
University of Padova

Department of Civil, Environmental and Architectural Engineering

Master Thesis in Mathematical Engineering

The singular free boundary in the thin obstacle

problem for variable coefficients degenerate elliptic

operator

Supervisor Master Candidate

Professor Nicola Garofalo Rada Ziganshina

University of Padova

Student ID

1223580

Academic Year

2021-2022





Abstract

In this thesis we study the singular part of the free boundary in the thin obstacle problem for
some variable coefficient degenerate elliptic operator in the case of a zero thin obstacle. Our
main objective was to establish the structure and regularity of the singular set. To prove it,
new monotonicity formulas of Weiss and Monneau type were constructed that extend those
of Garofalo-Petrosyan-Smit-Vega-Garcia to a ∈ (0, 1).

Besides, to fully reveal the development of the approach we first presented the results regarding
the singular free boundary for the thin obstacle problems of classical Laplacian and variable
coefficient elliptic operators. In this way, we have understood how we can generalize the
known results to reach our main goal.

The last preparing step was to study the paper of A. Banerjee, F. Buseghin and N. Garofalo,
where the optimal interior regularity of the solution and smoothness of the regular part of the
free boundary for our main degenerate problem were established.

Finally, we proved monotonicity of Almgren, Weiss and Monneau type which allowed to
establish homogeneity, nondegeneracy, uniqueness, and continuous dependence of blowups at
singular free boundary points.This, in turn, implies the main result.
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Chapter 1

Introduction

Obstacle problems are a special class of variational problems in the field of the calculus of
variations. Typically, one wants to minimize a given energy functional over a set of functions
that live above a given obstacle. In this chapter we start from a discussion how these problems
are tackled for a classical case, and later in the thesis we move to more complex degenerate
elliptic problem with variable coefficients.

1.1 Classical obstacle problem

To provide the reader with a general idea of the type of problems we are interested in, we start
with introducing the classical obstacle problem. In such problem one intends to understand the
equilibrium configuration of an elastic membrane with fixed boundaries which is constrained
to lie above a given obstacle. Suppose we are given a bounded open set Ω ⊂ Rn, and two
smooth functions φ : Ω̄ → R, and g : ∂Ω → R, which satisfy g ≥ φ on ∂Ω. We seek to
minimize the Dirichlet integral

D(u) =
1

2

∫︂
Ω
|∇u|2dx (1.1.1)

among all configurations of function u which represents the vertical displacement of the mem-
brane with prescribed boundary values u|∂Ω = g, and constrained to remain above the obstacle
φ (figure 1), in other words, on the closed convex set

K = {u ∈W 1,2 | u = g on ∂Ω, u ≥ φ in Ω}.

Solving this problem is equivalent to finding a function u ∈ K such that∫︂
Ω
< ∇u,∇(v − u) > dx ≥ 0,

for every v ∈ K. It is known [25] that there exists a unique solution u ∈ W 1,2(Ω) of such
variational inequality.
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Introduction

Figure 1. The free membrane (left) and the solution of the obstacle problem [27]

The choice of the class of functions as the Sobolev space W 1,2(Ω) is justified by the fact that
in the calculus of variations searching for solution in apparently a natural but too narrow
family often can give no result. The space W 1,2(Ω) is endowed with the inner product
< u, v >=

∫︁
Ω(uv+∇u ·∇v)dx and since the functional D(u) is continuous and strictly convex

on the convex set K, the existence and uniqueness of minimizers are guaranteed [12].

Definition 1.1.1. The set where u is above the obstacle φ is noted as

Ωφ(u) = {x ∈ Ω | u(x) > φ(x)}

and, since one can prove that u ∈ C(Ω), it follows that Ωφ(u) is open.

Definition 1.1.2. The set

Λφ(u) = {x ∈ Ω | u(x) = φ(x)}

is called coincidence set. It is the part of the domain Ω where the solution u touches the
obstacle φ (figure 1) and it is relatively close set in Ω.

Definition 1.1.3. The topological boundary of the coincidence set

Γφ(u) = ∂Λφ(u) = ∂Ωφ(u)

is called the free boundary.

The Euler Lagrange equation of the minimization problem is the following⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u ≥ φ in Ω

u = g on ∂Ω

∆u ≤ 0 in Ω

∆u = 0 in Ωφ
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Introduction

which means that the solution u is superharmonic everywhere and harmonic when it is above
the obstacle, i.e. in the set {u > φ}. It is seen from the standard variational arguments,
namely having any perturbation of our solution u+ εη we should get

D(u+ εη) ≥ D(u) for some ε ≥ 0, ∀η ∈ C∞
0

1

2

∫︂
Ω
|∇(u+ εη)|2 ≥ 1

2

∫︂
Ω
|∇u|2

1

2

∫︂
Ω
|∇u|2 + ε

∫︂
Ω
∇u∇η + 1

2
ε2
∫︂
Ω
|∇η|2 ≥ 1

2

∫︂
Ω
|∇u|2∫︂

Ω
∇u∇η + 1

2
ε

∫︂
Ω
|∇η|2 ≥ 0

from where let ε→ 0+ and obtain∫︂
Ω
∇u∇η ≥ 0 for ∀η ∈ C∞

0 . (1.1.2)

To show that u is harmonic on the set Ωφ, we recall that for ε > 0 small enough the pertur-
bation of the solution v = u + εη should be still above the obstacle, i.e. u + εη ≥ φ, to be
in the set K. For {u > φ} (1.1.2) holds for every test function η (and small enough ε), not
necessarily nonnegative, so it must also hold for −η. From this we obtain∫︂

Ω
∇u∇η = 0 for ∀η ∈ C∞

0

which shows that u is weakly harmonic and by Weyl’s lemma [33] we conclude that u is
almost everywhere equal to a smooth harmonic function on Ωφ. On the other hand, for the
coincidence set {u = φ} we can choose only nonnegative test function η for v to stay above
the obstacle, i.e. v = u + εη = φ + εη ≥ φ, which with (1.1.2) proves that u is weakly
superharmonic.

Based on this reasoning we can rewrite our problem in another way as

min{−∆u, u− φ} = 0 (1.1.3)

subject to the boundary condition u|∂Ω = g(x)

In principle we have two main questions for the obstacle problem. The former question is
what is the optimal regularity of the solution u, and the latter one is how smooth is the free
boundary Γφ.

Concernig the first question, it was first proven by Jens Frehse in 1972 [15] that the solution
of the classical obstacle problem is C1,1

loc (Ω), i.e. it has bounded second derivatives, if the
obstacle is C1,1(Ω). It can be seen from the heuristic observation that regularity can not
exceed this result, using previous facts about harmonicity of the solution u and the definition
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of the coincidence set Λφ we know that

• ∆u = 0 on Ωφ(u)

• ∆u = ∆φ on Λφ(u)

Thus we see that ∆u experiences a jump across the free boundary Γφ(u) and therefore the
second derivatives of u cannot be continuous in Ω.

The smoothness of the free boundary depends on the type of the boundary points which in
the classical obstacle problem can be two types: regular and singular.

Definition 1.1.4. A free boundary point x0 is called regular if there exists a small number
r0 > 0 such that for every 0 < r < r0 one has

cr2 ≤ sup
Br(x0)

(u− φ) ≤ Cr2,

for some universal constants 0 < c ≤ C <∞ and Br(x0) = {x ∈ Rn | |x− x0| < r}, r > 0.

In other words, the function u − φ exhibits quadratic growth near a regular free boundary
point x0 ∈ Γφ(u).

Definition 1.1.5. A free boundary point x0 is called singular if the coincidence set has
vanishing n-dimensional density at x0, i.e.,

lim
r→0+

|Λφ(u) ∩B(x0, r)|
|B(x0, r)|

= 0

To better demonstrate the difference let us consider two global solutions of the obstacle
problem with φ = 0 (figure 2):

(i) u(x) = 1
2(x

+
n )

2

(ii) u(x) = 1
2x

2
n

In the first example the coincidence set Λ(u) = {u(x) = 0} = {(x′, xn) ∈ Rn | xn ≤ 0} and
the free boundary Γ(u) is the hyperplane {xn = 0} in Rn. One can derive that all boundary
points are regular and the contact set has positive Lebesgue measure at x0, that is

lim sup
r→0+

|{u(x) = 0} ∩Br(x0)|
|Br(x0)|

> 0
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Figure 2. Examples of the solutions u with regular (left) and singular (right) free boundary

In the second example the coincidence set is the hyperplane Λ(u) = {u(x) = 0} = {xn = 0} =
Γ(u) and thus |Λ(u) ∩ Br(x0)| = 0 for every r > 0. Consequently, every free boundary point
is a singular point for this solution.

Remark. If at a free boundary point x0 the set Λφ(u) has a cusp or a pinched bottleneck
(figure 3), then x0 is a singular point.

Figure 3. Singular points at cusps and pinched bottleneck [17]

Returning to the question of the smoothness of the free boundary, in [6] L. Caffarelli showed
that if x0 is a regular point (a point of the positive density for the coincidence set), then in a
neighborhood of x0 the free boundary is a C1,α hypersurface and the solution u is C2 up to the
free boundary. In the same year D. Kinderlehrer and L. Nirenberg established the following
result [24]: if the obstacle φ is real analytic, and one knows a priori that near x0 ∈ Γφ(u) the
solution u ∈ C2 up to Γφ(u), and the free boundary is a C1 hypersurface, then in fact it is
real analytic. In this way, one can conclude that at any regular point the free boundary is
real analytic.

Concerning the singular part of the free boundary, it is natural to consider a classification of
points in singular set Σ(U) ⊂ Γφ(U) based on the so-called dimension dx0 of Σ(U) at the a
singular point x0 ∈ Σ(U) (which is defined in details later in the thesis). It is possible now to
introduce the set

Σd(U) = {x0 ∈ Σ(U) | dx0 = d}, d = 1, ..., n− 2

5
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In [9] L. Caffarelli established that Σd(U) is locally contained in a d-dimensional manifold of
class C1. One year later, for the case n = 2, G. Weiss proved in [32] that C1-regularity can
be improved to C1,α by means of an epiperimetric-type approach. These proofs are based on
using the different monotonicity formulas, which more detailed discussed further in the work.

As mentioned at the beginning of the section, the basic motivating example of the obstacle
problem is to find an equilibrium configuration of an elastic membrane whose boundary is
held fixed at the height (descibed by the function g), and which is restricred to remain above
a given obstacle φ (figure 4). As in [9] we can assume that the potential energy of such
membrane is proportional to the area of this membrane which is given by the functional

A(u) =

∫︂
Ω

√︁
1 + |∇u|2

and by the principle of minimal potential energy the equilibrium position can be find mini-
mizing A. By Taylor formula for small |∇u| we obtain the approximation

A ≈
∫︂
Ω
1 +

|∇u|2

2

And since constant 1 will not change the minimization problem, minimizing the area A is the
same as minimizing the Dirichlet integral (1.1.1) over set K

Figure 4. An elastic membrane with fixed boundaries (in this case they have quadratic
shape, but it’s not necessary) pulled on an obstacle (black)

1.2 The thin obstacle problem, the fractional laplacian

To move from the classical problem to the thin obstacle problem we start with a motiva-
tion which comes from the example of reverse osmosis of a saline concentration through the
semipermeable membrane [12], [13]. Such membranes allow flow of fluid in one direction and
block it in another one. The reverse osmosis is a mechanism which allow to remove low molec-
ular weight solutes from the solvent. Applying the pressure, which exceeds the hydrostatic
pressure in the salt solution side of the membrane, forces water to flow from the salt solution

6



Introduction

part to the other side, while the nature of the semipermeable membrane prevents the water
from flowing back.

Mathematically, we let Ω be a region in Rn occupied by the pure solvent (figure 5, right) with
the pressure field denoted by u(x). We assume that M ⊂ ∂Ω is our membrane with exterior
unit normal ν. Combining the law of conservation of mass with Darcy’s law, one finds that
equilibrium configuration of the pressure is

∆u = 0 in Ω.

Let φ(x) for x ∈ M be a fluid pressure applied on the outside of Ω. Then we have two possible
scenarious

• u(x) ≤ φ(x), when the solvent from the part with salt solution (figure 5, left) enters Ω

• u(x) > φ(x), when the flux ∂νu = 0

In the first case the flux ∂νu = −λ(u − h) > 0, where λ > 0 is the permeability constant
of the membrane. Given that the typical membrane thickness is negligible, in the infinite
permeability case for λ→ ∞ we obtain following problem

u ≥ φ, ∂νu ≥ 0, (u− φ)∂νu = 0 on M.

Figure 5. The process of the reverse osmosis [12]

Since the solution u is constrained to lie above φ not in the whole domain Ω as in the classical
obstacle problem, but only on M ⊂ Rn−1, the function φ is referred as a thin obstacle, and
the problem is called the thin obstacle problem (figure 6).

Another way to address the thin obstacle problem is by its local equivalence to a classical
obstacle problem analogous to (1.1.3), but with the Laplacian replaced by the fractional
Laplacian (−∆)s, which was first introduced by M. Riesz in [28]:
Given a smooth function φ : Rn → R, find a function u : Rn → R such that{︄

min{u− φ, (−∆)su} = 0 Rn,
lim|x|→∞ u(x) = 0

(1.2.1)

7
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where 0 < s < 1 is the fractional power of the Laplacian and φ is the obstacle.

Figure 6. The thin obstacle problem

Definition 1.2.1. The fractional Laplacian of a function u ∈ S(Rn) is the nonlocal operator
in Rn defined by expression

(−∆)su(x) =
γ(n, s)

2

∫︂
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
dy

where γ(n, s) > 0 is a suitable normalisation constant given by

γ(n, s) =
s2sΓ(n2 + s)

π
n
2 Γ(1− s)

By S(Rn) we denoted the Schwartz space of rapidly decreasing functions, although larger
classes can be allowed [16]. We recall that the Schwartz space S(Rn) is the space C∞(Rn)
endowed with the metric topology

d(f, g) =
∞∑︂
p=0

2−p
∥f − g∥p

1 + ∥f − g∥p

generated by the countable family of norms

∥f∥p = sup
α≤p

sup
x∈Rn

(1 + |x|2)
p
2 |∂αf(x)|, p ∈ N ∪ {0}.

The pseudo-differential character of the fractional Laplacian is seen in the following identity
[16]

ˆ︂(−∆)su(ξ) = (2π|ξ|)2sû(ξ)

where

f̂(ξ) =

∫︂
Rn

e−2πi<ξ,x>f(x)dx

8
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is a Fourier transform of a function f . Recall that the Fourier transform of a standard
Laplacian is

ˆ︂(−∆)f(ξ) = (2πξ)2f̂(ξ)

since Laplacian is a linear operator.

As in the classical case we define the coincidence set

Λφ(u) = {x ∈ Rn : u(x) = φ(x)}

and the free boundary
Γφ(u) = ∂Λφ(u).

We will denote them simply Λ(u) and Γ(u) when φ = 0.

From (1.2.1) in a similar way as it was obtained for the classical obstacle problem, it is possible
to get that

• (−∆)su = 0 in the set {u > φ}

• (−∆)su ≥ 0 in the whole Rn

In this way, the problem (1.2.1) can be reformulated as following:
Given an obstacle φ, find a function u such that

u ≥ φ, (−∆)su ≥ 0, (u− φ)(−∆)su = 0 in Rn. (1.2.2)

In [8] Caffarelli and Silvestre introduced a method to convert the global problem (1.2.1) in
Rn into a local problem in Rn+1

+ . It was shown that if for a given u ∈ S(Rn) one considers the
function U(x, y) : Rn × [0,+∞) → R that solves the extension problem with the degenerate
elliptic operator {︄

LaU(x, y) = divx,y(|y|a∇x,yU) = 0, a = 1− 2s

U(x, 0) = u(x)
(1.2.3)

then one can use the weighted Dirichlet-to-Neumann relation to find the fractional Laplacian

(−∆)su(x) = −22s−1Γ(s)

Γ(1− s)
lim
y→0+

ya
∂U

∂y
(1.2.4)

and use the following proposition to obtain the connection with the global problem (1.2.1).

Proposition 1.2.2. ([8]) Let U : Rn × [0,∞) → R be a solution to LaU = 0 such that for a
given R > 0 one has for |x| < R

lim
y→0+

ya
∂U

∂y
(x, y) = 0.

9
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If we define Ũ : Rn × R → R be even reflection in y, i.e.,

Ũ(x, y) =

{︄
U(x, y) y ≥ 0,

U(x,−y) y < 0,

then Ũ is a weak solution to the equation

divx,y(|y|a∇x,yŨ) = 0,

in {(x, y) ∈ Rn+1 | |x|2 + y2 < R2}

This makes the nonlocal obstacle problem (1.2.1) equivalent to a problem for the extension
operator La in one dimension up with an obstacle that is still defined in the lower dimensional
manifoldM = Rn×{0}. Thus the function Ũ(x, y) satisfies the thin obstacle problem in Rn+1⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

LaŨ = div(|y|a∇x,yŨ) = 0 in Rn+1
+ ∪ Rn+1

− ,

Ũ(x,−y) = Ũ(x, y) for x ∈ Rn, y ∈ R,
Ũ(x, 0) ≥ φ(x) for x ∈ Rn,
− limy→0+ y

aDyŨ(x, y) ≥ 0 for x ∈ Rn,
limy→0+ y

aDyŨ(x, y) = 0 in {Ũ(x, 0) > φ(x)}

(1.2.5)

Assume that u is a solution of the nonlocal obstacle problem (1.2.1), or equivalently (1.2.2),
and that U is the solution of the Dirichlet problem (1.2.3). It is clear that third equation of
(1.2.5) is obtained from the second condition of (1.2.3) and first equation of (1.2.2). Moreover,
fourth equation of (1.2.5) is derived from the Dirichlet-to-Neumann relation (1.2.4) and the
second condition (−∆)su ≥ 0 of (1.2.2), with a = 1−2s. While for the fifth equation is again
used (1.2.4) and the fact that (−∆)su = 0 in the set {u > φ}.
From (1.2.5) we see that at every x ∈ Rn we must have

(Ũ(x, 0)− φ(x)) lim
y→0+

yaDyŨ(x, y) = 0

which is called the Signorini conditions. Signorini himself was calling them the ambiguous
boundary conditions, since at any given contact point either limy→0+ y

aDyŨ(x, y) = 0 or

Ũ(x, 0) = φ(x), but it is not known which one is satisfied.

The thin obstacle problem finds a lot of applications in different contexts, e.g. in optimal
stopping problems for stochastic processes with jumps with an application in finance [11], the
study of the regularity of minimizers of interaction energies in kinetic equations [10], the quasi-
geostrophic equation in the geophysical fluid dynamics, etc. In linear elasticity the Signorini
problem, first proposed by him in [29], consists of finding an equilibrium configuration of a
spherical elastic body resting on a rigid, frictionless horizontal plane. The problem is of type
(1.2.5) for s = 1

2 and so a = 0. This is why such problems are usually called the problems of

10



Known results

the Signorini type.

The main goal of these thesis is, in fact, to study the structure of the singular free boundary
in the slightly more developed problem, that is the degenerate thin obstacle problem with
variable coefficients satisfying minimal assumptions on the coefficients (which will be revealed
in the subsequent chapters) with the zero obstacle: minimize the generalised Dirichlet energy

min
V ∈K

∫︂
Ω
< A(x)∇V,∇V > |y|adX (1.2.6)

where V ranges in the closed convex set

K = {V ∈W 1,2(Ω) | V = g on ∂Ω \M, V ≥ 0 on M}.

Since the studied problem is of a local nature, we assume hereafter that Ω = B+
1 , and that

the thin manifold which supports the obstacle is flat and given by M = B1 ⊂ ∂B+
1 .

The main result, Theorem 4.0.2, rests on a Weiss and a Monneau type monotonicity formulas
implying homogeneity, nondegeneracy, uniqueness, and continuous dependence of blowups at
singular free boundary points. The proofs follow the outline of the analogous results in [19]
for the case of the Laplacian and in [21] for the case of the Lipschitz variable coefficients
operator, with changing in the reasanoning caused by the degenerate part.

The structure of the thesis: The rest of the thesis is organized as follows.
In Chapter 2, we introduce main results of [19] and [21] regarding the study of the main
objective of the thesis - the structure of the singular free boundary, but for the particular
cases of (1.2.6). We observe how new challenges, caused by moving from the Laplace Signorini
problem to the Signorini type problem for the variable coefficient elliptic operator, have been
overcome in [21] at every level of the study: Almgren, Weiss, Monneau type monotonicity
formulas, a blowup analysis, growth lemmas and nondegeneracy of a solution, which, in turn,
helped to characterize and study the configuration of the singular points.
In Chapter 3, we present the last paper [4] on the optimal interior regularity and the regularity
of the regular free boundary of our main problem (1.2.6). We explain main ideas and show
the results which we use further in Chapter 4.
And finally, in Chapter 4, following the argumentation discussed in Chapter 2, we derive the
principal results for our degenerate generalised problem (1.2.6) which are necessary to prove
the main result - Theorem 4.0.2.

11



Chapter 2

Known results

As we mentioned in the previous chapter, our main problem is{︄
LaU = divx,y(|y|aA(x)∇x,yU) = 0 in B+

1 ,

min{U(x, 0),−∂ayU(x, 0)} = 0 in B1.
(2.0.1)

In this chapter we discuss studies of this problem with the zero-obstacle on different levels:

• when a = 0, A(x) = I (constant coefficients), and so La = ∆x,y as in [19]

• when a = 0, and so La = divx,y(A(x)∇x,y) as in [21]

We will introduce the results for these problems at different steps of the study comparing how
the reasoning changes when we go between these two problems. It will be a prelude for the
discussion on the main problem (2.0.1) in the Chapter 4.

