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Introduction

There is today an overwhelming experimental evidence, on different astrophysical scales, that
the Universe contains much more matter than what can be detected by electromagnetic in-
teractions. This non-visible amount of matter is called Dark Matter (DM). During the last
century many attempts were made to understand the nature of DM, which remains one of most
important open issues in modern Physics. The identity of DM has important implications in
many branches of Physics. For instance, in Astrophysics and Cosmology its nature has an
impact on the evolution of the Universe and plays a fundamental role in structure formation.
Furthermore, in Particle Physics DM can provide empirical evidence of the existence of a new
particle.

In the course of the last century, many alternatives have been proposed as DM candidates.
To date, some of these proposals have been nearly ruled out, such as the possibility that dark
matter is due to compact objects formed by ordinary matter. Instead, other hypotheses have
had a remarkable success in the past few years, such as the proposal that DM is made of a
new kind of particle (or more than one) interacting with ordinary matter through unknown
interactions. Within the various particle DM models, there are different mechanisms of DM
production in the early Universe. One of the most successful mechanisms is thermal production,
where the DM is assumed to be in thermal equilibrium with the primordial plasma until its
co-moving density “freezes out” due to the expansion of the universe. In particular, with this
mechanism, a particle with a mass at the electroweak scale and interactions with ordinary
matter of comparable strength to the electroweak force, has a relic abundance in agreement
with experiments. This is the so-called “WIMP miracle”, with WIMP standing for weakly-
interacting massive particle.

The various DM candidates proposed by different theories are tested with a variety of ex-
perimental searches. For instance, i) direct searches try to detect DM particles while they are
passing through the Earth, ii) indirect searches detect and analyse the putative products of
DM annihilations in today’s Universe, and iii) collider searches look for signals of DM pro-
duction in high-energy processes. There are many theoretical models featuring a particle DM
candidate. Some of them were constructed specifically to address the DM problem, while in
others the DM candidate is a natural prediction of the theory. Among the most compelling
models of the latter type are supersymmetric theories. Supersymmetry –a symmetry which
relates bosonic and fermionic degrees of freedom– provides one of the most famous solutions to
the long-standing “hierarchy problem”, which is related to the presence of an elementary scalar
in the Standard Model (SM), i.e. the Higgs boson. The most studied scenario is the minimal
supersymmetric standard model (MSSM), the supersymmetric extension of the SM with the
minimal particle content. In this model, each SM boson (fermion) has a fermionic (bosonic)
counterpart with the same quantum numbers, called superpartner. A natural solution of the
“hierarchy problem” would require these particles to lie below the TeV scale, which makes the
Large Hadron Collider (LHC) the ideal place where to look for them. Therefore, the lack of
evidence of any superpartner at the LHC challenges the capability of the MSSM to solve the
“hierarchy problem”. Yet, the MSSM still provides a successful DM candidate.

The aim of this thesis is the analysis of supersymmetric DM candidates in the framework of
the MSSM. We focus on the possibility that DM is made of neutralinos. These are a mixture of
Bino, Wino and Higgsino which are the superpartners of the electrically and color neutral SM
bosons. In particular we consider the scenario discussed by N. Arkani-Hamed, A. Delgado and
G.F. Giudice in their work "The Well-Tempered Neutralino" [11]. At first we study three cases
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6 Introduction

where the DM candidate is a pure Bino, Wino or Higgsino. Then, we consider two other setups
where the DM candidate is a mixture of Bino, Wino, and Higgsino with relative fractions tuned
to reproduce the observed DM density. For this reason these DM candidates are referred to as
“Well-Tempered” neutralino. We compute the relic abundance both numerically and, when it
is possible, also analytically. This quantity is determined solving the Boltzmann equation, and
strongly depends on the annihilation cross-section of the DM candidate. In our analysis, we
also account for “co-annihilations”, in which case the standard methods to solve approximately
the Boltzmann equation fail. This situation occurs when the DM candidate is the lightest
state of a multiplet of nearly mass degenerate particles. In this case, the relic abundance is
not determined only by the annihilation cross-section of the DM candidate, but also by the
annihilation of heavier particles in this multiplet which, eventually, will decay into the lightest
one.

We further constrain each scenario imposing the powerful constraints from the most recent
direct detection experiments. In the MSSM, but also in many other models, the DM scattering
cross-section with nucleons can be separated into spin-dependent (SD) and spin-independent
(SI) contributions. Therefore, we compute the SD and SI neutralino-nucleon scattering cross-
section both numerically and analytically, comparing the obtained results with the bounds
provided by the LUX [7],[6], XENON100 [10], PANDAX [64] and PICO-60 [8] experiments.
This analysis provides an update of the results presented in our reference work of N. Arkani-
Hamed, A. Delgado and G.F. Giudice. In order to monitor the relative size of the SI and SD
contributions, we consider them separately, as customarily done by the experimental collabo-
rations. In the cases where these contributions are both important, we recast the experimental
analyses to account for both interactions. We compare our analytical results with numerical
computations performed with micrOmegas 4.2.5 [21], a code for the computation of quantities
such as the DM relic density and its direct/indirect detection rates.

The thesis is organized as follows: in Chapter 1 we review the compelling evidences for
DM on different astrophysical scales. Then, we summarize what is actually known about DM,
listing its main features. Also, we briefly review the arguments in favour of the “WIMP miracle”
and we list the most relevant particle DM candidates. In Chapter 2 we review the formalism
of the Boltzmann equation, which governs the statistical behavior of thermodynamic systems.
First, we present a solution for the classical case of two annihilating particles of the same
mass, then, we solve the Boltzmann equation for the case of co-annihilations. In Chapter 3 we
summarize the basic concepts of Supersymmetry, starting from the original motivations that led
to its introduction, then we specialize to the R-parity conserving MSSM, providing its particle
content and mass spectrum. In Chapter 4, after a brief review of the theory of direct detection,
we analyse the phenomenology of the “Well-Tempered” neutralino scenario, discussing both the
DM relic density and the constraints from direct detection experiments. At last, we summarize
our conclusions and possible future prospects.

In the appendices some detailed calculations are collected. In particular, in appendix A we
derive the relic density solving the Boltzmann equation both in the standard and in the co-
annihilation cases. In appendix B we list some useful Feynman rules in the MSSM. In appendix
C we provide an analytical diagonalization of the neutralino mass matrix which is valid in the
Well-Tempered neutralino scenario. In appendix D we derive the effective interaction terms
between neutralinos and quarks, giving also the non-relativistic expansion of the scattering
amplitudes. In appendix E, after providing the conventions for Majorana fermions and some
useful formulae, we perform approximate calculations of the relevant annihilation cross sections.



Chapter 1

Experimental evidences of Dark
Matter

At the present time, the experimental evidences, show that the DM constitutes about the 25%
of the total mass-energy content of the Universe, while the ordinary matter makes up only the
5%. The remaining 70% is due to Dark Energy (DE) [42].

Now we briefly analyse the various experimental evidences of DM, at different scales.

1.1 Experimental evidences at galactic scales

Galaxies can be regarded as the building blocks of the Universe. They have a mass range from
about 109M� to about 1013M�

1 [42].
They can be of three basic types: spiral, elliptical or irregular [29]. For what concern the spiral
type, the most convincing evidence of DM, comes from the observation of the rotational curves
of the galaxies. Roughly speaking these are graphs of circular velocities of stars and gases as
function of the distance, R, from the barycenter of the galaxy. These circular velocities, vc(R),
solely are measured in visible light or exploiting radio emission [19]. Following Newtonian
mechanics we have that

vc(R) =

√
GNM(R)

R
, (1.1)

where, as usual GN = 6.6738× 10−11 Nm2 kg−2 [60] is the Newton gravitational constant, and
for a system with spherical symmetry, M(R) is define as

M(R) ≡ 4π

∫ R

0

ρ(r)r2dr, (1.2)

where ρ(r) is the mass density.
What we would expect if only ordinary matter is present, is that vc(R) first rises (due to the
fact that when increasing the radius more mass is included) and then, when all visible mass
ends, it decreases as

vc(R) =

√
GNMtot

R
. (1.3)

However what we observe is a radically different pattern. After the expected initial rise, vc(R)
does not fall as 1/

√
R. In fact as we can see from Fig. 1.1 the rotational curve shows a quite

flat behaviour (vc(R) ' constant), which continues well beyond the visible edge of the galaxy
disk.
Under the assumption of spherical mass distribution, we can invert the observed rotational

curve to determine the mass density profile of the galaxy. Equating the Poisson’s equation

1M� = 1.988× 1030 kg is the solar mass, from Ref. [60].
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8 Experimental evidences of Dark Matter

Figure 1.1: Galactic rotation curve for NGC 6503. In the figure are showed also the relative contributions
respectively from visible disk, gases and DM halo. As we can see far from the center of the
galaxy the DM contribution causes an unexpected flat behaviour (from Ref. [41]).

∇2φ = 4πGNρ(R), where φ = −GNM(R)
r is the gravitational potential, with the divergence of

the centripetal acceleration, ac(r) = vc(R)
2/R, we can derive that [20]

4πGNρ(R) = 2
vc(R)

R

∂vc(R)

∂R
+

(
vc(R)

R

)2

. (1.4)

For a constant value of vc(R) Eq. (1.4) tell us that ρ(R) ∝ 1/R2 which, using Eq. (1.2), gives
M(R) ∝ R [19]. This peculiar mass behaviour is a strong hint in favour to the existence
of dark, i.e. non-visible, halo which encapsulates the entire visible disk of the galaxy. The
most interesting objects in the study of rotational curves are the Low-Surface-Brightness (LSB)
galaxies. These are probably DM dominated and hence the stellar population gives only a small
contribution to the observed rotational curves [20]. From the observation of the rotational curves
of several galaxies, the mass of the dark halo is thought to be between 3 to 10 times the mass
of the luminous matter.

Elliptical and irregular galaxies have not an order orbital motion, thus the study of rota-
tional curves becomes difficult [29].
To prove the existence of DM for this type of galaxies is possible to use the gravitational
lensing. This method exploits a fundamental result of general relativity, which states that a
gravitational field distorts the path travelled by the light. Thus the shapes of distant objects,
such as stars or galaxies, are deformed by the presence of a foreground mass density [31]. For
instance, measuring the entity of the distortion produced by an elliptical galaxy we are able to
infer its mass density. Comparing this deduced mass density with the one obtained using the
mean value of the mass-to-light ratio, 〈M/L〉, we can observe that the mass deduced using the
gravitational lensing is more than the one derived using 〈M/L〉; this suggests the presence of
an amount of non-visible mass, i.e. DM.

For what concern the problem of how DM is distributed into the galaxy, the observations
lead to a general consensus about its distribution at large radii, which is quite a spherical halo
that encapsulates the visible disk of the galaxy [42]. However there is still a debate about the
DM profile in the innermost region of the galaxies, it is unclear if they present a cuspy or a
shallow flat distribution [19].
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1.2 Evidences at galaxy cluster scale
Most of the galaxies are not distributed in the space randomly, in fact they tend to form clumps
called cluster. Studying the velocity dispersions of the galaxies in the Coma cluster F.Zwicky,
in 1933 gave the first insight about the presence of DM [65].
One of the most important methods to estimate the amount of mass in a cluster, which was used
also by Zwicky an collaborators, consist in measuring the radial velocities of galaxies within
a cluster, and then apply the virial theorem. This theorem states that for a stable system
bounded by the gravitational force, the time average of the total kinetic energy, 〈Ek〉, and the
time average of the total potential energy, 〈U〉, are related by [44]

2〈Ek〉 = −〈U〉. (1.5)

Thus assuming that the cluster is a stable system, measuring the velocities, and hence the time
average of the total kinetic energy, exploiting the viral theorem we can infer the total mass
density in the cluster .
In his paper Zwicky assumed that Coma cluster contained 1000 galaxies. He estimated the
physical size of the cluster to have a radius of about 2×106 light-Yr. Observing a mean velocity
dispersion of 700 km/s he obtained a value for the mass of the cluster of about 4.5× 1013M�,
which corresponded to an average galaxy mass of 8.5 × 1010M�. Then assuming an average
galaxy luminosity of about 8.5 × 107L�, he found a very high mass-to-light ratio, 〈M/L〉, of
about 500M�/L�

2 [65].Nowadays taking into account the fact that Coma cluster contain also
an invisible halo of hot gases, (fact that was not known from Zwicky and his collaborators),
what is find is that the total amount of baryonic mass is a factor of about ∼ 6 too small to
explain the high dispersion velocities of galaxies into the cluster [44].
Other estimations of the cluster’s mass exploiting the virial theorem, was performed by Schmit
studying the Virgo cluster. In his work Schmit found an average mass for galaxies of about
2 × 1011M� a value much higher than the one find at the galactic scale by Hubble, ∼ 109M�
[18].
Another way to determine the mass of a cluster comes from the study of the X-ray emission
of hot gases, which traces their distribution. Assuming that the cluster is a stable system
and denoting with P (R) the pressure, with ρ(R) the density and with a(R) the gravitational
acceleration of the gases at a distance, R, from the barycenter of the cluster, the equation of
the hydrostatic equilibrium states that

dP (R)
dR

= −a(R)ρ(R). (1.6)

Using the equation of state of an ideal gas

P (R)V (R) = NkBT (R), (1.7)

where kB is the Boltzmann constant, Eq. (1.6) can be rewritten in term of the gas temperature,
T (R), as [19]

d log ρ(R)

d logR
+

d log T (R)

d logR
= − R

T (R)

(
µmp

kB

)
a(R), (1.8)

where mp is the proton mass and µ is the average molecular weight of the gases. Knowing that
a(R) = M(R)GN

R2 we find that the mass of the cluster, within a radius R, is given by

M(R) = −
(

d log ρ(R)

d logR
+

d log T (R)

d logR

)(
kB

µmp

)
T (R)R

GN
. (1.9)

Thus, under the assumption that outside the core of the cluster the temperature is roughly
constant, and that we know the power law of the density profile of the gas, measuring the
temperature T (R) we can estimate the total amount of mass in the cluster [19]. Vice versa if
we state that M(R) is the total mass of baryonic matter, using Eq. (1.9), we find a temperature

2L� = 3.828× 1026W , is the solar luminosity, from Ref. [60]
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T (R) much lower than the observed one. This suggest the presence of a substantial amount of
non-emitting matter i.e. DM.
As for elliptical/irregular galaxies also for cluster another method to estimate their mass is
achieved by the use of the gravitational lensing.

1.3 Evidences at cosmological scale

Basing upon the observations discussed above we are not able to exactly estimate the total
amount of DM in the Universe. However this information can be extrapolate analyzing the
Cosmic Microwave Background (CMB) [42]. The small matter density inhomogeneities set
up during the inflation era are considered the seeds that led to the formation of the large
structures of the Universe i.e. cluster, galaxies, stars [29]. This inhomogeneities can be related
to the temperature anisotropies of the CMB. Thus the study of the entity of this anisotropies
allow us to infer how much matter (baryonic and non-baryonic) is present in the Universe [31].
Usually these temperature anisotropies, δT/T , are expanded in spherical harmonics base

δT

T
=

+∞∑
`=2

m=+`∑
m=−`

a`mY`m(Θ, φ). (1.10)

where Y`m(Θ, φ) are spherical harmonics. The coefficients a`m have a variance C` which, under
the assumption of Gaussian temperature fluctuations, is given by [19]

C` ≡ 〈|a`m|2〉 ≡ 1

2`+ 1

+∑̀
m=−`

|a`m|2. (1.11)

The way to extrapolate informations from the measure of the parameters δT/T and Cl, given
by the CMB anisotropies map Fig. 1.3, is the method of the likelihood function. This function
is defined as the probability that an experiment gives the same results as the ones given by a
theory [31]. Substantially once we have the likelihood function we are able to extrapolate the
parameters of the theory. These are the values, in the parameter space, which maximize the
likelihood function.
One of the most important missions launched to map and analyzing the CMB is Planck [3].
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Figure 1.2: The CMB power spectrum. The plot shows D` = `(` + 1)C`/(2π) as a function of the
multipole `, (from Ref. [4]).

Following the method of the likelihood, the analysis of the Planck data gives the results [3]

ΩBh
2 = 0.02227± 0.00020, ΩMh

2 = 0.1413± 0.0011 (1.12)
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where ΩB ≡ ρB/ρc, ΩM ≡ ρM/ρc and ρB, ρM, ρc are respectively the baryon matter density, the
total matter density and the critical density.3 Thus the amount of DM in the Universe from
Planck data analysis is [3]

ΩDMh
2 = ΩMh

2 − ΩBh
2 = 0.1184± 0.0012. (1.13)

From these results is evident that the dominant part of the matter in the Universe has a non-
baryonic nature. Note that the value of ΩB is consistent with the range set by the Big Bang
Nucleosynthesis (BBN) analysis, which is [19]

0.018 < ΩBh
2 < 0.023. (1.14)

−250 250µKcmb

Figure 1.3: CMB temperature map obtained from the Planck 2015 observations, (from Ref. [4]).

3ρc = 3H0
8πGN

= 1.87847 × 10−29h2 g cm−3, where H0 = 100h km s−1 Mpc−1 is the Hubble constant, from
Ref. [60]
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1.4 Dark Matter characteristics

Here we provide a list of the principal characteristics which DM is supposed to have.

• DM as ordinary matter has attractive gravitational interaction. In fact evidences about
DM arise from the observations of the gravitational effects which it has on visible matter.
About other type of fundamental interactions we have no data [42].
For this reason many attempt was made to explain the evidences for DM as probes of
departures from the law of gravity. One of the most successful model of this type, is a
modification of the Newtonian dynamics called MOND (Modified Newtonian Dynamics).
In MOND the force is ~F = µ(a)m~a, where the parameter µ(a) deviates from unity only
for small accelerations [38]. This model explain very well the flatness of the rotational
curves of the galaxies, without assuming the presence of DM, but fails in the explanation
of evidences of DM at larger scales.
Another model of this type is the TeVeS [13], which is a relativistically invariant theory
that yields MOND in the non-relativistic weak-field limit.

• DM is stable or has a lifetime τDM � tU where tU = 13.796± 0.029Gyr [3], is the age of
the Universe.

• There are no observations of the interactions between DM and light i.e. electromagnetic
interaction. This means that DM has very small, or zero, electromagnetic interaction.

• An important consequence of a non interaction with light, is that DM is dissipation-less
i.e. it cannot cool radiating photons as baryons do during the galaxy formation [42]. This
is consistent with the existence of such extended dark haloes. Conversely visible matter
dissipates energy emitting photons, which causes its collapse through the center of the
galaxy, forming a disk [42].

• DM is a thermal relic, and can be Cold or Warm, it cannot be a Hot thermal relic [42]. A
thermal relic is Cold if at the freeze-out (i.e. when it goes out of the thermal equilibrium
with the cosmic plasma), it is non-relativistic, mDM � Tfo, where mDM is the mass of
DM and Tfo is the freeze-out temperature. Conversely, a thermal relic is Hot when at the
freeze-out it is relativistic, mDM < Tfo. As last a thermal relic is Warm if at the freeze-out
is becoming non-relativistic.
The reasons why DM cannot be Hot but only Cold or Warm rely on the fact that the
presence of DM is fundamental for the formation of the structures in the early Universe.
With Hot DM the matter density inhomogeneities would led first to the formation of super-
cluster and then, via fragmentation, to the other substructures, the sequence stops with
the formation of galaxies. This is in disagreement with the observations of the Universe.
On contrary with Cold DM, the matter density inhomogeneities led to the formation of
smaller structures as first, which then aggregate forming more larger structures such as
galaxies, cluster and super-cluster. This is in good agreement with the observed Universe.
With Warm DM hypothesis there are much less substructures then in the Cold DM case,
but this model still represents quite well our Universe [42].

• DM is assumed to have a very weak self-interactions i.e. DM is collision-less. If the
interactions between DM particles are too efficient, many small scale structures would be
erased [42].

1.5 Dark matter candidates

From the late 1980s the idea that the bulk of DM consisted of one or more unknown elementary
particles started to be a very interesting hypothesis. As the various alternatives were ruled out
by observations, this hypothesis became the leading paradigm for the DM issue [18].
Here we list some of the leading particle DM candidates. All the following proposals come
from theories which were not proposed to resolve the DM problem, but their main prospectives
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were to provide solutions to others SM’s issues. The coincidence that two completely different
problems can be resolved within a unique theory is a strong hint about the validity of that
theory.
Because much of this thesis will be devote to the analysis of WIMPs, and in particular of
neutralinos as DM candidates, we start with a brief review of the WIMP "miracle"; then we
will go on listing the major DM candidates.

