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countermeasures

by Luca Barbiero

The world of geo-synchronous satellite communications is witnessing for several months

now, a strong discussion, if not a dispute, between some system manufacturers about the

oppurtunity of increasing the efficiency of the coding schemes proposed by the second

generation of the Digital Video Broadcasting standard by introducing some extensions.

Even if the debate rises the interest of operators and manufacturers, its conclusions

are far from being unanimously accepted. The reason for this is that the benefits of

such extensions are yet not clear in practical satellite channels, where impairments like

non-linearities, group delay variations, adjacent channel interference and phase noise

negatively impact the end-to-end link performance. These must be carefully taken into

account, since they put limits in terms of spectral efficiency achievable for a certain

system architecture and link budget. This work seeks to quantify the effect of such im-

pairments under both single carrier and multi-carrier per transponder scenarios, with a

particular attention to the implications of sharper filters Roll-Offs. Further, the benefits

of countermeasures such as waveform pre-distortion, post-compensation techniques and

high power amplifier linearisation are also analysed and compared for different system

configurations. The results achieved here have been obtained jointly by computer sim-

ulations and lab measures carried out in the Teleport of Eutelsat Communications, in

collaboration with the department of Multimedia and Added Value Services.
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Chapter 1

Introduction

1.1 Satellite Communication Systems

Satellite communications are the outcome of research in the area of both communica-

tions and aerospace, and arise from the expertise gained in two very different areas -

missiles and microwaves - during the Second World War. The whole space era started

in 1957 with the launch of the first artificial satellite (Sputnik). During the sixties the

first commercial geostationary satellites were launched, opening de facto an ever growing

evolution of services which still continues today. Originally these were designed to carry

communications from one point to another, as with cables, and the extended coverage of

the satellite was used to set up long distance links (for example connecting stations on

the two opposite sides of the Atlantic Ocean, Early Bird 1965). The increasing size and

power of satellites permitted a consequent reduction in the size of earth stations, and

hence their cost, leading to an increase in number. In this way it has been possible to

exploit another feature of the satellite which is its ability to collect or broadcast signals

from or to several locations. Instead of transmitting signals from one point to another,

transmission can be from a single transmitter to a large number of receivers distributed

1
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over a wide area or, conversely, transmission can be from a large number of stations to

a single central station, often called a hub. In this way, multipoint data transmission

networks and data collection networks have been developed under the name of VSAT

(very small aperture terminals) networks. For TV services, satellites are of paramount

importance for broadcasting, news gathering, exchange of programmes between broad-

casters, and in general for distributing programmes to terrestrial broadcasting stations

and cable heads, or directly to the individual consumer. The latter are commonly called

direct broadcasting by satellite (DBS) systems, or direct-to-home (DTH) systems. These

operate with small earth stations having antennas with a diameter from 0.5 to 1 m. In

the past, the customer stations were receive only stations.

With the introduction of two-way communications stations, satellites became a key

component in providing interactive TV and broadband Internet services thanks to the

implementation of the satellite return channel to the service providers facilities. This

uses TCP/IP to support Internet, multicast and web-page caching services over satel-

lite with forward channel operating at several Mbit/s and enables satellites to provide

broadband service applications for the end user, such as direct access and distribution

services. IP-based triple-play services (telephony, Internet and TV) has become more

and more popular, after the introduction of the DVB-S2. Satellite based systems cannot

compete with terrestrial Asymmetric Digital Subscriber Line (ADSL) or cable to deliver

these services in high-density population areas. However, they complement nicely the

terrestrial networks around cities and in rural areas when the distance to the telephone
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router is too large to allow delivery of the several Mbit/s required to run the service [1].

A typical satellite system is composed of:

• the space segment containing one or more satellites organised into a constellation,

• the control segment containing all the ground facilities for control and monitoring

of the satellites,

• the ground segment containing the traffic earth stations.

Traffic earth stations come in three classes: user stations, such as handsets, portables,

mobile stations and very small aperture terminals (VSATs), which allow the customer

direct access to the space segment; interface stations, known as gateways, which inter-

connect the space segment to a terrestrial network; and service stations, such as hub or

feeder stations, which collect or distribute information from and to user stations via the

space segment. The path from a source user terminal to a destination user terminal is

named a simplex connection.

Figure 1.1: A modern Satellite Teleport.

There are two basic schemes: single connection per carrier (SCPC), where the modulated

carrier supports one connection only, and multiple connections per carrier (MCPC),

where the modulated carrier supports several time or frequency multiplexed connections.

Interactivity between two users requires a duplex connection between their respective

terminals, i.e. two simplex connections, each along one direction. Each user terminal

should then be capable of sending and receiving information. A connection between a

service provider and a user goes through a hub (for collecting services) or a feeder station

(e.g. for broadcasting services). A connection from a gateway, hub or feeder station to

a user terminal is called a forward connection. The reverse connection is the return

connection. Both forward and return connections entail an uplink (from earth station

to the satellites), a downlink (from the satellites to the earth stations), and possibly one

or more inter-satellite links (between the satellites) [1].
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The link performance can be measured by the ratio of the received carrier power C, to

the noise power N, and is denoted as the C/N ratio. The values of C/N, for the links

which participate in the connection between the end terminals, determine the quality

of service, specified for digital communications in terms of bit error rate (BER) or

packet error rate (PER). Another parameter of importance for the design of a link is the

bandwidth, B, occupied by the carrier. This bandwidth depends on the information data

rate, the channel coding rate (forward error correction) and the type of modulation used

to modulate the carrier. For a target information rate, the trade-off between required

carrier power and occupied bandwidth is paramount to the cost-effective design of the

link. This is an important aspect of satellite communications as power impacts both

satellite mass and earth station size, and bandwidth is constrained by regulations.

1.2 The Space Segment

The satellite as a spacecraft is made of the payload and the platform. The payload con-

sists of the receiving and transmitting antennas and all the electronic equipment which

supports the transmission of the carriers, while the platform supports and accommodate

the payload in the space environment. The payload can act as either a transparent or

regenerative repeater. It can be shown that regenerative repeaters can achieve better

link performance and hence better quality of service, however in practice transparent

repeaters are often preferred because of their simplicity (i.e. lower cost) and higher

flexibility (being system independent) . In a transparent payload the carrier power is

amplified and frequency is downconverted. Power gain is of the order of 100 to 130 dB,

required to raise the power level of the received carrier from a few tens of picowatts to

the power level of the carrier fed to the transmit antenna of a few watts to a few tens of

watts. Frequency conversion is required to increase isolation between the receiving input

and the transmitting output. Due to technology power limitations, the overall satellite

payload bandwidth is split into several sub-bands, the carriers in each sub-band being

amplified by a dedicated power amplifier. This is mainly to combat the intermodulation

phenomenon, as we shall see in detail in Chapter 4. The amplifying chain associated

with each sub-band is called a satellite channel, or transponder. The bandwidth split-

ting is achieved using a set of filters called the input multiplexer (IMUX). The amplified

carriers are recombined in the output multiplexer (OMUX). Later on we will refer to

IMUX and OMUX as well for a specific pair of input and output filters. The High

Power Amplifiers (HPAs) associated with each transponder are typically driven close to

saturation, in order to exploit as much as possible the available power in the downlink.

However this makes the satellite channel non-linear, and introduces some distortion on

the transmitted waveform, as we will discuss in detail in Chapter 2.
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1.3 The DVB-S2 Standard and the new DVB-S2X exten-

sions

Standardization plays a fundamental role in the spread of communication technologies.

In fact standardization

• encourages innovation,

• fosters enterprise opening new markets,

• creates trust and confidence in products,

• brings down costs and increases competition,

• helps preventing the duplication of effort.

The Digital Video Broadcasting (DVB) is a suite of internationally accepted open stan-

dards for digital television. DVB standards are developed and maintained by the DVB

Project, an international industry consortium with more than 200 members in Europe

and worldwide. The specifications developed by the DVB Project are passed to the

European Telecommunications Standards Institute for approval. The DVB-S system for

digital satellite broadcasting was developed in 1993. It is a relatively straightforward

system using QPSK and convolutional forward error correction (FEC), concatenated

with ReedSolomon coding. The tools for channel coding and error protection intro-

duced in its specifications were used later on for other delivery media systems. DVB-S

links also started to be proposed for professional point-to-point transmission of tele-

vision programs, to convey directly to the broadcasters premises audio/video material

originated in the studios (TV contribution) and/or from remote locations by outside

broadcasting vans or portable uplink terminals, without requiring a local access to the

fixed telecom network (Digital Satellite News Gathering). In 1998, DVB produced its

second standard for satellite applications, DVB-DSNG, extending the functionalities of

DVB-S to include higher order modulations (8PSK and 16QAM) for DSNG and other

TV contribution applications by satellite.

The results of this evolutionary trend, together with the increase in the operators and

consumers demand for larger capacity and innovative services by satellite, led the DVB

Project to define in 2003 the second-generation system for satellite broad-band services,

DVB-S2. The system has been designed for different types of applications:
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• broadcasting of standard definition and high-definition TV (SDTV and HDTV);

• interactive Services, including Internet access, for consumer applications (for inte-

grated receiversdecoders (IRDs) and personal computers);

• professional applications, such as digital TV contribution and news gathering;

• data content distribution and Internet trunking.

To be able to cover all these application areas while still keeping the single-chip decoder

at reasonable complexity levels, DVB-S2 is structured as a toolkit, thus also enabling

the use of mass market products for professional or niche applications. The DVB-S2

standard has been specified around three key concepts: best transmission performance,

total flexibility, and reasonable receiver complexity. To achieve the best performance-

complexity trade-off, quantifiable in about 30% capacity gain over DVB-S, DVB-S2

benefits from more recent developments in channel coding and modulation. For inter-

active point-to-point applications such as IP unicasting, the adoption of the adaptive

coding and modulation (ACM) functionality allows optimization of the transmission

parameters for each individual user on a frame-by-frame basis, dependent on path con-

ditions, under closed-loop control via a return channel (connecting the IRD/PC to the

DVB-S2 uplink station via terrestrial or satellite links, signaling the IRD/PC reception

condition). This results in a further increase in the spectrum utilization efficiency of

DVB-S2 over DVB-S, allowing the optimization of the space segment design, thus mak-

ing possible a drastic reduction in the cost of satellite-based IP services. DVB-S2 is so

flexible that it can cope with any existing satellite transponder characteristics, with a

large variety of spectrum efficiencies and associated C/N requirements. Furthermore it

is designed to handle a variety of advanced audiovideo formats which the DVB Project

defined. DVB-S2 accommodates any input stream format, including single or multiple

MPEG transport streams (TSs) (characterized by 188-byte packets), IP as well as ATM

packets and continuous bit-streams.

1.3.1 DVB-S2 System architecture

The DVB-S2 transmission system is structured as a se- quence of functional blocks,

schematically represented in Figure 1.3. Signal generation is based on two levels of

framing structures:

• BBFRAME at base-band (BB) level, carrying a variety of signaling bits, to con-

figure the receiver flexibly ac- cording to the application scenario.
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Figure 1.3: Functional block diagram of the DVB-S2 system.

