combination of both weighted distances

and Euclidean distance. It divides the Euclidean distance by the weight of one

point and multiplies it by the weight of the other point. Usage: This metric can

be used in scenarios where there is a more complex relationship between points,

combining weights and Euclidean distance in a non-linear way. However, it

may not perform well in all cases because it alters the geometry of distances in

a more aggressive way.

Algorithm 5 relative weighted euclidean

Input: 𝑎, 𝑏 - two data points, each consisting of a coordinate vector, weight,
and radius
Output: Combined distance 𝑑 between 𝑎 and 𝑏
Function CustomMetricCombination(𝑎, 𝑏)
𝑝𝑜𝑖𝑛𝑡_𝑎 ← 𝑎[: −3] ⊲ Coordinates of point 𝑎
𝑤𝑒𝑖𝑔ℎ𝑡_𝑎 ← 𝑎[−2] ⊲ Weight of point 𝑎
𝑟𝑎𝑑𝑖𝑢𝑠_𝑎 ← 𝑎[−1] ⊲ Radius of point 𝑎
𝑝𝑜𝑖𝑛𝑡_𝑏 ← 𝑏[: −3] ⊲ Coordinates of point 𝑏
𝑤𝑒𝑖𝑔ℎ𝑡_𝑏 ← 𝑏[−2] ⊲ Weight of point 𝑏
𝑟𝑎𝑑𝑖𝑢𝑠_𝑏 ← 𝑏[−1] ⊲ Radius of point 𝑏
𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑠𝑡 ← squaredEuclidean(𝑝𝑜𝑖𝑛𝑡_𝑎, 𝑝𝑜𝑖𝑛𝑡_𝑏)
𝑟𝑎𝑑𝑖𝑢𝑠𝑆𝑢𝑚 ← 𝑟𝑎𝑑𝑖𝑢𝑠_𝑎 + 𝑟𝑎𝑑𝑖𝑢𝑠_𝑏

𝑤𝑒𝑖𝑔ℎ𝑡𝑆𝑢𝑚 ← 𝑤𝑒𝑖𝑔ℎ𝑡_𝑎+𝑤𝑒𝑖𝑔ℎ𝑡_𝑏
2

return
√

(𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑠𝑡 · 𝑤𝑒𝑖𝑔ℎ𝑡𝑆𝑢𝑚) · 𝑟𝑎𝑑𝑖𝑢𝑠𝑆𝑢𝑚

3.6.4 weighted radius adjusted euclidean

Explanation: This metric combines both weights and radii for each point in

calculating the distance. It scales the squared Euclidean distance by the sum of

both weights and radii, which allows it to take into account both the influence

(weight) and the spread (radius) of each point. Usage: This metric is useful

when both weights and radii are important for determining distances. For

example, points with high weights (importance) and large radii (spread) will

appear close together, emphasizing their connection. Performance: While this

metric is more complex, the combination of weights and radii might sometimes

produce less accurate results because it mixes two effects that could distort the

original distances between points.
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3.6. UMAP CLUSTERING

Algorithm 6 weighted radius adjusted euclidean

Input: 𝑎, 𝑏 - two data points, each consisting of a coordinate vector, a weight,
and a radius
Output: Weighted and radius-aware distance 𝑑 between 𝑎 and 𝑏
Function CustomMetricRadiusWeighted(𝑎, 𝑏)
𝑝𝑜𝑖𝑛𝑡_𝑎 ← 𝑎[: −3] ⊲ Coordinates of point 𝑎
𝑤𝑒𝑖𝑔ℎ𝑡_𝑎 ← 𝑎[−2] ⊲ Weight of point 𝑎
𝑟𝑎𝑑𝑖𝑢𝑠_𝑎 ← 𝑎[−1] ⊲ Radius of point 𝑎
𝑝𝑜𝑖𝑛𝑡_𝑏 ← 𝑏[: −3] ⊲ Coordinates of point 𝑏
𝑤𝑒𝑖𝑔ℎ𝑡_𝑏 ← 𝑏[−2] ⊲ Weight of point 𝑏
𝑟𝑎𝑑𝑖𝑢𝑠_𝑏 ← 𝑏[−1] ⊲ Radius of point 𝑏
𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑠𝑡 ← squaredEuclidean(𝑝𝑜𝑖𝑛𝑡_𝑎, 𝑝𝑜𝑖𝑛𝑡_𝑏)