The WIMP "miracle"

The expression WIMP "miracle" (WIMP is the acronym for Weakly Interactive Massive Parti-
cle) refers to the fact that particles with electroweak scale masses and weak interaction coupling
constant, naturally give rise to a thermal relic density which is similar to the observed one for
DM. This suggests that thermal relic WIMPs give a natural solution to the DM problem [55].
As we will see in the next sections thermal relics are those relics produced via "decoupling" or
"freeze-out" from a condition of thermal equilibrium with the primordial thermal plasma. In
particular when the interaction rate Γ, that change the number of particles, is larger than the
expansion rate of the Universe H, where H is the Hubble constant, the thermal equilibrium is
maintained [42]. The freeze-out is set up when Γ ≈ H, and the involved species goes out from
the equilibrium.
For non-relativistic particles with mass mχ, the equilibrium number density n can be approxi-
mate as

n ' (mχT )
3/2e−mχ/T , (1.15)

where T is the equilibrium temperature. The interaction rate can be approximate as Γ =
n〈σv〉 ' nσ0, where σ0 indicates the leading term of the expansion of the thermal average of
the annihilation cross-section, σ, times particles relative velocity, v, i.e. 〈σv〉. Furthermore
when the Universe is radiation dominated, H can be approximate as H ' T 2/MPl

4. Thus
supposing that the decoupling occurs when the Universe is radiation dominated we can rewrite
the freeze-out condition as

nfo ' T 2
fo

MPlσ0
, (1.16)

that using the above expression for n, can be recast as

m3
χe

−xfo

x
3/2
fo

'
m2
χ

x2foMPlσ0
, (1.17)

where we have defined x ≡ mχ/T .
Inserting a typical electroweak expression for σ0 such as σ0 ' G2

Fm
2
χ, where GF = 1.166 ×

10−5 Gev−2 [60] is the Fermi constant, and an electroweak scale value for mχ ∼ 102 GeV, what
we find is xf.o. ∼ 20 [62].
The relic density is roughly given by

Ωχ =
mχn(T0)

ρc
, (1.18)

where T0 = 2.7255K ∼ 10−4eV [60] is the today temperature. Furthermore for a Universe with
constant entropy, the quantity Ta is constant, where as usual a denote the expansion parameter
of the Universe; thus we have that

n(T0)

T 3
0

=
n(Tfo)

T 3
fo

, (1.19)

note that this relation is a consequence of the fact that after the decoupling the number of
particles of a specific species remains constant or, in other words, the density number, n, scales
as a−3.
Now substituting Eq. (1.19) into Eq. (1.18), we have that

Ωχ =
mχT

3
0

ρcTfo

(
n(Tfo)

Tfo

)2

=
T 3
0

ρcMPl

xfo

σ0
, (1.20)

4MPl = 1.22× 1019 GeV2/c2 is the Planck mass, from Ref. [60]
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where we used Eq. (1.16). Putting the numerical value of the constants in the above equation
we find [62],

Ωχ
0.2

' xfo

20

10−8 GeV−2

σ0
, (1.21)

hence to fit the right DM relic density the value of the annihilation cross-section has to be about
σ0 ∼ 10−8 GeV−2, which is of the order of a typical weak process. Hence the expression WIMP
"miracle" can be rephrase as: if a stable WIMP exist, then it naturally has a relic density
consistent with the one of DM [40].
Sometimes Eq. (1.21) is written in terms of the average cross-section times velocity, 〈σv〉. So
for v ∼ c/3, which is implied by the assumption xfo ∼ 20, we have [62]

〈σv〉 ∼ 10−8 GeV−2 × 1010
cm
s

= 3× 10−26 cm3

s
. (1.22)

mX (TeV)

X

DM

____

Figure 1.4: The plot shows a band of natural mass values for the DM candidate X. ΩX is the relic
density of the DM candidate while ΩDM ' 0.23. We can see that the major contribute to
DM is given by a particle with a mass in the range mX ' 100GeV−1TeV, while for example
a candidate with a mass in the range 10 − 100GeV can make up only the 3% of the DM
density (from Ref. [40]).

Supersymmetric candidates

Many frameworks of R-parity conserving supersymmetry, provide a natural DM candidate,
which is called the Lightest Supersymmetric Particle (LSP). This particle has to be a stable (R-
parity symmetry prevents its decay into SM particles), electrically neutral particle. Depending
on the particular model chosen, the most famous candidates are

• Garvitinos G̃ , which are spin 3/2 fermions, super-partners of the gravitons. In some
supersymmetric models they can be the LSP. However, with only gravitational interaction,
they are very difficult to observe [19]. Note that they are not WIMPs.

• Neutralinos χ̃1, χ̃2, χ̃3, χ̃4, which are spin 1/2 fermions, that generally are an admixture
of B̃, W̃3, H̃u, H̃d. These are respectively the fermionic superparteners of the SM B hy-
percharge gauge boson, W3 SU(2)L gauge boson, and Hu, Hd scalar Higgs doublets. In
particular in models where the LSP is a neutralino, the lighiest one, χ̃1, provides a good
WIMP candidate. This thesis will be focus on this DM candidate.
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Kaluza-Klein

The idea about the existence of extra spatial dimensions was first developed by Kaluza and Klein
in 1920’s. The newest model based upon their idea is called universal extra dimensions (UED).
In UED all particles (fields) propagates in flat, compact extra dimensions of size R ∼ 10−18m
or smaller [40]. A general feature of this models is that all particles, which propagate in the
extra dimensions, have their momentum quantized in units of p2 ∼ 1/R2 [19]. This implies
that for each particle exists an infinite set of Fourier modes called Kaluza-Klein (KK) states.
For us, in 1+ 3-dimensions, these states appear as series of particles of mass mn = n/R, where
n denotes the mode number [40]. Note that the various KK states share the same quantum
numbers.
The simplest UED (minimal UED) model has one extra dimension compactified on a circle of
radius R, and it is completely determined by two parameters, mh, the mass of the SM Higgs
scalar, and the size R. This model preserve also a discrete symmetry called KK-parity, which
prevents the decay of the lightest KK particle (LKP). This imply that, if the LKP is also
electrically neutral, it can be a possible DM candidate. Typically this particle is B1, the level
1 partner of the hypercharge gauge boson B.

SuperWIMPs

Basing upon the WIMP "miracle" may appear that the DM candidates must have weak in-
teractions to naturally fit the right relic density. This is not actually true. In fact exist some
models in which the DM candidate has different interactions from the weak one, but still has
the correct relic density [40].
An example of this are superWIMPs. In this scenario the DM candidate has the desired relic
density, but it has an interaction much weaker than the weak one.
This model provides also an example of non-thermal DM. In fact superWIMPs particles are
produced via WIMPs particles late decay. First, in the early Universe, WIMPs freeze-out from
the thermal bath, then they decay into superWIMPs which form the today DM. Assuming that
in every WIMP decay is produced one superWIMP, the relic density is given by [40]

ΩsWIMP =
msWIMP

mWIMP
ΩWIMP, (1.23)

and if msWIMP ∼ mWIMP the WIMP "miracle" argument implies that ΩsWIMP quite reproduces
the amount of DM.

Sterile neutrinos

The problem to explain the neutrinos masses can be resolve introducing in the SM right-handed
neutrinos. Thank to this neutrinos can acquire mass via the standard Higgs mechanism. In
order to have an invariant neutrions’s mass term, under the SM gauge symmetries, the right-
handed neutrinos must have no SM gauge interactions i.e. they are sterile.
The relic density of sterile neutrinos depends on their masses and their mixing angles. To
reproduce the correct DM relic density these parameters must have well define small values
which are not justify by any independent theoretical argument. Hence sterile neutrinos do not
naturally give the right relic density [40].

Axions

Quantum chromodynamics (QCD) is a successful theory which describes the strong force ex-
perienced by gluons and quarks. One of the feature of this theory is the fact that the QCD
Lagrangian contains the following pseudo-scalar term [18]

LCP-QCD = Θ
g23

32π2
Tr{GµνG̃µν}, (1.24)
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where g3 is the strong coupling constant, and with G̃µν we denoted the dual of the gluons field
strength tensor.5 Θ is a parameter related to the phase of the QCD vacuum.
If Θ is of order of unity, then larger CP violating effects would affect the theory. However to be
consistent with the experimental bound imposed by the non-observation of the electric dipole
moment, de, of the neutron, (de < 2.9 × 10−26 e cm [40]), Θ has to be smaller than ∼ 10−10

[18]. So the essence of the strong CP problem is to ask why the value of Θ has to be so small.
In 1977 R.Peccei and H.Quinn proposed an elegant solution to the problem. Their idea was
based on the introduction of a new global U(1) symmetry, which when it is spontaneously bro-
ken, the parameter Θ is naturally driven to zero. Later F.Wilczek and S.Weinberg, basing on
the fact that the new U(1) symmetry is a global one, stated that its spontaneous break implies
the existence of a Nambu-Goldstone boson, which was called axion. It is important to note
that, despite the fact that the axion comes from the breaking of a global symmetry, it has a
small mass due to the U(1) chiral anomaly. Its mass can be approximate as ma ∼ g23/fPQ where
fPQ is the energy scale of the U(1) symmetry breaking. The facts that axions are electrically
neutral and massive stable particles, make them good candidates for the DM problem.

Beyond these few candidates there are many other proposals, motivate by other reasons.
Some of them come from relaxing some DM characteristics such as self-interactions, electrical
neutrality or non-dissipative behaviour. Some example are models of Self Interacting DM
(SIDM), millicherge DM or double disk DM [42].
Others candidates come from the attempts to resolve the DM problem without introducing new
particles, such as MACHOs (Massive Astrophysical Compact Halo Objects). These massive
objects are supposed to be so faintly luminous to prevent their detection. Hence the probes of
their existence can be tested only exploiting their gravitational effects, in particular using the
gravitational lensing.

5G̃µν = εµναβG
αβ , where εµναβ is the total antisymmetric tensor in four dimension



Chapter 2

Boltzmann equation and relic
density

For much of its history, most of the constituents of the Universe were in thermal equilibrium.
However to reproduce the observed Universe there have been a number of very notable depar-
tures from the primordial thermal equilibrium. These departures from the thermal equilibrium
have led to important relics, such as the thermal DM.

As we said in the previous Chapter thermal relics are produced via interaction with thermal
bath, reach the equilibrium with this bath and then “freeze-out” when their interaction rate are
lower than the rate of the expansion of the Universe [42]. In particular the evolution of systems
which are decoupling from the thermal equilibrium is governed by the Boltzmann equation
which describes the statistical behaviour of a thermodynamic system [31]. In this Chapter we
will review the solution of the Boltzmann equation in the standard case and for the case o of
co-annihilations. We follow refs [31], [43], [33].

2.1 Boltzmann equation for the standard case

The Boltzmann equation can be schematically written as [31]

df(x, p)
dt

= C[f ], (2.1)

where f(x, p) is the phase space distribution function which in principle depends on the four-
momentum pµ, on the coordinate four vector xµ and on the temperature T . The term C[f ] is
called the collisional term and, in principle, is a functional of the phase space distribution func-
tion and it describes the interactions between the various particles. Assuming a flat Universe,
which is defined by the FRW (Friedmann-Robertson-Walker) metric

gµν =


1 0 0 0
0 −a2(t) 0 0
0 0 −a2(t) 0
0 0 0 −a2(t)

 (2.2)

where a(t) is the expansion parameter of the Universe, the above Boltzmann equation can be
rewritten as [31]

∂f

∂t
+
p

E

pi

a

∂f

∂xi
− p2

E
H
∂f

∂E
= C[f ] (2.3)

where H ≡ ȧ(t)/a(t) is the Hubble constant.
Assuming that we are interested in the change of species called 1, with four-momentum p1,

17
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the collisional term for 2 ↔ 2 annihilation processes is equal to [31]

C[f(~p1)] =
1

E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

(2π)4δ4(p1 + p2 − p3 − p4)
∑
spins

|M|2

{f3f4[1± f1][1± f2]− f1f2[1± f3][1± f4]}

(2.4)

where we have assumed that species 1 annihilates with species 2 producing species 3 and 4 and
that also the inverse process is possible, namely 1+2 ↔ 3+4. Considering the collisional term
starting from the last line we see that the rate of producing the species 1 is proportional to the
distribution functions, f3 and f4. Similarly the annihilation rate of species 1 is proportional to
f1 and f2. The [1±f ] terms, with plus sign for bosons and minus sign for fermions, represent the
Bose enhancement and Pauli blocking factors. In particular if, for example, species 1 already
exist the processes, that produce more type-1 particles would be more favoured if 1 is a boson,
while they would be disfavoured if species 1 is a fermion. The Dirac delta assure the four
momentum conservation. The quantity |M|2 is the square amplitude of the process which is
determined from the theoretical model considered.

The Boltzmann equation given in Eq. (2.3), can be re-expressed in terms of the number
density n, which is a more desirable form when we have to evaluate relic densities. Integrating
both side of the Eq. (2.3) over the phase space volume gd3p/(2π)3, where g counts the internal
degrees of freedom of the species of interest, and using the definitions respectively of the density
number

n =

∫
dn ≡ g

∫
d3p

(2π)3
f(p, T ) (2.5)

and of the velocity components

vi ≡ g

n

∫
d3p

(2π)3
pp̂i

E
f(p), (2.6)

we obtain that the Boltzmann equation becomes

∂n

∂t
+ 3Hn =

∫
g

d3p

(2π)32E
C[f ]. (2.7)

The above equation is an integro-differential equation and its solution need the solution of the
Boltzmann equations for the other species involved in the process. Nevertheless this difficult
can be overcome assuming some approximations. As first we will assume that the kinetic equi-
librium will be maintained. As a consequence the departures from the thermal equilibrium will
determined by chemical decoupling [42]. Furthermore we will assume that the scattering pro-
cesses, which tend to enforce the kinetic equilibrium, take place so rapidly that the distribution
functions for the various species take the general Fermi/Dirac or Bose/Einstein form,

fBE(E, t) =
1

e
E−µ
T − 1

(2.8)

fFD(E, t) =
1

e
E−µ
T + 1

(2.9)

where µ represent the chemical potential when the species are in equilibrium, but in general it
is a perturbation function which depends on the temperature, µ(T ). We will be interested in
systems at temperatures T smaller than the quantity E−µ. In this limit the above distribution
functions reduce to

f(E, T ) → e−
E−µ
T . (2.10)

Note that with these approximations we can safely neglect the Pauli blocking/Bose enhancement
factors in Eq. (2.4), so

{f3f4[1± f1][1± f2]−f1f2[1± f3][1± f4]}

→ e−
(E1+E2)

T {e
(µ1+µ2)

T − e
(µ3+µ4)

T }.
(2.11)
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where we made use of the energy conservation, E1 + E2 = E3 + E4. Therefore the number
density of species i is given by

ni = gie
µi
T

∫
d3p

(2π)3
e−

Ei
T (2.12)

where we have used the definition given in Eq. (2.5). The equilibrium number density of species
i is define as [31]

n
(0)
i ≡ gi

∫
d3p

(2π)3
e−

Ei
T . (2.13)

Note that if the species of interest is non-relativistic i.e. mi � T , Eq. (2.13) gives

n
(0)
i =

(
miT

2π

)3/2

e−
mi
T , (2.14)

while, if we refer to a relativistic species i.e. mi � T , the result would be

n
(0)
i = gi

T 3

π2
. (2.15)

Thanks to the definition in Eq. (2.13), the perturbation factor, e
µi
T , can be re-express as the

ratio ni/n
(0)
i , and so the last factor in (2.11) becomes

(
e

(µ1+µ2)
T − e

(µ3+µ4)
T

)
=

(
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

)
. (2.16)

Using this result the r.h.s. of Eq. (2.7) becomes

∑
spins

∫
d3p1

(2π)32E1

∫
d3p2

(2π)32E2
e−

(E1+E2)
T

{∫
d3p3

(2π)32E3

d3p4
(2π)32E4

(2π)4δ4(p1 + p2 − p3 − p4)|M|2
}(

n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

)
(2.17)

where we used the collisional term given in Eq. (2.4). This expression can be further simplify
exploiting the definition of the cross-section σ [61], obtaining that

g1g2

∫
d3p1
(2π)3

d3p2
(2π)3

σvM e−
E1
T e−

E2
T

(
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

)
. (2.18)

where vM is the Møller velocity, which is defined as [43]

vM =

√
(p1 · p2)2 −m2

1m
2
2

E1E2
≡ F

E1E2
(2.19)

and with · we mean the Lorentz four-dimensional scalar product. Knowing that the thermal
average of cross-section times velocity is defined as

〈σvM〉 ≡

∫ d3p1
(2π)3

d3p2
(2π)3 g1g2σvM e−

E1
T e−

E2
T

n
(0)
1 n

(0)
2

(2.20)

we can finally rewrite the Boltzmann equation in its standard form

∂n1

∂t
+ 3Hn1 = n

(0)
1 n

(0)
2 〈σvM〉

(
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

)
. (2.21)
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Assuming that after their production species 3 and 4 go quickly in equilibrium with the thermal
background i.e. n3 = n

(0)
3 , n4 = n

(0)
4 , and that species 1 and 2 have the same massm1 = m2 ≡ m

(which implies that n1 = n2 ≡ n, n(0)1 = n
(0)
2 ≡ n(0)), Eq. (2.21) becomes

∂n

∂t
+ 3Hn = 〈σvM〉

[
(n(0))2 − n2

]
. (2.22)

In order to resolve Eq. (2.22) a useful way is to rewrite it scaling out the effect of the expansion
of the Universe using the variable [31]

Y ≡ n

s
, (2.23)

where s is the entropy density which is equal to [51]

s =
2π2

45
g∗sT

3 (2.24)

and the quantity g∗s is defined as [51]

g∗s ≡
∑

bosons

gb

(
Tb

T

)3

+
7

8

∑
fermions

gf

(
Tf

T

)3

. (2.25)

In both the above equations T is the photons temperature, which defines the common temper-
ature of the species in equilibrium with the thermal bath. Therefore using the variable defined
in Eq. (2.23) the Boltzmann equation read as

∂Y

∂t
= −s〈σvM〉

{
Y 2 − (Y (0))2

}
. (2.26)

Since 〈σvM〉 usually, depends explicitly upon temperature, T , rather than time, t, it is useful
to introduce the variable

x ≡ m

T
. (2.27)

This variable can be connected with the time t knowing that in a flat Universe the Hubble
constant is equal to [51]

H =

√
8πG

3

π2

30
g∗T

2 =

√
4

45
π3g∗

T 2

MPl
≈ 1, 66

√
g∗

T 2

MPl
(2.28)

and the fact that in the radiation-dominated era1 we have that a(t) ∝
√
t thus [51]

t =
1

2H
=

√
45

16π3g∗

MPl

T 2
≈ 0.301g

−1/2
∗

MPl

T 2
= 0.301g

−1/2
∗

MPl

m2
x2, (2.29)

where in both the above equations g∗ is defined as [51]

g∗ ≡
∑

bosons

gb

(
Tb

T

)4

+
7

8

∑
fermions

gf

(
Tf

T

)4

. (2.30)

Therefore using Eq. (2.29) we can recast Eq. (2.26) as

∂Y

∂x
= −〈σvM〉s

Hx

{
Y 2 − (Y (0))2

}
. (2.31)

The Boltzmann equation given in Eq. (2.31) is a particular form of Riccati equation [51], for
which there are no general analytic solutions. Approximate solutions to it are given in Appendix

1The assumption of a radiative Universe is consistent with the fact that all the freeze-out processes which
we are interested occur much earlier than the matter-dominated era.
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A; here we recall the later time solution which would be useful to find the relic abundance. Thus
for x→ ∞ Eq. (2.31) has as approximate solution

Y∞ =

√
45

π

g
1/2
∗

g∗s

1

mMPlJ(xfo)
, (2.32)

where J(xfo) is defined as

J(xfo) ≡
∫ ∞

xfo

〈σvM〉
x2

dx (2.33)

and xfo is defined at the "freeze-out" temperature Tfo. Now because we have assumed that the
the species under interest is non-relativistic, its present density is simply given by ρ = mn =
ms0Y∞, where s0 is the present entropy density. Usually the relic density is defined as Ω ≡ ρ/ρc
where ρc is the critical density. So we have that the relic density is given by [45]:

Ωh2 =
1.07 · 109

MPlJ(xfo)

g
1/2
∗

g∗s
GeV−1 (2.34)

where h is the Hubble parameter defined as h = H0/100Kms−1Mpc−1.2 The “freeze-out”
temperature Tfo and in particular xfo is given by the iterative solution [45], [19], [51]

xfo ' ln

[
0.038c(c+ 2)gMPlm〈σvM〉

g
1/2
∗s x

1/2
fo

]
. (2.35)

where c is a constant of order of unity. The principal steps to arrive to this approximate solution
are given in Appendix A.
Here we have implicitly made an important approximation. We assumed that g∗ and g∗s,
remain constant during all the evolution of the species considered; this approximation is in
general not correct, in fact as we can see from Eq. (2.30) and Eq. (2.25) g∗ and g∗s depend on
the ratio between the species temperatures, Ti, and the one of the thermal bath, T . Relaxing
this approximation it can be demonstrated [43] that the relic density formula given in Eq. (2.34)
is modified as

Ωh2 =
1.07 · 109

MPl gtot J(xfo)
GeV−1 (2.36)

where gtot denote the mean value of the quantity gtot which is equal to [43]

gtot =
g∗s(T )√
g∗(T )

[
1 +

1

3

d lnhc(T )

d lnT

]
. (2.37)

where hc(T ) is defined as
hc(T ) =

∑
i coup

gi (2.38)

which is the sum of all degrees of freedom of the species in equilibrium at temperature T .