• PLFRAME at physical layer (PL) level, carrying few highly protected signaling

bits, to provide robust syn- chronization and signaling at the physical layer.

Depending on the application, DVB-S2 input sequences may be single or multiple MPEG

TSs, single or multiple generic streams, either packetized or continuous. Mode and

stream adaptation blocks provide input stream interfacing, synchronization, and other

optional tools. Furthermore, for multiple inputs, it provides merging of input streams in

a single transmission signal and slicing in FEC code blocks (identified as data blocks),

composed of bits taken from a single input port, to be transmitted in a homogeneous

transmission mode (FEC code and modulation). Then baseband frames BBFRAME are

built by appending the base-band header (80 bits) in front of the data block, to notify the

receiver of the input stream format and Mode Adaptation type: single or multiple input

streams, generic or TS, constant coding and modulation (CCM) or adaptive coding

and modulation (ACM), and many other configuration details. Thanks to the FEC

protection (covering both the header and the data payload) and the wide length of the

FEC frame, the base-band header can in fact contain many signaling bits without losing

transmission efficiency or ruggedness against noise. In case the user data available for

transmission are not sufficient to completely fill a BBFRAME, padding bits are also

inserted to complete it. Finally, base-band scrambling is performed.

The Forward Error Correction (FEC) subsystem relies on the concatenation of outher

BCH and inner irregular LDPC codes, and is key to achieve excellent performance by

satellite, in the presence of high levels of noise and interference. The total BCH+LDPC

block length is 64800 bits for applications not too critical for delays, 16200 bits otherwise.

Code rates of 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10 are available
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depending on the selected constellation and the system application. In particular, coding

rates 1/4, 1/3, and 2/5 have been introduced to operate, in combination with QPSK,

under exceptionally poor link conditions, for signal to noise ratios below 0dB.

Error rate requirements for DVB-S2 are very stringent, 10−7 MPEG TS packet error

rate (PER), approximately corresponding to less than one erroneous packet per hour for

a service bit rate of 5 Mb/s. Figure 1.4 shows the excellent DVB-S2 FEC performance

in the AWGN channel for various code rates and modulations, with FEC-coded blocks

of 64800 bits and less than 50 decoding iterations in the receiver. Short code blocks

generally give a slightly worse performance, due to the smaller frame dimension.

Figure 1.4: Performance of LDPC+BCH codes over AWGN channel. N = 64800 bits.
(a) QPSK (b) 8PSK (c) 16APSK (d) 32APSK.

Four modulation modes can be selected for the transmitted payload (see Figure 1.5):

QPSK, 8PSK, 16APSK, and 32APSK, depending on the application area. By selecting

the modulation constellation and code rates, spectrum efficiencies from 0.5 to 4.5 bits

per symbol are available and can be chosen dependent on the capabilities of the satellite

transponder used. The 16APSK and 32APSK constellations have been op- timized for

nonlinear transponders by placing the points on circles; nevertheless their performance
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(d) 32APSK

Figure 1.5: The Four DVB-S2 symbol constellations.

in the AWGN channel is comparable with those of 16QAM or 32QAM respectively.

QPSK and 8PSK are typically proposed for broadcast applications, since they are virtu-

ally constant envelope modu- lations and can be used in nonlinear satellite transponders

driven near saturation. The 16APSK and 32APSK modes are mainly targeted at profes-

sional applications, due to the higher requirements in terms of available SNR, but they

can also be used for broadcasting. While these modes are not as power efficient as the

other modes, the spectrum efficiency is much greater. They need to operate the satellite

transponder in a quasi-linear region or, alternatively, to adopt advanced predistortion

methods in the uplink station to minimize the effect of transponder nonlinearity, as we

shall se in Chapter 3.

The PL Framing subsystems accounts for the introduction of additional signalling sym-

bols (such as the Start Of Frame sequence), optional dummy frame generation, pilot

symbols insertion. The latter facilitate receiver synchronization. The DVB-S2 FEC

codes are in fact so powerful that carrier recovery may become a serious problem for

higher order modulations working at low SNRs in the presence of high levels of phase

noise in consumer low noise block (LNB) converters and tuners: this is particularly the

case with some low rate 8PSK, 16APSK, and 32APSK modes of DVB-S2. Pilots are
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unmodulated symbols, identified by I = Q = 1/
√

2, grouped in blocks of 36 symbols and

inserted every 16 payload slots, thus giving a maximum capacity loss of approximately

2.4% when used. Finally, scrambling for energy dispersal is carried out to comply with

the Radio Regulations for spectrum occupancy and to transmit a sort of signature of

the service operator, for a rapid identification in case of errors in the uplink procedures.

Square-root raised cosine baseband filtering and quadrature modulation are then applied,

to shape the signal spectrum and to generate the RF signal. There are three permitted

values for the rolloff factor: 0.35 as in DVB-S, plus 0.25 and 0.20 for tighter bandwidth

restrictions (see also Appendix C).

1.3.2 DVB-S2X extensions

The satellite world has changed a lot since DVB-S2 was first published in 2005. Higher

speeds, more efficient satellite communication technology and wider transponders are

required to support the exchange of large and increasing volumes in data, video and voice

over satellite. Moreover end-users expect to receive connectivity anywhere anytime they

travel, live or work. The biggest demand for the extensions to the DVB-S2 standard

Figure 1.6: DVB-S2X compared to DVB-S2 (64/128/256APSK and increased gran-
ularity)
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comes from video contribution and high-speed IP services, as these services are affected

the most by the increased data rates.

In the long run more throughput will be required for Direct-to-Home applications as

well with the rise of Ultra-High Definition TV (UHDTV) and the High Efficiency Video

Coding (HEVC) video compression standard to support the request of higher quality

images by the market. Ultimately, for satellite businesses, the creation and adoption

of these extensions will translate to higher efficiency, higher speed, more mobility and

greater service robustness to increase business and therefore revenues. The combination

of technologies incorporated in the new standard results in a gain of up to 20% for DTH

networks and 51% for other professional applications compared to DVB-S2 [2]. Many

vendors, operators and satellite specialists within the industry did agree with DVB and

have worked towards a new standard.

Hence, in March 2014, the DVB group released the DVB-S2X specifications [3]. The

technologies involved in the new extension are:

• Low roll off, smaller carrier spacing and advanced filter technologies.

• MODCOD and FEC upgrades (including more granularity, adding 64, 128 and

256APSK)

• Wideband implementation.

• Very Low SNR MODCODs to support mobile (land, sea, air) applications.

• Bonding of TV streams.

• Additional standard scrambling sequences.

Figure 1.6 depicts the spectral efficiencies achieved by the DVB-S standard series, over

the standard AWGN channel. The efficiency gain obtained by the DBV-S2X is remark-

able especially for high SNRs, and non negligible in general. However, in practice channel

impairments may significantly reduce such gain figures, and the introduction of higher

order APSK constellations may turn out to be self defeating, for instance if the if the

active components in the transmission chain exhibit a significant non-linear behavior.

In the following, we present the results of a test campaign, which was carried out on

available state of the art satellite modems, as well as by mean of computer simulations.

We analyse the impact of channel non-linearities and group delay distortion, togheter

with the benefits of countermeasures at either the transmitter or receiver side, such as

dynamic pred-istortion and post-compensation.



Chapter 2

Single Carrier per Transponder

In this chapter we analyse the impact of typical satellite channel impairments on the

overall end to end link performance, assuming a Single Carrier per Transponder config-

uration.

For a specific system architecture, and a selected Modulation and Coding Scheme, per-

formance requirements are specified as the Es/N0 ratio needed at the receiver side, for

QEF operation over AWGN channel, as introduced in Section 1.1. However, channel

impairments shall be taken into account for calculating link budgets, since they worsen

the robustness of the transmission chain against noise.

As we will show in the following sections, such impairments can be conveniently con-

sidered as additional terms to the overall noise level. As a consequence, the impact

of channel impairments can be effectively analysed and quantified via computer simu-

lations of reduced complexity, which do not resort directly to BER calculations, and

hence are not based on a specific transmission chain. Figure A.1 shows the reference

Simulink Block Diagram which will be used throughout this chapter, for characterising

the impact of both group delay variations and non-linear distortion on the transmitted

waveform.

2.1 Group Delay Distortion

The satellite channel frequency response is dominated by the IMUX and OMUX filters

on board the payload. Typically, these split the total input bandwidth in channels (also

referred to as transponders) of either 36, 54, 72 or 108MHz. Each channel is frequency

converted and amplified separately, before forwarding the signal through the downlink.

12
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This is to combat distortion due to intermodulation products, arising from the power

amplifier non-linearity (Section 4.1).

Recall that in practice, the full bandwidth of a digital signal with Symbol Rate Rs,

always exceeds the minimum one by a certain factor greater than 1. Since here the

focus is always on SRRC transmit and receive filters (Appendix C), the total signal

bandwidth is equal to Rs(1 +ρ), where ρ is the Roll-Off factor. Hence, in order to avoid

filtering out some spectral content, the maximum Symbol Rate shall be less than the

channel passband, by an amount depending on the actual excess factor 1+ρ. In addition,

distortion due to the group delay variations in the vicinity of the cut-off frequencies,

leads to lower further the maximum Symbol Rate. These considerations applies unless

an efficient equalization scheme is applied at either the transmitter or the receiver side,

as we shall see in Chapter 3.

2.1.1 A Model for Channel Filters

The IMUX and OMUX filters frequency response are best described in terms of magni-

tude and group delay variations. Typically, the latter is severe in the pass band bound-

aries, due to actual technological limitations. This causes a non negligible amount of

distortion on the transmitted waveform, when the total signal bandwidth approaches

the channel pass band. In [4, H.7] some indications are given on how to model the

behaviour of the channel filters. However, here we prefer to focus on some specification

masks required by the Satellite Operator. These are given for both magnitude and group

delay variations, referring to the input section and the overall section. The former is

dominated by the IMUX filter only, while the latter refers to the frequency response of

the transponder as a whole, which is shaped by the cascade of both IMUX and OMUX.

Figure 2.1 shows the baseband model selected for the frequency response of a 36MHz

transponder. The IMUX and OMUX have been modelled with IIR digital elliptic filters

of order 3, as suggested in [1, Ch. 9]. The effort has been the one of optimizing the

filters coefficients in order to skim the mask specifications, so to have a model meant for

a worst case scenario.