return

√

(

𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝐷𝑖𝑠𝑡·(𝑤𝑒𝑖𝑔ℎ𝑡_𝑎+𝑤𝑒𝑖𝑔ℎ𝑡_𝑏)
2

)

· (𝑟𝑎𝑑𝑖𝑢𝑠_𝑎 + 𝑟𝑎𝑑𝑖𝑢𝑠_𝑏)

3.6.5 Why the "Custom Metric with Radius" Has Better Results

Adaptive Distances: The custom metric with radius scales distances between

points based on their radii, effectively making the algorithm more sensitive to

clusters of different densities. In datasets like fashion MNIST, where different

categories (e.g., shoes, tops, bottoms) may form clusters of varying density, this

adaptability helps preserve the overall data structure better. Cluster Preserva-

tion: Points that are part of denser clusters (with smaller radii) will have their

distances calculated with more precision, while points in sparser clusters (with

larger radii) will be more loosely connected. This helps UMAP maintain both

local relationships (within clusters) and global relationships (between clusters)

more accurately. Balance Between Global and Local Structure: UMAP is de-

signed to balance global and local data structure preservation. By introducing

radius into the metric, the algorithm can better capture global features of the

dataset (e.g., clusters of items like bags and shoes that might be farther apart

in the original space). The reason the custom metric with radius shows bet-

ter results is its ability to account for variations in the density and spread of

clusters in the dataset. It adapts to different scales of data better than other

metrics, leading to improved accuracy in representing high-dimensional data

in a lower-dimensional space. This explains why it outperforms the other cus-

tom metrics, especially for datasets like fashion MNIST where categories have

inherently different structures.

if we use the default rta not the custom, we are computing the random triplet
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accuracy over the entire points so It means we are taking a sample over all the

points in evaluating the accuracy. If we consider the only points in the coreset

we are considering a very small subset. if the embedding is a bit unlucky and

the baseline makes a bad embedding for those points then the performance is

bad. because it’s more difficult and you don’t see the extremes but the average

behavior. If you consider all the points then the average behavior is a bit better.

This was a good thing to observe, and mainly, this means that evaluating

the triplet accuracy only on the points of the coreset is not a good idea. It’s

a little bit unfair for the baseline. So, for the baseline, we use the umap and

then apply random triplet accuracy. But it leaves us with the question of how

to evaluate the corset with our customized metrics because it only works with a

subset of the entire dataset, and we are not evaluating it on the same thing. One

possibility is to say that we don’t care, but then we do not compute the right

thing. The other possibility is to say that after training the umap embedding on

the coreset which means we create the umap object (umap fit with the custom

metric and other parameters and then call the transform but ... and it’s much

faster than from scratch.) So what we can do is, after training on the coreset, we

can transform the entire original dataset and then compute the random triplet

loss on the entire dataset but embedded in the model trained on the coreset.

Then we are comparing more fair.

instead of using a custom metric function let’s use another feature of umap

API that allows us to pass to the umap object or instead of passing the data

metrics you pass the metric of pairwise distances between the points. So, passing

a matrix of n*n, represents the distance between two corset points. what we gain

by passing the distance metrics instead of raw data is now we are thinking of

computing the custom metric using numpy, avoiding the for loops. So we can

try to use the same tickss that umap is using, so looking at things like matrix

multiplications to avoid for loops, etc. We will do them in our code then we take

the result of these distance computations so we have this square metrics and we

pass it to the fit method. and this should make things faster. we have to find a

way to implement this function basically instead of pair of points for entire set

of points in terms of matrix multiplication. To optimize the work don’t do it for

the all the custom metrics.
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3.7 Complexity Analysis

To analyze the time complexity of the proposed method, we’ll need to break

down to its different components. The complexity will depend on various

factors, such as dataset size, the number of points (𝑛), the dimensionality of the

data (𝑑), the number of centers (𝑘), and the number of neighbors (𝑛neighbors) used

in UMAP. Below is an analysis of the time complexity for different parts of the

technique.