2.2 Thermally averaged cross-section
The physic which determines the relic density is contained in the thermal average of annihilation
cross-section times velocity, 〈σvM〉. This is, usually, computed by expanding the cross-section at
low velocity, or equivalently, expanding it in the total kinetic energy per unit of mass. Following
[43] here we give an expansion formula for the thermal average in the non-relativistic regime
assuming m1 = m2 ≡ m. We start observing that the product vMn1n2 is invariant under
Lorentz transformations; in fact its definition is such that, the invariant interaction rate per
unit of volume and unit of time can be written as

dN
dV dt

= σvM n1n2 (2.39)

2H0 ' 67.3Kms−1Mpc−1 [60] is the present value of the Hubble constant.
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where σ is the invariant annihilation cross-section. In our case, the densities n1, n2 and the
Møller velocity vM refer to a generic cosmic co-moving frame. In particular, from Eq. (2.19),
the Møller velocity in terms of the velocities of the incoming particles, ~v1 and ~v2, reads [43]

vM =
√
(~v1 − ~v2)2 − (~v1 × ~v2)2 (2.40)

Now the question is what relationship there is between the thermal averages 〈σvM〉, 〈σvlab〉lab
and 〈σvcm〉cm, where the first average is taken relatively to the generic cosmic co-moving frame,
the second in the laboratory frame (the frame where particle 1 is at rest), and the third in
the center-of-mass frame. Exploiting the Lorentz invariance of the ratio dni/Ei [43] and the
Lorentz invariance of the factor vM dn1dn2 we have that

v
′

M dn
′

1dn
′

2 = vM
E1E2

E
′
1E

′
2

dn
′

1dn
′

2 (2.41)

from which we get

vM = v
′

M
1− (~v1 · ~v2)
1− (~v1 ′ · ~v2 ′)

(2.42)

where the quantities with a prime refer to a different frame. In the case where the primed
system is the laboratory frame, e.g. the rest frame of particle 1, or the center-of-mass frame,
the Møller velocity v

′

M coincides with the relative velocity vlab or vcm respectively, see Eq. (2.40).
Thus using Eq. (2.42) we get that

vM = vlab(1− ~v1 · ~v2) (2.43)

for the laboratory frame, while in the center-of-mass frame we have that

vM = vcm
E2

cm

E1E2
= vcm

1

2

[
1− ~v1 · ~v2 +

m2

E1E2

]
(2.44)

where we have used the fact that for particles of equal mass, m, the invariant Mandelstam
variable s is s = 4E2

cm, and Ecm is the energy of particles in the center-of-mass frame, remember
that they have equal masses.
The relation between the thermal average of cross-section times velocity in the primed system,
which is defined as

〈σv
′

M〉
′
=

∫
σv

′

M dn
′

1dn
′

2∫
dn′

1dn
′
2

, (2.45)

with 〈σvM〉 in the generic cosmic co-moving frame, which defined in the same way without a
prime, can be obtained by noticing that the numerator is Lorentz invariant while the denomi-
nator changes under Lorentz transformations. Thus we have that

〈σvM〉 = 〈σv
′

M〉
′
∫

dn
′

1dn
′

2∫
dn1dn2

. (2.46)

To find the ratio
∫

dn
′
1dn

′
2∫

dn1dn2
we consider the invariance of the quantity vMdn1dn2 rewritten as

vM
v

′
M

dn1dn2 = dn
′

1dn
′

2. (2.47)

Integrating both sides of the last equation and dividing by
∫

dn1dn2 we get∫
vM/v

′

M dn1dn2∫
dn1dn2

=

∫
dn

′

1dn
′

2∫
dn1dn2

=

〈
vM
v

′
M

〉
. (2.48)

Substituting this result into Eq. (2.46) we obtain the relation between 〈σvM〉 and 〈σv′

M〉′

〈σvM〉 = 〈σv
′

M〉
′
〈
vM
v

′
M

〉
. (2.49)
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Using Eqs. (2.43) for the laboratory frame, we have〈
vM
vlab

〉
= 〈1− ~v1 · ~v2〉

= 1−

∫∞
0
g1

|~p1|3
E1

f1
d|~p1|
(2π)3

∫∞
0
g2

|~p2|3
E2

f2
d|~p2|
(2π)3

∫
p̂i1dΩ1

∫
p̂i2dΩ2∫

dn1dn2
= 1

(2.50)

where we have used Eq. (2.6) for velocities and the fact that
∫
p̂idΩ = 0, pi is the 3-momentum

versor. For the center-of-mass frame using Eq. (2.44) we have〈
vM
vcm

〉
=

1

2

〈
1− ~v1 · ~v2 +

m2

E1E2

〉
=

1

2

[
1+

〈
m2

E1E2

〉] (2.51)

where we used the result given in Eq. (2.50). Thus we finally obtain the relation

〈σvM〉 = 〈σvlab〉lab =
1

2

[
1+

〈
m2

E1E2

〉]
〈σvcm〉cm. (2.52)

Note that the factor
〈
vM
vcm

〉
varies from 1/2 for a highly relativistic species to 1 for a fully

non-relativistic one. Therefore in the non-relativistic limit we have that

〈σvM〉 = 〈σvlab〉lab ≈ 〈σvcm〉cm. (2.53)

Thus, thanks to this result, we can perform the calculation of the thermal average, in the
non-relativistic limit, referring indifferently to 〈σvlab〉lab or 〈σvcm〉cm instead of 〈σvM〉.

We choose to perform our calculations in the laboratory frame. We can expand σvlab in
terms of the total kinetic energy per unit of mass in the laboratory frame, that for particles
with same mass is equal to[43]

ε =
(E1lab −m) + (E2lab −m)

2m

=
E2lab −m

2m
.

(2.54)

The Taylor expansion of σvlab in powers of ε is defined as [43]

σvlab =

∞∑
n=0

1

n!

∂nσvlab
∂εn

∣∣∣∣
ε=0

εn

≡
∞∑
n=0

a(n)

n!
εn

(2.55)

and the thermal average of σvlab with the Maxwell-Boltzmann approximation reads as

〈σvlab〉lab =

∫
σvlab e

−E1/T e−E2/T d3p1d3p2∫
e−E1/T e−E2/T d3p1d3p2

. (2.56)

From this equation and using the expansion given in Eq. (2.55), we obtain that 〈σvlab〉lab in
powers of 1/x in the non-relativistic limit is equal to

〈σvlab〉labn.r. =
∞∑
n=0

a(n)

n!

1

xn
(2n+ 1)!!

2n

= a(0) +
3

2

a(1)

x
+

15

8

a(2)

x2
+ O

(
1

x3

)
.

(2.57)
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where the subscript n.r. means non-relativistic and in Appendix A we perform the detailed
calculation to obtain this result from Eq. (2.56). Substituting this expansion into the definition
of J(xfo), Eq. (2.33), we obtain that

J(xfo) =

(
a(0) +

3

4

a(1)

xfo

)
1

xfo
+ O

(
1

x3fo

)
(2.58)

and the relic density formula becomes

Ωh2 =
1.07 · 109 xfo

gtotMPl (a(0) + (3 a(1))/(4xfo))
GeV−1. (2.59)

Furthermore substituting the expansion in Eq. (2.57) into Eq. (2.35) we find that xfo is equal
to

xfo ' ln
(
0.038c(c+ 2)gMPlma(0)

)
− 1

2
ln
(
g∗s ln

(
0.038c(c+ 2)gMPlma(0)

))
(2.60)

Many authors expand the quantity σvlab in powers of the relative velocity vlab. Noting that in
the non relativistic limit we have

ε ' v2lab
4
, (2.61)

the expansion of σvlab in terms of vlab read as

σvlab =

∞∑
n=0

a(n)

n!
εn =

∞∑
n=0

a(n)

n!

v2nlab
4n

≡
∞∑
n=0

b(n)

n!
v2nlab (2.62)

where the coefficients a(n) and b(n) are related by

b(n) =
a(n)

4n
. (2.63)

In particular the above result for the relic density change as [42], [19]

Ωh2 =
1.07 · 109 xfo

gtotMPl (a(0) + 3 b(1)/xfo)
GeV−1 (2.64)

2.3 Co-annihilations
There are exception where the standard solution of the Boltzmann equation given above fails.
One of these exceptions occurs when the lightest particle is nearly mass degenerate with a set of
other particles. When this is the case the present relic density of the lightest particle would not
be determined only by its annihilation processes but also by the annihilation processes between
the slightly heavier particles, which will later decay into the lightest one [45]. Following ref [33],
we consider a system formed by N nearly degenerate species, Xi, with i = 1, ..., N , with gi
internal degrees of freedom, and masses mi; we assume that the label i runs from the lightest
to the heaviest particle, m1 < m2 < · · · < mN , and also that the lightest one is a stable
particle. The latter requirement can be satisfied assuming that X1 carries a multiplicatively
conserved quantum number which prevent its decay. Note that this quantum number must be
the same for all the particles in the set. For example if Xi are supersymmetric particles this
quantum conserved number is provided by R-parity which prevents the decay of the lightest
supersymmetric particle into SM particles as we will see in the next Chapter. For the system
under consideration, the reactions which can change the Xi number densities are

XiXj ↔ ll′ (2.65)
Xil ↔ Xj l

′ (2.66)
Xi ↔ Xj ll

′. (2.67)
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As in the last section we assume that the l species are relativistic and in (LTE) with the plasma
and for this reason, sometimes, we refer to them just as cosmic thermal background. Note that
reactions such as XiXj ↔ Xkl and Xil ↔ l′l′′ are forbidden by the assumed symmetry. Also
note that, as long as reactions of type (2.67) take place at a reasonable rate, we expect that at
the present time all the Xi particles have decayed into the lightest one. The relic abundance of
the generic Xi species is determined by a system of N Boltzmann equations such as

dni
dt

+ 3Hni =−
N∑
j=1

〈σijvij〉(ninj − n
(0)
i n

(0)
j )

−
N∑
j=1
j 6=i

[〈σ′
l ijvij〉(ninl − n

(0)
i n

(0)
l )− 〈σ′

l ijvij〉(njnl − n
(0)
j n

(0)
l )]

−
N∑
j=1
j 6=i

[Γij(ni − n
(0)
i )− Γij(nj − n

(0)
j )]

(2.68)

where vij is the Møller velocity of i, j particles.
The first term on the right-hand side describesXi Xj annihilations, whose total cross-section

is
σij =

∑
ll′

σ(XiXj → ll′). (2.69)

The second term describes Xi → Xj conversions by scattering with the thermal background,
while the last term accounts forXi decays. Note the relative minus sign for the inverse scattering
and production processes. Following Eq. (2.20) we can define the thermal average cross-section
of a generic annihilation process as

〈σijvij〉 =

∫ d3pi
(2π)3

∫ d3pj
(2π)3σijvijfifj∫ d3pi

(2π)3

∫ d3pj
(2π)3 fifj

(2.70)

where, as usual, fi is the phase space distribution function, and as in the previous sections we
will assume the Maxwell-Boltzmann approximation that sets fi = e

Ei
T .

Since all the Xi which remains after the "freeze-out" will decay into X1, the relevant quantity
is the total number density of all the Xi species, namely

n =

N∑
i=1

ni. (2.71)

Summing Eq. (2.68) over i from 1 to N , we get an evolution equation for the total number
density n

dn
dt

+ 3Hn = −
N∑

i,j=1

〈σijvij〉(ninj − n
(0)
i n

(0)
j ) (2.72)

where the scattering and decay terms cancel in the sum.
Here, as in the previous section, we will assume that the scattering processes, with the

cosmic background, take place at rate which is faster than the rate of the annihilation ones
and of the expansion rate of the Universe. As we said before this fact enforce the kinematical
equilibrium, so the perturbation of the distribution function, during the freeze-out, would be
carried by a single function of the temperature µi(T ) [43]. Note that the assumption of a nearly
mass degeneracy between the species Xi implies that they decouple from the thermal bath at
the same epoch. This allow us to assume that the µi(T ) would be nearly the same for every
species i.e. µ1 ≈ µ2 ≈ · · · ≈ µN . Thus using Eq. (2.12) and Eq. (2.13) for the density numbers
ni and n(0)i , we have that the following approximation holds [45]

ni
n

≈ n
(0)
i

n(0)
. (2.73)
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where n and n(0) are respectively the total number density and the total number density at the
equilibrium. Note that if the annihilation cross-sections, σij , are not radically different from
those of scattering processes, σ′

il, the assumption that the latter occur more rapidly than the
former ones is well satisfied. In fact the annihilation rate is about [45]

ninjσij ∼ T 3m
3
2
i m

3
2
j σije

−
mi+mj

T (2.74)

while the scattering rate is about

ninlσ
′

il ∼ T
9
2m

3
2
i σ

′

ile
−mi

T . (2.75)

where we have used the results given in Eq. (2.14) and Eq. (2.15) and the fact that the species
l is assumed to be relativistic. From this results we can see that the scattering rates are larger

by a factor nl

nj
∼
(
T
mj

)3/2
emj/T .

In order to recast Eq. (2.72) in a more suitable form it is convenient to define

ri ≡
n0i
n0

=

(
T
2π

)
gim

3
2
i e

−mi
T(

T
2π

)∑N
i=1 gim

3
2
i e

−mi
T

=
gi(∆i + 1)

3
2 e−x∆i

geff

(2.76)

where we have used Eq. (2.14) and the quantities ∆i, x and geff are respectively defined as

∆i ≡
mi −m1

m1
, x ≡ m1

T
, geff ≡

N∑
i=1

gi(∆i + 1)
3
2 e−x∆i .

With the definition in Eq. (2.76) we can rewrite the the right-hand side of Eq. (2.72) as

N∑
i,j=1

〈σijvij〉(ninj − n
(0)
i n

(0)
j ) =

N∑
i,j=1

〈σijvij〉rirj(n2 − (n(0))2)

= 〈σeffv〉(n2 − (n(0))2)

(2.77)

where we have redefined
N∑

i,j=1

〈σijvij〉rirj ≡ 〈σeffv〉 (2.78)

Therefore the Boltzmann equation for the total number density n becomes [33], [45]

dn
dt

+ 3Hn = −〈σeffv〉(n2 − (n(0))2). (2.79)

This equation as the same form as the one in the standard case, given in Eq. (2.22), and so it
can be resolved with the same methods. In particular the relic density formula will be the same
as in Eq. (2.34) with J(xfo) redefined as

J(xfo) ≡
∫ ∞

xfo

〈σeffv〉
x2

dx. (2.80)

Note that the exponential term, e−x∆i in Eq. (2.76), regulates the effectiveness of the various
co-annihilation processes. In fact if

∆i �
1

x
(2.81)

we have that the particular process becomes less important because ri → 0 and the contribution
of terms like 〈σijvij〉rirj in Eq. (2.78) are negligible. Thus we can state that the co-annihilations
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processes are of fundamental importance in the evaluation of the relic abundance of species X1

if
∆i .

1

x
. (2.82)

For what concern the thermal average of σijvij also in the case of co-annihilations we have that
the relation given in Eq. (2.73) holds,

〈σijvij〉 = 〈σijvlab
ij 〉lab. (2.83)

The quantity σijvlab
ij , as in the previous section, can be expanded as

σijv
lab
ij =

∞∑
n=0

a
(n)
ij

n!
εnij (2.84)

where εij is the total kinetic energy per unit of mass of particles Xi and Xj in the laboratory
frame i.e. the rest frame of species i, which is equal to

εij =
(Eilab −mi) + (Ejlab −mj)

mi +mj
=
Ejlab −mj

mi +mj
(2.85)

Following the same procedure of the standard case given in Appendix A we have that

〈σijvlab
ij 〉labn.r. =

∞∑
n=0

a
(n)
ij

n!

1

xn (1 + ∆i)n
(2n+ 1)!!

2n
. (2.86)

Using this result and the definition in Eq. (2.78), we can define the quantities [45]

I0eff ≡ xfo

a
(0)
11

N∑
i,j=1

∫ ∞

xfo

a
(0)
ij

x2
gigj(∆i + 1)

3
2 (∆j + 1)

3
2 e−x∆ie−x∆j

g2eff
(2.87)

I1eff ≡ x2fo

a
(1)
11

N∑
i,j=1

∫ ∞

xfo

a
(1)
ij

x3
gigj(∆i + 1)

3
2 (∆j + 1)

3
2 e−x∆ie−x∆j

(1 + ∆i)g2eff
(2.88)

With these formulae we can approximate the integral given in Eq. (2.80) as

J(xfo) '

(
a
(0)
11 I0eff +

3

2
I1eff

a
(1)
11

xfo

)
1

xfo
, (2.89)

which replaced in the relic density formula gives

Ωh2 =
1.07 · 109 xfo

geffMPl (a
(0)
11 I0eff + 3/2 a

(1)
11 I1eff/xfo)

GeV−1. (2.90)

In the case of co-annihilation the xfo is given by

xfo ' ln

[
0.038c(c+ 2)geffMPlm1〈σeffvM〉

g
1/2
∗s x

1/2
fo

]
. (2.91)

where we have used Eq. (2.35).
To conclude this Chapter we note that there are situations where the thermal average of

σv , both in the standard case that in the co-annihilations one, is poorly approximate by the
expansions given above. For example if the annihilation process occurs near a resonance the
expansion of the cross-section is inappropriate, because the propagator in the amplitude leads
to derivatives with alternating signs [43]. For this reason we give an exact formula for 〈σeffv〉
which is computed in the Appendix A. The exact formula is

〈σeffv〉 =
∫∞
0

dpeff p
2
effWeffK1

(√s
T

)
m4

1T
[∑

i
gi
g1

m2
i

m2
1
K2

(
mi

T

)]2 . (2.92)

where Weff and peff are respectively defined in Appendix A, and K1(x), K2(x) are the Bessel
function respectively of the first and second kind [1].
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Chapter 3

Supersymmetry and Dark Matter

In this Chapter we briefly review the more important features of a supersymmetric theory,
following, principally, refs. [54] and [5]. In particular we start recalling the more important
theoretical motivation which lead to the introduction of supersymmetry (SUSY), namely the
"hierarchy problem". After that we will give the basic bricks to construct a supersymmetric
theory and then we will specialize on the R-parity conserving minimal supersymmetric stndard
model (MSSM), giving its particle content with a particular attention to neutralinos, which
constitute the DM candidates considered in this thesis.

3.1 Why Supersymmetry
The Standard Model (SM) of particles, provided with an adequate extension to explain the
origins of neutrino’s masses, is a remarkably successful theory, which is able to explain the
phenomenology of elementary particles, from an energy scale of few eV to about 102 GeV. So,
one, may wonder why we need to go beyond the SM, introducing, for example, an intricate
formalism such as the supersymmetric one. The motivation to this relies on the fact that the
SM is affected by some theoretical problems [5].

One of these issues is the, so called, "hierarchy problem". This problem is related to a rather
high sensitivity of SM Higgs potential and, in particular of the Higgs mass parameter, to the
high energy scale.