2.1.2 Estimating The Group Delay Distortion

At the receiver side, due to the non ideal channel frequency response, the SRRC receive

filter is not matched to the transmitted waveform spectrum. Hence, after timing and

sampling, the received symbols are affected from Inter Symbol Interference with variance

σ2ISI . It turns out that the ISI statistics is well approximated by the complex normal
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Figure 2.1: Channel frequency response model (blu lines) versus specification masks
(red dashed lines)

distribution with mean value given by the reference constellation point and the same

variance. Hence, the ISI power σ2ISI can be considered as an additional term to the

noise power spectral density at the receiver side. For any System Architecture and a

selected Modulation and Coding Scheme, this translates in an higher Es/N0, required

at the decision point for QEF operation. In formulae

[
Es

N0 + σ2ISI

]LSC
req

[dB] =

[
Es
N0

]AWGN

req

[dB]. (2.1)

Where the superscript LSC (Linear Satellite Channel) refers to the idealised scenario

where the dominant channel impairment is indeed the distortion due to group delay

variations. Assuming a fixed average symbol energy, this means that the robustness of

the system against noise is reduced compared to the ideal AWGN channel.
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Figure 2.2: Link Degradation through a 36MHz transponder, 16APSK 2/3

From 2.1, with basic algebraic operations, we get to

[
Es
N0

]LSC
req

[dB] =

[
Es
N0

]AWGN

req

[dB] +

[
1 +

σ2ISI
N0

]LSC
[dB]. (2.2)

The quantity D = 1 + σ2ISI/N0 is greater than or equal to one, and estimates of how

much the signal to noise ratio shall exceed the reference value over AWGN, in order to

meet the same error performance. We remark that Equation 2.2 gives a measure for

the Link Performance Degradation over LSC, where the dominant impairment is the

distortion due to group delay variations, and depends on the actual Symbol Rate and

Roll-Off factor. Furthermore, In the case of fixed average symbol energy, from 2.1 and

2.2 it is straightforward that σ2ISI → NAWGN
0 ⇒ NLSC

0 → 0+, hence the link becomes

intolerant to noise, and the degradation explodes to +∞.

Figure 2.2 shows the degradation in dB measured in simulation for the channel model

of Figure 2.1, for different Symbol Rates and ROFs. We observe the following:

1. For Symbol Rates close to 28MBaud, all ROFs yield roughly the same performance.

However, ROF 20% behaves slightly better than the 35% one, which already suffers

from band cut-off, and than 5%, which is highly sensible to ISI.

2. As expected, ROF 35% is impractical for Symbol Rates higher than 30MBaud, as

degradation explodes due to filters cut-off effect.

3. ROF reduction down to 5% is only beneficial for Symbol Rates beyond 33MBaud,

where the degradation reaches levels which may be unacceptable.
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Based on these considerations, and if not otherwise specified, in the following we choose

to apply ROF 20% for characterizing non-linear distortion, as well as for giving com-

plete results on the total degradation due to the satellite transponder, in single carrier

configuration.

2.2 Non-Linear Distortion
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Figure 2.3: TWTA Non Linearized Profile, AM/AM and AM/PM curves.

In a satellite transmission chain, the sources of non-linearities are multiple. Among

these, the most relevant are the High Power Amplifier at both the ground station and

on board the payload. However, the first is typically operated with a large OBO, so

to limit the distortion introduced in the uplink. This is feasible because, at the ground

station, the HPA dimensions and power supply are not critical. It applies the contrary

to the one on-board the satellite, where the total available power is a scarce resource. In

the following, we will consider the HPA in orbit as the dominant source of non-linearity

on the satellite chain, as suggested in [4].

Figure 2.3 shows the TWTA (Non Linearised profile) introduced in [4]. This latter is

often used to model the HPA behaviour as a memoryless non-linearity, assumed as worst

case scenario. Its input-output transfer characteristic is best described by mean of the

AM/AM and AM/PM curves. In particular, both curves only depend on the amplitude

(i.e. power) of the input signal. Figure 2.4 shows the effect of non-linearity on the

constellations defined in [4]. The IBO levels chosen for these and the following plots,

come from a set of selected optimum back off levels, dependent on any given modulation

and coding scheme, as we shall see later.

For the moment, we notice the following:
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(a) QPSK, OBO 0.39dB
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(b) 8PSK, OBO 0.39dB
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(c) 16APSK, OBO 1.68dB
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(d) 32APSK, OBO 3.77dB

Figure 2.4: Constellation warping due to memoryless non-linearity. Reference con-
stellations (black crosses) versur warped constellation points (blue dots)

• for a given reference constellation, the ratios between the radii of different rings

are modified,

• all symbols in the reference constellation undergo a phase shift which depends on

the ring to which they belong.

These observations translate in the conclusion that the impact of the non-linearity on

PSK constellations reduces to a static phase shift, since all symbols belong to a single

ring. This can be easily compensated by a phase recovery algorithm at the receiver side.

Here we apply the Pilot Aided one suggested in [5]. On the other hand, despite the

higher back off level applied, APSK constellations undergo an important warping, and

after phase recovery, the relative position between different symbols is altered.

In practice, any symbols constellation is aimed at modulating a selected baseband trans-

mit pulse shape. Figures 2.6a to 2.6c give an idea of the impact of the non-linearity on

the modulated baseband waveforms (magnitudes). In the distortion free channel (blue

lines), the received waveform is shaped by the convolution of the SRRC transmit and

receive filters, hence the overall isolated pulse is of the Raised Cosine type, which is of



Chapter 1. Single Carrier per Transponder 18

-‐5,0	  

-‐4,5	  

-‐4,0	  

-‐3,5	  

-‐3,0	  

-‐2,5	  

-‐2,0	  

-‐1,5	  

-‐1,0	  

-‐0,5	  

0,0	  

-‐10	   -‐9	   -‐8	   -‐7	   -‐6	   -‐5	   -‐4	   -‐3	   -‐2	   -‐1	   0	   1	   2	   3	   4	   5	  

O
BO

	  [d
B]
	  

IBO	  [dB]	  

CW	  

QPSK	  

8PSK	  

16APSK	  

32APSK	  

Figure 2.5: TWTA Non Linearised Profile AM/AM Characteristics for Modulated
Carriers

Nyquist (Appendix C). Assuming perfect timing, this implies that after sampling, the

received symbols (blue crosses) are free from ISI. On the other hand, over a non-linear

channel, the shape of the transmitted waveform is distorted by the channel non-linearity,

hence the SRRC filtered received waveform (red lines) looses the Nyquist property. As a

consequence, the received sampled symbols (red crosses) are affected from ISI, and their

position is randomly distributed around the warped constellation points.

Figure 2.5, shows the AM/AM characteristic of the TWTA (Non Linearised Profile)

for modulated carriers. Applying the non-linearity to a Continuous Wave (CW, dotted

line), yields exactly the curve of Figure 2.3. However, when the non-linearity is applied

to a modulated carrier, in the vicinity of the saturation point, the actual OBO differs

from the reference one of approximately −0.4dB for PSK constellations, and −0.7dB

for APSK constellations. This is due to the fact that the transmitted BB waveform

amplitude, may instantaneously exceed the saturation, thus incurring in clipping. We

stress that this result is not dependent on the carrier frequency, nor on the actual symbol

rate, but only on the transmitted waveform magnitude, and on the AM/AM transfer

characteristic of the TWTA.

In conclusion, due to the channel non-linearity, any symbol constellation undergoes a

warping of the reference points in the complex plane, together with the addition of ISI,

as sketched in Figure 2.7. Both effects need to be quantified, in order to determine the

optimum back-off level for each modulation and coding scheme. The latter is the best

trade off between

1. distortion of the constellation due to vicinity at the saturation point,
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(a) 8PSK, OBO 0.39dB
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(b) 16APSK, OBO 1.68dB
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(c) 32APSK, OBO 3.77dB

Figure 2.6: Non-linear distortion of BB Modulated Waveform (magnitude). Plots
normalized for unit power. Distortion free (blue lines and dots) versus non-linear chan-

nel (red lines and dots)
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(d) 32APSK, OBO 3.77dB

Figure 2.7: Impact of the non linearity on the symbol constellations at the decision
point, after Phase Recovery. Scatter plots normalized for Es = 1

2. loss in power due to high back-off level,

and minimizes the total link performance degradation, as we will argument in detail in

the next session.

2.2.1 A measure for non-linear distortion

Channel non-linearities as well reduce the robustness of the end-to-end link against noise.

In this context not only the ISI, but also the constellation warping and loss in power due

to the back-off applied shall be taken into account. The link performance degradation

due to the TWTA non-linearity, can be expressed as

Dtot[dB] =

[
Es
N0

]NLC
req

[dB]−
[
Es
N0

]AWGN

req

[dB] +OBOmodcarrier[dB], (2.3)

Equation 2.3 is a convex function of the actual Input Back-Off (IBO) level applied to the

TWTA, and always has a global minimum, called the optimum back-off. This represents

the best trade off between the distortion of the transmitted waveform, which increases in
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the vicinity of the saturation point, and the loss in power at the output of the TWTA due

to the back-off applied, and minimizes the link performance degradation over non-linear

channel.

In past works [6], Equation 2.3 had been quantified via computer simulations, applying

the channel non-linearity with a certain TWTA profile, to a complete transmission chain,

and evaluating the error rate at the receiver side. In this way, Dtot represents the delta in

dB between the Es/N0 required at the decision point for QEF operation over non-linear

channel, and the reference (lower) one, required over AWGN. Altough this approach

is indeed correct, it requires very computational and time demanding simulations. In

addition, using this methodology, it seems that the link degradation is system dependent,

when it’s not the case. we will now outline an alternative method to quantify 2.3, which

relies on the received symbol constellation only, together with the knowledge of the

performance in terms of Es/N0 for QEF, over AWGN.

According to Figure 2.3, the TWTA introduces a global phase shift on all the symbols

centroids in the constellation, which depends on the average symbol energy at the TWTA

input. We stress that this static effect can be easily compensated at the receiver side,

appliyng a proper phase recovery algorithm.

However, as we already outlined in section 2.2, at the demodulator side, after phase

recovery and AGC, the relative positions between different symbols centroids in APSK

constellations are altered both in amplitude and in phase. This is because each ring of

symbols lies at a different energy level, and hence it is subject to a different transforma-

tion through the TWTA.

To fix the ideas, Figure 2.8a depicts the quantities on interest in the analysis of non-

linear distortion, with focus on two symbols at different energetic levels in a 16APSK

constellation (first quadrant). Note that the received symbols centroids (red dots) are

displaced from their reference positions (black dots). With focus on the DVB-S2 specifi-

cations [4], this reduces the strength of the system against noise, since the LDPC decoder

relies on the log-likelihood informations at the output of the soft demodulator, which

are based on the reference non-warped constellation, as well as on the relative position

between symbols. Here we propose a measure for quantifying such degradation, which

is based on the relative position between symbols having the same phase, but lying on

different rings, on the reference constellation.

With reference to Figure 2.8a, let dref be the distance between the two symbols having

phase π/4 and lying on the two different rings of a 16APSK constellation (first quadrant),

and dwarp its warped version. Then err2 = (dref − dwarp)
2 is defined as the energy
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of the distance difference between corresponding points in the reference and warped

constellations, and depends on the displacement of both symbols.
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Figure 2.8: Illustration of quantities involved in distortion estimation for 16APSK.

Two observations follow:

1. In PSK constellations, the distance difference measure is not even defined, because

all symbols lie on the same ring. In this case, the pilot based AGC and phase

recovery algorithm brings all symbols back in their reference positions on the

complex plane, since the pilot itself belongs to the same ring.

2. In APSK constellations with more than 2 rings, the distance difference measure is

defined between the innermost and the outermost rings.