We note that for x ∈ Rn, y > 0, we have indicated X = (x, y) ∈ Rn+1, and let |X| =√︁
|x|2 + y2. For X0 ∈ Rn+1 and r > 0, we denote Br(X0) = {X = (x, y) ∈ Rn+1 | |X −X0| <

r}, and Sr(X0) = ∂Br(X0) the ball and the sphere of radius r centred at X0 in the thick
space. When X0 = 0 we simply write Br and Sr, instead of Br(0) and Sr(0).
We let B+

r = {X = (x, y) ∈ Br | y > 0}, B−
r = {X = (x, y) ∈ Br | y < 0} be the upper and

lower parts of the thick ball, and indicate with Br = {x ∈ Rn, y = 0 | |x| < r} the ball centered
at 0 with radius r in the thin space Rn with the thin sphere Sr = {x ∈ Rn, y = 0 | |x| = r}.
As before, we denote

Ω = {(x′, 0) ∈ B1 | u(x′, 0) > 0}

the set where the solution u is above the obstacle φ = 0 in the thin ball (the difference is that
now the obstacle φ lives in the lower dimensional manifold), and by

Λ = {(x′, 0) ∈ B1 | u(x′, 0) = 0} (2.0.2)

12
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the coincidence set, i.e. the set where u touches the obstacle, with the free boundary Γ(u) =
∂Λ(u) (relative to the topology of B1).

We extend the solution U of (2.0.1) to the whole ball B1 by extending the coefficients aij and
the boundary datum g in the following way

1) g(x, y) = g(x,−y),
2) aij(x, y) = aij(x,−y) for i, j < n+ 1 or i = j = n+ 1,

3) ai,n+1(x, y) = ai,n+1(x,−y) = 0 for i < n+ 1.

Under these assumptions, if we extend U to the whole ball B1 as an even function with respect
to y, then the extended function (which is denoted by U as well) will satisfy DyU(x, 0) = 0
at every point (x, 0) ∈ B1 where the derivative exists. Such normal derivative DyU might not
exist along coincidence set, where D+

y U = limy→0+ DyU(x, y) and D−
y U = limy→0− DyU(x, y)

might be different from each other.

We have the following alternative representation of our problem (2.0.1) after extending it as
described before. Given a matrix valued function x ↦→ A(x) = [aij(x)] in B1, we consider the
problem of the minimizing generalized energy in the measure |y|adX

min
U∈K

∫︂
B1

< A(x)∇U(X),∇U(X) > |y|adX, (2.0.3)

where we look for the solution U in the closed convex set

K = {U ∈W 1,2(B1) | U = g on S1, U(x, 0) ≥ 0 on B1}.

We state the assumptions on the matrix-valued function x ↦→ A(x) = [aij(x)]:

(i) Symmetry: aij(x) = aji(x) for i, j = 1, ..., n and ∀x ∈ B1.

(ii) Ellipticity: there exist λ > 0 such that, for every x ∈ B1 and ξ ∈ Rn+1, one has

λ|ξ|2 ≤< A(x)ξ, ξ >≤ λ−1|ξ|2. (2.0.4)

(iii) The Lipschitz continuous and independent of y coefficients: the entries of A(x) = [aij(x)]
are in W 1,∞(B1), that is, one has for some Q > 0 and every x, z ∈ B1

|aij(x)− aij(z)| ≤ Q|x− z|. (2.0.5)

We as well will need the following assumption on A(x) = [aij(x)]

aij(x) =
n∑︂

i,j=1

bij(x)ei ⊗ ej + en+1 ⊗ en+1. (2.0.6)

13
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One can notice that (2.0.6) is equivalent to the following compatibility condition

ai,n+1(x, 0) = 0 in B1 for i = 1, .., n (2.0.7)

2.1 The Almgren Monotonicity

It is well-known that there are two crucial ingredients in the study of the thin obstacle
problem (2.0.1): the monotonicity of the Almgren, Weiss and Monneau type formulas and the
subsequent blowup analysis. The principal objective of this section is to present the approach
of establishing the monotonicity of the Almgren formula for the Laplace Signorini problem
and the Signorini type problem for the variable coefficient elliptic operator. First of all, let
us introduce the conformal factor

µ̃(X) =< A(x)∇r(X),∇r(X) >=
< A(x)X,X >

|X|2
. (2.1.1)

We next observe that when A = In+1 we have µ̃ ≡ 1. From the assumption (2.0.4), we obtain
that

λ ≤ µ̃(X) ≤ λ−1, X ∈ B1. (2.1.2)

We have also the following useful lemma.

Lemma 2.1.1. [21] Suppose that A(0) = In+1. Then, one has

1. µ̃(0) = 1,

2. |1− µ̃(X)| ≤ C|X|,

3. |∇µ̃(X)| ≤ C,

where C > 0 is some universal constant.

Remark. When we say that a constant is universal, we mean that it depends exclusevely on
n, on the ellipticity bound λ on A(x) (2.0.4) and on the Lipschitz bound Q in (2.0.5) on the
coefficients aij(x).

We denote in the most general form the following necessary quantities. For any r ∈ (0, 1) the
height function of U in Sr is defined as

H(U, r) =

∫︂
Sr
U2µdσ, (2.1.3)

where µ = µ̃|y|a. We denote the Dirichlet integral of U in Br by

D(U, r) =

∫︂
Br

< A(x)∇U,∇U > |y|adX. (2.1.4)

14
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And we define the total energy of U in Br as

I(U, r) =

∫︂
Sr
U < A∇U, ν > |y|adσ. (2.1.5)

It is shown later that I(r) = D(r) when φ = 0.

In the original way the Almgren frequency formula is defined as following

N(U, r) =
rD(r)

H(r)
. (2.1.6)

Henceforth, when the function U is fixed, we will write H(r), D(r), I(r), N(r) instead of
H(U, r), D(U, r), I(U, r), N(U, r).

2.1.1 The Laplace Signorini problem

Let us now move the discussion to the more specific case of the problem (2.0.1). When a = 0
and A(x) = In+1, the extension operator becomes La = ∆x,y. To simplify notations we move
back to one dimension less, so the main problem (2.0.1) converts into{︄

∆u = 0, in B+
1 ,

min{u(x′, 0),−∂nu(x′, 0)} = 0 in B′
1,

(2.1.7)

where we let x′ ∈ Rn−1 and denote a generic point in Rn as x = (x′, xn). We also replaced the
solution U with u for easier recognition of this particular case (2.1.7) of the main problem.
We denote the thick ball as B1 = {x ∈ Rn | |x| < 1} and indicate with B+

1 = B1 ∩ {xn > 0},
B−

1 = B1 ∩ {xn < 0} the upper and lower halfs of the ball, and with B′
1 = B1 ∩ {xn = 0} the

thin ball.

The solution to (2.1.7) extended to the whole ball B1, as described in the beginning of this
chapter, satisfies the following Signorini or complementary conditions

∆u = 0 in B+
1 ∪B−

1 , (2.1.8)

u(x′,−xn) = u(x′, xn), (2.1.9)

u ≥ 0 in B′
1, (2.1.10)

< ∇u, ν+ > + < ∇u, ν− >≥ 0 in B′
1, (2.1.11)

u(< ∇u, ν+ > + < ∇u, ν− >) = 0 in B′
1, (2.1.12)∫︂

B1

< ∇u,∇η >=
∫︂
Λφ(u)

(< ∇u, ν+ > + < ∇u, ν− >)η, η ∈ C∞
0 (B1), (2.1.13)
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where we denoted with ν± = ∓en the outer unit normals to B±
1 on B′

1. Using (2.1.11) and
(2.1.13) we see that, in particular, u is superharmonic in B1. We denote by S0 the class of
functions satisfying the Signorini conditions (2.1.8) - (2.1.13) above.

Reguarding the regularity of the solution of the Laplace Signorini problem, we have the
following theorem.

Theorem 2.1.2. [5] Let u be the solution of the Signorini problem (2.1.8) - (2.1.13) in the
ball B1. Then there exists α > 0 such that u ∈ C1,α(B±

1 ∪B′
1). The bounds on the C1,α norm

of u exclusively depend on ∥u∥L2(B1)
.

We also have the following important result

Proposition 2.1.3. [17] Let u ∈ S0. Then u± are subharmonic in B1

We need to find the first variations of the height and the Dirichlet integral that will help to
establish the monotonicity of the Almgren functional (2.1.6). The proofs and calculations for
the case of the Laplace Signorini problem are taken from [17] or [19].

We obtain from (2.1.3) that for our problem (a = 0, A(x) = I) the height is

H(r) =

∫︂
Sr

u2 (2.1.14)

and from (2.1.4) the Direchlet integral is defined as

D(r) =

∫︂
Br

|∇u|2. (2.1.15)

Hereafter, for a fixed r ∈ (0, 1) and 0 < ε < r we denote by B+
rε = Br ∩ {ε < xn < r},

B−
rε = Br ∩ {−r < xn < ε}, S±

rε = Sr ∩B±
rε, Lrε = B±

rε ∩ {xn = ±ε}

Lemma 2.1.4. Let u ∈ S0. Then, for every r ∈ (0, 1) one has

D(r) =

∫︂
Sr

uuν .

Proof. Since, by (2.1.8), u is harmonic in B±
rε we have in those sets that

1

2
∆(u2) =

1

2
div(2u∇u) = |∇u|2 + u∆u = |∇u|2.

By the divergence theorem we have∫︂
B+

rε

|∇u|2 = 1

2

∫︂
B+

rε

∆(u2) =

∫︂
S+
rε

u∂νu+

∫︂
Lrε

u∂+ν u.
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With the Theorem 2.1.2 we let ε→ 0+ to conclude that∫︂
B+

r

|∇u|2 =
∫︂
S+
r

u∂νu+

∫︂
B′

r

u∂+ν u.

Repeating the argument for B−
r and summing together we find that∫︂

Br

|∇u|2 =
∫︂
Sr

u∂νu+

∫︂
B′

r

u(∂+ν u+ ∂−ν u) =

∫︂
Sr

uuν ,

where in the last step we used (2.1.12).

Lemma 2.1.5. (First variation of the height) Let u ∈ S0. Then, for every r ∈ (0, 1) one has

H ′(r) =
n− 1

r
H(r) + 2D(r).

Proof. Since outer normal to the sphere ν = x
r we have∫︂

S+
rε

u2 =
1

r

∫︂
S+
rε

< u2x, ν >=
1

r

∫︂
∂B+

rε

< u2x, ν > −1

r

∫︂
L+
rε

< u2x, ν >

div.thm
=

1

r

∫︂
B+

rε

div(u2x)− 1

r

∫︂
L+
rε

< u2x, ν >=

=
n

r

∫︂
B+

rε

u2 +
2

r

∫︂
B+

rε

u < x,∇u > +ε

∫︂
L+
rε

u2,

where the sign of the last term changed due to the fact that ν+ = −en. Let ε → 0+ and use
Theorem 2.1.2, we find ∫︂

Sr

u2 =
n

r

∫︂
B+

r

u2 +
2

r

∫︂
B+

r

u < x,∇u > .

Adding to this equation the analogous one for B−
r , we conclude

H(r) =
1

r

[︃
n

∫︂
Br

u2 + 2

∫︂
Br

u < x,∇u >
]︃
. (2.1.16)

Using Cavalieri’s principle, and differentiating (2.1.16) with respect to r we obtain

H ′(r) = − 1

r2

[︃
n

∫︂
Br

u2 + 2

∫︂
Br

u < x,∇u >
]︃
+

1

r

[︃
n

∫︂
Sr

u2 + 2

∫︂
Sr

u < x,∇u >
]︃

= −1

r
H(r) +

1

r

[︃
nH(r) + 2r

∫︂
Sr

uuν

]︃
=
n− 1

r
H(r) + 2D(r),
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where in the second-to-last step we used that the outer normal to the sphere ν = x
r and

uν =< ∇u, ν >, and in the last step we applied the Lemma 2.1.4.

The following famous inequality will be useful in the computing the first variation of the
Dirichlet integral. We also provide the proof.

Proposition 2.1.6. (Rellich identity) Let Ω ⊂ Rn be a piecewise C1 domain. Given a
function u ∈ C2(Ω) one has∫︂

∂Ω
|∇u|2 < x, ν >= (n− 2)

∫︂
Ω
|∇u|2 + 2

∫︂
∂Ω

< x,∇u > uν − 2

∫︂
Ω
< x,∇u > ∆u (2.1.17)

Proof. First, we observe that

2 < x,∇u > ∆u = 2

n∑︂
k=1

n∑︂
i=1

xk
∂u

∂xk

∂2u

∂x2i
=

n∑︂
k=1

n∑︂
i=1

[︄
2xk

∂

∂xi

(︃
∂u

∂xi

∂u

∂xk

)︃
− xk

∂

∂xk

(︃
∂u

∂xi

)︃2
]︄

= 2
n∑︂
k=1

n∑︂
i=1

xk
∂

∂xi

(︃
∂u

∂xi

∂u

∂xk

)︃
− < x,∇(|∇u|2) > .

(2.1.18)

Let us analyse terms in (2.1.18) separately

2

∫︂
Ω

n∑︂
k=1

n∑︂
i=1

xk
∂

∂xi

(︃
∂u

∂xi

∂u

∂xk

)︃
= 2

∫︂
Ω

n∑︂
k=1

n∑︂
i=1

∂

∂xi

(︃
∂u

∂xi

∂u

∂xk
xk

)︃
− 2

∫︂
Ω

n∑︂
k=1

n∑︂
i=1

∂u

∂xi

∂u

∂xk
δi,k

= 2

∫︂
∂Ω

< x,∇u > uν − 2

∫︂
Ω
|∇u|2.

(2.1.19)

We obtained two terms for the final equation (2.1.17), now we consider the second term of
(2.1.18)∫︂

Ω
< x,∇(|∇u|)2 >=

∫︂
Ω
div(|∇u|2x)− n

∫︂
Ω
|∇u|2 div.thm

=

∫︂
∂Ω

|∇u|2 < x, ν > −n
∫︂
Ω
|∇u|2.

(2.1.20)
If we combine (2.1.18), (2.1.19), (2.1.20), we obtain the desired result.

Lemma 2.1.7. (First variation of the Dirichlet integral) Let u ∈ S0. Then, for every r ∈
(0, 1) one has

D′(r) =
n− 2

r
D(r) + 2

∫︂
Sr

u2ν .
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Proof. We apply Proposition 2.1.6 to Ω = B+
rε and use (2.1.8)∫︂

∂B+
rε

|∇u|2 < x, ν >= (n− 2)

∫︂
B+

rε

|∇u|2 + 2

∫︂
S+
rε

< x,∇u > uν + 2

∫︂
L+
rε

< x,∇u > uν .

(2.1.21)
On the other hand, we have∫︂

∂B+
rε

|∇u|2 < x, ν > =

∫︂
S+
rε

|∇u|2 < x, ν > +

∫︂
L+
rε

|∇u|2 < x, ν >

= r

∫︂
S+
rε

|∇u|2 − ε

∫︂
L+
rε

|∇u|2.
(2.1.22)

Combining (2.1.21) and (2.1.22) and using the Theorem 2.1.2, we let ε→ 0+∫︂
S+
r

|∇u|2 = n− 2

r

∫︂
B+

r

|∇u|2 + 2

∫︂
S+
r

u2ν +
2

r

∫︂
B′

r

< x′,∇x′u > u+ν . (2.1.23)

Repeating the argument for B+
rε and summing with (2.1.23), we obtain

D′(r) =

∫︂
Sr

|∇u|2 = n− 2

r

∫︂
Br

|∇u|2 + 2

∫︂
Sr

u2ν +
2

r

∫︂
B′

r

< x′,∇x′u > (u+ν + u−ν ).

To see that the last integral vanishes it is enough to split it as follows∫︂
B′

r

< x′,∇x′u > (u+ν + u−ν ) =

∫︂
Λ(u)∩B′

r

< x′,∇x′u > (u+ν + u−ν )

+

∫︂
{(x′,0)∈B′

r | u(x′,0)>0}
< x′,∇x′u > (u+ν + u−ν ) = (I) + (II).

On the Λ(u) ∩B′
r we have that u(x′, 0) = 0. Since in general, by (2.1.10), u(x′, 0) ≥ 0 in B1,

the function x ↦→ u(x′, 0) reaches its minimum value on Λ(u) ∩ B′
r and by Fermat’s theorem

we must have ∇x′u = 0, and therefore < x′,∇x′u >= 0. Thanks to the Theorem 2.1.2 the
function u+ν + u−ν is bounded in B′

1, thus we can conclude that (I) = 0.

On the set {(x′, 0) ∈ B′
r | u(x′, 0) > 0} the condition (2.1.12) gives u+ν + u−ν = 0, and thus

(II) = 0. And therefore the desired conclusion follows.

We are ready to prove the main result of the section.

Theorem 2.1.8. (Almgren’s monotonicity formula) Let u ∈ S0 in the ball B1 = {x ∈
Rn | |x| < 1}. Then the frequency of u

r ↦→ N(r) =
r
∫︁
Br

|∇u|2∫︁
Sr
u2
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is increasing in (0, 1). Furthermore, N(u, r) ≡ k if and only if u is homogeneous of degree k
in B1.

Proof. To demonstrate the monotonicity of N(r), it is enough to show that r ↦→ logN(r) is
increasing. From (2.1.6), Lemma 2.1.5 and Lemma 2.1.7 we find

d

dr
logN(r) =

D′(r)

D(r)
+

1

r
− H ′(r)

H(r)
=
n− 2

r
+ 2

∫︁
Sr
u2ν

D(r)
+

1

r
− n− 1

r
− 2

D(r)

H(r)

= 2

∫︁
Sr
u2ν

D(r)
− 2

D(r)∫︁
Sr
u2

= 2

∫︁
Sr
u2ν∫︁

Sr
uuν

− 2

∫︁
Sr
uuν∫︁

Sr
u2

.

The following Cauchy-Schwarz inequality(︃∫︂
Sr

uuν

)︃2

≤
∫︂
Sr

u2
∫︂
Sr

u2ν

gives the desired result that d
dr logN(r) ≥ 0, i.e. the map r ↦→ N(r) is increasing, that proves

the first part of the theorem.

Now we assume that u is homogeneous of degree k. By the Euler’s formula we have for any
x ∈ B1

< x,∇u(x) >= ku(x).

By Lemma 2.1.4

D(r) =

∫︂
Sr

uuν =
1

r

∫︂
Sr

u < x,∇u >= k

r

∫︂
Sr

u2 =
k

r
H(r).

We infer that it must be N ≡ k for r ∈ (0, 1).

Vice-versa, let us assume thatN ≡ k for r ∈ (0, 1), and we want to show that u is homogeneous
of degree k in B1 that is equivalent to show that the Euler’s formula holds. Since we should
have then d

dr logN(r) ≡ 0 for r ∈ (0, 1), the above computation shows that we must have for
any such r ∫︁

Sr
u2ν∫︁

Sr
uuν

−
∫︁
Sr
uuν∫︁

Sr
u2

= 0.

This means that we have equality in the above application of the Cauchy-Schwarz inequality,
and therefore for every r ∈ (0, 1) there exists α(r) ∈ R such that uν = α(r)u on Sr. This fact
and Lemma 2.1.4 now

k ≡ N(r) =
r
∫︁
Sr
uuν∫︁

Sr
u2

= rα(r),
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hence we have α(r) = k
r and thus

uν =
1

r
< x,∇u >= k

r
u(x).

By the arbitrariness of r ∈ (0, 1) we conclude that u is homogeneous of degree k in the whole
ball B1.

2.1.2 The Signorini type problem for the variable coefficient elliptic oper-
ator

We consider the Signorini problem for a divergence-form elliptic operator with Lipschitz co-
efficients in the case of a zero thin obstacle{︄

LaU = div(A(x)∇U) = 0 in B+
1 ,

min{U(x, 0),−∂n+1U(x, 0)} = 0 in B1.
(2.1.24)

The solution of the problem (2.1.24) extended to the whole ball B1, as described in the
beginning of this chapter, satisfies the following Signorini conditions:

LaU = div(A(x)∇U(x, y)) = 0 in B+
1 ∪ B−

1 (2.1.25)

U ≥ 0 in B1 (2.1.26)

< A∇U, ν+ > + < A∇U, ν− > ≥ 0 in B1 (ν± = ∓en+1) (2.1.27)

U(< A∇U, ν+ > + < A∇U, ν− >) = 0 in B1 (2.1.28)∫︂
B1

< A∇U,∇η >=
∫︂
B1

(< A∇U, ν+ > + < A∇U, ν− >)η, η ∈ C∞
0 (B1) (2.1.29)

We denote by S1 the class of functions satisfying the Signorini conditions (2.1.25) - (2.1.29)
above. The proofs and calculations for the case of the Signorini type problem (2.1.24) follow
[21] and sometimes [18]. Although in the papers all calculations were made for Rn, we will
present them in Rn+1 to make it easier to compare the results with whose of calculations for
the main problem (2.0.1) presented in Chapter 4. We obtain from (2.1.3) and (2.1.4) that for
the current problem (a = 0) the height function is defined as

H(r) =

∫︂
Sr
U2µ̃ (2.1.30)

and the Dirichlet integral is

D(r) =

∫︂
Br

< A∇U,∇U > . (2.1.31)
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For the case φ = 0 we have that

D(r) =

∫︂
Sr
U < A∇U, ν > . (2.1.32)

Remark. By the results in [1], [2], under the assumption of Theorem 2.2.25, we know that
weak solution U of (2.1.24) is in C1,α

loc (B
±
1 ∪B1).

We recall the following first variation formula for the height [18]:

H ′(r) = 2

∫︂
Sr
U < A∇U, ν > +

∫︂
Sr
u2L|X|. (2.1.33)

From this formula one can prove the following proposition.

Proposition 2.1.9. Let U ∈ S1. Assume that the normalisation hypothesis A(0) = In+1 is
in place. Under this assumption, for almost 0 < r < 1 one has

H ′(r)− n

r
H(r)− 2

∫︂
Sr
U < A∇U, ν >= O(1)H(r)

Theorem 2.1.10. (First variation of the Dirichlet integral) Let U ∈ S1. Suppose that the
normalisation hypothesis A(0) = In+1 is in place and that furthermore (2.0.7) is in force.
Then, for almost every r ∈ (0, 1) one has

D′(r) = 2

∫︂
Sr

(< A∇U, ν >)2

µ̃
+

(︃
n− 1

r
+O(1)

)︃
D(r).

Using Proposition 2.1.9 and Theorem 2.1.10, the authors of [21] proves the following important
result.