3.7.1 Coreset Selection

The kCenterFFT function selects 𝑘 centers from 𝑛 data points.

• Initialization: Picking a random center takes 𝑂(1) time.

• Distance calculation: In each iteration, the function computes the squared
distance between each point and the selected center, which requires𝑂(𝑛 ·𝑑)
time per iteration.

• Center selection loop: In each iteration, the algorithm selects the next
center by finding the point farthest from the nearest selected center. This
process is repeated 𝑘 times, and in each iteration, the algorithm updates
the distances for all 𝑛 points.

Thus, the overall complexity of kCenterFFT is:

𝑂(𝑘 · 𝑛 · 𝑑)

3.7.2 Weight Computation

• Loop over points: For each of the 𝑛 points, the algorithm computes the
distance to all 𝑘 centers.

• Distance calculation: Each distance computation takes 𝑂(𝑑).

Thus, the overall complexity of computeWeights is:

𝑂(𝑛 · 𝑘 · 𝑑)

3.7.3 Radius Computation

• Loop over centers: For each of the 𝑘 centers, the algorithm computes the
distance to all 𝑛 points.
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• Distance calculation: Each distance calculation takes 𝑂(𝑑).
Thus, the overall complexity of computeRadius is:

𝑂(𝑛 · 𝑘 · 𝑑)

3.7.4 Distance Matrix Computation

This function computes the distance matrix for the 𝑘 centers using a custom

metric (custom_metric_with_radius).

• Pairwise distance calculation: The number of pairwise comparisons is
𝑂(𝑘2), and each comparison using the custom metric involves a distance
computation of two points in 𝑑 dimensions, which takes 𝑂(𝑑) time.

Thus, the overall complexity of compute_distance_matrix is:

𝑂(𝑘2 · 𝑑)

3.7.5 UMAP Embedding

The complexity of UMAP depends on the number of data points, the number

of neighbors, and the dimensionality of the embedding space.

• UMAP typically has a complexity of 𝑂(𝑛 · 𝑛neighbors · 𝑑), but since we
are using a precomputed distance matrix with 𝑘 centers, the complexity
reduces to:

𝑂(𝑘 · 𝑛neighbors · 2)
where the factor of 2 accounts for the 2D embedding space.

Thus, the overall complexity for UMAP is:

𝑂(𝑘 · 𝑛neighbors)

3.7.6 Triplet Evaluation Usingrandom_triplet_eval(X, X_new,

y)

• Triplet generation: For each point, the algorithm generates 5 random
triplets, which requires 𝑂(𝑛).

• Distance calculation: For each triplet, the distance between points is com-
puted in both the original and new spaces, which takes 𝑂(𝑑) for each
distance calculation.

Thus, the overall complexity of random_triplet_eval is:

𝑂(𝑛 · 𝑑)
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3.7.7 Overall Complexity

To summarize the dominant terms:

• Coreset selection: 𝑂(𝑘 · 𝑛 · 𝑑)

• Distance matrix computation: 𝑂(𝑘2 · 𝑑)

• UMAP embedding: 𝑂(𝑘 · 𝑛neighbors)

• Triplet evaluation: 𝑂(𝑛 · 𝑑)

Given that 𝑛 ≫ 𝑘 in most cases, the coreset selection and UMAP embedding

steps dominate the time complexity. Therefore, the overall time complexity of

the code is:

𝑂(𝑘 · 𝑛 · 𝑑 + 𝑘2 · 𝑑 + 𝑘 · 𝑛neighbors + 𝑛 · 𝑑)