To justify Observation 2, and with reference to Figure 2.9b, let’s focus on the 32APSK,

which has three concentric rings. Notice that the symbols with phase π/4 on the inner-

most and middle rings undergo a displacement, but towards the same direction. More in

general, no symbol in the constellation gets closer to the one belonging to the innermost

ring, and hence the related soft informations at the LDPC input will reasonably not be

affected. On the other hand, the outermost ring shirks in the opposite direction, and is

subject to a sensibly different phase shift. As a conclusion, the relative position between

symbols belonging to the innermost and outermost rings is warped affecting negatively

the soft demodulation.

In addition, the warped constellation points are affected from ISI, which can be modelled

as a complex random variable having mean arx,m, and variance σ2ISI,m for m = 1 . . .M .

In this case the ISI variance is different for symbols belonging to different rings, nom-

inally the higher the ring energy level, the higher the ISI variance. Figure 2.8b plots

the histograms of selected received symbols (real part), together with the theoretical

gaussian probability density function, having the same mean and variance (red dashed
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line). The match is indeed acceptable, and it increases with the constellation order, as

we expect from the Central Limit Theorem.

Now, taking a cue from Equation 2.2, we infer the empirical relation

[
Es
N0

]NLC
req

[dB] =

[
Es
N0

]AWGN

req

[dB] +

[
1 +

σ2ISI + err2

N0

]NLC
[dB]. (2.4)

where σ2ISI = 1/M
∑M−1

m=0 σ
2
ISI,m is the average of ISI variance. Then, by replacing 2.4

in 2.3, we get

Dtot[dB] =

[
1 +

σ2ISI + err2

N0

]NLC
[dB] +OBOmodcarrier[dB]. (2.5)

Equation 2.5 seeks to weight the loss in performance due to constellation warping to-

gether with the effect of ISI, in the expression of the total link performance degradation.

This is a heuristic approach, whose effectiveness has been be compared with former

results achieved at Eutelsat and at the European Space Agency, as we will see shortly.
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Figure 2.9: Illustration of symbol displacement for APSK constellations, first quad-
rant.

2.2.2 The algorithm devised

With reference to the Block Diagram of Figure A.1, and neglecting the impact of the

channel filters, the procedure for finding the optimum back off consists in the following

steps:

1. Choose a particular Modulation and Coding scheme, whose performance is meant

for a specific System Architecture. Recall that in this work we focus on the DVB-S2

specifications [4], if not otherwise specified.
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2. Choose the Roll-Off factor ρ for the SRRC pulse shaping and matched receive

filters. Here we assume ρ = 0.20.

3. Choose a particular TWTA transfer characteristic. Here we consider the Non-

linearised profile introduced in [4].

4. Sweep the IBO level among the AM/AM transfer characteristic of the TWTA,

with a step of 1dB.

5. For each IBO value, run the block diagram of Figure A.1. We process 104 of

symbols for each constellation element. Hence roughly M × 104 symbols in total

shall be considered, for precision of variance estimates.

6. Estimate the Output Back Off at the TWTA output.

7. Knowing the transmitted integer symbols αtx, sort the corresponding warped and

ISI corrupted received complex ones. Then estimate the centroids arx,m, hence

err2 and finally σ2isi,m for m = 1 . . .M .

8. compute 2.5.

2.2.3 Simulation Results

0	  

1	  

2	  

3	  

4	  

5	  

6	  

7	  

8	  

0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	  

O
BO

,	  D
eg
ra
da
5o

n,
	  T
ot
al
	  D
eg
ra
da
5o

n	  
[d
B]
	  

IBO	  [dB]	  

32APSK	  4/5	  

16APSK	  3/4	  

8PSK	  5/6	  

QPSK	  1/2	  

Figure 2.10: Link degradation due to channel non-linearity, for different MODCODs
in the DVB-S2 specifications. The OBO curve (black dotted line) is referred to an

unmodulated Continuous Wave.

Figure 2.10 shows some link degradation curves in the non-linear channel, where the

link degradation is dominated by the TWTA Non-linearised profile.
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Figure 2.11 compares the performance required to achieve the MODCOD dependent

spectral efficiencies of the DVB-S2 specifications, over both AWGN and non-linear chan-

nel. The signal to noise ratio here is best expressed in terms of Csat/N i.e. as the ratio

between the carrier power available when the TWTA is driven in saturation, versus

N = N0 × Rs, i.e. the noise power on a bandwidth equal to the nominal symbol rate.

Notice that the performance of PSK constellations over non-linear channel worsen in a

small extent only. This is the main reason why in the last decades they had always been

preferred for digital satellite communications, as the TWTA can be driven very close

to saturation, exploiting all the available power in the downlink. On the other hand,

APSK constellations, although optimized to achieve better performance over non-linear

channel than classical QAM, is subject to an important degradation, which increases

considerably their working point, according to 2.5.
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Figure 2.11: Spectral efficiency versus required Csat/N for DVB-S2 specifications.

2.3 Total Link Degradation

The results on link degradation devised in sections 2.1 and 2.2 apply for ideal channels

where group delay variations and non-linear distortion are considered separately. How-

ever, in all the practical satellite transmission chains, such impairments jointly impact

the link performance. Note that we can’t draw correct conclusions about the total link

degradation by addition of the two contributions, as the cascade made by the IMUX -

TWTA - OMUX is a mixed linear and non-linear system, and the superposition principle

doesn’t hold. It can be verified in simulation that the overall degradation approaches the

addition of the three contributions when the TWTA operated in the linear region, for

high OBO values. however this is not a case of interest for the Satellite Operator, which

seeks to operate the TWTA the closer possible to the saturation, i.e. at the optimum

back-off level, as discussed in Section 2.2. As a conclusion, we run the algorithm of
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section 2.2.1 considering this time the full chain of Figure A.1 for selected MODCODs,

ROFs and Symbol Rates.

We choose to neglect the power loss due to the channel filters. It accounts for roughly

0.25dB for the IMUX and for 0.15dB for the OMUX. This is because the former can

be easily compensated increasing the power in the uplink, the latter can be included in

Csat for Link Budget calculations.

MODCOD QPSK 1/2 QPSK 2/3 8PSK 3/5 8PSK 5/6
PPPPPPPPPRs

ROF
20% 5% 20% 5% 20% 5% 20% 5%

27.5Mbaud 0.54 - 0.58 - 0.85 - 1.62 -

30.0Mbaud 0.59 - 0.72 - 1.00 - 2.08 -

32.5Mbaud 0.81 0.87 1.09 1.19 1.71 1.91 4.80 5.63

36.0Mbaud 1.82 1.79 3.02 2.95 7.28 6.98 NA NA

Table 2.1: Total degradation in dB for PSK MODCODs, over a 36MHz transponder.
Values referred to the optimum back-offs of table 2.2.

.

Table 2.1 shows the total transponder degradation for PSK modulated waveforms, where

we apply the model of Figure 2.1 and the TWTA profile of Figure 2.3. We observe the

following:

1. QPSK modulated carriers can exploit the whole transponder pass band. In fact,

with focus on the last row of the table, we notice that even when the Symbol

Rate alone approaches the channel bandwidth, the distortion due to group delay

variation and cut-off effect of the filters accounts for 1.5dB to 2.5dB of extra

degradation. This is acceptable, since the QPSK MODCODs defined in [4] have

very low performance requirements over AWGN (Table 2.2).

2. In order to keep the transponder degradation at acceptable levels, 8PSK modulated

carriers shall not fill the transponder bandwidth by more than 30-32.5Mbaud,

depending on the coding strength.

3. Applying a Roll-Off reduction down to 5% is not beneficial. This yields a very

small gain when the symbol rate approaches the transponder pass band, and is

self-defeating otherwise.

Note that, an effective equalization scheme at either the transmitter or the receiver side,

may minimize the group delay distortion [7], thus improving link performance when the

total signal bandwidth does not exceeds considerably the transponder pass band.
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Figure 2.12: Total degradation curves for APSK constellations, compared with results
published by ESA.

Figure 2.12 shows the total link degradation curves for both the 16APSK 3/4 and

32APSK 4/5, for the transponder model devised. In addition, a comparison is made

with some reference points published by Gaudenzi et al in [6], which are meant for a

30% ROF, and a less critical channel frequency response. In particular, the latter was

assumed as maximally flat in the passband for both the IMUX and OMUX filters, while

the group delay variation is non negligible only starting from a 12MHz deviation from

the centre frequency.

Note that, despite the transponder model and the Roll-Off are different, the curves in

Figure 2.12 match with a good approximation, and yield the same optimum back-offs.

In conclusion, Table 2.2 shows the selected optimum back-off and relative total link

degradation for all the MODCODs included in the DVB-S2 specifications, for the 36MHz

transpinder presented in this chapter, and assuming ROF 20%, Rs = 27.5Mbaud, TWTA

Non Linearised Profile.
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MODCOD Spectral
Efficiency
[bit/s/Hz]

Ideal
Es/N0

[dB]

IBO
[dB]

OBO
[dB]

Dtot

[dB]

QPSK 1/4 0.490243 -2.35 0.0 0.39 0.46

QPSK 1/3 0.656448 -1.24 0.0 0.39 0.48

QPSK 2/5 0,789412 -0.30 0.0 0.39 0.50

QPSK 1/2 0.988858 1.00 0.0 0.39 0.54

QPSK 3/5 1.188304 2.23 0.0 0.39 0.59

QPSK 2/3 1.322253 3.10 0.0 0.39 0.63

QPSK 3/4 1.487473 4.03 0.0 0.39 0.69

QPSK 4/5 1.587196 4.68 0.0 0.39 0.74

QPSK 5/6 1.654663 5.18 0.0 0.39 0.78

QPSK 8/9 1.766451 6.20 0.0 0.39 0.89

QPSK 9/10 1.788612 6.42 0.0 0.39 0.92

8PSK 3/5 1.779991 5.50 0.0 0.36 0.84

8PSK 2/3 1.980636 6.62 0.5 0.39 0.98

8PSK 3/4 2.228124 7.91 0.5 0.39 1.21

8PSK 5/6 2.478562 9.35 1.0 0.43 1.56

8PSK 8/9 2.646012 10.69 1.0 0.43 2.06

8PSK 9/10 2.679207 10.98 1.0 0.43 2.20

16APSK 2/3 2.637201 8.97 4.0 1.39 2.74

16APSK 3/4 2.966728 10.21 5.0 1.69 3.31

16APSK 4/5 3.165623 11.03 5.0 1.68 3.75

16APSK 5/6 3.300184 11.61 6.0 2.07 4.06

16APSK 8/9 3.523143 12.89 7.0 2.52 4.92

16APSK 9/10 3.567342 13.13 7.0 2.52 5.11

32APSK 3/4 3.703295 12.73 8.0 3.20 5.42

32APSK 4/5 3.951571 13.64 9.0 3.77 6.15

32APSK 5/6 4.119540 14.28 9.0 3.76 6.69

32APSK 8/9 4.397854 15.69 10.0 4.40 8.27

32APSK 9/10 4.453027 16.05 11.0 5.10 8.77

Table 2.2: Es/N0 performance at QEF for DVB-S2 specifications, optimum back off
and total link degradation for 36MHz transponder (TWTA Non Linearised profile, ROF

20%, Rs = 27.5Mbaud)



Chapter 3

Improving Link Performance

The link degradation experienced by APSK modulated waveforms makes counterproduc-

tive driving the HPAs of the transmission chain close to saturation. As a consequence,

it is not possible to fully exploit all the available power in downlink. Considering also

the relatively high SNRs required by the the MODCODs based on multilevel constella-

tions (see Table 2.2), it turns out that the spectral efficiencies yielded by the latter, are

just not reachable in practice for brodcasting systems, and only viable for professional

application with an inefficient use of ACM. In this chapter we analyse three possible

countermeasures to minimize the impact of satellite channel impairments on the overall

link performance. Such techniques enable improving the transponder utilisation, since

they allow safely reducing the optimum-back off for APSK constellations, and increasing

the signal bandwidth at the same time.