The SM Higgs potential is defined as [5]

VH = µ2φ†φ+
λ

4
(φ†φ)2 (3.1)

where, φ ≡
(
φ+

φ0

)
, is the SU(2)L Higgs doublet, while λ and µ are respectively the self-

interaction coupling constant and the Higgs mass parameter. To spontaneously break the
electroweak symmetry, the Higgs field must acquire a non-vanishing vacuum expectation value
(VEV), which is defined as 〈φ〉0 ≡ v/

√
2; note that this is possible if and only if λ > 0 and

µ2 < 0.
From measurements regarding the proprieties of the weak interaction, the VEV is known to

be about [5] √
2µ2

λ
=

v√
2
≈ 174GeV. (3.2)

The "hierarchy problem" arise when we include high order corrections to the µ parameter. For
example, at the one loop, the self-interaction term gives the diagram [5]

h h

h

' λ

∫ Λ

0

d4k

(2π)4
1

k2 − µ2
, (3.3)

29
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which produces a correction to µ2 of about

δµ2 ' λΛ2 + . . . , (3.4)

where we have dropped out the numerical factors and the ellipses represent terms which grows
at most as ln (Λ/µ). Here Λ denotes an ultra-violet momentum cut-off, which we can interpreter
as the high energy scale at which new physics is required [54]. From Eq. (3.2) we have that
|µ| =

√
λv/2 ≈

√
λ 123GeV, so, if we want to treat λ perturbatively, µ must have a value which

is at most of few hundred of GeV, i.e. µ2 ≈ (100GeV)2 [54]. Consequently if we take Λ to be
of order of MPl or of the GUT1 unification scale, what happen is that the quantum correction,
given in Eq. (3.4), is about 30 order of magnitude larger than the expected µ2 value. Therefore
while phenomenology requires that µ must lays in the electroweak energies range, the radiative
corrections to it, drive its natural value to be of order O(Λ), rather than O(100GeV) [26]. This
is the essence of the "hierarchy problem". It is worth noting that this issue is peculiar of all
theories which contain scalar fields [5].

The "hierarchy problem" is intimately connected with the fine tuning problem. In fact
taking into account the correction δµ2, at the one loop order, the physical parameter is given
by

µ2 ' µ2
0 − Λ2λ, (3.5)

where µ0 is the bare constant and the relative minus sign arises from the fact that µ2 is required
to be negative. So, if Λ is of order of MPl, to have µ ≈ 100GeV we should fine tune the value
of µ0 in order to obtain a remarkable cancellation, between µ2

0 and Λ2λ [5].
It is important to note that the problem which affects the Higgs mass has also an impact

on the entire mass spectrum of the SM. As we know all the masses, both those of fermions
and those of gauge bosons, are proportional to the Higgs VEV an so, via Eq. (3.2), also on |µ|.
Thus the "hierarchy problem" can lead to a breaking of the hierarchy between the masses of
the SM [26].

Many attempts were made to resolve the "hierarchy problem" and one of this was super-
symmetry. Roughly speaking this symmetry provides that at each bosonic degree of freedom
(d.o.f.) must be associate a fermionic d.o.f., or in other words, the SUSY conserved charges
turn bosonic state into fermionic ones and vice versa [54]

Q |b〉 = |f〉 Q |f〉 = |b〉 , (3.6)

where b stands for bosons while f for fermions. Thus in the SUSY framework at the bosonic
loop given in Eq. (3.3) must be associated a fermionic one, of the form [5]

h̃

h h ' −g2f
∫ Λ

0

d4

(2π)4
Tr

[
1

( 6 k −mf)2

]
' −g2f Λ2, (3.7)

where gf is the boson-fermion coupling constant, mf is the fermion mass and with h̃ we refer to
the fermionic partner of the SM Higgs h. Note that the minus sign comes from the fermionic
loop.
Therefore, now, the correction to µ2 turns out to be sum of Eq. (3.3) and Eq. (3.7),

δµ2 ' (λ− g2f )Λ
2. (3.8)

Thus, if the relation λ = g2f holds, the quadratically sensitivity of µ2 to the scale energy,
completely disappears.
In light of this, SUSY appears as the natural framework where the "hierarchy problem" can be
resolved.

1GUT means Great Unified Theory and in particular it refers to the unification of strong and electroweak
interaction. A peculiarity of this theory is that the SM coupling constants, driven by the renormalization group
equations, are supposed to unify at an energy scale of about ∼ 3× 1016 GeV [60]
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3.2 Basics of SUSY

As we said in the previous section, SUSY transformations turn bosons into fermions and vice
versa, see Eq. (3.6). Thus, changing the spin of the field from integer to semi-integer and vice
versa, they act directly on the representation of a given field under the Poincarè algebra. This
suggest that SUSY must be a space-time symmetry.
The question if and how is possible to extend the Poincarè algebra in order to include also
SUSY transformations, is a non trivial issue. From the Coleman-Mandula theorem [28], any
new conserved operator, other than the already present four-momentum vector Pµ and the
anti-symmetric angular-momentum tensor Mµν , can have only a trivial character or, in other
words, it must be a Lorentz scalar. Adding more conserved operators with non-trivial Lorentz
transformations would lead to a restriction of the possible kinematical configurations in a scat-
tering process [5]. Nevertheless the Coleman-Mandula theorem does not take into account the
possibility that the new operator could be a spinor. In fact the Haag-Lopuszanski-Sohnius [46]
extension theorem state that using both commutative and anti-commutative generators, the
Poincarè algebra can be extended in a non-trivial way, leading to the more general supersym-
metric algebra.

Thus the generator of a SUSY transformation, Q, has a spinor character. Note that because
spinors are intrinsically complex objects, also Q† must be a SUSY generator [54]. In principle
we can add more spinorial generators, but in this thesis we refer only to a model with only two
SUSY generators, namely Q and Q†. In light of this the components of the SUSY generators,
Qa and Q†

b must satisfied both commutation and anti-commutation relations, which are [54]

{Qa, Q†
b} = −2σµabPµ (3.9a)

{Qa, Qb} = {Q†
a, Q

†
b} = 0 (3.9b)

[Qa, Pµ] = [Q†
b, Pµ] = 0, (3.9c)

where Pµ is the 4-dimensional conserved momentum vector. Note that the appearance of Pµ in
the first relation is consistent with the fact that it transforms like a 1-spin object under Lorentz
transformations, while Q and Q† transforms as 1/2-spin objects [54].

As we know in a generic quantum field theory every field must belong to an irreducible
representation of the Poincarè algebra. Within the SUSY algebra the irreducible representations
are called supermultiplets.

Because SUSY generators turn bosons into fermions and vice versa, every supermultiplet
must contains both ferimonic and bosonic states. Following [54] we can show that every super-
multiplet must contain the same number of bosonic and fermionic d.o.f. Defining S as the spin
angular momentum operator, the operator (−1)2S has eigenvalues respectively

(−1)2S |f〉 = (−1) |f〉 , (−1)2S |b〉 = (+1) |b〉 , (3.10)

where f denotes a fermionic state and b a bosonic one. Using Eqs. (3.6) it is straightforward
to show that

{(−1)2S , Qa} = 0. (3.11)

Furthermore, given a supermultiplet we can consider a subspace of states |i〉 which, tanks to
relations (3.9), all have the same eigenvalue of the 4-momentum operator Pµ. This assures that
any combinations of Q and Q† cannot change the 4-momentum of the states |i〉 and so we have
a completeness relation within their subspace,

∑
i |i〉 〈i|.

Now taking the trace over all |i〉 of the operator (−1)2SPµ we have

− 2σµab

∑
i

〈i| (−1)2SPµ |i〉 =
∑
i

〈i| (−1)2SQaQ
†
b |i〉+

∑
i

〈i| (−1)2SQ†
bQa |i〉 (3.12)

where we used Eqs. (3.9). Now inserting the completeness relation in the second term of the
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above expression we find

−2σµab

∑
i

〈i| (−1)2SPµ |i〉 =
∑
i

〈i| (−1)2SQaQ
†
b |i〉+

∑
i

∑
j

〈i| (−1)2SQ†
b |j〉 〈j|Qa |i〉

=
∑
i

〈i| (−1)2SQaQ
†
b |i〉+

∑
j

〈j|Qa(−1)2SQ†
b |j〉

(3.13)

and using Eq. (3.11) we get

− 2σµab

∑
i

〈i| (−1)2SPµ |i〉 =
∑
i

〈i| (−1)2SQaQ
†
b |i〉 −

∑
j

〈j| (−1)2SQaQ
†
b |j〉 = 0. (3.14)

Knowing that every |i〉 state has the same 4-momentum pµ and taking into account relations
(3.10), the previous result can be rewritten as

pµTr{(−1)2S} = pµ(nb − nf ) = 0 (3.15)

which, if pµ 6= 0, implies that nb = nf , where nb and nf denote respectively the number of
bosonic and fermionic d.o.f.

SUSY algebra, given in Eq. (3.9), implies that Q commutes also with PµP
µ ≡ P 2. Thus

within the same supermultiplet the bosonic d.o.f. and the fermionic ones must have the same
P 2 eigenvalue and therefore they have the same mass.

Furthermore the generators of gauge transformations commute with the SUSY generators Q
and Q†. Therefore all the particles in a given supermultiplet must be in the same representation
of the gauge group [54]

The type of supermultiplets which compare in a renormalizable SUSY theory are called
chiral and vector supermultiplets.

Chiral supermultiplets are the supersymmetric generalization of spinors field and they are
composed by a Weyl spinor ψi with an associated scalar complex field, φi and a further scalar
complex auxiliary field Fi, which does not propagate and so it cannot represent any particle.
The associated non-interacting supersymmetric Langragian is [58]

LChiral = ∂µφ
†
i∂
µφi + iψ†

iσ
µ∂µψi + F †

i Fi (3.16)

where the index i indicates all gauge and/or flavor d.o.f., and as usual the sum over repeated
indices is understood. The auxiliary field is added to maintain the equality between bosonic
and fermionic d.o.f. both on-shell and off-shell. In fact as we can check [47], from the equations
of motion we note that Fi has no free components while φi, as a complex scalar field, has 2
free components and so the total number of bosonic d.o.f., on-shell, is nb = 2. A Weyl spinor,
on-shell, has 2 free components, which lead to a total number of fermionic d.o.f. nf = 2. Thus
on-shell the relation nb = nf holds.

Conversely off-shell a Weyl spinor has 4 free components while a scalar complex field still
has 2 free components and so without the field Fi there would be a mismatch between nf and
nb. The fact that the field Fi, without the constraint provided by the equations of motion
has 2 free components, implies that its introduction will restores the relation nf = nb also
off-shell, where nf = 4 and nb = 4. Moreover the introduction of the field Fi, provided with
the appropriate SUSY transformations, will assure that the SUSY algebra closes both on-shell
and off-shell [54].

Vector supermultiplets are the supersymmtrization of the gauge boson fields. They contain
a vector field Aaµ, an associated Weyl spinor, λa, called gaugino and an auxiliary real scalar
field Da which is introduced for the same reasons which lead to the introduction of Fi. All
these fields belong to the adjoint representation of the associated gauge group. A sample of
their Langarngian is [58]

LVector = −1

4
F aµνF

a µν + iλ† aσµDµλ
a +

1

2
DaDa (3.17)
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where the sum over repeated a is understood. F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν is the field

strength and Dµλ
a = ∂µλ

a + gaf
abcAbµλ

c is the covariant derivative where ga is the gauge
coupling constant2, and the fabcs are the structure constants.

As usual to make the chiral Langarngian (3.16) gauge invariant we have to promote the
ordinary derivative to a covariant one ∂µ → Dµ which for chiral fields is defined as Dµψi =
∂µψi + igaT

a
ijA

a
µψj , where T aij are the generators of the gauge group and the same definition

holds also for φi. After that combining the Langranginas (3.16), (3.17), we can write the SUSY
Langrangian as

LSUSY
Free =Dµφ

†
iD

µφi + iψ†
iσ

µDµψi + F †
i Fi −

1

4
F aµνF

a µν + iλ† aσµDµλ
a

+
1

2
DaDa + (

√
2g(φ†iT

a
ijψj)λ

a + h.c.) + ga(φ
†
iT

a
ijφj)D

a
(3.18)

where the last 3 terms come from the necessity to consider all the possible supersymmetric,
renormalizable and gauge invariant interactions. However in a realistic theory there are also
mass and non-gauge interactions3. It is possible to show [54], that the most general, renor-
malizable interaction Langarngian which is also gauge and supersymmetric invariant, can be
written as

LSUSYInt =

(
− 1

2
W a
ijψiψj +WiFi

)
+ h.c. (3.19)

where Wij and Wi turn out to be respectively

Wij =
δ2W

δφiδφj
Wi =

δW

δφi
. (3.20)

The functional W is called superpotential and its form is completely determined by the require-
ment that the Langarngian (3.19) must be supersymmetric invariant

W =
1

2
Mijφiφj +

1

3!
yijkφiφjφk. (3.21)

Note that just because the mass dimension of (3.19) must be [Lint] = 4, we have that the
superpotential has [W ] = 3 and thus the matrix Mij has [Mij ] = 1 while the Yukawa-like
couplings have [yijk] = 0. It is important to note that treating the scalar fields φi as complex
variables, the superpotential Eq. (3.21), is a holomorphic function [54]. This fact will have a
fundamental consequence as we will see below. To finish we note that the auxiliary fields Fi
and Da, via their equations of motion, can be rewritten in terms of the scalars φi. In fact using
the total supersymmetric Langrangian

LSUSYTot = LSUSYFree + LSUSYInt (3.22)

the equations of motion for Fi and Da turn out to be

Fi = −Wi Da = −ga(φ†iT
a
ijφj), (3.23)

and consequently we can eliminate them in favour of φi’s, obtaining a SUSY Langargian con-
taining only scalars, φi, Weyl fermions, ψi, gauge vectors, Aaµ, and gauginos, λa.

3.3 The Minimal Supersymmetric Standard Model
The Minimal Supersymmetric Standard Model is the supersymmetric version of the SM, with
the minimal particle content [58]. First of all to promote the SM to a supersymmetric theory we
need to define all the superpartners of the fields present in the SM Langrangian. In other words

2Here the index a has not to be summed, it labels only the gauge group.
3It does not mean that these interaction terms are not gauge invariant, it means that the interaction terms

do not come from covariant derivatives.
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we have to define all the supermultiplets remembering that the partners and the associated
superpartners transform in the same way under the SM gauge group SU(3)c×SU(2)L×U(1)Y.

For what concerns leptons and quarks we have to take into account that their left-handed
and right-handed parts transform differently under the SM gauge group. For this reason they
must be member of different chiral supermultiplets. Thus the left-handed leptons form chiral
supermultiplets (one for each family generation) with their scalar superpartners which are called
left-handed sleptons. The same holds for the left-handed quarks, where their superpartners
are called left-handed squarks. For what concerns the right-handed fermions we follow the
convention used in [54], where, instead to take them explicitly, are used their conjugate versions.
Also here to each right-handed leptons/quarks is associated a right-handed sleptons/squarks
which together form chiral supermultiplets. In such a manner the MSSM chiral sector is defined
in terms of only left-handed fields.

The SM gauge vector bosons are put, with their gauginos superpartners, into vector super-
multiplets. So the SU(2)L gauge bosons, W± and W 0, have their fermionic superpartner which
are called winos and are indicated as W̃± and W̃ 0.The definition of W̃± follows directly from
the one for W± gauge boson [5], and so we have

W̃± ≡ W̃ 1 ∓ iW̃ 2

√
2

, (3.24)

where W̃ 1 and W̃ 2 are the superpartners respectively of W 1 and W 2 gauge bosons. The
fermionic superpartner of B, the U(1)Y gauge boson, is called bino and it is indicated as B̃. It
is worth to note that B̃ and W̃ 0 can be mixed to form the superpartners of the Z0 boson and of
the photon, γ, which are called zino, Z̃0, and photino, γ̃. As last gluinos, g̃, are the fermionic
superpartners of the gluons, g, and also them, they are an SU(3)c octet.

The Higgs sector can be supersymmetrize putting the SM Higgs doublet, Hu ≡
(
H+
u

H0
u

)
,

in a chiral supermultiplet with the corresponding fermionic superpartner H̃u ≡
(
H̃+
u

H̃0
u

)
, called

Higgsino. Unfortunately in a SUSY theory this is not enough.
In the SM we can give mass to down type quarks via the Higgs field Hu. In order to give

mass also to up type quarks, in the SM, we use the definition[58]

Ĥu ≡ iσ2H
∗
u =

(
H0 ∗
u

−H−
u

)
. (3.25)

This recipe does not work in a SUSY theory, for two reasons. First, recalling what we said above,
the superpotential must be an holomorphic function of its fields and so it cannot contains their
complex conjugate versions. Second, if there is only one chiral supermultiplets the MSSM would
suffer of a gauge anomaly. In the SM this anomaly cancels among the contributions of various
fermions. The condition for anomaly cancellation is [47]

Tr{T 2
3 Y } = Tr{Y 3} = 0 (3.26)

where T3 is the diagonal (usually the third) generator of the SU(2)L algebra while Y are the
U(1)Y hypercharges. Using the hypercharge values given in Tab. (3.1), it is straightforwardly
to check that in SM this relation holds. Now the introduction of a new fermion with Yu = 1/2,
namely the higgsino H̃u, definitely spoils the relation in (3.26), restoring the anomaly[47]. This

can be cancelled again introducing a new Higgs doublet, which is define as Hd ≡
(
H0
d

H−
d

)
with

an opposite hypercharge, Yd = −1/2. This new Higgs field forms a supermultiplet with its

higgsino superpartner define as H̃d ≡
(
H̃0
d

H̃−
d

)
. Thus, in this manner, the relation (3.26) is

restored, because of the cancellation between Yu and Yd. Note that Hd can be used also to give
mass to up type quarks, preventing the use of complex conjugate fields in the superpotential.
All the particle content of the MSSM is depicted in Tab. (3.1)
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Names Fields (SU(3)c, SU(2)L, Y )

quarks squarks Q ≡
(
uL
dL

)
Q̃ ≡

(
ũL

d̃L

)
(3,2, 16 )

u†R ũ∗R (3,1,− 2
3 )

d†R d̃∗R (3,1, 13 )

leptons sleptons L ≡
(
νL
eL

)
L̃ ≡

(
ν̃L
ẽL

)
(1,2,− 1

2 )

e†R ẽ∗R (1,1, 1)

Higgs higgsinos Hu ≡
(
H+
u

H0
u

)
H̃u ≡

(
H̃+
u

H̃0
u

)
(1,2, 12 )

Hd ≡
(
H0
d

H−
d

)
H̃d ≡

(
H̃0
d

H̃−
d

)
(1,2,− 1

2 )

gluons gluinos g g̃ (8,1, 0)

Wbosons winos W± W 0 W̃± W̃ 0 (1,3, 0)

Bboson bino B B̃ (1,1, 0)

Table 3.1: In the table are summarized all the particles of the MSSM model. The convention used for
the hypercharge assignment is Q = T3 + Y where Q is the electric charge normalized with the
electronic one and with T3 we denote the component of the diagonal generator of the SU(2)L
group.

Now that we know the particle content of the MSSM the other thing that we need to specified
is the superpotential. For the MSSM it is defined as [5]

WMSSM = yiju ũ
∗ iQ̃j ·Hu − yijd d̃

∗ iQ̃j ·Hd − yije ẽ
∗ iQ̃j ·Hd + µHu ·Hd (3.27)

where the indices i, j run over family generations and we have suppressed the color indices.
The (·) means the SU(2)L invariant product of doublets i.e. Hu · Hd ≡ εαβH

α
uH

β
d where εαβ

is the total anti-symmetric tensor in two dimensions. The parameters yu, yd, ye are Yukawa
3 × 3 matrices in family space and in particular they are exactly the same Yukawa matrices
which enter in the SM. In fact, as we can see from Eq. (3.21), when the Higgs fields Hu and
Hd respectively acquire VEVs these couplings provide the masses to quarks and leptons. On
contrary the µ parameter is a new one and it has nothing to do with the µ mass parameter of
the SM Higgs scalar potential given in Eq. (3.1).

As we mentioned before, in an unbroken SUSY framework all the members of the same
supermultiplet must have the same mass. In the MSSM this would imply, for example, that
selectrons would have the same mass of the electrons, mẽ = me ' 0.511MeV [60], and this
would made them easily detectable. The fact that no one of the superpartners of the SM
particles have been detected, suggests that at the electroweak energy scale SUSY must be a
broken symmetry. Roughly speaking there are two way to break a symmetry, the first is by
introducing terms which spoil the symmetry explicitly while the second is by spontaneously
breaking it, as it happens to the electroweak symmetry in the SM [5]. Here we adopt the first
approach, taking into account only the effects of an unknown breaking mechanism which is
assumed to operate at some high energy scale.

