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“Today is only one day in all the days that will ever be.
But what will happen in all the other days that ever come
can depend on what you do today.”

- E. Hemingway






Abstract

In order to substitute the current fossil fuel-based chemistry, research is actively fo-
cused on the development of sustainable technologies with alternative sources. Among
the different strategies, carbon dioxide Capture and Utilisation techniques are gaining
industrial interest. The motivation relies in the attractive possibility of reducing CO,

emissions by utilising it as a source for added-value chemicals.

In this thesis, the novel CO, Capture and Reduction approach has been investigated. In
this catalytic process, CO, from diluted streams (i.e. post-combustion flue gases) can
be efficiently captured by a solid catalyst. By switching to a Hy stream, the captured
COy is selectively converted to CO, in a typical unsteady-state isothermal operation.
This particular work focuses on the catalytic behaviour of supported copper catalysts

promoted with potassium.

The catalytic activity of a series of supported copper catalysts synthesised through
the incipient wetness impregnation method has been evaluated. Operando FTIR al-
lowed for the detection of the outlet gas composition with high time resolution. A
combination of characterisation techniques (XRD, BET, TPR, SEM, TEM, ex-situ
and in-situ Raman) has been employed to individuate the active phase and the mech-
anism of COy capture and reduction processes. An optimum loading of K and Cu
exists, with the former species controlling the CO, capture properties and the latter
the formation of active sites for reduction with Hs. Insights in the capture mechanism
have been reported, with a particular interest in the formation of the active phase for
COg capture. CO has been found to participate in the adsorption process, while the
first operation cycle contributes to the generation of the CCR active phase, which is

strongly dependent on the presence of potassium and copper.



By comparing similar catalysts supported on different metal oxides, the dispersion
of the active species has been observed to be beneficial for catalytic activity. Indica-
tions about the enhancement of active species dispersion through the modification of

the synthesis method have also been reported.

From the optimisation of process parameters as temperature, flow rates and synthesis
conditions almost 100s of CO, full capture has been reached. During an equivalent
time interval, the 65% of the adsorbed COj is converted to CO, highlighting the great

potential of the CCR process as a strategy for COs utilisation.



Riassunto

Negli ultimi decenni, per sostituire I'utilizzo di combustibili fossili a livello industriale,
la ricerca si e focalizzata sullo sviluppo di tecnologie sostenibili basate su fonti alterna-
tive. Tra le diverse strategie, le tecniche di Cattura e Utilizzazione di anidride carbonica
hanno attirato grande interesse. La principale motivazione risiede nella possibilita di
ridurre le emissioni di CO, attraverso il suo impiego come elemento di partenza per la

produzione di prodotti a valore aggiunto.

Nella tesi viene studiato un nuovo processo, denominato COy Capture and Reduction.
In questo processo catalitico, la CO, contenuta in correnti diluite, come ad esempio i gas
di scarico da post-combustione, puo essere catturata grazie ad un catalizzatore solido.
Successivamente, esponendo il catalizzatore ad un’atmosfera di Hs, la CO4 adsorbita
viene convertita a CO in maniera selettiva. Tale operazione in stato non stazionario
e realizzata in modo isotermo. In particolare, ci si € rivolti allo studio del comporta-

mento catalitico di catalizzatori supportati, in cui rame e potassio sono le specie attive.

E stata esaminata l’attivita catalitica di una serie di catalizzatori supportati a base di
rame sintetizzati con il metodo di impregnazione a secco. I prodotti di reazione sono
stati analizzati mediante spettroscopia FTIR, mentre la fase attiva per i processi di
cattura e riduzione ¢ stata studiata attraverso molteplici tecniche di caratterizzazione
(XRD, BET, TPR, SEM, TEM, Raman ex-situ e in-situ). Il potassio risulta fonda-
mentale nel processo di cattura, mentre la presenza del rame determina la reversibilita
del processo e la rigenerazione del catalizzatore. La capacita di cattura del cataliz-
zatore aumenta con 'aumentare della quantita di potassio fino al raggiungimento di
un massimo. In modo simile, anche il rame puo essere aggiunto in quantita ottimale,

data dal compromesso tra creazione di siti interfacciali per I’adsorbimento della CO,



e dispersione omogenea. In questo lavoro vengono riportate osservazioni riguardo il
meccanismo di cattura, ponendo particolare interesse alla formazione della fase attiva
per la cattura della COs. I1 CO risulta coinvolto nell’adsorbimento, mentre il primo
ciclo redox contribuisce alla creazione della fase attiva per il processo CCR, fortemente

influenzato dalla presenza di rame e potassio.

Dal confronto tra catalizzatori simili supportati da materiali differenti, e stato indi-
cato come la dispersione delle specie attive promuova l'attivita catalitica. Anche la

modifica dei parametri di sintesi ha condotto al miglioramento della dispersione.

L’ottimizzazione dei parametri di processo, quali temperatura di reazione e portate
dei reagenti, e di sintesi, ha permesso di raggiungere un periodo di cattura completa
dei CO,, di circa 100s. Nello stesso intervallo, ¢ stato possibile convertire a CO il 65%
della CO4 adsorbita, evidenziando la potenzialita del processo di COy Capture and

Reduction come strategia per 1'utilizzazione della CO,.
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Introduction

Greenhouse gases are characterised by molecules whose links can vibrate when sub-
jected to IR heat radiations coming from the soil, absorbing and trapping part of them
close to the planet surface. This phenomenon keeps the stratosphere warm enough for
life. However, the Intergovernmental Panel on Climate Change (IPCC) has reported
that the excessive emissions of greenhouse gases (GHGs) to the atmosphere are the
primary source of modern climate change and the consequent warming of the Earth.
The Paris Agreement on climate change promoted by UNFCCC, entered into force on
4:» November 2016, binds all Nations to strive for climate-neutrality before the end
of the century. The main target imposed is keeping the increase in average global
temperature below 2 °C above the pre-industrial levels, aiming to limit it to 1.5°C. To
pursue such ambitious goals, the global peak of greenhouse gases emissions must be
reached as soon as possible. Long-term policies to tackle this emergency are based on
the transition to decarbonisation of energy supply, but strategies in the short/mid-term
are focused on the development of effective methods for the removal of these threat-
ening chemicals from flue gases. Carbon dioxide is the most important of such gases,
as it represents the major anthropogenic contributor to the greenhouse effect. COq
concentration in the atmosphere increases every year, and according to most recent
data it has risen massively from the pre-industrial value of 280 ppm to 400 ppm in
2015. The most promising pathways to address the abatement of the carbon footprint
in the last decades are the Carbon Capture, Utilisation and Storage (CCS) and the
Carbon Capture and Utilisation (CCU) methods.

CCU technologies not only aim to reduce the amount of COy released in the atmo-
sphere, but also to convert them in added-value products through different processes

in a short-term period. Several processes able to covert CO, into alternative raw ma-
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terials for chemicals, polymers and fuels exist. The main issue of such systems is the
requirement of CO, feedstocks richer than flue gases coming from fossil-fuel power
plants, in which generally COy concentration varies between 3 and 15% on volumet-
ric bases. For this reason, this thesis is focused on a new type of catalytic process
under unsteady-state condition which converts efficiently CO, to syngas. The basic
idea of this technology, called COy Capture and Reduction (CCR), is to operate the
reaction in a chemical looping mode, performing the process into two different phases.
COy contained in the flue gas stream is firstly chemically adsorbed on the catalyst to
form carbonate species during the capture phase, and it’s then converted to CO in
the reduction phase using Hy as a reducing agent, involving at same time the catalyst
regeneration. The sustainability of the process is even furtherly enhanced if the Hy
production is linked to renewable energy sources. The most interesting benchmarks to
assess CCR for syngas production are the COy capture efficiency, the CO selectivity,
and the Hy/CO ratio in the effluent stream.

The purpose of this work is to optimise the CCR process parameters so as to pro-
pose a specific application of this technology, matching it both with upstream and
downstream production plants. This would have a huge impact on the closure of the
carbon cycle, since it allows to obtain the building blocks for the majority of prod-
ucts normally derived from fossil feedstocks, simultaneously reducing significantly CO,
emissions without any energy-intensive separation process. Moreover, the thesis tries
to give an insight on the reaction mechanism, which is very effective, unique and still

not completely clear. This work is organised as follows:

Chapter 1: Current CO, emissions and CCR process concept

This chapter gives an overview on the global current situation regarding greenhouse
gases emissions and their effect on Earth surface temperature. During the first period
several scientific articles were read. A general review on CCU techniques is proposed
as a background of the innovative CO, Capture and Reduction process, and details on
its different stages and possible applications are discussed. Here the catalyst materials
are presented and the main factors affecting the process performance are introduced.

Chapter 2: Materials and experimental methods



This chapter describes the experimental setup, the catalyst synthesis and catalyst char-
acterisation methods, the experimental tests operated and the catalytic testing analysis
techniques.

Chapter 3: Catalysts characterisation

This chapter collects the results obtained from catalysts characterisation analyses. In
particular, XRD, TPR, BET, SEM and TEM techniques were used.

Chapter 4: Catalytic activity and insights in the COy capture mechanism

This is the core chapter of this work. Experimental results are presented here. Cat-
alytic tests results are discussed, focusing the attention on the relations between cata-
lyst composition, surface species and catalyst activity in order to propose some insights
regarding the reaction mechanism and the efficient activation of the catalyst for CO4
capture and reduction.

Chapter 5: Process parameters optimisation

In the last chapter, reaction temperature, reactants flow rates and catalyst synthesis

conditions are addressed to maximise CCR potential.

The entire thesis project was carried out at the Faculty of Applied Sciences at the
Delft University of Technology, within the Catalyst Engineering group. Experimen-
tal activities were supervised by professor Atsushi Urakawa and the PhD candidate

Donato Pinto.






Chapter 1

Current CO2 emissions and CCR

process concept

In the last two decades, global warming and environmental sustainability have gained
a main role in societal, industrial and academic stages. The Kyoto Protocol in 1997
first, the Paris Agreement in 2015 then, pushed the world to face actively the men-
ace of climate change. The goal fixed by the Paris Agreement is the limitation of the
global temperature increase to 1.5 °C above the pre-industrial level. To pursue such an
ambitious aim, both advanced Economies and developing Countries must cooperate to
promote green policies and finance sustainable technologies. Three key aspects need
to be addressed: the mitigation of greenhouse gases (GHGs) emissions, particularly
focusing of CO,, the transition towards low-carbon renewable energy, with the replace-
ment of fossil fuels, and the increase of the energy efficiency. The first chapter gives
an overview of the present scenario of CO, emissions and global warming. General
Carbon Capture and Utilisation (CCU) concepts and technologies are presented, along
with the impact of exploiting CO5 as the feedstock in the production of the so called
Cl-chemicals with a view to sustainable chemical industry. Later, the novel COy Cap-
ture and Reduction (CCR) process concept is explained in depth and the aim of this

thesis is discussed.
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1.1 Global warming and CO; emissions

Greenhouse effect has been recognised as the main cause of global warming, since the
Earth’s surface temperature is rising along with the increasing atmospheric GHGs con-
centrations. The adverse consequences are the melting of glaciers, the rise of the sea
level and the acidification of oceans. According to an ongoing temperature analysis
conducted by scientists at NASA’s Goddard Institute for Space Studies (GISS),! the
average global temperature on Earth has increased by a little more than 1°C since
1880. Two-thirds of the warming has occurred since 1975, at a rate of roughly 0.15-
0.20°C per decade. In the past, a 1 to 2°C drop was all it took to plunge the Earth
into the Little Ice Age. The global temperature depends on the balance between the
energy received by the sun and the energy radiated back to the space, in the form of
infrared radiation. The latter is significantly related to the atmospheric concentration
of GHGs. In the Paris Agreement, IPCC set 450 ppm of CO, as the threshold value
not to breach the 2°C increase. The demographic and economic growth are the major
responsible of the continuously higher global energy demand, causing a parallel increase

of the GHGs emissions. The major concerns regard CO,, as it constitutes the 81% of

GHGs? (Figure 1.1).

GHG composition/ %
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Figure 1.1: Contribution of different species to the total amount of greenhouse gases.
Adapted from EPA?.

According to BP statistics,® in 2018 CO, emissions coming from oil, coal and gas com-

bustion reached the maximum peak of 33.8 Gt, with a growth rate of 2%, while the
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average growth rate in the period 2007-2017 was 1%. The electricity and heat sectors
are by far the firsts contributors to COy emissions, followed by transportation and
industry* (Figure 1.2).

CO, emissions per sector/ %
0 20 40 60 80 100

it —
and heat
‘ Residential [I
‘ Others I‘

Figure 1.2: Global CO, emissions by sector in 2017. Adapted from IEA.

According to IEA,® in 2017 fossil fuels accounted for more than 81% of the world pri-
mary energy supply, therefore processes related to the combustion of fossil fuels emerge
as a priority to tackle in order to mitigate CO5 emissions. Oil constitutes the major en-
ergy source worldwide, but since 2000s coal-derived energy is increasing rapidly, mostly
due to largely populated countries as China and India and their developing economies.
Asia is the leader in COy emissions, since coal in its various forms contains the higher
amount of carbon per unity of energy generated. Although the great increase in GHGs
concentration in the atmosphere in the last 150 years was provoked by well-developed
Countries, nowadays these Economies promote emission mitigation policies such as
carbon taxes and collaborations between governments and industries for sustainable
technology research. On the other hand, emerging Economies are currently producing
enormous amount of COy due to social, economical and technological reasons. This

reflects on the despair trend of the energy-related CO, emissions® shown in Figure 1.3.

Although a zero-carbon economy can be attained only after a fundamental change in
primary energy sources, moving to renewable energies and sustainable fuels, this switch
will be possible only in the long-term future. In the mid-term scenario, fossil resources

will still have a central position in the energy generation and transportation sectors,
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Figure 1.3: Energy-related CO2 emissions in advanced economies and other Countries in
the period 1990-2019. Adapted from IEAS.

implying the reduction of anthropogenic CO, emissions on a global level as the only

possibility to limit climate change.

1.2 Techniques for the reduction of CO, emissions

According to the Intergovernmental Panel on Climate Change, the most promising so-
lutions for the reduction of CO5 emissions are the Carbon Capture and Storage (CCS)
and the Carbon Capture and Utilisation (CCU). These technologies are meant to be
complementary: the former is related to the management of CO, as a waste, while the
latter targets the cyclic reutilisation of COy as a source. CCS techniques consist in
the absorption of the CO, contained in different gaseous streams and in its subsequent
permanent sequestration in geological reservoirs and saline aquifers. Despite the quite
mature technology, in 2018 only 37 large scale plants existed at different development
stages.” The main reasons of its stiff commercial deployment involves technical and
economic aspects, such as the necessity of enormous gas storage capacity, the great
energy penalty due to the regeneration of the solvents used for CO, absorption and
CO; compression, the lack of an adequate transportation grid and the related infras-

tructures.®"%19 Moreover, it must be considered also the role of the public acceptance:
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little information and suspicion about risks and trustworthiness of CCS led to social op-
position and protests.!! For this reason, CCU technology emerges as the ideal solution.
CCU routes aim to create a circular carbon economy, exploiting CO, as a suitable
source to move towards low-carbon energy and chemical industries. COy utilisation
techniques, besides reducing the volume of emissions in the atmosphere, allow also to
reassess what is generally considered a waste by converting it into a technological fluid,
minerals and added-value products. For long time CO4 has been a feedstock of some
industrialised chemical processes, as in the production of urea (1922), salicylic acid
(1969) and methanol (1970). However, in recent years the interest in COq exploitation
has risen rapidly motivated by the determination to mitigate the climate change, and

many efforts have been put in the development of new viable processes!? (Figure 1.4).

