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∗Université Paris-Dauphine
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1 Introduction to the research topic

1.1 Control of the induced earthquakes

It is now a scientific fact that human activities can induce earthquakes (see [9] for a thorough re-
view). Owing to the online database [24], oil and gas industry together with geothermy and water
reservoir impoundment are the anthropogenic activities which are accountable for the largest part
of the known induced earthquakes.

The oil and gas industry processes may induce earthquakes at the stage of extraction. This is
mostly the case with hydraulic fracturing (a.k.a. fracking), when disposing waste water, or even
when disposing back water that was already present in the extraction site, see [20] for more on the
earthquakes induced by the oil and gas industry. These phenomenons are all linked with the injec-
tion of a fluid in the ground. Fluid injection causing earthquakes is refered to as injection-induced
earthquakes or fluid-injection-induced earthquakes. This Mémoire is devoted to the mathematical
analysis of a model for fluid-injection-induced earthquakes.

Our model is taken from [11] and is depicted in Figure (1). It bears a simplified structure, no-

Figure 1: Modelization of the control system, at the right q represents injected water through a
well, in red the generated pression travells toward the sismic fault, in blue the displacement spreads
from the fault until it reaches x = D which is an attached point. Taken from [11]
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tably because it is 1D. The corresponding system of equations is (see [11])

utt = c2uxx, −D1 < x < 0,

ux(t, 0) = µ(u(t,0),ut(t,0),t)−µ0

G σ′ − µ(u(t,0),ut(t,0),t)
G p(t, 0),

u(t,−D1) = 0,
pt = dpxx, 0 < x < D2,

px(t, 0) = 0,
px(t,D2) = q + φ,

(1)

where for mathematical convenience, we changed notation of [11] and Figure (1) from D < 0 to
−D1. In these equations, t ≥ 0 is the time variable, −D1 < x < D2 is the space variable, u = u(t, x)
is the displacement of earth’ crust, p = p(t, x) is the pressure, q = q(t) is the injected fluid, φ is a
noise, µ is an unknown function, and c, d,G, µ0, σ

′ are physical constants.

To the best of our knowledge, very little is known about this model. Most of the undertaken
work has been focusing on closely related ODE models, see [22] and [23]. For instance it is not
clear if the system (1) is controllable or stabilizable. Moreover in [11] the authors design controls
decoupling the system. Namely they aim at controlling the wave subsystem

utt = c2uxx, −D1 < x < 0,

ux(t, 0) = µ(u(t,0),ut(t,0),t)−µ0

G σ′ − µ(u(t,0),ut(t,0),t)
G p(t, 0),

u(t,−D1) = 0,

interpretting p(t, 0) as a control, and to separately control the heat subsystem pt = dpxx, 0 < x < D2,
px(t, 0) = 0,
px(t,D2) = q + φ.

This motivates the study of the coupling mechanism in (1). To this aim we will simplify this model
into 

utt(t, x) = c2uxx(t, x), −D1 < x < 0,
ux(t, 0) = p(t, 0),
u(t,−D1) = 0,
pt(t, x) = dpxx(t, x), 0 < x < D2,
px(t, 0) = 0,
px(t,D2) = q(t),

(2)

and aim at study its controllability.

1.2 Control of PDEs via duality methods

Consider the system

Σ(A,B) :

{
ż = Az +Bu,
z(0) = z0,

(3)

where

• A is an unbounded operator (the dynamics) on a Hilbert space X (the state space),
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• B ∈ Lc(U ;D(A∗)∗) is the control operator and U is the control space (another Hilbert space),

• z = z(t) is the quantity of interest, 0 ≤ t ≤ T is the time variable, 0 < T <∞ is the horizon
time,

• z0 ∈ X is the initial condition,

• u ∈ L2(0, T ;U) is the control.

Assume that (3) is well-posed, in a sense to be clarified later, so that for any z0 ∈ X and u ∈
L2(0, T ;U) there exists a unique solution z = z(t) to (3).

Definition 1.2.0.1. (Exact controllability)
The system (3) is said exactly controllable (at time T ) if for any initial data z0 ∈ X, for any
terminal data zT ∈ X, there exists a control u ∈ L2(0, T ;U) which steers z0 to zT at time T . That
is such that the solution z of (3) solves

z(T ) = zT .

To show directly that (3) is controllable is a hard task because we actually have to exhibit a
control. Rather, using duality theory it is possible to show that controllability is equivalent to the
obtention of some inequality. The latter is much more appealing, for we may apply all our favourite
tools from real, complex, and functionnal analysis.

The solution z of (3) is given by the Duhamel formula

z(t) = etAz0 +

∫ t

0

e(t−s)ABu(s)ds,

hence we have the closed formula for the final state

z(T ) = eTAz0 +

∫ T

0

e(T−s)ABu(s)ds.

We introduce the operator

FT :

{
L2(0, T ;U) −→ X

u 7−→
∫ T
0
e(T−s)ABu(s)ds

which is such that the final state reads

z(T ) = eTAz0 + FTu.

The following Theorem is an example of duality theory appliyed to the control of (3).

Theorem 1.2.0.2. Under the standing assumptions, the following are equivalent:

1. The system (3) is exactly controllable,

2. The map FT : L2(0, T ;U)→ H is onto,
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3. The system is initial time observable:

∃c > 0, ∀φ0 ∈ H, ∥φ0∥2 ≤ c
∫ T

0

∥B∗S∗
t φ

0∥2dt.

For a proof of this result we refer to [4, Theorem 2.4.2]. The inequality of the third point is
referred as an ”initial time observability for the adjoint system” inequality, or for short ”initial time
observability”.

The system (3) is called an abstract linear control system, or a control system for short. From
a formal point of view, it looks closely like a distributed contorl system. Those distributed control
systems are controlable systems where the control takes place inside of the physical domain. To
illustrate this, consider the following controled heat equation zt(t, x) = zxx(t, x) + 1ω(x)u(t, x),

zx(t, 0) = 0,
zx(t, L) = 0,

(4)

where 0 < L <∞, ω ⊂ (0, L) is a non empty and open subset, and u = u(t, x) is the control. This
models the evolution of the temperature of a metal string which does not exchange energy with the
exterior. Note that at each time t, the controller is able to choose the heat source at any x ∈ ω.
For this reason (4) is called a distributed control system. Another situation is when the controler
is only capable of choosing the heat source at one extremity of the string, for instance zt(t, x) = zxx(t, x),

zx(t, 0) = u(t),
zx(t, L) = 0.

(5)

The equations now look different because the control does not take place in the abstract ODE,
but rather at the boundary. Such a system (5) is more suited for the applications and can be
theoretically categorized as a boundary control system

Σ(L,G) :

 ż = Lz,
Gz = u,
z(0) = z0,

(6)

where L is the dynamics operator and G is the boundary control operator. Comparing (4) and (5),
the intuition tells us that (4) should be the easiest system to control, since the control acts on more
space. In the next Section we explain how to deal with such boundary control systems.
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2 Generalities

In this Section we establish all the mathematical framework to investigate the controllability of (2)
and introduce some notations. This Section is rather theoretical and the confident reader is invited
to directly go to Section (3).

We will use the following conventions:

• For theoretical purposes, all vector spaces are complex but we search for real valued solutions
to our PDEs.

• Scalar products are denoted (·, ·)H while duality pairing are denoted ⟨·, ·⟩X,Y . We will take
them both linear on the first argument and anti-linear on the second (see below for an expla-
nation).

• The word “isomorphism” should be understood as in the category where the objects live, which
should be clear from the context. Categories are refered by bold letters. The superscript “∞”
indicates that morphisms are allowed to increase the norm. For instance, Ban∞ stands for the
category of C-Banach spaces with morphisms the linear and continuous maps. Therefore, in
Ban∞ the isomorphisms are the linear, continuous and bijective maps (and not the surjective
linear isometries). The superscript “1” means that on the contrary morphisms do not increase
the norm, and thus Ban1-isomorphisms are isometric.

• If X,Y are complex vector spaces we denote by L(X;Y ) the set of linear maps from X to
Y . When both X and Y are equipped with a topology we refer to the set of continuous and
linear maps X → Y as Lc(X;Y ).

2.1 Realizations of the anti-dual space

We begin by recalling the notion of realisations of the anti-dual space1. In what follows H is an
arbitrary complex Hilbert space and H ′ denotes it’s anti-dual space, the set of all anti-linear and
continuous maps H → C. Considering the anti-dual space in place of the dual space is harmless in
practice and has the theoretical advantage that the Riesz isomorphism

RH :

{
u 7−→ (u, ·)H
H −→ H ′

is C-linear, hence an isomorphism. This is indeed harmless because it amounts to add a complex
conjugation to every function representing linear functionnals.

Definition 2.1.0.1. A realization of the anti-dual space of H is a couple (H∗,Φ) where H∗ is a
complex Hilbert space and Φ : H∗ → H ′ is an isomorphism.

Note that in the above definition, H ′ is endowed with its Hilbert structure, which exists in view
of the Riesz identification theorem.

Remark 2.1.0.2.
�

In the above definition one cannot forget Φ, because in practice all the Hilbert
spaces are separable infinite dimensional, hence isomorphic to each others.

1We refer to [1, Chapitre III] for this notion. Note that herein the author deals with real Hilbert spaces, which is
not suitable for spectral theory.
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We shall note that H always has two realizations of its anti-dual. The first one is trivial,
(H ′, IdH′). The second one is given by the Riesz isomorphism RH : H → H ′, which makes (H,RH)
a realization of the anti-dual space of H. In the latter case we say that H is a pivot space. We
adopt the convention to use the H ′ notation for the ”true” anti-dual (the one made by functionnals)
and H∗ for a realization of the anti-dual space (which could be H ′...).

Observe that we can put H∗ and H in duality via

⟨h∗, h⟩H∗,H := ⟨Φh∗, h⟩H′,H

which defines a duality pairing between H and H∗. The knowledge of the map Φ is contained in
this duality bracket which allows one to essentially “forget” Φ.

The following Proposition generalizes the concept of an adjoint operator (in Hilbert spaces), al-
lowing one to take advantage of a specific realization of the anti-dual space.

Proposition 2.1.0.3. Let H1, H2 be complex Hilbert spaces together with respective anti-dual real-
izations H∗

1 and H∗
2 . Let also T ∈ Lc(H1;H2) and the formal definition

⟨T ∗h∗2, h1⟩H∗
1 ,H1 = ⟨h∗2, Th1⟩H∗

2 ,H2 , ∀h∗2 ∈ H∗
2 , ∀h1 ∈ H1.

We then have

1. This defines T ∗ ∈ Lc(H∗
2 ;H

∗
1 ) such that

∥T∥Lc(H1;H2) = ∥T
∗∥Lc(H∗

2 ;H
∗
1 )
.

2. If both realizations are trivial we recover the definition of the adjoint in TVS:

T ∗ ∈ Lc(H ′
2;H

′
1), ⟨T ∗φ2, h1⟩H′

1,H1
= ⟨φ2, Th1⟩H′

2,H2
.

3. If both spaces are pivot, we recover the definition of the adjoint in Hilb:

T ∗ ∈ Lc(H2;H1), (T ∗h2, h1)H1 = (h2, Th1)H2 .

2.2 Anti-dual with respect to a pivot

We recall the meaning of
V ⊂ H = H ′ ⊂ V ∗

where H,V are fixed complex Hilbert spaces with V ⊂ H continuous dense.

Remark 2.2.0.1.
�

The notation V ⊂ H means that V is a linear subspace of H, that has in
addition a Hilbert structure in its own right. This hypothesis is not anecdotic as in practice all
the Hilbert spaces are separable infinite dimensional, hence isomorphic to each others (in Hilb).
Therefore, in order to establish a consistant theory we ought to keep track of the embedding V ↪→ H.
This is contained in the identification of V as a subset of H.

Let us first recall a result on completion.
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Proposition 2.2.0.2. (Completion of a normed space)
Let X be a normed space, then it has a completion in the sense that there exists some couple (X̂, i)
with

• X̂ is a Banach space,

• i : X → X̂ linear isometric dense map.

It should be noted that the completion of a normed space is not unique, but only unique up to
an isomorphism (it solves a universal property). This situation will transpose for realizations of the
anti-dual with respect to a pivot.

The following result explains how to produce a realization of the anti-dual of V that exploits
V ⊂ H.

Theorem 2.2.0.3. The map

Φ :

{
H −→ V ′

h 7−→ (h, ·)H
is linear, injective and dense. Moreover,

∥h∥∗ := sup
v∈V

∥v∥V =1

|(h, v)H |

is a norm on H. Therefore, for all (Ĥ, i) completion of (H, ∥ · ∥∗), denoting Φ̂ : Ĥ → V ′ the linear
and continuous extension of Φ, we get that Φ̂ is a Ban1 isomorphism and Ĥ is hilbertizable2. With
such a Hilbert structure, (Ĥ, Φ̂) is a realisation of the anti-dual of V .

Proof. The map Φ is trivially a well defined linear map from H to L(V ;C). It is in fact V ′ valued
because for any h ∈ H and v ∈ V there holds

|(Φh)v| = |(h, v)H | ≤ ∥h∥H∥v∥H ≤ c∥h∥H∥v∥V

where c > 0 is such that
∀w ∈ V, ∥w∥H ≤ c∥w∥V .

It is also clearly a linear map. The injectivity then follows from the density of V ⊂ H. The
density comes from a famous corollary of Hahn-Banach (see [2, Corollary 1.8]) which asserts that
Φ(H) ⊂ V ′ is dense if (and only if) for any ξ ∈ V ′′,

[∀φ ∈ Φ(H), ⟨ξ, φ⟩V ′′,V ′ = 0] =⇒ ξ = 0.

For such a ξ, being V reflexive (it is Hilbert), there exists v0 ∈ V such that

∀φ ∈ V ′, ⟨ξ, φ⟩V ′′,V ′ = ⟨φ, v0⟩V ′,V .

Therefore, the hypothesis on ξ means that for any h ∈ H,

0 = ⟨ξ,Φh⟩V ′′,V ′ = ⟨Φh, v0⟩V ′,V = (h, v0)H .

2We say that a Banach space is hilbertizable when its norm is equivalent to a norm deriving from a scalar product.
This is equivalent to being Ban1-isomorphic to a Hilbert space.

9



Then v0 = 0 and ξ = 0, which shows the density of Φ(H) ⊂ V ′.

It is then elementary to check that ∥ · ∥∗ is a norm on H. Pick (Ĥ, i) any completion of (H, ∥ · ∥∗),
then Φ : (H, ∥ · ∥∗)→ V ′ is linear and continuous, it is isometric by definition of ∥ · ∥∗. It thus has
a linear and continuous extension Φ̂ ∈ Lc(Ĥ;V ′). Then Φ̂ : Ĥ → V ′ is linear and isometric. We
claim it is furthermore surjective: indeed Φ̂ has closed range (it is classical that a coercive linear
operator has closed range), hence

Range Φ̂ ⊃ ClV ′ Range Φ̂ ⊃ ClV ′ Φ(H) = V ′.

Then Φ̂ : Ĥ → V ′ is bijective, hence a Ban1 isomorphism.

Up to now in this proof V ′ has been invoked as a Banach space, endowed of the operator norm
(denoted ∥·∥V ′), and Φ̂ : Ĥ → V ′ is a Ban1 isomorphism but not yet a Hilb isomorphism. Both the
Banach spaces Ĥ and V ′ are hilbertizable, hence they both possess scalar products inducing their
norms. For then the map Φ̂ : Ĥ → V ′ is a Hilb isomorphism because being linear and isometric is
enough to respect the scalar product.

Such a (Ĥ, Φ̂) is called the anti-dual space of V with respect of the pivot H and will often
be denoted V ∗. Observe that V ∗ is not uniquely defined, though it is unique up to isomorphism
since it solves some universal property. This means that when it is not explicitely said, all results
concerning V ∗ should begin by fixing a realization of V ∗.

Note that V ∗ is endowed of the norm

∥u∥V ∗ := ∥Φu∥V ′

which is such that
∀u ∈ H, ∥u∥V ∗ = sup

v∈V
∥v∥V =1

|(u, v)H | ≤ c∥u∥H .

Proposition 2.2.0.4. (First non trivial applications)

1.
∀u ∈ H, ∀φ ∈ V, ⟨u, φ⟩V ∗,V = (u, φ)H .

2.
H = {u ∈ V ∗ : ∃c > 0, ∀φ ∈ V, |⟨u, φ⟩V ∗,V | ≤ c∥φ∥H}.

3.
V = {u ∈ V ∗ : ∃c > 0, ∀φ ∈ V, |⟨u, φ⟩V ∗,V | ≤ c∥φ∥V ∗}.

This Proposition shows why V ∗ is a convenient choice of realization of the anti-dual space of V ,
when H is a “nice” Hilbert space.

2.3 Unbounded operators and D(A∗)∗

In this Subsection we perform several constructions on operators using the notion of anti-dual space
with respect to a pivot. Most of the material is taken from [25, Section 2].
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2.3.1 Unbounded operators

Throughout this Subsubsection we assume that A is a closable, densely defined, unbounded3 op-
erator on a Hilbert space X and refer to [15, Sections 2.1, 2.4] for elementary spectral theory
considerations.

Since A is densely defined and closable, it has a well defined adjoint A∗ which is also a densely
defined and closed unbounded operator on X with domain D(A∗) (see [15][Section 2.4]. We will
endow D(A∗) with the graph norm

∥u∥2D(A∗) := ∥u∥
2
X + ∥A∗u∥2X

which makes it a Hilbert space. We let D(A∗)∗ be a realisation of the anti-dual of D(A∗) with
respect to X.

Lemma 2.3.1.1. 1. A has an extension Lc(X;D(A∗)∗) that we call Â.

2. Â is a densely defined unbounded operator on D(A∗)∗.

3. If λ ∈ ρ(A), then λ ∈ ρ(Â) and

(λ− Â)−1
∣∣∣
X

= (λ−A)−1.

In particular, ρ(A) ⊂ ρ(Â).

Proof. 1. It is enough to show that

∃c > 0, ∀z ∈ D(A), ∥Az∥D(A∗)∗ ≤ c∥z∥X .

We then write for arbitrary z ∈ D(A)

∥Az∥D(A∗)∗ = sup
φ∈D(A∗)

∥φ∥D(A∗)=1

|(Az, φ)X |

= sup
φ∈D(A∗)

∥φ∥D(A∗)=1

|(z,A∗φ)X |

≤ ∥z∥X .

2. The fact that Â is an unbounded operator on D(A∗)∗ is trivial. The fact that it is densely
defined follows from the definition of D(A∗)∗ as a completion of (X, ∥ · ∥D(A∗)∗).

3. Assume there exists λ ∈ ρ(A), we have to show that (λ− Â) : X → D(A∗)∗ is bijective and its
inverse is Lc(D(A∗)∗). We claim that (λ−A)−1 has a Lc(D(A∗)∗;X) extension, this follows

3This is a slightly weaker assumption than the one used in [25], which is that A is a densely defined operator with
nonempty resolvant set.
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from the following computation, which holds for any φ ∈ X

∥(λ−A)−1φ∥X = sup
u∈X

∥u∥X=1

|((λ−A)−1φ, u)X |

= sup
u∈X

∥u∥X=1

|(φ, (λ−A∗)−1u)X |

≤ sup
ψ∈D(A∗)

∥ψ∥D(A∗)≤∥(λ−A∗)−1∥Lc(X;D(A∗))

|(φ,ψ)X |

= ∥(λ−A∗)−1∥Lc(X;D(A∗))∥φ∥D(A∗)∗

where we have used in the second equality that, since λ ∈ ρ(A) and A is a closable densely
defined operator, we have

λ ∈ ρ(A∗), [(λ−A)−1]∗ = (λ−A∗)−1.

Then by continuity and density, the extension of (λ−A)−1 is the inverse of λ− Â.

We now give a precise meaning to the genuine equations

⟨Âx, φ⟩D(A∗)∗,D(A∗) = (x,A∗φ)X , D(A∗)∗∗ = D(A∗).

Proposition 2.3.1.2. Let A be a closable densely defined operator on X and D(A∗)∗ be any
realization of the anti-dual space of D(A∗) with respect to X.

1. We have
∀x ∈ X, ∀φ ∈ D(A∗), ⟨Âx, φ⟩D(A∗)∗,D(A∗) = (x,A∗φ)X .

2. The space D(A∗) is a realization of the anti-dual space of D(A∗)∗.

Proof. 1. The equation to show is trivial if x ∈ D(A), in view of Proposition (2.2.0.4). By
continuity of Â : X → D(A∗)∗ and density of D(A) ⊂ X we conclude that the equation holds
for any x ∈ X.

2. Fix Φ : D(A∗)∗ → D(A∗)′ the Hilb-isomorphism such that (D(A∗)∗,Φ) is a realization of the
anti-dual space of D(A∗) with respect to X. We then have that

RD(A∗)∗Φ
−1RD(A∗) : D(A∗)→ [D(A∗)∗]′

is a Hilb-isomorphism, by composition.

2.3.2 Semi-groups

We now assume that A generates a strongly continuous semi-group on X that we denote (St)t≥0.