3.1 Pre Compensation Techniques

3.1.1 Static Pre-distortion

Recall from section 2.2.1 that the constellation warping effect constitutes an important

component in the evaluation of 2.5. This is because the log-likelihood informations,

calculated by the soft demodulator at the receiver side, rely on the reference unwrapped

constellation. However, the displacement of the received symbols centroids is a deter-

ministic function of the TWTA profile, and of the actual IBO applied. Hence, it can be

compensated at either the receiver or the transmitter side.

In the first case, the post compensation involves optimizing the soft demodulation, which

should rely on the warped constellation, rather than on the reference one. However, this

turns in an added complexity at the receiver side, which may be impractical for consumer

29
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applications [6]. A second solution consists in modifying the signal waveform at the

transmitter side. This allows pre-compensating the effect of the TWTA non-linearity, so

that at the receiver side all symbol centroids are brought back to their reference position.

In [6] an LMS based adaptive algorithm is devised, which computes iteratively the pre-

distorted transmit constellation. This is done offline in simulation, in the absence of

AWGN, and for a specific TWTA profile and IBO. Each loop iteration consists of three

steps:

1. Apply a random seed to the simulation block diagram

2. Generate a window of W symbols at the SRRC receive filter sampler output

3. Compute the error signal at the end of each block

4. Update the pre-distorted constellation.

The last two tasks are achieved using the following equations:

ρ(n)c (s)exp{jθ(n)c (s)} =
1

W

∑
k∈l(n), sW+1≤k≤(s+1)W

r(k), n = 1, . . . ,M, s = 1, . . . , S.

(3.1)

|e(n)(s)| = ρ(n)c (s)− ρ(n)ref (3.2)

ρ
(n)
tx (s+ 1) = ρ

(n)
tx (s)− γ|e(n)(s)|. (3.3)

ψ(s) =


arg{e(n)(s)} − 2π if arg{e(n)(s)} > 2π

arg{e(n)(s)}+ 2π if arg{e(n)(s)} < 2π

arg{e(n)(s)} otherwise

(3.4)

θ
(n)
tx (s+ 1) = θ

(n)
tx (s)− γψ(s) (3.5)

where S is the total number of iterations, subscript indices c and tx refer to the actual

received symbols centroids and transmit constellation respectively, γ is the algorithm

adaptation parameter, and ρ
(n)
tx exp{jθ

(n)
tx }, n = 1, . . . ,M is the pre-distorted constella-

tion at the end of the algorithm execution. In operation, the pre-distorted constellation is

loaded into a look-up table which is addressed in real time by the modulator, depending

on the actual transmitted symbol.

We found that by choosing γ = 0.1 and W = 104, all received symbols centroids are

brought back at their reference position after S = 75 iterations. Figure 3.1 depicts the

results for both the 16APSK and 32APSK. The static pre-distortion restores the original

ratios between different radii amplitudes, and compensates the global constellation phase

shift as well as the relative ones (sec 2.2). Note that, if the DAGC and Phase Recovery
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Figure 3.1: Static pre-distortion on APSK constellations. Pre-distorted constellation
(red dots) versus received symbols centroids (green dots).
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algorithms rely on the pilot symbols, as it is the case here, the static pre-distortion shall

be applied to the pilot symbol as well, as shown in Figure 3.1. For completeness, we

stress that for the simulation sake, and unlike any real case, the TWTA is considered

as the only source of phase shift on the constellation, and therefore the phase recovery

algorithm becomes unnecessary.

3.1.2 Dynamic Pre-distortion

Despite the static pre-distortion restores the symbols centroids, it doesn’t reduce the

Inter Symbol Interference at the decision point. In Chapter 2 we approximated the ISI

as a Gaussian Distributed random variable, with reference to its statistical second order

description σ2isi. This proved a successful assumption to quantify the impact of channel

impairments on the robustness of the System against noise.

However, the nature of ISI is not random, and depends mostly on the Transponder

characteristics, which here we summarize with the channel filters and the TWTA non-

linearity. The dynamic pre-distortion algorithm devised in [6] allows reducing the clus-

tering effect around the constellation centroids, by exploiting the memory of the channel.

This means that the pre-distorted constellation is not conditioned only on the current

transmitted symbols, as in Equation 3.1, but also on the (L−1)/2 preceding and (L−1)/2

following symbols (L symbols in total). This calls for an increased look-up table size of

T = ML symbols.

The dynamic pre-compensation is in turn performed offline on a target constellation,

based on the channel frequency response (dominated by the IMUX and OMUX filters),

the TWTA Profile and the IBO applied. The modulator will then read in real time the

look-up table, with an address determined by the current and the (L− 1)/2 pre-cursors

and post-cursors transmitted symbols. With focus on the algorithm implementation,

there are two main significant differences respect the steps to be performed for static pre-

distortion. First, the simulation block diagram shall now involve the whole transponder

model, rather the TWTA non-linearity only. In addition, the look-up table aimed to pre-

compensating the transmit constellation, at the modulator side, is now an L-Dimensional

one.

In practice, to meet specific real time constraints, L shall not be grater than 5, that is 2

pre-cursors and post-cursors are taken into account. However, it is also straightforward

to think that increasing the memory wouldn’t produce significant improvements on ISI

reduction, at least not to justify the consequent complexity. Actually, for M = 32, and

considering the pilot symbol, the number of entries is already of the order of 335 ≈ 4×107.

It follows that L = 3 is the only feasible memory for constellations of order 32 and higher.
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On the other hand, simulation results show that, although feasible, considering a channel

memory of L = 5 brings improvements of less than 0.1dB on link performance for PSK

constellations. In conclusion here we choose L = 3 for all the constellations in [4].
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Figure 3.2: Dynamic Pre-distortion based on transponder model for 16APSK (IBO
2dB) and 32APSK (IBO 5dB). A-B Received symbols with no pre-compensation, C-D

pre-distorted constellations, E-F received symbols with dynamic pre-distorsion.

Figure 3.2 shows qualitatively the improvement of dynamic pre-distortion on the APSK

constellations, for a Symbol Rate of 27.5Mbaud. Looking at 3.2c and 3.2d it appears

the ISI reduction comes at the expenses of an increased outer constellation points ampli-

tude. In fact, for a fixed IBO and adaptation gain, increasing the number of algorithm

iterations reduces the ISI but also increases the OBO. This is because of the increased
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Peak to Average Power Ratio and the TWTA clipping effect. As a consequence, the

optimum number of iterations is not determined simply by the centroids RMS, but the

cost function to minimize is of the type of Equation 2.5, where now the dependency is

not on the IBO, which is fixed, but on the total number of algorithm iterations S. We

found the optimum trade off applying γ = 3 × 10−2 and S = 20, 30, 50, 80 for QPSK,

8PSK, 16APSK and 32APSK respectively. In all cases the initial constellation was the

static pre-distorted rather than the reference one, in order to speed up the algorithm

execution.

3.1.3 Simulation Results

We present here our results in simulation, concerning the improvements of pre-compensation

techniques. All refer to ROF 20%, as discussed in Chapter 2. We also encourage the

reader to compare what follows with the performance declared by Newtec in [8, Ta-

ble 2.1] and referring to Equalink R©, the implementation the company offers into its

professional modulators.

MODCOD QPSK 1/2 QPSK 2/3 8PSK 3/5 8PSK 5/6
HH

HHHHRs
TD ∆ TD ∆ TD ∆ TD ∆

27.5Mbaud 0.52 0.01 0.57 0.01 0.68 0.17 1.04 0.61

30.0Mbaud 0.54 0.05 0.62 0.10 0.74 0.26 1.19 0.89

32.5Mbaud 0.62 0.19 0.74 0.35 1.01 0.70 1.95 2.85

36.0Mbaud 1.00 0.82 1.33 1.69 2.09 5.19 6.13 > 10

Table 3.1: Total Degradation in dB for PSK MODCODs with dynamic pre-distortion,
and gain versus performance without pre-compensation.

.

Table 3.1 summarizes the performance for selected PSK MODCODs in the DVB-S2

standard, together with the gain in dB on the values of Table 2.1. As known, in this

case the optimum back-off is already close to the TWTA saturation, so that it can’t be

reduced any further. However, consider an increase up to 0.1dB in the OBO values of

Table 2.2, according to what discussed in section 3.1.2. On the other hand, there is a

net link performance improvements when the Symbol Rate approaches the transponder

pass band, which becomes more and more relevant for higher MODCODs. In conclusion,

the dynamic pre-compensation is able to recover not only the distortion due to channel

non-linearity, but it enables equalizing the channel frequency response at the transmitter

side. In practice, commercially available demodulators often perform equalization by



Chapter 2. Improving Link Performance over Non-linear Channel 35

0,0	  

0,5	  

1,0	  

1,5	  

2,0	  

2,5	  

3,0	  

3,5	  

4,0	  

4,5	  

5,0	  

0	   1	   2	   3	   4	   5	   6	   7	  

To
ta
l	  D

eg
ra
da
5o

n	  
[d
B]
	  

IBO	  [dB]	  

TD	  No	  Predistor5on	  

TD	  Sta5c	  Predistor5on	  

TD	  Dyn	  Predistor5on	  M	  =	  3	  

OBO	  No	  Predistor5on	  

OBO	  Dyn	  Predistor5on	  

DP	  based	  on	  
TWTA	  profile	  	  

DP	  based	  on	  
Transponder	  
model	  

(a) Symbol Rate 27.5Mbaud (b) Symbol Rate 30Mbaud

Figure 3.3: 16APSK 3/4 simulated performance. Dynamic Pre-distortion optimized
for 45 iterations.

default at the receiver side [7] so that one may expects some further improvement on

performance in both pre-distorted and non pre-distorted waveforms.

Figures 3.3 and 3.4 show the performance simulated for 16APSK 3/4 and 32APSK 4/5

respectively. We observe the following:

1. The static pre-distortion alone yields a reduction of the Total Link Degradation

of 0.6dB for 16APSK and 1.3dB for 32APSK, compared to the non pre-distorted

waveform at the same Symbol Rate. Furthermore, it reduces considerably the

optimum back-off in both cases.

2. The dynamic pre-distortion lowers the Total Link Degradation down to 2dB for

16APSK and to 3.1dB for 32APSK, and it is robust against group delay distortion

when increasing the Symbol Rate.