—
[ B
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3 €O, to formic acid

4 C0, to acrylic acid and other acids
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8 ('()5 conversion to urea (advances)
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area of CO2 utilization
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Figure 1.4: Number of patents identified in the period 2008-2013 for the catalytic pro-

cesses of CO2 conversion to chemicals, classified according to 11 main classes
of reactions. Reproduced from Ampelli et al.1?.

For instance, in 2011 Bayers opened a pilot plant to produces polyurethanes based on
CO4 and CRI opened a plant for the production of methanol in Iceland which utilises
H, derived from geothermal electricity.'? This new scenario in which CO, is at the
core of chemicals and energy production is supported by continuous breakthroughs in

heterogeneous catalytic systems for its activation.
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Many controversies arise on the effective potential of CCU to contrast global warming,
mainly targeting two aspects: the duration of CO, immobilisation and the capacity to
contribute to CO5 emission reduction. The key point in the first case is to consider the
amount of avoided CO, instead of the used CO, when comparing a CCU system with
respect to a process on stream. Indeed, we can find several examples of COy-based
processes that minimise emissions while obtaining the same product with respect to the
common industrialised process.®1%15 In this perspective, a short-time-cycle chemical
or commodity obtained substituting CO, to fossil fuels implies a cumulative emission
reduction effect in the long-term. In addition, these processes are usually safer and
both energy and material more efficient, providing a further economic incentive for the
introduction of CO, as the alternative carbon feedstock in the supply chain. According
to Aresta et al.'%, to face the second problem a preliminary classification of COs-based
reactions should be done, separating those in which CO; is incorporated in the final
product from the ones in which CO, is converted to a reduced form. In the first class
we found most of compounds belonging to the chemicals market, in the other we have
fuels. In the best of the cases, it is foreseen that CO, utilisation for chemicals produc-
tion will increase to about 330 Mt per year in 2030. In a near future perspective this
contribution to the total CO, emission reduction would be irrelevant. The fuel market
instead is estimated to be 12-14 times that of chemicals, therefore COy conversion into
fuels must be the target to profitably exploit large amounts of it, and the impact on the
emission reduction would be substantial. %7 In their work focused on the impact on
GHG emissions arising from the 20 large-volume chemicals projected in 2030, Katelhon
et al.1® estimated a substantial climate change mitigation potential considering a sce-
nario characterised by the production of these chemicals from COs-based methanol,
methane, olefins, BTX, carbon monoxide, ethylene oxide and styrene. More precisely,

the annual emission would decrease from 4.2 to 0.7 Gtco,—eq-

COs-based synthetic fuels can provide the solution to manage the intrinsically fluc-
tuating supply of renewable energy until new efficient energy storage techniques will
be developed, and they can face the dependency on external suppliers of Countries
without internal sources of fossil fuels. Besides, all methods based on renewable en-

ergy sources (hydropower, geothermal energy, wind and solar energy) produce electrical
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energy as output. However, electrical energy does not integrate well into chemical pro-
duction, except as utility: most of the industrial chemical processes are based on the
use of heat as the source of energy for the chemical reaction and considering the oil
refining sector, only about 5% of the input energy is used as electrical energy.!® As last,
energy-dense liquid hydrocarbon fuels overperform electricity and Hy potential in the
automotive sector, since the lower storage energy densities of batteries and Hy severely
limit the driving distance.?’ Therefore, considering the already established worldwide
delivery infrastructure, the exploitation of liquid hydrocarbon fuels would avoid also
the technical and economical challenges of an efficient Hy distribution grid, which is

one of the major issues of the Hy economy. !’

There are two crucial aspects towards the deployment of CO,y as a synthon for fu-
els at commercial scale. Firstly, from a chemical point of view, the high stability of
the molecule. Secondly, regarding the catalytic processes involved for its conversion,
the required purity of the feedstock. CO, valorisation chemistry requires high energy
reducing reaction partners, such as Hy. In addition, given the enormous potential usage
of CO,, these reactions must be catalytic in order to operate in as mild conditions as
possible, and the catalyst must involve low cost and earth-abundance. It is broadly
accepted that Hy supply is the most relevant factor to determine the environmental
benefit of COs-based products with respect to the fossil-based ones. In their LCA
study, Sternberg et al.?! showed how all CO,-based Cl-commodities would be favor-
able for the global warming impact only if Hy were produced through water electrolysis
using renewable electricity. In fact, nowadays Hy production is mainly produced by
fossil resources via reforming technologies, affecting positively the anthropogenic car-
bon balance. To this purpose, advanced processes with milder carbon footprint will
positively reduce the impact of Hy production. An example is the development of
reforming technologies that directly consume COs to assist CHy conversion (dry re-
forming, bi-, tri-reforming). Different sources of renewable energy would also have a
different effect on climate change mitigation, with wind-derived electricity being the
cleanest. CO; sources instead can be generally divided into 3 classes, namely pre-
combustion, oxy-fuel combustion and post-combustion stream gases. These lasts have

drawn great attention both because of the ready expertise of their treatment and for
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the possibility of retrofitting existing fossil-fuel power plants to bridge them to CO,
reuse. Numerous paths have been proposed to convert efficiently CO,, although in
most of these technologies a relatively high-purity feedstock is required. CO,y emit-
ted from power and industrial plants is in the range 3-15%vol, and it is generally
diluted with many different compounds, such as O,, Ny, H,O, NO, and SO,. Nowa-
days large-scale post-combustion CO, separations are mainly based on wet scrubbing
around 40 °C with amine sorbents such as MEA, DEA and MDEA; despite their proven
efficiency, they imply several setbacks, first and foremost the high operation costs. In
fact, in addition to the corrosive nature of the amines, their fouling tendency and the
treatments required for their disposal, these processes are penalised by the high re-
generation energy of the liquid sorbent, associated with the carbamate hydrolysis. For
instance, a typical MEA regeneration stripping tower must operate at relatively ele-
vated temperatures (100-140 °C) with respect to the CO, absorption unit.?? According
to the IPCC 2005 special report??, COy capture costs for a post-combustion electric
power plant increase the energy requirement by 24-42%, and it is estimated that the
cost for COy capture in a fossil power plant is 15-75 $ per ton of CO, processed,
while for example its transportation and storage account for 1-8 $ and 0.5-8 $ respec-
tively.?* To overcome such problems, in recent years many researches have focused on
solid sorbents as an alternative, given their potentially less-energy-intensive separation
technology. In fact, differently from liquid sorbents, solid sorbents can be applied over a
wider temperature range, entailing less waste during cycling and a less environmentally
hazardous disposal.?> Among others, zeolites, activated carbons, hydrotalcites, metal-
organic frameworks and metal oxides have risen great interest. However, for most of
these materials the desorption is induced by a temperature or pressure swing, although
ideal CO, capture and adsorbent regeneration should be performed at low temperature
and isothermally, so as to minimise energy requirement and parasitic energy loss.?¢ In
this context, a new catalytic unsteady-state process for CO, utilisation is proposed,
which shows to have a strong potential in reducing global emissions and versatility of

applications.
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1.3 CCR process for synthesis gas production

The CO, Capture and Reduction process is a catalytic process that allows to convert
efficiently CO, directly from the emitting source. It is performed in unsteady-state
operation by the alternation of two phases: the capture, in which CO, is captured by
the catalytic material and a COs-free stream is released, and the reduction, in which
an Hy flow converts the captured CO, to valuable products. The ability of dealing
with diluted COy streams gives the process the advantage of bypassing some energy-
intensive separation and purification steps. Depending on the active metal, CCR can
be suitable to produce different C1 commodities, with methane®” and syngas?®2?? being
the most promising targets. In this work, the attention is focused on the production

of syngas.

Syngas is a mixture of mostly CO and Hs in variable ratios, that constitute the main
building block to produce a great variety of products through the Fischer-Tropsh pro-
cess, such as gaseous and liquid fuels. Relevant industrial processes benefit from syngas
utilisation. According to Joo et al.?, the route involving conversion of CO5 to CO and
its subsequent hydrogenation to methanol, better known as CAMERE process, leads to
20% higher methanol yields than the direct hydrogenation of CO, to CH3OH. Syngas
has its relevance also in the field of chemical energy storage: in fact, the Power-to-
Syngas pathway results in bigger environmental advantages opposed to Power-to-SNG
(synthetic natural gas).3! At present, large-scale syngas production is realised by steam
reforming of methane (SRM) combined with the water-gas shift reaction (WGS), and in
minor part by autothermal reforming and the catalytic partial oxidation of methane.
All these processes are based on fossil resources. In recent years, low-carbon alter-
natives for syngas production have drawn great attention. The most promising and
investigated are dry reforming of methane, the biomass gasification and pyrolysis and
the reverse water gas shift (rWGS). In particular, rWGS implies the catalytic reduction
of CO5 to CO by means of Hy, where HyO is obtained as a side product according to

the reaction:

CO, + Hy == CO + H,0 AHSyg = 41k.J /mol (1.1)
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Excess Hs is required to obtain a syngas mixture as reactor effluent. rWGS has at-
tracted many attentions because it involves the conversion of CO, into the much more
reactive CO. Due to its endothermic nature, rWGS is thermodynamically favored at
high temperature and the CO, conversion is maximised by the increase of the Hy/CO,
ratio. The thermodynamic equilibrium of reaction products was analysed by Kaiser

et al.?? using a Hy/CO, feed ratio of 3:1 and it is shown in Figure 1.5. Below 600 °C
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Figure 1.5: Influence of temperature on the thermodynamic equilibrium of the rWGS reac-
tion at 1 bar and Hy/COg molar ratio of 3/1. Reproduced from Kaiser et al. 32.

methane is the main product, while CO is dominant above 700 °C. However, at such
high temperature conditions CO, conversion is below 70%.%* Reducing the reaction
temperature would be essential to reduce energy consumption. However, at low temper-
ature undesired side reactions compromise rWGS efficiency, in particular the water-gas
shift and the Sabatier reactions. In this sense, developing catalyst selectivity towards
CO becomes crucial to avoid downstream product separation while limiting operation

costs.

When dealing with heterogeneous catalytic systems, optimal operating conditions un-
der steady-state regime not necessarily correspond to the absolute performance limit of
the process. In fact, forcing the change of reaction parameters in a dynamic or cyclic
way proved to increase process performance in several cases.®* In the CCR process,

the forced unsteady-state operation regime is generated by periodically switching the
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gas atmosphere inside the reactor. The catalyst is subjected to continuous changes,
mainly in composition and structure, and the average catalyst activity and selectivity

can be enhanced compared to the steady state regime.

The possibility to achieve CO4 capture and its conversion to CO into an isothermal
unsteady-state operation is related to the exploitation of a bifunctional catalyst. The
CCR process is characterised by two distinct phases, cyclically carried out in a packed
bed reactor. In the first one, denoted as capture phase, a gas stream containing COs is
fed to the packed bed reactor. COj is then chemically adsorbed on the storage sites of
the catalyst. By switching the gas atmosphere in the reactor, we enter the second phase
of the process, called reduction phase. Here, pure H, is fed to the reactor and accounts
for the reduction of the adsorbed CO5 to CO. With this, the simultaneous regeneration
of the catalyst active sites for capture is achieved. The product gas stream contains the
formed CO and excess Hy, thus constituting a syngas mixture. A graphical representa-
tion of the process is illustrated in Figure 1.6. A challenge for the optimisation of this
stage would be the achievement of a Hy/CO ratio suitable for downstream processes.
As an example, Fisher-Tropsh process and methanol synthesis would benefit from a
syngas with Hy/CO ratio around 2:1. The HyO formed as by-product can be separated

from the syngas by condensation.

As previously proposed, the CCR process efluent could be suitable for the production
of liquid hydrocarbons and transportable synthetic fuels through the Fischer-Tropsch
process. Main reactions involved in this process are the synthesis of paraffines and

olefines, according to Equation 1.2 and Equation 1.3 respectively.

(27’L + 1) Hg +nCO — CnH2n+2 + TLHQO AH;QS <0 (12)

2nHy +nCO — C,H,, + n Hy0 AH;QS <0 (13)

About 75 to 80% of the useful product is olefinic, with the remainder being paraffinic.
FT process is generally carried out in a temperature and pressure range of 220-350 °C
and 25-40 bar. Aromatic and cyclic compounds are formed only at temperatures appre-

ciably greater than 300 °C, thus by a complete thermal decomposition process followed
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CO,-free
effluent

Figure 1.6: Illustration of the CCR process for syngas production.

by a reconstruction process. Most suitable catalysts are Co- or Fe-based catalysts,
depending on the feedstock: the former is suitable for high hydrogen-to-carbon ratio,
the latter for low H, content syngas, since it promotes the water-gas shift reaction
(inverse of Equation 1.1). Fisher-Tropsch products can be furtherly upgraded through
different operations: fractionation, hydrotreating, catalytic reforming, alkylation and
isomerisation allow to obtain a variety of energy-dense liquid fuels, such as LPG, gaso-

line, naphtha, kerosene and diesel.

Chemical looping for CO, capture can be applied considering a cyclic process con-
ducted in two different reactors, the carbonator and the calciner.?* In the carbona-
tor, catalyst particles are the carrier for carbon dioxide. Usually, metal oxides act
as good sorbents forming their correspondent metal carbonates. By a temperature
swing, they can subsequently be regenerated releasing a pure COy stream. The cal-
cium oxide-calcium carbonate looping is a well-known system, as it was found to be
suitable both for post-combustion gas treatment and for the enhancement of the WGS
reaction, shifting the thermodynamic equilibrium of the reaction towards Hy produc-
tion. This operation simplifies the subsequent CO, compression, transportation, and
sequestration steps. However, catalyst regeneration is an energy-intensive step, since

high temperatures are required.
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The great advantage of CCR is its application in a chemical looping concept, as de-

scribed by Bobadilla et al.?® and presented in Figure 1.7. This system consists of two
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Figure 1.7: Integrated two-reactor CCR process for continuous CO2 capture and reduction.
Reproduced from Bobadilla et al.?8.

parallel CCR reactors, one capturing COs from the source flow (i.e. flue gas) and
the other one reducing the adsorbed CO, with Hy flow. At catalyst saturation, the
gases fed to the reactors are switched: in this way the first reactor will now operate
the reduction phase, while the second will capture CO,. This kind of system can be
operated isothermally, and trough a correct synchronisation of the feed gas streams it
is possible to obtain a CO,-free effluent and syngas as an added-value product. Al-
ternative configurations for the reactor have been proposed, for example including a
moving catalyst in a fluidised bed configuration, where the reactors are fixed and the
catalysts is carried through them by the flow, overcoming heat transfer limitations
and heat management issues.3>3% To match with the time required for CO, capture,
the reduction of adsorbed CO, must be fast enough, and since the reduction stage is
endothermic, higher temperatures favor its conversion. Bobadilla also demonstrated
the ability of this process to deal with Oy and H,O impurities.?® This kind of system
can be a breakthrough for CCU, since it allows the in-situ CO, separation directly
from flue gases and isothermal process conditions, which eliminates the need for an

expensive gas separation and purification unit and lower energy requirements.
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Therefore, a suitable catalytic material for CO2 capture and conversion must present

different functionalities:

e Reversibility of the COy adsorption step, i.e. regenerable catalyst, since the

objective of the process is the conversion of CO, rather than its immobilisation;
e High CO, adsorption capacity at operation temperature;
e Fast reduction of stored CO, and parallel fast regeneration of the catalyst;
e High conversion of stored CO5 and high selectivity to CO;
e Stability and durability of operation;

e Made of earth-abundant, nonhazardous materials.