Lemma 2.3.2.1. 1. For any t ≥ 0, the map St : X → X has a Lc(D(A∗)∗) extension denoted
Ŝt.
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2. The induced family (Ŝt)t≥0 is a strongly continuous semi-group on D(A∗)∗.

3. For any t ≥ 0 we have

∀u ∈ D(A∗)∗, ∀φ ∈ D(A∗), ⟨u, S∗
t φ⟩D(A∗)∗,D(A∗) = ⟨Ŝtu, φ⟩D(A∗)∗,D(A∗).

4. The generator of (Ŝt)t≥0 is Â, with domain X.

Proof. 1. Let x ∈ X, we have

∥Stx∥D(A∗)∗ = sup
φ∈D(A∗)

∥φ∥D(A∗)=1

|(Stx, φ)X |

= sup
φ∈D(A∗)

∥φ∥D(A∗)=1

|(x, S∗
t φ)X |

≤ ∥S∗
t ∥Lc(D(A∗))∥x∥D(A∗)∗ (7)

where we have used that S∗
t ∈ Lc(D(A∗)). Indeed, for any φ ∈ D(A∗) we have S∗

t φ ∈ D(A∗)
and

∥S∗
t φ∥2D(A∗) = ∥S

∗
t φ∥2X + ∥A∗S∗

t φ∥2X
≤ ∥S∗

t ∥2Lc(X)∥φ∥
2
X + ∥S∗

tA
∗φ∥2X

≤ ∥St∥2Lc(X)

(
∥φ∥2X + ∥A∗φ∥2X

)
= ∥St∥2Lc(X)∥φ∥

2
D(A∗). (8)

2. The semi-group property is easy to get from density and continuity. We are left to show the
strong continuity:

∀x ∈ D(A∗)∗, Ŝtx
D(A∗)∗−−−−−→
t→0+

x.

To this aim we first show that

∃M > 0, ∀0 ≤ t ≤ 1, ∥Ŝt∥Lc(D(A∗)∗) ≤M.

This is from (7) and (8), which yield

∥Ŝt∥Lc(D(A∗)∗) ≤ ∥S∗
t ∥Lc(D(A∗)) ≤ ∥St∥Lc(X).

Now we fix x ∈ D(A∗)∗ and (xj)
∞
j=0 a sequence of X converging to x in D(A∗)∗. We obtain

lim sup
t→0+

∥Ŝtx− x∥D(A∗)∗ ≤ inf
j
lim sup
t→0+

(
∥Ŝtx− Ŝtxj∥D(A∗)∗ + ∥Ŝtxj − xj∥D(A∗)∗ + ∥xj − x∥D(A∗)∗

)
≤ inf

j
lim sup
t→0+

∥Ŝtx− Ŝtxj∥D(A∗)∗

≤ inf
j
lim sup
t→0+

∥Ŝt∥Lc(D(A∗)∗)∥x− xj∥D(A∗)∗

= 0.
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3. The equality is trivial when u ∈ X and we conclude by density and continuity.

4. We let Λ be the generator of the strongly continuous semi-group (Ŝt)t≥0 on D(A∗)∗. We show

that Λ = (X, Â). For any x ∈ D(A), we have

Stx− x
t

X−−−−→
t→0+

Ax,

hence
Ŝtx− x

t

D(A∗)∗−−−−−→
t→0+

Âx,

and we deduce (D(A), Â) ⊂ Λ. Now to show that (X, Â) = Λ we first claim that

(X, Â) ⊂ (D(A), Â) (9)

where the closure is taken in D(A∗)∗. Indeed, let x ∈ X, we show that there exists a sequence
(xj) of D(A) such that

xj
D(A∗)∗−−−−−→
j→∞

x, Âxj
D(A∗)∗−−−−−→
j→∞

Âx.

We will take (xj) any sequence of D(A) that goes to x for the X topology, which exists as A
is a densely defined operator. We then obviously have

xj
D(A∗)∗−−−−−→
j→∞

x

and because Â ∈ Lc(X;D(A∗)∗) we have

Âxj
D(A∗)∗−−−−−→
j→∞

Âx.

This shows (9), and by closedness of Λ we obtain

(X, Â) ⊂ (D(A), Â) ⊂ Λ = Λ.

We then show that the operator (X, Â) is a generator on D(A∗)∗. To this aim we observe
that it is conjugated with A (seen here as an unbounded operator on X) as follows. For a
fixed λ ∈ ρ(A), which exists as A is a generator, the map

λ− Â : X → D(A∗)∗

is a Ban∞-isomorphism in view of Lemma (2.3.1.1). It makes the following diagram commute

X D(A∗)∗

D(A) X

Â

(λ−Â)−1

A

λ−Â

as shown by (λ− Â)(D(A)) = X and for any φ ∈ D(A),

(λ− Â)−1Â(λ− Â)φ = Aφ.
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Therefore, as it is classical that an operator that is conjugated with a generator is itself a
generator, (X, Â) is a generator on D(A∗)∗.

We conclude the proof using a maximality argument, namely we will show that if P,Q are
generators on a Hilbert space H such that P ⊂ Q, then in fact P = Q. To this aim let
x ∈ D(Q), we have x ∈ D(P ) as soon as the quantity

etPx− x
t

, t > 0,

has a limit in H as t→ 0+. We will show that

∀t ≥ 0, ∀x0 ∈ D(Q), etPx0 = etQx0. (10)

Indeed, if x0 ∈ D(P ) the two above curves are both C([0,∞);D(Q))∩C1([0,∞);H) and such
that

d

dt
etPx0 = PetPx0 = QetPx0,

d

dt
etQx0 = QetPx0.

Hence they are classical solutions of the abstract ODE{
ẋ(t) = Qx(t),
x(0) = x0,

and by uniqueness they agree. Thus

∀t ≥ 0, ∀x0 ∈ D(P ), etPx0 = etQx0.

Now fix t ≥ 0 and x ∈ D(Q), let (xj) be a sequence of D(P ) going to x in H, we pass to the
limit in

∀j ∈ N, etPxj = etQxj ,

to obtain (10). Finally, for any t > 0 and x ∈ D(Q) we obtain

etQx− x
t

=
etPx− x

t
→ Px,

which shows x ∈ D(P ) and Px = Qx, as desired.

2.4 Control systems

In this Subsection we adress the well posedness and controllability for control systems (3), we will
follow the lines of [4]. Fix U,X complex Hilbert spaces, A generator on X and B ∈ Lc(U ;D(A∗)∗).
We write B∗ the the adjoint of B where U is a pivot space and D(A∗)∗ has realization of its dual
D(A∗). In other words: B∗ ∈ Lc(D(A∗);U).
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2.4.1 Well-posedness

Definition 2.4.1.1. The operator B is an admissible control operator for A if

∃0 < T <∞, ∃c > 0, ∀z ∈ D(A∗),

∫ T

0

∥B∗S∗
t z∥2Udt ≤ c∥z∥2X .

It is classical to show that if the above condition is satisfied for a fixed 0 < T < ∞, then it is
also satisfied for any 0 < T < ∞. From now on we assume that B is admissible, we can then for
any 0 < T <∞ extend by linearity and continuity the map{

z 7−→ [t 7→ B∗S∗
T−·z]

(D(A∗), ∥ · ∥X) −→ L2(0, T ;U)

on the whole of X. We will denote by the same symbol this extension.

Definition 2.4.1.2. Let z0 ∈ X and u ∈ L2(0, T ;U). A transposition solution of the control system
(3) is a map z ∈ C([0, T ];X) such that

∀τ ∈ [0, T ], ∀φτ ∈ X, (z(τ), φτ )X − (z0, S∗
τφ

τ )X =

∫ τ

0

(u(t), B∗S∗
τ−tφ

τ )Udt.

Observe that this definition only requires the knowledge of B∗.

Theorem 2.4.1.3. Assume that A is a generator and that B ∈ Lc(U ;D(A∗)∗) is an admissible
control operator for A. Then (3) is well-posed in the sensee that for any 0 < T < ∞, z0 ∈ X and
u ∈ L2(0, T ;U), it has a unique transposition solution on [0, T ]. Moreover, denoting z ∈ C([0, T ];X)
the corresponding solution, we have an estimation of the form

∀0 < T <∞, ∃c > 0, ∀z0 ∈ X, ∀u ∈ L2(0, T ;U), ∥z∥C([0,T ];X) ≤ c
(
∥z0∥H + ∥u∥L2(0,T ;U)

)
.

For a proof of this result, see [4, Theorem 2.37 ]. Note that one can then build the input-output
map

Ξ :

{
L2
loc([0,∞);U)×X −→ C([0,∞);X)

(u, z0) 7−→ z(·)

which is linear continuous when all the involved spaces are endowed of their natural Fréchet struc-
ture.

We now turn to the derivation of an explicit formula for the solution.

Proposition 2.4.1.4. The solution of (3) is given by the extended Duhamel formula

∀t ≥ 0, z(t) = Stz
0 +

∫ t

0

Ŝt−sBu(s)ds,

where in particular [
t 7→

∫ t

0

Ŝt−sBu(s)ds

]
∈ C([0,∞);X).
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Proof. Let φ ∈ D(A∗), observe that a priori[
t 7→

∫ t

0

Ŝt−sBu(s)ds

]
∈ C([0,∞);D(A∗)∗),

and compute for any 0 ≤ t <∞

⟨z(t), φ⟩D(A∗)∗,D(A∗) = (z(t), φ)X

= (z0, S∗
t φ)X +

∫ t

0

(u(s), B∗S∗
t−sφ)Uds

= (Stz
0, φ)X +

∫ t

0

⟨Ŝt−sBu(s), φ⟩D(A∗)∗,D(A∗)ds

= ⟨Stz0, φ⟩D(A∗)∗,D(A∗) +

〈∫ t

0

Ŝt−sBu(s)ds, φ

〉
D(A∗)∗,D(A∗)

.

This shows the extended Duhamel formula, finally to get[
t 7→

∫ t

0

Ŝt−sBu(s)ds

]
∈ C([0,∞);X),

a first method is to invoke that

z(·),
[
t 7→ Stz

0
]
∈ C([0,∞);X),

hence the difference [
t 7→

∫ t

0

Ŝt−sBu(s)ds

]
= z(·)−

[
t 7→ Stz

0
]

is C([0,∞);X). A more concrete way is to observe that

t 7→
∫ t

0

Ŝt−sBu(s)ds

takes values in X because B is admissible and in view of Proposition (2.2.0.4). Then we can
adapt the arguments of [4], in the existence part from the proof of Theorem 2.37, to show the
continuity.

We will refer to a system that satisfies the hypotheses of Theorem (2.4.1.3) to a well-posed
system.

2.4.2 Controllability

We define exact, null and approximate controllability for control systems (3). We fix a finite horizon
time 0 < T <∞.

Definition 2.4.2.1. (Exact controllability)
The system Σ(A,B) is said exactly controllable at time T if for any z0 ∈ X, for any zT ∈ X, there
exists a control u ∈ L2(0, T ;U) such that the solution z solves

z(T ) = zT .
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Definition 2.4.2.2. (Approximate controllability)
The system Σ(A,B) is said approximatly controllable at time T if

∀z0, zT ∈ X, ∀ϵ > 0, ∃u ∈ L2(0, T ;U), ∥zT − z(T )∥X < ϵ.

Definition 2.4.2.3. (Null controllability)
The system Σ(A,B) is said null controllable at time T if

∀z0 ∈ X, ∃u ∈ L2(0, T ;U), z(T ) = 0.

We now state the caracterizations of controllability derived by the control theory by duality, we
refer to [4] for proofs of these criterions.

Theorem 2.4.2.4. 1. The system Σ(A,B) is exactly controllable at time T if and only if the
adjoint system is initial time observable:

∃c > 0, ∀φ ∈ D(A∗), ∥φ∥2X ≤ c
∫ T

0

∥B∗S∗
t φ∥2Udt.

2. The system Σ(A,B) is null controllable at time T if and only if the adjoint system is final
time observable:

∃c > 0, ∀φ ∈ D(A∗), ∥S∗
Tφ∥2X ≤ c

∫ T

0

∥B∗S∗
t φ∥2Udt.

3. The system Σ(A,B) is approximately controllable at time T if and only if the adjoint system
has the unique continuation property:

∀φ ∈ X, B∗S∗
t φ ≡ 0 =⇒ φ = 0.

Observe that for the approximate controllability, the symbol B∗S∗
t φ stands for the extension of

the map {
z 7−→ [t 7→ B∗S∗

· z]
(D(A∗), ∥ · ∥X) −→ L2(0, T ;U)

evaluated at the vector φ.

2.5 Boundary control systems

We now give a precise framework for boundary control systems (6), we follow the lines and notations
of [25, Section 10]. Let U,Z,X be complex Hilbert spaces modelizing respectively the control space,
the domain of A and the state space. We assume that Z ⊂ X continuously and densly.

Definition 2.5.0.1. A boundary control system on (U,Z,X) is a pair (L,G) where

L ∈ Lc(Z;X), G ∈ Lc(Z;U),

are such that

• G is onto,
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• NullG ⊂ X is dense ,

• The unbounded operator A on X defined by

D(A) = NullG, Az = Lz,

is closable densely defined4.

Recall that D(A∗) is a Hilbert space with the graph norm, and that D(A∗) ⊂ X is dense, so
that we are allowed to fixD(A∗)∗ a realisation of the anti-dual ofD(A∗) with respect to the pivotX.

We can apply all the results of Subsection (2.3) and extend A as Â ∈ Lc(X;D(A∗)∗) which is
the generator of the extended semi-group (Ŝt)t≥0 that is strongly continuous on D(A∗)∗.

The following theorem gives a canonical way of transforming a boundary control problem (6) into
a control problem (3) and is the cental result of this paragraph.

Theorem 2.5.0.2. There exists a unique B ∈ Lc(U ;D(A∗)∗) such that

L = Â+BG.

Proof. We begin by the uniqueness, assume that there exists two such operators B, denote them
B1 and B2. Then from

Â+B1G = L = Â+B2G

we deduce
(B1 −B2)G = 0.

Being G surjective we get B1 = B2 hence the uniqueness.

We now turn to the existence, note that G is surjective hence it has a right inverse R ∈ Lc(U ;Z)
(see [2, Theorem 2.12]). We then consider

B := (L− Â)R ∈ Lc(U ;D(A∗)∗)

which is such that
BG = (L− Â)RG = (L− Â)(RG− IdZ) + L− Â. (11)

Now observe that
G(RG− IdZ) = 0,

so that
Range(RG− IdZ) ⊂ NullG = D(A),

and because L = Â in D(A) we obtain

(L− Â)(RG− IdZ) = 0.

Coming back to (11) we obtain
BG = L− Â

as required.

4Again this is a slightly weaker assumption than what is done in [25, Section 10].
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With such a result we formally have{
ż = Lz,
Gz = u,

=⇒ ż = Âz +Bu

which was our original goal. It is straightforward to show that this implication is true at least for
classical solutions, as stated in the following Proposition.

Proposition 2.5.0.3. Let 0 < T < ∞, z0 ∈ Z and u ∈ L2(0, T ;U). Assume that there exists
z ∈ C([0, T ];Z) ∩ C1([0, T ];X) classical solution of (6), then z is a classical solution of{

ż = Âz +Bu,
z(0) = z0,

This shows that
ż = Âz +Bu

is a consistent weak formulation of {
ż = Lz,
Gz = u,

The next lemma is a key tool when doing explicit computations.

Lemma 2.5.0.4. For any D(A∗)∗ realization of the anti-dual of D(A∗) with respect to the pivot
X, there exists a realisation of the dual of D(A∗)∗ such that

[D(A∗)∗]∗ = D(A∗),

and
B∗ ∈ Lc(D(A∗);U)

solves
∀z ∈ Z, ∀φ ∈ D(A∗), (Lz, φ)X = (z,A∗φ)X + (Gz,B∗φ)U . (12)

Proof. We let Φ : D(A∗)∗ → D(A∗)′ be the Hilb-isomorhpsim making D(A∗)∗ a realization of the
anti-dual space of D(A∗) with respect to the pivot X. As in Proposition (2.3.1.2) we consider

Ψ := RD(A∗)∗Φ
−1RD(A∗)

which makes D(A∗) a realization of the anti-dual space of D(A∗)∗. Setting U as a pivot we get
B∗ ∈ Lc(D(A∗);U) and for any z ∈ Z and φ ∈ D(A∗) we get

(Lz, φ)X = ((Â+BG)z, φ)X

= ⟨Âz, φ⟩D(A∗)∗,D(A∗) + ⟨BGz, φ⟩D(A∗)∗,D(A∗)

= (z,A∗φ)X + ⟨BGz, φ⟩D(A∗)∗,D(A∗).

Therefore we are left to show that

⟨BGz, φ⟩D(A∗)∗,D(A∗) = (Gz,B∗φ)U ,
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on the one hand we have

(B∗φ,Gz)U = ⟨B∗φ,Gz⟩U∗,U

= ⟨φ,BGz⟩(D(A∗)∗)∗,D(A∗)∗

= ⟨Ψφ,BGz⟩(D(A∗)∗)′,D(A∗)∗

= ⟨RD(A∗)∗Φ
−1RD(A∗)φ,BGz⟩(D(A∗)∗)′,D(A∗)∗

= (Φ−1RD(A∗)φ,BGz)D(A∗)∗ (⟨RHu, v⟩H′,H = (u, v)H)

= (RD(A∗)φ,ΦBGz)D(A∗)′

= (ΦBGz,RD(A∗)φ)D(A∗)′

= ⟨ΦBGz, φ⟩D(A∗)′,D(A∗) ((φ,RHu)H′ = ⟨φ, u⟩H′,H)

and the other hand we have by definition of the duality pairing ⟨·, ·⟩D(A∗)∗,D(A∗) that

⟨BGz, φ⟩D(A∗)∗,D(A∗) = ⟨ΦBGz, φ⟩D(A∗)′,D(A∗)

which concludes the proof.

Remark 2.5.0.5. Because G is surjective, the formula (12) allows one to completely determine
B∗. It is remarkable that B depends on the choice of D(A∗)∗, but the above formula for B∗ only
depends on L and A∗. It is this version of B∗ that we will use.

2.6 An abstract point of view

We will developp a rather abstract point of view on boundary control systems allowing one to
completely identify them as control systems. As a useful application we will see a proper way to
get rid of the constants in (2).

2.6.1 Conjugation of unbounded operators

For starters we recall a result about the conjugation of unbounded operators.

Lemma 2.6.1.1. Let A be an unbounded operator on a Banach space X and B an unbounded
operator on a Banach space Y . Assume that there exists T : X → Y a Ban∞ isomorphism such
that T (D(A)) = D(B) and B = TAT−1. Then

1. ρ(A) = ρ(B) and for any λ ∈ ρ(A), (λ−B)−1 = T (λ−A)−1T−1.

2. A and B are simultaneously densely defined (resp. closed, resp. generators).

3. T : D(A)→ D(B) is a NS∞ isomorphism.

It seems desirable to be able to take the conjugate of B = TAT−1, which can be done as summed
up in the following result.

Lemma 2.6.1.2. Suppose X and Y are Hilbert and let A and B be densely defined operators
respectively on X and Y . Let also T : X → Y be linear and continuous. Assume that

T (D(A)) = D(B), BT = AT.

We then have the following.
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1. T ∗ : D(B∗)→ D(A∗) is well defined, solves the equation T ∗B∗ = A∗T ∗.

2. T ∗ ∈ Lc(D(B∗);D(A∗)).

3. If T : X → Y was a Ban∞ (resp. Hilb) isomorphism, then so is T ∗ : D(B∗)→ D(A∗).

We finally extend these results to duals with respect to pivot spaces.

Lemma 2.6.1.3. Suppose X and Y are Hilbert and let A and B be closable densely defined operators
respectively on X and Y . Assume that

T (D(A)) = D(B), BT = AT,

for T : X → Y linear and continuous. We then have

1. T has a Lc(D(A∗)∗;D(B∗)∗) extension denoted T̂ .

2. If T : X → Y was a Ban∞ (resp. Hilb) isomorphism, then so is T̂ : D(A∗)∗ → D(B∗)∗.

2.6.2 The category of control systems

We define the category of the control system CS as follows. An object is a quadruplet (U,X,A,B∗)
where U,X are complex Hilbert spaces, A is a densely defined operator onX andB∗ ∈ Lc(D(A∗);U)5.
A morphism (U1, X1, A1, B

∗
1)→ (U2, X2, A2, B

∗
2) is a couple (Φ,Ψ), where

• Φ ∈ Lc(X1;X2) is such that Φ(D(A1)) ⊂ D(A2) and the diagram

D(A1) X1

D(A2) X2

A1

Φ Φ

A2

(13)

commutes in Set.

• Ψ ∈ Lc(U1;U2) is such that the diagram

D(A∗
1) U1

D(A∗
2) U2

B∗
1

ΨΦ∗

B∗
2

commutes in Set.

Note that in the last diagram, Φ∗ : D(A∗
2) → D(A∗

1) is a well defined linear and continuous map
owing to Lemma (2.6.1.2).