3. For a fixed IBO, the pre-distorted waveforms increases the TWTA OBO of roughly

0.2dB for 16APSK and 0.4dB for 32APSK.

The performance concerning dynamically pre-distorted waveforms are achieved when

the pre-distortion algorithm is based on an accurate model for the Transponder, and in

particular
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Figure 3.4: 32APSK 4/5 simulated performance. Dynamic Pre-distortion optimized
for 75 iterations.

• the channel frequency response (amplitude and group delay variation),

• the actual Symbol Rate,

• the TWTA Profile,

• the actual IBO.

In practice, the channel frequency response is measured with the satellite in orbit, by

sweeping in frequency an unmodulated carrier. Hence only the overall section frequency

response is typically available. In this case, the pre-distortion algorithm runs on a

simplified transponder model, where the cascade IMUX - TWTA - OMUX reduces to

TWTA - (IMUX - OMUX). This does not turns in a remarkable loss of performance, as

the results in [8] suggest.

However, if neither the frequency response of the overall section is known a priori, the

dynamic pre-distortion can be performed based on the TWTA Profile only (red dashed

lines). This further model simplification still improves link performance, but makes

the waveform to loose robustness against group delay distortion. In other words, the

dynamic pre-distortion no longer has the channel equalization property, and performance

is sensibly dependent on the actual Symbol Rate. In this case, the channel equalization

task is completely left at the demodulator.
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3.2 Post Compensation Techniques

The effectiveness of pre-compensation techniques is sensibly dependent on the knowledge

of the satellite channel characteristics, and the pre-distorted constellations are then

optimised accordingly, as discussed in section 3.1. When the complexity at the receiver

side, and hence the cost of the demodulator itself, is not a hard limitation, it is possible to

design successful post-compensation algorithm which deal with the waveform distortion,

due to channel non-linearity. This is the choice that Novelsat made for its professional

demodulators NS2000 and modems NS3000. The actual algorithm implementation is

proprietary, but we measured in laboratory the Total Degradation curves over ideal non

linear channel for the post-compensated waveforms. This has been done using a couple of

Novelsat modulator and demodulator, and according to the following procedure, which

applies for both the DVB-S2 and the proprietary NS3 architectures:

1. select the MODCOD scheme,

2. decrease the noise level in the channel emulator until the demodulator locks,

3. assert that the QEF operation has been reached after 105 frames without errors.

4. measure the noise floor through the Signal Analyser, and hence the Es/N0 required

over AWGN.

5. enable the non-linearity in the channel emulator, with a specific IBO and OBO.

6. repeat steps 2 and 3,

7. disable the non-linearity,

8. measure the noise floor through the Signal Analyser, and hence the Csat/N .

9. evaluate Dtot using equation 2.3.

Figure 3.5 show the Total Degradation curves, which have been measured for three se-

lected DVB-S2 MODCODs. In addition, a comparison is made with curves obtained in

simulation, referring to the same performance over AWGN, measured with the demod-

ulator of Novelsat. In particular, we seek to evaluate the effectiveness of Novelsat Non

Linear Mode R© against non-compensated and dynamically pre-distorted waveforms, over

ideal non-linear channel. First, with reference to Figures 3.5a and 3.5b that an IBO of

at least 0.5dB should be applied for safe operation, at least for high order MODCODs,

like the ones with consider here.
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Figure 3.5: Novelsat DVB-S2, Non Linear Mode Total Degradation over ideal Non
Linear Channel (black lines), versus Total Degradation for non compensated and dy-

namically pre-distorted waveforms (blue and red dashed lines).
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As known, waveforms with constant envelope, like the PSK modulated ones, are inher-

ently robust against channel non-linearities, and the TWTA on board the payload can

be driven close to saturation. In this case the pre-compensation yields only a slight

improvement on link performance. On the other hand, it turns out here that the same

does not apply for the post-compensation, since the curve measured for 8PSK 5/6 is

only approaching the reference one (no compensation).

The effectiveness of Novelsat post-compensation becomes more and more evident for

APSK constellations. In the case of 16APSK 2/3, the Non Linear Mode R© is able to

flatten the total degradation in the region between IBO 2dB and 4dB, with a non neg-

ligible gain, altought being only half the one achieved by pre-distortion. However, the

post-compensation shows its best with 32APSK (and possibly higher, see NS3 features).

Still it doesn’t reach the performance pre-distorted waveforms have, but it enables re-

ducing considerably both the Total Degradation and the optimum back-off, without

requiring any ad-hoc tuning, and without increasing the OBO at the TWTA output.

In conclusion, altought pre-compensating remains the most attractive solution for break-

ing down Link Degradation, due to channel impairments, post-compensation techniques

may in turn produce remarkable results. We stress that in this case no knowledge is

supposed a priori on the channel characteristics, as in the case of pre-compensation tech-

niques, where the waveform needs to be optimized offline for each operational condition.



Chapter 4

Multi Carrier per Transponder

The Single carrier per transponder configuration, discussed in chapter 2, is typically

suitable for applications where a single carrier bears one or more data streams, which

were multiplexed in a single earth station. These include digital video broadcasting,

internet data trunking, and interactive broadband applications (forward link). On the

other hand, the capacity of a particular transponder may be shared by different uplinks.

This is the case when multiple earth stations access the same transponder, being placed

possibly anywhere within the satellite coverage. As a consequence, the problem of mul-

tiple access to the satellite channel arises [1, Chapter 6]. In this chapter we analyse the

challenges to be addressed in the classic Frequency Division Multiple Access (FDMA),

where a dedicated carrier is associated with each uplink. The FDMA is often preferred

in practice, because it does not require synchronization between remote earth stations.

4.1 Intermodulation products

It was seen in section X that the satellite channel has a non-linear transfer characteris-

tic. Being a transparent repeater, it simultaneously amplifies all the carriers which lie

in the channel pass band, at different frequencies. In general, when N sinusoidal signals

at frequencies f1, f2 . . . , fN pass through a non-linear amplifier, the output contains not

only the N signals at the original frequencies but also undesirable signals called inter-

modulation products. These appear at frequencies fIMX which are linear combinations

of the input frequencies:

fIMX = m1f1 +m2f2 + . . .+mNfN , (4.1)

where m1,m2, . . . ,mN are positive or negative integers.

40
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Figure 4.1: Intermodulation products

The quantity X = |m1| + |m2| + . . . + |mN | is called the order of an intermodulation

product. When the center frequency of the passband amplifier is large compared with

its bandwidth, which is always the case for a satellite repeater channel (compare the

center frequency of several GHz to the bandwidth of a few tens of MHz), only the

odd intermodulation products, where
∑
mi = 1, fall within the amplifier bandwidth.

Moreover, the amplitude of the intermodulation products decreases with the order of

the product. Hence, in practice, only products of order 3, and to a lesser extent 5,

are significant. It can be seen that, in the case of unmodulated carriers of unequal

amplitude, the intermodulation products are greater at high frequencies if the carrier

of greater amplitude is that which has the higher frequency and at low frequencies if

the carrier of grater amplitude is that which has the lower frequency. This indicates

the advantage of locating the most powerful carriers at the extremities of the channel

bandwidth, as the corresponding most powerful intermodulation products then fall out

of channel bandwidth, and do not propagate on the downlink [1, Chapter 6]. This is

because of the cut off effect of the OMUX filter, which is placed on the payload, after

the TWTA.

4.1.1 The Carrier to Intermodulation Noise ratio

When the carriers are modulated, the intermodulation products are no longer spectral

lines, and their power is dispersed over a spectrum which extends over a band of frequen-

cies. The higher the number of carriers, the more the superposition of the spectra of the

intermodulation products leads to a spectral density which is nearly constant over the
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Figure 4.2: Carrier to Intermodulation ratio. CS = 9.6MHz

whole of the amplifier bandwidth, and this justifies considering intermodulation prod-

ucts as white noise. In view of this, the Satellite Operator recommends the minimum

carrier to intermodulation noise ratio for a given back-off level, in order to limit the

impact of intermodulation noise on the overall carrier to noise ratio, at the receiver side.

This can be conveniently quantified through lab measures.

Figure 4.1 shows the generation of intermodulation products from three unmodulated

carriers. These were observed in laboratory in L-band. The central carrier was allocated

at f2 = 1500MHz, and the two side ones were equally spaced by either 8.8MHz (f1 =

1491.2MHz, f3 = 1508.8MHz) or 9.6MHz (f1 = 1490.4MHz, f3 = 1509.6MHz). It

turned out that the frequency of the intermodulation product of order 3 is fIM3 =

1500 ± 17.6MHz or fIM3 = 1500 ± 19.2MHz respectively, which equals calculating 4.1,

with m1 = −1, m2 = m3 = 1. This case study is aimed to the prototype configuration of

three modulated carriers all having the same symbol rate of 8Mbaud and SRRC shaped

with a roll-off factor of 10% or 20%, which are amplified through the same repeater

channel, as we shall analyse later.

With reference to Figure 4.1, we measured the carrier to intermodulation noise ratio as

the delta in dB between the peak of the internal carrier and the peak of the intermod-

ulation product of order 3, or IM3. The measure has been carried out in both the cases

in which all the carriers have the same power, and when the two side ones are greater by

5dB. The latter is of interest, since allocating the most powerful carriers at the extremi-

ties of the channel bandwidth allows filtering out the greatest intermodulation products

by the OMUX, thus avoiding cross system interference (as discussed above), but the

inner carrier(s) C/N is subject to a more important degradation.
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(b) Linearised Profile

Figure 4.3: TWTA prototype profiles, AM/AM and AM/PM characteristics

The power associated with intermodulation products in the downlink depends on the

AM/AM characteristic of the TWTA on board the payload. The more the latter is

linear, the lower the impact of intermodulation noise on the overall link quality. In [4]

two prototype TWTA profiles were introduced, as sketched in Figure 4.3. The Non

Linearised Profile of 4.3a had already been considered in Chapter 3, as a worst case

scenario. In this chapter we present a serie of simulations and measures which has been

carried out with reference to both profiles. This is because the only way to combat

intermodulation noise is to have the more linear possible TWTA transfer characteristic.

4.2 Total Link Degradation

In multi carrier per transponder, intermodulation noise is the predominant channel

impairment. The Total Link Degradation can still be evaluated by 2.3 and 2.5. We

performed a serie of simulations, using a procedure similar to the one outlined in section

2.2.2, but adapted to the multi carrier scenario, as well as a serie of lab measures on

Novelsat professional modems. The are several possible configurations to consider as

case study, which depend on:

• number of carriers,

• symbol constellation,

• link performance over AWGN,

• profile of channel non-linearity,

• carrier spacing,

• roll-off factor,
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Figure 4.4: Total Link Degradation over Non Linear Channel. 3 carriers, ACPR =
0dB, Symbol Rate = 8Mbaud, Roll-Off = 20%. IBO values referred to the aggregate

power.

• adjacent channel power ratio (ACPR).

As a consequence, one has to seek for some prototype cases, whose study shall yield

possibly general results. The choice here is to consider different configurations based on

three carriers, Symbol Rate 8Mbaud, and both the TWTA profiles of Figure 4.3.