Theorem 2.1.11. Let U ∈ S1. Assume the hypothesis of the theorem Theorem 2.1.10 is
satisfied. Then, there exists a universal constant C > 0 such that the function

Ñ(r) = eCrN(r) (2.1.34)

is monotone nondecreasing in (0, 1). In particular, limr→0+ Ñ(r) = Ñ(0+) exists. We con-
clude that limr→0+ N(r) = N(0+) also exists, and equals Ñ(0+)

We do not show the proofs in this section, since they partly repeat the ideas of whose of the
Laplace Signorini problem, previously shown, partly will be presented in the proofs for the
generalised problem (2.0.1) in Chapter 4.

2.2 The blowup analysis and the regularity of the solution

The monotonicity of the Almgren frequency plays a fundamental role in controlling rescalings
in the blowup analysis, presented in this section, which is required to establish the optimal
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regularity of solutions. Let U ∈ S1 and assume that X0 = 0 be a free boundary point. In the
general form we define the Almgren rescaling for U at 0 as

Ũ r(x) :=
U(rX)

dr
(2.2.1)

where

dr =

(︃
H(r)

rn+a

)︃ 1
2

(2.2.2)

We note the following important observation

H(r) =

∫︂
Sr
U2µ̃|y|a = rn+a

∫︂
S1
U2(rX)µ̃(rX)|y|a

= rn+ad2r

∫︂
S1
Ũ

2
rµ̃r|y|a = H(r)

∫︂
S1
Ũ

2
rµ̃r|y|a

where µ̃r = µ̃(rX). Therefore ∫︂
S1
Ũ

2
rµ̃r|y|a = 1 (2.2.3)

The normalisation (2.2.3) is the main reason of the inroducing (2.2.1). Preliminarly, we need
to introduce a classification of free boundary points. Since by Theorem 2.1.8, Theorem 2.1.11
the frequency is monotone and therefore it has a limit as r → 0+, a natural way of classifying
the free boundary points is by means of the value of the frequency at the point in question.

Definition 2.2.1. Let U ∈ S1 and assume that 0 ∈ Γ(U). We say that 0 ∈ Γk(U) if

N(U, 0+) = lim
r→0+

N(U, r) = k

When X0 ̸= 0 we say that X0 ∈ Γk(U) if X0 ∈ Γ(U) and

N(U(·+X0), 0
+) = k

The Almgren rescalings (2.2.1) and their homogeneous limits, Almgren blowups, play a key
role in the establishing of the optimal interior regularity of the solution (Theorem 2.2.9,
Theorem 2.2.25). Further, in the study of the smoothness of the singular points we will
exploit another type of rescaling, the homogeneous scaling of U of order k (assuming that
U ∈ S1, with 0 ∈ Γ(U))

Ur(x) =
U(rX)

rk
, x ∈ B1/r. (2.2.4)

Remark. We let U ∈ S1 in the assumptions, since S0 is actually a subset of S1 for A(x) = I.
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2.2.1 The Laplace Signorini problem

In our case dr =
(︂
H(r)
rn−1

)︂ 1
2
, since a = 0 and we are in one dimension less then the main problem

(2.0.1), i.e. in Rn. First, we note that from (2.2.3), since A(x) = In and therefore µ̃ = µ̃r = 1
we have that

H(ũr, 1) =

∫︂
S1

ũ2r = 1 (2.2.5)

Note that (2.2.5) means also
∥u∥L2(∂B1)

= 1. (2.2.6)

Since by definition of dr

D(ũr, 1) =

∫︂
S1

|∇ũr|2 =
r2−n

d2r

∫︂
Sr

|∇u(rx)|2 = rD(u, r)

H(u, r)
= N(u, r)

we infer that
N(ũr, 1) = N(u, r). (2.2.7)

In a similar way we can obtain that for every r, ρ > 0 such that rρ < 1 one has

N(ũr, ρ) = N(u, rρ) (2.2.8)

Now we want to show how the monotonicity of the Almgren frequency helps to prove the
following important result about an existence of limits of the Almgren rescalings.

Theorem 2.2.2. Let u ∈ S0 and suppose that 0 ∈ Γ(u). Assume that N(u, 0+) = k.
Given rj → 0+, there exists a subsequence (which we will still denote by rj) and a function

ũ0 ∈ C1,α
loc (R

n
± ∪ Rn−1) for some α ∈ (0, 1/2), such that ũrj → ũ0 in C1,α

loc (R
n
± ∪ Rn−1). Such

ũ0 satisfies the condition (2.1.8)-(2.1.13) globally in Rn, is homogeneous of degree k, and
furthermore ũ0 ̸≡ 0.

Proof. Using (2.2.5), (2.2.7) and the monotonicity of N(r) (Theorem 2.1.8), for r ∈ (0, 1) one
has ∫︂

B1

|∇ũr|2 = N(ũr, 1) = N(u, r) ≤ N(u, 1) <∞. (2.2.9)

Next we will need the following lemma

Lemma 2.2.3. (Trace inequality) For r > 0 let v ∈W 1,2(Br). Then, one has

1

r

∫︂
Br

v2 ≤ C(n)

(︃∫︂
Sr

v2 + r

∫︂
Br

|∇v|2
)︃

Combining the trace inequality for r = 1 with (2.2.9) we find∫︂
B1

ũ2r ≤ C(n)

(︃∫︂
S1

ũ2r +

∫︂
B1

|∇ũr|2
)︃

(2.2.5)

≤ C(n)(1 +N(u, 1)) <∞
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We conclude that there exists C(u) > 0, such that

∥ũr∥W 1,2(B1)
≤ C(u) <∞

Therefore there exists a function ũ0 ∈W 1,2(B1) and a sequence rj → 0+ such that

ũrj → ũ0 weakly inW 1,2(B1)

Since we know that the embedding W 1,2(B1) ↪→ L2(S1) is compact, possibly passing to a
subsequence we have a strong convergence

ũrj → ũ0 in L
2(S1) (2.2.10)

By Theorem 2.1.2 we also have for some β ∈ (1, 1/2)⃦⃦
ũrj
⃦⃦
C1,β(B±

1/2
∪B′

1/2
)
≤ C(n, ∥u∥W 1,2(B1)

)

By a standard diagonal process this implies the existence of a function ũ0, and of a subsequence
of {ũrj}j∈N, such that for any 0 < α < β

ũrj → ũ0 in C
1,α
loc (R

n
± ∪ Rn−1) (2.2.11)

By change of variable it is seen that ũr satisfies (2.1.8)-(2.1.13) in B1/r. Passing the limit
along the sequence rj we conclude that ũ0 is a global solution in Rn. By Theorem 2.1.2 we
know that ũ0 ∈ C1,α(B±

1 ∪B′
1). And it is clear that ũ0 is even in xn. By (2.2.3) and (2.2.10)

we have

1
(2.2.3)
=

∫︂
S1

ũ2rj
(2.2.10)→

∫︂
S1

ũ20 as j → ∞ (2.2.12)

that conclude ũ20 ̸≡ 0 on S1.

We claim that if
∫︁
Sr
ũ20 = 0 for some 0 < r < 1, then ũ20 ≡ 0 in B1. Indeed, if

∫︁
Sr
ũ20 = 0 then

ũ0 = 0 on Sr. Remember that
∫︁
Br

|∇ũ0|2 =
∫︁
Sr
ũ0 < ∇ũ0, ν >= 0, so ũ0 ≡ c in Br. Since

ũ0 = 0 on Sr, then c ≡ 0. But ũ0 = 0 is harmonic in B+
1 ∪ B−

1 . Therefore, by the unique
continuation property of harmonic functions, we have that ũ0 = 0 in B±

1 , hence in B1 (u is
continuous in B1), which contradicts (2.2.12).

Since
∫︁
Sr
ũ20 > 0 we conclude

N(ũ0, r) = r

∫︁
Br

|∇ũ0|2∫︁
Sr
ũ20

(2.2.11)
= lim

rj→0+
N(urj , r)

(2.2.8)
= lim

rj→0+
N(u, rrj) = N(u, 0+) = k

It shows that frequency N(ũ0, ·) ≡ k is constant. By Theorem 2.1.8 we conclude that ũ0 is
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homogeneous of degree k in B1.

Definition 2.2.4. A function ũ0 is called an Almgren blowup of the solution u at the free
boundary point 0 ∈ Γ(u). Such global solution need not be unique.

Remark. Generally the blowups might be different over different subsequences r = rj → 0+.

The next result is a growth lemma that plays a key role in the proof of the optimal regularity.

Lemma 2.2.5. (Growth lemma) Let u ∈ S0 in B1 and assume that 0 ∈ Γk(u). If N(0+) ≥ k,
then for 0 < r < 1/2 one has

sup
Br

|u| ≤ Crk,

for some universal constant C > 0

Proof. By the Almgren monotonicity theorem Theorem 2.1.8 we have that N(r) ≥ k for every
r ∈ (0, 1). We note that the identity in Lemma 2.1.5 can be reformulated in the following way

r
d

dr
logH(r) =

rH ′(r)

H(r)
= n− 1 + 2

rD(r)

H(r)
= n− 1 + 2N(r) (2.2.13)

And therefore from Theorem 2.1.8 we know that the function

r ↦→ r
d

dr
logH(r)

is monotonically increasing for r ∈ (0, 1) and that

d

dr
logH(r) ≥ n− 1 + 2k

r
.

Integrating from r to 3/4 we obtain

log
H(3/4)

H(r)
≥ log

(︃
3

4r

)︃n−1+2k

This gives for every r ∈ (0, 34)

H(r) ≤
(︃
4

3

)︃n−1+2k

H(3/4)rn−1+2k = Crn−1+2k (2.2.14)

where C = C(n, k, ∥u∥L2(S3/4)
). Since u± are subharmonic functions in B1 (Proposition 2.1.3),

we obtain for every r ∈ (0, 1/2)

sup
Br

u± ≤ C(n)

(︄
1

rn−1

∫︂
S3r/2

(u±)2

)︄ 1
2

≤ C(u)rk
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which implies the desired conclusion

Corollary 2.2.5.1. Let u ∈ S0 in B1 and assume that 0 ∈ Γk(u). If N(u, 0+) ≥ k, the there
exists a universal constant C = C(n, k, ∥u∥L2(S3/4)

) such that for r ∈ (0, 3/4) one has

D(r) ≤ Crn−2+2k. (2.2.15)

Proof. Integrating (2.2.14), we obtain for r ∈ (0, 3/4)∫︂
Br

u2 ≤ Crn+2k, (2.2.16)

where C = C(n, k, ∥u∥L2(S3/4)
). The desired conclusion will follow from the following Cac-

cioppoli type inequality

D
(︂r
2

)︂
≤ C

r2

∫︂
Br

u2,

the proof of which can be found in the Corollary 2.11 [17].

Remark. If x0 ∈ Γk(u) then, in view of Theorem 2.2.2, the homogeneity of any Almgren blowup
ũ0 of u(·+ x0) at zero is precisely k. Thanks to Theorem 2.1.2, we must have k ≥ 1 + α > 1,
for some α ∈ (0, 1/2).

The following theorem contains the basic information needed to establish the optimal regu-
larity.

Theorem 2.2.6. (Minimal homogeneity) Let u ∈ S0, with 0 ∈ Γk(u). Then, we must have
k ≥ 3/2.

The proof follows from Theorem 5.2 [30] which states that if the thin coincidence set of the

Almgren blowup ũ0 is convex, then x′ ↦→ ũ0(x
′, 0) must be in C

1, 1
2

loc . The convexity of the
coincidence set, in turn, follows from the following result.

Theorem 2.2.7. Let u ∈ S0, with 0 ∈ Γk(u) and 1 < k < 2. Then, for any e ∈ Rn−1 × {0}
we have

∂eeũ0(x
′, 0) ≥ 0.

The minimal homogeneity allows to establish the following maximal growth of the solution
near free boundary points.

Theorem 2.2.8. (Improved growth lemma) Let u ∈ S0 in B1 and assume that 0 ∈ Γk(u).
Then, for 0 < r < 1/2 one has

sup
Br

|u| ≤ Cr3/2

for some universal constant C > 0.
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The proof follows from Theorem 2.2.6 and Lemma 2.2.5. With Theorem 2.2.8 it is possible
to establish the main result of the section.

Theorem 2.2.9. (Optimal regularity for zero obstacle) [3] Let u be the solution of the Sig-

norini problem (2.0.1) with the zero obstacle. Then u ∈ C1, 1
2 (B±

1
2

∪ B′
1
2

). More precisely, we

have
∥u∥

C1, 12 (B±
1
2

∪B′
1
2

)
≤ C(n, ∥u∥W 1,2(B1)

)

We continue with the following result about the asymptotic behavior of the homogeneous
scalings.

Proposition 2.2.10. (Existence of the homogeneous blowups) Let u ∈ S0 and 0 ∈ Γ(u).
Suppose that N(u, 0+) ≥ 0. Given rj → 0, there exists a subsequence (which we will still

denote by rj) and for any α ∈ (0, 1/2) a function u0 ∈ C1,α
loc (R

n
±∪Rn−1) for some α ∈ (0, 1/2),

such that urj → u0 in C
1,α
loc (R

n
±∪Rn−1). Such ũ0 satisfies the condition (2.1.8)-(2.1.13) globally

in Rn.

The proof is similar to the proof of the first part of the Theorem 2.2.2. Using (2.2.16) and
(2.2.15), one can prove that {urj}j∈N is uniformly bounded in W 1,2(B1). Combining the
estimate of Theorem 2.1.2 and the boundness of the sequence in W 1,2(B1), we can obtain
the convergence in C1,α

loc (R
n
± ∪ Rn−1) for any α ∈ (0, 1/2) and passing through the limit we

conclude that u0 is a global solution.

Remark. We undrerline that Proposition 2.2.10 do not guarantee that the limit u0 is non
zero, and also whether u0 is a homogeneous function of degree k. But these facts are actually
truthful and can be proven with the use of the Weiss functional (theorem 3.12 [17]), so we
can state the following definition.

Definition 2.2.11. Let u ∈ S0 and 0 ∈ Γ(u). Any function u0 as in Proposition 2.2.10 is
called a k-homogeneous blowup of u at zero.

2.2.2 The Signorini type problem for the variable coefficient elliptic oper-
ator

The idea of the blowup analysis for the problem (2.1.24) is similar to that for the Sinorini
problem (2.1.7). However, we would like to present the proofs for complpetness, and also
because the blowup analysis of the generalised problem (2.0.1) in the Chapter 4 strongly

relies on these derivations. To begin we note that that in our case dr =
(︂
H(r)
rn

)︂ 1
2
and that

(2.2.3) gives for our problem ∫︂
Sr
Ũ

2
rµ̃ = 1 (2.2.17)

Lemma 2.2.12. Let U ∈ S1 and define Ar(x) = A(rx). Then, both the functions Ũ r and
Ur are even in xn+1 = y and solve the thin obstacle problem (2.1.25)-(2.1.29) in B1/r for the
operator Lr = div(Ar∇)
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Proof. The lemma will be proved only for Ũ r, for Ur it establishes similarly if we replace Ũ r
with Ur. By change of variable one can show that Ũ r satisfy (2.1.25)-(2.1.28) for the operator
Lr. To prove (2.1.29), let η ∈ C∞

0 (B1/r), a change of variable leads to∫︂
B1/r

< Ar∇Ũ r,∇η >= −2

∫︂
B1/r

(an+1,n+1)rηD
+
y Ũ r. (2.2.18)

This proves the lemma.

Remark. When we consider Ũ r and Ur, it is important to remember that the operator being
considered is Lr = div(Ar∇). Therefore to avoid confusions, the functions N(r), Ñ(r) will be
denoted NLr(r), ÑLr(r) or NL(r), ÑL(r) depending on which operator we refer to, Lr or L.
If no operator is indicated, it is understood to be L.

Lemma 2.2.13. Let U ∈ S1 and suppose 0 ∈ Γ(U). Then NLr(Ũ r, 1) = NL(U, r).

Proof. The result follows from the following calculations

NLr(Ũ r, 1) =

∫︁
B1
< Ar∇Ũ r,∇Ũ r >∫︁

S1 Ũ
2
rµ̃r

=
r2
∫︁
B1
< A(rx)∇U(rX),∇U(rX) >∫︁

S1 U
2(rX)µ̃(rX)

=
r
∫︁
Br
< A∇U,∇U >∫︁

Sr U
2µ̃

= NL(U, r)

The next lemma combines Theorem 2.1.11 about the monotonicty of the generalised frequency
Ñ(U, r) with the previous lemma to prove a uniform boundness of the Almgren scalings in
W 1,2 norm.

Lemma 2.2.14. Let U ∈ S1 and suppose 0 ∈ Γ(U). Assume that the normalisation hypothe-
sis A(0) = In+1 is in place and that furthermore (2.0.7) is in force. Given rj → 0 the sequence
{Ũ rj}j∈N is uniformly bounded in W 1,2(B1)

Proof. By (2.0.6), Lemma 2.2.13 we obtain∫︂
B1

|∇Ũ r|2 ≤ λ−1

∫︂
B1

< Ar∇Ũ r,∇Ũ r >= λ−1DLr(Ũ r, 1)
(2.2.17)
= λ−1NLr(Ũ r, 1)

= λ−1NL(U, r) = λ−1e−CrÑL(U, r) ≤ λ−1ÑL(U, 1) <∞,

where in the last step we used Theorem 2.1.11. Furthermore, by (2.0.6) and (2.2.17) we have∫︂
S1
Ũ

2
r ≤ λ−1

∫︂
S1
Ũ

2
rµ̃r = λ−1.
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Combining these estimates with the following trace inequality, which is valid for any function
v ∈W 1,2(Br)

1

r

∫︂
Br

v2 ≤ C(n)

(︃∫︂
Sr
v2 + r

∫︂
Br

|∇v|2
)︃

we conclude that
⃦⃦⃦
Ũ r

⃦⃦⃦
W 1,2(B1)

<∞

Lemma 2.2.15. Let U ∈ S1 and suppose that 0 ∈ Γ(U). Assume that A(0) = In+1 and that
furthermore (2.0.7) is in force. Given rj → 0, there exists a subsequence (which we will still

denote by rj), and for any α ∈ (0, 12), a function Ũ0 ∈ C1,α
loc (R

n
± ∪Rn−1), such that Ũ rj → Ũ0

in C1,α
loc (R

n+1
± ∪ Rn). Such Ũ0 is a global solution of the Signorini problem (2.1.25)-(2.1.29)

in Rn+1 with A ≡ In+1, and we have Ũ0 ̸≡ 0

Proof. In [18] it was proved that U ∈ C
1,1/2
loc (B±

1 ∪B1) with

∥U∥C1,1/2(B±
1/2

∪B1/2)
≤ C(n, λ,Q, ∥U∥W 1,2(B1)

).

Given rj ↘ 0, consider the sequence {Ũ rj}j∈N. By Lemma 2.2.14, such a sequence is bounded
in W 1,2(B1). For any α ∈ (0, 1/2), by a standard diagonal process we obtain the convergence
of a subsequence of the functions Ũ rj to a function Ũ0 in C1,α

loc (R
n+1
± ∪ Rn). Passing through

the limit in (2.2.18), we conclude that such Ũ0 is a global solution of (2.1.25)-(2.1.29) with
A = In+1, and that Ũ0 is even in xn+1 = y. By (2.2.17) we obtain

1 =

∫︂
S1
Ũ

2
rj µ̃r →

∫︂
S1
Ũ

2
0

and therefore Ũ0 ̸≡ 0.

Definition 2.2.16. We will call the function Ũ0 as in Lemma 2.2.15 an Almgren blowup of
function U at zero.

Lemma 2.2.17. Let U ∈ S, 0 ∈ Γ(u) and suppose that A(0) = In+1 and that furthermore
(2.0.7) is in force. Let Ũ0 be an Almgren blowup of U at zero. If N(0+) = limr→0+ N(r)
exists, then Ũ0 is homogeneous function of degree k = N(0+).

Proof. Fix r > 0, and consider a sequence rj where Ũ rj → Ũ0 in C1,α
loc (R

n+1
± ∪ Rn) as in

Lemma 2.2.15. Thus, we obtain

NLrj
(Ũ rj , r) → N∆(Ũ0, r).

On the other hand, since NL(U, 0
+) exists, then

NL(U, rrj) → NL(U, 0
+).
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Reasoning like in Lemma 2.2.13 we can obtain

NL(U, rrj) = NLrj
(Ũ rj , r).

Passing through the limit as j → ∞ in this equality, we infer

N∆(Ũ0, r) ≡ NL(U, 0
+)

which leads to the desired conclusion by the property of the Almgren monotonicity functional.

Before we continue to analyse the asymptotic behaviour of the homogeneous rescalings, we
want to present the following growth estimates.

Lemma 2.2.18. Under that A(0) = In+1 and that furthermore (2.0.7) is in force, suppose
that N(0+) ≥ k. Then, for r ∈ (0, 1)onehas

H(r) ≤ C̃rn+2k (2.2.19)

where C̃ = eCH(1) as in Theorem 2.1.11.

The proof is based on Proposition 2.1.9 and Theorem 2.1.11. The next result is the growth
estimate for the solution U .

Lemma 2.2.19. Under that A(0) = In+1 and that furthermore (2.0.7) is in force, suppose
that N(0+) ≥ k. Then, there exists a universal constant C > 0, depending also on k, such
that for every X ∈ B1/2, one has

|U(x)| ≤ C|X|k. (2.2.20)

Proof. Integrating (2.2.19) and using (2.1.2), we obtain for r ∈ (0, 1)∫︂
Br

U2 ≤ C1r
n+1+2k (2.2.21)

where C1 = C1(C̃, n, k). Since Lu
± ≥ 0 in B1, we can apply the following theorem.