The composition of morphisms in CS is the standard composition of functions, it is straightforward
that it is associative, and hence CS is a well defined category. For short and when there is no

5B∗ is a formal notation, we do not suppose that B∗ is the adjoint of an operator B ∈ Lc(U ;D(A∗)∗) because
we do not want the choice of D(A∗)∗ to interfer
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possible ambiguity we will call Σ(A,B) such a control system.

If (U,X,A,B∗) is a control system we say that it is well-posed if A generates a semi-group and B∗ is
admissible in finite time. Observe that the admissibility in finite time requires only the knowledge
of B∗, and not of B, hence this is well defined. We define the full sub-category of CS whose objects
are the well-posed control systems, we call it wpCS.

Lemma 2.6.2.1. 1. The isomorphisms of CS are the morphisms (Φ,Ψ) such that both Φ and Ψ
are bijections. Moreover, if (Φ,Ψ) : (U1, X1, A1, B

∗
1)→ (U2, X2, A2, B

∗
2) is a CS-isomorphism

then

• Φ : X1 → X2 is a Ban∞ isomorphism,

• Φ : D(A1)→ D(A2) is a NS∞ isomorphism,

• Φ∗ : D(A∗
2)→ D(A∗

1) is a Ban∞ isomorphism.

2. Two control systems that are isomorphic in CS are simultaneously well-posed. In other words,
wpCS is stable by the isomorphisms of CS.

3. If (Φ,Ψ) : (U1, X1, A1, B
∗
1)→ (U2, X2, A2, B

∗
2) is a wpCS-isomorphism, then Φ : D(A∗

1)
∗ →

D(A∗
2)

∗ is a Ban∞ isomorphism.

Given a well-posed control system Σ(A,B), as shown in Theorem (2.4.1.3), there exists the
input-output map

ΞΣ(A,B) :

{
L2
loc([0,∞);U)×X −→ C([0,∞);X)

(u, z0) 7−→ z(·)

which is, in theory, the only thing we need to define the controllability of the system. We can now
explicitely say how the morphisms of wpCS act on the input-output map.

Proposition 2.6.2.2. If (Φ,Ψ) : Σ(A1, B1)→ Σ(A2, B2) is a wpCS-morphism, if z is the solution
of {

ż = A1z +B1u,
z(0) = z0,

then ξ := Φz is the solution of {
ξ̇ = A2ξ +B2Ψu,
ξ(0) = Φz0.

In other words,
ΞΣ(A2,B2)(Ψu,Φz

0) = ΦΞΣ(A1,B1)(u, z
0).

From the this formula we may inspect how the morphisms of CS transport the controllability.

Proposition 2.6.2.3. Assume that (Φ,Ψ) : Σ(A1, B1)→ Σ(A2, B2) is a wpCS-morphism and fix
0 < T <∞.

1. If Φ : X1 → X2 is surjective and Σ(A1, B1) is exactly controllable in time T , then so is
Σ(A2, B2).

2. If Φ : X1 → X2 is a Ban∞-isomorphism and Σ(A1, B1) is approximately (resp. null) con-
trollable in time T , then so is Σ(A2, B2).

In particular we obtain that the controllability at a fixed time T is unchanged byCS-isomorphism.
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2.6.3 The category of boundary control systems

Definition 2.6.3.1. The category of boundary control systems BCS has objects (U,Z,X,L,G)
where

• U,Z,X are complex Hilbert spaces with Z ⊂ X continuously and as sets,

• L ∈ Lc(Z;X) and G ∈ Lc(Z;U).

We will denote such an object Σ(L,G) when there is no possible confusion. A morphism (U1, Z1, X1, L1, G1)→
(U2, Z2, X2, L2, G2) is a couple (Φ,Ψ) where

• Φ ∈ Lc(X1;X2) is such that Φ(Z1) ⊂ Z2

• Ψ ∈ Lc(U1;U2),

• The diagrams

Z1 X1

Z2 X2

L1

Φ Φ

L2

Z1 U1

Z2 X2

G1

Φ Ψ

G2

commute in Set.

The composition of morphisms is the natural one.

If Σ(L,G) is a boundary control system we can define the unbounded operator on X

D(A) = NullG, Az = Lz.

At this point it is merely an unbounded operator. We say that a boundary control system Σ(L,G) is
admissible when it satisfies the hypotheses of Theorem (2.5.0.2), namely when A is closable densely
defined and G is surjective. We consider the full sub-category of BCS made of these admissible
boundary control systems, we call it admBCS.

As for CS it is straightforward to check that the isomorphisms of BCS are the morphisms (Φ,Ψ)
such that both Φ : X1 → X2 and Ψ : U1 → U2 are bijective. It is then easy to check that two
isomorphic boundary control systems are simultaneously admissible.

We now consider the functor

F :

 admBCS −→ CS
(U,Z,X,L,G) 7−→ (U,X,A,B∗)

(Φ,Ψ) 7−→ (Φ,Ψ)

where B∗ is given by Theorem (2.5.0.2).

Theorem 2.6.3.2. The functor F is faithfull. Moreover if F (Σ(L,G)) is a well-posed control
system, for any u ∈ L2(0, T ;U) and z0 ∈ X, if there exists z(·) ∈ C1([0, T ];X) ∩ C([0, T ];Z)
classical solution of (6), we have

∀0 ≤ t ≤ T, z(t) = ΞF (Σ(L,G))(u, z0)(t).

24



This Theorem motivates the understanding of boundary control systems as control systems,
and we will always assimilate the mathematical object Σ(L,G) with Σ(A,B∗). In particular we
won’t define again the notions of well-posedness, the input-output map, or the controllability of a
boundary control systems: those are already defined in the super-category CS.

Remark 2.6.3.3. It is possible to make the definition of F independent of the axiom of the choice,
defining it on objects by its graph

{((U,Z,X,L,G), (U,X,A,Γ)) : ∃D(A∗)∗, ∃B ∈ Lc(U ;D(A∗)∗), Γ = B∗, L = Â+BG}.

Remark 2.6.3.4. The question of the functor F being full is not clear but interesting. We leave it
as an open question.

At this point we have two notions of boundary control system, the one from the corresponding
Subsection of this document (taken from [25]); and the one of this Subsection. In order not to make
any confusion we will always refer to a boundary control system as in this Subsection as a BCS
object.
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3 Well posedness of the system

In this Section we adress the well-posedness of (2).

3.1 Choice of the functionnal setting

We have to choose the objects U,Z,X,L,G so that the hypotheses of Theorem (2.4.1.3) are met
with the induced operators A,B∗. We will choose the most natural functionnal setting for (2). Let
us first introduce some notations: for any −∞ < a < b < +∞ we let

H1
(a)(a, b) = {u ∈ H

1(a, b) : u(a) = 0},

and we observe that for any u ∈ H1
(a)

|u(x)| = |u(x)− u(a)| =
∣∣∣∣∫ a

x

u′(t)dt

∣∣∣∣ ≤ c∫ b

a

|u′(t)|2dt.

So on the set H1
(a)(a, b) the H

1 norm is equivalent to

∥u∥2H1
(a)

=

∫ b

a

|u′(t)|2dt.

We then endow H1
(a) with the associated Hilbert space structure. We will also denote

H2
NH(a, b) = {u ∈ H2(a, b) : ux(a) = ux(b) = 0}, H2

(a) = {u ∈ H
2(a, b) : ux(a) = 0}.

We let
XD1,D2 = H1

(−D1)
(−D1, 0)× L2(−D1, 0)× L2(0, D2)

be the state space, and

ZD1,D2 =
{
(u, v, p) ∈ (H2 ∩H1

(−D1)
)(−D1, 0)×H1

(−D1)
(−D1, 0)×H2(0, D2) : ux(0) = p(0), px(0) = 0

}
,

endowed with the subspace Hilbert structure, on which we define the operator

L

 u
v
p

 =

 v
c2uxx
dpxx

 .

Let also

G

 u
v
p

 = px(D2), U = C.

At this point, the modelization data (C, ZD1,D2
, XD1,D2

, L,G) makes a boundary control system (a
BCS object) on (U,ZD1,D2

, XD1,D2
), that we call Σ(c, d,D1, D2). We will first reduce the study to

the case c = d = 1.

Lemma 3.1.0.1. Fix the constants c, d,D1, D2 > 0, then Σ(c, d,D1, D2) is equivalent to Σ
(
1, 1, cD1,

√
dD2

)
in BCS.
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Proof. Consider the maps

Φ :

{
(u, v, p) 7−→ (u(·/c), v(·/c), p(·/

√
d))

ZD1,D2
−→ ZcD1,

√
dD2

, Ψ =
√
d IdC .

It is clear that (Φ,Ψ) meets the 2 first points of the definition of a BCS morphism with

X2 = XcD1,
√
dD2

,

and that Φ and Ψ are both Ban∞-isomorphisms. Therefore, Σ(c, d,D1, D2) is equivalent to the
object of BCS

Σ := (C, ZcD1,
√
dD2

, XcD1,
√
dD2

,ΦLΦ−1,
√
dGΦ−1).

We observe that

ΦLΦ−1 =

 0 1 0
d2

dx2 0 0

0 0 d2

dx2

 , ΨGΦ−1(u, v, p) = px(0)

and therefore
Σ(c, d,D1, D2) ∼ Σ = Σ

(
1, 1, cD1,

√
dD2

)
.

In view of this Lemma, we consider the system

utt(t, x) = uxx(t, x), −D1 < x < 0,
ux(t, 0) = p(t, 0),
u(t,−D1) = 0,
pt(t, x) = pxx(t, x), 0 < x < D2,
px(t, 0) = 0,
px(t,D2) = q(t),

(14)

with arbitrary D1, D2 > 0. Consider the state space

X = H1
(−D1)

(−D1, 0)× L2(−D1, 0)× L2(0, D2),

together with

Z =
{
(u, v, p) ∈ (H2 ∩H1

(−D1)
)(−D1, 0)×H1

(−D1)
(−D1, 0)×H2(0, D2) : ux(0) = p(0), px(0) = 0

}
.

The control space is C and the boundary control system is

L

 u
v
p

 =

 v
uxx
pxx

 , G

 u
v
p

 = px(D2).

We now wish to make the BCS object Σ(L,G) admissible and such that FΣ(L,G) is well-posed
(an object of wpCS). The operator A is defined by

D(A) = NullG = {(u, v, p) ∈ H2∩H1
(−D1)

×H1
(−D1)

×H2
NH : ux(0) = p(0)}, A

 u
v
p

 =

 v
uxx
pxx

 .

In view of Theorem (2.4.1.3), the system (14) is well-posed as soon as
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1. G is surjective,

2. A is a generator on X,

3. B is an admissible contol operator.

The rest of this Section is devoted to the obtention of these facts.

Proposition 3.1.0.2. The map G is surjective and the set NullG ⊂ X is dense.

Proof. Since G is linear and its codomain has dimension 1, it is enough to check that G ̸= 0. To this
aim, we introduce p ∈ C∞[0, D2] such that p(0) = px(0) = 0 and px(D2) = 1. Then (0, 0, p) ∈ Z
and G(u, v, p) = 1.

To check density fix (u, v, p) ∈ X and consider any function ϕ such that ϕ ∈ C∞
c (−D1, 0],

ϕ(0) = 1,
ϕx(0) = 0.

Then consider approximations

C∞
c (−D1, 0) ∋ vj

L2(−D1,0)−−−−−−−→
j→∞

v, C∞
c (0, D2) ∋ pj

L2(0,D2)−−−−−−→
j→∞

p

and observe that
u− u(0)ϕ ∈ H1

0 (−D1, 0).

So there is a sequence (uj) of C
∞
c (−D1, 0) that goes to u− u(0)ϕ in the H1 norm and moreover it

is easy to check  uj + u(0)ϕ
vj
pj

 ∈ NullG

so that NullG is dense in X.

3.2 Spectral analysis

We will investigate the spectrum of A and show that the eigenvectors of A (properly rescaled) form
a Riesz basis of X.

3.2.1 Spectrum of A

Lemma 3.2.1.1. (Spectrum of A)
The operator A has point spectrum

σp(A) = {±λhm : m ∈ N} ∪ {λpn : n ∈ N}, λhm := i

(
m+

1

2

)
π

D1
, λpn = −

(
nπ

D2

)2

,
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and all these eigenvalues are simple.

For any m ∈ N, Null(λhm −A) is generated by V h,+m = (uhm, λ
h
mu

h
m, 0), where

uhm(x) =

√
2

D1
cos

((
m+

1

2

)
π

D1
x

)
.

For any m ∈ N, Null(−λhm −A) is generated by V h,−m = (uhm,−λhmuhm, 0).

For any n ∈ N, Null(λpn −A) is generated by V pn = (upn, λ
p
nu

p
n, p

p
n), where

ppn(x) =

{ √
2
D2

cos
(
nπ
D2
x
)
, if n ̸= 0,

1√
D2
, if n = 0,

(15)

and upn is the solution of  uxx = (λpn)
2u,

u(−D1) = 0,
ux(0) = ppn(0).

(16)

The suprescript “p” stands for parabolic and “h” stands for hyperbolic. We will often refer to
these two branches of eigenvalues, and the corresponding eigenvectors, with those adjectives.

Proof. We begin by showing that for all n ∈ N, (16) has exactly one solution. For n ∈ N∗ observe
that the equation

ξ2 = (λpn)
2

has two distinct real solutions ξ = ±λpn, because λpn ̸= 0. Therefore, (16) has a solution if and only
if the following system has a solution in (α, β) ∈ C2:{

αe−D1λ
p
n + βeD1λ

p
n = 0,

αλpn − βλpn = ppn(0),
(17)

where recal that ppn is defined by (15). More precisely, the solutions u of (16) are in bijection with
the solutions (α, β) of (17). Therefore, to show that (16) has a unique solution is equivalent to
showing that the system (17) has a unique solution. The determinant of the latter is∣∣∣∣ e−D1λ

p
n eD1λ

p
n

λpn −λpn

∣∣∣∣ = −λpn(e−D1λ
p
n + eD1λ

p
n)

which is non zero, hence (17) has a unique solution. In case n = 0 we have λp0 = 0 and (16) becomes
uxx = 0,

u(−D1) = 0,
ux(0) = 1√

D2
,

which has the unique solution

u(x) =
1√
D2

(x+D1).
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Now we reason by analysis and synthesis to show the claimed point spectrum and eigenspaces.
Assume first that there exists λ ∈ σp(A), let V = (u, v, p) be an associated eigenvector. We will
distinguish two cases.

If p ̸= 0, there exists a non-zero solution of pxx = λp,
px(D2) = 0,
px(0) = 0,

hence there exists n ∈ N such that

λ = −
(
nπ

D2

)2

= λpn,

and, up to a rescaling of V ,

p(x) =

{ √
2
D2

cos
(
nπ
D2
x
)
, if n ̸= 0,

1√
D2
, if n = 0,

= ppn(x).

Therefore, u solves (16) and v = λu.

If p = 0 then u ̸= 0 (otherwise V = 0) and u solves uxx = λ2u
u(−D1) = 0
ux(0) = 0

hence there exists m ∈ N such that

λ2 = −
((

m+
1

2

)
π

D1

)2

and

λ = ±i
(
m+

1

2

)
π

D1
= ±λhm.

In any cases λ = λhm or λ = −λhm we have (up to a rescaling of V ) u = uhm and v = ±λhmuhm, as
required.

Up to now we have shown that

σp(A) ⊂ {±λhm : m ∈ N} ∪ {λpn : n ∈ N}

and that for any
λ ∈ σp(A) ∩

(
{±λhm : m ∈ N} ∪ {λpn : n ∈ N}

)
,
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the claimed vector line is well defined (because (16) then has a unique solution) and the corre-
sponding eigenspace is contained in the claimed vector line.

To conclude the proof we are left to show that for any

λ ∈ {±λhm : m ∈ N} ∪ {λpn : n ∈ N},

the claimed generator (i.e. V h,±m or V pn depending on λ) is indeed an eigenvector (associated to λ).
At this point this is trivial.

3.2.2 Bases in Hilbert spaces

Prior to show that the eigenvectors of A, properly rescaled, make a Riesz basis of X we recall some
general facts concerning the theory of bases in Hilbert spaces. In what follows X is an arbitrary
Hilbert space.

Definition 3.2.2.1. A Riesz basis of X is a sequence (en)
∞
n=0 of X which is the image of a Hilbert

basis of X by a bounded invertible linear map X → X.

Definition 3.2.2.2. A sequence (en)
∞
n=0 of X is said ω-independent if for any complex sequence

(cn)
∞
n=0, if

0 <

∞∑
n=0

|cn|2∥en∥2X <∞, (18)

then
∑
cnen cannot converge to 0.

Remark 3.2.2.3. In case the sequence (en)
∞
n=0 is almost normalized, i.e.

0 < inf
n
∥en∥X ≤ sup

n
∥en∥X <∞,

the condition (18) is equivalent to

0 <

∞∑
n=0

|cn|2 <∞.

Thus, ω-independence boils down to: for any (cn)
∞
n=0 ∈ ℓ2(N), if the series

∑
cnen converges to 0,

then (cn) is the null series.

Definition 3.2.2.4. Two sequences (en)
∞
n=0 and (fn)

∞
n=0 of X are said quadratically close if

∞∑
n=0

∥en − fn∥2X <∞.

A usefull result to prove that a given sequence is a Riesz basis is the following.

Theorem 3.2.2.5. ([10, Theorem 2.3 of Chapter 6])
If (en)

∞
n=0 is a sequence of X that is ω-independent and quadratically close to a Riesz basis of X,

then (en)
∞
n=0 is itself a Riesz basis of X.

31



Up to this point a basis of X is a sequence, yet the spectrum of A is naturally indexed by
{1, 2, 3} × N as it has three (countable infinite) branches. This motivates the adaptation of the
above tools to families of vectors. Until the end of this Subsubsection we fix I a countable infinite
set.

Definition 3.2.2.6. A family (ei)i∈I is a Riesz basis of X if there exists some φ : N→ I bijection
which makes (eφ(n))

∞
n=0 a Riesz basis of X.

It is clear that if (ei)i∈I is a Riesz basis of X, then for any φ : N → I bijection the sequence
(eφ(n))

∞
n=0 is a Riesz basis of X.

We can then adapt all the above theory for families of vectors.

Definition 3.2.2.7. We say that (ei)i∈I is ω-independent if for any family of scalars (ci)i∈I , for
any bijection φ : N→ I, if

0 <

∞∑
n=0

|cφ(n)|2∥eφ(n)∥2X <∞

then
∑
cφ(n)eφ(n) cannot converge to 0.

Definition 3.2.2.8. Two families (ei)i∈I and (fi)i∈I of X are quadratically close if∑
i∈I
∥ei − fi∥2X <∞.

Corollary 3.2.2.9. The family (ei)i∈I is a Riesz basis of X if and only if it is ω-independent and
quadratically close to a Riesz basis of X.

3.2.3 Riesz basis property for the eigenvectors of A

We look for equivalents of the norm of these eigenvectors, we first deal with the parabolic component:

∥V pn ∥2X = ∥upn∥2H1
(−D1)

+ ∥λpnupn∥2L2 + ∥ppn∥2L2 =

∥∥∥∥ ddxupn
∥∥∥∥2
L2

+ |λpn|2∥upn∥2L2 + 1

where an easy computation brings a closed formula for upn for n ≥ 1 (recall that this is the solution
of (16))

upn(x) =
1

λpn

√
2

D2

(
eλ

p
nx

1 + e−2D1λ
p
n
− e−λ

p
nx

e2D1λ
p
n + 1

)
.

Now write

αn(x) =
eλ

p
nx

1 + e−2D1λ
p
n
, βn(x) =

e−λ
p
nx

e2D1λ
p
n + 1

and compute

∥αn∥2L2 =
1

|1 + e−2D1λ
p
n |2

1− e−2D1λ
p
n

2λpn
.

Remembering that λpn → −∞ we get
e−2D1λ

p
n →∞
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hence

∥αn∥2L2 ∼
1

2|λpn|e−2D1λ
p
n

which vanishes. Similarly we obtain

∥βn∥2L2 ∼
1

2|λpn|
which also vanishes. Note that

∥αn∥2L2 = o(∥βn∥2L2)

hence by Cauchy-Schwartz

∥αn − βn∥2L2 = ∥αn∥2L2 − 2ℜ(αn, βn)L2 + ∥βn∥2L2 ∼ ∥βn∥2L2 ∼
1

2|λpn|
.

Then

∥upn∥2L2 =
1

|λpn|2
2

D2
∥αn − βn∥2L2 ∼

1

D2

1

|λpn|3
(19)

which vanishes. The remaining computations for the parabolic component are now easy:∥∥∥∥ ddxupn
∥∥∥∥2
L2

=

∣∣∣∣ 1λpn
√

2

D2

∣∣∣∣2 ∥∥∥∥ λpne
λp
nx

1 + e−2D1λ
p
n
+

λpne
−λp

nx

e2D1λ
p
n + 1

∥∥∥∥2
L2

=
2

D2
∥αn + βn∥2L2

∼ 1

D2

1

|λpn|
(20)

which also vanishes, hence
∥V pn ∥X ∼ 1. (21)

Now for the hyperbolic eigenvectors we readily obtain

∥V h,±m ∥2X = 2|λhm|2. (22)

Then define

∀n ∈ N, V1,n = V pn , V2,n =
1

λhn
V h,+n , V3,n =

1

λhn
V h,−n

and consider the candidate family to be a Riesz basis (Vi)i∈{1,2,3}×N. Observe that in view of the

asymptotics (21) and (22), and since the vectors V h,±n , V pn never vanish, the family (Vi)i∈{1,2,3}×N
is almost normalized.