1.4 Aim of the Thesis

Due to the process novelty, the state of art on CCR counts only few works in litera-
ture. Different catalytic systems were found to satisfy these requirements proving their
efficiency for CCR. The most relevant are K-promoted mixed metals on hydrotalcite?

and K-promoted Cu on alumina?.

By using Ni as the active metal of the catalyst,
Hu et al.?” tailored this process approach to CO, methanation. The last mention goes
to the research of Daza et al.?"3®, who interestingly developed a CCR process over
doped cobalt and iron perovskites. In this work, the K-promoted Cu/Al,O3 system
has been investigated. Proven its activity and selectivity to form CO, there is difficulty
in determining the exact mechanism of reaction over this catalyst. This is crucial to
rationally design a catalytic process with high efficiencies and maximum CO, uptake
and conversion. Involved catalysts may undergo continuous reconstruction under re-
alistic working conditions, which unfortunately causes controversial results concerning
the active sites and reaction mechanism of COs reduction. In our particular case,
the potassium state is difficult to identify as well as its role in the active phase, since
it eluded the common characterisation techniques. However, determining the active

phase would be of relevant importance to further develop catalyst functionalisation. A

promising solution may be the real-time monitoring of the dynamic evolution of the
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catalysts and reaction intermediates by in situ techniques.?’

Al,O3 was chosen as the catalyst support for its good thermal stability and the high
surface area, which should enhance catalyst durability and active sites dispersion. The
material scope was extended through this work to determine the key features of the sup-
port, including TiOs- and ZrOs-based systems. Besides being earth-abundant, copper
is extensively recognised as an active metal for rWGS thanks to its ability to perform
rWGS at low temperatures®? and its high selectivity towards CO, with little or no pro-
duction of CH, as a side product. 4343 Potassium was chosen as it showed promising
performance for CO, capture among the alkali metals in different applications, both as
a supported solid material and in aqueous solution. 4454647 Moreover, several studies
reported its promotion effect in TWGS. 46484950 This project is oriented to the deeper

investigation of the CCR process, particularly focusing on:

e Evaluation of the performance of catalysts with different loadings of active metal,

promoter and support material, along with their characterisation;
e Unravelling fundamental steps and active sites involved in the reaction mecha-
nism;

e Optimisation of the process performance using the better performing catalyst for
potential inclusion in the treatment of post-combustion flue gases of a common

fossil fuel power plant.






Chapter 2

Materials and experimental

methods

In this chapter the instrumental equipment, experimental methodologies and analysis
techniques utilised for the thesis work are presented. All experiments were performed
within the Catalysis Engineering laboratory, belonging to the Faculty of Applied Sci-
ences at Delft University of Technology.

2.1 Time-resolved FT-IR spectroscopy setup

Catalytic activity tests were performed in a fixed bed reactor. It is inserted in the setup
schematically represented in Figure 2.1 and showed in Figure 2.2. Gas lines connected
to this system are He, Oy, Ny, CO,y, CO and Hy. Gas flow rates are selected by means
of mass flow controllers (Bronkhorst) to obtain the final composition of the reagent
mixture. Reactants are sent to a quartz tube reactor of 6 mm diameter. A system of
two automatic 4-way switching valves enables to perform cyclic unsteady-state regime
by alternating three different gas atmosphere over the catalyst. A USB camera was
mounted in order to observe the eventual emergence of surface or bulk phase modifi-
cations producing colour changes in the visible range during the reaction. To remove
excessive water from the flow and prevent damage to the analytic instruments, the
outlet gas is passed through a condenser attached to a chiller. The reaction product
mixture is then analysed by a FT-IR spectrometer (Bruker Alpha), with a time resolu-

tion of 5s per spectrum. Pressure indicators and metering valves are placed for keeping

21
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the pressure of the vent line and of the reactor line in balance and to prevent pressure

drops. In the following, each part of the setup will be described in detail.

Heating

H;
en, }

N DEG—o

W% CO;

Ha

Figure 2.1: Scheme of the laboratory experimental setup for catalytic activity tests.

Figure 2.2: View of the laboratory experimental setup for catalytic activity tests.
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2.1.1 Mass flow controllers: Bronkhorst EL-FLOW Select

Bronkhorst EL-FLOW Select mass flow controllers (0-150 bar, 0-120 mLmin~!, the
range is calibrated with He, Figure 2.3) were used to control reactant gas flow rates
fed to the reactor. They are automatic MFCs, remotely controlled. The measuring
part of this instrument consists of a laminar flow element and a bypassing thermal
mass flow sensor, which are filled with gas once the MFC has been connected to the
line. The sensor consists of a capillary tube fitted with a heater and two temperature
recorders. The heater heats the tube: as long as there is no flow, the two temperature
sensors heat up evenly. The measured value is zero, and this signal is forwarded to
the microprocessor. The set point from the analog port is compared to the measured
value: if the latter is lower than the required value, the PID controller will actuate
the control valve. The control valve consists of an electromagnetic coil exerting a force
on the magnetic plunger holder. This results in a flow through the instrument. The
gas flows through the laminar element, which serves as a perfectly predictable flow
resistance, necessary for the calibration of the instrument. The resistance offered by
the laminar flow element also ensures that a small portion of the feed is sent to the
thermal sensor. The cold gas temperature is registered by the first temperature sensor,
while the second one detects a higher temperature due to the heating of the gas by
means of the heater. The temperature difference is a direct measure of the mass flow,
according to the energy conservation law. This signal is compared to the desired value
in the microprocessor. The electric current of the coil is then adjusted in order to open
or close the valve orifice, in this way controlling the quantity of gas. The control circuit

performs these operations in few milliseconds, ensuring a constant and stable gas flow.

2.1.2 4-way switching valves

A combination of two electric 4-way switching valves (VICI Valco) is installed in the
setup to automatically alternate the gas pulse fed to the catalyst bed. Each valve
consists of a two-position (A, B) microelectric actuator, a gearbox assembly and the

interconnecting cables. In order to select between different gas flows to the reactor, this
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Figure 2.3: Bronkhorst EL-FLOW Select mass flow controller.

system permits four different configurations, referred to as AA, AB, BA (not used) and
BB. A schematic representation of each case is presented in Figure 2.4. Three main

gas phases are utilized in the system:
e An oxidant phase in which O5 or CO, and He as diluting gas can be fed together;
e A flushing phase consisting of pure He;
e A reducing phase, in which Hy and Ny as diluting gas can be fed together.

Considering the first valve, the flushing He line and the oxidant line are connected at
the two inlets (port 1 and 3, respectively). One of the outlet line (port 4) goes to vent,
while the other outlet line (port 2) is connected to the inlet (port 3) of the second valve.
The reducing phase is connected to the other inlet (port 1) of the second valve. For
the second valve, one of the outlet line (port 4) goes to vent, while the other outlet line
(port 2) goes to the reactor. By selecting position A, the port 1 and 2 are connected,
and so are 3 and 4. By switching to B position, port 1 and 4 are connected, and so
are 2 and 3. In this way, by selecting the AA configuration, for both valves the port
connections are 1-2 and 3-4, resulting in the venting of the oxidant phase at the first

valve, the venting of the inert phase at the second valve and the feeding of the reducing
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phase to the reactor. On the contrary, in BB position, the oxidant phase will access
the reactor. Ultimately, AB position will send the He flushing line to the reactor. For
all the experiments the process scheme applied is BB, AB, AA, AB, obtaining the

alternation of the oxidising and reducing phases and the inert flushing between them.

AA

to vent

to vent to reactor

co,

AB He

to vent

to vent to reactor

co,

BB He

to vent

to reactor

Figure 2.4: Schematic of the three used configurations of the two electrically driven 4-way
valves used for catalytic tests.
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2.1.3 Reactor tube

The reactor consists of a quartz tube with a 4 mm inner diameter and 1 mm wall thick-
ness. Its length is 300 mm, while the catalyst bed length varies between 10 mm and
25 mm depending on the material (maximum length is obtained for alumina-supported
ones). Quartz wool is used to pack the catalyst in position, avoiding possible particle
drag. The reactor tube is wrapped into a metal jacket to ensure homogeneous distri-
bution of the heat on the catalytic bed. In the reactor, the temperature is measured
by a K-type thermocouple inserted from one end and kept at 1 mm distance from the
catalyst. The heating system consists of a heating box containing a toroidal trans-
former and a PID system to control the amount of power released in order to reach
the targeted temperature on the thermocouple. The current flows through a closed
circuit in which an heating coil represents the resistive element dissipating the current
in the form of heat. The heating coil is placed below the catalyst bed, to provide fast
and confined heating. The reactor and the heating coil are insulated from the external

environment by means of refractory bricks.

2.2 In situ Raman spectroscopy setup

CCR tests were performed in a fixed bed reactor, integrated in the setup schematically
represented in Figure 2.5. The configuration is similar to the one of the previous ex-
perimental setup. Gas lines connected to this system are He, Oq, No, CO5 and H,. Gas
flow rates are introduced in the reactor by means of mass flow controllers (Bronkhorst)
to select the final composition of the reactant mixture. Reactant flows are sent to a
quartz tube reactor. The alternating gas atmosphere between CO, and Hs is made
possible by means of a two-position pneumatic valve. The reaction product mixture
is then analysed by a mass spectrometer (Omnistar GSD 320). Pressure indicators
and metering valves are placed for keeping the pressure of the vent line and of the
reactor line well balanced to avoid flow fluctuation in the reactor gas line. In addition,
a remotely controlled moving support stage (Zaber console) for the Raman probe is
present. Due to the proximity of the probe to the heating coil, the probe is cooled down
by a glass jacket with water circulation to avoid its overheating. The whole setup is

placed into a closed box for safety reason (3B class laser is used as radiation source).
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Figure 2.5: Scheme of the laboratory experimental setup for in-situ and operando Raman
tests.

2.3 Analysis equipment

2.3.1 FT-IR specroscopy: Bruker Alpha FT-IR spectrometer

Fourier-transform infrared spectroscopy was used to analyse the gas mixture composi-
tion of the effluent. This technique is suitable for the analytic composition of solids,
liquids or gases because it is able to simultaneously collect high-spectral-resolution data
over a wide spectral wavenumber range. The FT-IR spectroscopy uses interferometry
to record information about a material placed in the IR beam, since these spectrom-
eters are all based on the Michelson interferometer. This element consists of a fixed
mirror, a perpendicular moving mirror and a beam splitter. FT-IR technique shines a
beam containing the full spectrum of wavelengths to be measured to a beam splitter,

and a fraction of the light source is sent to each mirror. When reflected back by the
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mirrors, two beams of light recombine with each other at the beam splitter and they
are focused on the sample. Since one mirror is movable, the path length between the
two beams can be different, thus generating constructive or destructive interference.
The intensity of the signal is amplified, and it can be represented as a function of time,
and the resulting plot is called interferogram. The interferogram is digitally converted
to the actual spectrum through the Fourier transform, obtaining the plot of the ab-
sorbance intensity as a function of the wavelength. Patterns in spectra help identify the
sample, since molecules exhibit specific IR fingerprints. The instrument used in this
work is an on-line Bruker Alpha FT-IR spectrometer, which allows for 5s time-resolved
measurements with a resolution of 4 cm~!. The wavenumber range is between 400 and

4000 cm ™1,

The determination of the concentration of an IR-active compound is made possible
by its correlation with the area of the absorbance signal, according to the Lambert-
Beer theory. The instrument was calibrated for the quantitative estimation of COs,
CO and CH,4 concentrations in flow. Different concentrations of these species were ob-
tained from the nominal cylinder value or by dilution using He and Ny. For the diluted
mixtures, the composition of the streams was determined from gas chromatography.
Simultaneously, the IR absorbance area was calculated in a certain wavenumber range,
specific for each compound. The selected spectral range are 2260-2280 cm™!, 2150-
2170 cm ™! and 1220-1266 cm~! for CO,, CO and CHy respectively. A proportionality
parameter € was then determined as the ratio between the area and the concentration.
In order to decrease the error in the measurement, three consecutive GC injection were
performed for each concentration, along with three different IR spectra acquisition for
each concentration point. To improve the signal-to-noise ratio and the accuracy of the
calibration, each IR spectrum was the average of 100 successive scans. A plot of € as a
function of the absorbance area was then elaborated for each analyte and the equation
of the fitting curve was used for determining the concentration during reaction. An
example of the fitting curve is reported in Figure 2.6 for CO,. This kind of procedure
allows for concentration estimates with a relative error smaller than 1% (determined
through the propagation of error principle). The experimental IR spectra coming from

the analysis instruments were processed on MATLAB® to quantify species concentra-
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tions in the effluent stream.
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Figure 2.6: Curve fitting of the experimental data points (black squares) for IR CO4 quan-
tification.

2.3.2 Raman spectroscopy: PicoRaman spectrometer

Raman analysis of the catalyst were conducted ex situ, in situ and in operando by
means of a PicoRaman spectrometer, a Class 3B laser product. A 532nm wavelength
green laser is used as the excitation source. An optic-fiber connected probe is used
both to carry the exciting radiation to the catalyst material and to collect the ra-
diation induced on the catalyst species, which is then sent to a detector. Thanks
to the TimeGate technology, PicoRaman has sub-nanosecond pulsed excitation and a
time-resolved single-photon counting detector, enabling effective fluorescence rejection,
which can be possibly generated by the sample. The SampleCube was used for ex situ
measurements. It is an external sample compartment equipped with a light-tight slid-

ing door. A quartz disk containing the sample can be placed inside this instrument,
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while the probe shaft can be inserted in a suitable probe port.