Theorem 2.2.20. (theorem 8.17, [23])
Consider the operator

Lu = Di(a
ij(x)Dju+ bi(x)u) + ci(x)Diu+ d(x)u

whose coefficients are assumed to be measurable functions on a domain Ω ⊂ Rn
Let the operator L be strictly elliptic in Ω, that is, there exist a positive number λ such that

aij(x)ξiξj ≥ λ|ξ|2, ∀x ∈ Ω, ξ ∈ Rn
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Assume that L has bounded coefficients, that is, for some Λ and ν ≥ 0 we have for all x ∈ Ω∑︂
|aij(x)|2 ≤ Λ2,

λ−2
∑︂

(|bi(x)|2 + |ci(x)|2) + λ−1|d(x)| ≤ ν2

and suppose that f i ∈ Lq(Ω), i = 1, ..., n, g ∈ Lq/2(Ω) for some q > n. Then if u is a W 1,2(Ω)
subsolution (supersolution) of equation

Lu = g +Dif
i inΩ

we have for any ball B2R(y) ⊂ Ω and p > 1,

sup
BR(y)

u (−u) ≤ C(R−n/p⃦⃦u+ (u−)
⃦⃦
Lp(B2R(y))

+ k(R))

where C = C(n,Λ/λ, νR, q, p)

It allows us to infer the existence of c = c(n, λ) > 0 such that B2R(X) ⊂ B1, then

sup
BR(X)

U+ ≤ cR−(n+1)/2
⃦⃦
U+
⃦⃦
L2(B2R(X))

. (2.2.22)

We pick now X ∈ B1/2, and let R = |X|/2. Clearly, B2R(X) ⊂ B4R ⊂ B1. Applying (2.2.22)

U+(X) ≤ cR−(n+1)/2

(︄∫︂
B2R(X)

(U+)2

)︄1/2

≤ cR−(n+1)/2

(︃∫︂
B4R

(U+)2
)︃1/2

≤ cR−(n+1)/2

(︃∫︂
B4R

U2

)︃1/2

≤ C̃R−(n+1)/2R(n+1+2k)/2 = C̃|X|k,

where in the second-to-last inequality we have used (2.2.21) above. Since a similar result
holds for u−, we have reached the desired conclusion.

Lemma 2.2.21. Assume that A(0) = In+1 and that furthermore (2.0.7) is in force, and
suppose N(0+) ≥ k. Then, there exists a universal constant C > 0 such that for r ∈ (0, 1),
we have

D(r) ≤ C∗rn−1+2k. (2.2.23)

Similar to the case of the Signorini problem of the Laplacian, the proof is based on the estimate
(2.2.21) and the Caccioppoli-type inequality.

Lemma 2.2.22. Let U ∈ S, 0 ∈ Γ(U), and assume that A(0) = In+1 and that furthermore
(2.0.7) is in force. Suppose that N(0+) ≥ k. Given rj → 0, there exists a subsequence (which

we will still denote by rj), and for any α ∈ (0, 12), a function U0 ∈ C1,α
loc (R

n
± ∪ Rn−1), such
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that Urj → U0 in C1,α
loc (R

n
± ∪ Rn−1). Such U0 is a global solution of the Signorini problem

(2.1.25)-(2.1.29) in Rn with A ≡ In.

Proof. Consider the family {Urj}j∈N. By (2.2.21)∫︂
B1

U2
rj = r−2k

j

∫︂
B1

U2(rjX) = r
−(n+1+2k)
j

∫︂
Brj

U2 ≤ C1.

Similarly, using (2.2.23)∫︂
B1

|∇Urj |2 = r2−2k
j

∫︂
B1

|∇Urj (rjX)|2 = r−n+1−2k
j

∫︂
Brj

|∇U |2 ≤ λ−1C∗.

We infer that {Urj}j∈N is uniformly bounded inW 1,2(B1). As proved in [18], U ∈ C
1,1/2
loc (B±

1 ∪
B1) with

∥U∥C1,1/2(B±
1/2

∪B1/2)
≤ C(n, λ,Q, ∥U∥W 1,2(B1)

)

By a standard diagonal process, for any α ∈ (0, 1/2) we obtain the convergence of a subse-
quence of the functions Urj to a function U0 in C1,α

loc (R
n+1
± ∪ Rn). Passing through the limit

in (2.2.18), we conclude that such a U0 is a global solution of (2.1.25)-(2.1.29) with A = In+1,
and that U0 is even in xn+1 = y.

Definition 2.2.23. We will call the function U0 in Lemma 2.2.22 a homogeneous blowup of
U at zero.

Lemma 2.2.24. (Minimal homogeneity) Assume that A(0) = In+1 and that furthermore
(2.0.7) is in force. Then N(0+) = 3

2 or N(0+) ≥ 2

With this theorem about minimal homogeneity, it is possible to improve the growth Lemma 2.2.19
and use it to establish the following important result.

Theorem 2.2.25. (Optimal regularity) Suppose that the coefficients of the matrix-valued
function A(x) are Lipschitz continuous. Let U be the solution of the problem (2.1.24), with
the thin obstacle φ ∈ C1,1(B1), and let 0 ∈ Γφ(U). Then U ∈ C1,1/2(B+

1/2 ∪B1/2).

2.3 The Weiss type functional and the regular free boundary

Theorem 2.2.6 and Lemma 2.2.24 are crucial components in the proving the optimal regularity
of the solution, but it does not tell us much about classification of the free boundary points.
We will discuss it in this section.

Definition 2.3.1. Let U ∈ S1. We say that a free boundary point X0 is regular if at such
point the frequency takes it lowest possible value, i.e. N(u(·+X0), 0

+) = 3
2 . In other words,

the regular set is Γ3/2(U)
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Since our main task is to study singular set of the free boundary of the problem (2.0.1), we will
just briefly discuss the strategy of the proofs of the regularity of regular points. The Almgren
monotonicity formula is not suitable for understanding the regularity of the free boundary.
Instead, we introduce the following powerful tool.

Definition 2.3.2. For k > 0 let φ = 0 and define the Weiss type functional as

Wk(U, r) =Wk(r) =
1

rn+a−1+2k

[︃∫︂
Br

< A(x)∇U,∇U > |y|adX − k

r

∫︂
Sr
U2µ̃|y|a

]︃
It is important to note that if U is homogeneous of degree k, in other words N(r) ≡ k, then

Wk(r) =
1

rn+a−1+2k
D(r)− 1

rn+a−1+2k
H(r) =

H(r)

rn+a+2k
[N(r)− k] (2.3.1)

Thus, in a way, the functional Wk(r) measures the discrepancy of U from being homogeneous
of degree k.

Remark. In the case when φ ̸= 0 there is slightly different approach of defining the Weiss type
functional, which will be discussed in the Chapter 3.

The strategy is to prove that the boundness of Wk(r), that its limit exists as r → 0+ and that
it is equal to 0, and finally prove that the finctional Wk(r) is monotone nondecreasing. These
results allow to show that the homogeneous blowup of U at zero U0 is actually homogeneous
of degree k. However, since the calculations for both problems and for the main problem
of these thesis are in some way (not completely) repeating itself, we refer the reader to the
Chapter 4, where all calculations are presented for the most generalised case (2.0.1).
At the same time, we want to point out the following important results for both problems
(2.1.7), (2.1.24), which states that the regular set of the free boundary is locally C1,β (n− 2)-
dimensional surface. It can be obtained by combining the Weiss type monotonicity with the
suitable epiperimetric inequality.

Theorem 2.3.3. ([3]) Let u ∈ S0 in B1, with x0 ∈ Γ3/2(u). Then, there exists η0 > 0,
depending on x0, such that, after a possible rotation of coordinate axes in Rn−1, one has
B′
η0(x0) ∩ Γ(u) ⊂ Γ3/2(u), and

B′
η0(x0) ∩ Λ(u) = B′

η0(x0) ∩ {xn−1 ≤ g(x1, ..., xn−2)}

for g ∈ C1,β(Rn−2) with a universal exponent β ∈ (0, 1).

Denote as Rφ(U) the regular part of the free boundary Γφ(U)

Theorem 2.3.4. ([20]) Suppose that the coefficients of the matrix-valued function A(x) are
Lipschitz continuous. Let U be the solution of the problem (2.1.24), with the thin obstacle
φ ∈ C1,1(B1), and let x0 ∈ Rφ(U). Then there exists η0 > 0, depending on x0, such that,
after a possible rotation of coordinate axis in Rn, one has Bη0>0 ∩ Γφ(U) ⊂ Rφ(U) and

Bη0>0 ∩ Λφ(U) = Bη0>0 ∩ {xn ≤ g(x1, ..., xn−1)}
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for g ∈ C1,β(Rn−1) with a universal exponent β ∈ (0, 1)

2.4 The Monneau type monotonicity formula

In this section we discuss another type of the monotonicity formulas suited for the study of
the singular points of the free boundary. The original formula was used by R. Monneau in
[26] for the study of the singular points in the classical obstacle problem. Later in [19] N.
Garofalo and A.Petrosyan established a generalization of the one-parameter Monneau-type
monotonicity formulas for solutions of (2.1.7), which they developed later for the problem
(2.1.24) together with M. Smit Vega Garcia in [21]. Since in the Chapter 4 we present the
derivation of the Monneau type monotonicity formula for the generalised problem (2.0.1), in
this section we confine ourselves to the definition and description of the main results regarding
this formula.

Definition 2.4.1. We will indicate with P+
k (R

n+a+1) the class of all non zero homogeneous
polynomials pk of degree k in Rn+1, such that

div(|y|a∇pk) = 0, pk(x, 0) ≥ 0, pk(x,−y) = pk(x, y)

Definition 2.4.2. (Monneau type Monotonicity formula)
Let U be the solution of (2.0.1) and let 0 ∈ Γk(U). For any pk ∈ P+

k (R
n+a+1) we define

Mk(r) =Mk(U, pk, r) =
1

rn+a+2k

∫︂
Sr
(U − pk)

2µ̃|y|a

=
1

rn+a+2k

∫︂
Sr
(U − pk)

2µ

(2.4.1)

In further discussion we will need the ”almost” monotonicity of the Monneau type functional
that could be established by proving the following formula

d

dr
(Mk(r) + Cr) ≥ 2Wk(r)

r
,

for some universal constant C > 0. Using the results of the ”almost” monotonicity of the
Weiss type functional, the desired result follows.

Remark. For the Signorini problem for the Laplacian it is possible to achieve the strong (not
”almost”) monotonicity of the Monneau and Weiss type functionals [19].

The Monneau type functional then is used in the proofs of the degeneracy of the solution and
the uniqueness of the homogeneus blowups at a singular point.
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2.5 The singular free boundary

In this section we introduce and study the singular points of the free boundary, which consti-
tute the main objective of these thesis. Let us start with the relevant definition.

Definition 2.5.1. Let U ∈ S1. We say that 0 is a singular point of the free boundary Γ(U),
if

lim
r→0+

Hn(Λ(U) ∩Br)
Hn(Br)

= 0,

where Hn the n-dimensional Hausdorff measure in Rn+1. We denote by Σ(U) the subset of
singular points of Γ(U). We also denote

Σk(U) = Σ(U) ∩ Γk(U).

Note that in terms of the rescaling (2.2.1) the condition 0 ∈ Σ(U) is equivalent to

lim
r→0+

Hn(Λ(Ũ r) ∩B1) = 0 (2.5.1)

2.5.1 The Laplace Signorini problem

The following results give a characterization of the singular points via the value of the fre-
quency N(r) and the type of the blowup. It is important to follow the proofs, since they
change from one problem to another, also because, for example, while the blowups for the
problems (2.1.7), (2.1.24) are harmonic functions in a weak sense and so we can use the Li-
ouville theorem to prove that they are harmonic also in the strong sense, the blowups of the
problem (2.0.1) are not harmonic but satisfy div(|y|a∇pk) = 0 and we should take it into
account.

Theorem 2.5.2. (Characterisation of singular points) Let u ∈ S0 and 0 ∈ Γk(U). Then the
following statements are equivalent:

(i) 0 ∈ Σk(u).

(ii) Any Almgren blowup ũ0 of u at the origin is a nonzero homogeneous polynomial pk ∈
P+
k (R

n).

(iii) k = 2m for some m ∈ N.

Proof. (i) ⇒ (ii) The rescalings (2.2.1) satisfy

∆ũr = 2(∂xn ũr)Hn−1
⃓⃓⃓
Λ(ũr)

in D′(B1). (2.5.2)

Since |∇ũr| are locally uniformly bounded in B1 (Theorem 2.2.2) and limr→0+ Hn(Λ(ũr) ∩
B1) = 0, (2.5.2) implies that ∆ũr converges weakly to 0 in D′(B1) and therefore any Almgren
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blowup ũ0 must be harmonic in D′(B1). On the other hand, by Theorem 2.2.2 ũ0 is homo-
geneous in B1 and therefore can be extended to Rn and will have at most a polynomial at
infinity.
By Liouville theorem we conclude that ũ0 must be homogeneous of degree k harmonic poly-
nomial pk. Also by Theorem 2.2.2 we have that pk ̸≡ 0. And finally, the properties of u imply
that pk(x

′, 0) ≥ 0 for all x′ ∈ Rn−1 and pk(x
′,−xn) = pk(x

′, xn) for all x ∈ Rn.
(ii) ⇒ (iii) Let pk be a blowup of u at the origin. If k is odd, the nonnegativity of pk on
Rn−1 × {0} implies that pk vanishes identically on Rn−1 × {0}. On the other hand, from the
even symmetry we also have that ∂xnpk ≡ 0 on Rn−1 × {0}. Since pk is harmonic in Rn, the
Cauchy-Kovalevskaya theorem implies that pk ≡ 0 Rn, that contradicts to the assumption.

(iii) ⇒ (ii) The proof follows from the following Liouville type result.

Lemma 2.5.3. Let v be a k-homogenenous global solution of the thin obstacle problem in Rn
with k = 2m, m ∈ N. Then v is a homogeneous harmonic polynomial.

Lemma 2.5.4. Let v ∈W 1,2
loc (R

n) satisfies ∆v ≤ 0 in Rn and ∆v = 0 in Rn \ {xn = 0}. If v
is homogeneous of degree k = 2m, m ∈ N, then ∆v = 0 in Rn.

Proof. By assumption, µ = ∆v is nonpositive measure supported in {xn = 0}. We claim that
µ = 0. Let P be a 2m-homogeneous harmonic polynomial, which is positive on {xn = 0}\{0}.
And consider ψ ∈ C∞

0 (0,∞) with ψ ≥ 0 and Ψ(x) = ψ(|x|). Then we have

− < µ,ΨP > = − < ∆v,ΨP >=

∫︂
Rn

< ∇v,∇(ΨP ) >=

∫︂
Rn

Ψ < ∇v,∇P > +P < ∇v,∇Ψ >

=

∫︂
Rn

−Ψv∆P − v < ∇Ψ,∇P > +P < ∇v,∇Ψ >

=

∫︂
Rn

ψ′(|x|)
|x|

< x,∇P > v +
ψ′(|x|)
|x|

< x,∇v > P = 0

where in the second-to-last step we used harmonicity of P and in the last step the homogeneity
of v and P . This implies that µ is supported at the origin, hence µ = cδ0, where δ0 is the
Dirac’s delta and c ≥ 0. But µ is 2m− 2 homogeneous (since it is a second derivative of of a
2m-homogeneous function) and δ0 is (−n)-homogeneous. Since n,m ∈ N, the only option is
c = 0, and so µ = 0.

The Almgren blowup ũ0 satisfies the assumptions of the lemma, thus we obtained the desired
result.

(ii) ⇒ (i) Suppose that 0 is not a singular point and that over some sequence r = rj → 0+, we
have Hn−1(Λ(ũr) ∩B′

1) ≥ δ > 0. Taking a subsequence if necessary, we may assume that ũrj
converges to a blowup ũ0. We claim that Hn−1(Λ(ũ0)∩B′

1) ≥ δ > 0. Indeed, otherwise there
exists an open set U in Rn−1 with Hn−1(U) < δ so that Λ(ũ0)∩B′

1 ⊂ U . Then for large j we
must have Λ(ũrj )∩B′

1 ⊂ U , which is a contradiction, since Hn−1(Λ(ũrj )∩B′
1) ≥ δ > Hn−1(U).
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But then u0 vanishes identically on Rn−1 × {0} and consequently on Rn by the Cauchy-
Kovalevskaya theorem.

Remark. One can show that the homogeneous blowup u0 satisfies the reasoning of the proof
of (i) ⇒ (ii). Thus, we know that if 0 ∈ Σk(u), then, any homogeneous blowup of u at the
origin is a homogeneous polynomial pk ∈ P+

k (R
n) ∩ {0}.

Lemma 2.5.5. (Nondegeneracy at singular points) Let u ∈ S0 and 0 ∈ Σk(u). There exists
c > 0, possibly depending on u, such that for r ∈ (0, 1)

sup
Sr

|u(x)| ≥ crk. (2.5.3)

Proof. see Lemma 1.5.2 in [19].

Remark. To continue we have to note that the Almgren’s frequency functional (2.1.6) can be
defined at any point x0 ∈ Γ(u) by simply translating that point to the origin

Nx0(r, u) =
r
∫︁
Br(x0)

|∇u|2∫︁
Sr(x0)

u2
,

where r > 0 is such that Br(x0) ⋐ B1. Since for every fixed r ∈ (0, 1) the function x ↦→
Hx0(u, r) =

∫︁
Sr(x0)

u2 is continuous, (2.2.13) shows that x0 ↦→ Nx0(u, r) is continuous. On

the other hand, if x0 ∈ Γ(u) we have the monotonicity of r ↦→ Nx0(u, r) that

Nx0(u, 0+) = inf
0<r<1

Nx0(u, r).

Since the infimum of a family of continuous functions is upper continuous, we can conclude
that on Γ(u) the function x0 ↦→ Nx0(u, r) is upper semicontinuous.

Lemma 2.5.6. (Σk(u) is Fσ) For any u ∈ S0, the set Σk(u) is of type Fσ, i.e., it is a union
of countably many closed sets.

Proof. Consider sets

Ej = {x0 ∈ Σk(U) ∩B1−1/j |
1

j
ρk ≤ sup

Sρ

|u(x)| ≤ jρk, for 0 < r < 1− |x0|} (2.5.4)

By Lemma 2.2.5 and Lemma 2.5.5 we have that

Σk(u) =
∞∑︂
j=1

Ej ,

that is Σk(u) is a union of countably many sets, so we need to prove that Ej is closed.

Let x0 ∈ Ej , then it is clear that x0 ∈ B1−1/j and the estimate of (2.5.4) holds. Thus it
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suffices to prove that x0 ∈ Σk(u). It follows from the upper semicontinuity of Nx0(u, r), so
Nx0(u, 0+) ≥ k, and the fact that if Nx0(u, 0+) > k, then for small enough ball we obtain the
contradiction with the estimate of (2.5.4).

Theorem 2.5.7. (Uniqueness of the homogeneous blowup at singular points) Let u ∈ S0

and 0 ∈ Σk(u). Then there exists a unique nonzero pk ∈ P+
k (R)

n such that the homogeneous

scalings (2.2.4) ur converges in C1,α
loc (R

n
± ∩ Rn−1) to pk.

The proof uses the results of the blowup analysis and the Monneau type monotonicity. This
result jointly with the Monneau formula helps to proof the following important theorem.

Theorem 2.5.8. (Continuous dependence of the blowups) Let u ∈ S0. For x0 ∈ Σk(u)
denote by px0k the homogeneous blowup of u at x0 as in Theorem 2.5.7, so that

u(x) = px0k (x− x0) + o(|x− x0|k).

Then, the mapping x0 ↦→ px0k from Σk(u) to P+
k (R

n) is continuous. Moreover, for any compact
K ⊂ Σk(u) ∩B1 there exists a modulus of continuity σK , with σK(0+) = 0, such that

|u(x)− px0k (x− x0)| ≤ σK(|x− x0|)|x− x0|k (2.5.5)

for any x0 ∈ K

Definition 2.5.9. Given a singular point x0 ∈ Σk(u) we define the dimension of Σk(u) at x0
to be

dx0k := dim{ξ ∈ Rn−1 | < ξ,∇x′p
x0
k (x′, 0) >= 0 for all x′ ∈ Rn−1}. (2.5.6)

By the Cauchy-Kovalevskaya theorem since px0k ̸≡ 0 on Rn−1×{0} one has that 0 ≤ dx0k ≤ n−2.

For d = 0, 1, ..., n− 2 we define

Σdk(u) := {x0 ∈ Σk(u) | dx0k = d}

Theorem 2.5.10. Let u ∈ S0. Then Σk(u) = Γk(u) for k = 2m, m ∈ N, and every set
Σdk(u), d = 0, 1, ..., n− 2 is contained in a countable union of d-dimensional C1 manifolds.

Proof. Σk(u) = Γk(u) for k = 2m, m ∈ N is proved in Theorem 2.5.2. The following proof is
based on two classical results, that is Whitney’s extension theorem and the implicit function
theorem.

Step 1 (Whitney’s extension) Let K = Ej defined in (2.5.4), remember Ej is compact. We
can write the polynomial px0k that represents the unique homogeneous blowup of u at x0 as

px0k =
∑︂
|α|=k

aα(x0)

α!
xα.
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The coefficients aα(x) are continuous by Theorem 2.5.8 and, since u(x) = 0 on Σk(u) ⊂ Γ(u),
we have

|px0k (x− x0)| ≤ σ(|x− x0|)|x− x0|k, for x, x0 ∈ K

where σ = σk. For any multiindex α, with |α| ≤ k, we define for x ∈ Σk(u)

fα(x) =

{︄
0, |α| < k

aα(x), |α| = k

With the following lemma (compatibility condition) we apply the Whitney’s extension theo-
rem and conclude that there exists F ∈ Ck(Rn) such that ∂αF = fα, for all |α| ≤ k.

Lemma 2.5.11. For any x0, x ∈ K

fα(x) =
∑︂

|β|≤k−α

fα+β(x0)

β!
(x− x0)

β +Rα(x, x0),

where for some modulis of continuity σα = σKα

|Rα(x, x0)| ≤ σα(|x− x0|)|x− x0|k−|α|

Proof. see [19]

Step 2 (Implicit function theorem) Suppose x0 ∈ Σdk(u)∩Ej . From (2.5.6) we know that there
are n− 1− d linearly independent vectors νi ∈ Rn−1 such that

< νi,∇x′p
x0
k ≯= 0, i = 1, ..., n− 1− d.

This implies that there exists multiindex β of order k − 1 such that

< νi,∇x′(∂
βpx0k ) ≯= 0, i = 1, ..., n− 1− d.

that is from the previous step

< νi,∇x′(∂
βF (x0) ≯= 0, i = 1, ..., n− 1− d.