Theorem 3.2.3.1. The family (Vi)i∈{1,2,3}×N is a Riesz basis of X.

Proof. Step 1: We show that (Vi)i∈{1,2,3}×N is ω-independent.

We fix ϕ : N → {1, 2, 3} × N bijective, we assume that for some sequence (αn)
∞
n=0 ∈ ℓ2(N) there

holds
N∑
n=0

αnVϕ(n)
X−−−−→

N→∞
0,
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and we show that (αn)
∞
n=0 is constant to 0. Note that this is enough in view of Remark (3.2.2.3).

We explicitly write down for fixed N ∈ N,

N∑
n=0

αnVϕ(n) =

N∑
n=0

ϕ(n)1=1

αn

 upϕ(n)2
λpϕ(n)2u

p
ϕ(n)2

ppϕ(n)2

+

N∑
n=0

ϕ(n)1=2

αn

 uhϕ(n)2/λ
h
ϕ(n)2

uhϕ(n)2
0

+

N∑
n=0

ϕ(n)1=3

αn

 uhϕ(n)2/λ
h
ϕ(n)2

−uhϕ(n)2
0

 .

(23)
Take the third coordinate of the above sequence and send N to +∞ to obtain

N∑
n=0

ϕ(n)1=1

αnp
p
ϕ(n)2

L2(0,D2)−−−−−−→
N→∞

0.

Since (ppn)
∞
n=0 is a Hilbert basis of L2(0, D2), we obtain

∀n ∈ N, ϕ(n)1 = 1 =⇒ αn = 0,

which means that the parabolic component of (αn)
∞
n=0 vanishes. Therefore (23) becomes

∀N ∈ N,
N∑
n=0

αnVϕ(n) =

N∑
n=0

ϕ(n)1=2

αn

 uhϕ(n)2/λ
h
ϕ(n)2

uhϕ(n)2
0

+

N∑
n=0

ϕ(n)1=3

αn

 uhϕ(n)2/λ
h
ϕ(n)2

−uhϕ(n)2
0

 .

Further for any N ∈ N, the two first coordinate of the right hand side of the above equation are
given by

N∑
n=0

ϕ(n)1=2

αn

(
uhϕ(n)2
λhϕ(n)2

, uhϕ(n)2

)
+

N∑
n=0

ϕ(n)1=3

αn

(
uhϕ(n)2
λhϕ(n)2

,−uhϕ(n)2

)
(24)

which goes to (0, 0) in H1
(−D1)

× L2. Define the bijective sequences (pn)
∞
n=0 and (qn)

∞
n=0 of N by

∀n ∈ N, ϕ(pn) = (2, n), ϕ(qn) = (3, n).

Fix n ∈ N, take the L2-scalar product of the first coordinate of (24) against uhn and let N →∞ to
discover

αpn
λhn

+
αqn
λhn

= 0,

because (uhn)
∞
n=0 is a Hilbert basis of L2(−D1, 0). Doing the same with the second coordinate we

obtain that
αpn − αqn = 0,

hence the couple (αpn , αqn) solves { αpn

λh
n

+
αqn

λh
n

= 0,

αpn − αqn = 0,

whence αpn = αqn = 0. This means that the the hyperbolic components of (αn)
∞
n=0 vanishes, hence

(αn)
∞
n=0 is null, and (Vi)i∈{1,2,3}×N is ω-independent.
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Step 2: We show that (Vi)i∈{1,2,3}×N is quadratically close to the family{
(uhm, λ

h
m, 0) : m ∈ N

}
∪
{
(uhm,−λhm, 0) : m ∈ N

}
∪ {(0, 0, ppn) : n ∈ N}

where the indexation by {1, 2, 3} × N is obvious.

To this aim, note that the two hyperbolic branches are equal hence they are quadratically close.
Moreover the parabolic branches solve

∞∑
n=0

∥V pn − (0, 0, ppn)∥2X =

∞∑
n=0

∥upn∥2H1
(−D1)

+ ∥λpnupn∥2L2

where, in view of the asymptotics (19) and (20),

∥upn∥2H1
(−D1)

∼ 1

D2

1

|λpn|
, ∥λpnupn∥2L2 ∼

1

D2

1

|λpn|
,

which are summable, hence the quadratic closedness.

Step 3: We show that the family{(
uhm
λhm

, uhm, 0

)
: m ∈ N

}
∪
{(

uhm
λhm

,−uhm, 0
)

: m ∈ N
}
∪ {(0, 0, ppn) : n ∈ N}

is a Riesz basis of X.

We first reduce the problem as follows. Observe that in arbitrary Hilbert spaces H1, H2, if (vn)
∞
n=0

(resp. (wn)
∞
n=0) is a Riesz basis of H1 (resp. of H2), then the family

{(vn, 0) : n ∈ N} ∪ {(0, wn) : n ∈ N}

is a Riesz basis of H1 ×H2. Thus, to show the claim it is enough to show that{(
uhm
λhm

, uhm

)
: m ∈ N

}
∪
{(

uhm
λhm

,−uhm
)

: m ∈ N
}

is a Riesz basis of H1
(−D1)

×L2, and that (ppn)
∞
n=0 is a Riesz basis of L2. The second point is trivial

as (ppn)
∞
n=0 is a Hilbert basis of L2. Now for the first point, we will use a characterization of Riesz

bases, namely we will show that the family is total and that there exists C1, C2 > 0 constants such
that for any N ∈ N and α±

0 , ..., α
±
N ∈ C, there holds the frame type inequalities

C1

N∑
m=0

(∣∣α+
m

∣∣2 + ∣∣α+
m

∣∣2) ≤ ∥∥∥∥∥
N∑
m=0

{
α+
m

(
uhm
λhm

, uhm

)
+ α−

m

(
uhm
λhm

,−uhm
)}∥∥∥∥∥

2

H1
(−D1)

×L2

(25)

≤ C2

N∑
m=0

(∣∣α+
m

∣∣2 + ∣∣α+
m

∣∣2) . (26)
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This characterization is classical and we refer to [3, Theorem 3.6.6] for a proof. Let us first show
that the family is total, let (u, v) be in its orthogonal, we then fix (αm)∞m=0, (βm)∞m=0 the two square
summable sequences such that

u =

∞∑
m=0

αmu
h
m, v =

∞∑
m=0

βmu
h
m,

where the two series converge simply in L2, which is possible as (uhm)∞m=0 is a Hilbert basis of
L2. Actually, because u ∈ H1

(−D1)
we even have better: the series

∑
αmu

h
m converges in H1

(−D1)
.

Therefore, for any m ∈ N we obtain

0 =

(
(u, v),

(
uhm
λhm

, uhm

))
H1

(−D1)
×L2

=

(
ux,

d

dx

uhm
λhm

)
L2

+ (v, uhm)L2

=

∞∑
n=0

αn
λhm

(
d

dx
uhn,

d

dx
uhm

)
L2

+ βm

= −λhmαm + βm

where we have used that the sequence
(
d
dxu

h
n

)∞
n=0

is orthogonal in L2 with∥∥∥∥ ddxuhn
∥∥∥∥2
L2

=

[(
n+

1

2

)
π

D1

]2
= −(λhn)2.

Similarly, using that (u, v) is also orthogonal to
(
uh
m

λh
m
,−uhm

)
we obtain

−λhmαm − βm = 0,

hence
αm = βm = 0,

whence the totality of the family, since m ∈ N was arbitrary.
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It remains only to show the frame-type inequalities (25)-(26), to this aim we compute∥∥∥∥∥
N∑
m=0

{
α+
m

(
uhm
λhm

, uhm

)
+ α−

m

(
uhm
λhm

,−uhm
)}∥∥∥∥2

H1
(−D1)

×L2

=

=

∥∥∥∥∥
(

N∑
m=0

(
α+
m

λm
+
α−
m

λm

)
uhm,

N∑
m=0

(α+
m − α−

m)uhm

)∥∥∥∥∥
2

H1
(−D1)

×L2

=

∥∥∥∥∥
N∑
m=0

(
α+
m

λm
+
α−
m

λm

)
d

dx
uhm

∥∥∥∥∥
2

L2

+

∥∥∥∥∥
N∑
m=0

(α+
m − α−

m)uhm

∥∥∥∥∥
2

L2

=

N∑
m=0

∣∣∣∣α+
m

λm
+
α−
m

λm

∣∣∣∣2 |λhm|2 + N∑
m=0

|α+
m − α−

m|2

= 2
N∑
m=0

(|α+
m|2 + |α−

m|2),

which shows that (25)-(26) hold with C1 = C2 = 2.

3.3 Semi-group generation

In this Subsection we show that A generates a C0 semi-group on X. We note that with our choices
for (X,D(A), A) it is not trivial that A is a generator. Indeed we do not know if the operator is
dissipative in view of

∀

 u
v
p

 ∈ D(A),

A
 u

v
p

 ,

 u
v
p


X

= v(0)p(0)−
∫ D2

0

p2x,

where the right hand side seems not bounded with respect to ∥ · ∥X .

In [26] the authors study a boundary control system that is very close to (14), and overcome
this lack of dissipativity by differentiating the boundary conditions, implementing the result in the
domain of the operator, and augmenting the order of the Sobolev spaces making X. Because of the
boundary condition

px(t, 0) = 0,

if one wants to adapt this method to get dissipativity for A, one also needs to implement the
condition

uxx(0) = 0,

to get (ux, p) ∈ H2(−D1, D2) (according to the notations of the authors). We will show that A is a
generator without adding boundary conditions, using the Riesz spectral structure of A. We call a
Riesz spectral operator on X a closed densely defined operator whose eigenvalues are simple, with
finitely many accumulation point, and for which there exists a Riesz basis ofX made of eigenvectors.
We refer to [5, Section 3.2] for a proof of the following Theorem.
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Theorem 3.3.0.1. Let A be a Riesz spectral operator on X. Then A is a generator if and only if

sup
λ∈σp(A)

ℜλ <∞.

As a direct consequence of the spectral study of A we obtain the following.

Corollary 3.3.0.2. The operator A is a generator.

3.4 Admissibility of B

We begin by deriving a closed formula for B∗ ∈ Lc(D(A∗);C). To this aim we will first compute
A∗.

Lemma 3.4.0.1. The operator A∗ is given by

D(A∗) = {(f, g, h) ∈ H2
(0) ∩H

1
(−D1)

×H1
(−D1)

×H2
(D2)

: g(0) + hx(0) = 0},

and
A∗(f, g, h) = (−g,−fxx, hxx).

Proof. We first show that

D(A∗) ⊂ {(f, g, h) ∈ H2
(0) ∩H

1
(−D1)

×H1
(−D1)

×H2
(D2)

: g(0) + hx(0) = 0}.

Let (f, g, h) ∈ D(A∗), we a priori have

(f, g, h) ∈ X = H1
(−D1)

× L2 × L2

and there exists a constant c > 0 such that

∀(u, v, p) ∈ D(A),

∣∣∣∣∣
∫ 0

−D1

vxfx +

∫ 0

−D1

uxxg +

∫ D2

0

pxxh

∣∣∣∣∣ = |(A(u, v, p), (f, g, h))X | ≤ c (∥u∥H1 + ∥v∥L2 + ∥p∥L2) .

Let p ∈ C∞
c (0, D2), we have (0, 0, p) ∈ D(A) hence the above estimation becomes∣∣∣∣∣

∫ D2

0

pxxh

∣∣∣∣∣ ≤ c∥p∥L2 .

Therefore we obtain p ∈ H2 by elliptic regularity (see [15, Lemme A.4]). Furthermore, for any
p ∈ H2(0, D2) such that p(0) = px(0) = px(D2) = 0 we obtain (0, 0, p) ∈ D(A) so that by
integration by part

c∥p∥L2 ≥

∣∣∣∣∣
∫ D2

0

pxxh

∣∣∣∣∣ =
∣∣∣∣∣
∫ D2

0

hxxp− hx(D2)p(D2)

∣∣∣∣∣ .
It is then classical to infer that hx(D2) = 0.

Next for arbitrary v ∈ C∞
c (−D1, 0), (0, v, 0) ∈ D(A) hence

c∥v∥L2 ≥
∣∣∣∣∫

−D1

vxfx

∣∣∣∣ = ∣∣∣∣−∫ 0

−D1

vxxf

∣∣∣∣ .
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Thus fxx ∈ L2 and f ∈ H2. Now for any v ∈ H1
(−D1)

we get (0, v, 0) ∈ D(A) and

c∥v∥L2 ≥
∣∣∣∣∫

−D1

vxfx

∣∣∣∣ = ∣∣∣∣−∫ 0

−D1

vxxf + fx(0)v(0)

∣∣∣∣ .
Again it is straightforward to check that necessarily fx(0) = 0.

We now have to be more cautious for g, for any u ∈ H2 with u(−D1) = ux(0) = 0 we have
(u, 0, 0) ∈ D(A) hence ∣∣∣∣∫ 0

−D1

uxxg

∣∣∣∣ ≤ c∥u∥H1
(−D1)

= c∥ux∥L2 . (27)

Observe that the map

T :

{
α 7−→

[
x 7→

∫ x
−D1

α(t)dt
]

H1
(0) −→ H2

(0) ∩H
1
(−D1)

is well defined, hence for any α ∈ H1
(0) we may apply (27) with u = Tα to discover∣∣∣∣∫ 0

−D1

αxg

∣∣∣∣ ≤ c∥α∥L2 .

This shows that g ∈ H1 and using integration by part, we obtain for any α ∈ H1
(0) and u = Tα

that (u, 0, 0) ∈ D(A) hence by the above estimate

c∥α∥L2 ≥
∣∣∣∣∫ 0

−D1

αxg

∣∣∣∣ = ∣∣∣∣−g(−D1)α(−D1)−
∫ 0

−D1

gxα

∣∣∣∣ .
We then deduce that g(−D1) = 0 as required.

We now obtain that g(0) + hx(0) = 0, we start again from the definition of (f, g, h) ∈ D(A∗)
to obtain, using integration by parts, for any (u, v, p) ∈ D(A),

c (∥u∥H1 + ∥v∥L2 + ∥p∥L2) ≥ |(A(u, v, p), (f, g, h))X |

=

∣∣∣∣∣
∫ 0

−D1

vxfx +

∫ 0

−D1

uxxg +

∫ D2

0

pxxh

∣∣∣∣∣
=

∣∣∣∣∣−
∫ 0

−D1

fxxv + g(0)ux(0)−
∫ 0

−D1

gxux + hx(0)p(0) +

∫ D2

0

hxxp

∣∣∣∣∣
=

∣∣∣∣∣−
∫ 0

−D1

fxxv −
∫ 0

−D1

gxux +

∫ D2

0

hxxp+ (g(0) + hx(0))p(0)

∣∣∣∣∣ (28)

which shows that indeed g(0) + hx(0) = 0.

Now for any (f, g, h) ∈ D(A∗) we have

(f, g, h) ∈ {(f, g, h) ∈ H2
(0) ∩H

1
(−D1)

×H1
(−D1)

×H2
(D2)

: g(0) + hx(0) = 0}.
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So for any (u, v, p) ∈ D(A), using (28) which also holds without absolute values, we obtain

(A(u, v, p), (f, g, h))X = ((−g,−fxx, hxx), (u, v, p))X ,

so that
∀(f, g, h) ∈ D(A∗), A∗(f, g, h) = (−g,−fxx, hxx).

Conversely, if

(f, g, h) ∈ {(f, g, h) ∈ H2
(0) ∩H

1
(−D1)

×H1
(−D1)

×H2
(D2)

: g(0) + hx(0) = 0},

the equality (28) brings (f, g, h) ∈ D(A∗), which proves the formula for A∗.

Proposition 3.4.0.2. We have, for any (f, g, h) ∈ D(A∗),

B∗

 f
g
h

 = h(D2).

Proof. In view of (12), we haveG
 f

g
h

 , B∗

 f
g
h


C

=

L
 u

v
p

 ,

 f
g
h


X

−

 u
v
p

 , A∗

 f
g
h


X

= h(D2)px(D2)

=

G
 f

g
h

 , h(D2)


C

for all  u
v
p

 ∈ Z,
 f

g
h

 ∈ D(A∗).

We conclude by surjectivity of G.

Now the admissibility of B can be stated as follows: there exists c > 0 such that for all
φ0 = (f0, g0, h0) ∈ D(A∗), the classical solution φ = S∗

t φ0 = (f, g, h) of the adjoint system

ft = −g,
gt = −fxx,
ht = hxx,

f(t,−D1) = 0,
fx(t, 0) = 0,
hx(t,D2) = 0,

g(t, 0) + hx(t, 0) = 0,
f(0, x) = f0(x),
g(0, x) = g0(x),
h(0, x) = h0(x),

(29)

solves ∫ T

0

|h(t,D2)|2 ≤ c
(
∥f0∥2H1

(−D1)
+ ∥g0∥2L2 + ∥h0∥2L2

)
.
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Proposition 3.4.0.3. The operator B is admissible for A.

Proof. Let (f, g, h) be a classical solution of the above system, then f is a classical solution of the
hyperbolic subsystem 

ftt = fxx,
f(t,−D1) = 0,
fx(t, 0) = 0,
f(0, x) = f0(x),
ft(0, x) = g0(x).

(30)

From the hidden regularity for this wave problem (see [4, Theorem 2.53] or Theorem (A.0.0.1) from
the Appendix)

∥f(·, 0)∥H1(0,T ) ≲ ∥f0∥H1 + ∥g0∥L2 .

Moreover, denoting q(t) = −ft(t, 0) ∈ C[0, T ] we have h a classical solution of
ht = hxx,

hx(t,D2) = 0,
hx(t, 0) = q(t),
h(0, x) = h0(x).

(31)

Thus it is enough to show that, for any q ∈ L2(0, T ) and h0 ∈ H2
(0), any strong solution h of (31)

is such that ∫ T

0

|h(t,D2)|2 ≲ ∥q(t)∥2L2(0,T ) + ∥h0∥
2
L2(0,D2)

. (32)

We put (31) in the realm of Theorem (2.4.1.3) introducing

X = L2(0, D2), L =
d2

dx2
, Z = {h ∈ H2 : hx(0) = 0}, Gh = hx(0), U = C.

It is elementary to check that such objects satisfy the hypotheses of the Theorem (2.4.1.3), with
semi group

Sth =

∞∑
n=0

(h, vn)X e
µntvn,

where

µn = −
(
nπ

D1

)2

,

and

vn(x) ∝
{

cos(
√
−µnx), if n ∈ N∗,
1, if n = 0,

is the eigenbasis associated to the generator A. It is also elementary to check that the extended
semi-group (Ŝt)t≥0 on D(A∗)∗ solves

∀h ∈ D(A∗)∗, Sth =

∞∑
n=0

⟨h, vn⟩D(A∗)∗,D(A∗)e
µntvn.
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Moreover the associated in-domain control operator B is such that B∗ = δ0 where δx0 denotes the
Dirac mass as x0. Now it is elementary to obtain (32) when q = 0. Therefore, from the extended
Duhamel formula we can assume without loss of generality that h0 = 0. In this case

h(t) =

∫ t

0

Ŝt−sBq(s)ds

=

∫ t

0

∞∑
n=0

⟨Bq(s), vn⟩eµn(t−s)vnds

=

∫ t

0

∞∑
n=0

q(s)vn(0)e
µn(t−s)vnds

=

∫ t

0

q(s)

∞∑
n=0

vn(0)e
µn(t−s)vnds.

Let

ϑ(x) =

∞∑
n=0

xn
2

∈ C∞(−1, 1),

which is known as a Jacobi function. It is known that (see [19, problem 36, Part Two, Chapter 1])

ϑ(x) ∼
1−

√
π

2
√
1− x

.