Raman spectroscopy is an analytic technique which provides information about the
chemical structure, the crystallinity and the molecular interactions of the sample by
detecting the chemical fingerprint from its low-frequency vibrational modes. It is based
upon the interaction of light with the chemical bonds within the material. A laser is
used as incident monochromatic radiation source in the infrared or in the visible, whose
wavelength is very different from the absorption wavelength bands of the analyte. Ra-
man spectroscopy working principle are presented in Figure 2.7. Most of the scattered
light is characterised by the same wavelength as the incident radiation and it is not
informative (Rayleigh scattering), but a small amount of radiation is scattered at dif-
ferent wavelengths, depending on the chemical bonds of the analyte. This phenomenon

is called Raman effect. Two types of Raman scattering exist:

e Stokes scattering, characterised by higher wavelength (and lower energy) than

the source wavelength;

e Anti-Stokes scattering, characterised by lower wavelength (and higher energy)

than the source wavelength.

Vibrational or rotational modes are Raman active if the incident radiation implies a
variation of the polarisability of the molecule. Each peak of a Raman spectrum corre-

sponds to a specific molecular bond vibration, and this allows the sample identification.

2.4 Experimental procedures

In this section, catalysts preparation procedures are illustrated.

2.4.1 Catalyst preparation

All catalysts were prepared by the incipient wetness impregnation method.?'*? Ac-
cording to this synthesis technique, the active metal precursor is first dissolved into
milli-Q water (deionised water). It is then added to the catalyst support, previously

crushed to obtain a fine powder. The volume of the aqueous solution of the metal
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Figure 2.7: Energy-level diagram showing the states involved in Raman spectra (top) and
Raman shift definition (bottom).

precursor is chosen as equal to the pore volume of the support. Capillary action draws
the solution into the pores of the support. A mortar was used to enhance the penetra-
tion of the solution into the pores. The catalyst is then dried and calcined, resulting
in the evaporation of volatile components and in the deposition of the active metal on
the support material. The procedure is repeated for the deposition of the promoter:
an aqueous solution containing the promoter precursor is added to the catalyst, which
is then dried and calcined. Support materials used are gamma-phase aluminum oxide
(Alfa-Aesar, catalyst support), rutile-phase titanium oxide (Alfa Aesar, >99.5%) and
monoclinic-phase zirconium oxide (1/8” pellets, Alfa Aesar, catalyst support). Ac-
tive metal and promoter precursors are respectively copper nitrate trihydrate (Merck,

>99.5%) and potassium carbonate anhydrous (Sigma, >99.0%). After the impregna-
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tion, catalysts were dried at 80 °C for 16 h and calcined at 500 °C for 5h. At the end of
the preparation, the catalyst is in the form of a granular sand. Synthesised catalysts
are reported in Table 2.1. Table 2.2 instead reports the nominal pore volume of the
different catalyst supports, according to the documentation retrieved from the supplier.
At this point, catalyst grains are ground into a fine powder and pressed under 2t to
obtain a circular pellet. The pellet is crashed into a powder, which is then sieved. The
range selected for catalyst particle dimension is 200-300 pm, since it gives a satisfactory
trade-off between gas diffusion phenomena and prevention of high pressure drops inside

the reactor. Figure 2.8 shows the as-synthesised and the loaded catalyst.

Table 2.1: Synthesised and tested catalysts.

12Cu/Al,O4 1Cu — 20K /Al 04
10K/Al,O4 10Cu — 10K /TiO,
11Cu — 10K/ALL O3 10Cu — 10K /ZrO4
1Cu — ]_K/A1203 1Cu — ]_OK/ZI'OQ
1Cu — 10K/A1203

Table 2.2: Nominal pore volume of the different support materials.

Catalyst support Nominal pore volume (mLg™!)

’)/—A1203 1.0
ZrOy 0.3
TiO, 0.5

2.4.2 Modified incipient wetness impregnation catalysts

As it will be discussed in the next chapter, dispersion and distribution of Cu and K
species on the support are considered to be crucial for CCR activity. According to
this consideration, the synthesis method may play a role since it can influence the
dispersion of the active metal and the promoter on the surface. In particular, due to
the low amount of water utilised in the incipient wetness impregnation method, this
dispersion can be hard to achieve. Especially in the case of KoCOj3, the solubility in
water can be an issue (1120 g L~1 at 20°C). To target this effect, after the activity test
of the 11Cu-10K/Al,O3 catalyst synthesised by incipient wetness impregnation, a new
batch of the same catalyst was synthesised adding 3 times the amount of water for the

K impregnation. To distinguish them throughout the discussion, they will be referred
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Figure 2.8: Catalyst powder after calcination (left) and loaded in the reactor tube (right).

to as 11Cu-10K/Al,O3 TWT and 11Cu-10K/Al,O3 IWI-mod. In the same way, a 2 wt%
K-promoted 12Cu/Al;O3 was synthesised from the same initial batch. Moreover, in
process parameters optimisation presented in Chapter 5, the effect of the amount of

water used in the K impregnation step is further addressed.

2.5 Characterisation techniques

2.5.1 X-ray diffraction: Bruker D8 Advance diffractometer

X-ray powder diffraction (XRD) is a analytical technique primarily used for phase iden-
tification of crystalline materials and can provide information on unit cell dimensions.
The analysed material is finely ground, homogenised, and average bulk composition is
determined. X-ray diffraction is based on constructive interference of monochromatic
X-rays. X-ray diffractometers consist of three basic elements: a X-ray tube, a sample
holder, and an X-ray detector. The X-ray generator and the detector are mounted in
two opposite rotating arms. X-rays are generated by the cathode ray tube, filtered to

produce monochromatic radiation, collimated to concentrate, and directed toward the
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sample. The interaction of the incident rays with the sample produces constructive
interference when conditions satisfy Bragg’s Law (nA = 2dsin ). This law relates the
wavelength of electromagnetic radiation A to the diffraction angle # and the lattice
spacing d in a crystalline sample (Figure 2.9). Diffracted X-rays are then detected,
processed and counted. By scanning the sample through a range of 260 angles, achieved
by rotating the X-ray source and detector in a specular way, all possible diffraction
directions of the lattice should be attained due to the random orientation of the pow-
dered material. Conversion of the diffraction peaks to d-spacings allows identification
of the mineral because each mineral has a set of unique d-spacings. Typically, this
is achieved by comparison of d-spacings with standard reference patterns. Data were
collected using a Bruker D8 Advance Diffractometer equipped with a Bragg-Brentano
geometry, with monochromatic Co ka source (A = 1.7902 A) in a 26 range between 5°
and 90° at room temperature. The sampling time chosen was 1h, so as to maximise

the signal-to-noise ratio.
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Figure 2.9: Bragg’s diffraction condition construction. The path difference between the two
parallel waves is equal to 2dsinf.

2.5.2 H, temperature-programmed reduction

H, temperature-programmed reduction (Ho-TPR) is an analytical technique applied in
the characterisation of solid materials, and therefore widely used in the field of hetero-
geneous catalysis. It provides accurate insights into catalyst reducibility and reaction
rates in the presence of metal surfaces. In a typical TPR experiment, the catalyst is
filled in a fixed bed tube reactor and it is positioned in a furnace. Temperature in

the catalyst bed is measured by a thermocouple. A gaseous mixture containing reduc-
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ing agents such as hydrogen or carbon monoxide is made to flow across the catalyst
while gradually increasing temperature. Linear heating allows reduction rate to be
correlated with temperature. When reduction is activated at a certain temperature,
hydrogen is consumed from the flow. A thermal conductivity detector continuously
analyses the difference in thermal conductivity between the gas mixture flowing out
from the reactor and a reference flow. Depending on how quickly the flowing gas cools
the filaments of the TCD, different amounts of power have to be supplied in order to
keep their temperature constant. A gas with higher conductivity removes heat more
rapidly, requiring more power to restore the temperature of the filament. In this way,
any change in the composition of the gas flowing over the catalyst, strictly related
to the interactions between the gas and the catalyst, is recorded as a change in its
thermal conductivity. The amount of electricity required to restore the temperature
is reported during the analysis. Such analysis was performed in a dedicated set-up,
shown in Figure 2.10. It consists of a tubular furnace in which a 6 mm internal di-
ameter quartz tube to hold the sample is inserted. TCD is used as Hy consumption
detector. To perform the experiments, 100 mg of catalyst were mixed with 100 mg of
SiC before the tube loading. Temperature was increased from 25°C to 800°C with
a ramp rate of 10°Cmin~!, whereas the reducing gas atmosphere was composed by
10% Hy in Ar with a 30 mL min~! flow rate. Water produced during the reduction was
trapped before reaching the detector. Calibration was made by reduction of a known

amount of pure CuO under same experimental conditions.

2.5.3 Branauer-Emmett-Teller surface area: Micromeritics TriS-

tar II 3020

Brunauer-Emmett-Teller analysis was performed to determine the specific surface area
of the fresh catalysts. In heterogeneous catalysis, surface area is probably one of the

53,54 Ip

most relevant properties since it has been widely correlated to catalyst activity.
fact, usually reaction occurs only on the catalyst surface, while the solid bulk has minor
contribution, not being in direct contact with reagents. The BET theory describes the
physical adsorption of gas molecules on a solid surface. It is based on a pressure-

dependent correlation between the volume of the adsorbed gas and the volume of the

adsorbed monolayer. Probing gases used for this analysis are generally non-reactive
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Figure 2.10: Dedicated experimental setup for temperature programmed analysis.

gases; nitrogen is the most common, and it is also the one used in this case. A
Micromeritics TriStar I 3020 was the instrument used for this analysis. Catalyst
samples were first degassed for 15 h at 150 °C and the N5 adsorption was then performed
at 77K to obtain detectable amounts of adsorption. Known amounts of nitrogen gas
are then released stepwise into the sample cell, where partial vacuum conditions are
created. After the saturation pressure no more adsorption occurs regardless of any
further increase in pressure. After the adsorption layers are formed, the sample is
removed from the nitrogen atmosphere and heated to cause the adsorbed nitrogen to
be released from the material and quantified. The data collected is displayed in the
form of a BET isotherm, which plots the amount of gas adsorbed as a function of

the relative pressure. The behaviour of the sample can diverge during adsorption and
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desorption phases, resulting in a hysteresis of the BET isotherm.

2.5.4 Transmission electron microscopy: JEOL 1400 STEM

Transmission electron microscopy was used to characterise the different catalysts. This
microscopy technique is useful to capture nanometer-resolution details of the sample.
A transmission electron microscope uses a beam of electrons instead of light, exploiting
their wave-particle duality. It is composed by an electron emission source, electromag-
netic lenses and an electron detector. The electron beam is produced, accelerated and
focused by the lenses on a thin layer of the sample, located in a grid. The beam is
modified by passing through the sample, and the transmitted electrons are imprinted
in a detector. A digital software can then convert the signal into an image. Thanks
to their lower wavelength compared to the visible photons, they allow to overcome the
limits of optical microscopy and reach resolution in the order of nm (limit imposed by
properties of the optic components). Recent advances in this technology have achieved
resolutions below 50 pm for high-resolution TEMs. JEOL 1400 STEM was used for

catalyst imaging.

2.5.5 Scanning electron microscopy - Energy dispersive X-ray

spectrometry: SEM Hitachi S4800

Scanning electron microscopy was also used for catalysts characterisation. This mi-
croscopy technique is adopted to capture information about the morphology and the
composition of a sample. Similarly to a transmission electron microscope, it uses
a beam of electrons instead of light and it consists of an electron emission source,
electromagnetic lenses and an electron detector. The electron beam is produced, ac-
celerated and focused by the lenses on a thick layer of the sample. In turn, it emits
secondary electrons, which are then detected. The surface topography of the specimen
is determined from the variation of the number of the emitted electrons, and it can be
magnified through a digital device. The incident electron beam can also provoke the
ionisation of atoms, and the subsequent emission of X-rays. The X-ray energy depends
on the elementary composition of the sample, thus it is possible to deduce the chemical

nature of the material and its spatial variation by EDS. Best SEMs can achieve res-
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olutions below 1nm. A Scanning Tunneling Microscope (SEM, model Hitachi S4800)

was used to examine the surface and the composition of the catalyst.



Chapter 3

Catalysts characterisation

In this chapter, CCR cataysts are characterised both after calcination and after re-
action. The effect of the different active species and of the support materials are

investigated by TPR, BET, XRD, TEM and SEM characterisations.

3.1 X-ray diffraction

Ex-situ powder X-ray diffraction patterns were acquired to verify the success of the
synthesis of the different samples, with the purpose of obtaining a crystalline structure
without undesired phases. XRD patterns were collected for the as-synthesised samples
and after several CCR cycles, ending in the CO, phase, in order to verify possible
modification of the catalyst. Assignment of the crystalline phases was made by search-

match analysis based on PDF database.

Figure 3.1 illustrates X-ray diffractograms of the as-synthesised 11Cu-10K/Al,O3 ITWI
and of the 11Cu-10K/Al,O3 IWI-mod after calcination, after 6 CCR cycles and after
50 CCR reaction cycles. No evident differences arose from the XRD patterns of the two
fresh batches. Main reflexes of CuO tenorite are identified around 41° and 45° for the
as-synthesised sample, together with other features ascribable to such crystalline phase
(PDF 45-0937). The other reflexes are assigned to the AlyO3 support (PDF 48-0367).
Potassium is expected to be in the carbonate form due to the precursor utilised for the
synthesis and the calcination in air. However, no KoCO3 reflexes have been detected

before and after reaction. Similar results were obtained by Bansode et al.®®, which
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pointed out the existence of a highly dispersed K phase in the form of nanocrystallites
or thin layers. The high dispersion of K was confirmed also by SEM-EDS analysis
(Figure 3.7). In the XRD pattern of the sample after 6 CCR cycles, the coexistence of
two different Cu oxidation states is observed, since both CuO reflexes around 41° and
peaks at 51° and 59° assigned to metallic Cu are detected (PDF 85-1326). Other small
reflexes at 18°, 25°, 31° and 33° are found, but the identification with the database
was not successful. However, considering their low intensity and the broad signal, they
reflect the presence of an highly dispersed phase. The appearance of a narrow metallic
Cu reflex in the XRD, which is stable after reaction, indicates the presence of a sin-
tering phenomenon involving Cu particles. After 50 CCR cycle reaction, besides the
pattern features related to the support, peaks at 51° and 59° are detected and assigned
to Cu, which is found only in its metallic state. The increase in these peak signals

indicates the presence of a sintering phenomenon involving Cu particles.

“"-/\J \’J Used ~ 50 cycles

Intensity / a.u.
f

Wi-mod Fresh

20/°

Figure 3.1: X-ray diffractograms of 11Cu-10K/Al>O3 fresh (black line and red line), used
after 6 CCR cycles (green line) and after 50 CCR cycles (blue line). Phase
identification: y-AlsO3 (o), CuO tenorite (¢), metallic Cu (*).

Figure 3.2 shows the diffraction patterns for of 10Cu-10K/TiO,. Reflexes of CuO
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tenorite (41°, 45°, PDF 45-0937) are identified for the as-synthesised sample. The low-
intensity broad reflex at 13° is here assigned to a crystalline K-Ti mixed oxide phase
(PDF 41-1100). Other reflexes are assigned to TiO, rutile phase (PDF 78-1508). After
CCR reaction copper is found only in metallic state (51°, 59°, PDF 85-1326), both after
the CO5 and the Hy phase. The reflex at 13° is still detected after reaction, indicating

the stability of the phase towards reducing treatments. X-ray diffraction analysis for

Intensity / a.u.