On the other hand,

Σdk(u) ∩ Ej ⊂
n−1−d⋂︂
i=1

{∂βF = 0}

Hence, the implicit function theorem implies that Σdk(u)∩Ej is contained in the d-dimensional
manifold in a neighbourhood of x0. Since Σk(u) =

⋃︁
j=1∞ Ej , the theorem holds.
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2.5.2 The Signorini type problem for the variable coefficient elliptic oper-
ator

We proceed by proving analogous results but for the variable coefficient problem (2.1.24).

Theorem 2.5.12. (Characterisation of singular points) Let U ∈ S1, where we have 0 ∈ Γk(U)
for k > 3

2 . The following statements are equivalent

(i) 0 ∈ Σk(U)

(ii) Any Almgren blowup Ũ0 of U at the origin is a nonzero homogeneous polynomial pk ∈
P+
k (R

n+1)

(iii) k = 2m, for some m ∈ N.

Proof. (i) ⇒ (ii) As in Theorem 2.5.2 we first need to prove that the rescaling (2.2.1) is
weakly solves LaŨ r = 0 in B1, which will leads us through limit that the Almgren blowup Ũ0

is weakly harmonic in B1 (since A(0) = In+1) and therefore by the Caccioppoli-Weyl lemma
it is possible to conclude that the Almgren blowup is a classical harmonic function in B1.

By (2.2.18), for r ∈ (0, 1) and any η ∈ C∞
0 (B1), we find∫︂

B1

< Ar∇Ũ r,∇η >= −2

∫︂
B1∩Λ(Ũr)

(an+1,n+1)rD
+
y Ũ rη (2.5.7)

By Lemma 2.2.14, ∇ũr are uniformly bounded in B1 and, thus, from (2.5.1) we obtain that the
Almgren rescalings solve our problem weakly, then the desired conclusion follows as descibed
in the beginning.

(ii) ⇒ (iii) follows as in Theorem 2.5.2, since the set P+
k is the same for both problems.

(iii) ⇒ (ii) follows as in Theorem 2.5.2, since both lemmas are applied to the Almgren blowup
Ũ0, which in the case of the variable coefficient elliptic operator satisfies the thin obstacle
problem for Laplacian (since A(0) = In+1).

(ii) ⇒ (i) follows as in Theorem 2.5.2.

Lemma 2.5.13. Let U ∈ S1 with 0 ∈ Σk(U). Then, any homogeneous blowup of U at the
origin (as in Lemma 2.2.22) is a homogeneous polynomial pk ∈ P+

k (R
n) ∪ {0}.

Proof. Notice that (2.5.7) holds for the homogeneous rescaling (2.2.4). As proven in Lemma 2.2.22,
{Ur}r<1 is uniformly bounded in W 1,2(B1), and by assumption

lim
r→0+

Hn(Λ(Ur) ∩B1) = 0.

The proof then follows as in (i) ⇒ (ii) in Theorem 2.5.12.

Lemma 2.5.14. (Σk(U) is Fσ) For any U ∈ S1, the set Σk(U) is of type Fσ.
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The regularity of the solution and the regular free boundary

The proof follows that of Lemma 2.5.6 but for the sets Ej defined as

Ej = {X0 ∈ Σk(U) ∩ B1−1/j |
1

j
ρk ≤ sup

Sρ
|Ux0(X)| ≤ jρk, for 0 < r < λ−1(1− |X0|)}

As in the case of the Laplace Signorini problem with the appropriate Monneau type mono-
tonicity formula it is possible to prove the nondegeneracy of the solution, the uniqueness of the
homogeneous blowups first and then use it to establish continuous dependance of the blowups.

Remark. It is important to note the discussion in the chapter 7 of [21], where the authors
introduced the following important normalisation of the solution: for a generic point X0 =
(x0, 0) ∈ Γ(U) one has

Ux0(z) = U(x0 +A1/2(x0)z),

Ax0(z) = A−1/2(x0)A(x0 +A1/2(x0)z)A
−1/2(x0)

under which Ux0 solves (2.1.24) corresponding to the new matrix Ax0 and moreover 0 ∈ Γ(Ux0)
and Ax0(0) = In+1, thus, these conditions in the assumptions of previous results can be
dropped.

With help of all these results authors of [21] proved their main theorem about the regularity
of the singular part of the free boundary.

Theorem 2.5.15. (Structure of the singular set) Let U ∈ S1. Then, Γk(U) = Σk(u) for
k = 2m, m ∈ N. Moreover, every set Σdk(U), d ∈ {0, ..., n − 1}, is contained in a countable
union of d-dimensional C1 manifolds.

The proof follows the proof of Theorem 2.5.10 with appropriate modifications.
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Chapter 3

The regularity of the solution and
the regular free boundary

Our work in these thesis is connected with the results of the recent article [4] in the same
way as the paper [21] was connected with the results of [18], but for the case a = 0, so the
opearator was L = div(A(x)∇·). In the paper [18], N.Garofalo and M. Smit Vega Garcia
proved the optimal interior regularity of the solution in the non-zero obstacle problem for
L = div(A(x)∇·). After that N.Garofalo, A. Petrosyan and M. Smit Vega Garcia in [21]
studied the singular free boundary of the same operator but for the zero-obstacle problem.

Similarly, in the article [4] A.Banerjee, F.Buseghin and N.Garofalo established the optimal
interior regularity of the solution of (3.0.1) (the non-zero thin obstacle problem of the variable
coefficients degenerate operator) and besides that the C1,γ smoothness of the regular part of
the free boundary. And we, in turn, would like to investigate the singular points of the same
degenerate operator, but for the zero-obstacle.

In this chapter we would like to present the main results and lines of argumantations of [4],
if it is necessary, since our goal is strongly relies on them, and also some of the ideas and
proofs of [18], if the results of [4] depend on them or if they are needed in the subsequent
calculations.

Let us introduce the lower-dimensional (or thin) obstacle problem for a class of degenerate
elliptic equations with variable coefficients with non-zero obstacle. We consider the thick
space Rn+1 with generic variable X = (x, y), where x ∈ Rn, y ∈ R. The thin space Rn × {0}
will be simply identified with Rn. As before, we assume that X → A(x) = [aij(x)] in (3.0.1) is
uniformly elliptic, symmetric matrix-valued function with Lipschitz continuous independent
of y coefficients and satisfy (2.0.6) and, thus, (2.0.7).

Given a number a ∈ (−1, 1), and a function φ in B1, known as the thin obstacle since it is
defined in the thin set B1 × {0} ⊂ Rn × {0}, we consider the problem of finding a function U
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The regularity of the solution and the regular free boundary

in B+
1 ∪B1 such that:{︄

LaU = divX(y
aA(x)∇XU(x, y)) = 0 in B+

1 ,

min{U(x, 0)− φ(x),−∂ayU(x, 0)} = 0 on B1,
(3.0.1)

where we have defined
∂ayU(x, 0)

def
= lim

y→0+
ya∂yU(x, y). (3.0.2)

The presence of the weight ya = dist(X, {y = 0})a makes the problem degenerate. For the
sake of notation simplicity we will write hereafter div and ∇ for respectively divX and ∇X .

The set Λφ(U) = {x ∈ B1 | U(x, 0) = φ(x)}, as usually, is called the coincidence set and its
topological boundary (relative to the topology of B1) is referred to as the free boundary and
is denoted by Γφ(U).

Remark. In the applications of the divergence theorem to the domains B+
1 , B

−
1 the orientation

of the outer unit normal is opposite to that used in (3.0.2). In this respect, we explicitly note
that if we denote by ν+ and ν− the outer unit normal to the boundary of the upper and lower
half-ball, respectively, then in B1 we have from (2.0.6): A(x)ν± = ∓en+1. Therefore, we have
as well

lim
y→0+

ya < ∇U,A(x)ν+ >= −∂ayU(x, 0), (3.0.3)

lim
y→0−

ya < ∇U,A(x)ν− >= −∂ayU(x, 0). (3.0.4)

It is also known that the local problem (3.0.1) is equavalent to the following nonlocal obstacle
problem

min{(−div(B(x)∇))su, u− φ} = 0, 0 < s < 1,

where the matrix-valued function B(x) is connected to A(x) by expression (2.0.6) and the
connection between parameter a and parameter s is given by a = 1− 2s.

3.1 Some estimates and regularity results

As we already mentioned, the main objective of [4] was to prove the optimal regularity regu-
larity of the solution and the C1,γ local smoothness of the regular part of the free boundary
in (3.0.1). It is known, that the first step to achieve that is to obtain the fundamental initial
results of the Hölder continuity up to the thin set of the solution U , its weighted Neumann
derivative ya∂yU and that of ∇xU . After you have it, the next thing to do is to develop
suitable monotonicity formulas which will play a critical role in the blowup analysis. Thus
the main result of the first part of the paper became the following two regularity theorem.
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The regularity of the solution and the regular free boundary

Theorem 3.1.1. Let U be a solution to{︄
div(yaA(x)∇U) = yaf in B+

1 ,

min{U(x, 0),−∂ayU(x, 0)} = 0 on B1,
(3.1.1)

with a ≥ 0 and f ∈ L∞(B+
1 ). Then there exists β > 0 such that U, yaUy ∈ Cβ(B+

1
2

).

Remark. By subtracting off the obstacle φ from the solution, the homogeneous thin obstacle
problem with non zero obstacle (3.0.1) is reduced to the non-homogeneous thin obstacle
problem with zero obstacle (3.1.1).

Theorem 3.1.2. Let a ∈ [0, 1) and U be a solution of (3.0.1) with an obstacle φ ∈ C1,1.

Then ∇xU ∈ Cα(B+
1
2

) for some α > 0.

To achieve these results the authors used the following theorem from [31], which we use as
well in a sequel, thus we introduce it here.

Theorem 3.1.3. (Theorem 1.2, [31]) Let V be an even in y weak solution to the following
degenerate problem

div(|y|aA(x)∇V ) = yaf,

where f ∈ L∞(B1). Then V ∈ C1,α
loc (B1) for any α ∈ (0, 1) and the following estimate holds

∥V ∥C1,α(B 1
2
) ≤ C(∥V ∥L2(B1,|y|adX) + ∥f∥L∞(B1)

),

where C > 0 depends also on α.

Remark. We should note that these results are obtained for a ∈ [0; 1), and not for a ∈ (−1; 1)
as in Chapter 2.

3.2 Monotonicity formulas

After all necessary regularity tools are ready, it is the time to move to the next essential
ingredient in the study of the thin obstacle problem which is the Almgren type monotonicity
functional. Different from the previous section all the results in this section are valid for
a ∈ (−1, 1). Let U be the solution to (3.1.1), then after an even reflection in y across {y = 0}
we obtain that U solves the following problem in the distributional sense{︄

div(|y|aA(x)∇U) = |y|af + 2∂ayUHn({y = 0}),
U∂ayU ≡ 0.

(3.2.1)

First, the authors of [4] calculate the first variation of height
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The regularity of the solution and the regular free boundary

Lemma 3.2.1. The function H(r) is absolutely continuous and for a.e. r ∈ (0, 1) one has

H ′(r) = 2I(r) +

∫︂
Sr
U2La|X|. (3.2.2)

Therefore, at every point r ∈ (0, 1) where (3.2.2) holds and H(r) ̸= 0, we have

H ′(r)

H(r)
= 2

I(r)

H(r)
+

∫︁
Sr U

2La|X|
H(r)

(3.2.3)

and show a relation which reflects the dependence between the total energy and the Dirichlet
energy

Lemma 3.2.2. For every r ∈ (0, 1) we have

I(r) = D(r) +

∫︂
Br

Uf |y|a. (3.2.4)

that we present since we use them in the succeeding chapter and also in the explanation why
it is necessary to introduce the following quantities.

As first described in [18] (for the case with a = 0), one of the main challenges in the proving
the monotonicity of the Almgren type formula came from the (3.2.3), namely

r

2

d

dr
logH(r) =

r

2

H ′(r)

H(r)
=
rI(r)

H(r)
+
r

2

∫︁
Sr U

2La|X|
H(r)

(3.2.5)

at points where H(r) ̸= 0. When L = ∆ (in Rn+1), we have L|X| = n
|x| , µ ≡ 1, and thus

considering the Almgren type monotonicity function as F (r) = rI(r)
H(r) , we can obtain

r

2

d

dr
logH(r) = F (r) +

n

2

and if the obstacle φ = 0, we have D(r) = I(r) and therefore F (r) = N(r) = rD(r)
H(r) . Thus the

monotonicity of r2
d
dr logH(r) is equivalent to that of the frequency F (r), or N(r), if we are in

the case of the zero-obstacle problem.

The problem with the term

∫︁
Sr U

2La|X|
H(r) in (3.2.3) arises when we are not anymore in the classical

Laplacian case, but we work with a variable coefficient operator. To restrict this term that
creates obstructions in the monotonicities’ proofs the following quantities were introduced

Definition 3.2.3. Let U be a solution of (3.0.1). Consider the function G : (0, 1] → (0,∞)
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The regularity of the solution and the regular free boundary

defined for any r ∈ (0, 1] by

G(r) =

⎧⎨⎩
∫︁
Sr U

2La|X|∫︁
Sr U

2µ(X)
if H(r) ̸= 0,

n+a
r if H(r) = 0.

(3.2.6)

Definition 3.2.4. The function ψ : (0, 1] → (0,∞) is defined by the Cauchy problem{︄
d
dr logψ(r) =

ψ′(r)
ψ(r) ,= G(r) if r ∈ (0, 1),

ψ(1) = 1
(3.2.7)

Definition 3.2.5. The function σ : (0, 1] → (0,∞) defined by the Cauchy problem{︄
σ′(r)
σ(r) − ψ′(r)

ψ(r) + n−1+a
r = 0 if r ∈ (0, 1),

σ(1) = 1,
(3.2.8)

which, as you can see from the first glance, allow to replace our problematic term with
n−1+a

r + σ′(r)
σ(r) , where first term is analogous to the term we get for L = ∆ but for the

fractional dimension N = n + 1 + a and the second term helps to compensate the errors
created by introducing ψ(r) in the calculations of the Theorem 3.2.12.

Let us note again that when L = ∆ (in Rn+1), we have L|x| = n
|x| , µ ≡ 1, and therefore

G(r) = n
r . In our case instead we have the following result.

Lemma 3.2.6. There exists a universal constant β ≥ 0 such that for any r ∈ (0, 1):

n+ a

r
− β ≤ G(r) ≤ n+ a

r
+ β.

Similarly, when L = ∆ (in Rn+1), we have ψ(r) = rn, σ(r) = r, and for our problem the
following is true.

Lemma 3.2.7. There exists a universal constant β ≥ 0 such that if r ∈ (0, 1) one has

n+ a

r
− β ≤ d

dr
log(ψ(r)) ≤ n+ a

r
+ β

and therefore
e−β(1−r)rn+a ≤ ψ(r) ≤ eβ(1−r)rn+a.

This implies, in particular, that ψ(0+) = 0. For the function σ(r) we have σ(r) = ψ(r)
rn−1+a ,

and so
e−β(1−r)r ≤ σ(r) ≤ eβ(1−r)r

for 0 < r < 1. In particular, σ(0+) = 0.
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Lemma 3.2.8. There exists a universal constant r0 such that the function r ↦→ σ(r) is
increasing on (0, r0).

The next result is important for the proof of the optimal regularity of the solution to connect
two types of frequencies Ñ(0+) and N(0+).

Lemma 3.2.9. (Lemma 4.9, [4])
One has for r ∈ (0, 1) ⃓⃓⃓⃓

σ(r)

r
− α±

⃓⃓⃓⃓
≤ βeβr,

where α− = lim infr→0+
σ(r)
r and α+ = lim supr→0+

σ(r)
r .

In particular, we have α+ = α−, and thus, in particular, it exists

α
def
= lim

r→0+

σ(r)

r
> 0.

Given δ ∈ (0, 1) and universal constant r0 > 0 (which will also depend on δ) we introduce the
sets

Λr0 = {r ∈ (0, r0) | H(r) > ψ(r)r3+δ}, (3.2.9)

Γr0 = {r ∈ (0, r0) | H(r) > e−βr3+δ+n+a}. (3.2.10)

Lemma 3.2.10. One has the inclusion Λr0 ⊂ Γr0. In particular, H(r) ̸= 0 for every r ∈ Λr0.

Following [18] the authors of [4] introduce

M(r) =
H(r)

ψ(r)
, J(r) =

I(r)

ψ(r)
(3.2.11)

and define the generalised frequency as

Φ(r) =
σ(r)J(r)

M(r)
. (3.2.12)

Next we see the result of the first variation of the Dirichlet integral.

Theorem 3.2.11. For almost every r ∈ (0, 1) one has

D′(r) = 2

∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a +

(︃
n+ a− 1

r
+O(1)

)︃
D(r)− 2

r

∫︂
Br

< Z,∇U > f |y|a,

(3.2.13)

where Z = A(x)X
µ̃(X) .

And these results help to prove the monotonicity of generalised and truncated Almgren type
frequencies.
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Theorem 3.2.12. Assume that U(0) = 0. Given δ ∈ (0, 1), there exist universal constants

r0,K,K
′ > 0 such that the function r ↦→ eKr

1−δ
2 Φ(r) is non-decreasing on Γr0. Precisely, for

every r ∈ Γr0 we have
d

dr
log Φ(r) =

Φ′(r)

Φ(r)
≥ − K ′

r
1+δ
2

.

Theorem 3.2.13. Assume U(0) = 0. With r0,K as in Theorem 3.2.12 corresponding to
some choice of δ ∈ (0, 1), we have that

r ↦→ N∗(r)
def
=
σ(r)

2
eKr

1−δ
2 d

dr
logmax{M(r), r3+δ} (3.2.14)

is non-decreasing in (0, r0). In particular, N(0+) exists.

We also need to define the following quantity

Ñ
∗
(r)

def
=

r

σ(r)
N(r). (3.2.15)

Corollary 3.2.13.1. Let Ñ(r) be defined as in (3.2.15). Then Ñ(0+) exists.

3.3 The growth lemma, the optimal regularity

Next we have a growth theorem Theorem 3.3.1 which was proved using the monotonicity
results from the previous sections (choosing δ such that 3+ δ > 3− a) and the known blowup
analysis [18], [7]:

Theorem 3.3.1. Let U be a solution to (3.1.1) and let X0 = (x0, 0) ∈ Γ(U). Then we have
that

U(X) ≤ C|X −X0|
3−a
2 , (3.3.1)

for some universal constant C,

which with the estimates and regularity results obtained before helps to reach the first goal
of the paper [4], that is

Theorem 3.3.2. Assume 0 ≤ a < 1. Let U be a solution to (3.0.1) with φ ∈ C1,1. Then

∇xU ∈ C
1−a
2 (B+

1
2

) and yaUy ∈ C
1+a
2 (B+

1
2

). In particular, U(·, 0) ∈ C
3−a
2 (B 1

2
).

3.4 The Weiss Type formula, the regular free boundary

Finally the Weiss type monotonicity formula was obtained, but we should note that it works
only for one value of homogeneity k = 3−a

2 since it is only one needed in the study of the
smoothness of the regular set (Theorem 3.4.2). While in our subsequent reasoning we will need
the monotonicity of the general Weiss type functional, which is computed in Theorem 4.3.3.
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Theorem 3.4.1. (Weiss Type Monotonicity Formula)
Given a solution U to to (3.1.1), such that 0 ∈ Γ 3−a

2
(U), define

W (U, r) =W (r) =
σ(r)

r3−a
{J(r)− 3− a

2r
M(r)}. (3.4.1)

There exist universal constants C, r0 > 0, depending on ∥f∥L∞(B1)
, such that for any 0 < r <

r0 one has:

d

dr
(W (U, r) + Cr

1+a
2 ) ≥ 2

rn+2

∫︂
Sr

(︃
< A∇U, nu >√

µ̃
− 3− a

2r
µ̃U

)︃2

|y|a. (3.4.2)

In particular, there exists C > 0 such that the function r ↦→ W (U, r) + Cr
1+a
2 is monotone

increasing and therefore the limit W (U, 0+) := limr→0+ W (U, r) exists.

Combining the Weiss type monotonicity with the epiperimetric inequality, the authors of [4]
reached their second main result.

Theorem 3.4.2. Suppose that 0 ≤ a < 1 and let U be as in Theorem 3.3.2. Then Γ
3−a
2

φ (U) is
a relatively open subset of Γφ(U). After possibly a translation and rotation of the coordinate

axes in the thin space Rn × {0}, the set Γ
3−a
2

φ (U) is locally given as a graph

xn = g(x1, ...xn−1)

with g ∈ C1,γ.
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Chapter 4

The structure of the singular free
boundary

In the paper [4], which we discussed in the previous chapter, the authors reached results
about the optimal interior regularity of the solution (Theorem 3.3.2) and the smoothness of
the regular part of free boundary (Theorem 3.4.2) in the thin obstacle problem with non-zero
obstacle (3.0.1). In this chapter we study the structure of the singular free boundary in the
same problem but with the zero obstacle. Thus, our zero-obstacle problem is{︄

LaU = div(yaA(x)∇U(x, y)) = 0 in B+
1 ,

min{U(x, 0),−∂ayU(x, 0)+} = 0 on B1,
(4.0.1)

where for x ∈ Rn, y > 0, we have indicated X = (x, y) ∈ Rn+1. The set

Λ(U) = {x ∈ B1 | U(x, 0) = 0}

is as usual called the coincidence set and its topological boundary (relative to the topology
of B1)

Γ(U) = ∂Λ(U)

is referred to as the free boundary.