If we assume that 𝑘 is much smaller than 𝑛, the leading term is 𝑂(𝑛 · 𝑑),
which corresponds to operations involving the full dataset.
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4
Implementation and Validation

4.1 Introduction

In this chapter, we describe the methodologies employed in this research

to analyze high-dimensional datasets. We first discuss the preprocessing steps

applied to different types of datasets, followed by an explanation of the k-Center

FFT algorithm used for selecting a coreset. Finally, we delve into the UMAP

algorithm and its custom distance metric, which were utilized to generate lower-

dimensional embeddings for visualization and evaluation.

4.2 Preprocessing of Datasets

Preprocessing is a critical step in any data analysis pipeline. The datasets

considered in this study include the WISDM dataset [11], Fashion MNIST [13],

and a household power consumption [6] dataset. Each dataset requires specific

preprocessing steps to ensure the data is in the correct format for further analysis.

In the following sections we will discuss them more in depth.

4.2.1 Fashion MNIST Preprocessing

The Fashion MNIST dataset contains images of fashion items, represented as

numerical vectors. The dataset has the training set of 60,000 examples and a test

set of 10,000 examples. Each example is a 28×28 grayscale image, associated (in

total 724 pixels) with a label from 10 classes.The preprocessing involves reading
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the dataset from a CSV file, extracting the group labels, and converting the data

into a numerical format suitable for further analysis. The dataset is then stored

as a NumPy array of type float32.

4.2.2 Power Consumption Dataset Preprocessing

The household power consumption dataset consists of various electrical mea-

surements recorded over time. This dataset requires cleaning to remove any

missing values, followed by conversion into a numerical array. Moreover, the

date feature should be removed since we are analyzing numerical values only.

Since no group labels are provided, the analysis proceeds without them but we

can take one of the features as the label also for better visualizing data later on

graphs. Overall, it has 10 features and 2075259 instances.

4.2.3 WISDM Dataset Preprocessing

The WISDM Smartphone and Smartwatch Activity and Biometrics Dataset

is a comprehensive dataset that focuses on human activity recognition (HAR)

and biometrics using smartphone and smartwatch sensor data. It was collected

by the Wireless Sensor Data Mining (WISDM) Lab at Fordham University. The

raw data has 6 features and 15630426 samples.

4.3 Coreset Selection Algorithm

To think about clustering as dividing data points Data into k clusters, we

will try to select a set Centers of k points that will serve as the centers of these

clusters. We would like to choose Centers so that they minimize some distance

function between Centers and Data over all possible choices of centers.

The k-Center FFT algorithm is employed to select a representative subset, or

coreset, from the entire dataset. The algorithm is efficient and scales well with

the size of the dataset. The k-Center FFT algorithm operates as follows:

1. Initialization: A random point is selected as the first center.

2. Distance Calculation: For each point in the dataset, the distance to the
nearest center is calculated.

3. Center Selection: The point farthest from its nearest center is selected as
the next center.
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4. Repeat: Steps 2 and 3 are repeated until the desired number of centers (𝑘)
is selected.

This algorithm ensures that the selected centers are spread out, providing a

good approximation of the dataset’s structure.

4.4 Distance Metrics

A key aspect of this research is the use of a custom distance metric, particu-

larly when dealing with high-dimensional data. The metric used is a modified

version of the Euclidean distance, where each point is associated with a ra-

dius. The distance between two points 𝑎 and 𝑏 is calculated using the following

formula:

distance =

√

∑(𝑎𝑖 − 𝑏𝑖)2
2 · (radius𝑎 + radius𝑏)2 + 1

This metric accounts for the relative importance of each point based on its

radius, which is determined by the k-Center FFT algorithm. The reason of

choosing

4.5 UMAP for Dimensionality Reduction

UMAP is a dimensionality reduction technique used to project high-dimensional

data into a lower-dimensional space for visualization. UMAP preserves the local

structure of the data, making it particularly useful for clustering and classifica-

tion tasks.