®
L J I i * l Used - CO,

20/ °

Figure 3.2: X-ray diffractograms of 10Cu-10K/TiO» fresh (black line), used after 6 CCR
cycles ended in CO3 (red line) and after 6 CCR cycles ended in Hy (green line).
Phase identification: TiOz rutile (o), CuO tenorite (¢), metallic Cu (*), K-Ti
mixed oxide (O).

the fresh 10Cu-10K/ZrO, catalyst is shown in Figure 3.3. CuO reflexes are detected at
41° and 45° (PDF 45-0937). All other reflexes are attributed to the monoclinic ZrO,
baddeleyte support (PDF 07-0343).

3.2 Hy Temperature Programmed Reduction

H, temperature programmed reduction (TPR) was carried on Al,Oz-supported sam-
ples to investigate the effect of K on the reducibility of the catalysts. Results are
shown in Figure 3.4. For the unpromoted catalyst, the complete reduction of Cu(II)
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Figure 3.3: X-ray diffractograms of the fresh 10Cu-10K/ZrOs. Phase identification: ZrOz
rutile (o), CuO tenorite (¢), metallic Cu (*).

to metallic Cu(0) was achieved at 300°C. The profile presents a main peak at 234 °C
with a small shoulder centered at 269 °C. The first one can be assigned to the presence
of highly dispersed CuO nanoparticles, while the shoulder can be related to bulk re-
duction of bigger agglomerates.?® With the addition of 2 wt.% of K (12Cu-2K/Al,O3
sample), a similar reduction profile is obtained with the peak shifting towards higher
temperatures (255 °C and 290 °C, respectively). This trend is confirmed and reinforced
with 10 wt.% loading, together with a significant change in the reduction profile. Two
distinct peaks are found at 278°C and 332°C. These results suggest the existence
of a strong interaction between K and Cu species, and coverage of Cu surface by K
can be responsible of this higher reduction temperature.?” Moreover, looking at the
profile of the 10K/Al,O3 catalyst in absence of the active metal, the detected hydro-
gen consumption starting around 450°C and peaked at 568 °C was attributed to the
decomposition of KoCOj3 species. However, the decomposition of KoCOj3 species was
activated at much lower temperatures by the presence of Cu in the 11Cu-10K/Al,O3
as a continuous Hy consumption is noticed in the range 370-700°C, in agreement to
previous findings. 288

The support effect was further addressed through Ho-TPR, and reduction profiles are
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Figure 3.4: Hs temperature programmed reduction of AlsOs-supported samples with dif-
ferent compositions.

illustrated in Figure 3.5. Apparently, the effect of the support slightly influences Cu
reducibility, as for the ZrOs- and TiOs-supported catalysts the main peak is around
315°C. The ZrOs-supported catalyst showed also a low-intensity reduction peak at
155°C ascribed to highly dispersed CuO, since it is more easily reduced as compared
with bulk CuO, in accordance with previous studies.?® The TiOy-supported catalyst
instead presented two additional reduction peaks at high temperature. The first one
around 646 °C was attributed to the mixed oxide crystalline phase detected by the
XRD analysis, while reduction features above 750 °C were assigned to the reducibility
of the support itself.

Figure 3.6 illustrates the Hy-TPR profiles for the two different 11Cu-10K/Al,O3 cata-
lysts. Differently from the 1% batch, for the catalyst synthesised through the modified
incipient wetness impregnation method a small shoulder at 261 °C is followed by the
main peak centered at 324 °C. The broad reduction shoulder in the range 370-700°C

was still detected. This displacement may be an evidence of the higher dispersion of
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Figure 3.5: H; temperature programmed reduction of 10Cu-10K samples over different sup-
ports.

the active metal entailed with the more diluted solution used for potassium impregna-
tion. In fact, the peak assigned to the reduction of highly dispersed CuO nanoparticles

shifted to lower temperatures, as well as the peak attributed to CuO bulk agglomerates.

3.3 BET surface area

Firstly, BET surface area characterisation was carried out for fresh samples of the
12Cu/Al,O3 and the 11Cu-10K/Al, O3 catalysts to assess the effect of potassium load-
ing. The nominal value of specific surface for y-AlyO3 was 220-280 m? g~!. The results
obtained for the two catalysts are reported in Table 3.1. The promotion with K strongly
affects the surface area of the catalysts: the impregnation of K species is associated
to a significant pore blocking of the highly porous support, resulting in a drop of the

available BET surface area.*"%
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Figure 3.6: H: temperature programmed reduction of the two different batches of the 11Cu-
10K/ Al O3 catalyst.

Table 3.1: BET surface area for AloOz-supported catalysts.

Catalyst BET (m?g™)

11Cu-10K /Al O3 112.6

BET characterisations were performed also for catalysts with similar amount of Cu
and K loaded on the different supports. Results are presented in Table 3.2, along
with the nominal surface area of the support materials alone according to the supplier
documentation. As for the unloaded support materials, the AlyOs-supported catalyst
showed the highest BET surface area, the TiOs-supported one assumed the lowest

value.

BET surface area of the 11Cu-10K/Al,O3 TWI-mod catalyst resulted slightly lower
than the one of the 1% batch, being equal to 104.5m?g~!. As a confirmation, the
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Table 3.2: BET surface area for 10Cu-10K samples over different supports.

Catalyst BET support (m?g~') BET (m?g™)
11Cu-10K /Al 03 250 112.5
10Cu-10K/ZrO, 90 31.9
10Cu-10K /TiO, 3.8 2.8

higher dispersion resulted in a lower surface area value, as the pore blocking attained

a higher extent.

3.4 SEM-EDS

Scanning electron microscopy with EDS mapping was carried out for fresh samples of
both the 11Cu-10K/Al,O3 catalysts. No significant difference were found, since species
distribution is similar, characterised by highly dispersed K species homogeneously dis-
tributed over the support. A tendency to agglomerate is noticed for CuQO particles.

An example of the EDS imaging is illustrated in Figure 3.7. However, the improved

Figure 3.7: SEM image and EDS mapping of 11Cu-10K/Al,O3. Colour scale intensity bar
is on the left of the elemental maps.

quality of the synthesis reflected also in some minor morphological changes. Figure 3.8
compares the morphology of the two catalysts. Interestingly, while the one synthe-
sised according to the incipient wetness impregnation technique presented irregular

structures and agglomerates, the other was characterised by needle structures.
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Figure 3.8: Comparison between the morphology of the 11Cu-10K/Al,O3 IWI and the
11Cu-10K/Al;03 IWI-mod catalysts.

3.5 TEM

Figure 3.9 shows TEM images for the 12Cu/Al,O3 and the 10 wt.% K-promoted cata-
lysts after calcination. In both cases small darker particles identified as CuO are visible,
and the crystalline rod-like structure of 7-Al,Oj3 is recognisable. The main difference
between these two catalysts is the presence of an amorphous-like phase, thus associated
with K. Such phase completely covers the alumina support, sometimes forming elon-
gated structures, as the one observed in Figure 3.9(d). Cu particles are small and well
dispersed in this matrix, with an average diameter of 6 nm. This morphology is even
more evident in the 1Cu-20K/Al, O3 catalyst (Figure 3.10), where K phase generates
similar structures as in the 11Cu-10K/Al,O3, but in a higher extent. TEM images of
the unpromoted catalyst after 6 CCR cycles are presented in Figure 3.11. Alumina

rods are still evident, while Cu sintered into bigger agglomerates with higher diameter.

Given that TEM imaging of the 11Cu-10K/Al,O3 IWI-mod catalyst showed similar
features to the 11Cu-10K/Al,O3 IWT after calcination, it was utilised for TEM charac-
terisation after reaction. Figure 3.12 shows TEM images of the catalyst after a 6-cycle
CCR at 350°C and after 50 CCR cycles at 450°C. Both tests were stopped after a
COy atmosphere phase. In Figure 3.12(a), the amorphous K-phase is clearly visible
and small Cu particles are dispersed in it. Sintered Cu particles are found, in some
cases covered by a thin layer (Figure 3.12(b)). TEM images collected after 50 CCR
cycles at 450 °C revealed the existence of a particle size duality (Figure 3.12(c), Figure
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Figure 3.9: TEM images for (a) 12Cu/Al2O3 and (b ,c ,d) 10 wt.% K-promoted catalysts
after calcination.

3.12(d)). On the one hand, sintered Cu particles with a broad size distribution aver-
aged at ca. 39 nm, likely responsible for the appearance of metallic Cu reflexes on XRD
pattern previously discussed. On the other hand, small Cu nanoparticles (2-3nm) dis-
persed in a mobile and branched potassium phase are formed in reaction condition.
Similar behaviour was reported by Luo et al.>® on a K-promoted Pt/Al,O3, for which
they related the formation of finely dispersed Pt species under thermal aging to the
interaction with an extremely mobile, liquid-like K phase. The high dispersion and the
intimate contact between those two phases may play a key role for the activity of the

catalyst towards CCR.
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Figure 3.10: TEM images for the pristine 1Cu-20K/Al;Os3.
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Figure 3.11: TEM image of the used 12Cu/Al;O3 after 6 CCR cycles at 350 °C.

TEM imaging was used also for the characterisation of the 10Cu-10K/ZrOy and the
10Cu-10K/TiO, catalysts after calcination. Similar observations to the AloOj sup-
ported catalyst can be retrieved: K species appears to cover the catalytic support,
and CuO particles are preferentially dispersed in it. Focusing on the TiOs-supported
catalyst, besides the amorphous K phase, a crystalline phase was found, which was
still detected after reaction. In fact, equally spaced parallel lines which can be ascribed
to the interatomic planes in the crystal structure are evident, as it is illustrated in
Figure 3.13. This finding is in accordance with the XRD patterns for this catalyst,

where reflexes of a Ti-K mixed oxide phase was visible.
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Figure 3.12: TEM images for the used 11Cu-10K/Al,O3 (a, b) after 6 CCR cycles and (c,
d) after 50 CCR cycles.

Figure 3.13: TEM images for the used 10Cu-10K/TiO2, where interatomic planes of the
crystalline structure are visible.



Chapter 4

Catalytic activity and insights in

the CO2 capture mechanism

Unsteady-state experiments have been designed with the aim of investigating the CCR
catalytic activity of the catalysts under study. The instrumentation has been described

previously in Chapter 2.

200mg of catalyst were weighted and placed into the quartz tube, using quartz wool
to pack it. The catalytic bed temperature was raised to 450 °C with a ramp rate of
30°Cmin~! under a 25 vol.% O, in He atmosphere for the complete oxidation of pos-
sible impurities. It was then pre-reduced at this temperature under 50 mL min~—' of
pure Hy for 1h. The reaction temperature was then set to the desired value to get in-
sights on the reaction behaviour. Catalytic tests were conducted at ambient pressure.
A gas mixture of 9.9 vol.% CO, in He, referred to as capture phase, was alternated
to a reduction phase consisting of a pure Hy flow. The flow rates were controlled by
MFCs, previously calibrated with a flowmeter. The calibration of the MFCs led to an
uncertainty in the measurement of 0.1 mL min~!. Both the CO, and H, phases lasted
7min, even if the effective capture and reduction processes were much shorter. The
choice of extended phase duration was made in order to increase the resolution on the
underlying chemical processes and to better highlight the differences among the cata-
lysts. An inert phase of pure He was flushed between oxidising and reducing phases
(and vice versa). From an experimental point of view, this flushing phase was found

convenient to provide sufficient stabilisation of the signal, complete separation of the
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two phases, and removal of physisorbed species. Catalytic activity data were generally
obtained from the averaging of 4 cycles after a reproducible composition of the effluent
was achieved. Considering the CO4 conversion, the selectivity towards CO was always
greater than 99%. No C-containing side products were detected in the outlet. In par-
ticular, CHy signal was not distinguishable from the baseline noise, and no formation

has been detected during the reactions performed.

A series of blank tests were executed applying CCR gas cycling (3 cycles) at room
temperature after loading the reactor with the catalyst. They resulted in the absence
of CO and CHy IR signals. The total amount of COs fed to the reactor was determined
from these tests and was used for calculations. Moreover, the time instant of CO, sig-
nal appearance in these tests was used as reference to evaluate the interval of initial
full COy capture, accounting in this way for delays on the signal detection generated

by the packed bed configuration.

4.1 The 11Cu-10K/Al,0O3 catalyst

The first catalyst synthesised and tested was the 11Cu-10K/Al,O3 IWT catalyst, in or-
der to possibly reproduce and verify results obtained by Hyakutake et al.?’ Figure 4.1
shows the concentration profiles of CO, and CO obtained for the 11Cu-10K/Al;O3
catalyst when exposed to CCR conditions. In this experiment, the flow rates were
25 mL min~! for the CO, phase and 50 mL min~! for the H, phase. The temperature
of the catalytic bed was maintained at 350 °C after the pre-treatment steps. For sake
of clearness, different phases are indicated by different colors: the oxidising phase is
indicated by the blue region, whereas the green region indicates the reducing phase.
Between CO, and Hs phase (and vice versa), the catalyst was flushed with He at
S80mLmin~! for 150s. This catalyst was active for CCR reaction, as it showed the
desired features. In the first 20s, CO, was almost completely captured from the inlet
stream. No CO signal is detected in this time interval, allowing for a CO,-free reactor
efluent. By switching to Hy, the captured species were reversibly eliminated in the
form of CO, regenerating the catalyst for the following cycles. The CO, signal after

the full capture period raised slower with respect to the signal obtained in the blank
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test. Here a combined contribution was expected: on the one hand, the capture of CO,
was still taking place until complete depletion of the active sites, on the other hand
part of the CO, was expected to be consumed by Cu oxidation. The last phenomenon
was confirmed by the detection of the CO signal during the oxidising phase, as found
also by Hyakutake et al.? at this temperature. When switching to the Hy phase, the
captured COy was reduced to CO with high selectivity, with no CH, detection. From
a process point of view, a mixture of Hy and CO was obtained in the outlet stream.
However, water and excess Hy separation in the product mixture was required for a

suitable utilisation as syngas.

By limiting the capture phase duration to the full capture interval, CCR efficiency
was strongly enhanced, as almost all COy could be reversibly trapped and converted.
Nevertheless, as reported in a previous work, a major issue of this catalytic system is
the slow reduction kinetics,?” since the time interval required for the complete evolu-
tion of CO during the reducing phase is much longer than the full capture interval.