The extended to the whole ball solution of problem (4.0.1) (as in Chapter 2), the function U
satisfies the following Signorini or complementary conditions:

LaU = div(|y|aA(x)∇U(x, y)) = 0 in B+
1 ∪ B−

1 , (4.0.2)

U ≥ 0 in B1, (4.0.3)

lim
y→0

[(< ∇U,A(x)ν+ > + < A∇U,A(x)ν− >)|y|a]

= −2∂ayU(x, 0) ≥ 0 in B1 (ν± = ∓en+1),
(4.0.4)
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U lim
y→0

[(< A∇U, ν+ >+ < A∇U, ν− >)|y|a]

= −2U∂ayU(x, 0) = 0 in B1,
(4.0.5)

∫︂
B1

< A∇U,∇η > |y|a = −2

∫︂
B1

∂ayU(x, 0)η, η ∈ C∞
0 (B1), (4.0.6)

The equations (4.0.2)-(4.0.5) follow straightforward from the problem (4.0.1) and (3.0.2)-

(3.0.4). To prove the equation (4.0.6), we denote B+
1ε = B1 ∩ {ε < y < 1}, S+1ε = S1 ∩ B+

1ε,
L1ε = B+

1ε ∩ {y = ε} for some 0 < ε < 1 and observe that∫︂
B+
1ε

< A∇U,∇η > |y|a div.thm
= −

∫︂
B+
1ε

div(|y|aA∇U)η +

∫︂
∂B+

1ε

< A∇U, ν > η|y|a

(4.0.1)
=

∫︂
S+1ε

< A∇U, ν > η|y|a +
∫︂
L1ε

< A∇U, ν+ > η|y|a =

=

∫︂
L1ε

< A∇U, ν+ > η|y|a,

where in the last step we used the fact that η ∈ C∞
0 (B1). In fact, we can replace ε with y

now, since L1ε ⊂ {y = ε}, i.e. y = ε in L1ε. Now letting y → 0+ we obtain∫︂
B+
1

< A∇U,∇η > |y|a = −
∫︂
B1

∂ayU(x, 0)η.

Repeating the calculations for B−
1 and sum all together we obtain (4.0.6).

Definition 4.0.1. We denote by S the class of solutions of the normalised Signorini problem
(4.0.2) - (4.0.6).

Let U ∈ S, we denote by Γk(U) the set of free boundary points X0 ∈ Γ(U) where frequency
Ñ
x0
(0+) = k (see (4.1.5)). Given U ∈ S, we say that X0 = (x0, 0) ∈ Γ(U) is a singular point

of the free boundary if

lim
r→0+

Hn(Λ(Ux0) ∩Br)
Hn(Br)

= 0.

The following is the main result of the chapter and the thesis.

Theorem 4.0.2. (Structure of the singular set)
Let U ∈ S. Then Γk(U) = Σk(U) for k = 2m, m ∈ N. Moreover, every set

Σdk(U) := {X0 ∈ Σk(U) | dX0
k = d}, d = {0, ..., n− 1}

is contained in a countable union of d-dimensional C1 manifolds.
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4.1 The monotonicty of the Almgren frequency

The frequency of U in Br is given by

N(U, r) =
rD(r)

H(r)
(4.1.1)

Under the assumption of Theorem 3.3.2 above, we know that the weak solution U ∈ S is in
C1,α
loc (B

±
1 ∪ B1). Consequently, all derivatives are classical in the ensuing computations.. Re-

member that from Lemma 3.2.2 in a case with the obstacle φ = 0 and therefore homogeneous
system (4.0.1), meaning f = 0, we have

D(r) = I(r) =

∫︂
Sr
U < A(x)∇U, ν > |y|a (4.1.2)

and from Theorem 3.2.11, also since f = 0, we have the following first variation of the Dirichlet
integral

D′(r) = 2

∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a +

(︃
n+ a− 1

r
+O(1)

)︃
D(r). (4.1.3)

Concerning the first variation of the height function, even though we have Lemma 3.2.1, we
prefer to show the proof of the following proposition.

Proposition 4.1.1. Assume that the normalization hypothesis A(0) = In+1 is in place. Under
this assumption, for almost every r ∈ (0, 1) one has

H ′(r) = 2I(r) +

(︃
n+ a

r
+O(1)

)︃
H(r). (4.1.4)

Proof. By changing of variable X = (x, y) = (rω, rξ) = rZ, Z = (ω, ξ) ∈ S1 ⊂ Rn in the
integral H(r), and using the fact that |y|adσ(X) = rn+a|ξ|adσ(Z), we find that

H(r) =

∫︂
Sr
U2(X)µ(X) = rn+a

∫︂
S1
U2(rZ)µ̃(rZ)|ξ|a = rn+a

∫︂
S1
U2(rZ) < A(rx)ν, ν > |ξ|a.

Differentiating under the integral sign in the above formula, we obtain

H ′(r) =
n+ a

r
rn+a

∫︂
S1
U2(rZ)µ̃(rZ)|ξ|a + 2rn+a

∫︂
S1
U(rZ) < ∇U(rZ), Z > µ̃(rZ)|ξ|a+

+ rn+a
∫︂
S1
U2(rZ) < ∇µ̃(rZ), Z > |ξ|a

=
n+ a

r

∫︂
Sr
U2(X)µ(X) + 2

∫︂
Sr
U(X) < ∇U(X),

X

r
> µ|y|a

+

∫︂
Sr
U2(X) < ∇µ̃(X),

X

r
> |y|a,
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H ′(r) =
n+ a

r
H(r) + 2

∫︂
Sr
U < A(x)∇U, ν > |y|a +

∫︂
Sr
U2 < ∇µ̃, ν > |y|a

=
n+ a

r
H(r) + 2I(r) +O(1)

∫︂
Sr
U2|y|a,

where in the last step we used the definition (2.1.5) and also (3) in the Lemma 2.1.1. Conse-
quently, we obtain

H ′(r) =
n+ a

r
H(r) + 2I(r) +O(1)

1

µ̃

∫︂
Sr
U2µ

(2.1.2)
=

n+ a

r
H(r) + 2I(r) +O(1)H(r).

With these results we can now prove the monotonicity of the frequency.

Theorem 4.1.2. (Monotonicity of the adjusted frequency)
Assume that the normalization hypothesis A(0) = In+1 is in place, and that furthermore
(2.0.7) is in force. Then, there exists a universal constant C > 0 such that the function

Ñ(r)
def
= eCrN(r) (4.1.5)

is monotone nondecreasing in (0, 1). In particular, the limit limr→0+ Ñ(r) = Ñ(0+) exists.
We conclude that limr→0+ N(r) = N(0+) also exists, and equals Ñ(0+).

Proof. From (4.1.4) and (4.1.3), we have for almost every r ∈ (0, 1)

d

dr
logN(r) =

D′(r)

D(r)
+

1

r
− H ′(r)

H(r)

= 2

∫︁
Sr

(<A(x)∇U,ν>)2

µ̃ |y|a

D(r)
+
n+ a− 1

r
+O(1) +

1

r

− 2

∫︁
Sr U < A(x)∇U, ν > |y|a

H(r)
− n+ a

r
−O(1)

= 2

∫︁
Sr

(<A(x)∇U,ν>)2

µ̃ |y|a

D(r)
− 2

∫︁
Sr U < A(x)∇U, ν > |y|a

H(r)
+O(1)

By the following Cauchy-Schwarz inequality[︃∫︂
Sr
U < A(x)∇U, ν > |y|a

]︃2
=

[︄∫︂
Sr

(︂
Uµ̃

1
2 |y|

a
2

)︂(︄< A(x)∇U, ν >
µ̃

1
2

|y|
a
2

)︄]︄2
≤

≤
∫︂
Sr
U2µ ·

∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a
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and (4.1.2), we obtain that
d

dr
logN(r) ≥ −C,

for some universal constant C > 0, that gives

d

dr
log Ñ(r) =

d

dr
logN(r) + C ≥ 0

which implies the desired result.

4.2 The growth lemmas

Lemma 4.2.1. Assume that the normalization hypothesis A(0) = In+1 is in place, and that
furthermore (2.0.7) is in force. Suppose that N(0+) ≥ k. Then, for r ∈ (0, 1) one has

H(r) ≤ Crn+a+2k, (4.2.1)

where C > 0 is a universal constant.

Proof. To obtain (4.2.1) it is enough to follow the reasoning in the Lemma 4.1 of [21], but for
”dimension” n+ a+ 1, since we have Proposition 4.1.1 and Theorem 4.1.2.

We note the following gap of frequency follows from Theorem 5.7 of [7], which concerns the
degree of homogeneous global solutions to the constant coefficient Signorini problem (A(x) =
In+1) with zero obstacle.

Lemma 4.2.2. (Frequency gap) Let 0 ∈ Γ(U) and assume that A(0) = I. Then either
Ñ(0+) = 3−a

2 or Ñ(0+) ≥ 3+δ
2 .

Thus, combining Lemma 4.2.2 with Theorem 3.3.1, we obtain the following improved growth
estimate of the solution.

Lemma 4.2.3. Assume the hypothesis of Lemma 4.2.1, there exists a universal constant
C > 0, depending on k, such that for every X ∈ B1/2, one has

|U(X)| ≤ C|X −X0|k. (4.2.2)

Lemma 4.2.4. Assume the hypothesis of Lemma 4.2.1. Then, there exists a universal con-
stant C∗ > 0 such that

D(r) ≤ C∗rn+a−1+2k. (4.2.3)

Proof. We will follow the reasoning of the Lemma 2.2.21. The desired conclusion will follow
from ∫︂

Br

U2|y|a ≤
∫︂ r

0
H(r)

(4.2.1)

≤ Crn+a+1+2k (4.2.4)
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and the following Caccioppoli-type inequality

D
(︂r
2

)︂
≤ C2

r2

∫︂
Br

U2|y|a, (4.2.5)

which holds for r ∈ (0, 1), for a universal constant C2 > 0.

To prove (4.2.5) let α ∈ C∞
0 (Br) be such that 0 ≤ α ≤ 1, α ≡ 1 on Br/2, and |∇α| ≤ C/r.

Define h = α2U , then∫︂
B+
r

< A(x)∇U,∇h > |y|a = −
∫︂
B+
r

div(A∇U |y|a)h+

∫︂
S+r
< A(x)∇U, ν > h|y|a

+

∫︂
Br

< A(x)∇U, ν+ > h|y|a

=

∫︂
Br

< A(x)∇U, ν+ > h|y|a,

where we used (4.0.1) and the fact that α ∈ C∞
0 (Br).

Thus repeating the argument for B−
r we obtain∫︂

Br

< A(x)∇U,∇h > |y|a =
∫︂
Br

α2U(< A(x)∇U, ν+ > + < A(x)∇U, ν− >)|y|adHn (4.0.5)
= 0

Therefore ∫︂
Br

< A(x)∇U,∇(α2U) > |y|a =
∫︂
Br

α2 < A(x)∇U,∇U > |y|a

+ 2

∫︂
Br

αU < A(x)∇U,∇α > |y|a = 0,

which implies∫︂
Br

α2 < A(x)∇U,∇U > |y|a ≤ 2

(︃∫︂
Br

U2 < A(x)∇α,∇α > |y|a
)︃ 1

2
(︃∫︂

Br

α2 < A(x)∇U,∇U > |y|a
)︃ 1

2

,

(︃∫︂
Br

α2 < A(x)∇U,∇U > |y|a
)︃ 1

2

≤ 2

(︃∫︂
Br

U2 < A(x)∇α,∇α > |y|a
)︃ 1

2

≤ 2

(︃
C2
3

r2

∫︂
Br

U2µ̃|y|a
)︃ 1

2

.

By (4.2.1) ∫︂
Br

α2 < A(x)∇U,∇U > |y|a ≤ 4C3

r
H(r) ≤ C∗rn+a−1+2k.
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Since α ≡ 1 on Br/2∫︂
Br

α2 < A(x)∇U,∇U > |y|a =
∫︂
Br/2

< A(x)∇U,∇U > |y|a +
∫︂
Br/Br/2

α2 < A(x)∇U,∇U > |y|a

≥
∫︂
Br/2

< A(x)∇U,∇U > |y|a = D
(︂r
2

)︂
.

This gives (4.2.3).

4.3 A one parameter family of Weiss type Monotonicity For-
mula

In this section we introduce a generalisation of the Weiss type functional in [19], and prove
its basic monotonicity property.

Definition 4.3.1. (Weiss-type monotonicity formula)
For k > 0, we define

Wk(r) =
1

rn+a−1+2k

[︃∫︂
Br

< A(x)∇U,∇U > |y|adX − k

r

∫︂
Sr
U2µ̃|y|a

]︃
=

1

rn+a−1+2k

[︃
D(r)− k

r
H(r)

]︃
.

(4.3.1)

Since in our case the obstacle φ(x) = 0, we know that I(r) = D(r), while it is not true for the

general case of the non-zero obstacle problem. Using that and the fact that σ(r)
ψ(r) = 1

rn+a−1 ,
we can obtain the generalised formula

Wk(r) =Wk(U, r) =
σ(r)

r2k

[︃
J(r)− k

r
M(r)

]︃
=

σ(r)

r2kψ(x)

[︃
I(r)− k

r
H(r)

]︃
, (4.3.2)

that is compatible with the Weiss Type formula of [4] (which was defined just for one value
of k = 3−a

2 , see (3.4.1)).

Lemma 4.3.2. Suppose the normalization hypothesis A(0) = In+1 is in place, and that fur-
thermore (2.0.7) is in force. If N(0+) ≥ k, then there exist C̄ > 0 such that |Wk(r)| ≤ C̄ for
every 0 < r < 1. If instead N(0+) = k, then Wk(0

+) = limr→0+ Wk(r).

Proof. The fact that Wk(r) is bounded follows from its definition (4.3.1) and boundness of
the height H(r) (4.2.1) and the Dirichlet integral D(r) (4.2.3).

We know from the Theorem 4.1.2 that Ñ(0+) exists and that

Ñ(0+) = N(0+) = lim
r→0+

rD(r)

H(r)
.
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Let us rewrite the definition of the Weiss type formula (4.3.1) in this form

Wk(0
+) = lim

r→0+

(︃
H(r)

rn+a+2k

[︃
rD(r)

H(r)
− k

]︃)︃
= lim

r→0+

(︃
H(r)

rn+a+2k
(N(r)− k)

)︃
.

And since we know, that the limit Ñ(0+) exists by previous reasoning and that H(r)/rn+a+2k

is bounded by (4.2.1), the second conclusion follows.

Further we prove the ”almost monotonicity” property of the functional Wk

Theorem 4.3.3. . Assume that the normalization hypothesis A(0) = In+1 is in place, and
that furthermore (2.0.7) is in force. Suppose that N(0+) ≥ k. Then there exist a universal
constant C > 0 such that

d

dr
(Wk(r) + Cr) ≥ 2

rn+a+1+2k

∫︂
Sr

(︃
< A(x)∇U,X >√

µ̃
− k
√︁
µ̃U

)︃2

|y|a. (4.3.3)

As a consequence of (4.3.3), the function r ↦→ Wk(r) + Cr is monotone non-decreasing, and
therefore it has a limit as r → 0+. As a consequence, also the limit Wk(0

+) = limr→0+ Wk(r)
exists and is finite.

Proof. Let us now calculate derivative of Wk(r)

d

dr
Wk(r) =

σ(r)

r2k

(︃
J ′(r) +

k

r2
M(r)− k

r
M ′(r)

)︃
+

(︃
σ′(r)

r2k
− 2kσ(r)

r2k+1

)︃(︃
J(r)− k

r
M(r)

)︃
=
σ(r)

r2k

[︃(︃
σ′(r)

σ(r)
− 2k

r

)︃(︃
J(r)− k

r
M(r)

)︃
+

(︃
J ′(r) +

k

r2
M(r)− k

r
M ′(r)

)︃]︃
.

(4.3.4)

Now we can substitute in (4.3.4) the expression for J ′(r) from the theorem 4.19 of [4]

J ′(r) =

(︃
n− 1 + a

r
− ψ′(r)

ψ(r)
+O(1)

)︃
J(r) +

2

ψ(r)

∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a+

+
1

ψ(r)

[︃∫︂
Sr
Uf |y|a −

(︃
n− 1 + a

r
+O(1)

)︃∫︂
Br

Uf |y|a − 2

r

∫︂
Br

< Z,∇U > f |y|a
]︃
,

taking into account that f ≡ 0, since we are in the zero-obstacle case. We use also (3.2.7),
(3.2.8)

d

dr
Wk(r) =

σ(r)

r2k

[︃(︃
ψ′(r)

ψ(r)
− n− 1 + a

r
− 2k

r

)︃
J(r)− k

r

(︃
ψ′(r)

ψ(r)
− n− 1 + a

r
− 2k

r

)︃
M(r)

]︃
+

+
σ(r)

r2k

[︃(︃
n− 1 + a

r
− ψ′(r)

ψ(r)
+O(1)

)︃
J(r) +

2

ψ(r)

∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a
]︃
+
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+
σ(r)

r2k

[︃
k

r2
M(r)− k

r
M ′(r)

]︃
.

From the proof of the theorem 4.19 of [4] we also have that M ′(r) = 2J(r)

d

dr
Wk(r) =

σ(r)

r2k

[︃(︃
−2k

r
+O(1)

)︃
J(r)− 2k

r
J(r) +

2

ψ(r)

∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a
]︃
+

+
σ(r)

r2k

[︃
k

r2
M(r)

(︃
1−

(︃
r
ψ′(r)

ψ(r)
− (n− 1 + a)− 2k

)︃)︃]︃
=
σ(r)

r2k

[︃(︃
−4k

r
+O(1)

)︃
J(r) +

2

ψ(r)

∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a
]︃
+

+
σ(r)

r2k

[︃
k

r2
M(r)

(︃
−rψ

′(r)

ψ(r)
+ n+ a+ 2k

)︃]︃
.

From (3.2.7) and the Lemma 3.2.6 we know that

ψ′(r)

ψ(r)
=
n+ a

r
+O(1),

so

r
ψ′(r)

ψ(r)
= n+ a+O(r)

and we have

d

dr
Wk(r) =

σ(r)

r2k

[︃(︃
−4k

r
+O(1)

)︃
J(r) +

2

ψ(r)

∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a + 2k2

r2
M(r)− O(1)

r
M(r)

]︃
.

(4.3.5)
Let us calculate the following∫︂

Sr

(︃
< A(x)∇U, ν >√

µ̃
− k

r

√︁
µ̃U

)︃2

|y|a =
∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a + k2

r2

∫︂
Sr
U2µ̃|y|a

− 2k

r

∫︂
Sr
U < A(x)∇U, ν > |y|a

=

∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a + k2

r2
H(r)− 2k

r
I(r)

=

∫︂
Sr

(< A(x)∇U, ν >)2

µ̃
|y|a + k2

r2
H(r)− 2k

r
D(r),

(4.3.6)

where in the last step we used that D(r) = I(r), when the obstacle is equal to 0.
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Then substitute (4.3.6) in (4.3.5) and obtain

d

dr
Wk(r) =

2σ(r)

r2kψ(r)

[︄∫︂
Sr

(︃
< A(x)∇U, ν >√

µ̃
− k

r

√︁
µ̃U

)︃2

|y|a +O(1)I(r)− O(1)

r
H(r)

]︄

=
2

rn+a−1+2k

[︄∫︂
Sr

(︃
< A(x)∇U, ν >√

µ̃
− k

r

√︁
µ̃U

)︃2

|y|a +O(1)D(r)− O(1)

r
H(r)

]︄

=
2

rn+a−1+2k

[︄∫︂
Sr

(︃
< A(x)∇U, ν >√

µ̃
− k

r

√︁
µ̃U

)︃2

|y|a
]︄
+
O(1)D(r)

rn+a−1+2k
− O(1)H(r)

rn+a+2k
,

where in the second-to-last step we used the fact that σ(r)
ψ(r) =

1
rn+a−1 . No we use (4.2.1), (4.2.3)

d

dr
Wk(r) =

2

rn+a−1+2k

∫︂
Sr

(︃
< A(x)∇U, ν >√

µ̃
− k

r

√︁
µ̃U

)︃2

|y|a +O(1)

=
2σ(r)

r2kψ(r)

∫︂
Sr

(︃
< A(x)∇U, ν >√

µ̃
− k

r

√︁
µ̃U

)︃2

|y|a +O(1)

=
2σ(r)

r2kψ(r)

∫︂
Sr

(︃
< A(x)∇U, ν >√

µ̃
− k

r

√︁
µ̃U

)︃2

|y|a + C+ − C−

where C+, C− > 0 are universal constants

In this way we get for C > 0

d

dr
Wk(r) ≥

2σ(r)

r2kψ(r)

∫︂
Sr

(︃
< A(x)∇U, ν >√

µ̃
− k

r

√︁
µ̃U

)︃2

|y|a − C,

d

dr
(Wk(r) + Cr) ≥ 2

rn+a−1+2k

∫︂
Sr

(︃
< A(x)∇U, ν >√

µ̃
− k

r

√︁
µ̃U

)︃2

|y|a,

d

dr
(Wk(r) + Cr) ≥ 2

rn+a+1+2k

∫︂
Sr

(︃
< A(x)∇U,X >√

µ̃
− k
√︁
µ̃U

)︃2

|y|a,

which means
d

dr
(Wk(r) + Cr) ≥ 0. (4.3.7)
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4.4 A one parameter family of Monneau-type Monotonicity
Formula

The goal of this section is to establish a generalization of the one-parameter Monneau-type
monotonicity formulas that was obtained in [19] for solutions of (4.0.1) and to prove its
monotonicity. For the function p, we define

Ψp(r) =
1

rn+a+2k−1

[︃∫︂
Br

|∇p|2|y|a − k

r

∫︂
Sr
p2|y|a

]︃
=

1

rn+a+2k−1

∫︂
Br

|∇p|2|y|a − k

rn+a+2k

∫︂
Sr
p2|y|a.

(4.4.1)

We consider polynomials pk are homogeneous of degree k such that pk(x, 0) ≥ 0 and div(|y|a∇pk) =
0. By the divergence theorem, we have

Ψpk(r) =
1

rn+a+2k−1

[︃∫︂
Sr
pk < ∇pk, ν > |y|a − k

r

∫︂
Sr
p2k|y|a

]︃
=

1

rn+a+2k

∫︂
Sr
pk(< ∇pk, X > −kpk)|y|a = 0.

Definition 4.4.1. (Monneau-type monotonicity formula)

Mk(r) =Mk(U, pk, r) =
1

rn+a+2k

∫︂
Sr
(U − pk)

2µ̃|y|a

=
σ(r)

r2k+1ψ(r)

∫︂
Sr
(U − pk)

2µ.