In our thesis, UMAP is used in conjunction with the custom distance metric

to generate 2D embeddings of the selected coresets. The UMAP algorithm is

configured to use the precomputed distance matrix, calculated using the custom

metric, and the number of nearest neighbors is set to 𝑛.

In the next sections We will discuss more the performance of this customiza-

tion and compare the results.
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4.6 Experimental proof of using radius adjusted Eu-

clidean Metric

So far, we have discussed 4 different metrics, each with its own potential

to improve the performance of our proposed method. In this section, we will

compare the results of each metric tested on the same dataset, Fashion MNIST

train set. Additionally, all other conditions, such as number of neighbors and

coreset size, remain constant. You can find the results of the experiment in table

4.1.

Table 4.1: clustering umap with different custom metrics experimented on fash-
ion mnist train set

Metrics Performance

Metric Number of Neighbors Accuracy Coreset Size

weighted Euclidean 15 0.587 200

radius adjusted Euclidean 15 0.729 200

weighted radius adjusted Euclidean 15 0.517 200

relative weighted Euclidean 15 0.502 200

Moreover, in the Figure4.1 you can see the performance of each of the metrics

for fashion mnist train set.

We conducted experiments using the same conditions for all metrics. First,

we analyzed the baseline results, which displayed all clustered points. It was

evident that increasing the number of data points could make visualization more

challenging, so using the k-center technique seemed like a good idea. We then

examined four other plots showing the impact of metrics and coreset clustering

on the baseline. We used 15 neighbors for UMAP and set the number of coresets

to 200, aiming to focus solely on metric performance without biasing ourselves

with these parameters.

The relative weighted Euclidean metric showed the worst performance, even

without considering accuracy. Additionally, the weighted radius adjusted Eu-

clidean metric led to widely spread blue points. Comparing the first two metrics

(weighted Euclidean and radius adjusted Euclidean) was difficult, so we referred

to the table4.1 and found that the radius adjusted metric performed the best.

In summary, we will use this metric for future experiments to concentrate

on parameter tuning and to assess if our proposed technique is satisfactory
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Figure 4.1: visualization of the fashion mnist train set using clustering umap
with different custom metrics
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compared to the UMAP baseline method.

4.7 Experimental Setup

The experimental setup involves several steps:

1. Data Loading and Preprocessing: Depending on the dataset, appropriate
preprocessing steps are applied to obtain a clean, numerical representation
of the data.

2. Coreset Selection: The k-Center FFT (farthest first traversal) algorithm is
used to select a coreset from the dataset.

3. Distance Matrix Calculation: A distance matrix is computed using the
custom metric, where each point is represented by its coordinates and
radius.

4. UMAP Embedding: UMAP is applied to the distance matrix to obtain a
2D embedding of the coreset.

5. Evaluation: The quality of the embedding is evaluated using random
triplet accuracy, which compares the relative distances between points in
the original and reduced spaces.

4.8 Validation of the Proposed Method

The paper [10] evaluates the performance of various Dimension Reduction

(DR) algorithms in preserving both local and global structure in the data using

the following metrics and methodology:

Local Structure Preservation Metrics

• KNN Accuracy: Leave-one-out cross-validation with the K-Nearest Neigh-
bors (KNN) classifier is used to assess how well the DR methods preserve
neighborhood relationships in the data. The intuition is that labels tend
to be similar in small neighborhoods, so the KNN classification accuracy
should remain close to the high-dimensional space if local structure is
well-preserved. Hyperparameter tuning is performed for the number of
neighbors k.