4.2.1 Simulations

Consider the Total Degradation curves of Figure 4.4. These have been obtained in sim-

ulation, and quantify the link degradation over non-linear channel, for different DVB-S2

MODCODs. We chose the 8PSK 2/3, 16APSK 4/5 and 32APSK 5/6, as representatives

of the MODCODs available in [4] and listed in table 2.2. In addition, it is assumed here

that all carriers have the same power i.e. ACPR = 0dB, and the IBO level is referred

to the aggregate power. We observe what follows:

1. the link degradation is in general more important than in the case of single carrier

per transponder, due to intermodulation noise. This applies in particular for the

Non Linearised profile.
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Figure 4.5: Total Link Degradation over Non Linear Channel, Novelsat NS3 16APSK
4/5. 3 carriers, Symbol Rate = 8Mbaud, Roll-Off = 20%, CS = 1.2×Rs. OBO values

referred to the aggregate power.

2. Increasing the carrier spacing yields a gain only up to 0.5dB on link degradation, at

the optimum back-off, at the price of a very inefficient use of the channel capacity.

This is because an higher carrier spacing turns away the frequency of IM3, but

intermodulation noise spreads over a range of frequencies large enough to vanish

the effect of spacing.

3. The link degradation due to the TWTA Linearised profile is resolutely lower than

the one associated with the Non Linearised profile, and the optimum back-off is

closer to saturation.

4.2.2 Lab Measures

In general, the carriers allocated into a certain satellite channel do not necessarily have

the same power at the TWTA input. As a consequence, intermodulation noise impacts

more the carriers with the lower power, since it depends on the aggregate power of the

input section. The quantity which measure the difference in dB between the power of

adjacent information channels is the Adjacent Channel Power Ration (ACPR). Here we

focus on the prototype case in which the power the central carrier is either 5dB lower

(ACPR = 5dB), at the same level (ACPR = 0dB) or 5dB higher (ACPR = -5dB) than

the two adjacent channels power.
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Figure 4.5 shows the total degradation measured for the differents ACPRs with the

Novelsat modems introduced in section 3.2, and are meant for the NS3 System Archi-

tecture, using the 16APSK 4/5. The performance over AWGN of the latter had been

quantified in [Es/N0]req = 10.86dB (against the 11.03dB of the DVB-S2 specifications).

In particular, with reference to Figure 4.5a, notice that when the ACPR is equal to 5dB,

the optimum OBO becomes as high as 4.5dB, and the Total Degradation exceeds the

threshold of 7dB. In other words, under certain condition, the link can become imprac-

tical for the higher order MODCODs. Hence, the linearity of the TWTA is critical in

order to allow a certain flexibility on the transponder configuration.

The DVB-S2 specifications provide only three different roll-off factors for the shaping

filters. These are ρ = 35%, 25% and 20% respectively. However, in recent times, within

the discussion about the future of satellite communication technologies, the industry

have been wondering if it is feasible to introduce lower roll-offs, in order to exploit

the space segment more efficiently, by reducing the excess bandwidth of information

channels and hence the spacing between adjacent carriers. Some modem manufacturers,

like Novelsat does, started to provide roll-offs down to 5%. Unfortunately, the gain

in the efficiency on the spectrum utilisation is to be paid by an increase of ISI at the

decision point, as the pulse shapes with lower roll-offs are more sensible to the waveform

distortion. In addition, recall that by reducing the carrier spacing, one increases the

intermodulation noise. Figure 4.9 approaches the results introduced in 4.5, for the case

of roll-off = 20%, with some equivalent ones related to roll-off = 5%. Note that both the

optimum OBO and the corresponding total degradation increase up to an extra 0.75dB

roughly. Considering the one for the TWTA Non Linearised profile, and being these

measures taken for the case ACPR = 5dB, we declare that curve as the most critical

one in the serie.
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4.3 Adjacent Channel Interference
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Figure 4.7: Pictorial view of quantities involved in adjacent channel interference

In section 4.2.1 we saw that increasing the carrier spacing CS is not an efficient coun-

termeasure to combat the link degradation due to intermodulation noise. The latter is

strongly dependent on the type of channel non-linearity, as shown in Figure 4.4. Hence,

given a certain TWTA profile, one may consider improving at least the transponder

passband utilisation, by approaching in frequency adjacent information channels.

The carrier spacing reduction can even be such that CS/Rs < 1 + ρ, i.e. the spectral

content of adjacent information channel can partially overlap. This involves a certain

amount of inter system interference, since a part of the energy of a channel falls in the

band of frequencies of the adjacent one, and vice versa.

Interference turns into ISI at the decision point, and further lower the robustness of the

system against noise, as all other channel impairments do. It can be shown that the ISI

due to inter system interference is in turn gaussian, with variance I, and can still be

thought as an additional noise term. Hence, with analogy to what done in section 2.1,

we can thus consider the quantity Dextra = [1 + I/N ] which determines the link quality

degradation due to interference, and depends now on the normalised carrier spacing

CS/Rs, roll-off factor ρ, and adjacent channel power ratio ACPR. Here we choose to

refer such degradation to the link performance over non-linear channel, in multi-carrier

configuration and with CS/Rs = (1 + ρ), rather than to the performance over AWGN.

This is why we call it Extra Degradation. Figure 4.8 shows some simulation results

which are meant for the TWTA Linearised Profile, roll-off 20%, and selected MODCODs

and ACPR. Notice that even when the overlap is as high as the 10% of total channel

bandwidth, the extra degradation does not exceed the threshold of 1dB for the DVB-S2

APSK MODCODs, provided the ACPR is lower than 3dB. When the contrary applies,
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then the impact of interference becomes more critical, and the normalised spacing should

only be reduced to a lesser extent.
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Figure 4.8: Extra degradation due to adjacent channel interference, TWTA Linearised
Profile. OBO values referred to the aggregate power.

4.3.1 Modems Filters Validation

Modems available in both the consumer and the professional market perform SRRC

pulse shaping at both the transmitter and receiver sides, as suggested in [4]. However,

the actual pulse shape implementations and the consequent signal spectrum may not

be compliant with the relative specification masks, as discussed in Appendix C, due

to hardware limitations. This is particularly likely for the newly introduced lower roll-

offs down to 5%. Note that the transmit pulse shape can be verified by introducing a

spectrum analyser ad the modem output, but there is no direct way to validate receive

one. The latter should be identical to the transmit pulse, but it turns out that it is not

always the case, for every modem manufacturer. It can happen that the receive SRRC

filter is designed with a larger roll-off than the one with which the transmitted waveform

is shaped. As a consequence, when limiting the carrier spacing, a larger interference is

caught at receiver side, from the adjacent information channels.

Figure 4.10 shows the measured link degradation due to interference for both the Nov-

elsat and Workmicrowave professional modems, considering roll-offs lower than or equal

to the 20%. Note that here the aim to verify the transmit and receive filters shape,
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Figure 4.9: Total Link Degradation with reduced carrier spacing, Novelsat NS3
16APSK 4/5. CS/Rs = 1.05, ACPR = 5dB

and the degradation is simply referred to the performance over AWGN. In addition, an

ACPR as high as 5dB is considered, to emphasise the impact of interference.

Notice that Novelsat provides roll-offs of either 20%, 15%, 10% and 5% (blue lines).

As expected, the impact of interference becomes non negligible (say higher than 0.2dB)

only when the normalised carrier spacing is reduced well beyond the nominal value of

CS/Rs = 1+ρ. On the other hand, Workmicrowave only provides roll-offs of either 20%

or 5% (red lines). Here, we found a results comparable to the relative ones obtained for

Novelsat only in the case of roll-off 20%. When applying the roll-off 5%, the degradation

curve is only comparable to Novelsat 15%. We concluded that, even if the transmit pulse

is really with roll-off 5%, as we verified in lab, the receive one is evidently larger, and

the actual carrier spacing on an eventual uplink shall not be lower than 1.1×Rs.
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4.4 final considerations

Multi carrier per transponder configurations enable a wide range of applications, par-

ticularly suited for the professional market. For instance, consider the case in which the

satellite access provider want to give internet access to different customers, located in

remote sites. The solution which is typically adopted is to multiplex the forward link on

a common carrier, and allocating a different carrier for each return channel, according

to the FDMA scheme. Since the transponder pass bands are of fixed sizes, of the order

of several tens of MHz this inevitably introduce the multi carrier scenario, with the

challenges we discussed so far.

The satellite end to end link quality is subject to several factors which depend on both

meteorological and cosmological factors, which directly impact the carrier to noise ratio

at receiver side. The DVB-S2 introduced the Adaptive Coding and Modulation concept,

aimed at varying the transmitted MODCODs depending on the actual SNR at the

decision point. This is achieved by proper signalling though the return channel, and for

each different remote user [4].

The satellite channel has typically a non-linear behaviour, as we widely discussed in

these pages, and for a given TWTA profile the optimum back-off is MODCOD depen-

dent. However, power levels on the uplinks cannot be varied on a dynamic basis, as the

maximum aggregate power at the TWTA input is limited by the amplifier saturation.

Thus, power back-offs can only be setted a priory, for a specific multi-carrier configu-

ration, as an average of the optimum levels associated with the MODCODs involved in

the ACM.

Due to intermodulation noise, back-off levels shall in general be considerably lower than

the ones applicable to the single carrier per transponder scenario (see Table 2.2). The pre

compensation techniques discussed in Chapter 3 deal with the waveform distortion due

to channel non-linearity at low back-offs. Since here each carrier alone feed the amplifier

in a quasi linear zone, these techniques fail in reducing the Total Link Degradation,

which is indeed dominated by intermodulation. In conclusion in this case the TWTA

linearity is the most important factor which enables the use of higher constellation orders

like the APSK, and thus increases the average spectral efficiency, in the perspective of

ACM.
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The Simulation Environment

A.1 General approach
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Figure A.1: Simulink Block Diagram

All the simulations presented in this work have been carried out in Matlab and Simulink.

In particular we chose to build Simulink block diagrams (like the one in Figure A.1) for

generating DVB-S2 compliant baseband waveforms, as well as a model for a 36MHz

transponder. The purpose of the simulations is to quantify the distortion the waveform

undergoes in a typical satellite channel, due to channel impairments. This turns into ISI

and constellation warping, at the demodulator side. The latter depend on several pa-

rameters, as discussed in Chapters 2 and 4. As a consequence, Simulink block-diagrams

shall be run iteratively, by varying those parameters which are of interest for a specific
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case study. This is better achieved through Matlab scripts, which are meant for config-

uring, running and collecting output signals from a block-diagram. In conclusion, the

general procedure we adopted involved first creating a proper Simulink block-diagram,

for the case study of interest, and subsequently writing a Matlab script to manage the

block-diagram execution.

A.2 Simulink custom blocks

The Simulink environment provides natively a rich library of blocks which are ready to

be used for the construction of block diagrams. However, often one needs to implement

ad-hoc blocks for some specific purposes. As an example, Matlab/Simulink only provide

bit-mappers into QAM or PSK symbol constellations. Since here the interest is on both

the PSK and the APSK constellation introduced in [4], we needed to build our own

custom blocks for bit-mapping and soft demodulation for these constellations. This has

been done though Matlab Function Blocks, i.e. Simulink blocks that directly contain

Matlab code. Mathworks suggests to use built in blocks when possible, to create custom

subsystems which are more efficient and hence of faster execution at runtime. This is

the solution we adopted for modelling a channel non-linearity.