Then

µ(s) :=

∞∑
n=0

eµns =

∞∑
n=0

(
e
−
(

π
D1

)2
s
)n2

= ϑ

(
e
−
(

π
D1

)2
s
)
∼
0+

D1

2

1√
s

shows that µ ∈ L1
loc[0,∞). In particular, being (vn)

∞
n=0 bounded in C[0, D2],∫ t

0

∥∥∥∥∥q(s)
∞∑
n=0

vn(0)e
µn(t−s)vn

∥∥∥∥∥
C[0,D2]

ds ≲
∫ t

0

|q(s)||µ(t− s)|ds <∞

whence ∫ t

0

vn(0)q(s)

∞∑
n=0

eµn(t−s)vnds

is an integral that converges in L1(0, T ;C[0, D2]). In view of the Hille’s theorem for bounded
operators (see [6, Proposition 1.2.2]) we obtain

h(t,D2) = δD2
h(t) =

∫ t

0

q(s)δD2

∞∑
n=0

vn(0)e
µn(t−s)vnds

since δD2 is a linear and continuous functionnal on C[0, D2]. We can then pass δD2 into the series
because, for any fixed 0 < s < t, it converges in H2

NH (this is an easy computation). Finally we
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compute

∫ T

0

|h(t,D2)|2dt ≲
∫ T

0

∣∣∣∣∣
∫ t

0

∞∑
n=0

q(s)eµn(t−s)ds

∣∣∣∣∣
2

dt

=

∫ T

0

∣∣∣∣∫ t

0

q(s)µ(t− s)ds
∣∣∣∣2 dt

≤
∫ T

0

∫ t

0

µ(σ)dσ

∫ t

0

q(s)2µ(t− s)dsdt (Jensen)

≤

(∫ T

0

µ(σ)dσ

)
×
∫ T

0

∫ T

s

q(s)2µ(t− s)dtds (Fubini)

≤

(∫ T

0

µ(σ)dσ

)2

×
∫ T

0

q(s)2ds

which yields the admissibility of B.

Remember that up to now we have proved that (14) generates a well-posed boundary control
system. However since D1, D2 > 0 were arbitrary we have the following.

Corollary 3.4.0.4. 1. For every D1, D2 > 0, the system (14) is a well-posed boundary control
system.

2. For every c, d,D1, D2 > 0, the system (2) is a well-posed boundary control system.
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4 Controllability of the system

We now tackle the controllability of (14), we acknowledge that the output map formally writes

B∗S∗
t (f0, g0, h0) = h(t,D2).

4.1 Null controllability

We will show that (14) is not null controllable, in arbitrary time and with arbitrary Sobolev expo-
nent on the output (see (33) below for a precise statement).

Remember that in view of Theorem (2.4.2.4), null controllability is equivalent to final time ob-
servability:

∀(f0, g0, h0) ∈ D(A∗), ∥f(T )∥2H1
(−D1)

+ ∥g(T )∥2L2 + ∥h(T )∥2L2 ≲
∫ T

0

|h(t,D2)|2dt

where (f, g, h) = (f(t), g(t), h(t)) = S∗
t (f0, g0, h0) is the solution of

d

dt
(f, g, h) = A∗(f, g, h), (f(0), g(0), h(0)) = (f0, g0, h0).

In [26] the authors study the null controllability for a coupled model very close to (14). To con-
tradict the final time observability they test it with against hyperbolic eigenvectors of A∗, we will
follow the same idea.

We recall that A∗ is defined on the state space

X = H1
(−D1)

(−D1, 0)× L2(−D1, 0)× L2(0, D2)

by

D(A∗) = {(f, g, h) ∈ H2 ∩H1
(−D1)

×H1
(−D1)

×H2 : fx(0) = hx(D2) = g(0) + hx(0) = 0},

and

A∗

 f
g
h

 =

 −g
−fxx
hxx

 .

Theorem 4.1.0.1. For any 0 < T <∞, D1 > 0, D2 > 0 and N ∈ N, we have

inf
(f0,g0,h0)∈D(A∗)
S∗
T (f0,g0,h0) ̸=0

∥h(·, D2)∥HN (0,T )

∥S∗
T (f0, g0, h0)∥X

= 0. (33)

Proof. Fix N ∈ N and T,D1, D2 > 0. For any n ∈ N, we consider

λn = i

(
n+

1

2

)
π

D1
, fn(x) =

√
2

D1
cos

((
n+

1

2

)
π

D1
x

)
, gn = −λnfn,
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and

hn(x) = −
√

2

D1
ξn

(
eξnx

e2ξnD2 − 1
+

e−ξnx

1− e−2ξnD2

)
, ξn =

√(
n+

1

2

)
π

D1
eiπ/4.

We check that (fn, gn, hn) ∈ D(A∗) and that A∗(fn, gn, hn) = λn(fn, gn, hn). First hn is well
defined because

e±2ξnD2 − 1 = 0⇐⇒ ±2

√(
n+

1

2

)
π

D1
eiπ/4D2 ∈ 2iπZ⇐⇒

√(
n+

1

2

)
π

D1
eiπ/4D2 ∈ iπZ

where the right hand side is not possible considering the arguments of those complex numbers.
Further we obviously have

fn, gn ∈ H2(−D1, 0), gn ∈ H2(0, D2),

and fn solves  (fn)xx = λ2nfn,
fn(−D1) = 0,
(fn)x(0) = 0.

Therefore, to get (fn, gn, hn) ∈ D(A∗) and A∗(fn, gn, hn) = λn(fn, gn, hn) we are left to check that
hn solves  (hn)xx = λnhn,

(hn)x(0) = −gn(0),
(hn)x(D1) = 0.

The differential equation comes from ξ2n = λn and we check the boundary conditions:

(hn)x(0) = −
√

2

D1
ξn

(
ξn

e2ξnD2 − 1
+

−ξn
1− e−2ξnD2

)
= −λn

√
2

D1

(
e−ξnD2

eξnD2 − e−ξnD2
− eξnD2

eξnD2 − e−ξnD2

)
= λn

√
2

D1

= −gn(0),

and

(hn)x(D2) = −
√

2

D1
ξn

(
ξne

ξnD2

e2ξnD2 − 1
+
−ξne−ξnD2

1− e−2ξnD2

)
= −λn

√
2

D1

(
1

eξnD2 − e−ξnD2
− 1

eξnD2 − e−ξnD2

)
= 0.

Thus (fn, gn, hn) is indeed an eigenvector of A∗ associated to λn and

∀t ≥ 0, S∗
t (fn, gn, hn) = eλnt(fn, gn, hn).
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We will denote
∀t ≥ 0, (fn(t), gn(t), hn(t)) = S∗

t (fn, gn, hn),

and acknowledge that fn(t) never vanishes. We will show that

∥hn(·, D2)∥2HN (0,T )

∥fn(T )∥2H1
(−D1)

−−−−→
n→∞

0, (34)

which is enough to conclude. On the one hand, being λn purely imaginary, we have

∥fn(T )∥2H1
(−D1)

= ∥(fn)x∥2L2 =

((
n+

1

2

)
π

D1

)2

∼
(
nπ

D1

)2

.

On the other hand,

∥hn(·, D2)∥2HN (0,T ) =

N∑
k=0

∫ T

0

∣∣∣∣∂khn∂tk
(t,D2)

∣∣∣∣2 dt
=

N∑
k=0

∫ T

0

∣∣λkneλnthn(D2)
∣∣2 dt

=

N∑
k=0

|λn|2kT |hn(D2)|2

= T |hn(D2)|2
|λn|2N+2 − 1

|λn|2 − 1
∼
n∞

T |hn(D2)|2
(
nπ

D1

)2N

.

We get an equivalent for |hn(D2)|, prior to do so observe that

ℜξn =

√(
n+

1

2

)
π

D1

√
2

2
→∞,

hence
e−ξnD2 → 0.

Now

|hn(D2)| =
√

2

D1

√(
n+

1

2

)
π

D1

∣∣∣∣ eξnD2

e2ξnD2 − 1
+

e−ξnD2

1− e−2ξnD2

∣∣∣∣
∼
n∞

√
2

D1

√
nπ

D1
2|e−ξnD2 |

∼
n∞

2

√
2nπ

D1
exp

(
−
√
nπ

D1

√
2

2
D2

)
,
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hence

∥hn(·, D2)∥2HN (0,T )

∥fn(T )∥2H1
(−D1)

∼
n∞

T |hn(D2)|2
(
nπ
D1

)2N
(
nπ
D1

)2
∼
n∞

T

(
nπ

D1

)2N−2

8
nπ

D2
1

exp

(
−
√

2nπ

D1
D2

)
=

8T

D1

(
nπ

D1

)2N−1

exp

(
−
√

2nπ

D1
D2

)
−−−−→
n→∞

0.

Corollary 4.1.0.2. 1. For any T,D1, D2 > 0, the system (14) is not null controllable at time
T .

2. For every c, d,D1, D2, T > 0, the system (2) is not null controllable at time T . Moreover, (2)
also satisfies (33).

Proof. 1. This is an immediate consequence of (33), which is stronger than the contradiction of
the initial time observability for the adjoint system:

inf
(f0,g0,h0)∈D(A∗)
S∗
T (f0,g0,h0 )̸=0

∥h(·, D2)∥L2(0,T )

∥S∗
T (f0, g0, h0)∥X

= 0.

2. Let c, d,D1, D2, T > 0, in view of Lemma (3.1.0.1) we have Σ(c, d,D1, D2) equivalent to

Σ
(
1, 1, cD1,

√
dD2

)
in BCS via

Φ :

{
(u, v, p) 7−→ (u(·/c), v(·/c), p(·/

√
d))

ZD1,D2 −→ ZcD1,
√
dD2

, Ψ =
√
d IdC .

Denote (St)t≥0 the semi-group induced by Σ(c, d,D1, D2), A the induced generator and B the
induced control operator. We then have

St = ΦStΦ
−1, B = ΦBΨ−1,

so that for any V0 ∈ D(A∗), we have

S∗TV0 ̸= 0⇐⇒ S∗
TΦ

∗V0 ̸= 0.

Now for such V0 we obtain

∥B∗S∗· V0∥HN (0,T )

∥S∗TV0∥XD1,D2

=
∥(Ψ−1)∗B∗S∗

· Φ
∗V0∥HN (0,T )

∥(Φ−1)∗S∗
TΦ

∗V0∥XD1,D2

≤ ∥(Ψ−1)∗∥Lc(C)∥Φ
∗∥Lc(XcD1,

√
dD2

;XD1,D2
)

∥B∗S∗
· Φ

∗V0∥HN (0,T )

∥S∗
TΦ

∗V0∥XcD1,
√

dD2

.
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Finally, using that Φ∗S∗T = S∗
TΦ

∗ and that Φ∗ : D(A∗)→ D(A∗) is a bijection we arrive to

{Φ∗V0 : V0 ∈ D(A∗), S∗TV0 ̸= 0} = {V0 : V0 ∈ D(A∗), S∗
TV0 ̸= 0},

whence

inf
V0∈D(A∗)
S∗
TV0 ̸=0

∥B∗S∗· V0∥HN (0,T )

∥S∗TV0∥XD1,D2

≲ inf
V0∈D(A∗)
S∗
TV0 ̸=0

∥B∗S∗
· Φ

∗V0∥HN (0,T )

∥S∗
TΦ

∗V0∥XcD1,
√

dD2

= inf
V0∈D(A∗)
S∗
TV0 ̸=0

∥B∗S∗
· V0∥HN (0,T )

∥S∗
TV0∥XcD1,

√
dD2

= 0.

Coming back to (34), we observe that this vanishing limit is stronger than the mere negation
of the null controlability, which is (33). We conclude this Subsection stating precisely this stronger
result, to this aim we will briefly introduce additional theoretical background in control systems
theory.

Definition 4.1.0.3. Let V,W be closed and linear subspaces of X, we say that the V -component
of Σ(A,B) is null controlable at time T with initial data in W if

∀z0 ∈W, ∃u ∈ L2(0, T ;U), ΠV z(T ) = 0,

where ΠV : X → X stands for the orthogonal projection onto V .

Note that the concept of “V -component” is equivalent to the introduction of an output operator,
giving rise to what is broadly denoted Σ(A,B,ΠV ). Using duality theory it is elementary to obtain
the following result.

Proposition 4.1.0.4. The V -component of the system Σ(A,B) is null-controlable at time T with
initial data in W if and only if

∃c > 0, ∀z ∈ V, ∥ΠWS∗
T z∥X ≤ c∥F ∗

T z∥L2(0,T ;U). (35)

Proof. Assume that the V -component of the system Σ(A,B) is null-controlable at time T with
initial data in W . We then have for any z0 ∈W the existence of u ∈ L2(0, T ;U) such that

0 = ΠV z(T ) = ΠV ST z0 +ΠV FTu.

This shows that
RangeΠV STΠW ⊂ RangeΠV FT

hence, owing to the Douglas Lemma and being the orthogonal projections self-adjoint operators,

∃c > 0, ∀z ∈ X, ∥ΠWS∗
TΠV z∥X ≤ c∥F ∗

TΠV z∥L2(0,T ;U).

The last assertion is clearly equivalent to (35), which shows the direct implication.

The proof of the converse implication can be obtained reversing the used arguments since they
are in fact all equivalences.
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Now let
W = H1

(−D1)
× {0} × {0}, V = Cl Span{(fn, gn, hn) : n ∈ N},

and observe that V is one of the two branches of hyperbolic eigenvectors of A∗. Indeed, one can
show that

σp(A
∗) = σp(A) = {±λhm : m ∈ N} ∪ {λpn : n ∈ N},

and that
Null(λhm −A∗) = Span(fn, gn, hn).

Moreover, we say that (35) has a defect of infinite order when it does not hold whenever the
L2(0, T ;U) norm is replaced by the HN (0, T ;U) pseudo-norm on L2(0, T ;U).

Corollary 4.1.0.5. 1. For any T,D1, D2 > 0, the V -component of (14) is not null controllable
at time T , with initial data in W . This moreover happens with a defect of infinite order.

2. For every c, d,D1, D2, T > 0, the same holds for (2).

4.2 Approximate controllability

Recall that approximate controllability is equivalent to the injectivity of the linear and continuous
extension of the map {

φ 7−→ B∗S∗
t φ

(D(A∗), ∥ · ∥X) −→ L2(0, T ;U)

We will denote by ΘT this Lc(X;L2(0, T ;U)) extension.

4.2.1 Unique continuation for a heat problem

The injectivity ΘT has the following “unique continuation” interpretation: for any (f0, g0, h0) ∈ X,
if (f, g, h) is the solution of the adjoint system (29) starting from (f0, g0, h0), then if it solves

h(t,D2) ≡ 0,

in L2(0, T ), we have (f0, g0, h0) = (0, 0, 0). Since the output operator ΘT a priori bears information
about the parabolic component h = h(t), this motivates the the study of the heat problem ht = hxx,

h(t,D2) = 0,
hx(t,D2) = 0,

(36)

and we wish to show that its solutions are necessarily constant to 0. This is tedious as it is an
ill-posed PDE problem. We will use regularity theory for the heat equation in 1D, as summed up
in the following result.

Lemma 4.2.1.1. (Caloric regularity in 1D)
Let 0 < T,L < ∞ be fixed, assume that u ∈ D′((0, T ) × (0, L)) is a distributionnal solution of the
heat equation

ut = uxx.

Then u ∈ C∞((0, T )×(0, L)) is a classical solution of the heat equation. Moreover, for any 0 < t < T
we have u(t, ·) analytic on (0, L).
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Proof. The heat operator
∂

∂t
− ∂2

∂x2

is hypoelliptic on R2 (see [18, Sections 8 and 9]). This gives us that from(
∂

∂t
− ∂2

∂x2

)
u = 0 ∈ C∞((0, T )× (0, L)),

we in fact have
u ∈ C∞((0, T )× (0, L)).

Note carefully that this means that u can be assimilated with a C∞((0, T ) × (0, L)) function,
say ϕ, so that u = Tϕ where Tϕ stands for the distribution associated to the locally integrable
function ϕ. But since the distributionnal calculus generalizes the standard calculus we obtain in
D′((0, T )× (0, L)) that

Tϕt−ϕxx
=

(
∂

∂t
− ∂2

∂x2

)
Tϕ =

(
∂

∂t
− ∂2

∂x2

)
u = 0.

We then get ϕt − ϕxx = 0 in L1
loc((0, T ) × (0, L)), hence almost everywhere. By continuity, ϕ is a

classical solution of the heat equation on (0, T )× (0, L).

For the analycity in space we refer to [17, Theorem 1, Chapter 6].

We can now show the unique continuation property for the parabolic component of the adjoint
system (29).

Lemma 4.2.1.2. Let (f0, g0, h0) ∈ X be such that ΘT (f0, g0, h0) = 0. Then h ≡ 0.

Proof. Step 0: We first give a heuristic. Since h solves (36), we obtain that for any 0 < t0 < T , the
anlytic map ϕ(x) = h(t0, x) is such that all its derivatives at D2 vanishes, owing to the computation

ϕ′′(D2) =
∂2

∂x2
h(t0, D2) =

∂

∂t
h(t0, D2) =

∂

∂t
0 = 0

and an induction argument. Then ϕ ≡ 0 and h ≡ 0. However, this requires regularity for h.

Step 1: We extract in (29) the information we will need concerning h.

We keep in mind that h solves the Cauchy problem
ht = hxx,

hx(t, 0) = −ft(t, 0),
hx(t,D2) = 0,
h(0, x) = h0(x),

(37)

which does not fit the Hille-Yosida theory (the boundary conditions are not homogeneous), whereas
we will need this framework. Therefore we will only use this system at the formal level.
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We acknowledge that h ∈ C([0, T ];L2(0, D2)), h(0) = h0 and that for any 0 ≤ t ≤ T , we have∫ t

0

h(s)ds ∈ H2(0, D2),
d

dx

∣∣∣∣
x=D2

∫ t

0

h(s)ds = 0, h(t)− h0 =
d2

dx2

∫ t

0

h(s)ds. (38)

Moreover we claim that ht = hxx in D′((0, T )× (0, D2)). Indeed we first obtain it for (f0, g0, h0) ∈
D(A∗) because then (f, g, h) is a strong solution of (29). Next for (f0, g0, h0) ∈ X we pick an
approximating sequence ((f j0 , g

j
0, h

j
0))

∞
j=0 of D(A∗) such that

(f j0 , g
j
0, h

j
0)

X−−−→
j→∞

(f0, g0, h0).

In particular we obtain that the solution (f j , gj , hj) of (29) with initial data (f j0 , g
j
0, h

j
0) solves

(f j , gj , hj)
C([0,T ];X)−−−−−−−→
j→∞

(f, g, h)

which is enough to pass to the limit j →∞ in the weak formulation

∀φ ∈ C∞
c ((0, T )× (0, D2)), ∀j ∈ N, −

∫ T

0

∫ D2

0

hjφt =

∫ T

0

∫ D2

0

hjφxx.

Thus ht = hxx in D′((0, T )× (0, D2)). By regularity theory, we therefore have (up to a modification
on a null set) that h is a C∞((0, T ) × (0, D2)) caloric function and h(t0, ·) is analytic on (0, D2),
for any 0 < t0 < T .

Step 2: We re-arrange the system (37) so that it fits the Hille-Yosida theory.

We first move away from all the space and time boundaries, except for x = D2 (this is where
we will need regularity theory). Fix ϵ > 0 small so that the intervals

(ϵ, T − ϵ), (ϵ,D2)

are well defined and non empty. Second we use a lift for h in (37) to exchange the non-homogeneous
boundary condition with a source term. We consider the functions

ψ(t) = hx(t, ϵ) ∈ C∞[ϵ, T − ϵ], hϵ(x) = h(ϵ, x) ∈ L2(ϵ,D2)

which are boundary and initial datum such that formally
ht = hxx,

hx(t, ϵ) = ψ(t),
hx(t,D2) = 0,
h(ϵ, x) = hϵ(x),

(39)

on (ϵ, T − ϵ)× (ϵ,D2). We consider the lift

k(t, x) =
1

2(ϵ−D2)
ψ(t)(x−D2)

2 ∈ C∞([ϵ, T − ϵ]× [ϵ,D2])
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which is such that defining the functions

u = h− k, F = kxx − kt, uϵ(x) = hϵ(x)− k(ϵ, x),

we formally deduce from (39) the system
ut = uxx + F,

ux(t, ϵ) = 0,
ux(t,D2) = 0,
u(ϵ, x) = uϵ(x),

(40)

on (ϵ, T − ϵ)× (ϵ,D2). Note that given the regularity of the boundary and initial datum, i.e.,

F ∈ C∞([ϵ, T − ϵ]× [ϵ,D2]), uϵ ∈ L2(ϵ,D2),

the problem (40) is actually well posed within the Hille-Yosida theory: it has a unique mild solution
u ∈ C([ϵ, T − ϵ];L2(ϵ,D2)).

We now show that u, which is a priori C([ϵ, T − ϵ];L2(ϵ,D2)), is a mild solution of (40). First
observe that for any ϵ ≤ t ≤ T − ϵ,∫ t

ϵ

u(s)ds =

∫ t

ϵ

[h(s)− k(s)]ds

=

∫ t

ϵ

h(s)ds−
∫ t

ϵ

k(s)ds

=

∫ t

0

h(s)ds−
∫ ϵ

0

h(s)ds−
∫ t

ϵ

k(s)ds

which is a sum of three H2(ϵ,D2) functions, hence is H2(ϵ,D2). Moreover we get, being u and k
smooth on (0, T )× (0, D2), that

d

dx

∣∣∣∣
x=ϵ

∫ t

ϵ

u(s)ds =

∫ t

ϵ

d

dx

∣∣∣∣
x=ϵ

u(s)ds =

∫ t

ϵ

[hx(s, ϵ)− ψ(s)]ds = 0

in view of the definition of ψ. For the other initial condition we use again the mild formulation of
(29) (see (38)) to obtain

d

dx

∣∣∣∣
x=D2

∫ t

ϵ

u(s)ds =
d

dx

∣∣∣∣
x=D2

{∫ t

0

h(s)ds−
∫ ϵ

0

h(s)ds−
∫ t

ϵ

k(s)ds

}
= 0−0−

∫ t

ϵ

kx(s,D2)ds = 0.