However there is another subtle point with the SUSY breaking issue. The SUSY braking
parameters must be soft terms, which means that their coupling parameters must have positive
mass dimension [54]. The motivation to this requirement is related to the "hierarchy problem".
As we can see from Eq. (3.8) to resolve (at any radiative order) the problem of the quadratic
divergence, the equality between the coupling constants must holds i.e. λb = g2f . If the SUSY
breaking terms contain coupling constants of null-mass dimension, the radiative corrections due
to these non-soft terms would make the equality between λb and g2f no longer valid and the
quadratically divergence will be restored [5]. So we require that the breaking terms have to be
soft, because we want that SUSY still resolves the "hierarchy problem".
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The requirement that the relation (3.8) still be resolved, implies that the corrections due to
the soft terms to µ2, have to be proportional to ln

(
Λ/m2

soft
)

[54]. By dimensional analysis this
corrections have the form [5]

δµ2 ' m2
soft ln

(
Λ/m2

soft
)

(3.28)

where msoft is the typical energy scale of SUSY breaking terms. From this result we can also
argue that, to ensure that SUSY still provides a solution to the "hierarchy problem", msoft
must not be much greater then a few TeV.

For these reasons to provide a phenomenologically viable model we have to introduce in the
unbroken MSSM Langrangian (3.22) a soft Langrangian, having care to write only those soft
terms which do not break the MSSM gauge symmetry, SU(3)c × SU(2)L × U(1)Y. For the
MSSM the general Lsoft is [54].

Lsoft =− 1

2
(M3g̃g̃ + M2W̃

0W̃ 0 + M1B̃B̃ + h.c.) − M2W̃
+W̃−

− (auũ
∗Q̃ ·Hu − add̃

∗Q̃ ·Hd − aeẽ
∗L̃ ·Hd + h.c.)

−m2
Q̃
Q̃† · Q̃ − m2

L̃
L̃† · L̃ − m2

ẽẽ
∗ẽ − m2

ũũ
∗ũ − m2

d̃
d̃∗d̃∗

−m2
Hu
H†
u ·Hu − m2

Hd
H†
d ·Hd − (bHu ·Hd + h.c.),

(3.29)

where we have suppressed all the flavor and color indices. The constants M1, M2 and M3 have
a mass dimension of one and are called respectively bino, wino and gluino mass parameters.
The constants au, ad, ae and mQ̃, mL̃, mẽ, mũ, md̃ are 3×3 matrices in the families space and
they have a mass dimension of one. It is worth to remark that in order to resolve the "hierarchy
problem", we must have that

M1,M2,M3, au, ad, ae ∼ msoft

m2
Q̃
,m2

L̃
,m2

ẽ,m
2
ũ,m

2
d̃
,m2

Hu
,m2

Hd
, b ∼ m2

soft.

3.4 R-parity
The MSSM superpotential given in Eq. (3.21) is not the most general one. In fact, in principle,
we can also introduce the renormalizable and gauge invariant terms [54]

W∆L,∆B =
1

2
λijkL̃iL̃j ẽ

∗
k + λ

′

ijkL̃iQ̃j d̃
∗
k + µ

′
L̃i ·Hu +

1

2
λ

′′

ijkũ
∗
i d̃

∗
j d̃

∗
k. (3.30)

Assign to the sfermions the same Baryon, B, and Lepton, L, numbers of the relative fermionic
partners, we have that B = +1/3 and L = 0 for Q̃i and d̃i, B = −1/3 and L = 0 for ũ∗i and
d̃∗i , while L = 1 and B = 0 for L̃i and L = −1 and B = 0 for ẽ∗i . Therefore as we can see the
first three terms in the Langarngian (3.30) violate the total Lepton number by a unit, ∆L = 1,
while the last term violates the Baryon number by a unit, ∆B = 1.

At the present time we have no experimental evidences of processes, between SM particles,
which violate B and L. Furthermore if λ

′
and λ

′′
are both different from zero there would be

the chance to have a proton lifetime extremely short. For example a process like p → π0e+,
mediated by a squarks with a mass of about 1 TeV, would lead to a proton lifetime of a small
fraction of a second [54].

So, to neglect terms as those given in Eq. (3.30), the most simple possibility would be to take
L and B exactly conserved. However we know that L and B are violated by non-perturbative
electroweak effects [5]. So neither B nor L can be taken as exact symmetries. Therefore a
new symmetry is needed to prevent the presence of terms such as the ones in (3.30). This new
symmetry is called R-parity and it is defined as [54]

R = (−1)3(B−L)+2S (3.31)

where S is the spin operator. From the Baryon and Lepton number assignments given above,
it is easily to see that each SM particles have R = +1 while each superpartners have R = −1.
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The R-parity conservation requirement has the consequence that the possible interaction
terms which we can write, must have an even number of odd-particles i.e. particles with odd
R-parity. As a consequence the terms in (3.30) are forbidden.

From a phenomenological point of view, R-parity conservation has three important conse-
quences [5]

• The lightest odd-particle, which is called the lightest supersymmetric particle (LSP), is
absolutely stable. Furthermore if it is also electrically neutral it can provide a viable DM
candidate [37].

• Every odd-particle, more massive than the LSP, must eventually decay into an odd number
of, less massive, odd-particles.

• Conversely when the odd-particles are created, for example in collider experiments, they
must be produced in an even number.

3.5 DM in the MSSM

One of the more interesting feature of a R-parity conserving SUSY models, is that they natu-
rally provide a DM candidate. Following ref. [37] now we briefly analyse, within the R-parity
conserving MSSM, every odd-particle as DM candidate, giving the motivations which prevent
or favour this possibility.

We start considering a charged un-colored particle such as charged sleptons. The possibility
that the masses of the sleptons lays in the right range to give a relic density consistent with the
one given in Eq. (1.13), is ruled out by the failure in the searches of anomalous heavy protons.
In particular this result leads to the conclusion that a generic charged odd-particle cannot be
the LSP. So also charged winos and/or charged higgsinos cannot form the today DM.

The other possibility is provided by squarks. Due to strong interaction they tend to form
new hadrons. So if at least one of these hadrons is stable then the associated squark can be
the LSP. Charged hadrons can be ruled out as every other charged odd-particles invoking the
failure in the searches of heavy protons. For what concern neutral hadrons, the question is
more complicated. However in quite all SUSY models squarks are heavier than sleptons and so
there is no possible squark LSP. Another possibility, a neutral one, is provided by gluinos. Also
them tend to form new hadrons, but as for squarks also gluinos, in many SUSY models, are
more massive than the other gauginos and so they do not provide a good LSP i.e. a good DM
candidate. Sneutrinos for long time have been considered as good DM candidate, but today we
know that their calculated scattering cross-section with nucleons is much more larger than the
limits found by direct detection experiments [19] and so they are ruled out.

What remains in the odd-sector of MSSM are the two neutral gauginos, namely the B̃ and
the W̃ 0, and the neutral components of the higgsinos doublets, namely H̃0

u and H̃0
d . Against

them there are no such strong arguments, both experimental and theoretical, as the previous
ones. Thus, in principle, every one of them can provide a good DM candidate. More in detail
because of electroweak symmetry breaking (EWBS) they tend to mix with each other forming
four mass eigenstates called neutralinos. So the less massive of them, in many SUSY models,
can be regarded as the LSP and so it provides a viable DM candidate [49].

As we just said the mixing between B̃, W̃ 0, H̃0
u and H̃0

d is a direct consequence of EWSB.
In the MSSM the breaking of the gauge group SU(2)L × U(1)Y is more complicated than in
the SM, because of the presence of two Higgs doublets [54].

We briefly summarize the EWSB in the MSSM context. The MSSM scalar Higgs potential,
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it can be written as [5]

VHiggs =(|µ|2 +m2
Hu

)
(∣∣H+

u

∣∣2 + ∣∣H0
u

∣∣2)+ (|µ|2 +m2
Hd

)
(∣∣H−

d

∣∣2 + ∣∣H0
d

∣∣2)
+
[
b
(
H+
u H

−
d −H0

uH
0
d

)
+ h.c.

]
+

(g2 + g
′ 2)

8

(∣∣H+
u

∣∣2 + ∣∣H0
u

∣∣2 − ∣∣H0
d

∣∣2 − ∣∣H−
d

∣∣2)2
+
g2

2

∣∣∣H+
u H

0 †
d +H0

uH
− †
d

∣∣∣2
(3.32)

where g and g
′

are respectively the SU(2)L and U(1)Y coupling constants. Exploiting the
SU(2)L symmetry we can rotate one of the two Higgs doublets in order to obtain that its
charged component is setted to zero at the minimum of the Higgs potential, so for instance we
can take H+

u = 0 at the minimum. Furthermore the requirement that ∂VHiggs/∂H
+
u = 0, at the

minimum, implies that also H−
d = 0. As a consequence we can safely take H+

u = H−
d = 0, so

the Higgs potential is simplify as

VHiggs =(|µ|2 +m2
Hu

)
∣∣H0

u

∣∣2 + (|µ|2 +m2
Hd

)
∣∣H0

d

∣∣2 − (bH0
uH

0
d + h.c.

)
+

(g2 + g
′ 2)

8
(
∣∣H0

u

∣∣2 − ∣∣H0
d

∣∣2)2 (3.33)

Redefining the phases of H0
u and H0

d it is possible to reabsorb any phase in b and thus we can
regarding to it as a real positive quantity. Furthermore, exploiting the U(1)Y gauge symmetry,
we can transform the fields H0

u and H0
d in order to have two real and positive VEVs, namely

〈H0
u〉 ≥ 0 and 〈H0

d〉 ≥ 0. Also we take to be satisfied all the necessary conditions to have
〈H0

u〉 6= 0 and 〈H0
d〉 6= 0, given in ref. [54].

From the covariant derivative of the Higgs fields we can find that the VEVs are related to
the masses of W± and Z0 bosons by the relations [5]

m2
Z0 =

1

2
(g2 + g

′ 2)(v2u + v2d) =
1

2
(g2 + g

′ 2)v2 (3.34a)

m2
W =

1

2
g2(v2u + v2d) =

1

2
g2v2 (3.34b)

where we have redefined 〈H0
u〉 ≡ vu, 〈H0

d〉 ≡ vd and v is the SM Higgs VEV given in Eq. (3.2).
Instead to take vu and vd as new parameters, what is traditionally used is their ratio, which

is defined as
tanβ ≡ vu

vd
. (3.35)

Note that, just because vu > 0 and vd > 0, the definition above implies that 0 ≥ β ≥ π/2.
To the two complex SU(2)-doublet Higgs scalar fields correspond eight real d.o.f. As we

know after the EWSB three of them become the longitudinal modes of the massive gauge bosons
W± and Z0. To the remaining five real d.o.f. correspond five Higgs mass eigenstates which are
two CP -even neutral fields h0 and H0, one CP -odd neutral field A0, and two charge fields H±.
The masses of these Higgs fields are given by [54]

m2
A0

= 2|µ|2 +m2
Hu

+m2
Hd

m2
h0

=
1

2

(
m2
A0

+m2
Z0 −

√(
m2
A0

−m2
Z0

)2
+ 4m2

Z0m2
A0

sin2 2β

)
m2
H0

=
1

2

(
m2
A0

+m2
Z0 +

√(
m2
A0

−m2
Z0

)2
+ 4m2

Z0m2
A0

sin2 2β

)
m2
H± = m2

A0
+m2

W .

(3.36)

Using these results we can define the mixing angle, α, between h0 and H0, as [54]

sin 2α

sin 2β
= −

(
m2
H0

+m2
h0

m2
H0

−m2
h0

)
,

tan 2α

tan 2β
=

(
m2
A0

+m2
h0

m2
A0

−m2
h0

)
, (3.37)
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which is traditionally defined to be a negative quantity, and so we have that −π/2 < α < 0.
Returning now to neutralinos we refer to them with χ̃i (i = 1, . . . , 4) with the convention

that the index i runs from the lightest to the heavier one, i.e. from χ̃1 to χ̃4; note that with this
convention χ̃1 denote the LSP. The possible mass terms for neutralinos come from the mass
Lagrangian [48]

LNeutralino =+
g√
2
vuH̃

0
uW̃

0 − g
′

√
2
vuH̃

0
uB̃ − g√

2
vdH̃

0
dW̃

0 +
g

′

√
2
vdH̃

0
dB̃

+
µ

2
(H̃0

uH̃
0
d + H̃0

dH̃
0
u)−

M1

2
B̃B̃ − M2

2
W̃ 0W̃ 0 + h.c.

(3.38)

In the gauge eigenstates basis we can define

ψ̃0 ≡


B̃

W̃ 0

H̃0
d

H̃0
u

 , (3.39)

and so, with this definition, the Lagrangian (3.38) can be re-expressed as

LNeutralino = −1

2
(ψ̃0)TMψ̃0 ψ̃

0 + h.c., (3.40)

where Mψ̃0 is a symmetric matrix defined as

Mψ̃0 ≡


M1 0 −g′

vd/
√
2 g

′
vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′
vd/

√
2 gvd/

√
2 0 −µ

g
′
vu/

√
2 −gvu/

√
2 −µ 0



=


M1 0 −cβsWmZ0 sβsWmZ0

0 M2 cβcWmZ0 −sβcWmZ0

−cβsWmZ0 cβcWmZ0 0 −µ
sβsWmZ0 −sβcWmZ0 −µ 0


(3.41)

where in the second equality we have made use of the relations given in Eqs. (3.34), and that
g/g

′
= tan θW . We have also introduced the short expressions cβ ≡ cosβ, sβ ≡ sinβ, cW ≡

cos θW , and sW ≡ sin θW . This matrix can be diagonalized by the use of an unitary matrix N ,
such that [48]

N∗Mψ̃0N
−1 =Mχ̃0 ≡


mχ1

0 0 0
0 mχ2 0 0
0 0 mχ3 0
0 0 0 mχ4

 (3.42)

where the eigenvalues mχi
are real and positive. The mass eigenstates i.e. neutralinos, are

given by
χ̃i = Nijψ̃

0
j i, j = 1, . . . , 4 (3.43)

It is worth to note that the parameters M1,M2 and µ, in principle, can have arbitrary phases.
However redefining the phases of B̃ and W̃ 0 we can take M1 and M2 to be both real and
positive. On contrary the phase of µ cannot be reabsorb in this manner, because we have
already redefined the phases of H̃0

u and H̃0
d to take the parameter b real and positive. However,

in order to avoid CP violation effects, we can safely take µ as real [54]. Note that the sign of
µ is still undetermined.

Using Eq. (3.43) the LSP is determined by [49]

χ̃1 = N11B̃ +N12W̃
0 +N13H̃

0
d +N14H̃

0
u (3.44)
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Two useful parameters which define the LSP neutralino composition, is the gaugino fraction,
fg and the higgsino fraction, fh̃, which are defined as [49]

fg = |N11|2 + |N12|2 (3.45)

fh̃ = |N13|2 + |N14|2. (3.46)

Thus if fg < 0.5 (fh̃ > 0.5) the LSP is primarily a higgsino. Conversely if fg > 0.5 (fh̃ < 0.5)
it is primarily a gaugino . From the matrix Mψ̃0 we can see that the neutralino masses and
mixing angles depend upon four parameters, namely M1,M2, µ and β.

The complete expressions for the neutralinos eigenvalues are given in ref. [12]. In this
thesis we specialized in a limit where the electroweak breaking effects are regarded as small
perturbations to the neutralino mass matrix [54], thus we assume that

mZ0 ,mW � |M1 − µ|, |M2 − µ|. (3.47)

Assuming for example that M1 < M2 � |µ|, the four neutralinos masses are given by [54]

mχ̃1
'M1 −

m2
Z0s2W (M1 + µ sin(2β))

µ2 −M2
1

(3.48a)

mχ̃2
'M2 −

m2
Z0s2W (M2 + µ sin(2β))

µ2 −M2
2

(3.48b)

mχ̃3
' |µ|+

m2
Z0(sgn(µ)− sin(2β))(µ+M1c

2
W +M2s

2
W )

2(µ+M1)(µ+M2)
(3.48c)

mχ̃4 ' |µ|+
m2
Z0(sgn(µ) + sin(2β))(µ−M1c

2
W −M2s

2
W )

2(µ−M1)(µ−M2)
. (3.48d)

For later purpose we give also the analytic expressions of the ratios Nik/Ni1 (with k 6= 1)
between the mixing matrix elements [12]

Ni2
Ni1

= − 1

tW

M1 −mχi

M2 −mχi

(3.49a)

Ni3
Ni1

=
µ (M2 −mχi

) (M1 −mχi
)−m2

Z0 sinβ cosβ
[
(M1 −M2) c

2
W +M2 −mχi

]
mZ0 (M2 −mχi) sW (−µ cosβ +mχi)

(3.49b)

Ni4
Ni1

=
mχi

(M2 −mχi
) (M1 −mχi

)−m2
Z0 cos2 β

[
(M1 −M2) c

2
W +M2 −mχi

]
mZ0 (M2 −mχi) sW (−µ cosβ +mχi)

. (3.49c)

Now we move more step forward analizing the charginos mass spectrum. These mass eigen-
state are mixing between the charged winos W̃± and the charged higgsinos H̃+

u , H̃−
d .

Their mass terms in the MSSM Langrangian are

LChargino = −M2W̃
+W̃− + µH̃+

u H̃
−
d − gvuH̃

+
u W̃

− − gvdH̃
−
d W̃

+ + h.c. (3.50)

As we done for neutralinos also here is convenient to define the two gauge eigenstate [5]

ψ̃+ ≡
(
W̃+

H̃+
u

)
ψ̃− ≡

(
W̃−

H̃d−

)
(3.51)

and consequently the Langrangian (3.50) becomes

LChargino = −1

2
(ψ̃+)TXTψ̃− − 1

2
(ψ̃−)TXψ̃+ + h.c. (3.52)

where the matrix X is defined as

X ≡
(
M2 2gvu
2gvu µ

)
=

(
M2

√
2sβmW√

2cβmW µ

)
(3.53)



3.5 DM in the MSSM 41

This 2-dimensional matrix can be diagonalized by a bi-unitary transformation, namely

U∗XV −1 =Mχ̃± ≡

(
mχ̃±

1
0

0 mχ̃±
2

)
. (3.54)

Thus the mass eigenstates are

χ̃+ = V ψ̃+ (3.55a)

χ̃− = Uψ̃− (3.55b)

where χ̃+ ≡
(
χ̃+
1

χ̃+
2

)
and χ̃− ≡

(
χ̃−
1

χ̃−
2

)
.

Also here we take the limit where the electroweak effects are regarded as small perturbations,
see Eq. (3.47). In this limit the eigenvalues are approximately given by [54]

mχ̃±
1
'M2 −

m2
W (M2 + µ sin(2β))

µ2 −M2
2

(3.56a)

mχ̃±
2
' |µ|+ m2

W sgn(µ)(µ+M2 sin(2β))

µ2 −M2
2

(3.56b)

where we have assume that M2 � |µ|
Comparing Eqs. (3.48) and Eqs. (3.56), we can argue that, under our assumption that M1 <

M2 � |µ|, mχ̃±
1

is nearly equal to mχ̃2
. Thus depending on the assumptions made upon the

value of M1,M2 and |µ| it is possible to have a LSP, χ̃1, nearly degenerate with the lightest
charginos, χ̃±

1 . This fact has extraordinarily consequences. In fact co-annihilation effects among
these particles, can be determinant in favouring, or not , some LSP configurations as DM
candidate.

For later purpose we give also the square squark mass matrices. For the up-type squarks it
is given by [5]

M2
ũ =

(
m2
Q̃
+m2

qu +∆ũ L mqu(au − µ cotanβ)

mqu(au − µ cotanβ) m2
ũ +m2

qu +∆ũR

)
(3.57)

where the quantities ∆ũ L and ∆ũR are respectively defined as

∆ũ L ≡
(
1

2
− 2

3
s2W

)
m2
Z0 cos 2β, ∆ũR ≡ −2

3
m2
Z0s2W cos 2β. (3.58)

For the down-type squarks the matrix is

M2
d̃
=

(
m2
Q̃
+m2

qd
+∆d̃ L mqd(ad − µ tanβ)

mqd(ad − µ tanβ) m2
d̃
+m2

qd
+∆ũR

)
(3.59)

where here ∆d̃ L and ∆ũR are respectively defined as

∆d̃ L ≡
(
−1

2
+

1

3
s2W

)
m2
Z0 cos 2β, ∆ũR ≡ 1

3
m2
Z0s2W cos 2β. (3.60)

Note the appearance of the masses of the associated quarks mqu , mqd and of the soft-parameters
given in Eq. (3.29), au, ad. The orthogonal matrices which diagonalized the above square mass
matrices can be defined as [34]

Uq̃i ≡
(

cos θiq̃ sin θiq̃
− sin θiq̃ cos θiq̃

)
≡
(
ηi11 ηi12
ηi21 ηi22

)
(3.61)

where i = 1 for up-type squarks while i = 2 for down-type squarks. The mixing angle θiq̃ is
given by [32]

sin 2θiq̃ = 2ηi11η
i
12 =

2mqi

(
ai − µ(tanβ)(−1)i

)
m2
q̃1i

−m2
q̃2i

(3.62)

Note that when m2
Q̃
,m2

ũ,m
2
d̃
� au, ad, µ the matrices M2

ũ and M2
d̃

are nearly diagonal and as a
consequence ηi11 = ηi22 → 1 and ηi12 = −ηi21 → 0.
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Chapter 4

Dark Matter Phenomenology in the
MSSM

In this Chapter we will analyse LSP neutralinos as DM candidates. As first, we will explore
the limiting cases where the LSP is a pure Bino, a pure Higgsino, or a pure Wino; after
that we will analyse two LSP configurations, called Well-Tempered neutralino [11], which are
particular admixtures of the pure states just listed. Every proposal will be compared with the
experimental limits provided by direct detection experiments. In particular we will take into
account the direct detection experimental bounds provided by LUX-2016 [7], PICO-60 [8] and
XENON100 [10] for the spin-dependent interaction and by LUX-2016 [6] and PANDAX-2016
[64] for the spin-independent one.