A.2.1 modelling a general memoryless non-linearity
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Figure A.2: Memoryless non-linearity Simulink model.

As discussed throughout this work, the satellite channel impairments are dominated by

the non-linearity introduced by the TWTA on board the payload. This is well described

by the AM/AM and AM/PM curves and can be conveniently modelled by mean of

interpolated look-up tables. Figure A.2 shows the memoryless non-linearity subsystem

which has been included in the simulations. The subsystem requires the transfer curves

to be given in form of breakpoints for both input and output quantities. The smaller the

step the better, even if the model proved to work properly even with linearly interpolated
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breakpoints spaced by 1dB. From left to right, the tasks performed by the subsystem of

Figure A.2 are as follows:

1. Apply an IBO to the input signal, which is supposed to have unit power at the

subsystem input.

2. Split the complex input signal into its magnitude and phase.

3. Perform a pre look-up on the signal magnitude. The pre look-up block calculates

the index and interval fraction that specify how its input value relates to the

breakpoint data set. This is achieved by linear interpolation.

4. Feed the AM/AM and AM/PM look-up tables with the output of the pre look-up.

This reduces the computational burden that one would have, using two indepen-

dent tables.

5. Add the phase shift to the original signal phase

6. Recombine magnitude and phase signal into the final output

7. Eventually apply an output scaling (not used).

Altough it is not the only possible implementation, our solution is flexible in the sense

that with look-up tables one may model whichever non-linearity profile, possibly mea-

sured though IOT (In Orbit Testing). For the purposes of this work we referred to the

general TWTA Non Linearised and Linearised profiles, as introduced in Chapter X.
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Lab Measures

The lab measures presented in this work have been done using a couple of Novelsat

or Workmicrowave professional modems. The multicast traffic was generated by iperf

(iperf.sourceforge.net), and chosen to be of UDP type, with packet length 188KB (stan-

dard length of MPEG transport stream packets). The modems connected through a

satellite channel emulator (DCS3020, www.izt-labs.de) which can deal with signal band-

width as large as 36MHz. The emulator can add white noise over a band of 60MHz,

some fading profile variable over time, a memoryless nonlinearity, as well as some shaped

noise, phase noise and more. Es/N0 values have been measured by an Agilent Signal

Analyser (N9010A, www.agilent.com), using the Adjacent Channel Power (ACP) fea-

ture. This gives the difference in dB between the power measured integraging the PSD

on different bands. Typically one may integrate over the same bandwidth both the

power in band and the noise floor out of band. This yields the ratios

[
C +N

N

]
⇒
[
C

N

]
=

[
C +N

N

]
− 1. (B.1)

B.1 Performance over AWGN

Modems commercially available on the professional and consumer market both imple-

ment one or more System Architectures. These can be either a standardised technology

or a proprietary solution. In the first case, one expects that given a certain MODCOD,

performance in term of Es/N0 required for QEF over AWGN match the reference ones

indicated in the standard itself, which normally are achieved by computer simulations

in ideal conditions at the demodulator side. When instead a proprietary solution is

adopted, performance is directly declared by the manufacturer. However, it turns out
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Figure B.1: Novelsat DVB-S2 and NS3 performance over AWGN, versus ETSI spec-
ifications.

that especially in the case of implementations of standards, the actual performance of

the device deviate from the expected theoretical ones. Figure B.1 shows the performance

measured over AWGN for Novelsat modems, for both the standard DVB-S2 and propri-

etary NS3 (only MODCODs available also in the DVB-S2 specs are considered here).

Notice that DVB-S2 measured Es/N0 for QEF are between 0.25dB and 0.8dB higher

than the reference ones, while NS3 matches, and in some cases also slightly outperforms,

the DVB-S2 theoretical performance.

But how do we measure the performance of a link in terms of Es/N0 for QEF? According

to the definition given in [4], the system operates in QEF conditions when the Packet

Error Rate at receiver side is less than 10−7. In practice, determining the QEF point

in a lab experiment means running a transmission session of at least 107 packets, which

already requires several hours depending on the spectral efficiency and hence on the

MODCOD. In addition also the packet length influences the time needed. We chose to

refer to the Frame Error Rate instead, because the frame length in DVB-S2 systems

is fixed (only normal frames of 64800 bits have been considered here). We limited the

transmission session to either 105 or 106 frames, in order to get results in a reasonable

time elapse.



Appendix B. Lab Measures 57

Figure B.2: Novelsat NS2000 demodulator, traffic monitoring.

Figure B.3: Agilent N9010 Signal Analyzer, ACPR measures.
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B.2 Channels with impairments

The typical satellite channel is far from being AWGN, but performance in the ideal case

is the reference for quantifying the impact of channel impairments. Suppose for instance

to transmit an APSK modulated waveform with power such that the TWTA in orbit is

driven close to saturation. Then the distortion due to non-linearity, i.e. constellation

warping and ISI, lower the noise level which is acceptable for QEF in the AWGN channel.

Hence, once reached more than 105 frames without error, we shut off the non-linearity

from the channel emulator, and we measure the noise floor. This operation is necessary,

because otherwise it would be difficult to evaluate the in band noise floor, since it is

masked by the signal spectral regrowth. It turns out that the Es/N0 measured on the

channel with impairments is always greater than the one over AWGN. The difference in

dB between the two, plus the back-off applied, constitutes the Total Link Performance

Degradation (see also section 2.2.1).



Appendix C

SRRC Filters

Any digital communication system shall provide the waveform a proper baseband filter-

ing both in transmission and in reception, in such a way that in a distortion free channel

the overall system impulse response exhibits the Nyquist property for the absence of ISI

[9, Chapter 7].

In practice, the choice often falls on the Square Root Raised Cosine (SRRC) filtering in

both the transmitter and receiver side. In such a way, the overall system impulse response

is of the Raised Cosine (RC) type, which indeed is of Nyquist. In the frequency domain,

the baseband SRRC filters can be described by the theoretical function given by

H(f) =


1, if |f | < fN (1− ρ)

0, if |f | > fN (1 + ρ){
1
2 + 1

2sin
π

2fN

[
fN−|f |

ρ

]}1/2
, otherwise

(C.1)

where fN = Rs/2 is the Nyquist frequency and ρ is the Roll-Off factor. However,

practical implementations are based on FIR or IIR digital filters, and the theoretical

approximation is traded off with hardware complexity. The latter is determined by the

number of filter coefficients, which in turn impacts the speed of the filtering process. In

order to meet specific real time constraints, the solution based on IIR filters is generally

adopted, since these require a lower number of coefficients to achieve a target quality of

design.

On the contrary, straightforward implementations based on FIR filters, with a high

number of coefficients, are suitable for the purpose of simulations. We chose a different

number of taps for each filter Roll-Off, in a such a way to have all filter designs ap-

proximating the theoretical shape of C.1 with a comparable quality. It turns out that
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(c) Novelsat ROF 20%
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(d) Novelsat ROF 5%
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(e) Workmicrowave ROF 20%
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(f) Workmicrowave ROF 5%

Figure C.1: SRRC filter shapes used in simulation (red lines) against measured trans-
mit signal spectrum, for different modem manufactures (blue lines)

decreasing the Roll-Off, the number of taps to consider for the FIR filter design increases.

For instance, we considered 97 and 161 taps for ROF 20% and 5% respectively, with an

interpolation factor of 4. Figure C.1 shows a comparison (for two selected Roll-Offs) be-

tween filter shapes designed for simulations against measured transmit signal spectrum

for professional modulators of different brands. Now if we take the simulated shapes as

a reference, we can notice that in some cases the actual Roll-Off with which the trans-

mit signals are shaped, sensibly deviates from the one declared by the manufacturer.

Although we can get a snapshot of the transmit signal spectrum, by hanging a signal
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analyser at the modulator output, there is no way to verify the shape of the receive filter

at demodulator side, which is however supposed to match the transmit one, but it may

also not be the case.



Bibliography

[1] Michel Bousquet Grard Maral. Satellite Communications Systems, 5th Edition. 2009.

[2] Koen Willems. Dvb-s2x demystified. Technical report, Newtec, 2014.

[3] Digital Video Broadcasting group. Second generation framing structure, channel cod-

ing and modulation systems for Broadcasting, Interactive Services, News Gathering

and other broadband satellite applications. Part II: S2-Extensions (DVB-S2X), 2014.

[4] Digital Video Broadcasting group. ETSI EN 302 307, Second generation framing

structure, channel coding and modulation systems for Broadcasting, Interactive Ser-

vices, News Gathering and other broadband satellite applications (DVB-S2). Euro-

pean Telecommunications Standards Institute, 2005.

[5] Digital Video Broadcasting group. ETSI TR 102 376, User guidelines for the second

generation system for Broadcasting, Interactive Services, News Gathering and other

broadband satellite applications (DVB-S2). European Telecommunications Standards

Institute, 2005.

[6] R. De Gaudenzi E. Casini and A. Ginesi. Dvb-s2 modem algorithms design and

performance over typical satellite channels. International Journal of Satellite Com-

munications and Networking, 2004.

[7] Guido Verfaillie. Improving the transponder utilisation. Technical report, Newtec,

2008.

[8] Guido Verfaillie. Equalising and predistortion: The equalink concept. Technical

report, Newtec, 2008.

[9] Giovanni Cherubini Nevio Benvenuto. Algorithms for Communications Systems and

their Application. 2000.

62


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Satellite Communication Systems
	1.2 The Space Segment
	1.3 The DVB-S2 Standard and the new DVB-S2X extensions
	1.3.1 DVB-S2 System architecture
	1.3.2 DVB-S2X extensions


	2 Single Carrier per Transponder
	2.1 Group Delay Distortion
	2.1.1 A Model for Channel Filters
	2.1.2 Estimating The Group Delay Distortion

	2.2 Non-Linear Distortion
	2.2.1 A measure for non-linear distortion
	2.2.2 The algorithm devised
	2.2.3 Simulation Results

	2.3 Total Link Degradation

	3 Improving Link Performance
	3.1 Pre Compensation Techniques
	3.1.1 Static Pre-distortion
	3.1.2 Dynamic Pre-distortion
	3.1.3 Simulation Results

	3.2 Post Compensation Techniques

	4 Multi Carrier per Transponder
	4.1 Intermodulation products
	4.1.1 The Carrier to Intermodulation Noise ratio

	4.2 Total Link Degradation
	4.2.1 Simulations
	4.2.2 Lab Measures

	4.3 Adjacent Channel Interference
	4.3.1 Modems Filters Validation

	4.4 final considerations

	A The Simulation Environment
	A.1 General approach
	A.2 Simulink custom blocks
	A.2.1 modelling a general memoryless non-linearity


	B Lab Measures
	B.1 Performance over AWGN
	B.2 Channels with impairments

	C SRRC Filters
	Bibliography