We are left to check the mild formulation of the abstract ODE, which is

u(t)− uϵ =
d2

dx2

∫ t

ϵ

u(s)ds+

∫ t

ϵ

F (s)ds.

Replacing u and F by their definitions, this amounts to

h(t)− k(t)− h(ϵ) + k(ϵ) =
d2

dx2

∫ t

ϵ

[h(s)− k(s)]ds+
∫ t

ϵ

[kxx(s)− kt(s)]ds,
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which is equivalent to

h(t)− h(ϵ) = d2

dx2

∫ t

ϵ

h(s)ds.

This last equation holds true evaluating the mild formulation in (38) at times t and ϵ, and taking
the difference. This shows that u is a mild solution in (40).

Step 3: We apply the theory of analytic generators to obtain regularity for h.

In view of the previous step, we have u mild solution of (40). Note that this problem reads as
an abstract ODE with a source term, with generator the Neumann Laplacian. The latter generator
is analytic, hence

u ∈ C∞((ϵ, T − ϵ];H2(ϵ,D2)).

We refer to [16, Theorem 11.44] for a precise statement of the regularity theory of analytic semi-
groups. Therefore,

h = k + u ∈ C∞((ϵ, T − ϵ];H2(ϵ,D2)).

Note that ϵ > 0 is arbitrarily small, so that we also have

h ∈ C∞([ϵ, T − ϵ];H2(ϵ,D2)).

Step 4: We show that in the system (36), the boundary conditions at x = D2 are solved point-
wise by h.

From the previous Step we obtain

h ∈ C∞([ϵ, T − ϵ];H2(ϵ,D2))

and since the trace maps{
α 7−→ α(D2)

H2(ϵ,D2) −→ C ,

{
α 7−→ αx(D2)

H2(ϵ,D2) −→ C

are continuous, we obtain that the maps

t 7→ h(t,D2), t 7→ hx(t,D2),

are well-defined for any t ∈ [ϵ, T − ϵ] and furthermore of class C∞. Moreover, we deduce that h
solves the boundary condition

h(t,D2) = hx(t,D2) = 0

everywhere in t ∈ [ϵ, T − ϵ]. Indeed, ht and hxx are two functions in

C∞([ϵ, T − ϵ];L2(ϵ,D2)) ∩ C∞((ϵ, T − ϵ)× (ϵ,D2))

which agree pointwise on (ϵ, T − ϵ) × (ϵ,D2). Therefore for any φ ∈ C∞
c ((ϵ, T − ϵ) × (ϵ,D2]),

we multiply the equality ht = hxx by φ and integrate over (ϵ, T − ϵ) × (ϵ,D2) to discover, after
integrations by part, that∫ T−ϵ

ϵ

{φ(t,D2)hx(t,D2) + φx(t,D2)h(t,D2)} dt = 0.
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From the above integral vanishing, we obtain that the functions h(t,D2) and hx(t,D2) are almost
everywhere null on (ϵ, T − ϵ). Being continuous on this intervall, they both vanish everywhere on
(ϵ, T − ϵ).

Step 5: Now we consider the reflexion of h through the {x = D2} axis:

ϑ(t, x) =

{
h(t, x), if ϵ < t < T − ϵ, ϵ < x ≤ D2,

h(t, 2D2 − x), if ϵ < t < T − ϵ, D2 ≤ x < 2D2 − ϵ,

and claim that it is a distributionnal solution of the heat equation on (ϵ, T − ϵ)× (ϵ, 2D2 − ϵ).

First observe that ϑ is well defined in C([ϵ, T − ϵ]× [ϵ, 2D2 − ϵ]) because

h ∈ C∞([ϵ, T − ϵ];H2(ϵ,D2)) ⊂ C([ϵ, T − ϵ]× [ϵ,D2]).

Further, fix φ ∈ C∞
c ((ϵ, T − ϵ)× (ϵ, 2D2 − ϵ)) and compute∫ T−ϵ

ϵ

∫ 2D2−ϵ

ϵ

ϑ(φt + φxx) =

∫ T−ϵ

ϵ

∫ D2

ϵ

ϑ(φt + φxx) +

∫ T−ϵ

ϵ

∫ 2D2−ϵ

D2

ϑ(φt + φxx).

On the one hand,∫ T−ϵ

ϵ

∫ D2

ϵ

ϑ(φt + φxx) =

∫ T−ϵ

ϵ

∫ D2

ϵ

h(φt + φxx)

=

∫ D2

ϵ

{h(T − ϵ, x)φ(T − ϵ, x)− h(ϵ, x)φ(ϵ, x)} dx−
∫ D2

ϵ

∫ T−ϵ

ϵ

htφ+

+

∫ T−ϵ

ϵ

{h(t,D2)φx(t,D2)− h(t, ϵ)φx(t, ϵ)− hx(t,D2)φ(t,D2) + hx(t, ϵ)φ(t, ϵ)} dt+

+

∫ T−ϵ

ϵ

∫ D2

ϵ

hxxφ

= 0.

On the other hand, the term∫ T−ϵ

ϵ

∫ 2D2−ϵ

D2

ϑ(φt + φxx) =

∫ T−ϵ

ϵ

∫ 2D2−ϵ

D2

h(t, 2D2 − x)(φt(t, x) + φxx(t, x))

=

∫ T−ϵ

ϵ

∫ D2

ϵ

h(t, x) {φt(t, 2D2 − x) + φxx(t, 2D2 − x)} dxdt

also vanishes by similar computations. This shows that

ϑt = ϑxx in D′((ϵ, T − ϵ)× (ϵ, 2D2 − ϵ)).

Step 6: We conclude by making the heuristic of Step 0 rigorous.

Now ϑ ∈ C([ϵ, T − ϵ] × [ϵ, 2D2 − ϵ]) is a caloric distribution on (ϵ, T − ϵ) × (ϵ, 2D2 − ϵ). By
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regularity theory it is in fact a C∞((ϵ, T − ϵ)× (ϵ, 2D2 − ϵ)) caloric function. Moreover, for a fixed
ϵ < t0 < T − ϵ the function ϕ(x) = ϑ(t0, x) is analytic on (ϵ, 2D2 − ϵ). We then claim that

∀n ∈ N, ϕ(n)(D2) = 0.

Observe that this claim would be enough to conclude the proof of the Lemma. Indeed if this is
the case, being ϕ analytic we get ϕ ≡ 0 on (ϵ, 2D2 − ϵ), hence u ≡ 0 on {t0} × (ϵ,D2), and being
ϵ < t0 < T − ϵ and 0 < ϵ≪ 1 aritrary we get h ≡ 0.

To show that all derivatives of ϕ vanish at D2, we first deal with the odd derivatives and observe
that for any n ∈ N,

lim
x→D−

2

ϕ(2n+1)(x) = ϕ(2n+1)(D2) = lim
x→D+

2

ϕ(2n+1)(x). (41)

On the one hand, if ϵ < x < D2 we have

ϕ(2n+1)(x) =
∂2n+1

∂x2n+1
h(t0, x),

and thus the quantity
∂2n+1

∂x2n+1
h(t0, x), ϵ < x < D2,

has a limit as x→ D−
2 . On the other hand, if D2 < x < 2D2 − ϵ we have

ϕ(2n+1)(x) = − ∂2n+1

∂x2n+1
h(t0, 2D2 − x),

and thus the quantity
∂2n+1

∂x2n+1
h(t0, 2D2 − x), D2 < x < 2D2 − ϵ,

also has a limit as x→ D+
2 . By composition of the limits, we obtain

lim
x→D+

2

∂2n+1

∂x2n+1
h(t0, 2D2 − x) = lim

h→D−
2

∂2n+1

∂x2n+1
h(t0, x)

and thus (41) brings

ϕ(2n+1)(D2) = lim
x→D−

2

∂2n+1

∂x2n+1
h(t0, x) = lim

x→D+
2

∂2n+1

∂x2n+1
h(t0, 2D2 − x) = −ϕ(2n+1)(D2),

hence ϕ(2n+1)(D2) = 0. For the even derivatives we formally write

ϕ(2n)(D2) = lim
x→D−

2

∂2n

∂x2n
h(t0, x) = lim

x→D−
2

∂n

∂tn
h(t0, x) =

dn

dtn
h(t0, D2) =

dn

dtn
0 = 0.

We observe that the third equality has to be justified, it will follow from the fact that for arbitrary
k ∈ N, and compact intervalls I, J , the map

Φ :

{
Ck(I;C(J)) −→ C(J ;Ck(I))

(t 7→ (x 7→ α(t, x))) 7−→ (x 7→ (t 7→ α(t, x)))
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is well defined with
dk

dtk

∣∣∣∣
t

[(Φα)x] = [α(k)(t)](x).

With this fact, we obtain that

h ∈ C∞([ϵ, T − ϵ];H2(ϵ,D2)) ⊂ C([ϵ,D2];C
n[ϵ, T − ϵ])

hence

h(·, x) Cn[ϵ,T−ϵ]−−−−−−→
x→D−

2

h(·, D2) = 0.

This concludes the proof.

4.2.2 Approximate controllability dictated by the waves

Prior to state and prove the approximate controllability for (14) we acknowledge the following
elementary result.

Lemma 4.2.2.1. The boundary control system
ftt = fxx, −D1 < x < 0,

f(t,−D1) = 0,
fx(t, 0) = q(t),
f(0, x) = f0(x),
ft(0, x) = g0(x),

(42)

is approximately controllable in any time T ≥ 2D1, and not approximately controllable for any time
0 < T < 2D1.

This result is not easy to find in the litterature and to the best of our knowledge, only the case
T > 2D1 was clearly stated and proved (see [4, Proposition 2.60]). For the sake of completeness we
shall give a proof of this Lemma.

Proof. It is elementary to show that (42) is an admissible and well-posed boundary control system,
with output operator

B∗S∗t (f0, g0) = ft(t, 0).

Further, we obtain for any (f0, g0) ∈ H1
(−D1)

× L2(−D1, 0) and almost every t ∈ (0, T ) that

ft(t, 0) =

√
2

D1

∞∑
n=0

{
−(f0, cn)

√
−λn sin(

√
−λnt) + (g0, cn) cos(

√
−λnt)

}
(43)

where the series converges in L2
loc(R) and where we used the notations of Lemma (A.0.0.1).

On the one hand, assume that T ≥ 2D1, let (f0, g0) ∈ H1
(−D1)

×L2(−D1, 0) be such that ft(t, 0) ≡ 0

in L2(0, T ), from

∀n ∈ N,
√
−λn =

(
n+

1

2

)
π

D1
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we infer that all the sines and cosines appearing in the series making ft(t, 0) in (43) solve

∀t ∈ R, sin(
√
−λn(t+ 2D1)) = − sin(

√
−λnt), cos(

√
−λn(t+ 2D1)) = − cos(

√
−λnt).

Thus the series in (43) is an L2
loc(R) function that is almost everywhere null on R. We re arrange

this as
∞∑
n=0

(f0, cn)
√
−λn sin(

√
−λnt) =

∞∑
n=0

(g0, cn) cos(
√
−λnt)

almost everywhere on R. The above function is therefore almost everywhere odd and even, hence
vanishes. Being √

2

D1
cos(

√
−λnt), n ∈ N,

a Hilbert basis of L2(0, D1) we conclude that

∀n ∈ N, (g0, cn) = 0,

hence g0 = 0. Similarly we conclude that

∀n ∈ N, (f0, cn)
√
−λn = 0,

and being the (
√
−λn)∞n=0 never vanishing, we also have f0 = 0. Hence the approximate controla-

bility.

We now assume that 0 < T < 2D1 and show that (42) is not approximately controlable at time T .
To this aim, we claim that denoting for n ∈ Z∗

−,

ei
√
−λnt = e−i

√
−λ−nt,

the family {ei
√
−λnt}n∈Z is such that there exists (an)n∈Z ∈ ℓ2(Z) for which

ϕ :=
∑
n∈Z

ane
i
√
−λnt ∈ L2(0, 2D1)

is defined through an unconditionnaly convergent series, has its support contained in [T, 2D1] and
is not constant to 0. Assume for a moment that this is true and write

ϕ = a0e
i
√
−λ0t +

∞∑
n=1

{
ane

i
√
−λnt + a−ne

−i
√
−λnt

}
= b0 cos(

√
−λ0t) + ic0 sin(

√
−λ0t) +

∞∑
n=1

{
bn cos(

√
−λnt) + icn sin(

√
−λnt)

}
=

∞∑
n=0

{
bn cos(

√
−λnt) + icn sin(

√
−λnt)

}
,

in L2(0, 2D1), setting
∀n ≥ 1, bn = an + a−n, cn = an − a−n,
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and
b0 = c0 = a0.

This makes (bn)
∞
n=0 and (cn)

∞
n=0 square summable. At this point, the equations

∀n ∈ N,
{
−(f0, cn)

√
−λn = icn

(g0, cn) = bn

define f0 ∈ H1
(−D1)

(−D1, 0) and g0 ∈ L2(−D1, 0). They cannot both vanish since then an = 0 for

any n ∈ Z and ϕ ≡ 0. We then consider (f0, g0) as an initial condition of (30), denote f = f(t)
its mild solution, and from (43) we deduce that ft(t, 0) ≡ 0 almost everywhere on (0, T ) whereas
(f0, g0) ̸= 0, hence the lack of approximate controllability.

We are left to show that there exists (an)n∈Z ∈ ℓ2(Z) for which

ϕ :=
∑
n∈Z

ane
i
√
−λnt ∈ L2(0, 2D1)

is defined through an unconditionnaly convergent series, has its support contained in [T, 2D1] and
is not constant to 0. We will do so in several steps.

Step 0: We first give a heuristic that will be usefull for later.

For fixed u ∈ L2(0, 2D1) and (un)n∈Z ∈ ℓ2(Z), we formally have∑
n∈Z

une
i
√
−λnt = u⇐⇒

∑
n≥0

une
i nπ
D1

tei
π

2D1
t +

∑
n>0

une
−i nπ

D1
te−i

π
2D1

t = u (44)

⇐⇒
∑
n≥0

une
i
(n+1)π

D1
t +

∑
n<0

une
i nπ
D1

t = uei
π

2D1
t (45)

=⇒ uei
π

2D1
t ∈ {1}⊥,L

2(0,2D1) (46)

⇐⇒ u ∈ {ei
π

2D1
t}⊥,L

2(0,2D1). (47)

and we define the Hilbert space

H := {ei
π

2D1
t}⊥,L

2(0,2D1).

Step 1: We show that the family {ei
√
−λnt}n∈Z is orthogonal in L2(0, 2D1).
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If n ̸= m are in N we compute

(en, em)L2(0,2D1) =

∫ 2D1

0

en(t)em(t)dt

=
1

2D1

∫ 2D1

0

ei
√
−λnte−i

√
−λmtdt

=
1

2D1

∫ 2D1

0

ei(
√
−λn−

√
−λm)tdt

= 0,

as
√
−λn ̸=

√
−λm being the sequence (

√
−λn)∞n=0 injective. If n ̸= m are in Z+

− we similarly obtain
that en and em are orthogonal. The last case is when n ∈ N and m ∈ Z+

−, for which we compute
for any n ∈ N and m ∈ N∗,

(en, e−m)L2(0,2D1) =

∫ 2D1

0

en(t)e−m(t)dt

=
1

2D1

∫ 2D1

0

ei
√
−λntei

√
−λmtdt

=
1

2D1

∫ 2D1

0

ei(
√
−λn+

√
−λm)tdt

= 0,

being (
√
−λn)∞n=0 positive. Hence the orthogonality.

Step 2: We show that the family {ei
√
−λnt}n∈Z is a Riesz basis of H.

Note that the family is valued in H because of (44)-(47). Since the family has constant non-
zero norm, it remains only to show that it is total in H (see e.g. [3, Theorem 3.6.6]). Let u ∈ H,
because of (46) and (47) we have

uei
π

2D1
t ∈ {1}⊥,L

2(0,2D1).

It is clear that the family {ein
π

D1
t}n∈Z∗ is a Riesz basis in {1}⊥,L2(0,2D1), hence the existence of

(un)n∈Z ∈ ℓ2(Z) such that (45) holds, where the two series converge unconditionnaly. Because the

multiplication by ei
π

2D1
t is a linear and continuous bijection on L2(0, 2D1), we deduce that (45)

implies (44), where the series also converge unconditionnally. This shows that the series∑
n∈Z

une
i
√
−λnt

converges unconditionnally and equals u, which is thus in the closed span of {ei
√
−λnt}n∈Z. This

shows that the family is a Riesz basis of H.

Step 3: We conclude the argument exhibiting ϕ.
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We write that

{u ∈ L2(0, 2D1) : suppu ⊂ [T, 2D1]} ∩H = {u ∈ L2(0, 2D1) : suppu ⊂ [T, 2D1]} ∩ {ei
π

2D1
t}⊥,L

2(0,2D1)

⊃ {e−i
π

2D1
t}⊥,L

2(T,2D1),

where the smallest of these vector spaces is non reduced to zero by dimension considerations, since
T < 2D1. Therefore there exists ϕ ∈ H \ {0} that has support in [T, 2D1]. In view of the previous
Step, it decomposes as

ϕ =
∑
n∈Z

ane
i
√
−λnt, (an)n∈Z ∈ ℓ2(Z),

where the series converges unconditionnally, as required.

We are now able to completely decide the approximate controllability of the system.

Theorem 4.2.2.2. Fix the constants c, d,D1, D2, T > 0. We have

1. The system Σ(D1, D2) (see (14)) is approximately controllable at time T if and only if T ≥
2D1.

2. The system Σ(c, d,D1, D2) (see (2)) is approximately controllable at time T if and only if
T ≥ 2cD1.

Proof. The second assertion is a consequence of the first assertion, being

Σ(c, d,D1, D2) ∼ Σ(1, 1, cD1,
√
dD2)

and owing to Proposition (2.6.2.3). Hence there is only necessity of proving the first assertion.

Assume first that T ≥ 2D1, we show that the system Σ(D1, D2) is approximately controllable
in time T . To this aim let (f0, g0, h0) ∈ X be such that ΘT (f0, g0, h0) = 0, in view of Lemma
(4.2.1.2) we have h ≡ 0, so h0 = 0. Moreover, as f = f(t) is the mild solution of (30), as shown in
Lemma (4.2.2.1) we have f0 = g0 = 0. Therefore the approximate controllability of Σ(D1, D2) at
time T .

We now assume that 0 < T < 2D1 and show that Σ(D1, D2) is not null controllable. Since the hyper-
bolic subystem (42) is not approximately controlable at time T , there exists (f0, g0) ∈ H1

(−D1)
×L2

not null such that the mild solution f = f(t) of (30) solves ft(t, 0) = 0 almost everywhere on (0, T ).
We then choose V0 = (f0, g0, 0) as an initial condition of the adjoint system (29), it is non zero and
the parabolic component h = h(t) solves

ht = hxx,
hx(t, 0) = 0,
hx(t,D2) = 0,
h(0, x) = 0,

in the mild sense. By uniqueness, h ≡ 0, thus h(t,D2) ≡ 0, and being V0 ̸= 0 the system Σ(D1, D2)
is not approximately controlable at time T .
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A Regularity for a wave problem

Prior to understand that the operator A is Riesz spectral, our method to show that it is a generator
was based on the (b) characterization of the generation property given by Theorem 6.7 of [12]. This
characterization teaches us that a densely defined operator A is a generator if and only if ρ(A) ̸= ∅
and for all initial condition z0 ∈ D(A) and 0 < T <∞, the abstract ODE{

ż = Az
z(0) = z0

has a unique classical solution on [0, T ]. For our operator A it is straightforward to see that the
only non trivial part is to obtain the regularity for the wave subproblem

utt = uxx
ux(t, 0) = q(t)
u(t,−D1) = 0
u(0, x) = u0(x)
ut(0, x) = v0(x)

(48)

with q(t) = p(t, 0). This motivated the following result on regularity for (48) that we leave here as
an additional material.

Theorem A.0.0.1. 1. For any

u0 ∈ H1
(−D1)

(−D1, 0), v0 ∈ L2(−D1, 0), q ∈ L2(0, T )

there exists a unique u ∈ L2(0, T ;H1
(−D1)

) ∩H1(0, T ;L2) weak solution6 of (48).

2. In fact, this solution u is C([0, T ];H1
(−D1)

) ∩ C1([0, T ];L2) and u(·, 0) ∈ H1(0, T ) with

∥u(·, 0)∥H1(0,T ) + ∥u∥C([0,T ];H1
(−D1)

)∩C1([0,T ];L2) ≲ ∥u0∥H1 + ∥v0∥L2 + ∥q∥L2

3. If
u0 ∈ H2, v0 ∈ H1, q ∈ H1, u0x(0)− q(0) = u0(−D1) = v0(−D1) = 0

the weak solution is

C2([0, T ];L2) ∩ C1([0, T ];H1) ∩ C([0, T ];H2)

and classical.