The numerical analysis, both for relic density calculation and for neutralino-nucleon scat-
tering cross-section, is performed using the program micrOmegas 4.2.5 [21]. We start by
reviewing direct detection theory, focusing on its application in the MSSM.

4.1 Direct detection of DM
One of the most important experimental evidences of particle DM would be provided by the
direct detection of these particles, while they are passing through the Earth [49]. The idea at the
base of these searches, is the detection of nuclear recoil energies due to nuclei-WIMP (neutralinos
in a SUSY context) elastic scattering processes. The major issue with these experiments is due
to the low scattering cross-section of DM on ordinary matter which makes these processes
difficult to observe. Furthermore the nuclear recoil energies, that have to be measured, are
small. In fact, because the DM particles in our system are moved by the same gravitational
potential which acts on the Sun, it is naturally to assume that they have a rotational velocity
similar to the one of the stars in the neighbourhood of the Sun i.e. of the Local Standard of Rest
(LSR) [23], which, relative to the Galactic rest frame, is about v0 ≈ 220 km/s [57]. This value of
the velocity, implies that for a neutralino mass from 10GeV to 1TeV the typical nuclear recoil
energies are from 1 keV to 100 keV [53]. From an experimental point of view these rather small
energies imply that the direct detection signals can be easily confused with the background, and
so they have to be finely distinguished from it. In order to alleviate this problem the detectors
are placed underground so as to eliminate, as much as possible, the background signal [14].
Note also that this small values of the velocities and the energies transferred, in the scattering
processes, allow us to take into account the non-relativistic limit.

Typically in direct detection experiments, what is measure is the number of events, R, per
day per Kg of detector, as a function of the energy deposited in it, Q,

dR =
ρDM

mχ̃mN
vf(~v)

dσ(q)
dq2

dq2d3v (4.1)

where ρDM is the DM local density, which we take within 0.3GeV/cm3 . ρDM . 0.7GeV/cm3

[19], mχ is the neutralino mass, mN is the nuclear mass, ~v the DM velocity relative to the
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detector frame, and f(~v) is a velocity distribution function1. The vector ~v is the DM velocity
relative to the laboratory frame, which in terms of the DM velocity in the galactic frame ~vG
read as,

~v = ~vG − ~vE, (4.2)

where ~vE is the Earth velocity relative to the galactic rest frame. Note the presence of the
DM-nucleus elastic scattering cross-section, σ(q), which depends on the modulus of the three-
dimensional momentum transferred, q, that, in the non-relativistic limit, is equal to

q2 = 2m2
rv

2(1− cos θ) (4.3)

where mr ≡ (mχ̃mN )/(mχ̃+mN ) is the reduced mass between the neutralino and the nucleus,
and θ is the angle, in the CoM frame, between the momentum of the incoming neutralino and
the momentum of outgoing one. Using Eq. (4.3) we can find that the energy deposited in the
detector, is

Q =
q2

2mN
=
m2
rv

2

mN
(1− cos θ). (4.4)

Note that both Eq. (4.3) and Eq. (4.4) are valid in the non-relativistic limit. Now we can
defined the the elastic scattering cross-section at zero momentum transferred as [49]

dσ(q)
dq2

≡ σ0
4v2m2

r

F 2(Q) (4.5)

where the entire q dependence of σ(q) is contained in the form factor F 2(Q), which is normalized
such that F (0) = 1. Therefore using Eq. (4.4) and Eq. (4.5) we can rewrite the differential event
rate, given in Eq. (4.1), as

dR =
ρDMσ0
2mχ̃m2

r

F 2(Q)
f(~v)

v
dQd3v. (4.6)

In order to find R we have to integrate the last equation over all possible DM velocities and
over all deposited energies from ET to Qmax =

2m2
rv

2

mN
, where ET is the experimental threshold

energy below that no signal can be detected. Integrating over all possible velocities we obtain
that

dR
dQ

=
ρDMσ0
2mχ̃m2

r

F 2(Q)

∫
v≥vmin

vf(~v)dv dΩ (4.7)

where

vmin =

(
QmN

2m2
r

)1/2

, (4.8)

is the smallest velocity which can give a deposit energy equal to Q [53], and vmax is the maximal
admitted velocity. The DM velocity distribution in the Earth frame, f(~v) is related to the one
in the galactic frame fG(~v′) by

f(~v) = fG(~vG) = fG(~v + ~vE). (4.9)

For fG(~v′), assuming an isotropic galactic halo model, we can use a truncated Maxwellian
velocity distribution function, which in term of ~v and ~vE is defined as [49], [53],

fG(~vG) =
e−(~vG/v0)

2

k
Θ(vesc − vG) =

e−(~v+~vE)2/v20

k
Θ(vesc − vG), (4.10)

where the quantity k is responsible for the normalization of fG(vG), v0 ≈ 220Km/s is the
typical velocity of the LSR defined above, and Θ(x) is the Heaviside function. The quantity
vesc is the local escape velocity of DM from the Milky Way2, which in the neighbourhood of

1In the next we will denote all the vector quantities with the usual arrow, while the modulus of these vectors
will be denoted simply without the arrow.

2The local escape velocity is the minimum velocity that a body needs in order to escape from the gravitational
attraction due to another body and it is equal to vesc =

√
2|Φ(r)|, where Φ(r) is the gravitational potential [23].
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the Solar system is about vesc = 544km/s [27].Thus substituting the velocity distribution given
in Eq. (4.10) into Eq. (4.7) we obtain

dR
dQ

=
ρDMσ0
2mχ̃m2

r

F 2(Q)

k

∫
v≥vmin(Q)

ve−(~v+~vE)2/v20Θ(vesc − vG)dv dΩ. (4.11)

The velocity integral is computed in Appendix D, and substituting that result into the above
equation we get that

dR
dQ

=
πρDMσ0v0
mχ̃m2

r

F 2(Q)

k

{
v0
vE

√
π

4

[
erf

(
vmin + vE

v0

)
− erf

(
vmin − vE

v0

)]
− ev

2
esc/v

2
0

}
, (4.12)

where the normalization constant, k, is given in Appendix D, and erf(x) is the error function
which is defined in Appendix D. Note that vmin, via Eq. (4.8), is a function of Q. It is worth
to note that ~vE is made up by two components, [27]

~vE = ~v⊕ + ~v� (4.13)

where with ~v⊗ we denote the Earth’s orbital velocity around the Sun while with ~v� we denote
the sum of the velocity of the LSR and the Sun’s proper motion. In particular the Earth motion
around the Sun gives rise to an yearly modulation in the event rate [49]. In fact the modulus
of ~vE can be expressed as [49]

vE = v0

[
1.05 + 0.07 cos

(
2π(t− tp)

yr

)]
, (4.14)

where tp = June 2nd ± 1.3days.
From Eq. (4.12) is evident as the expected interaction rate depends from different quantities,

some of which derive from cosmological observations (ρDM, v0) others from nuclear physics
(F (Q),mN ) and others from the particular particle DM model chosen (σ0,mχ̃). Our interest
is mostly on the latter quantities and in particular on σ0.

4.1.1 Elastic scattering cross-section in the MSSM
The neutralino-nucleus scattering cross-section, σ0, strongly depends on the neutralino-quark
interaction. For this reason in order to evaluate σ0 in the MSSM, we start by evaluating the
scattering between neutralinos and quarks. After that we translate the microscopic interaction,
among elementary particles, into an interaction between neutralinos and nucleons. As last
step we sum the various nucleon contributions in order to find the matrix elements for the
neutralinos-nuclei interaction. An important simplification comes from the fact that we can use
the effective theory because, as we said above, the scattering processes take place in the non-
relativistic limit. In particular from the MSSM Lagrangian given in Appendix D,Eq. (D.13),
we recover the following effective four fermion interaction Lagrangian between neutralinos and
quarks [34],

Leff = αSD
χ̃qi χ̃γ

µγ5χ̃q̄iγµγ
5qi + αSI

χ̃qi χ̃χq̄iqi + β3iχ̃γ
µγ5χ̃qiγµqi + β4iχ̃γ

5χqiγ
5qi. (4.15)

Neglecting all the terms which, in the non-relativistic limit, give rise to a velocity-suppressed
contribution into the scattering cross-section, see Appendix D, the above effective Lagrangian
becomes

Leff = αSD
χ̃qi χ̃γ

µγ5χ̃q̄iγµγ
5qi + αSI

χ̃qi χ̃χq̄iqi. (4.16)

The index i is i = 1 for up-type quarks and i = 2 for down-type quarks. Note also that we have
suppressed all the flavor and the color indices. The quantity αSD

χ̃qi
is equal to, see Appendix D,

αSD
χ̃qi =

X2
i + Y 2

i

4(m2
q̃1i

−m2
χ̃)

+
U2
i + V 2

i

4(m2
q̃2i

−m2
χ̃)

+

− g2

4m2
Z0 cos2 θW

[
|N13|2 − |N14|2

] T3i
2
,

(4.17)
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while αSI
χ̃qi

is

αSI
χ̃qi =− XiYi

2(m2
q̃1i

−m2
χ̃)

− UiVi
2(m2

q̃2i
−m2

χ̃)

− gmqi

4mWm2
h

Di

Bi
(N13 sinα+N14 cosα) (gN12 − g′N11)

− gmqi

4mWm2
H

Ci
Bi

(N14 sinα−N13 cosα) (gN12 − g′N11) .

(4.18)

In the above equations m1q̃i
,m2q̃i

are the eigenvalues of the squark square mass matrix given
in Eq. (3.59) and Eq. (3.57), while ηij are the elements of the matrix which diagonalizes it; Yqi
and eqi are respectively the hypercharge and the electric charge of the quark qi. The quantities
Bi, Ci and Di are defined as in [34]

B1 = sinβ, B2 = cosβ (4.19)
C1 = sinα, C2 = cosα (4.20)
D1 = cosα, D2 = − sinα. (4.21)

and Xi, Yi, Ui, Vi are defined in Appendix B. Note that in the limit where m2
H � m2

h we can
safely drop out the last term of Eq. (4.18) and using the definition of α given in Eq. (3.37), we
get that

sinα ' − cosβ, cosα ' sinβ (4.22)

From Eq. (4.16) we see that the scattering processes can be decomposed in a scalar or spin-
independent (SI) part and a spin-dependent (SD) one.
We start analyzing the SD interaction. As we can read off from αSD

χ̃qi
and from the interaction

terms given in Appendix D, the SD interaction, at tree-level, is determined by the following
Feynman diagrams

Z0

χ̃ χ̃

q q

q̃

χ̃

q

q

χ̃ (4.23)

The matrix elements of the quark axial-vector current into a nucleons are defined by [49]

〈n| qγµγ5q |n〉 = 2∆q(n)s(n)µ , (4.24)

where s(n)µ is the nucleon spin four vector and n denotes a nucleon (generally a prot,on or a
neutron). Therefore the axial-vector interaction term in Eq. (4.16) between neutralinos and
quarks is naturally traduced into an axial-vector interaction term between neutralinos and
nucleons, [27]

αSD
χ̃qi χ̃γ

µγ5χ̃q̄iγµγ
5qi → 2cnχ̃γ

µγ5χ̃n̄γµγ
5n (4.25)

where and the coefficients cn are defined as in [27]

cn =
∑
q

αSD
χ̃qi∆q

(n). (4.26)

The ∆q(n) terms are experimentally determined, and we give a sample of the possible values
of ∆s(p), ∆u(p) and ∆d(p) in Table 4.1. The same quantities for neutrons are found using
the relations ∆s(p) = ∆s(n), ∆u(p) = ∆d(n) and ∆d(p) = ∆u(n). In order to compute the
neutralino-nucleon cross-section, as first, we have to evaluate the scattering average square
amplitude ∣∣∣MSD

χ̃n

∣∣∣2 ≡ 1

(2sχ̃ + 1)(2sn + 1)

∑
spins

∣∣MSD
χ̃n

∣∣2 (4.27)
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Ref. f
(p)
Tu f

(n)
Tu f

(p)
Td f

(n)
Td f

(p,n)
Ts ∆u(p) ∆d(p) ∆s(p)

[35] 0.027 0.022 0.039 0.049 0.36 0.84 −0.43 −0.09
[24] 0.017 0.012 0.023 0.033 0.053 0.84 −0.44 −0.03
[15] 0.015 0.011 0.019 0.027 0.045 0.84 −0.43 −0.085

Table 4.1: In the table are listed the values of the SI coefficients and of the SD ones, from three different
references.

where sχ̃ and sn denote respectively the spins of the neutralino and the nucleon. The square
amplitude

∣∣MSD
χ̃n

∣∣2 is simply computed sandwiching the interaction term given in Eq. (4.25)
between the initial and the final states and then taking the square modulus of the result,∣∣MSD

χ̃n

∣∣2 = 4c2n
∣∣〈χ̃, n| χ̃γµγ5χ̃n̄γµγ5n |χ̃, n〉∣∣2

= 1024m2
χ̃m

2
n|〈~sχ̃ · ~sn〉|2c2n

(4.28)

where we used the non-relativistic expansions of the neutralino-nucleon scattering amplitudes
given in Appendix D. In order to evaluate the average square amplitude we have to sum over all
possible initial and final spin states the scalar product (~sχ̃ ·~sn)2. Recalling that both neutralinos
and nucleons are spin 1/2 fermions, when they interact they can form one singlet state with
total spin stot = 0, and three triplet states with total spin stot = 1. Exploiting this and the
fact that from the relation s2tot = (~sχ̃ + ~sn)

2 we have

~sχ̃ · ~sn =
1

2
(s2tot − s2χ̃ − s2n), (4.29)

we find that, in natural units,

〈~sχ̃ · ~sn〉 = −3

4
(4.30)

for a singlet state, while

〈~sχ̃ · ~sn〉 =
1

4
(4.31)

for a triplet state. Thus substituting these results into Eq. (4.27) and performing the spins
sum, we obtain ∣∣∣MSD

χ̃n

∣∣∣2 = 192m2
χ̃m

2
nc

2
n (4.32)

Using the relation dq2 = 2µ2
nv

2d(cos θ), where µn is the neutralino-nucleon reduced mass, and
the non-relativistic expansion of the invariant s ' (mχ̃ +mn)

2, we can rewrite the differential
scattering cross-section formula, as

dσ(q)
dq2

=
1

64πm2
χ̃m

2
nv

2

∣∣∣MSD
χ̃n

∣∣∣2. (4.33)

Substituting in the above formula the result given in Eq. (4.32) we obtain that the differential
neutralino-nucleon scattering cross-section at zero momentum transferred is equal to

dσ(q)
dq2

=
3

πv2
c2n. (4.34)

Now, in order to find the total neutralino-nucleon scattering cross-section at zero momentum
transferred, we have to integrate Eq. (4.34) over dq2 obtaining

σχ̃n0 SD =

∫ 4µ2
nv

2

0

dσ(q)
dq2

dq2 =
12m2

r

π
c2n. (4.35)

As last step, in order to find the neutralino-nucleus (N) scattering cross-section, we should take
into account the effects of the various nucleons inside the nucleus. As first we have to sum the
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contribution of the protons separately from that of neutrons. Furthermore we cannot simply
sum over all protons and neutrons because two protons(neutrons) which belong to the same
orbital must have opposite spins [14] and as a consequence there would be strong compensation
between the various spin currents. The interaction between neutralino and nucleus would be
proportional to the spin of the neutralino and to the total angular momentum of the nucleus
~JA, where the subscript A denotes the nuclear mass number. The contribution of the single
nucleon to ~JA can be parametrized as [14]

~JA
n = 〈sn〉

~JA

JA
(4.36)

where 〈sn〉 ≡ 〈N | sn |N〉 denotes the expectation value of the spin content of the nucleon n inside
the nucleus N [49]. These quantities are obtained using both nuclear experimantal calculations
and nuclear theory models.

Thus using Eq. (4.28) and replacing mn with the nucleus mass mN we find that the square
amplitude for the neutralino-nucleus scattering is given by∣∣MSD

χ̃N

∣∣2 = 256m2
χ̃m

2
N

〈sn〉2

J2
A

∣∣∣〈~sχ̃ · ~JA〉
∣∣∣2. (4.37)

Now in order to find the average square amplitude we should sum over final and average over
initial spin states. Labelling the initial polarization states as sχ̃, sA and the final ones as s′χ̃,
s′A, the spins summation read as [14]∑

sχ̃,s′χ̃

∑
sA,s′A

∣∣∣ 〈sχ̃, sA| (~sχ̃ · ~JA)
∣∣s′χ̃, s′A〉 ∣∣∣2 =

∑
sχ̃,s′χ̃

∑
sA,s′A

∑
1≤k,l≤3

〈sχ̃| slχ̃
∣∣s′χ̃〉 〈sχ̃| skχ̃ |sχ̃〉×

〈sA| J lA |s′A〉 〈s′A| JkA |sA〉

=
∑

1≤k,l≤3

Tr{slχ̃skχ̃}Tr{J lAJkA}

=
(2sχ̃ + 1)sχ̃(sχ̃ + 1)(2JA + 1)JA(JA + 1)

3

(4.38)

which can be substituted in Eq. (4.27) obtaining∣∣∣MSD
χ̃N

∣∣∣2 = 256m2
χ̃m

2
N

〈sn〉2

J2
A
JA(JA + 1). (4.39)

Note that this result is valid separately for protons and neutrons. Summing their contributions
we obtain ∣∣∣MSD

χ̃N

∣∣∣2 = 256m2
χ̃m

2
N

JA

J2
A
(JA + 1)(〈sp〉cp + 〈sn〉cn)2

= 256m2
χ̃m

2
NJA(JA + 1)Λ2

(4.40)

where now the subscript n denotes the neutrons and not a generic nucleon. The quantity Λ is
defined as [49]

Λ ≡ 1

JA
(〈sp〉cp + 〈sn〉cn) (4.41)

Substituting the result given in Eq. (4.40) into Eq. (4.33), we obtain the differential neutralino-
nucleus scattering cross-section at zero momentum transferred

dσ(q)
dq2

=
4

πv2
JA(JA + 1)Λ2, (4.42)

which integrates over dq2 between 0 and 4µ2
Nv

2 gives the total neutralino-nucleus scattering
cross-section at zero momentum transferred

σχ̃N0 SD =
16µ2

N

π
JA(JA + 1)Λ2. (4.43)
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Note that now µN = mχ̃mN/(mχ̃ +mN ) is the neutralino-nucleus reduced mass. In principle,
relaxing the zero momentum transferred condition, in Eq. (4.42) there would be also a |q|
dependence which, as we said before, can be parametrized using a nuclear form factor FSD(q)

3

dσ(q)
dq2

=
4

πv2
JA(JA + 1)Λ2F 2

SD(q). (4.44)

In particular in the SD interaction the nuclear form factor is defined as [49]

F 2
SD(q) ≡

S(q)

S(0)
, (4.45)

note that when q → 0 then F 2
SD(q) → 1. The quantity S(q) is equal to [49],[53]

S(|q|) = a20S00(q) + a21S11(q) + a0a1S10(q) (4.46)

where a0 ≡ cp+ cn and a1 ≡ cp− cn are respectively the isoscalar and the isovector coefficients
of the scattering amplitude [49], where cp and cn are defined in Eq. (4.26). The independent
form factors Sij(q) come from detailed nuclear calculations and they can be fitted in terms of
the variable y = 0.25A2/3q2 as [49]

Sij(q) =
∑
k

c
(k)
ij y

k, (4.47)

where A is the atomic mass number and the coefficients, c(k)ij , for various elements are listed in
refs. [49].