• SVM Accuracy: The accuracy of nonlinear Support Vector Machine (SVM)
models with an RBF kernel is measured using 5-fold cross-validation. This
metric, similar to KNN accuracy, measures the cohesiveness of neighbor-
hoods in a more flexible manner that is less impacted by data density. The
embedding is partitioned into 5 folds, with 4 folds used for training the
SVM model and the remaining fold for evaluating accuracy. The Nystrom
method is used to approximate the kernel matrix and reduce runtime.
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Global Structure Preservation Metrics

• Random Triplet Accuracy: This metric measures the percentage of triplets
whose relative distances in the high- and low-dimensional spaces main-
tain their relative order. Due to computational constraints, a sample of
triplets is used rather than considering all triplets. The metric is applied
five times, and the mean and standard deviation are reported. Random
triplet accuracy does not require labels, allowing evaluation on unlabeled
datasets.

• Centroid Triplet Accuracy [1]: For labeled datasets, the centroids of each
class are computed in both the high- and low-dimensional spaces. Triplets
are constructed using the relative distances between centroids in the high-
dimensional space, and the percentage of preserved centroid triplets is
reported.

UMAP baseline is a powerful dimensionality reduction technique known

for its ability to preserve both local and global structures in high-dimensional

data. However, when applying k-center clustering, a significant number of data

points are removed, leading to a stronger emphasis on global rather than local

structure. Consequently, we opted to employ the Random Triplet Accuracy met-

ric to thoroughly analyze and validate the proposed technique. Given UMAP’s

proficiency in capturing global structure, this validation approach is deemed to

be sufficiently thorough and fair.

4.9 Results

The results, including the dataset name, coreset size, number of neighbors,

metric used, computation time, and triplet accuracy, are stored in a CSV file

for later analysis. This allows for easy comparison across different datasets and

parameter settings.

In the previous sections, we explained that we will be presenting the follow-

ing results based on UMAP as our baseline. First, we need to determine the

running time and accuracy for each dataset. The table4.2 will provide the data

from the experiments conducted using the baseline technique:
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Table 4.2: clustering umap with different custom metrics experimented on fash-
ion mnist train set

UMAP baseline accuracy

Dataset Running Time (seconds) Accuracy

fashion-mnist 182 0.7392

Power Consumption 1969 0.789

WISDM 1850 0.6316

Now for each of the experimented datasets we provided the separated graphs

in order to compare and better visualize the baseline with the proposed tech-

nique. In these experiments we tested our system with different number of

neighbors 𝑛 and size of coreset 𝑘.

In Figure4.2 UMAP as the baseline, and four different parameter tuning are

shown for WISDM dataset. The parameters tuned differently as follows:

• coreset size = 1500, number of neighbors = 15

• coreset size = 1000, number of neighbors = 15

• coreset size = 500, number of neighbors = 15

• coreset size = 100, number of neighbors = 15

Figure 4.2: WISDM Dataset - A comparing results within the UMAP technique
as baseline and 4 different coreset sized UMAP clustering technique
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In Figure4.3, The same way of experiment is shown for Power Consumption

Dataset.

Figure 4.3: Power Consuption Dataset - A comparing results within the UMAP
technique as baseline and 4 different coreset sized UMAP clustering technique

In Figure4.4, with that same parameter tuning we showed the clustering for

the Fashion MNIST dataset.

Figure 4.4: Fashion MNIST Dataset - A comparing results within the UMAP
technique as baseline and 4 different coreset sized UMAP clustering technique
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In table4.3 all the results of the experiments based on different parameters

and datasets are represented. Based on that result we can conclude the following:

• For the Fashion MNIST dataset, the highest accuracy achieved is 0.7414,
which corresponds to a coreset size of 1000 and a number of neighbors of
5.

• For the Power Consumption dataset, the highest accuracy achieved is
0.8544, which corresponds to a coreset size of 500 and a number of neigh-
bors of 15.

• For the WISDM dataset, the highest accuracy achieved is 0.7680, which
corresponds to a coreset size of 100 and a number of neighbors of 5.