We emphasize that, to the best of our knowledge, regularity of point 3 has not been done yet.
Our main reference is [4], Theorem 2.53, which is inspired from [7], Chapter 3, Section 8, and only
reaches point 2 of Theorem (A.0.0.1). To our knowledge, the best regularity theory for q ∈ H1 can
be found in [13], Theorem 3.1, which is weaker than what is claimed here, but works in a more
general framework.

6in a sense that will be precised in the proof
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Proof. The proof is quite long and technical, we divide it into several steps. The reader which is
already confident with points 1 and 2 is invited to directly go to the Step 10 of the proof.

Step 1: Classical solutions for the homogeneous system

We introduce the wave operator

X = H1
(−D1)

× L2(−D1, 0), D(A) = H2
(0) ∩H

1
(−D1)

×H1
(−D1)

, A(u, v) = (v, uxx).

This operator is skew-adjoint hence it generates a semi-group that is denotes etA. We can compute
explicitely the mild solution of 

utt = uxx
ux(t, 0) = 0
u(t,−D1) = 0
u(0, x) = u0(x)
ut(0, x) = v0(x)

for (u0, v0) ∈ X , it is given by

π1e
tA(u0, v0) = u(t, x) =

∞∑
n=0

[
(u0, cn) cos(

√
−λnt) +

(v0, cn)√
−λn

sin(
√
−λnt)

]
cn(x)

where

λn = −
(
n+

1

2

)2(
π

D1

)2

and

cn(x) ∝ cos(
√
−λnx) =

√
2

D1
cos(

√
−λnx)

makes a Hilbert basis of L2(−D1, 0). Also π1 : X → H1
(−D1)

is the projection onto the first factor.
From the semi-group theory,

(u0, v0) ∈ X =⇒ u ∈ C([0, T ];H1
(−D1)

) ∩ C1([0, T ];L2)

and
(u0, v0) ∈ D(A) =⇒ u ∈ C([0, T ];H2

(0)) ∩ C
1([0, T ];H1

(−D1)
) ∩ C2([0, T ];L2).

Furthermore, in view of Theorem 11.16 of [16], for any

f ∈W 1,1(0, T ;X ), (u0, v0) ∈ D(A)

there exists a unique mild solution u to
utt = uxx + f

ux(t, 0) = 0
u(t,−D1) = 0
u(0, x) = u0(x)
ut(0, x) = v0(x)
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and it is moreover classical:

u ∈ C2([0, T ];L2) ∩ C1([0, T ];H1
(−D1)

) ∩ C([0, T ];H2
(0) ∩H

1
(−D1)

).

It is given by the Duhamel formula

u = π1e
tA(u0, v0) +

∫ t

0

π1e
(t−s)Af(s)ds

where π1 : X → H1
(−D1)

stands for the projection onto the first factor.

Step 2: Lifted system

For any
(u0, v0) ∈ D(A), q ∈W 3,1(0, T )

such that q(0) = 0 we have the following compatibility condition

u0x(0) = 0 = q(0).

We consider

k(t, x) := (x+D1)q(t) ∈ C2([0, T ];L2) ∩ C1([0, T ];H1
(−D1)

) ∩ C([0, T ];H2 ∩H1
(−D1)

)

which is such that, at least formally, u is a solution of the non homogeneous system (48) if and only
if w := u− k solves the homogeneous system with a source term

wtt = wxx − ktt
wx(t, 0) = 0
w(t,−D1) = 0
w(0, x) = u0(x)− k(0, x)
wt(0, x) = v0(x)− kt(0, x)

(49)

Observe that

u0(x)− k(0, x) = u0(x) ∈ H2
(0) ∩H

1
(−D1)

, v0(x)− kt(0, x) = v0(x)− (x+D1)q̇(0) ∈ H1
(−D1)

and
ktt = (x+D1)q̈ ∈W 1,1(0, T ;H1

(−D1)
)

brings the source term
(0,−ktt) ∈W 1,1(0, T ;X ).

Thus from the previous step there exists

w ∈ C2([0, T ];L2) ∩ C1([0, T ];H1
(−D1)

) ∩ C([0, T ];H2
(0) ∩H

1
(−D1)

)

classical solution of (49), whence

u := w + k ∈ C2([0, T ];L2) ∩ C1([0, T ];H1
(−D1)

) ∩ C([0, T ];H2 ∩H1
(−D1)

)
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is a classical solution of (48).

Step 3: A weak formulation

Let
(u0, v0) ∈ D(A), q ∈W 3,1(0, T ), q(0) = 0

and u the associated classical solution of (48), for ϕ ∈ C1([0, T ]× [−D1, 0]) such that

∀t ∈ [0, T ], ϕ(t,−D1) = 0

we multiply utt = uxx by ϕ, integrate over [0, τ ] × [−D1, 0], perform some integrations by part7,
and discover∫ 0

−D1

ϕ(τ, x)ut(τ, x)dx−
∫ 0

−D1

ϕ(0, x)v0(x)dx−
∫ τ

0

∫ 0

−D1

ϕt(t, x)ut(t, x)dxdt (50)

=

∫ τ

0

ϕ(t, 0)q(t)dt−
∫ τ

0

∫ 0

−D1

ϕx(t, x)ux(t, x)dxdt (51)

This motivates the following definition of a weak solution for (48): it is u ∈ L2(0, T ;H1
(−D1)

) ∩
H1(0, T ;L2) such that u(0) = u0 and for all ϕ as above, (50) holds for almost every τ ∈ [0, T ].
Observe that we essentially proved that a classical solution is a weak solution.

Step 4: Energy estimates

Let
(u0, v0) ∈ D(A), q ∈W 3,1(0, T ), q(0) = 0

and u the associated classical solution of (48), consider the energy

E(t) =
1

2

∫ 0

−D1

(u2t (t, x) + ux(t, x)
2)dx ∈ C1[0, T ]

which is such that
Ė(t) = ut(t, 0)q(t).

We now choose the test function

ϕ(t, x) = (x+D1)ux(t, x),

which is legitimate because by density and continuity the weak formulations holds for

ϕ ∈ L1(0, T ;H1
(−D1)

) ∩W 1,1(0, T ;L2),

and use (50) with integrations by part to discover, for any τ ∈ [0, T ],∫ 0

−D1

(x+D1)ux(τ, x)ut(τ, x)dx−
∫ 0

−D1

(x+D1)u
0
x(x)v

0(x)dx+

∫ τ

0

E(t)dt =
D1

2

∫ τ

0

{ut(t, 0)2+q(t)2}dt

(52)

7We deal with the uttϕ term using parabolic integration by part. We refer to [6], section 2.5, for more details and
proofs.
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Now write the Young inequality

E(t) = E(0) +

∫ t

0

Ė(τ)dτ

≤ E(0) +
ϵ

2

∫ t

0

ut(τ, 0)
2dτ +

1

2ϵ

∫ t

0

q(τ)2dτ

for an ϵ > 0 to be chosen suitably, depending only on D1. From (52) we get

D1

2

∫ τ

0

ut(t, 0)
2dt =

∫ τ

0

E(t)dt+

∫ 0

−D1

(x+D1)ux(τ, x)ut(τ, x)dx−
∫ 0

−D1

(x+D1)u
0
x(x)v

0(x)dx− D1

2

∫ τ

0

q(t)2dt

(53)

≤
∫ τ

0

E(t)dt+D1E(τ) +D1∥u0x∥L2∥v0∥L2 (54)

hence for a suitabe choice of ϵ, we get

E(t) ≤ C(∥u0x∥2L2 + ∥v0∥2L2) + C

∫ τ

0

E(t)dt+
1

2
E(t) + C

∫ t

0

q(τ)2dτ

for some C > 0 depending only on D1. In view of the integral version of the Grönwall lemma

x(t) ≤ B(t) +

∫ t

0

a(s)x(s)ds+ x0 =⇒ x(t) ≤ eA(t)x0 +B(t)

we get
E(t) ≤ C

(
∥u0x∥2L2 + ∥v0∥2L2 + ∥q∥2L2

)
(55)

for a larger C, depending only on T and D1. Observe that using (55) in (53) we obtain for a larger
constant C = C(T,D1),

∥ut(·, 0)∥2L2 ≤ C
(
∥u0x∥2L2 + ∥v0∥2L2 + ∥q∥2L2

)
. (56)

Step 5: Compactness

For a sequence of smooth approximation of the data (u0, v0, q) we build the corresponding classical
solutions and then use compactness arguments in order to find a limit point. Let

(u0, v0) ∈ H1
(−D1)

× L2, q ∈ L2(0, T )

and approximations

C∞
c (−D1, 0] ∋ u0j

H1

−−−→
j→∞

u0, C∞
c (−D1, 0) ∋ v0j

L2

−−→
j∞

v0, C∞
c (0, T ) ∋ qj

L2

−−→
j∞

q.

By step 2, being
d

dx
u0j (0) = 0 = qj(0),
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we let for all j,

uj ∈ C2([0, T ];L2) ∩ C1([0, T ];H1
(−D1)

) ∩ C([0, T ];H2 ∩H1
(−D1)

)

classical solution of (48) with data (u0j , v
0
j , qj). Then by (55), the sequence (uj) is bounded in

C1([0, T ];L2) ∩ C([0, T ];H1
(−D1)

).

By the Aubin-Simon lemma (see Corollary 4 of [21]) the inclusion

L∞(0, T ;H1
(−D1)

) ∩H1(0, T ;L2) ↪→ C([0, T ];L2)

is compact whence up to a subsequence (not relabeled) we get the existence of u ∈ C([0, T ];L2)
such that

uj
C([0,T ];L2)−−−−−−−→

j→∞
u.

Next using the Banach-Alaoglu’s theorem8 we further get

uj
L∞(0,T ;H1

(−D1))−w−∗
−−−−−−−−−−−−−−−→

j→∞
u, (uj)t

L∞(0,T ;L2)−w−∗−−−−−−−−−−−−→
j→∞

ut.

Also from (56), Rellich-Kondrachov theorem9, and Kakutani’s theorem (see Theorem 3.18 of [2]),
there exists v ∈ H1(0, T ) such that

uj(·, 0)
H1

w∩C([0,T ])−−−−−−−−→
j→∞

v.

Step 6: Passing to the limit in the weak formulation

We show that u built as in the previous step is a weak solution. Observe that it belongs to
the correct space L2(0, T ;H1

(−D1)
) ∩H1(0, T ;L2) and that

u(0)← uj(0) = u0j
L2

−−→
j∞

u0.

Hence u is a weak solution if and only if it solves the weak formulation. Let ϕ as in the weak
formulation, we obviously have∫ 0

−D1

ϕ(0, x)v0j (x)dx→
∫ 0

−D1

ϕ(0, x)v0(x)dx

and since ϕ(·, 0) ∈ L2(0, T ) we have for all 0 ≤ τ ≤ T∫ τ

0

ϕ(t, 0)qj(t)dt→
∫ τ

0

ϕ(t, 0)q(t)dt.

8This can be seen applying Corollary 3.30 from [2]. To check the hypotheses of this result we use Theorem 1.4.1
and Corollary 1.3.2 of [6].

9This can be seen as a consequence of the Ascoli-Arzelà theorem together with H1(0, T ) ↪→ C0,1/2[0, T ] that
yields

H1(0, T ) ↪→ C0,1/2[0, T ] ↪→↪→ C[0, T ].

Alternatively, Theorem 12.61 from [14] is a more general result.
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Now observe that for any τ ,

ψ 7→
∫ τ

0

∫ 0

−D1

ϕx(t, x)ψ(t, x)dxdt

is linear continuous on L2(0, τ ;L2). Therefore∫ τ

0

∫ 0

−D1

ϕx(t, x)(uj)x(t, x)dxdt→
∫ τ

0

∫ 0

−D1

ϕx(t, x)ux(t, x)dxdt

and similarly ∫ τ

0

∫ 0

−D1

ϕx(t, x)(uj)t(t, x)dxdt→
∫ τ

0

∫ 0

−D1

ϕx(t, x)ut(t, x)dxdt.

We are left with the term

ψj(τ) :=

∫ 0

−D1

ϕ(τ, x)(uj)t(τ, x)dx.

Since all the other terms of the weak formulation are C[0, T ] and converge pointwise, ψj is C[0, T ]
and converges pointwise, denote ψ the limit. The convergence is dominated in L∞(0, T ):

∀τ ∈ [0, T ], |ψj(τ)| ≤ ∥ϕ(τ, ·)∥L2∥(uj)t(t)∥L2 ≤ ∥ϕ∥H1(0,T ;L2)∥uj∥C1([0,T ];L2)

hence it happens in L2(0, T ). Now since

(uj)t
L2

w(0,T ;L2)−−−−−−−→
j∞

u

we have for any ξ ∈ L2(0, T ):∫ T

0

ψ(t)ξ(t)←
∫ T

0

ψj(t)ξ(t)dt =

∫ T

0

∫ 0

−D1

ϕ(t, x)(uj)t(t, x)ξ(t)dxdt→
∫ T

0

∫ 0

−D1

ϕ(t, x)ut(t, x)ξ(t)dxdt

from which we deduce

ψ(t) =

∫ 0

−D1

ϕ(t, x)ut(t, x)dx

almost everywhere and ∫ 0

−D1

ϕ(τ, x)(uj)t(τ, x)dx→
∫ 0

−D1

ϕ(t, x)ut(t, x)dx

almost everywhere, as required. This shows the existence of a weak solution.

Step 7: Uniqueness of the weak solution

We let u ∈ L2(0, T ;H1
(−D1)

) ∩H1(0, T ;L2) be any weak solution of
utt = uxx

ux(t, 0) = 0
u(t,−D1) = 0
u(0, x) = 0
ut(0, x) = 0
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and we show that u = 0. We have for any ϕ ∈ C1([0, T ] × [−D1, 0]) such that ϕ(·,−D1) ≡ 0 that
for almost every τ ∈ [0, T ],∫ 0

−D1

ut(τ, x)ϕ(τ, x)dx−
∫ τ

0

∫ 0

−D1

ut(t, x)ϕt(t, x)dxdt = −
∫ τ

0

∫ 0

−D1

ux(t, x)ϕx(t, x)dxdt.

If ϕ(T ) = 0 we obtain∫ T

0

∫ 0

−D1

ut(t, x)ϕt(t, x)dxdt =

∫ T

0

∫ 0

−D1

ux(t, x)ϕx(t, x)dxdt (57)

and therefore, by density and continuity, the above equality holds for any ϕ ∈ C∞
c (0, T ;H1

(−D1)
).

We let V = H1
(−D1)

, V ∗ be a realization of the anti-dual space of V with respect to the pivot L2,
and define

d2

dx2
: V → V ∗,

〈
d2

dx2
u, v

〉
V ∗,V

:= −
∫ 0

−D1

uxvx

which is a linear and continuous operator, but does not generalize the standard distributional
calculus. Then we can write

utt =
d2

dx2
u in D′(0, T ;V ∗).

Observe that from
u ∈ L2(0, T ;V )

we get
d2

dx2
u ∈ L2(0, T ;V ∗)

hence
u ∈ H2(0, T ;V ∗).

As a first application we show that ut(0), which has a meaning, vanishes. To this aim fix ϕ ∈
C∞
c ([0, T );V ) and write

−⟨ut(0), ϕ(0)⟩V ∗,V = [⟨ut(t), ϕ(t)⟩V ∗,V ]
T
0

=

∫ T

0

{⟨utt, ϕ⟩V ∗,V + ⟨ut, ϕ′⟩V ∗,V }

=

∫ T

0

〈
d2

dx2
u, ϕ

〉
V ∗,V

+

∫ T

0

∫ 0

−D1

uxϕx

= 0

where in the third equality we used (57) and (2.2.0.4). We now show the uniqueness, let 0 < tr < T
arbitrary and

ϕ(t) =

{
−
∫ tr
t
u(s)ds if 0 ≤ t < tr
0 if tr ≤ t ≤ T

which is H1(0, T ;V ) with

ϕ′(t) =

{
u(s) if 0 ≤ t < tr
0 if tr ≤ t ≤ T

68



We use this ϕ as a test function in utt =
d2

dx2u to discover that on the one hand∫ T

0

〈
d2

dx2
u, ϕ

〉
V ∗,V

=

∫ tr

0

〈
d2

dx2
u, ϕ

〉
V ∗,V

= −
∫ tr

0

(ux, ϕx)L2 = −
∫ tr

0

(ϕtx, ϕx)L2

while on the other hand,∫ T

0

⟨utt, ϕ⟩V ∗,V =

∫ tr

0

⟨utt, ϕ⟩V ∗,V

= (ut(tr), ϕ(tr))L2 − (ut(0), ϕ(0))L2 −
∫ tr

0

⟨ut, ϕt⟩V ∗,V

= −
∫ tr

0

⟨ut, ϕt⟩V ∗,V

= −
∫ tr

0

⟨ut, u⟩V ∗,V = −
∫ tr

0

(ut, u)L2

so that in view of the Lions-Magenes lemma (see for instance [14], Theorem 8.60) and the Schwartz
symmetry of second derivatives for ϕ ∈ H1(0, T ;H1),

0 =

∫ tr

0

{(u, ut)L2 − (ϕtx, ϕx)L2}

=

∫ tr

0

d

dt

1

2
{∥u∥2L2 − ∥ϕx∥2L2}

=
∥u(tr)∥2L2 + ∥ϕ(0)∥2L2

2
≥
∥u(tr)∥2L2

2
.

Thus u(tr) = 0, and since tr is arbitrary in [0, T ] we get u ≡ 0 whence the uniqueness.

Step 8: Proof of the continuity of point 2

We start by showing the regularity of the weak solution. From Step 5 and 6, for any initial data
(u0, u1, q) ∈ H1

(−D1)
× L2 × L2 there exists a weak solution u ∈ L∞(0, T ;H1

(−D1)
) ∩W 1,∞(0, T ;L2)

with trace v ∈ H1(0, T ) (in the sense that for the constructed approximation, the trace converges
to v). We show that it turns out to be C([0, T ];H1

(−D1)
) ∩ C1([0, T ];L2).

As in the previous Step we can obtain

u ∈W 2,∞(0, T ; (H1
0 )

∗) and utt =
d2

dx2
u in D′(0, T ; (H1

0 )
∗).

In view of Lemma 8.1 from [7],

ut ∈ L∞(0, T ;L2) ∩ C([0, T ]; (H1
0 )

∗) ⊂ C([0, T ];L2 − w).

Moreover we note

u ∈ L∞(0, T ;H1
(−D1)

) ∩ C([0, T ];L2) ⊂ C([0, T ];H1
(−D1)

− w)
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so that the map

t 7→ E(t) :=
1

2
{∥ut(t)∥2L2 + ∥ux(t)∥2L2}

is everywhere defined on [0, T ], bounded and lower semi continuous. We show that E is upper semi
continuous at 0+: let 0 < tr < T , we have approximations

uj
L∞(0,tr;H

1
(−D1))−w−∗

−−−−−−−−−−−−−−−→
j∞

u, (uj)t
L∞(0,tr;L

2)−w−∗−−−−−−−−−−−−→
j∞

ut

which allow

ess sup
0≤t≤tr

E(t) = ess sup
0≤t≤tr

∥ux(t)∥2L2 + ∥ut(t)∥2L2

2

= ∥(ux, ut)∥2L∞(0,tr;L2)×L∞(0,tr;L2)

≤ lim inf
j
∥((uj)x, (uj)t)∥2L∞(0,tr;L2)×L∞(0,tr;L2)

= lim inf
j

ess sup
0≤t≤tr

{
∥(u0j )x∥2L2 + ∥u1j∥2L2

2
+

∫ t

0

uj(s, 0)qj(s)ds

}

≤
∥u0x∥2L2 + ∥u1∥2L2

2
+

∫ tr

0

|v(s)q(s)|ds

where the second equality must be seen as the definition of a norm on L∞(0, tr;L
2)×L∞(0, tr;L

2),
which is elementary to be shown equivalent to the standard one. Next it is straightforward to show
that for a lower semi continuous function, essential suprema are classical suprema, thus

sup
0≤t≤tr

E(t) = ess sup
0≤t≤tr

E(t) ≤
∥u0x∥2L2 + ∥u1∥2L2

2
+

∫ tr

0

|v(t)q(t)|dt −→
tr→0+

E(0),

E is lower semi continuous at 0+ and E is continuous at 0+.

We can then easily deduce that E is right continuous on [0, T ): for any 0 ≤ t0 < T we have
(u(t0), ut(t0)) ∈ H1

(−D1)
× L2 and the restriction of u to [t0, T ] is a weak solution of

utt = uxx t0 < t < T
ux(t, 0) = q(t) t0 < t < T
u(t,−D1) = 0 t0 < t < T
u(t0, x) = u(t0)(x)
ut(t0, x) = ut(t0)(x)

whose energy Ẽ is right continuous at t0, doing again the same proof using approximations. Since
Ẽ = E on [t0, T ], E is right continuous at t0.

We also have the left continuity for free: the map w : t 7→ u(T − t) is a solution of the prob-
lem 

wtt = wxx
wx(t, 0) = q(T − t)
w(t,−D1) = 0
w(0, x) = u(T )(x)
wt(0, x) = ut(T )(x)
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hence the reversed energy E(T − t) is right continuous, hence E is left continuous.