(4.4.2)

Theorem 4.4.2. (Monneau-type monotonicity formula)
Let U ∈ S and assume that 0 ∈ Γk(U). Suppose that the normalization hypothesis A(0) = In+1

is in place, and that furthermore (2.0.7) is in force. Then, there exists a universal constant
C̃ > 0 such that

d

dr
(Mk(r) + C̃r) ≥ 2Wk(r)

r
. (4.4.3)

Proof. Let w = U − pk, so that

Mk(r) =
1

rn+a+2k

∫︂
Sr
w2µ. (4.4.4)

Then its derivative will be

M ′
k(r) = −n+ a+ 2k

rn+a+1+2k

∫︂
Sr
w2µ+

1

rn+a+2k

d

dr

∫︂
Sr
w2 < A(x)∇r, ν > |y|a,
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since ∇r = X
|X| = ν. Thus, by the divergence theorem

d

dr

∫︂
Sr
w2 < A(x)∇r, ν > |y|a = d

dr

∫︂
Br

div(w2A(x)∇r|y|a)

=
d

dr

[︃∫︂
Br

2w < ∇w,A(x)∇r > |y|a +
∫︂
Br

w2div(A∇r|y|a)
]︃

=

[︃
2

∫︂
Sr
w < A(x)∇w,∇r > |y|a +

∫︂
Sr
w2La|X|

]︃
.

At this point we can exploit the following result.

Lemma (Lemma 4.1, [4])
For r ̸= 0 one has

Lar = div(|y|aA(x)∇r) = n+ a

r
|y|a +O(|y|a).

In particular, Lar ∈ L1(B1).

and in this way, since X = ∇r · |X| = ∇r · r, obtain that

M ′
k(r) = −n+ a+ 2k

rn+a+1+2k

∫︂
Sr
w2µ+

2

rn+a+1+2k

∫︂
Sr
w < A(x)∇w,X > |y|a+

+
1

rn+a+2k

∫︂
Sr
w2

(︃
n+ a

r
+O(|y|a)

)︃
= −n+ a+ 2k

rn+a+1+2k

∫︂
Sr
w2µ+

2

rn+a+1+2k

∫︂
Sr
w < A(x)∇w,X > |y|a

+
n+ a

rn+a+1+2k

∫︂
Sr
w2|y|a + 1

rn+a+2k

∫︂
Sr
w2O(|y|a)

= − 2k

rn+a+1+2k

∫︂
Sr
w2µ+

2

rn+a+1+2k

∫︂
Sr
w < A(x)∇w,X > |y|a+

+
n+ a

rn+a+1+2k

∫︂
Sr
w2(1− µ̃)|y|a +O(1),

where in the last step we used (4.2.2) and the fact that polynomial pk is homogeneous of
degree k, so w = U − pk = O(rk) and therefore∫︂

Sr
w2|y|a = O(rn+k+a).

Now, from (2) of the Lemma 2.1.1 it is clear that∫︂
Sr
w2(1− µ̃)|y|a = O(rn+2k+1+a).
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and therefore

M ′
k(r) = − 2k

rn+a+1+2k

∫︂
Sr
w2µ+

2

rn+a+1+2k

∫︂
Sr
w < A(x)∇w,X > |y|a +O(1). (4.4.5)

From the definition of the Weiss-type formula (4.3.1), we know

Wk(r) =
1

rn+a−1+2k

[︃∫︂
Br

< A(x)∇U,∇U > |y|a − k

r

∫︂
Sr
U2µ

]︃
.

Remember that Ψpk(r) = 0

Wk(r) =Wk(r)−Ψpk(r) =
1

rn+a−1+2k

∫︂
Br

< A(x)∇U,∇U > |y|a − k

rn+a+2k

∫︂
Sr
U2µ−

− 1

rn+a+2k−1

∫︂
Br

|∇pk|2|y|a +
k

rn+a+2k

∫︂
Sr
p2k|y|a

A(0)=I
=

1

rn+a−1+2k

∫︂
Br

(< A(x)∇U,∇U > − < A(x)∇pk,∇pk >)|y|a+

+
1

rn+a−1+2k

∫︂
Br

< (A(x)−A(0))∇pk,∇pk > |y|a−

− k

rn+a+2k

∫︂
Sr
(U2 − p2k)µ̃|y|a +

k

rn+a+2k

∫︂
Sr
p2k(1− µ̃)|y|a.

Using the assumption on A(x) (2.0.5) and the fact that pk is homogeneous of degree k∫︂
Br

< (A(x)−A(0)) > ∇pk,∇pk > |y|a = O(rn+2k+a).

By (2) of the Lemma 2.1.1 and the homogeneity of pk again, we obtain∫︂
Sr
p2k(1− µ̃)|y|a = O(rn+2k+1+a).

Thus

Wk(r) =
1

rn+a−1+2k

∫︂
Br

(< A(x)∇U,∇U > − < A(x)∇pk,∇pk >)|y|a−

− k

rn+a+2k

∫︂
Sr
(U2 − p2k)µ̃|y|a +O(r).
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Having

< A(x)∇w,∇w > +2 < A(x)∇w,∇pk >=< A(x)(∇U −∇pk), (∇U −∇pk) > +

+ 2 < A(x)(∇U −∇pk),∇pk >=< A(x)∇U,∇U > + < A(x)∇pk,∇pk > −
− 2 < A(x)∇U,∇pk > +2 < A(x)∇U,∇pk > −2 < A(x)∇pk,∇pk >
=< A(x)∇U,∇U > − < A(x)∇pk,∇pk >

and

w2 + 2pkw = (U − pk)
2 + 2pk(U − pk) = U2 − 2Upk + p2k + 2Upk − 2p2k = U2 − p2k,

we get

Wk(r) =
1

rn+a−1+2k

∫︂
Br

(< A(x)∇w,∇w > +2 < A(x)∇w,∇pk >)|y|a−

− k

rn+a+2k

∫︂
Sr
(w2 + 2pkw)µ+O(r).

Using the divergence theorem∫︂
Br

< A(x)∇w,∇pk > |y|a =
∫︂
Sr
w < A(x)∇pk, ν > |y|a −

∫︂
Br

wdiv(|y|aA(x)∇pk)

=

∫︂
Sr
w < A(x)∇pk, ν > |y|a −

∫︂
Br

wLapk,

(4.4.6)

then let B(x) = [bij(x)] = A(x)−A(0) (remember by assumption A(0) = In+1)

Lapk = div(|y|aA(x)∇pk) = div(|y|a∇pk)+div(|y|aB(x)∇pk) = Di(bij)Djpk|y|a+bijDi(|y|aDjpk).

Using (2.0.5) and the fact that pk is homogeneous of degree k, for almost every x ∈ Br we
obtain that Lapk = O(rk+a−1). Then∫︂

Br

wLapk = O(rn+2k+a). (4.4.7)

Use (4.4.6) and (4.4.7)

Wk(r) =
1

rn+a−1+2k

∫︂
Br

< A(x)∇w,∇w > |y|a + 2

rn+a+2k

∫︂
Sr
w < A(x)∇pk, X > |y|a−

− k

rn+a+2k

∫︂
Sr
(w2 + 2pkw)µ+O(r).
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Let us analyse the first integral at the left hand side∫︂
Br

< A(x)∇w,∇w > |y|a div.thm
= −

∫︂
Br

w div(A(x)∇w|y|a) +
∫︂
Sr
w < A(x)∇w, ν > |y|a

+

∫︂
Br

w(< A(x)∇w, ν+ > + < A(x)∇w, ν− >)|y|a

(4.0.1)
=

∫︂
Br

w Lapk +
1

r

∫︂
Sr
w < A(x)∇w,X > |y|a

+

∫︂
Br

w(< A(x)∇w, ν+ > + < A(x)∇w, ν− >)|y|a

(4.4.7)
=

∫︂
Br

w(< A(x)∇w, ν+ > + < A(x)∇w, ν− >)|y|a

+
1

r

∫︂
Sr
w < A(x)∇w,X > |y|a +O(rn+a+2k).

Now we want to prove that∫︂
Br

w(< A(x)∇w, ν+ > + < A(x)∇w, ν− >)|y|a ≤ 0. (4.4.8)

First of all, notice that since we have, by (4.0.5), that∫︂
Br

w( < A(x)∇w, ν+ > + < A(x)∇w, ν− >)|y|a =

=−
∫︂
Br

U(< A(x)∇pk, ν+ > + < A(x)∇pk, ν− >)|y|a

+

∫︂
Br

pk(< A(x)∇pk, ν+ > + < A(x)∇pk, ν− >)|y|a

−
∫︂
Br

pk(< A(x)∇U, ν+ > + < A(x)∇U, ν− >)|y|a

=−
∫︂
Br

pk(< A(x)∇U, ν+ > + < A(x)∇U, ν− >)|y|a

Where the last step is due

(< A(x)∇pk, ν+ > + < A(x)∇pk, ν− >) =
1

r
(− < A(x)∇pk, X > + < A(x)∇pk, X >) = 0,

since ν+ = −X/|X|, ν− = X/|X|.
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Now (4.4.8) follows from pk ≥ 0 and (4.0.4). In this way we obtain

1

rn+a−1+2k

∫︂
Br

< A(x)∇w,∇w > |y|a ≤ 1

rn+a+2k

∫︂
Sr
w < A(x)∇w,X > |y|a +O(r)

and finally

Wk(r) ≤
1

rn+a+2k

∫︂
Sr
w < A(x)∇w,X > |y|a + 2

rn+a+2k

∫︂
Sr
w < A(x)∇pk, X > |y|a−

− k

rn+a+2k

∫︂
Sr
(w2 + 2pkw)µ+O(r)

=
1

rn+a+2k

[︃∫︂
Sr
w < A(x)∇w,X > |y|a − k

∫︂
Sr
w2µ

]︃
+O(r)+

+
2

rn+a+2k

∫︂
Sr
w < A(x)∇pk, X > |y|a − 2k

rn+a+2k

∫︂
Sr
pkwµ

(4.4.5)
=

rM ′
k(r)

2
+

2

rn+a+2k

∫︂
Sr
w < A(x)∇pk, X > |y|a − 2k

rn+a+2k

∫︂
Sr
pkwµ+O(r).

Remember that, by assumption, A(0) = In+1, so

2

rn+a+2k

∫︂
Sr
w < A(x)∇pk, X > |y|a − 2k

rn+a+2k

∫︂
Sr
pkwµ =

=
2

rn+a+2k

∫︂
Sr
w < (A(x)−A(0)) > ∇pk, X > |y|a+

+
2

rn+a+2k

∫︂
Sr
w(< ∇pk, X > −kpk)|y|a+

+
2k

rn+a+2k

∫︂
Sr
pkw(1− µ̃)|y|a = O(r),

where we again we used the homogeneity of pk, (4.2.2) and (2) of the Lemma 2.1.1.

In this way, we obtain

Wk(r) ≤
rM ′

k(r)

2
+O(r),

M ′
k(r) ≥

2Wk(r)

r
− C̃,

d

dr

(︂
M ′
k(r) + C̃r

)︂
≥ 2Wk(r)

r
.
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Corollary 4.4.2.1. Under the assumptions of Theorem 4.4.2, we have

d

dr
(Mk(r) + C∗∗r) ≥ 0, (4.4.9)

where C∗∗ is a universal constant.
In particular, the limit Mk(0

+) = limr→0+ Mk(r) exists.

Proof. From Lemma 4.3.2 we know that Wk(0
+) exists and that it equals to 0 since by

assumption 0 ∈ Γk(U) (in other words, that Ñ(0+) = k). Then by (4.3.7), there exist a
constant C > 0 such that Wk(r) + Cr is monotone nondecreasing and consequently

Wk(r) + Cr ≥Wk(0
+) = 0.

This implies that
Wk(r) ≥ −Cr

and therefore by (4.4.3)
d

dr

(︂
Mk(r) + C̃r

)︂
≥ −2C.

The conclusion now follows
d

dr
(Mk(r) + C∗∗r) ≥ 0.

4.5 The blowup analysis

We will follow the procedure of the blow up analysis in the chapter 6 of [21] (also Subsection
2.2.2 in the thesis) and since we almost completely repeat it we do not divide our reasoning
in theorems and lemmas, but we will just make some remarks about how calculations in [21]
changes if we apply it to our degenerate problem (4.0.1).

We begin by reminding following quantity

dr =

(︃
H(r)

rn+a

)︃ 1
2

(4.5.1)

where H(r) as in (2.1.3). We know that in [4] the authors used dr = (M(r))
1
2 , but for our

purposes it is enough to define dr analogously to [21], [19] (since we are in the zero-obstacle
case).

Remark. Notice that from (4.2.1) we have

dr =

(︃
H(r)

rn+a

)︃ 1
2

= O(rk). (4.5.2)
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Now we define Almgren and homogeneous scalings

Definition 4.5.1. We define the Almgren scalings of U as follows

Ũ r(X) =
U(rX)

dr
, x ∈ B1/r. (4.5.3)

Definition 4.5.2. The homogeneous scaling of U are defined in the following way

Ur(X) =
U(rX)

rk
, x ∈ B1/r. (4.5.4)

Next we make the following observation

H(r) =

∫︂
Sr
U2µ̃|y|a = rn

∫︂
S1
U2(rX)µ̃(rX)|ry|a = rn+ad2r

∫︂
S1
Ũ

2
rµ̃r|y|a = rn+ad2r

∫︂
S1
Ũ

2
rµr,

where µ̃r(X) = µ̃(rX) and µr(X) = µ(rX). Then by (4.5.1)∫︂
S1
Ũ

2
rµr =

H(r)

rn+ad2r
=
H(r)rn+a

rn+aH(r)
= 1. (4.5.5)

As in Lemma 2.2.12, we can show that both functions Ũ r and Ur defined in (4.5.3),(4.5.4)
are even in y and solve the Signorini conditions (4.0.2)-(4.0.6) in B1/r for the operator La,r =
div(|y|aAr∇), where Ar(x) = A(rx).

It is straightforward that Ũ r and Ur satisfy (4.0.2)-(4.0.5) and that they are even, we will
show the logic on proving that Ũ r and Ur satisfy (4.0.3) in B1/r, namely

U(x, 0) ≥ 0 for (x, 0) ∈ B1,

then
U(rx, 0) ≥ 0 for (rx, 0) ∈ B1.⇒ (x, 0) ∈ B1/r

Since dr and r
k do not depend on X and both are bigger than 0, we have

Ũ r(x, 0) =
U(rX)

dr
≥ 0 and Ur(x, 0) =

U(rX)

rk
≥ 0 for (x, 0) ∈ B1/r.

Given η ∈ C∞
0 (B1/r), (4.0.6) is follows by following change of variables. First, remember that

∇(η(X/r)) = ∇η(X/r)
r then

1

dr

∫︂
B1ε

< A(x)∇U(x),
∇η(X/r)

r
> |y|a = rn−1

∫︂
B
ε 1
r

< A(rx)
r∇U(rX)

dr
,
∇η(X) >

r
|ry|a

= rn+a−2

∫︂
B
ε 1
r

< Ar(x)∇Ũ r(X),∇η(X) > |y|a div.thm
= −rn+a−2

∫︂
B
ε 1
r

div(|y|aAr∇Ũ r)η+
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+rn+a−2

∫︂
∂B

ε 1
r

< Ar∇Ũ r, ν > η|y|a = rn+a−2

∫︂
S
ε 1
r

< Ar∇Ũ r, ν > η|y|a+

+rn+a−2

∫︂
L
ε 1
r

(< Ar∇Ũ r, ν+ > + < Ar∇Ũ r, ν− >)η|y|a

= rn+a−2

∫︂
L
ε 1
r

(< Ar∇Ũ r, ν+ > + < Ar∇Ũ r, ν− >)η|y|a,

where in the second-to-last step we used the fact that Almgren rescaled function Ũ r solves
the problem La,rŨ = 0, and in the last step the fact that η ∈ C∞

0 (B1/r). Also we observe that

1

dr

∫︂
L1ε

(< A(x)∇U(X), ν+ > + < A(x)∇U(X), ν− >)η(X/r)|y|a

= rn−2

∫︂
L
ε 1
r

(< A(rx)
r∇U(rX)

dr
, ν+ > + < A(rx)

r∇U(rX)

dr
, ν− >)η(X)|ry|a

= rn+a−2

∫︂
L
ε 1
r

(< Ar(x)∇Ũ r, ν+ > + < Ar(x)∇Ũ r, ν− >)η(X)|y|a

and therefore by (4.0.6) for U and letting ε→ 0+∫︂
B1/r

< Ar∇Ũ r,∇η > |y|a = −2

∫︂
B1/r

η∂ay Ũ r(x, 0), (4.5.6)

since U is extended to the whole ball evenly in y.

Same logic is valid for the homogeneous rescaled functions Ur.

As in Lemma 2.2.13 we make following calculations for r ∈ (0; 1)

NLa,r(Ũ r, 1) =

∫︁
B1
< Ar∇Ũ r,∇Ũ r > |y|a∫︁

S1 Ũ
2
rµr

=
r2d2r
d2r

∫︁
B1
< A(rx)∇U(rX),∇U(rX) > |y|a∫︁

S1 U
2(rX)µ̃(rX)|y|a

=
r2 · rn+a

rn+a+1

∫︁
Br
< A(x)∇U(X),∇U(X) > |y|a∫︁

S1 U
2(X)µ(X)

=
rD(r)

H(r)
= NL(U, r).

(4.5.7)

As in Lemma 2.2.14 we can prove that the sequence {Ũ rj}j∈N is uniformly bounded in
W 1,2(B1, |y|adX)
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By (4.5.5),(4.5.7) and ellipticity of A, we have for r = rj∫︂
B1

|∇Ũ r|2|y|a ≤ λ−1

∫︂
B1

< Ar∇Ũ r,∇Ũ r > |y|a = λ−1DLr(Ũ r, 1)

(4.5.4),(4.5.5)
= λ−1NLa,r(Ũ r, 1) = λ−1NL(U, r)

= λ−1e−CrÑL(U, r) ≤ λ−1ÑL(U, r) ≤ λ−1ÑL(U, 1),

(4.5.8)

where in the last inequality we use monotonicity of ÑL(U, r) and that e−Cr < 1 for r ∈ (0, 1)∫︂
S1
Ũ

2
r |y|a ≤ λ−1

∫︂
S1
Ũ

2
rµ̃r|y|a

(4.5.5)
= λ−1. (4.5.9)

At this point we use the trace inequality for functions in the Sobolev space W 1,2(B1, |y|adX)

Lemma 4.5.3. (Lemma 14.4, [16])
For r > 0 let U ∈W 1,2(B1, |y|adX). There exists a constant C = C(n, a) > 0 such that∫︂

Sr
U2|y|a ≤ C

(︃
1

r

∫︂
Br

U2|y|a + r

∫︂
Br

|∇U |2|y|a
)︃

(4.5.10)

and
1

r

∫︂
Br

U2|y|a ≤ C

(︃∫︂
Sr
U2|y|a + r

∫︂
Br

|∇U |2|y|a
)︃
. (4.5.11)

Combining (4.5.8),(4.5.9) with (4.5.11) we can conclude that⃦⃦⃦
Ũ rj

⃦⃦⃦
W 1,2(B1,|y|adX)

<∞.

But since we are going to use the estimate from Theorem 3.1.3, we need the uniform bound-
edness of {Ũ rj}j∈N just in L2(B1, |y|adX), which is also easily follows from (4.5.11), and we
have ⃦⃦⃦

Ũ rj

⃦⃦⃦
L2(B1,|y|adX)

<∞.

We follow Lemma 2.2.15. We start by observing that, as was proved in the Theorem 3.1.3,
U ∈ C1,α

loc (B1) for any α ∈ (0, 1) with

∥U∥C1,α(B 1
2
) ≤ C∥U∥L2(B1,|y|adX),

since f ≡ 0 in our situation.
Given rj ↘ 0 consider the sequence {Ũ rj}j∈N. By previous calculations, such a sequence is
uniformly bounded in L2(B1, |y|adX). For any α ∈ (0, 1), by a standard diagonal process we
obtain convergence in C1,α(Rn+1

± ∪ Rn) to a function Ũ0 of a subsequence of the functions

Ũ rj . Passing to the limit in (4.5.6), we conclude that Ũ0 is a global solution to the Signorini
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problem (4.0.2)-(4.0.6) with A ≡ In+1. And Ũ0 is even in y.

Definition 4.5.4. We call the function Ũ0 an Almgren blowup of the solution U at zero.

Now to prove the result similar to Lemma 2.2.17 it is enough to follow the lemma. As in
Lemma 2.2.22 we first prove that {Urj}j∈N is uniformly bounded in L2(B1, |y|adX).
By (4.2.4), ∫︂

B1

U2
rj |y|

a = r−2k
j

∫︂
B1

U(rjX)2|y|a = r
−(n+a+1+2k)
j

∫︂
Brj

U2|y|a
(4.2.4)

≤ C.

Moreover as proved in the Theorem 3.1.3, U ∈ C1,α
loc (B1) with

∥U∥C1,α(B 1
2
) ≤ C∥U∥L2(B1,|y|adX)

By a standart diagonal process, for any α ∈ (0, 1), we obtain convergence in C1,α(Rn+1
± ∪Rn) to

a function U0 of a subsequence of the functions Urj . Passing to the limit in (4.5.6), which also
holds for Ur, we conclude that U0 is a global solution to the Signorini problem (4.0.2)-(4.0.6)
with A ≡ In+1. And U0 is even in y.

Definition 4.5.5. We call the function U0 a homogeneous blowup of the solution at zero.

Remark. We note that , unlike what happens for the Almgren blowups, it is not guaranteed
that a homogeneous blowup will be nonzero. Further this fact will be proved using the
nondegeneracy of a solution (Section 4.7).

To prove that U0 is homogeneous of degree k is enough to follow exactly Lemma 6.12 of [21]
but for fractional dimension N = n + a + 1 and using the generalised Weiss type formula
(4.3.3). For completeness and since we did not present the proofs of this type of results for
the Laplace Signorini problem and the Signorini problem for variable coefficient operator in
Chapter 2, we present it now for our generalised problem (4.0.1).

Proposition 4.5.6. Let U0 be a homogeneous blowup. Then U0 is a homogeneous function
of degree k = N(0+).