Table 4.3: Experiments result based on different parameter tuning for diffent
dataset

Results

Dataset Coreset Size Number of Neighbors Running Time Accuracy

fashion-mnist 1500 15 42.0664 0.7392

fashion-mnist 1500 10 41.6848 0.7341

fashion-mnist 1500 5 41.9219 0.7203

fashion-mnist 1000 15 37.6964 0.7354

fashion-mnist 1000 10 27.4527 0.7250

fashion-mnist 1000 5 27.2900 0.7414

fashion-mnist 500 15 14.2053 0.7372

fashion-mnist 500 10 14.3026 0.7144

fashion-mnist 500 5 18.1329 0.7156

fashion-mnist 100 15 32.8341 0.7180

fashion-mnist 100 10 33.7102 0.7080

fashion-mnist 100 5 31.9246 0.6560

Power Consumption 1500 15 502.3609 0.8380

Power Consumption 1500 10 549.3834 0.8447

Power Consumption 1500 5 550.6811 0.8344

Power Consumption 1000 15 331.5609 0.8292

Power Consumption 1000 10 342.4512 0.8316

Power Consumption 1000 5 373.7951 0.8188

Power Consumption 500 15 169.2621 0.8544

Power Consumption 500 10 165.9974 0.8376

Power Consumption 500 5 193.0581 0.8276

Power Consumption 100 15 45.1727 0.8060

42



CHAPTER 4. IMPLEMENTATION AND VALIDATION

Continuation of Table 4.3

Dataset Coreset Size Number of Neighbors Running Time Accuracy

Power Consumption 100 10 35.8779 0.8020

Power Consumption 100 5 37.7525 0.7980

WISDM 500 15 165.4590 0.6316

WISDM 500 10 162.3355 0.6136

WISDM 500 5 155.4638 0.5428

WISDM 100 15 43.4706 0.7260

WISDM 100 10 34.6703 0.7080

WISDM 100 5 35.8167 0.7680

WISDM 1500 15 465.9893 0.5756

WISDM 1500 10 482.5490 0.5792

WISDM 1500 5 472.4267 0.5680

WISDM 1000 15 306.3049 0.5970

WISDM 1000 10 308.3149 0.6020

WISDM 1000 5 317.6600 0.5438

It is the time to analyze and contrast the specific and overall traits of each

experiment by presenting easily understandable graphs.

In Figure 4.5, we can observe that the size of the coreset does not significantly

affect the performance across all datasets. This indicates that the accuracy of

our proposed technique is not dependent on the number of coresets. This is

a positive outcome as it shows that the method has been improved in terms

of running time. When working with a higher number of points, the running

time would certainly increase. Therefore, our method can effectively support

reduced running times.

Figure 4.6 proves our point and illustrates how the size affects the running

time. Therefore, we should opt for a smaller size for the k-center clustering part.
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Figure 4.5: coreset vs accuracy

Figure 4.6: relation between the running time and coreset size

In Figure 4.7 the scatter plot shows Running Time vs Accuracy. The color of

each point indicates the Number of Neighbors.
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Figure 4.7: the effect of the number of neighbors on the accuracy

Figure 4.8 combines a boxplot and a KDE (Kernel Density Estimate), showing

both the range and the distribution (density) of the values. In this way, we have

the knowledge of how the accuracy is distributed for each number of neighbors,

which is split by dataset.

Figure 4.8: the distribution of accuracy and running time for each number of
neighbors or coreset size
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Figure 4.9: The plot shows pairwise scatter plots of accuracy, running time,
coreset size, and number of neighbors.

In Figure 4.9 pairwise relationships in the dataset are shown. It is a matrix of

scatterplots, showing every combination of variables such as accuracy, running

time, coreset size, number of neighbors against each other. The diagonal shows

KDE (kernel density estimates) for each variable to visualize the distribution so

we can explore all relationships simultaneously.