This allows to show the regularity: let t0 ∈ [0, T ] and (tj) be a sequence of [0, T ] with limit
t0, using the continuity of E and the weak continuity of ux, ut : [0, T ]→ L2,

1

2

(
∥ut(tj)− ut(t0)∥2L2 + ∥ux(tj)− ux(t0)∥2L2

)
= E(tj) + E(t0)− (ut(tj), ut(t0))L2 − (ux(tj), ux(t0))L2

→ E(t0) + E(t0)− (ut(t0), ut(t0))L2 − (ux(t0), ux(t0))L2

= 0.

Step 9: Proof of the estimations of point 3

Let u be the weak solution corresponding to data (u0, v0, q), consider approximations u0j , v
0
j , qj , uj

as in Step 5, then the sequence (uj) has a converging subsequence, denote ũ the limit:

uσ(j)
L∞(0,T ;H1

(−D1))−w−∗
−−−−−−−−−−−−−−−→

j∞
ũ, (uσ(j))t

L∞(0,T ;L2)−w−∗−−−−−−−−−−−−→
j∞

ũt

for some extraction σ. As shown in Step 6, ũ is a weak solution to the problem with data (u0, v0, q),
hence ũ = u. By classical point-set topology we infer that the whole sequence (uj) converges to u.
Then by weak-∗ lower semi-continuity of the norm

∥u∥C([0,T ];H1
(−D1)

)∩C1([0,T ];L2) ≲ ∥u∥L∞(0,T ;H1
(−D1)

) + ∥ut∥L∞(0,T ;L2)

≤ lim inf
j∞

{
∥uj∥L∞(0,T ;H1

(−D1)
) + ∥(uj)t∥L∞(0,T ;L2)

}
≲ lim inf

j∞

{
∥u0j∥H1 + ∥v0j ∥L2 + ∥qj∥L2

}
= ∥u0∥H1 + ∥v0∥L2 + ∥q∥L2 .

We repeat the same arguments to get

(uj)t(·, 0)
H1

w−−→
j∞

ut(·, 0)

and the required estimations.

Step 10: Deduction of a candidate

We recall that up to this Step, we have established the existence, uniqueness, and regularity of
a weak solution for (48) as in point 3 of Lemma (??). The goal is now to show that with improved
data we can actually get more regularity solution for the solution by computing it explicitely.

We deduce a formula by formal computations. Let

(u0, u1) ∈ D(A), q ∈W 3,1(0, T ), q(0) = 0
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and denote u the associated solution. From the Duhamel formula in Step 1 we get, forgetting that

q(0) = 0

the following:

u(t, x)− (x+D1)q(t) = π1e
tA(u0 − (x+D1)q(0), u

1 − (x+D1)q̇(0)) +

∫ t

0

π1e
(t−s)A(0,−(x+D1)q̈(s))ds

=

∞∑
n=0

[
(u0 − (x+D1)q(0), cn) cos(

√
−λnt) +

(u1 − (x+D1)q̇(0), cn)√
−λn

sin(
√
−λnt)

]
cn(x)

+

∫ t

0

∞∑
n=0

(−(x+D1)q̈(s), cn)√
−λn

sin(
√
−λn(t− s))cn(x)ds

=

∞∑
n=0

[
(u0 − (x+D1)q(0), cn) cos(

√
−λnt) +

(u1, cn)√
−λn

sin(
√
−λnt)

]
cn(x)

+

∞∑
n=0

− ((x+D1), cn)√
−λn

[
q̇(0) sin(

√
−λnt) +

∫ t

0

q̈(s) sin(
√
−λn(t− s))ds

]
cn(x)

=

∞∑
n=0

[
(u0 − (x+D1)q(0), cn) cos(

√
−λnt) +

(u1, cn)√
−λn

sin(
√
−λnt)

]
cn(x)

+

√
2

D1

∞∑
n=0

[
q(t)− q(0) cos(

√
−λnt)−

√
−λn

∫ t

0

sin(
√
−λn(t− s))q(s)ds

]
cn(x)

λn

where we have used

((x+D1), cn) = −
√

2

D1

1

λn

and∫ t

0

q̈(s) sin(
√
−λn(t−s))ds = − sin(

√
−λnt)q̇(0)+

√
−λnq(t)−

√
−λnq(0) cos(

√
−λnt)+λn

∫ t

0

sin(
√
−λn(t−s))q(s)ds.

Next from

(x+D1)q(t) = q(t)

∞∑
n=0

((x+D1), cn)cn(x) = −q(t)
√

2

D1

∞∑
n=0

1

λn
cn(x)

and ∫ t

0

sin(
√
−λn(t− s))q(s)ds =

q(t)√
−λn

− q(0)√
−λn

cos(
√
−λnt)−

∫ t

0

cos(
√
−λn(t− s))√
−λn

q̇(s)ds
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we can again simplify the expression for u to obtain

u(t, x) =

∞∑
n=0

[
(u0 − (x+D1)q(0), cn) cos(

√
−λnt) +

(u1, cn)√
−λn

sin(
√
−λnt)

]
cn(x)

+

√
2

D1

∞∑
n=0

[
q(t)−

∫ t

0

cos(
√
−λn(t− s))q̇(s)ds

]
cn(x)

−λn
(58)

:= w + f

Step 11: The candidate is a weak solution

Now, for arbitrary

u0 ∈ H2 ∩H1
(−D1)

, u1 ∈ H1
(−D1)

, q ∈ H1(0, T ), ux(0) = q(0)

we check that the previous candidate u defined by (58) is a weak solution. We start by showing it
is well defined:

u ∈ H1(0, T ;L2) ∩ L2(0, T ;H1
(−D1)

).

Observe that in (58),

w = π1e
tA(u0 − (x+D1)q(0), u

1) ∈ C2([0, T ];L2) ∩ C1([0, T ];H1
(−D1)

) ∩ C([0, T ];H2
(0) ∩H

1
(−D1)

)

so it is sufficient to show that

f ∈ H1(0, T ;L2) ∩ L2(0, T ;H1
(−D1)

)

where f is, up to now, defined by (58) as a formal series. We will show that the series f converges
in both spaces, that is we will show that the series defined by

∑
fn

cn
−λn

, fn(t) := q(t)−
∫ t

0

cos(
√
−λn(t− s))q̇(s)ds

converges in H1(0, T ;L2) and in L2(0, T ;H1
(−D1)

). Observe that fn ∈ C2[0, T ] with

f ′n(t) =
√
−λn

∫ t

0

sin(
√
−λn(t− s))q̇(s)ds, f ′′n (t) = −λn

∫ t

0

cos(
√
−λn(t− s))q̇(s)ds.

Hence the series f converges in H1(0, T ;L2) if and only if

∞∑
n=0

∥fn∥2H1(0,T )

λ2n
<∞

We can see that the above inequality holds true bounding fn and f ′n in L∞(0, T ):

∥fn∥L∞(0,T ) ≲ ∥q∥H1(0,T ), ∥f ′n∥L∞(0,T ) ≲
√
−λn∥q∥H1(0,T )
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so that
∞∑
n=0

∥fn∥2H1(0,T )

λ2n
≲ ∥q∥2H1(0,T )

∞∑
n=0

1

−λn

and invoking

0 < −λn ∼
(
π

D1

)2

n2

we deduce the convergence of the series.

Further to get the convergence in L2(0, T ;H1
(−D1)

) we use the orthogonality of (cn) in H1
(−D1)

with
∥cn∥2H1

(−D1)
= −λn

so that the series converges in L2(0, T ;H1
(−D1)

) if and only if

∞∑
n=0

∥fn∥2L2(0,T )

−λn
<∞

which follows from the above computations.

We then check that u is a weak solution of (48), we observe w is the weak solution of
wtt = wxx

wx(t, 0) = 0
w(t,−D1) = 0
w(0, x) = u0(x)− (x+D1)q(0)
wt(0, x) = u1

so that, by superposition, u is the weak solution of (48) if and only if f is a weak solution of
ftt = fxx

fx(t, 0) = q(t)
f(t,−D1) = 0
f(0, x) = (x+D1)q(0)
ft(0, x) = 0

(59)

To check this, observe we have the correct initial condition

f(0) =

√
2

D1

∞∑
n=0

q(0)
cn(x)

−λn
= (x+D1)q(0)

so we are left to check weak formulation. Let ϕ as in the weak formulation, we wish that for almost
every τ ∈ [0, T ],∫ 0

−D1

ϕ(τ, x)ft(τ, x)dx−
∫ τ

0

∫ 0

−D1

ϕt(t, x)ft(t, x)dxdt+

∫ τ

0

∫ 0

−D1

ϕx(t, x)fx(t, x)dxdt =

∫ τ

0

ϕ(t, 0)q(t)dt.
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To this aim we observe that because the series making f converges in H1(0, T ;L2) we can intervert
the time derivative and the series to obtain in L2(0, T ;L2)

ft(τ, x) = −
√

2

D1

∞∑
n=0

[
sin(
√
−λnτ)q(0)√
−λn

+

∫ τ

0

cos(
√
−λn(τ − s))q(s)ds

]
cn(x).

Similarly

fx(τ, x) = −
√

2

D1

∞∑
n=0

[
q(τ)−

∫ τ

0

cos(
√
−λn(τ − s))q̇(s)ds

]
Cn(x)√
−λn

where

Cn(x) := −
1√
−λn

d

dx
cn.

Further we compute∫ τ

0

∫ 0

−D1

ϕx(t, x)fx(t, x)dxdt =

∫ τ

0

∫ 0

−D1

−
√

2

D1

∞∑
n=0

[
q(t)−

∫ t

0

cos(
√
−λn(t− s))q̇(s)ds

]
Cn(x)√
−λn

ϕx(t, x)dxdt

= −
√

2

D1

∞∑
n=0

∫ τ

0

∫ 0

−D1

[
q(t)−

∫ t

0

cos(
√
−λn(t− s))q̇(s)ds

]
Cn(x)√
−λn

ϕx(t, x)dxdt

=

√
2

D1

∞∑
n=0

∫ τ

0

∫ 0

−D1

[
q(t)−

∫ t

0

cos(
√
−λn(t− s))q̇(s)ds

]
cn(x)ϕ(t, x)dxdt

where the interversion series-integral is justified because of the L2 convergence and the last equality
is an integration by part in space. With very similar considerations we obtain∫ τ

0

∫ 0

−D1

ϕt(t, x)ft(t, x)dxdt =

√
2

D1

∞∑
n=0

{
1√
−λn

∫ τ
0
sin(
√
−λn(t− s))q̇(s)ds×

∫ 0

−D1
ϕ(τ, x)cn(x)dx

−
∫ τ
0

∫ t
0
cos(
√
−λn(t− s))q̇(s)ds

∫ 0

−D1
ϕ(t, x)cn(x)dxdt

}

and ∫ 0

−D1

ϕ(τ, x)ft(τ, x)dx =

√
2

D1

∞∑
n=0

∫ 0

−D1

∫ t

0

sin(
√
−λn(ts))√
−λn

q̇(s)dsϕ(τ, x)cn(x)dx

which allows one to check the weak formulation. Hence f is the weak solution of (59), and u is the
weak solution of (48).

Step 11: Additionnal regularity for the candidate

We now use the representation formula (58) to show that when

u0 ∈ H2, v0 ∈ H1, q ∈ H1, u0x(0)− q(0) = u0(−D1) = v0(−D1) = 0

we have
u ∈ C2([0, T ];L2) ∩ C1([0, T ];H1) ∩ C([0, T ];H2).

We again use the fact that w is in the above space, hence it is enough to check that

f ∈ C2([0, T ];L2) ∩ C1([0, T ];H1) ∩ C([0, T ];H2).
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We will first show that f ∈ C2([0, T ];L2), we begin by showing that f ∈ H2(0, T ;L2). To this aim
we will show that there exists C = C(T,D1) > 0 such that

∀α ∈ L2(0, T ), ∀t ∈ [0, T ],

∞∑
n=0

∣∣∣∣∫ t

0

cos(
√
−λn(t− s))α(s)ds

∣∣∣∣2 ≤ C∥α∥2L2(0,t). (60)

Let α ∈ L2(0, T ), 0 ≤ t ≤ T and

β(s) :=

{
α(s) if 0 ≤ s ≤ t
0 if s ∈ R \ [0, t]

which is such that
β ∈ L2

c(R), ∥β∥L2(R) = ∥α∥L2(0,t).

We also introduce N ∈ N∗ such that
T ≤ ND1.

We then have

∞∑
n=0

∣∣∣∣∫ t

0

cos(
√
−λn(t− s))α(s)ds

∣∣∣∣2 =

∞∑
n=0

∣∣∣∣∫ t

0

cos(
√
−λn(t− s))β(s)ds

∣∣∣∣2

=

∞∑
n=0

∣∣∣∣∫ t

0

cos(
√
−λns)β(t− s)ds

∣∣∣∣2

=

∞∑
n=0

∣∣∣∣∣
∫ ND1

0

cos(
√
−λns)β(t− s)ds

∣∣∣∣∣
2

(61)

=

∞∑
n=0

∣∣∣∣∣
N−1∑
k=0

∫ (k+1)D1

kD1

cos(
√
−λns)β(t− s)ds

∣∣∣∣∣
2

≤
∞∑
n=0

N

N−1∑
k=0

∣∣∣∣∣
∫ (k+1)D1

kD1

cos(
√
−λns)β(t− s)ds

∣∣∣∣∣
2

= N

N−1∑
k=0

∞∑
n=0

∣∣∣∣∣
∫ (k+1)D1

kD1

cos(
√
−λns)β(t− s)ds

∣∣∣∣∣
2

(62)

where the inequality arises from the convexity of the square on R, and the last equality is the
Fubini-Tonelli theorem for non-negative summands. We remember that

cos(
√
−λns) =

√
D1

2
cn(s)

where (cn) is a Hilbert basis of L2(−D1, 0). It is easy to see that (cn) is also a Hilbert basis of
L2(0, D1), for instance because the cosine is an even function. Thereore the Parseval (see e.g. [2]
Corollary 5.10) formula yields

∞∑
n=0

∣∣∣∣∣
∫ D1

0

cos(
√
−λns)β(t− s)dsds

∣∣∣∣∣
2

=
D1

2
∥β(t− ·)∥2L2(0,D1)

≤ D1

2
∥α∥2L2(0,t).
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This shows how to control the summand k = 0 in (62), we now explain how to control the term
k = 1. With a change of variable and the definition of λn we have∫ 2D1

D1

cos(
√
−λns)β(t− s)ds =

∫ D1

0

cos(
√
−λn(s+D1))β(t− s−D1)ds

= (−1)n+1

∫ D1

0

sin(
√
−λns)β(t− s−D1)ds

and the functions
sn(x) := sin(

√
−λnx), n ∈ N

are orthogonal in L2(0, D1) with

∥sn∥2L2(0,D1)
=
D1

2
.

Hence the Bessel inequality (see e.g. 5.26 of Chapter 5 from [8]) yields

∞∑
n=0

∣∣∣∣∣
∫ 2D1

D1

cos(
√
−λns)β(t− s)ds

∣∣∣∣∣
2

=

∞∑
n=0

∣∣∣∣∣
∫ D1

0

sn(s)β(t− s−D1)ds

∣∣∣∣∣
2

≤ D1

2
∥β(t− · −D1)∥2L2(0,D1)

≤ D1

2
∥α∥2L2(0,t).

By induction we see that this inequality holds for any k = 0, ..., N − 1 and (60) is true with

C = N2D1

2

where N only depends on T,D1, as desired.

Next observe that the series representing f converges in H2(0, T ;L2) if and only if

∞∑
n=0

∥f ′′n∥2L2(0,T )

λ2n
<∞

which we check using (60)

∞∑
n=0

∥f ′′n∥2L2(0,T )

λ2n
=

∞∑
n=0

∫ T

0

∣∣∣∣∫ t

0

cos(
√
−λn(t− s))q̇(s)ds

∣∣∣∣2 dt
=

∫ T

0

∞∑
n=0

∣∣∣∣∫ t

0

cos(
√
−λn(t− s))q̇(s)ds

∣∣∣∣2 dt
≲
∫ T

0

∥q̇∥2L2(0,t)dt ≲ ∥q∥
2
H1(0,T ).
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We now derive several consequence concerning f , first f ∈ H2(0, T ;L2) and we can compute ftt
differentiating term by terms the series representing f . Second ftt has the following representative,
labeled abusing notation,

ftt(t) =

√
2

D1

∞∑
n=0

[∫ t

0

cos(
√
−λn(t− s))q̇(s)ds

]
cn

which is such that for any t ∈ [0, T ], the series converges in L2 (same application of (60)). We will
show that this representative is C([0, T ];L2). We let 0 ≤ t < t+ h ≤ T and we compute

∥f ′′(t+ h)− f ′′(t)∥2L2 ≲
∞∑
n=0

|f ′′n (t+ h)− f ′′n (t)|2

λ2n

=

∞∑
n=0

∣∣∣∣∣
∫ t+h

0

cos(
√
−λn(t+ h− s)q̇(s)ds−

∫ t

0

cos(
√
−λn(t− s)q̇(s)ds

∣∣∣∣∣
2

where denoting α the extension of q̇ by 0 outside of [t, t+ h] we get∫ t+h

0

cos(
√
−λn(t+ h− s)q̇(s)ds−

∫ t

0

cos(
√
−λn(t− s)q̇(s)ds =

∫ t

0

cos(
√
−λns)(α(t+ h− s)− α(t− s))ds

+

∫ t+h

t

cos(
√
−λns)α(t+ h− s)ds.

In view of (60) the series associated to the first term of the right hand side is controlled, up to a
constant, by

∥α(t+ h− ·)− α(t− ·)∥2L2(0,t) = ∥α(·+ h)− α(·)∥2L2(0,t) −→
h→0+

0

by continuity of the translations in L2(0, t). We deal with the remaining term writting∫ t+h

t

cos(
√
−λns)α(t+ h− s)ds =

∫ ND1

0

cos(
√
−λns)α(t+ h− s)ds

and we observe that coming back to (61), the associated series is controlled by (up to a constant)

∥α(t+ h− ·)∥2L2(t,t+h) = ∥α(·)∥
2
L2(t,t+h) −→

h→0+
0.

Therefore, f ′′ : [0, T ]→ L2 is right continuous, we can adapt the above arguments to show that f ′′

is also left continuous, whence f ∈ C([0, T ];L2) and f ∈ C2([0, T ];L2).

To conclude on the regularity of f we remember that

ftt = fxx in D′(0, T ; (H1
0 )

∗)

whence
fxx ∈ C([0, T ];L2)

which brings
f ∈ C([0, T ];H2)
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by elliptic regularity. Finally f ∈ C1([0, T ];H1) is obtained from the formal equality

ftx = −
∞∑
n=0

[∫ t

0

sin(
√
−λn(t− s))q̇(s)ds

]
sn(x) ∈ C([0, T ];L2)

which can be made rigorous adapting the above arguments and in view of (60).

Step 12: The candidate is a classical solution

To finish the proof of the Lemma we are left to show that u is a classical solution of (48). Note
that u(0) = u0 and we can show that ut(0) = v0 testing

utt = uxx in D′(0, T ; (H1
0 )

∗)

against an arbitrary ϕ ∈ C∞
c ([0, T );H1

0 ) to discover

−⟨ut(0), ϕ(0)⟩V ∗,V = [⟨ut(t), ϕ(t)⟩V ∗,V ]
T
0

=

∫ T

0

{⟨utt, ϕ⟩V ∗,V + ⟨ut, ϕ′⟩V ∗,V }

=

∫ T

0

〈
d2

dx2
u, ϕ

〉
V ∗,V

+

∫ T

0

∫ 0

−D1

utϕt

= −
∫ T

0

∫ 0

−D1

uxϕx +

∫ T

0

∫ 0

−D1

utϕt

= −
∫ 0

−D1

ϕ(0, x)v0(x)dx = −⟨v0, ϕ(0)⟩V ∗,V

Now observe the PDE utt = uxx holds in the distributional sense and both functions are C([0, T ];L2),
hence it holds in C([0, T ];L2). Finally we check that ux(t, 0) = q(t). Test utt = uxx against an
arbitrary test function ϕ as in the weak formulation, to discover for any τ ∈ [0, T ]∫ τ

0

ϕ(t, 0)q(t)dt−
∫ τ

0

∫ 0

−D1

ϕxux =

∫ 0

−D1

ϕ(τ, x)ut(τ, x)dx−
∫ 0

−D1

ϕ(0, x)v0(x)dx−
∫ τ

0

∫ 0

−D1

ϕtutdxdt

=

∫ τ

0

ϕ(t, 0)ux(t, 0)dt−
∫ τ

0

∫ 0

−D1

ϕxux

which allows ∫ τ

0

ϕ(t, 0)q(t)dt =

∫ τ

0

ϕ(t, 0)ux(t, 0)dt.

Differentiate this equality with respect to τ and take a test function ϕ such that ϕ(t, 0) ≡ 1 to get
ux(t, 0) = q(t).
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