Proof. Let r ∈ (0, R). For a fixed rj we integrate (4.3.3) in Theorem 4.3.3 over the interval
[rjr; rjR], obtaining

Wk(rjR,U)−Wk(rjr, U) + Crj(R− r)

≥ 2

∫︂ rjR

rjr

1

tn+a+1+2k

∫︂
St

(︃
< A(x)∇U,X >√

µ̃
− k
√︁
µ̃U

)︃2

|y|adσdt

= 2rj

∫︂ R

r

1

(rjs)n+a+1+2k

∫︂
Srjs

(︃
< A(x)∇U,X >√

µ̃
− k
√︁
µ̃U

)︃2

|y|adσds
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= 2rn+1
j

∫︂ R

r

1

(rjs)n+a+1+2k

∫︂
Ss

(︄
< A(rjx)∇U(rjX), rjX >√︁

µ̃(rjX)
− k
√︂
µ̃(rjX)U(rjX)

)︄2

|rjy|adσds

=
2

r2kj

∫︂ R

r

1

sn+a+1+2k

∫︂
Ss

⎛⎝< Arj (x)∇Urj (X), X >√︂
µ̃rj (X)

rkj − k
√︂
µ̃rj (X)Urj (X)rkj

⎞⎠2

|y|adσds

= 2

∫︂
BR\Br

1

|x|n+2k

⎛⎝< Arj (x)∇Urj (X), X >√︂
µ̃rj (X)

− k
√︂
µ̃rj (X)Urj (X)

⎞⎠2

|y|a

.

By Theorem 4.3.3, we know that W (0+) exists and, by Lemma 4.3.2, that W (0+) = 0 (since
we assume that N(0+) = 0). So we take the limit as rj → 0 and remember that A(0) = In+1

and µrj (X) → 1, since µ(0) = 1. In this way, from the fact that Urj converges to U0 in

C1,α
loc (R

n+1
± ∪Rn), letting j → ∞ in the above inequality, we infer that the latter converges to

0 ≥ 2

∫︂
BR\Br

1

|x|n+2k
(< U0, X > −kU0)

2.

By the arbitrariness of 0 < r < R < ∞, we conclude that U0 is homogeneous of degree k in
Rn+1.

4.6 Characterization of the singular boundary

Theorem 4.6.1. (Characterization of singular points) Let U ∈ S, where we have 0 ∈ Γk(U)
and N(U, 0+) = k. The following statements are equivalent:

(i) 0 ∈ Σk(U).

(ii) Any Almgren blowup Ũ0 of U at the origin is a nonzero homogenenous polynomial
pk ∈ P+

k (R
n+a+1).

(iii) k = 2m, for some m ∈ N.

Proof. The proof follows the reasonings of the Theorem 2.5.2, Theorem 2.5.12 and Proposition
4.4. of [22].

By (4.5.6), for 0 < r < 1 and any η ∈ C∞
0 (B1), we have∫︂

B1

< Ar∇Ũ r,∇η > |y|a = −2

∫︂
B1∩Λ(Ũr)

η∂ay Ũ r(x, 0) (4.6.1)

We know from the Section 4.5 that |y|a∂yŨ r is uniformly bounded in B1. This fact and (2.5.1)
allow to conclude that

lim
r→0+

∫︂
B1∩Λ(Ũr)

η∂ay Ũ r = 0
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which means that La,rŨ r converges weakly to 0. On the other hand,∫︂
B1

< Ar∇Ũ r,∇η > |y|a →
∫︂
B1

< ∇Ũ0,∇η > |y|a.

By Theorem 12.17 (Nonlocal Caccioppoli-Cimmino-Weyl lemma) in [16], we conclude that any
blowup Ũ0 satisfies div(|y|aŨ0) = 0 in B1. Since Ũ0 is homogeneous, then div(|y|aŨ0) = 0 in
Rn+1, because it means that

Ũ0(X) = Ũ0

(︃
X

∥X∥
∥X∥

)︃
= ∥X∥kŨ0

(︃
X

∥X∥

)︃
and since X/∥X∥ ∈ S1, it is enough to describe Ũ0

(︂
X

∥X∥

)︂
on the unit sphere S1 to know its

behaviour in Rn+1. Therefore, by Lemma 5.3 in [7], Ũ0 is a polynomial of degree k satisfying
div(|y|aŨ0) = 0. The properties of Ũ r imply the missing conditions (see Section 4.5).

(ii) ⇒ (iii), (ii) ⇒ (iii), (ii) ⇒ (i) The proof repeats the reasoning in Theorem 2.5.2 and
Proposition 4.4. of [22]

Lemma 4.6.2. Let U ∈ S with 0 ∈ Σk(U). Then, any homogeneous blowup of U at the
origin is a homogeneous polynomial pk ∈ P+

k (R
n+1 ∩ {0}).

The proof follows Lemma 2.5.13.

4.7 Nondegeneracy

In this section, we use the Almgren and Monneau monotonicity formulas to prove a nondegen-
eracy property, Lemma 4.7.2 below. This allows us to show the uniqueness of homogeneous
blowups, that such a blowup cannot vanish identically, and moreover, the continuous depen-
dence of the blowups at the singular points. Now we want to follow the line of chapter 10
of [21] and start with the lower bound of H(r) which is used to prove the nondegeneracy
property.

Lemma 4.7.1. Let U ∈ S with 0 ∈ Γk(U). Then for every ε > 0 there exist rε ∈ (0, 1) and
a universal constant Cε > 0 (depending also on U) such that for every 0 < r < rε one has

H(r) ≥ Cεr
n+a+2k+ε (4.7.1)

Proof. Let us start from the formula for the first variation of height (4.1.4) that we obtained
before. With use of it and the fact that for the case of the zero-obstacle we have I(r) = D(r)
we find

d

dr
logH(r) =

H ′(r)

H(r)
= 2

D(r)

H(r)
+
n+ a

r
+O(1).
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Remember the definition of the frequency (4.1.1) and that the limit N(0+) = k exists (Theo-
rem 4.1.2)

r
d

dr
logH(r) = n+ a+ 2k + 2(N(r)− k) +O(r). (4.7.2)

We see that for every ε > 0, there exists rε > 0 small enough such that

d

dr
logH(r) ≤ n+ a+ 2k + ε

r
= (n+ a+ 2k + ε)

d

dr
log r.

After integrating from r to rε, we have

logH(rε)− logH(r) = log
H(rε)

H(r)
≤ (n+ a+ 2k + ε)(log rε − log r) = (n+ a+ 2k + ε) log

rε
r
.

And since the logarithm is a monotone function

H(rε)

H(r)
≤
(︂rε
r

)︂n+a+2k+ε
,

that gives the result for Cε = H(rε)/r
n+a+2k+ε.

Lemma 4.7.2. (Nondegeneracy)
Let U ∈ S, with 0 ∈ Σk(U), and suppose that the normalization hypothesis A(0) = In+1

is in place, and that furthermore (2.0.7) is in force. Then there exists universal c > 0 and
r∗ ∈ (0, 1) such that for 0 < r < r∗, one has

sup
Sr

|U(X)| ≥ crk. (4.7.3)

Proof. To prove the lemma we follow Lemma 10.2 in [21]. We argue by contradiction and
suppose that (4.7.3) does not hold. Then, there exists a sequence rj → 0 such that

supSr |U(X)|
rkj

→ 0.

This implies, in particular,

drj
rkj

=

(︄
1

rn+a+2k
j

∫︂
Srj

U2µ̃|y|a
)︄ 1

2

= o(1), (4.7.4)

where we used (4.2.2) and (1) of Lemma 2.1.1.

Consider now the sequence of Almgren scalings Ũ rj (X) = U(rjX)/drj , with j ∈ N. By

previous results, we know that there exists qk ∈ P+
k (R

n+a+1), such that Ũ rj → qk on

C1,α
loc (R

n+1
± ∪Rn) as j → ∞. Corollary 4.4.2.1 implies that Mk(U, qk, 0

+) exists. Thus, we can
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use the sequence rj to compute such a limit, that is,

Mk(U, qk, 0
+) = lim

j→∞
Mk(U, qk, rj).

By definition of the Monneau type monotonicity formula (4.4.2)

Mk(U, qk, rj) =
1

rn+a+2k

∫︂
Srj

(U − qk)
2µ̃|y|a = 1

rn+a+2k
j ψ(r)

∫︂
Srj

(U2 − 2Upk + q2k)µ.

Then (4.7.4) gives
1

rn+a+2k
j

∫︂
Srj

U2µ→ 0. (4.7.5)

On the other hand, the Lebesgue dominated convergence theorem gives

lim
j→∞

1

rn+a+2k
j

∫︂
Srj

q2kµ̃|y|a = lim
j→∞

∫︂
S1
q2k(X)µ̃(rjX)|y|a = µ̃(0)

∫︂
S1
q2k|y|a =

∫︂
S1
q2k|y|a <∞,

(4.7.6)
where we used a change of variables, homogeneity of pk and the fact that µ(0) = 1.

We infer from this that

0 ≤ 1

rn+a+2k
j

∫︂
Srj

|Uqk|µ ≤ 1

rn+a+2k
j

(︄∫︂
Srj

U2µ

)︄ 1
2
(︄∫︂

Srj
q2kµ

)︄ 1
2

=

(︄
1

rn+a+2k
j

∫︂
Srj

U2µ

)︄ 1
2 (︃∫︂

S1
q2k(X)µ̃(rjX)|y|a

)︃ 1
2

→ 0,

since the second factor is bounded by (4.7.6) and the first factor goes to 0 as j → ∞ by
(4.7.5).

In this way, we have

Mk(U, qk, 0
+) = lim

j→∞
Mk(U, qk, rj) = lim

j→∞

1

rn+a+2k
j

∫︂
Srj

q2kµ =

∫︂
S1
q2k|y|a. (4.7.7)

By (4.7.7) and homogeneity of pk, we infer that for every r ∈ (0, 1)

Mk(U, qk, 0
+) =

1

rn+a+2k

∫︂
Sr
q2k|y|a. (4.7.8)

Since according to Corollary 4.4.2.1 the function r →Mk(r)+C
∗∗r is monotone non decreas-
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ing, we have

1

rn+a+2k

∫︂
Sr
(U − qk)

2µ+ C∗∗r ≥Mk(U, qk, 0
+) =

1

rn+a+2k

∫︂
Sr
q2k|y|a.

Equivalently, we have

1

rn+a+2k

∫︂
Sr
(U2 − 2Uqk)µ+

1

rn+a+2k

∫︂
Sr
q2kµ̃|y|a + C∗r ≥

∫︂
Sr
q2k|y|a,

1

rn+a+2k

∫︂
Sr
(U2 − 2Uqk)µ ≥ −C∗r +

1

rn+a+2k

∫︂
Sr
q2k(1− µ̃)|y|a.

Use the definition of the Almgren scaling (4.5.3) and homogeneity of qk

1

r2k

∫︂
S1
(d2rŨ

2
r − 2drr

kŨ rqk)µ̃(rX)|y|a ≥ −C∗r +

∫︂
S1
q2k(1− µ̃(rX))|y|a.

Multiply by rk

dr
> 0∫︂

S1

(︃
dr
rk
Ũ

2
r − 2Ũ rqk

)︃
µ̃(rX)|y|a ≥ −C∗ r

k+1

dr
+
rk

dr

∫︂
S1
q2k(1− µ̃(rX))|y|a. (4.7.9)

Now we claim that the right hand side goes to 0 as r → 0. Indeed, by the definition of dr
(4.5.1) and (4.7.1), for any ε > 0 there exist rε, Cε > 0 such that for 0 < r < rε, we have

r2k+2

d2r
=
r2k+2+n+a

H(r)
≤ rn+a+2k+2

Cεrn+a+2k+ε
=
r2−ε

Cε
.

We infer that
rk+1
j

dr
≤
r
1−ε/2
j√
Cε

→ 0 as j → ∞.

And thus rk+1
j /dr → 0 as j → ∞.

By (2) of Lemma 2.1.1 above, we obtain for a universal constant C > 0⃓⃓⃓ ∫︂
S1
q2k(1− µ̃(rX))|y|a

⃓⃓⃓
≤ sup

X∈S1
|1− µ̃(rX)|

∫︂
S1
q2k|y|a ≤ Cr

∫︂
S1
q2k|y|a.

Therefore, we have as j → ∞

⃓⃓⃓ rkj
drj

∫︂
S1
q2k(1− µ̃(rX))|y|a

⃓⃓⃓
≤ C

rk+1
j

drj

∫︂
S1
q2k|y|a → 0.

Since the integral is bounded and the ratio rk+1
j /dr → 0.
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At the end, if we let r = rj → 0 in (4.7.9), by (4.7.4), the fact that µ̃(0) = 1 and Ũ r → qk,
we obtain

−2

∫︂
S1
q2k|y|a ≥ 0.

Since qk ̸≡ 0, we have reached a contradiction.

Remark. We note that by Lemma 4.7.2 it becomes clear that U0 is nonzero. Indeed, if U0

were zero, then there would exists j0 such that for all j > j0 supB1
|Urj | ≤ c/2, and therefore

sup
B1

|U(rX)| = sup
Brj

|U(X)| ≤
crkj
2
,

which gives contradiction with Lemma 4.7.2. This fact together with the reasoning about the
homogeneous blowup in Section 4.5, Proposition 4.5.6, Lemma 4.6.2 shows that if Ur → U0

in C1,α
loc (R

n+1
± ∪ Rn) for r = rj → 0+, then U0 ∈ P+

k (R
n+a+1).

The following two results follow exactly the reasoning of Theorem 10.5 and 10.7 in [21], but
for completeness and since we did not show these type of calculations in Chapter 2, we will
present them here for generalised problem (4.0.1).

Theorem 4.7.3. (Uniqueness of the homogeneous blowup at singular point) Let U ∈ S and
assume that 0 ∈ Σk(U). Suppose that the normalization hypothesis A(0) = In+1 is in place,
and that furthermore (2.0.7) is in force. Then, there exists a unique pk ∈ P+

k (R
n+a+1) such

that the homogeneous scalings Ur converge in C1,α
loc (R

n+1
± ∪ Rn) to pk.

Proof. The conclusions in the Section 4.5 about the homogeneous blowups, Lemma 4.6.2 and
the previous Remark guarantee the existence of such a polynomial, so it is left to prove the
uniqueness.

Let Urj → U0 in C1,α
loc (R

n+1
± ∪ Rn) for a certain sequence rj → 0+. By the previous Remark

we know that U0 ∈ P+
k (R

n+a+1). Then we can apply Corollary 4.4.2.1 using as pk = U0, so
Mk(U,U0, 0

+) exists and can be computed as

Mk(U,U0, 0
+) = lim

rj→0+
Mk(U,U0, rj) = lim

rj→0+

∫︂
S1
(Urj − U0)

2µ̃(rjX)|y|a = 0,

since, by the homogeneity of U0, we have

Mk(U,U0, r) =
1

rn+a+2k

∫︂
Sr
(U − U0)

2µ̃|y|a = 1

r2k

∫︂
S1
(U(rX)− U0(rX))2µ̃(rjX)|y|a

=

∫︂
S1

(︃
U(rX)

rk
− rk

U0(X)

rk

)︃2

µ̃(rjX)|y|a =
∫︂
S1
(Ur − U0)

2µ̃(rjX)|y|a.

Since Mk(U,U0, 0
+) = 0, we have that for any r → 0+, not just for the sequence rj → 0+,
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that

Mk(U,U0, r) =

∫︂
S1
(Ur − U0)

2µ̃(rjX)|y|a → 0.

Therefore, if U ′
0 is a limit of Ur′j over another sequence r′j → 0+, then

0 ≤
∫︂
S1
(U0 − U ′

0)
2|y|a ≤ λ−1

∫︂
S1
(U0 − U ′

0)
2µ̃(rjX)|y|a

≤ λ−1

∫︂
S1
(U0 − Urj )

2µ̃(rjX)|y|a + λ−1

∫︂
S1
(Ur′j − U0)

2µ̃(rjX)|y|a → 0

This implies that U0 = U ′
0 in S1, and since U and U0 are homogeneous of degree k, they must

coincide in Rn+1.

Theorem 4.7.4. (Continuous dependence of the blowups) Let U ∈ S. Given X0 = (x0, 0) ∈
Σk(U), with k > (3− a)/2, denote by px0k the homogeneous blowup of U at X0 = (x0, 0) as in
Theorem 4.7.3, so that

U(X) = px0k (A−1/2(x0)(X −X0)) + o(|A−1/2(x0)(X −X0)|k).

Then, the mapping X0 → px0k from Σk(U) to P+
k (R

n+a+1) is continuous. Moreover, for any
k compact K ∈ Σk(U) ∩ B1, there exists a modulus of continuity σK , with σK(0+) = 0, such
that

|U(X)−px0k (A−1/2(x0)(X−X0))| ≤ σK(|A−1/2(x0)(X−X0)|)|A−1/2(x0)(X−X0)|k, (4.7.10)

for any X0 ∈ K

Proof. P+
k (R

n+a+1) is a convex subset of the finite dimensional vector space of all k-homogeneous
polynomials, and so all norms are equivalent. We endow such space with the norm of
L2(S1, |y|adσ).

Given X0 = (x0, 0) ∈ Σk(U) and ε > 0 small enough, there rε = rε(X0) > 0 such that

Mx0
k (U, px0k , rε)

def
= Mk(Ux0 , p

x0
k , rε) =

1

rn+a+2k
ε

∫︂
Srε

(Ux0 − px0k )2µ̃|y|a < ε,

where Ux0(X) = U(x0 + A1/2(x0)x, y) solves (4.0.1) coresponding to the matrix Ax0(x, y) =

A− 1
2 (x0)A(x0 + A

1
2 (x0)x)A

− 1
2 (x0). This implies that there exists δε = δε(X0) > 0 such that

if Z0 = (z0, 0) ∈ Σk(U) ∩ Bδε(X0), then

M z0
k (U, px0k , rε) =

1

rn+a+2k
ε

∫︂
Srε

(Uz0 − px0k )2µ̃|y|a < 2ε.

Since, by Corollary 4.4.2.1,M z0
k (U, px0k , ·)+C

∗∗r is monotone nondecreasing, we conclude that
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for rε small enough, M z0
k (U, px0k , r) < 3ε, with 0 < r < rε. Letting r → 0+, we obtain

M z0
k (U, px0k , 0

+) =

∫︂
S1
(pz0k − px0k )2|y|a ≤ 3ε,

which concludes the first part of the theorem. To prove the second part, we notice that for
|Z0 −X0| < δε and 0 < r < rε,⃦⃦
Uz0 − pz0k

⃦⃦
L2(Sr,|y|adσ) ≤

⃦⃦
Uz0 − px0k

⃦⃦
L2(Sr,|y|adσ)+

⃦⃦
px0k − pz0k

⃦⃦
L2(Sr,|y|adσ) ≤ 2(3ε)1/2r(n+a)/2+kλ−1/2.

Integrating in r, this also gives an estimate for solid integrals:⃦⃦
Uz0 − pz0k

⃦⃦
L2(B2r,|y|adσ) ≤ Cε1/2r(n+a+1)/2+k.

To proceed, we know notice that

Lz0p
z0
k = div(|y|aAz0∇p

z0
k ) = div(|y|a(Az0 − In+1)∇pz0k ) + div(|y|a∇pz0k ) = div(|y|a(Az0 − In+1)∇pz0k )

= ∇Az0 |y|a∇p
z0
k + (Az0 −A(0))Di(|y|aDjp

z0
k ).

and hence, by (2.0.7) and homogeneity of pz0k , |Lz0p
z0
k | ≤ Crk+a−1 in B2r. This then imply,

by the statement of the problem (4.0.1) and linearity of Lz0 , that

|Lz0(Uz0 − pz0k )| ≤ Crk+a−1 in B2r,

and consequently, by the interior L∞ − L2 estimates [14], we obtain⃦⃦
Uz0 − pz0k

⃦⃦
L∞(Br)

≤ Cr−(n+a+1)/2
⃦⃦
Uz0 − pz0k

⃦⃦
L2(B2r)

+ Crk+1

= Cr−(n+a+1)/2
⃦⃦
Uz0 − pz0k

⃦⃦
L2(B2r)

+ Crk+1

≤ Cε1/2rk + Crk+1.

Rescaling, this gives ⃦⃦
Uz0,r − pz0k

⃦⃦
L∞(B1)

≤ C(ε1/2 + r) ≤ Cε, (4.7.11)

for r ≤ rε small, and Cε → 0 as ε → 0, where Uz0,r := Uz0(rX)/rk. Now, convering the
compact K ⊂ Σk(U) ∩ B1 with finitely many balls Bδε(xi0)(x

i
0) for some xi0 ∈ K, i = 1, ..., N ,

we conclude that (4.7.11) holds for all z0 ∈ K with r < rKε := min{rε(xi0) | i = 1, ..., N}.

From this point we can follow the reasoning of the Section 2.5 to achieve the main result,
Theorem 4.0.2.
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(2019), pp. 1309–1365.

[23] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Or-
der. Reprint of the 1980 original. Vol. 224. Grundlehren der Mathematischen Wis- sen-
schaften[FundamentalPrinciplesofMathematicalSciences]. Springer-Verlag, Berlin-New York,
1977.

81



The regularity of the solution and the regular free boundary

[24] D. Kinderlehrer and L. Nirenberg. “Regularity in free boundary problems”. In: The
Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4.2 (1977), pp. 373–
391.

[25] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequalities and
their applications. Reprint of the 1980 original. Classics in Applied Mathematics 31.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[26] R. Monneau. “On the number of singularities for the obstacle problem in two dimen-
sions”. In: Journal of Geometric Analysis 13.2 (2003), pp. 359–389.

[27] A. Petrosyan, H. Shahgholian, and N. Uraltseva. Regularity of free boundaries in obstacle-
type problems. Reprint of the 1980 original. Vol. 136. Graduate Studies in Mathematics.
American Mathematical Society, Prov- idence, RI, 2012.

[28] M. Riesz. “Integrales de Riemann-Liouville et potentiels”. In: Acta Scientiarum Math-
ematicarum (Szeged) 9 (1938), pp. 1–42.
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