Such behaviour is not favorable for process synchronisation.
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Figure 4.1: Average concentration profiles of COs and CO during CCR operation at 350 °C.
Alternation of 9.9% COs in He (in blue) at 25 mLmin~! and 100% Hy (in green)
at 50mLmin~!. Blank profile (dashed line) and reaction profile (K-promoted
Cu/Al» O3, solid line). Pure He at 80 mL min~! is interposed between oxidising
and reducing pulses.
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Considering the unpromoted 12Cu/Al,O3 catalyst, no initial full capture was observed.
Concentration profiles of CO5 and CO obtained from its catalytic testing are shown in
Figure 4.2. The 12Cu/Al,O3 catalyst did not show any CCR activity: during the CO,
phase, CO signal was immediately detected, indicating that, in absence of potassium,
COq was directly reduced to CO due to Cu oxidation. Thus, potassium is expected to

play a major role in promoting CO capture.
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Figure 4.2: Average concentration profiles of CO2 and CO during CCR operation at 350 °C.
Alternation of 9.9% COs in He at 25 mLmin~! and 100% Hs at 50 mL min—!.
Blank profile (dashed line) and reaction profile (12Cu/AlyOs3, solid line). Pure
He at 50 mLmin~! is interposed between oxidising and reducing pulses.

4.2 Insights in the capture mechanism

As introduced before, potassium is fundamental to develop the CO5 capture ability. In
absence of K, no CO, capture was activated. The unpromoted 12Cu/Al,O3 catalysts
showed dominant formation of CO during the CO, phase (Figure 4.2), in agreement
with previous results® and related to Cu oxidation by CO,. In presence of K (11Cu-
10K/Al,O3, Figure 4.1), full capture was activated at the beginning of the CO, phase.
Interestingly, no CO was detected in this interval. Compared to the unpromoted cat-

alyst (Figure 4.2), the formation of CO was sensed only at the end of the full capture
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period, when also COsy signal started to rise. This delay in the evolution of CO from
the sample was found for catalysts showing substantial CCR activity, but it is inde-
pendent on the K loading. To explain this behaviour, the involvement of CO in the
capture process has been considered. To prove this, we performed a CO adsorption
test on the 11Cu-10K/Al, O3 catalyst, by substituting COy with CO in a typical CCR
experiment at 350°C. CO concentration profiles are reported in Figure 4.3 For this
test, 25 mLmin~! of 3.8% of CO in He were fed to the reactor. In analogy with the
CCR tests, the delayed detection of the CO signal with respect to the blank indicates
the strong interaction with the catalysts and the involvement of CO in the capture
process. In normal CCR operation then, CO deriving from Cu oxidation is expected

to be simultaneously chemisorbed until saturation of the active sites for capture. After

that, both COy and CO are detected at the outlet.
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Figure 4.3: Average concentration profile of CO during CCR operation with substitution
of COy flow with 3.8% CO in He at 25mLmin~! on 10% K-promoted 11
wt.% Cu/Al,O3 at RT (dashed line) and at 350°C (solid line). Pure He at
80mL min~! is interposed between oxidising and reducing gas atmospheres.

Test performed after reduction in Ho at 450 °C.
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4.3 Effect of the support

The type of metal oxides used as the catalyst support can drastically alter the COy
capture activity due to their properties. In this work, the effect of surface area, poros-
ity and interaction with the active species for CCR are addressed. Among the other

60,61

properties, also acidity and hydrophilicity may affect catalyst activity due to the

different interaction strength and modes with CO,.%2

To evaluate the influence of the support material, 10 wt.% K-promoted 10 wt.% Cu
catalysts were prepared substituting Al,O3 with TiOy and ZrO, (10Cu-10K/TiOs,
10Cu-10K/ZrO3). The CCR results of 10Cu-10K/TiOy and 10Cu-10K/ZrO, catalysts
are reported in Figure 4.4. The three catalysts showed different CCR activities. The
capture efficiency followed the trend AlyO3 > ZrOs >> TiO,, which is also reflected
in the amount of CO evolved in the reducing phase. In the case of TiOy as support,
no activity in CO4 capture was noticed. Looking at the BET characterisation results
illustrated in Table 3.2, Al;O3 provides the highest surface area. Comparing different
supports for RWGS, Jurkovic et al.*? found high dispersion of Cu on Al,O5 and ZrO,
on catalysts prepared by deposition precipitation method, with Cu/Al,O3 exhibiting
the highest catalytic activity. This is in accordance with BET results, where Al,O3
supported catalyst exhibited the highest surface area. The use of Al,O3 as support
markedly enhanced the activity for CCR since its high surface area provided adequate
dispersion of the Cu nanoparticles and maximised the contact between Cu and K
phases, as confirmed by SEM-EDS mapping (Figure 3.7). These observations may also
explain the poor activity of the TiOs-supported catalyst. In fact, besides the very low
surface area, in the XRD of the 10Cu-10K/TiO, sample (Figure 3.2), a low intensity
broad reflex at 13° is present both in the fresh and used catalyst powders. This reflex
has been assigned to a K-Ti mixed oxide phase. Being confined in a crystalline phase,
K would be prevented from interacting with the Cu sites to form the active phase for

reversible CO, capture.
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Figure 4.4: CCR activity at 350 °C for a) 10Cu-10K/TiO2 and b) 10Cu-10K/ ZrO» catalysts.

4.4 Effect of synthesis conditions

Given that dispersion of the active species may be crucial in determining catalyst activ-
ity, the synthesis of a new 11Cu-10K/Al,O3 catalyst with modified synthesis conditions
was performed, as described in Section 2.4. Its characterisation is then presented in
Chapter 3. Figure 4.5 illustrates the concentration profiles of CO5 and CO obtained for
the 11Cu-10K/Al,O3 IWI-mod catalyst when exposed to CCR conditions at 350 °C.
For this test, slightly different conditions were utilised for the inert flush phase the
oxidising and reducing pulses. For the purpose of comparing with the previous re-
sults, no relevant changes are expected in the catalytic activity. More precisely, He
was flushed at 50 mL min~" for 1 min. Surprisingly, CCR activity was highly improved
if compared to the one obtained for the same catalytic system synthesised through
the rigorous incipient wetness impregnation method (Figure 4.1). Indeed, the initial
COq full capture period was more than doubled, since in the first 45s CO5 was almost
completely reversibly adsorbed on the catalyst as a surface species. As before, no CO
signal was detected in this time interval allowing for a CO,-free reactor effluent, and
after the switching to the Hy phase COs is reduced to CO, with no other C-containing
side products detected. CO evolved during the reducing phase was 1.70 mL, thus ob-

taining a significantly CO-richer product effluent (1.10mL for the 11Cu-10K/Al;O3
IWT catalyst).
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Figure 4.5: Average concentration profiles of CO2 and CO during CCR operation at 350 °C
for the modified IWI 11Cu-10K/Al,O3 catalyst. Alternation of 9.9% CO2 in
He phase at 25 mLmin~! and 100% Hz at 50 mL min~'. Blank profile (dashed
line) and reaction profile (K-promoted Cu/Al>O3, solid line). Pure He at
50mL min~"! is interposed between oxidising and reducing pulses.

4.5 Effect of K loading

In a previous work, Hyakutake et al.?’ pointed out the peculiar action of K promotion
with respect to other alkali metals in the CCR process. They attributed the peculiar
CCR activity of the 11Cu-10K/Al,O3 catalyst to the dynamic contact between the
amorphous K phase and Cu nanoparticles highly dispersed in it. Similar findings of
an extremely mobile, liquid-like K phase with highly dispersed Pt nanoparticles were
reported for NO, storage activity by Luo et al.’®. Here, the effect of K loading on
CCR activity is addressed comparing the performances of two sets of catalysts with
increasing K loading. The first set is composed of three 1Cu/Al,O3 catalysts promoted
with 1, 10 and 20 wt.% K respectively. The second set is made up of the unpromoted
12Cu/Al,O3 and its promoted counterparts containing 2 wt.% and 10 wt.% K. To be
remarked, the first set was synthesised with the standard incipient wetness impregna-

tion method, while the second with the modified method.

Catalytic activities of K-promoted 1Cu/AlyO3 catalysts are illustrated in Figure 4.6.

As already pointed out, K species were found to be fundamental for promoting CCR
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activity. As a confirmation, an increase in the potassium loading involved a higher
COg capture and a subsequent higher CO evolution during the reducing phase. The 1
wt.% K-promoted catalyst did not show any CCR catalyst properties: during the CO,
phase, CO signal was immediately detected, in analogy with the unpromoted samples
where CO, passing through the reactor oxidised Cu and immediately produced CO at
the outlet. By increasing the K loading to 10 wt.%, the CO, uptake increased and
its subsequent conversion to CO was ensured when switching to the reducing phase.
The 10 wt.% K-promoted catalyst showed 20s full capture, and all chemically stored
CO; was then converted to CO after the switching to the Hy phase. However, an op-
timum K loading exists, as a further increase in the loading of the promoter did not
enhance COy capture. In fact, for the 1Cu-20K/Al,O3 catalyst, no full COy uptake
was observed. The low CO evolution after the switching to the reducing atmosphere
was mainly attributed to carbonates decomposition. Looking at the catalytic activity
of a 10K/Al,O3 catalyst, a continuous release of CO during the Hy phase was found,
as shown in Figure 4.7(b). In absence of Cu, strong KoCOj3 species were formed, which
were difficult to remove in Hy at reaction temperature. Besides, their formation was
responsible for the longer capture noticed at the first CCR cycle for all the catalysts.
The presence of Cu then contributed to enhance the decomposition of KoCO3 species,
lowering the temperature needed for the process. Similar findings were reported by
Bobadilla et al.?®, who observed the drop in decomposition temperature of K,COs3 in
the form of large bulk crystallites from 890 °C to ca. 200-300 °C, likely due to enhanced

surface carbonates composition over a FeCrCu-K hydrotalcite-supported catalyst.

Looking into the CO profiles of the 1 wt.% 10 wt.% K-promoted catalysts, the CO
signal intensity associated with Cu oxidation detected during COs phase decreased
with the K-loading increase. The loading of K controlled also the amount of CO
formed during the capture phase, which was related to Cu oxidation. Interestingly,
the CO signals during the CO, phase for these three catalysts displayed different be-
haviours. As shown in Figure 4.8, the volume of CO evolved in the CO5 phase dropped
at higher K-loadings. This effect was even more pronounced for the 20 wt.% promoted
1Cu/AlLyO3. Figure 4.9 reports the volumetric amount of CO evolved during the CO,
phase, which decreased at higher K loadings. Also, for 20 wt.% K-promoted catalyst
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the reduction during Hy phase was more limited. Such two phenomena will be in agree-
ment with the reported encapsulation and covering of Cu particles by K species. %646
When in large amounts, the potassium species can cover the Cu particles and reduce

the availability of Cu sites which are active both for CO4 oxidation and Hy dissociation.
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Figure 4.6: Average concentration profiles of CO2 and CO during CCR operation at 350 °C
with 9.9% CO; in He at 25 mLmin~! vs. 100% H, at 50mLmin~! at atmo-
spheric pressure over K-promoted 1 wt.% Cu/Al3O3 with increasing K con-
centration, (a) 1%, (b) 10% and (c) 20%. Pure He at 50 mLmin~! is flushed
between oxidising and reducing gas atmospheres.

The second set of catalysts was prepared starting from a 12 wt.% Cu on Al,O3. From
this batch, two different catalysts were prepared with increasing addition of K to obtain
a final composition of 12 wt.% Cu, 2wt.% K and 11 wt.% Cu, 10wt.% K. CCR activity
was then investigated using the same experimental parameters as before. Concentra-

tion profiles of COy and CO are shown in Figure 4.9. As expected for the unpromoted
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Figure 4.7: Concentration profiles of CO3 and CO during CCR operation at 50 °C with 9.9%
CO; in He at 25 mLmin~! vs. 100% H» at 50 mL min~! at atmospheric pressure
over the 10K/Al;O3 during a) the 1°t cycle and b) averaged on the following

ones. Pure He at 80 mL min~! is flushed between oxidising and reducing gas
atmospheres.
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Figure 4.8: Volume (mL) of CO evolved during the COz capture phase for the series of
K-promoted 1Cu/Al;O3 at different K loadings (wt.%).

catalyst, 12Cu/Al,O3 catalyst (Figure 4.9(a)) did not show any CCR activity. For
the 12Cu-2K/Al,O3 catalyst (Figure 4.9(b)), a similar behaviour is reported, with a
reduced CO peak in the capture phase and little CO evolution after the switching to
the Hy atmosphere. Summarising these results, the importance of K for CO, uptake
is again stated, since initial higher CO, capture and CO evolution during the reducing

phase were reached only in presence of a high K loading. CO signals during the COq
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phase were greatly affected by increasing amount of K, confirming the hindering effect

on Cu particles, especially at high loadings. Figure 4.10 reports the volumetric amount

of CO evolved during the CO5 phase.
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Figure 4.9: Average concentration profiles of CO2 and CO during CCR operation at 350 °C
for a) 12Cu/Al2O3, b) 12Cu-2K/Al>O3 and c¢) 11Cu-2K/Al>O3. Alternation of
9.9% COs in He phase at 25 mLmin~' and 100% H, at 50mL min~'. Blank
profile (dashed line) and reaction profile (solid line). Pure He at 50 mL min~!
is interposed between oxidising and reducing pulses.

4.6 Effect of Cu loading

The effect of Cu loading was investigated by comparing the catalytic activities of the

10K/AlL, O3 (Figure 4.7), the 1Cu-10K/Al, O3 (Figure 4.6(b)) and the 11Cu-10K/Al,O4
IWTI (Figure Figure 4.11) catalysts.
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Figure 4.10: Volume (mL) of CO evolved during the COy capture phase for the series of
catalysts made from the 12Cu/Al2O3 at different K loadings (wt.%).

The absence of Cu entailed the inability of the catalyst to reduce the adsorbed COs.
This was evident from the different behaviour of the 10K/Al,O3 (Figure 4.7) and the
11Cu-10K/Al,O3 (Figure 4.11) between the first cycle and the following ones. For the
former catalyst, during the first CCR cycle CO5 was almost fully captured for 60s. A
continuous and low CO signal was detected during the reducing phase, which was at-
tributed to carbonates decomposition. Formation of stable KoCOj3 species which were
difficult to decompose in Hy at reaction temperature is expected from H,-TPR analysis
reported in Figure 3.4, undermining the reversibility of the process. As a consequence,
in the following cycles, no active sites were available for COy uptake. In the case of
the 11Cu-10K/Al,O3 instead, 40s of CO,, full capture were observed during the first
cycle, but the catalyst was still active for capture in the following ones. Therefore, Cu
determined the restoration of the active sites, although the complete removal of car-

bonate species was not achieved, resulting in a shorter initial full capture interval (20s).

Considering the catalysts loaded with 1 wt.% and 11 wt.% of copper, Figure 4.6(b)
and Figure 4.11(b) respectively, less CO formation in the reduction phase was detected
for the catalyst with higher Cu loading. The evolved CO was 1.10 mL for the 11Cu-
10K/AL,O3 IWI and 1.32mL for the 1Cu-10K/Al,O3. However, the CO profile in the
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H, phase suggested a faster reduction kinetics for the former catalytic system. This is
in agreement with previous studies in which Cu particles were identified as the active
sites for Hy dissociative adsorption, % thus higher Cu loadings increase the availability
of active sites for promoting CO, reduction. However, a maximum loading is also re-

ported for Cu.*
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Figure 4.11: Concentration profiles of CO2 and CO during CCR operation at 50 °C with
9.9% COs in He at 25 mL min~! vs. 100% H, at 50 mL min~! at atmospheric
pressure over the 11Cu-10K/Al;O3 IWI during a) the 1% cycle and b) averaged
on the following ones. Pure He at 80 mL min~! is flushed between oxidizing
and reducing gas atmospheres.