4.10 Conclusion

In this chapter, we provide a comprehensive overview of the methodologies

and implementations. The discussion includes detailed insights into the pre-

processing steps, the k-Center FFT algorithm, a custom distance metric, and the

UMAP algorithm. Additionally, we thoroughly explain the overall experimental

setup. Finally, we compare the results obtained from different parameter tuning

methods and find that the proposed method is significantly better than using

UMAP as the baseline in terms of complexity and running time. Based on the

results, we can choose the method with better Random Triplet Accuracy based

on the dataset used.
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5
Conclusion and Future Work

The research explored innovative methodologies to address the challenges

of large-scale high-dimensional data, focusing on dimensionality reduction and

data visualization through UMAP and k-center coreset clustering techniques.

By comparing baseline UMAP with custom metrics applied to selected coresets,

this study advanced the state of knowledge in terms of efficiency, accuracy, and

visualization quality in high-dimensional data embedding.

5.1 Key Findings

The experiments, particularly in Chapter 4, revealed that coreset-based clus-

tering techniques, when combined with custom distance metrics such as the

"custom metric with radius," yield competitive results while significantly reduc-

ing computational time. A major breakthrough from this study was the ability

to efficiently handle large datasets, such as Fashion MNIST, WISDM, and Power

Consumption, without significant loss in accuracy.

For instance, the Fashion MNIST dataset demonstrated high accuracy (up to

0.7414) with a relatively small coreset size of 1000 points and 5 neighbors, prov-

ing that the approach can maintain both accuracy and computational efficiency.

The coreset-based approach outperformed the baseline UMAP in terms of run-

ning time without heavily sacrificing accuracy. This finding is significant as it

confirms the hypothesis that coresets can be employed to reduce computational

overhead in large-scale dimensionality reduction.
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5.2. CHALLENGES

Similarly, the WISDM and Power Consumption datasets showed that in-

creasing coreset size led to better accuracy, though the gains diminished beyond

a certain point. Results indicated that UMAP with custom metrics offered an

optimized balance between local and global data structures, preserving both

clusters and relationships within datasets.

5.2 Challenges

Despite these promising results, challenges remain, particularly regarding

the trade-offs between coreset size, accuracy, and running time. Larger coresets

often lead to better accuracy, but at the cost of increased computation time. This

trade-off is crucial in real-world applications where scalability and performance

are equally important. Further, the custom metrics demonstrated variability

across datasets, indicating that no single metric outperforms in all cases.

Moreover, as shown in Chapter 4, tuning parameters such as the number of

neighbors (k) significantly impacts performance, and careful tuning is necessary

depending on the dataset and its complexity.

5.3 Future Directions

Several future directions emerge from this work. First, developing adap-

tive algorithms that can automatically select optimal coreset sizes and metrics

for a given dataset can enhance both the scalability and ease of use of this

methodology. Automated parameter tuning, particularly for k-neighbors and

metric selection, will be critical in applying these techniques in real-time systems

where datasets are continuously evolving.

Second, exploring extensions of custom distance metrics beyond the Eu-

clidean space would be beneficial. The introduction of more complex metrics

tailored to specific domains, such as cosine similarity for text data, could im-

prove performance for domain-specific tasks like natural language processing

and image recognition .

Lastly, integrating this approach with neural networks, such as by leveraging

coreset-based clustering in convolutional neural networks (CNNs), could allow

for further advances in real-time image classification and object detection tasks.

The techniques developed in this thesis could be enhanced by considering graph-
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CHAPTER 5. CONCLUSION AND FUTURE WORK

based methods for preserving relationships between points in dynamic, non-

Euclidean spaces.

5.4 Conclusion

This research contributes significantly to the field of dimensionality reduc-

tion, particularly for large-scale high-dimensional data, by introducing a novel

combination of coresets, custom metrics, and UMAP. The findings illustrate that

efficient, scalable solutions to dimensionality reduction are attainable without

substantial loss in accuracy. These methods have the potential to impact a wide

range of fields, from data science to real-time systems, where quick and accurate

embeddings of high-dimensional data are critical.

Future research should focus on refining these techniques and extending

their applicability to broader domains, including natural language processing,

real-time systems, and interactive visualization platforms. The promising re-

sults from this work lay a foundation for further advancements in scalable

dimensionality reduction techniques.
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