Now we redo the above analysis for the spin-independent (SI) interaction. This interaction
is determined by the second term of the effective Lagrangian given in Eq. (4.16) and as we
can read off from αSI

χ̃qi
, at tree-level, the interaction is determined by the following Feynman

diagrams

h

χ̃ χ̃

q q

q̃

χ̃

q

q

χ̃

(4.48)

The scalar interaction term between neutralinos and quarks is naturally traduced into a scalar
interaction term between neutralinos and nucleons

αSI
χ̃qi χ̃χ̃q̄iqi → αSI

χ̃qi 〈n| q̄iqi |n〉 χ̃χ̃nn. (4.49)

where n denotes a nucleon. Thus, as first step, we evaluate the matrix elements of quarks in a
nucleon state, 〈n| q̄iqi |n〉. To do this we start by the definition [35]

f
(n)
Tq ≡ 〈n|mqqq |n〉

mn
(4.50)

which is valid for light quarks, namely, u, d and s. In order to compute the contribution for
heavy quarks (c, b and t) we start from the fact that the nucleon matrix element of the trace
of the QCD energy momentum tensor is equal to the mass of the nucleon [27], namely

mn ≡ 〈n|Θµµ |n〉 =
∑
q

〈n|mqqq |n〉+
β(αs)

4αs
〈n|GaµνGµνa |n〉 (4.51)

where αs is the strong coupling constant,

β(αs) = −
(
11− 2nf

3

)
α2
s

2π
(4.52)

3Note that FSD(Q) and FSD(q) are interchangeable.
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denotes the beta function and Gaµν is the gluon field strength tensor. Using the heavy-quark
expansion which at the lowest order is equivalent to making the substitution [27]

mqqq → − αs
12π

GaµνG
µν
a (4.53)

for q = c, b, t, it is possible to recast Eq. (4.51) as

mn =
∑

q=u,d,s

〈n|mqqq |n〉 −
9

8π
αs 〈n|GaµνGµνa |n〉

=
∑

q=u,d,s

mnf
(n)
Tq − 9

8π
αs 〈n|GaµνGµνa |n〉

(4.54)

where we have used the definition given in Eq. (4.50). In this way the gluon contribution can
be expressed as

− 9

8π
αs 〈n|GaµνGµνa |n〉 = mn

1−
∑

q=u,d,s

f
(n)
Tq

 ≡ mnf
(n)
TG. (4.55)

Thus using this result and Eq. (4.53), the matrix element for heavy quarks would be equal to

〈n|mqqq |n〉 =
2

27
f
(n)
TGmn. (4.56)

Now using Eq. (4.50) and Eq. (4.56) we can write the effective coupling between neutralinos
and nucleons as

fn =
∑

q=u,d,s

mn

mq
f
(n)
Tq α

SI
χ̃qi +

2

27
f
(n)
TG

∑
q=c,b,t

mn

mq
αSI
χ̃qi . (4.57)

A sample of the values of f (n)Tq for proton and neutron are given in Table 4.1. From this formula
and with the values given in Table 4.1 we expected that fp ' fn. Sandwiching between the
initial and final states the term given in Eq. (4.49) and using the results given in Appendix D,
we find that the SI neutralino-nucleon amplitude is

MSI
χ̃n = 4mχ̃mnξ

†
χ̃ξ

′
χ̃ξ

†
nξ

′
n (4.58)

where ξ is a numerical two component spinor normalized as ξ†ξ = 1. Using this result we
can compute the average square amplitude for the neutralino-nucleon SI interaction in the
non-relativistic limit ∣∣∣MSI

χ̃n

∣∣∣2 = 64m2
χ̃m

2
nf

2
n. (4.59)

Substituting this result into Eq. (4.33) we obtain the differential neutralino-nucleon scattering
cross-section in the SI case

dσ(q)
dq2

=
1

πv2
f2n, (4.60)

which integrate over dq2 from 0 to 4m2
rv

2 gives

σχ̃n0 SI =
4µ2

n

π
f2n, (4.61)

that is the total neutralino-nucleon SI scattering cross-section at zero momentum transferred.
The evaluation of the interaction amplitude between the neutralino and the nucleus in the

SI case is more simpler than in the SD one. This is because, contrarily to what happens for the
SD interaction, the various SI nucleon amplitudes sum up coherently in a constructive way, and
so the DM-nucleus amplitude is proportional to the number of the nucleons in the nucleus, i.e.
to the atomic mass number A. Thus the average square amplitude for the neutralino-nucleus
scattering is simply the sum of the proton and the neutron contributions, namely∣∣∣MSI

χ̃N

∣∣∣2 = 64m2
χ̃ [Zfp + (A− Z) fn]

2 (4.62)
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where Z is the atomic number. Substituting this equation into Eq. (4.33) and then integrate
over dq2, we obtain the total neutralino-nucleus scattering cross-section at zero momentum
transferred

σχ̃N0 SI =
4µ2

N

π
[Zfp + (A− Z) fn]

2
. (4.63)

For fp ' fn, σ
χ̃N
0 SI ∝ A2 and so it receives a substantial enhancement for heavy nuclei. Thus

what we expect, comparing Eq. (4.43) with Eq. (4.63), is that for heavy nuclei the dominant
contribution to the scattering between the DM and ordinary matter would be provided by the
SI interaction.

As we said for the SD case also here, in principle, there would be a dependence on q in the
the SI differential cross-section. As usual this dependence is parametrized using a nuclear form
factor F (Q). Thus the SI differential cross-section becomes

dσ(q)
dq2

=
1

πv2
[Zfp + (A− Z) fn]

2
F 2

SI(q), (4.64)

In the case of the scalar interaction the nuclear form factor is related to the Fourier transform
of the nucleon density inside the nucleus. For example FSI(q) can be the Wood-Saxon form
factor [53]

F 2
SI(q) =

[
3j1(qR1)

qR1

]2
e−(q fm)2 (4.65)

where j1 is a spherical Bessel function and R1 ≡ (R2 − 5 fm)1/2 with R ' 1.2 fmA1/3.
Looking at Eq. (4.1) we observe that the quantity which is relevant for the evaluation of

expected rate of events and which can be extracted from the measurements, is the total DM-
nuclear differential scattering cross-section, namely dσN (q)/dq2. This quantity is defined as the
coherent sum of the SD and SI DM-nucleus scattering cross-sections given in Eq. (4.44) and
Eq. (4.64),

dσN (q)

dq2
=

1

4µ2
Nv

2

[
σχ̃N0 SIF

2
SI(q) + σχ̃N0 SDF

2
SD(q)

]
(4.66)

which in terms of the related DM-protons scattering cross-sections given in Eq. (4.35) and
Eq. (4.61) read as

dσN (q)

dq2
=

1

4µ2
pv

2

[
σχ̃p0 SI

(
Z + (A− Z)

fn
fp

)2

F 2
SI(Q) +

4

3

JA + 1

JA

(
〈sp〉+ 〈sn〉

cn
cp

)2

σχ̃p0 SDF
2
SD(q)

]

where µp is the proton-neutralino reduced mass. From this result we can obtain the total
neutralino-nucleus scattering cross-section at zero-momentum transferred which is

σχ̃N0 =
µ2
N

µ2
p

[
σχ̃p0 SI

(
Z + (A− Z)

fn
fp

)2

+
4

3

JA + 1

JA

(
〈sp〉+ 〈sn〉

cn
cp

)2

σχ̃p0 SD

]

' µ2
N

µ2
p

[
A2σχ̃p0 SI +

4

3

JA + 1

JA

(
〈sp〉+ 〈sn〉

cn
cp

)2

σχ̃p0 SD

]

' µ2
N

µ2
p

A2σχ̃p0 SI +
4

3

JA + 1

JA

(
〈sp〉+ 〈sn〉

√
σχ̃n0 SD

σχ̃p0 SD

)2

σχ̃p0 SD


(4.67)

where in the last step we assumed that fp ' fn and mp ' mn, which using Eq. (4.35) im-

plies that cn/cp '
√
σχ̃p0 SD/σ

χ̃p
0 SI . In principle the bounds imposed by the direct-detection

experiments must be compared with this result which take into account both the SD and the
SI interactions. However if the SD or the SI contribute is dominant i.e. σχ̃N0 SI � σχ̃N0 SD or
σχ̃N0 SI � σχ̃N0 SD we can compare the SD and SI bounds separately. In the next we present the



52 Dark Matter Phenomenology in the MSSM

MSSM Parameter Value-Range

M1 10− 250GeV
ml̃R

1.1M1 − 1.8M1

µ 800GeV
M2 1.2TeV
M3 1.8TeV
ml̃L

> 1TeV
mq̃L,R > 1.5TeV
tanβ 10

Table 4.2: In the table are listed the values of the MSSM parameters that we take into account.

results of direct-detection analysis taking into account the neutralino-nucleon SD and SI cross-
section4. First we give both contributions separately and then we combine the them finding
the total neutralino-nucleus scattering cross-section.

4.2 Pure Bino LSP
Now we analyse various neutralino LSP configurations as DM candidates. We start analysing
the pure Bino LSP configuration. This is a limiting case, which corresponds to set in the LSP
definition given in Eq. (3.44), the following relations [50]

N11 → 1 (4.68)
N12, N13, N14 → 0.

In many SUSY scenarios the LSP tends naturally to be a Bino-like fermion [36]. In our case
the pure Bino configuration is achieved imposing at the electroweak scale that

M1 � |µ| < M2. (4.69)

In particular, imposing this relation into Eqs. (3.48) and Eqs. (3.49), and assuming that
|µ|, (|µ| −M1) � mW , we have that

N11 ' 1 + O

(
m2
W

µ2

)
(4.70a)

N12 ' − m2
W (M1 + µ sin 2β)

(M2 −M1) (µ2 −M2
1 )

' O

(
m2
W

µM2

)
(4.70b)

N13 ' tW

[
mW (M1 + µ sin 2β)

(µ2 −M2
1 ) cosβ

+
mW sinβ

µ

]
' O

(
mW

µ

)
(4.70c)

N13 ' tW

[
M1

µ

mW (M1 + µ sin 2β)

(µ2 −M2
1 ) cosβ

+
mW cosβ

µ

]
' O

(
mW

µ

)
(4.70d)

As a consequence the LSP is nearly a pure Bino, χ̃0
1 = B̃, with a mass, at the leading order,

equal to mχ̃0
1
'M1. The values of the others MSSM parameters that we take into account are

defined in Table 4.2.
In order to evaluate the thermal relic density provided by a pure Bino LSP we have to start

computing its annihilation rates into SM particles. In the parameter space region provided
by Table 4.2, a pair of Binos tend to annihilate mostly into SM fermion anti-fermion pairs
[36]. These annihilation processes take place through sfermions exchange in t-u channels [11].
In particular, because we take squarks and left-handed sleptons much heavier than the right-
handed sleptons, the favoured final state would be the SM right-handed leptons and anti-leptons.

4We give the results for the neutralino-nucleon scattering cross-sections instead of the neutralino-nucleus ones
because we want to compare the numerical results with bounds coming from different target nuclei.
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The Feynman diagrams for the processes B̃B̃ l̃R−→ lR l̄R are given in Appendix E, where we
compute the annihilation cross-section times velocity in the limit where the ratio ml/M1 → 0,
and with ml we denote the final lepton masses. Using the results given in Eq. (E.42) we can
expand σB̃B̃v in the non-relativistic limit which at the first non-zero order read as

σB̃B̃v =
g4 tan4 θW
πm2

l̃R

r(1 + r2)

(1 + r)4
ε+ O(ε2), (4.71)

where r ≡M2
1 /m

2
l̃R

, ε is the total kinetic energy per unit of mass given in Eq. (2.54), and note
that we have summed over the three flavor lepton states. From Table 4.2 we can see that r is
varying in the range 0.3 . r . 0.9. Note also that in Eq. (4.71) there is no s-wave contribution
(the zero order term in the ε expansion), because it is proportional to the vanishing ratioml/M1.

Substituting the σB̃B̃v expansion given in Eq. (4.71), into Eq. (2.57), we recover the thermal
average cross-section times velocity for Bino annihilation, which is equal to

〈σB̃B̃v〉 =
3

2

g4 tan4 θW
πm2

l̃R

r(1 + r2)

x(1 + r)4
+ O

(
1

x2

)
, (4.72)

where x ≡M1/T . Substituting this result into the relic density formula, Eq. (2.59), we obtain
that the relic abundance for a pure Bino LSP is approximately given by

ΩB̃h
2 = 1.1× 10−2

(
ml̃R

100GeV

)2
(1 + r)4

r(1 + r2)

(
1 + 0.07 log

√
r 100GeV
ml̃R

)
. (4.73)

The values of ΩB̃h
2 as a function of the LSP mass are given in Fig. 4.1, where we show

the result of the micrOmegas 4.2.5 simulation compared with the analytical one given by
Eq. (4.73). From numerical simulation we find that the DM constraint provided by Eq. (1.13)

10 20 50 100 200
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0.20

M1 [GeV]

Ωh2

Pure Bino LSP

Numerical Vs. Analytical

Analytical

result

Numerical

result

Figure 4.1: In the plot is shown the contribution to Ωh2 of a pure Bino LSP obtained from the micrOmegas
4.2.5 analysis, compared with the analytical result obtained using Eq. (4.73). The width of
the bands is due to a sleptons mass parameter which varies in the range 1.1M1 ≤ ml̃R

≤
1.8M1. The region between the dashed lines denotes the observed DM abundance within 2σ.

within a range of 2σ, is satisfied when the mass M1 of a pure Bino LSP is in the range 18 GeV .
M1 . 85 GeV which, looking at Table 4.2, corresponds to a r.h. sleptons mass in the range
33 GeV . ml̃R

. 94 GeV.
For what concern direct detection of a pure Bino LSP, we summarize the results of our

numerical analysis in Table 4.3. These numerical results and the direct detection exclusion
limits provided by the more recent experiments, are depicted in Fig. 4.2. In particular from
these plots we can see that all the cross-sections are well below the experimental excluded
regions.
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Cross-section Value-Range

σB̃p0 SD 1.4× 10−11 − 5.5× 10−9 pb
σB̃n0 SD 1.5× 10−12 − 4.5× 10−10 pb
σB̃p,n0 SI 3.3× 10−14 − 5.2× 10−14 pb

Table 4.3: In the table are listed the upper and lower values of the SD and SI neutralino-nucleon cross-
sections computed with micrOmegas 4.2.5 . As usual for the SI interaction we have assumed
that fp ' fn.
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Figure 4.2: In the figure we show the results of the direct detection analysis performed with micrOmegas
4.2.5 , compared with the analytical results found using the approximate formulae given
in Eqs. (4.76). In the panel (a) is shown the SD Bino-proton scattering cross-section (pink
band) with the analytical result (the region between the blue-dashed lines), the shaded areas
are the excluded regions provided by LUX-2016 (green) and PICO-60 (brown) experiments.
In the left panel (b) is shown the SD Bino-neutron scattering cross-section (yellow band) with
the analytical result (the region between the blue-dashed lines), the experimental limits come
from LUX-2016 (green) and XENON100 (purple) experiments. In the below panel (c) we show
the result for the SI Bino-nucleon scattering cross-section (orange band) with the analytical
result (blue-dashed line), and where the excluded limits are given by the LUX-2016 (green)
and the PANDAX-2016 (red) experiments. In every plot the squark masses are varying in
the range 1.5TeV . mq̃ . 8TeV. In plot (d) we show the the combined SI and SD Bino-Xe
scattering cross-sections, with the experimental bound from LUX experiment.

These numerical results can be explained using the theoretical ones given in section 4.1.
Substituting into Eq. (4.17) and Eq. (4.18) the expressions of N1i given in Eqs. (4.70), and
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taking the limit where µ,M1,2, (µ−M1,2) > mW , we find that

α
SD(qi)

B̃
' g2t2W

[
Y 2
qi L

(ηi11)
2 + 4(η12)

2e2qi
16(m2

q̃1i
−M2

1 )
+

4e2qi(η
i
11)

2 + Y 2
qi L

(ηi12)
2

16(m2
q̃2i

−M2
1 )

]
+
g2t2W
16µ2

cos 2β(−1)i

(4.74a)

α
SI(qi)
B̃

' eqiYqi Lg
2t2W

4

[
ηi11η

i
12

(m2
q̃1i

−M2
1 )

− ηi11η
i
12

(m2
q̃2i

−M2
1 )

]
+
g2t2Wmqi sin 2β

4µm2
h

(4.74b)

where we have assumed that m2
H � m2

h, which allow us to neglect the contribution of the heavy
Higgs field and to make the substitutions given in Eq. (4.22). As usual with mq̃1i,2i

we denote
the eigenvalues of the squarks mass matrix, while ηij are the elements of the matrix which
diagonalizes it. With Yqi L and eqi we denote respectively the l.h. hypercharge and the electric
charge of the quarks qi, where i = 1 is for up-type quarks while i = 2 is for down-type ones.
Substituting Eqs. (4.74) into Eq. (4.35) and Eq. (4.61) we find respectively the Bino-nucleon
SD and SI scattering cross-sections at zero momentum transferred,

σB̃p0 SD =
12

π

(
M1mp

M1 +mp

)2[∑
q

α
SD(qi)

B̃
∆q(p)

]2
(4.75a)

σB̃n0 SD =
12

π

(
M1mn

M1 +mn

)2[∑
q

α
SD(qi)

B̃
∆q(n)

]2
(4.75b)

σ
B̃p/n
0 SI =

4

π

(
M1mp

M1 +mp

)2
[ ∑
q=u,d,s

mp/n

mq
f
(p/n)
Tq α

SI(qi)

B̃
+

2

27
fTG

∑
q=c,b,t

mp/n

mq
α
SI(qi)

B̃

]2
(4.75c)

where the quantities ∆q(p/n), f (p/n)Tq are given in Table 4.1 and fTG is given in Eq. (4.55). First
of all from this results and, in particular from Eqs. (4.74), becomes clear that for a pure Bino
configuration the SD scattering processes mediated by the Z0 boson and the SI ones mediated
by the neutral Higgs bosons are suppressed respectively by µ2 and µ. In particular assuming
that mq̃1i

' mq̃2i
= mq̃ �M1 and the limit of heavy squark masses (m2

q̃ � ai, µ where au,d are
the soft-parameters given in Eq. (3.29)), we have that ηi11 → 1 and ηi12 → 0 and thus Eqs. (4.74)
can be approximated as

α
SD(qi)

B̃
' g2t2W

16m2
q̃

[
Y 2
qi L

+ 4e2qi

]
+
g2t2W
16µ2

cos 2β(−1)i + O

(
M2

1

m2
q̃1,2

, η212

)
(4.76a)

α
SI(qi)
B̃

' eqiYqi Lg
2t2W

4

mqiµ(tanβ)
(−1)i

m4
q̃

+
g2t2Wmqi sin 2β

4µm2
h

+ O

(
M2

1

m2
q̃1,2

, η212

)
(4.76b)

' g2t2Wmqi sin 2β

4µm2
h

+ O

(
M2

1

m2
q̃1,2

,
mqiµ

m2
q̃1,2

)

where in place of the product ηi11ηi12 we used relation given in Eq. (3.62). These results confirm
the numerical ones plotted in Fig. 4.2. In particular assuming that µ & mq̃ the SD interaction
is determined principally by the squarks exchange term; in fact the band in plots (a) and (b) is
due to a common squark mass which is varying in the range 1.5TeV ≤ mq̃ ≤ 8TeV. Note that
in the SI case, plot (c), this band is quite absent because, consistently with Eq. (4.76b), the
dominant term is the one relative to the Higgs exchange. We take the squark masses greater
than 1.5TeV because light squarks are nearly ruled out by collider searches, which impose a
lower limit on the squark masses of mq̃ & 800GeV for an LSP mass M1 . 300GeV [60].

The combined contributions of SD and SI interactions can be approximately evaluated using
Eq. (4.67). Exploiting the numerical results and the fact the the LUX experiment uses 131Xe
as nuclear target, we find that Eq. (4.67) becomes

σB̃ Xe
0 ' µ2

N

µ2
p

A2
[
σB̃p0 SI + 1.6× 10−6σB̃p0 SD

]
(4.77)
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where for 〈Sp〉 ' −0.041 and 〈Sn〉 ' −0.236 we used the values listed in [49], and to find the

ratio
√
σB̃n0 SD/σ

B̃p
0 SD ' 0.29 we used the upper limits for σB̃p0 SD and σB̃n0 SD given in Table 4.3.