Observing the CO, phase, although a similar CO,. full capture interval was obtained
with the 1 wt.% and 11 wt.% Cu-loaded catalysts, a difference in the amount of evolved
CO was found. Operating the reaction with the catalyst with higher Cu loading re-
sulted in a CO formation of 0.32mL, against the 0.42mL of the 1 wt.% Cu. Nonethe-
less, a higher evolution of CO due to Cu oxidation would be expected for the catalyst
containing higher amount of Cu. A possible explanation of this phenomenon is the
involvement of Cu-K interfaces as active sites for carbonaceous species uptake. Indeed,
a greater population of interfacial sites can be formed at higher Cu loading. As a
confirmation, works from Liang et al.*® and Chen et al.*® investigating rWGS cata-
lysts concluded that active sites for COy adsorption were generated at the interfaces
between K and the active metal (Pt and Cu, respectively). Such result is in accordance
with Hy-TPR analysis (Figure 3.4), in which strong interaction between copper and
potassium species was observed, since the reduction pattern was relevantly modified
with the increase in the amount of K impregnated. Nevertheless, an optimum Cu load-

ing should exist to reach the best trade-off between interfacial capture sites and Cu
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particle dispersion. In this sense, 11 wt.% Cu loading may be excessive, as suggested
by SEM imaging (Figure 3.7), in which Cu agglomerates were found in the catalyst
after calcination. This conclusion offers the possibility for further research in catalyst

engineering.

As a final remark, the probability for CO, dissociation may be enhanced on H-adsorbed
Cu surfaces. Studying the reaction mechanism of the rWGS reaction, Chen et al.%
pointed out that Hy may be involved also in different reaction pathways than the re-
duction of oxidised Cu, showing the promoting effect of Hy towards CO4 conversion.

Similar conclusions were inferred by Campbell et al.

, who proposed a hydrogen-
assisted COs dissociation for rWGS. In their work, they suggested that high hydrogen
coverage may favorably influence the rate of CO, dissociation, perhaps via a Ho-induced
surface reconstruction. All previous considerations bring to the conclusion of the direct

involvement of Cu not only in the CO4 reduction mechanism, but also in its reversible

capture.

4.7 Ex situ and in situ Raman investigation

The investigation of 7-Al,O3 by Raman spectroscopy was made difficult by the strong
fluorescent emission that covers its Raman spectra.®® Although ZrO,-supported cata-
lysts showed lower CCR activity than the correspondent Al,Os-supported, the system
was chosen for Raman investigation thanks to the better Raman activity of the support.
Ex-situ analysis on the samples revealed that in presence of high loadings of Cu, the Ra-
man signal from the support was suppressed. In fact, for the 10Cu-10K/ZrO catalyst
we could not detect neither the typical Raman scattering patterns deriving from the
support (50-650 cm™1), nor from the KoCO3 (1057 cm™!). To overcome this limitation,
a sample with 1 wt.% copper loading on ZrOy (1Cu-10K/ZrO,), proved its catalytic
activity (results shown in Figure 4.12) was utilised for in-situ Raman investigation.
Ex-situ characterisation of the catalysts and support powders was performed loading

a capillary in a system equipped with a red laser excitation source (7Yez. =785nm), as
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shown in Figure 4.13. After the loading of Cu (1Cu/ZrO;), a significant loss in the
intensity of the ZrO, Raman peaks was noticed, especially at high Raman shift. Thus,
the 1 wt.% Cu loading was found to be the compromise between CCR activity and
Raman activity of the sample. The subsequent loading of potassium resulted in the
appearance of the characteristic KoCO3 Raman signal (peak at 1057 cm™!), with the
broadening of the band indicating its existence in a highly dispersed nanocrystals or

amorphous-like phase.
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Figure 4.12: CCR activity at 350 °C for the 1Cu-10K/ZrOs,.

Figure 4.14(a) shows the in-situ Raman spectra obtained for 1Cu-10K/ZrO,. At room
temperature, the ZrO, Raman bands were visible in the low Raman shift region (50-
650 cm™!) together with the Raman band of the K;CO3 at 1057 cm™!. However, after
reduction in Hy at 350 °C, both signals from the support and KoCO3 were intensively
modified, with a loss of intensity of the characteristic peaks. This behaviour was not
found in absence of Cu, for the 10K /ZrO, catalyst (Figure 4.14(b)), in which the signals
were preserved at higher temperature. We addressed this behaviour to the formation
of a highly dispersed state of metallic Cu nanoparticles in K phase which cover the
support, resulting in the decline of Raman signals from the support. Additionally, the
broad signal from 1300 to 1700 cm™! may be indicative of some K phase rearrange-

ments, since it did not fully reproduce the signal ascribed to the quartz tube.
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Figure 4.13: Ex-situ Raman (Yez. =785nm) characterization of ZrOs-supported catalysts.
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Figure 4.14: In-situ Raman spectra of a) 1Cu-10K/ZrO2 and b) 10K/ZrOz at room tem-
perature (black profiles) and at 350 °C (red profiles) in H flow.

By monitoring the catalyst bed during reaction, the appearance of a gradient colour
change during the first CO, cycle was detected. To investigate this behaviour, in-situ
Raman spectroscopy was conducted on 1Cu-10K/ZrO,. The reducing pretreatment in
Hy at 450°C led to a dark-coloured catalyst with the disappearance of the Raman sig-
nal acquired at room temperature. The reduced state of copper and its high dispersion
on the catalyst may significantly affect the detection of Raman radiation from the cat-
alyst. Spatial analysis of the catalyst was performed by selecting four different probing
positions along the catalytic bed to collect the Raman signal. Remarkably, during the

first CCR cycle a progressive visible colour change of the catalyst was noticed under
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CO, flow (Figure 4.15), associated with the progressive recovering of the Raman sig-
nals from the support and KoCOj3. As mentioned earlier, during the first cycle a higher
COy uptake happened, related to the formation of stable KoCOj3 species which were
not easily decomposed in the following reducing treatment. It was not clear if this
phenomenon can be accompanied by a bulk oxidation of the Cu species. On one hand,
the visible colour change, together with the appearance of Raman signals in the region

1 would suggest the formation of copper oxides species.®”% On the

around 600 cm™
other hand, in the first cycles of the catalytic tests, very low CO signals were detected,
contrasting the hypothesis of bulk Cu oxidation. In the following cycles, the colour
change was lost, suggesting that a higher dispersion of Cu was achieved. This even-

tually resulted in a definitive loss of the Raman features from the support and K;CO3.
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Figure 4.15: In-situ Raman of 1Cu-10K/ZrO» at different position along the catalyst bed
at 350°C after first Ho-CO2 cycle.

4.8 First CCR cycle behaviour and formation of the
CCR active phase

Another possibility is that redox cycles play a role in the formation of the active phase,
with the activation of Hy on reduced copper participating to the reaction mechanism.
As mentioned in the description of the catalytic testing setup in Section 2.1, a USB

camera was mounted over the quartz tube reactor to monitor possible visible rearrange-
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ments of the catalyst bed, particularly in relation to colour changes. Remarkably, we
noticed progressive colour change of the catalyst bed between the oxidising and re-
ducing phases in the first redox cycle only. In addition, a relevant colour change was
detected only in presence of K-promoted catalysts. This fact projected in a deviated
catalytic activity during the first cycle, which was valuable to focus on since it should

rather be linked to the activation process of the catalyst towards CCR ability.

From the videoclips recorded with USB camera, during the first redox cycle the cat-
alytic bed assumed two different colours, depending on the gas atmosphere under which
it was subjected: during the CO, phase, the catalyst was partially denoted by a fair
colour, whereas in the Hy phase it became almost black. Both the colour changes be-
tween phases were continuously progressive, but while the darkening related to catalyst
reduction was fast and total, the colour change associated with the oxidising phase was
slower. For some catalysts, the colour change was detected also in following cycles,
even if in a poorer and poorer extent, until it was no more recognisable. Moreover,
from the diversity between the colour assumed by the same catalyst exposed to CO,
and Os, we could conclude that the colour change during CCR was not related to a

complete oxidation of the pre-reduced Cu particles to CuO.

Figure 4.16 shows the image of the catalytic bed during the CO, phase for differ-
ent catalysts during the first cycle, along with the concentrations of CO5 and CO in
the reactor effluent in the first cycle and the evolution in time of the H,O IR signal
absorbance. Surprisingly, no significant colour change was visible for the unpromoted
12Cu/Al, O3 catalyst, combined with a very low CO evolution during the oxidising
phase. For this catalyst, water was hardly detected in the first cycle. In presence of K,
a colour change was noticed during the first CO5 phase. This colour change was not
associated to the capture mechanism since it was continuously progressing during all
the CO4 phase, while CO, consumption/capture stopped earlier in the pulse. Rather,
Cu can be mildly oxidised by CO, during the first COq pulse. However, according to
IR analysis this process did not result in CO evolution. For this reason, a dynamic

transfer of oxidising species along the bed may be involved.
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Given that the colour change was limited to the first redox cycle and it was related to
a peculiar reaction mechanism, we inferred that a phase change may be induced. The
first alternation of CO5 and Hy gives birth to the CCR active phase: Cu particles are
heavily dispersed in the K phase, and this process may be promoted with a Hs-induced
surface reconstruction, associated with the released of the previously captured CO,
and high formation of HO. In this condition, high dispersed Cu active sites promotes
the activation of Hy and conversion of the stored CO4 to CO observed in the following
cycles, namely during the quasi-steady state operation. Such phenomenon would be in
accordance, for instance, with TEM images of the used 11Cu-10K/Al,O3 catalyst (Fig-
ure 3.12(c) and Figure 3.12(d)), where Cu nanoparticles smaller than those found in
the as-synthesised catalyst were identified, dispersed in branched K structures. There-
fore, the active phase for CCR can be formed in the first redox pulse, resulting in the

loss of colour change.
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Figure 4.16: CO5 and CO concentration profiles during the 15 CCR cycle at 350 °C for the
12Cu/Al>O3 catalysts with different K-loading (left column), IR H»O signal
evolution during CCR reaction, in which the 1% cycle behaviour is highlighted
in green (central column), and images of the colour change of the catalysts at
different time instants during the COs of the 15¢ CCR cycle.



Chapter 5

Process parameters optimisation

The last part of the experimental project was focused on the optimisation of process
parameters. In view of a future application, the ideal CCR process would provide an
extended full CO, uptake and a fast reduction to CO. It is also important that capture
and reduction processes can efficiently take place in equal time intervals, so that the
alternation of the gas phases can be implemented in a continuous process. The 11Cu-
10K/Al,O3 catalyst was selected as the reference catalyst since it showed appreciable
CCR performance. Blank signals were retrieved exposing the catalyst to CO-Hy cycles

at room temperature.

In order to evalute process performance at different conditions, the definition of suit-
able quantities was required. Considering the CO, phase only, due to the simultaneous
COy capture and CO4 conversion to CO by Cu oxidation, CO4 full capture efficiency

was defined as:

COQ(ads,fc)

COq full capture efficiency = 100 x
COQTemoved

(5.1)

where COg(qas,fe) is the amount of CO, adsorbed during the initial full capture pe-
riod, and COq,emoveq the difference between the CO; signals of the blank and the one

obtained at reaction conditions. They are calculated as:

tye tfe
COQ(ads,fc) = / CCOQ,Odt — / CCOgdt (52)
0 0

71
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tcapture tcaptu're
Co2removed = / CCOQ,Odt - / CCOzdt (53)
0 0

where t¢. and teqpture are the time instants at which the initial CO, and the CO; phase
end, respectively, whereas cco,,0 and cco, are COs concentration for the blank and
catalytic tests, respectively. COy full capture efficiency is then defined as the percent-
age of COq captured during the initial full capture interval with respect to the total
CO3 removed from the inlet flow. This is a measure of how efficiently the catalyst can

provide full capture.

Considering the reduction phase, CO, reduction efficiency was defined as:

CO ev,Jc
CO, reduction efficiency = 100 x ——f9 (5.4)
Coproduced

where CO gy, fc) is the amount of CO evolved after the switching to the Hy phase during
a time interval equal to the full capture period, and COpyoguced is the total amount of

CO produced in the whole Hy pulse. They are calculated as:

t?c
COQ(GUJC) = /0 coodt (5.5)

treduction
COQproduced - / CCOdt (56)
0

}c and tyeduction indicate the time instant in the reducing phase equal to ¢4, and the
time instant in which the reducing phase ends. CO, reduction efficiency indicates the
ability of the catalyst to provide fast reduction of the captured CO,. The time interval
for the integrals defining COs(qas,rc) and COey p) Was selected equal to the CO, full
capture period during the CO, phase to express the potential towards the synchroni-

sation of the two phases in a real process.

Reaction temperature, GHSV during the COy phase and GHSV during the Hy phase
were considered for CCR optimisation, GHSV being calculated as:

F
H = — .
GHSV = - (5.7)
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where [ is the volumetric flow rate of the targeted gas species in m3s~* and W is the
amount of catalyst loaded in the reactor in kg. Due to the limited volume of the reactor,
variation in GHSV will be tested only by modifying gas flow rates. In principle, a similar
approach could be developed varying the catalyst loading. Furthermore, the effect of
different synthesis conditions on the process performances was investigated. Catalysts
prepared using different water amounts in the impregnation step of the potassium
precursor were tested. All tests were performed at ambient pressure. Calculated Hy /CO
ratios in the effluent are estimated values, since they were calculated as if a rWGS was
occurring; in addition, water was partially condensed before entering the IR detector,

precluding the determination of the consumed Hs.

5.1 Effect of temperature

Figure 5.1 illustrates concentration profiles of CO5 and CO obtained at four different
reaction temperatures, namely 300, 350, 400 and 450 °C. The choice of the temperature
range relies on the activation of reduction processes in Hy, as shown in temperature pro-
grammed analysis (Figure 3.4), which are fundamental to develop the active metallic
Cu phase. Due to the calcination temperature of 500 °C, higher temperatures are not
investigated. Since temperature affects both the CO, uptake process and its reduction,
Figure 5.2 describes how COy full capture efficiency and CO, reduction efficiency are
influenced. At 300°C, no full capture was noticed, while increasing temperatures led
to contrasting effects. The integration interval for full capture was set to 20s. On the
one hand, higher temperature promoted the oxidation of Cu by COs. This resulted in
a reduced full capture efficiency, since a larger portion of the CO5 eliminated from the
flow was consumed in the undesirable pathway of Cu oxidation. However, this drop
in full capture efficiency was limited, passing from 6% at 350 °C to 4% at 450°C. On
the other hand, higher temperature remarkably enhanced the kinetics of reduction of
the stored CO4 under the Hy flow, as the CO signal peak narrowed. As a consequence,
CO was produced in a higher amount during the same time interval. In this sense,
similarity with the tWGS would explain this endothermic reduction. CO, reduction
efficiency raised from 7% at 350 °C to 22% at 450 °C. Thus, higher temperatures looks

desirable for enhancing fast and efficient reduction of the captured COs.
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Figure 5.1: Average concentration profiles of CO2 and CO during CCR operation at differ-
ent temperatures for the 11Cu-10K/Al2Os IWI catalyst. Alternation of 9.9%
CO; in He phase at 25mLmin~! and 100% Hs at 50 mLmin~!. Pure He at
80 mL min~! is interposed between reactant pulses.

The catalyst stability was alo tested at 450 °C. Due to catalyst availability, the 11Cu-
10K/Al,O3 IWI-mod was used in the experiment. 50 CCR cycles were carried out,
corresponding to almost 16 h operation. CO, and Hs flowrate were kept the same of
the previous tests. The catalytic system showed good stability during all cycles, as can
be observed in Figure 5.3. This result confirmed the regenerability of the active phase

for CO, uptake during the reducing phase.

5.2 Effect of GHSV during the CO; phase

GHSV during the CO, phase was varied by modifying the CO, flow rate while keeping

constant the catalyst amount in the reactor, that was 200 mg. Three different tests were
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Figure 5.3: CO; full capture efficiency (blue) and CO; reduction efficiency (red) from CCR
activity of 11Cu-10K/Al,O3 IWI-mod during 50-cycle CCR.

carried out, flowing 50, 25 and 10 mL min~! of 9.9 vol.% CO, over the catalytic bed, cor-
responding to a GHSV of 0.0825 m3kg~!s™!, 0.0413m3* kg s~ ! and 0.0165m® kgt s~*
respectively. H, flow rate in the reducing phase was maintained equal to 50 mL min—*,

and reactions were carried out at 350 °C. CO5 and CO concentration profiles are shown
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in Figure 5.4, while Figure 5.5 shows the effect on the CO, reduction efficiency. Due
to the different amount of CO, involved in the capture process, COy full capture effi-
ciencies for the three tests were not comparable. As predictable, the initial full capture
interval during the CO4 phase increased with the decrease in the CO4 flow rate, namely
at lower GHSV, passing from 5s at 50 mLmin~! to 30s at 10mLmin~!: longer con-
tact time favored CO, uptake. From the point of view of the process, having a longer
capture phase would be beneficial in terms of reduction, since a higher amount of CO
during Hy phase could evolve. CO5 reduction efficiency was almost doubled decreasing
the CO, flow rate form 25mLmin~! to 10 mL min~—!. Therefore, as a consequence of
the longer initial full capture period, the latter CO, flow rate is selected for the fol-
lowing tests. In principle, same results could be obtained fixing the CO4 flow rate and

increasing the amount of available active sites by loading higher quantity of catalyst

in the reactor.
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Figure 5.4: Average concentration profiles of COs and CO during CCR operation at
350°C for the 11Cu-10K/Al;O3 catalyst. Alternation of 9.9% COs in He
phase at a)10mLmin~!, b) 25 mLmin~! and ¢) 50mLmin~! and 100% H» at
50 mLmin~'. Pure He at 80 mL min~" is interposed between reactant pulses.
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Figure 5.5: CO; reduction efficiency from CCR activity of 11Cu-10K/Al2O3 at different
CO;, flow rates during the oxidising phase.

5.3 Effect of GHSV during the H,; phase

Similar tests on the effect of GHSV during the reducing phase were performed by mod-
ifying the H, flow rate. Hy concentration was kept constant at 100 vol.%. The target of
these experiments was the possibility to decrease the Hy /CO ratio in the product efflu-
ent, so as to obtain a syngas already suitable as feedstock for the Fisher-Tropsh process.

L of pure H,, cor-

Three catalytic tests were carried out using 50, 20 and 10 mL min™
responding to GHSVs of 0.833m*kg~ts™1, 0.333m* kg 's™! and 0.167m?> kg1 s7! re-
spectively. Reactions were carried out at 350 °C. Figure 5.6 presents CO5 and CO con-
centration profiles obtained. Clearly, CO, full capture efficiency remained unchanged,
while the effect on the CO, reduction efficiency is reported in Figure 5.7.As expected,
according to CCR process purpose, variations Hy flow rate led to two contrasting ef-
fects. On the one hand, reduction kinetics was strongly improved at higher Hy flow

rate, due to the increased H, partial pressure. CO2 reduction efficiency raised from

1% to 14% passing from 10 to 50 mL min~! of pure H, flow rate. On the other hand,
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the increase in Hy flow rate involved a drop in the Hy/CO ratio of the syngas product.
Nonetheless, excess Hy separation from the product stream and its recycle was still
needed at lower H, flow rates, so we selected 50 mL min~—! of pure H, as the best choice
for an effective conversion of the chemically adsorbed CO5 to CO. In this way, a large

amount of excess Hy needs to be removed and recycled in order to obtain a suitable

syngas.
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Figure 5.6: Average concentration profiles of COz and CO during CCR operation at
350°C for the 11Cu-10K/Al;O3 catalyst. Alternation of 9.9% COs in He
phase at 10mLmin~! and 100% Hs at a) 10mLmin~!, b) 20 mL min~! and c)
50 mL min~'. Pure He at 80 mL min~" is interposed between reactant pulses.
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Figure 5.7: COz reduction efficiency from CCR activity of 11Cu-10K/Al2O3 at different Ho
flow rates during the reducing phase.

5.4 Effect of the water amount in the potassium

impregnation step

The last parameter investigated for catalyst optimisation was the amount of water used
for K,COj3 dissolution before the impregnation on the 12Cu/Al,O3 catalyst. This fac-
tor may play a significant role in the catalyst synthesis and activity, as concluded from
the comparison of the two 11Cu-10K/Al,O3 different batches illustrated previously.
Three different 11Cu-10K/Al,O3 catalysts were prepared. In the first synthesis, the
recommended amount of water for the K impregnation step was used. According to
the incipient wetness impregnation method, the amount of water is equal to the nom-
inal pore volume of the catalytic support. In the other two synthesis, the amount of
water used was twice and three times the nominal quantity. Figure 5.8 shows the CO,
and CO concentration profiles for the catalytic tests carried out on these catalysts at
350°C. The observed full capture period shifted from 30s to 45s and to 65s increasing
the water amount in the K impregnation step. These findings suggested that important
properties as Cu and K species dispersion, which is essential for CO5 uptake, can be
significantly influenced by the synthesis conditions. To better visualise the effect on

the process performance, CO, full capture efficiency and CO, reduction efficiency are
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reported in Figure 5.9. Both raised significantly with the increased amount of water
utilised for the synthesis. For the catalyst synthesised using the higher amount of wa-
ter, CO, full capture efficiency attained 11% and CO, reduction efficiency reached 31%.
The improved dispersion of active species on the catalytic support can be the reason
of the enhanced activity of the catalyst. Given these preliminary results, synthesis
procedure should be investigated more in detail by means of additional characterisa-
tions, with a particular focus on K detection techniques. Moreover, different synthesis

methods can be explored to optimise the catalytic system properties.
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Figure 5.8: Average concentration profiles of CO2 and CO during CCR operation at 350 °C
for the 11Cu-10K/Al,O3 catalyst synthesised with a) the recommended amount
of water for K precursor impregnation, b) twice and c) three times this amount.
Alternation of 9.9% COs in He phase at 50 mL min~!. Pure He at 80 mL min~"
is interposed between reactant pulses.

Combining the previous results, we were able to point out the optimal operating con-
ditions and process parameters for an effective CCR process. The 11Cu-10K/Al;O3
catalyst, synthesised with three times the nominal amount of water in the impregnation

step of Ky;COg3, was selected as it showed the best COy uptake ability. In a complete
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Figure 5.9: CO- full capture efficiency and COs reduction efficiency from CCR activity of
11Cu-10K/Al2O3 synthesised with different amounts of water.

CCR cycle, the catalyst was exposed to 10 mL min~! of 9.9 vol.% COs in the oxidising
phase alternated to 50 mL min~! of pure H, in the reducing phase. As mentioned ear-
lier, the low GSHV during the capture phase allows for a longer contact time between
the gas and the adsorption sites, resulting in a longer full capture interval, while a
greater partial pressure of Hs in the reducing phase favors the COs reduction. CO
production after the switching to the Hy atmosphere was furtherly improved operating
at 450 °C, to speed up the CO, reduction kinetics. CO5 and CO concentration profiles
are reported in Figure 5.10. Under these reaction conditions, approximately 100s of
COy full capture were achieved, resulting in a CO, full capture efficiency around 33%.
Considering a 100s time interval for the calculation, the obtained COs reduction effi-
ciency is around 65%. By limiting the duration of both phases to 100s is then possible
to reversibly store and convert efficiently CO,. In this way, such catalytic system can
utilise COy from a feed in which it is present in a concentration similar to the one
retrievable in a flue gas coming from a fossil power plant. Considering the low amount
of CO, involved in the flow, the CCR process may be flexibly implemented in future
systems for direct air capture, in which COs is found in concentration around 400 ppm.
The development of the application towards this direction is attractive, since it would

become a negative carbon technology that has the potential to address CO, emissions
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from distributed point sources. The product stream obtained was a syngas charac-
terised by an estimated Hy/CO ratio around 50:1, so excess Hy separation or mixing
with syngas with lower Hy/CO is required to meet the requirements (Hy/CO=2) of

downstream processes as the Fischer-Tropsch synthesis of hydrocarbons.
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Figure 5.10: Average concentration profiles of CO2 and CO during CCR operation at 450 °C
for the 11Cu-10K/Al>,O3 catalyst synthesised using three times the recom-
mended amount of water during the K precursor impregnation. Alternation
of 9.9% CO» in He phase at 50mLmin~'. Pure He at 80 mL min~! is inter-
posed between reactant pulses.



Conclusions and perspectives

In this work several remarkable results regarding the catalytic behaviour towards COq
Capture and Reduction of K-promoted supported Cu catalysts have been presented.
Such novel process targets the reversible sequestration of CO, contained in industrial
post-combustion flue gases, focusing on a 9.9 vol.% CO; stream, and its reduction to
CO by means of Hy. Such unsteady-state reaction system is realised by a continuous

gas cycling over the catalytic bed, alternating CO5 and Hy streams.

In the first part of the experimental work, catalysts synthesised according to the incipi-
ent wetness impregnation were tested. Potassium was found to be fundamental for the
capture of COy molecules, while the presence of Cu, even at low loadings, was critical
for the reduction of the surface species containing the adsorbed CO,, thus determining
the reversibility of the operation and the regeneration of the catalyst. By carrying out
a CCR test substituting CO to CO,, the involvement in the capture process of CO
deriving from a mild oxidation of Cu particles was observed, simultaneously with CO,
adsorption. Al,Os-supported catalysts were characterised by a higher BET surface
area, along with a longer initial CO, full capture interval with respect to their ZrO,-
and TiOs-supported counterparts, pointing out the positive role of active species dis-

persion to provide active sites for CO, adsorption.

Catalysts synthesised through a modified incipient wetness impregnation method showed
better performance than the respective catalysts synthesised according to the rigorous
method. Addition of water during the impregnation step of the promoter precursor led
to a higher dispersion of the active metal, also entailing an increase in the population
of the CO4 active sites. The strong interaction between Cu and K species was in ac-

cordance with Ho-TPR analysis.

83
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Al;Os-supported catalysts with different amounts of K and Cu were tested to inves-
tigate the effect of their loadings. The capture ability of the catalyst increased with
the increase of potassium, until a maximum was reached. Similarly, we inferred that
Cu should have an optimum loading, given from the trade-off between the formation
of interfacial sites for COy adsorption and the homogeneous dispersion. In fact, a too
high loading brought to the formation of Cu agglomerates. Moreover, Hy coverage of
the Cu surface could favorably influence COs dissociation through an induced surface
reconstruction. Carbonates and formates on the catalyst surface can be generated only

when Cu and K species coexist.

In this work, the formation of the active phase for CCR attracted significant attention.
In situ Raman spectroscopy was combined with video recording to detect variations
of the K-promoted catalyst surface subjected to CO, and H, atmospheres. The Hy
treatment involved the loss of the Raman signals associated with the support and
K5COg3, due to the dispersion of Cu nanoparticles in the K phase covering the sup-
port. A progressive colour change of the catalytic bed observed only during the first
oxidising phase was associated with a higher CO5 uptake and to Cu nanoparticles that
are not evenly dispersed, resulting in a partial recovering of the Raman signals. Such
phenomenon suggested the dynamic features of the process, characterised by the high
mobility of potassium and the Cu nanoparticles distribution, confirmed by TEM imag-
ing, where Cu particles smaller than in the catalyst after calcination were dispersed in
branched K structures. A further indication to this conclusion was the poor activity

of the TiOs-supported catalyst, where a K-containing crystalline phase were detected

both by XRD and TEM, which immobilised potassium.

Eventually, optimisation of the process parameters to maximise CCR efficiency was
performed. The influence of temperature, GHSVs (flow rates) in both oxidising and
reducing phases and amount of water used for potassium impregnation were targeted
using the 11Cu-10K-Al,O3 catalyst. Since the separation of the excess Hy was al-
ways required for a syngas product suitable for downstream operation, such as the

Fisher-Tropsh process, the best result was obtained using the highest temperature and
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H, flow rates, in order to improve reduction kinetics. CO, capture instead benefited
of long contact time. Addition of water enhanced the dispersion of the active metal
and the generation of CO, capture sites. The bast CCR activity was obtained oper-
ating the reaction at 450°C at ambient pressure with the catalyst synthesised using
three times the amount of water recommended in the incipient wetness impregnation
method. Reactant streams were constituted by 10 mLmin~! of 9.9 vol.% CO, in He

1

and 50 mL min™" of pure Hy. 100s of initial CO, full capture were achieved, with a

selectivity towards CO in the reduction phase above 99% and no methane production.

As a future perspective, further research on the effect of the synthesis method on
the dispersion of the active species should be carried out. Moreover, the optimal
combination of copper and potassium loading should be investigated. Because of the
elusiveness of the catalyst towards common analysis techniques, certain conclusions of
the effective reaction mechanism were difficult to obtain. Since in situ and operando
studies showed a potentiality, UV-Vis spectroscopic analysis is recommended to possi-

bly complete results obtained with FT-IR and Raman spectroscopies.

Set up limitation did not allow for GHSV modification by varying the catalyst loading
in the reactor. In principle, no significant difference should exist. From this point of
view, the scale up of a chemical looping system as the one proposed in Chapter 1 seems
to be feasible. As a final remark, CCR process could reveal itself suitable as a direct
air capture technology, thus becoming a negative carbon emissions solution. In fact,
as decreasing the CO, flow rate resulted in a longer full capture period, an equivalent

result could be obtained decreasing CO, concentration.
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