The relative contribution of the the SD Bino-Xe scattering cross-section and the SI one gives
that σB̃ Xe

0 SD /σ
B̃ Xe
0 SI ' 0.17. From this result we can argue that the SD contribution is not totally

negligible respect to the SI one. To this end we plot also the combined effect of SD and SI
interactions in plot (d) of Fig. 4.2 with the LUX experimental excluded region.

From the micrOmegas 4.2.5 result and also from the analytical one given in Eq. (4.73), we
find that if we want to satisfied the relic density constrain, for r . 0.9, we must have that at
least ml̃R

< 100GeV. However the limits set by the LHC searches of the r.h. sleptons decays
require that mẽR ,mµ̃R & 94GeV [60], for degenerate r.h. selectrons and r.h. smuons. The
limits for r.h. staus are slightly lower, in fact the LEP2 analysis imposes that the stau mass
must be mτ̃R & 87GeV [52], [60]. These experimental limits on the slepton masses can be
traduced in lower limits on the Bino mass which for r ' 0.3 implies that M1 & 23GeV while
for r ' 0.9 we have that M1 & 85GeV. Recalling that from the micrOmegas 4.2.5 analysis
to fit the right value of the DM relic density (within 2σ) the Bino mass must relies between
18GeV . M1 . 21GeV for r ' 0.3 and between 81GeV . M1 . 85GeV for r ' 0.9, we find
that the experimental constraints from collider searches exclude these mass regions. Thus the
natural conclusion is that a pure Bino LSP configuration tends to give a thermal relic density
which, compared to the observed one for DM, is too large in a broad range of the parameter
space [11].

4.2.1 Pure Bino LSP with co-annihilations
In the context of a pure Bino LSP there is a possibility to reduce its relic abundance, exploiting
the mechanism of the co-annihilations. As we saw in Chapter 2 this chance becomes effective
when the Bino mass is nearly degenerate with the ones of the next to LSP particles (NLSP’s)
[33]. In the Bino LSP scenario, perhaps the most studied configuration of this type, is the one
where the Bino is nearly degenerate in mass with the r.h. sleptons, and in particular with the
r.h. stau [11], [36]. This configuration requires a certain amount of fine tuning between the
MSSM parameters, especially between the Bino mass parameter and the r.h. sleptons ones.
In fact as we can see from Eq. (2.76), the effect of the co-annihilations is maximal when the
exponential factor tends to one. For this reason a good relation that allow us to understand
when the co-annihilations are effective is [11]

ml̃R
−M1

M1
.

1

xfo
(4.78)

where, as in Chapter 2, xfo ≡ M1/Tfo and Tfo is the freeze-out temperature. Noting that the
value of xfo, from "WIMP miracle" argument, is about xfo ∼ (20−30) [36], and using Eq. (4.78),
we find that, the co-annihilations are effective if the square ratio r is at least r & 0.9. Therefore
we will investigate the effects of co-annihilations between Bino and r.h. sleptons assuming that
r varies in the range 0.9 . r . 1. Furthermore, following ref. [36], we assume that the three
r.h. sleptons are all degenerate in mass, mẽR = mµ̃R = mτ̃R , and so, from now on, we refer to
them simply as l̃R.

Applying the definition of the effective annihilation cross-section given in Eq. (2.78), in this
scenario we find that

σeff = σB̃B̃r
2
B̃
+ 12σB̃l̃rB̃rl̃ + 6(σl̃l̃ + σ

l̃
˜
l
)r2
l̃
+ 12(σl̃′ l̃ + σ

l̃′
˜
l
)r2
l̃

(4.79)

where a bar denote an antiparticle while a prime denote a different slepton flavor. The quantities
rB̃ and rl̃, using Eq. (2.76), are respectively equal to

rB̃ =
r3/4

r3/4 + 3e−x(1−
√
r)/

√
r

rl̃ =
e−x(1−

√
r)/

√
r

r3/4 + 3e−x(1−
√
r)/

√
r
. (4.80)

Note also that, to obtain Eq. (4.79), we have treated the possible fermion final states as massless.
The possible initial and final states are summarized in Table 4.4. The parameters space that
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Initial state Final state Channels

B̃B̃ l̄l u(l̃R), t(l̃R)

B̃l̃R lγ, lZ0, lh s(l), t(l̃R)

l̃R l̃R ll t(B̃), u(B̃)

l̃R l̃
′

R ll
′

t(B̃)

l̃
′

R l̃R l̄l
′

t(B̃)

l̃R l̃R

γγ, γZ0 t(l̃R), u(l̃R), p.i.
W+W− s(h), s(γ), s(Z0)

hh, Z0Z0 s(h), t(l̃R), u(l̃R), p.i.

Z0h t(l̃R), u(l̃R), s(Z
0)

γh t(l̃R), u(l̃R)

ff̄ s(γ), s(Z0), t(B̃)

Table 4.4: In the table are summarized the possible final state of the co-annihilation processes between
Bino and r.h. sleptons. In the third column we list the channels and the exchanged particles
which contribute to the process; the abbreviation p.i. denotes the point interaction and with
h we refer to the SM Higgs.

we take into account in our numerical analysis of co-annihilations between Bino LSP and r.h.
sleptons is given in Table 4.2 with the difference that ml̃R

now varies between M1−1.1M1. The
results of the micrOmegas 4.2.5 simulation show that a Bino mass in the range 127GeV .
M1 . 232GeV satisfied the DM relic density constraint, within 2σ. The situation is summarized
in Fig. 4.3.
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Figure 4.3: The plot shows the micrOmegas 4.2.5 result for the relic density provided by a pure Bino
LSP taking into account co-annihilations with r.h. sleptons. Every band denote a different
value of the ratio r = M2

1 /m
2
l̃R

. Comparing this graph with the one given in Fig. 4.1 is
possible to observe how co-annihilations have lowered the Bino relic abundance.

To see how the co-annihilations effects can affect the relic abundance of a particular species,
in Fig. 4.4 we have plotted the ratio between the relic abundance computed considering co-
annihilations and the one computed without considering them, as a function of the Bino mass.
From this graph we can see that un-considering co-annihilations, when they are effective, leads
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to an overestimation of the relic abundance even 6 times grater.
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Figure 4.4: In the figure is plotted the ratio ΩCo/ΩNoCo as a function of the Bino mass, computed using
micrOmegas 4.2.5 . As in Fig. 4.3 every different colour level denotes a different value of the
ratio r.

For what concerns direct detection analysis nothing is changed from the case of a pure Bino
without co-annihilations. In fact from Eqs. (4.75), is clear that any possible strong degeneracy
between Bino mass and r.h. sleptons ones, cannot affect the previous results. Thus, also in the
case of co-annihilations, no exclusion limit on the Bino mass parameter is possible to impose
exploiting the results of the direct detection experiments. Furthermore the results of the LHC
and LEP searches for slepton decays, show that for a LSP mass mχ̃1

& 90GeV [60], [52], no
limits are imposed on slepton masses. Thus, remembering that with co-annihilations the Bino
mass values admitted by the relic density constraint are always greater than 90GeV, the collider
results do not impose any restriction on the slepton masses and so indirectly on the LSP one.

Summarizing, from our analysis and in a good accord with reference [36], we have found
that, exploiting co-annihilations, with r.h. sleptons, a pure Bino LSP can be a good DM
candidate which satisfies both direct detection and collider constraints, in a fairly broad range
of the Bino mass values. The only possible issue comes from the fact that, in order to activate
the co-annihilations mechanism, we have to fine tune the value of M1 and ml̃R

without any
theoretical arguments which justify this.

4.3 Pure Higgsino LSP

Another pure configuration, in the context of neutralino LSP, is provided by the pure Higgsino.
This purity state is achieved when, in the LSP composition, the matrix elements N13 and N14

tend respectively to [56]

|N13| → 1/
√
2 (4.81)

|N14| → 1/
√
2 (4.82)

We note that these relations are well satisfied when5

|µ| �M1,M2. (4.83)

5Note that we take the absolute value of the parameter µ because, as we said in Chapter 3, we cannot fix its
sign.
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In fact imposing the above relation into Eqs. (3.49) and Eqs. (3.48), and in the limit where
M1 − |µ| 'M2 − |µ| � mW , we have that

N11 ' tWmW (cosβ − sinβ)√
2 (M1 − |µ|)

' O

(
mW

M1

)
(4.84a)

N12 ' −mW (cosβ − sinβ)√
2 (M2 − |µ|)

' O

(
mW

M2

)
(4.84b)

N13 ' 1√
2
+ O

(
m2
W

µM1
,
m2
W

µM2

)
(4.84c)

N14 ' 1√
2
+ O

(
m2
W

µM1
,
m2
W

µM2

)
(4.84d)

where, as for the pure Bino, we have taken the limit where m2
H � m2

h which implies that
sinα ' − cosβ and cosα ' sinβ. Therefore, from these results, we can completely decoupled
the Bino and the Wino states obtaining a neutralino mass matrix which, in the basis (H̃0

u, H̃
0
d),

read as (
0 µ
µ 0

)
+ O

(
mW

M1
,
mW

M2

)
. (4.85)

Diagonalizing it we obtain two eigenstates, H̃1, H̃2

H̃1 =
H̃0
u + H̃0

d√
2

(4.86a)

H̃2 =
H̃0
u − H̃0

d√
2

, (4.86b)

with associated eigenvalue respectively equal to µ and −µ; note that, as we said in Chapter 3,
the neutralino masses are defined to be the absolute values of the neutralino mass matrix
eigenvalues. Therefore in this case the two Higgsino masses are defined to be |µ| and so, up
to corrections of order mW /M1 or mW /M2, they are equal for both the Higgsino fields. As
a consequence the LSP is completely mass degenerate with the next-to-LSP particle (NLSP).
As a reference we will take as LSP H̃1, and as NLSP H̃2, but in the limit of a pure Higgsino
LSP their roles are interchangeable. Furthermore, observing at Eqs. (3.56), we can see that
Eq. (4.83) implies that the lightest chargino is the charged Higgsino, namely H̃±, which, up to
corrections of order mW /M2, has a mass equal to |µ|. So in the pure Higgsino LSP configuration
we have to face with three (H̃1, H̃2, H̃

±) mass degenerate states with mass |µ|. Hence to go
further in the computation of the relic abundance of a Higgsino LSP, we have to estimate if the
co-annihilations among the three Higgsino states are relevant or not. As said in the pure Bino
section these become important when the relation given in Eq. (4.78) is satisfied, which, in the
pure Higgsino case read as

δmH̃

mH̃1

.
1

xfo
. (4.87)

Using Eq. (3.48) and Eq. (3.56), the mass splitting, δmH̃ , between the LSP and the lightest
chargino, in the pure Higgsino LSP limit, becomes [39]

δmH̃ ≈
m2
Z0

2M2
c2W (1 + sin 2β) +

m2
Z0

2M1
s2W (1− sin 2β) + O

(
m2
Z0

M2
1

,
m2
Z0

M2
2

)
, (4.88)

note that a similar result can be obtained for the mass splitting among the LSP and NLSP. So
taking tanβ ' 10 and M1 'M2 ≡Mg, we have that δmH̃ turns out to be about6

δmH̃ ≈ 800GeV2

Mg
≈ 0.8GeV (4.89)

6We use MZ0 ' 91.188GeV and s2W ' 0.233 from ref. [60].
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Initial states Final states Channels

H̃1,2H̃1,2
W±W∓ u(H̃±), t(H̃±)

Z0Z0 u(H̃2,1), t(H̃2,1)

H̃1H̃2
W±W∓ t(H̃±), s(Z0)
ff̄ s(Z0)

H̃±H̃1,2

W±γ t(H̃±), s(W±)

W±Z0 t(H̃±), t(H̃2,1), s(W
±)

f ′f̄ s(W±)

H̃±H̃∓
W±W∓ t(H̃1,2), s(γ), s(Z

0)

Z0Z0, γγ t(H̃±)
ff̄ s(γ), s(Z0)

H̃±H̃± W±W± t(H̃1,2), u(H̃1,2)

Table 4.5: In the table are summarized the possible final state of the co-annihilation processes between
the three Higgsino states. As usual in the last column we give the channels of the tree-level
Feynman diagrams with the exchange particle.

where in the last equality we have assumed Mg ≈ 1TeV. Therefore substituting this result into
Eq. (4.87) and remembering that xfo lies in the range 20 − 30 is clear that for an LSP mass
mH̃1

≥ 100GeV the co-annihilations effects are of a fundamental importance in the evaluation
of the relic abundance of a pure Higgsino LSP [11], [56], [33]. The lower limit in the LSP mass,
mH̃1

≥ 100GeV, is due to the fact that from searches of chargino decays at LEP, the lightest
chargino must have a mass which is mχ̃± & 103GeV. Thus because the mass splitting between
the lightest Higgsino and the charged one is at most of few GeV, the lower limit imposed on
chargino mass by LEP, forced us to take as lower bound for the LSP mass the value of 100GeV.

In this scenario the most important annihilation and co-annihilations channels are into
gauge bosons and fermion anti-fermion pairs [11]; the possible processes of this types are given
in Table 4.5. In Appendix E we give the tree-level Feynman diagrams of the processes listed in
Table 4.5, with the corresponding cross-sections at leading order in the non-relativistic expan-
sion. Thus taking into account the results of Eqs. (E.166), and substituting them into Eq. (2.78)
and then into Eq. (2.86) we obtain that, the thermal average of the effective cross-section times
velocity for a pure Higgsino LSP at the leading order, is given by

〈σeffv〉H̃ =

4∑
i,j

σij
16

=
g4

512µ2π

(
21 + 3t2W + 11t4W

)
+ O

(
1

x

)
(4.90)

where we have redefined tW ≡ tan θW . Note that because we have assumed a quite perfect
degeneration between LSP, NLSP and the lightest chargino and the fact that they have the
same d.o.f., have reduced the formula for the effective cross-section, given in Eq. (2.78), to
the average of the various co-annihilation cross-sections. Substituting Eq. (4.90) into the relic
density formula, Eq. (2.90), we obtain an approximated expression of the relic abundance of a
pure Higgsino LSP

ΩH̃h
2 = 0.097

(
µ

1TeV

)2

(4.91)

where we have drop out a small logarithmic dependence on µ.
Our simulation with micrOmegas 4.2.5 takes into account the MSSM parameters given

in Table 4.6, and the result is depicted in Fig. 4.5, where we plot the relic abundance of
a Higgsino LSP as a function of its mass compared with the analytical result provided by
Eq. (4.91). Note that the analytical result generally give a lower relic density in the region of
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MSSM Parameter Value-Range

µ 100− 1500GeV
M1 2.5TeV
M2 3TeV
M3 3.8TeV
ml̃L,R

> 2TeV
mq̃L,R > 2TeV
tanβ 10

Table 4.6: In the table are summarized the MSSM parameters which we take into account for the pure
Higgsino LSP analysis.

interest. This is due to our assumption of a perfect mass degeneration among the LSP, NLSP
and the lightest chargino, in the derivation of the Eq. (4.91). In fact, this has the effect of
maximizing the co-annihilations mechanism and, as a consequence, the resulting effective cross-
section, σeff, is maximized and so the relic abundance is more lowered. Conversely with the
numerical simulation, the three Higgsinos are not perfectly mass degenerate and the remaining
small mass differences inhibit the co-annihilation effects resulting in a relic density which is
less lowered than the analytical one. On a quantitative ground, from our numerical anlysis, a
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Figure 4.5: In the figure is shown the contribution to Ωh2 of a pure Higgsino LSP as a function of its mass,
obtained from the micrOmegas 4.2.5 analysis (blue line) and compared with the analytical
result (green line) obtained using Eq. (4.91). As usual the band between the dashed lines
denotes the observed DM abundance within 2σ.

pure Higgsino LSP satisfies the DM relic density constraint, within 2σ, if it has a mass which is
about |µ| ' 1TeV, or more precisely if its mass is within the range 1.034TeV . |µ| . 1.054TeV.

For what concerns the direct detection analysis using the results given in Eqs. (4.84), the
SD and SI coefficients given in Eq. (4.17) and Eq. (4.18) become

α
SD(qi)

H̃
=

g2m2
qi

16m2
WB

2
i

[
(ηi11)

2 + (ηi12)
2

(m2
q̃1i

− µ2)
+

(ηi11)
2 + (ηi12)

2

(m2
q̃2i

− µ2)

]
+

g2

32|µ|
(−1)i

(
t2W
M1

+
1

M2

)
cos 2β (4.92a)

α
SI(qi)
H̃

=
g2m2

qi

16m2
WB

2
i

[
ηi11η

i
12

(m2
q̃1i

− µ2)
− ηi11η

i
12

(m2
q̃2i

− µ2)

]
∓

g2mqi

8m2
h

(
t2W

M1 − |µ|
+

1

M2 − |µ|

)
(1∓ sin 2β) (4.92b)
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Cross-section Value-Range

σH̃p0 SD 7× 10−10 − 1.1× 10−7 pb
σH̃n0 SD 5.3× 10−10 − 8.5× 10−8 pb
σH̃p,n0 SI 2.1× 10−12 − 2.5× 10−12 pb

Table 4.7: In the table are listed the upper and lower values of the SD and SI Higgsino-nucleon cross-
sections computed with micrOmegas 4.2.5 .

where the upper signs refers to µ > 0 while the lower ones to µ < 0, Bi is defined as in
Eqs. (4.19), and as usual with i = 1 we refer to up-type quarks and with i = 2 to down-type
ones. Substituting these results into Eq. (4.35) and Eq. (4.61) we obtain the Higgsino-nucleon
cross-sections at zero momentum transferred

σH̃p0 SD =
12

π

(
µmp

|µ|+mp

)2[ ∑
q=u,c,t

α
SD(q1)

H̃
∆q(p) +

∑
q=d,s,b

α
SD(q2)

H̃
∆q(p)

]2
(4.93a)

σH̃n0 SD =
12

π

(
µmn

|µ|+mn

)2[ ∑
q=u,c,t

α
SD(q1)

H̃
∆q(n) +

∑
q=d,s,b

α
SD(q2)

H̃
∆q(n)

]2
(4.93b)

σ
H̃p/n
0 SI =

4

π

(
µmp/n

|µ|+mp/n

)2
[ ∑
q=u,d,s

mp/n

mq
f
(p/n)
Tq α

SI(qi)

H̃
+

2

27
fTG

∑
q=b,c,t

mp/n

mq
α
SI(qi)

H̃

]2
, (4.93c)

where as usual the the quantities ∆q(p/n), f (p/n)Tq and fTG are defined in Table 4.1 and in
Eq. (4.55). The numerical results of direct detection analysis are summarized in Table 4.7
while in Fig. 4.6 we depict these results compared with the experimental bounds. Here in the
limit where mq̃1i

' mq̃2i
= mq̃ � |µ| and of high squark masses which implies ηi11 → 1 and

ηi12 → 0, the results given in Eqs. (4.92) read as

α
SD(qi)

H̃
'

g2m2
qi

8m2
WB

2
i

1

m2
q̃

+
g2

32|µ|
(−1)i

(
t2W
M1

+
1

M2

)
cos 2β + O

(
µ2

m2
q̃

, η212

)
(4.94a)

' g2

32|µ|
(−1)i

(
t2W
M1

+
1

M2

)
cos 2β + O

(
m2
qi

m2
q̃

, η212

)

α
SI(qi)
H̃

'
g2m3

qi

16m2
WB

2
i

µ(tanβ)(−1)i

m4
q̃

(4.94b)

∓ g2mqi

8m2
h

(
t2W
M1

+
1

M2

)
(1∓ sin 2β) + O

(
µ2

m2
q̃

,
µ

M1,2
, η212

)

' ∓g
2mqi

8m2
h

(
t2W
M1

+
1

M2

)
(1∓ sin 2β) + O

(
m2
qi

m2
q̃

,
µ

M1,2

)
.

where in place of the product ηi11ηi12 we have substituted the relation given in Eq. (3.62). Note
that, as in the pure Bino LSP case, the SI interaction is completely determined by the Higgs
exchange interaction, because the term relative to the squraks exchange is suppressed by the
factor µ/m4

q̃, see Eq. (4.94b). Furthermore for the SD interaction the term relative to the
squarks exchange is completely dominated by the term relative to the Z0 exchange. In fact
as we can see from Eq. (4.94a) the former one is suppressed by m2

q̃ while the latter one by
product µM1,2. Thus assuming that mq̃ ' M1 ' M2, we have that the term relative to the
Z0 exchange is mq̃/µ times larger than the term due to the squarks exchange. The numerical
results plotted in Fig. 4.6 are confirmed by the analytical ones given in Eqs. (4.94). In particular
from plots (a) and (b) is evident the µ dependence expected by Eq. (4.94b). Note also that
all the numerical results do not depend on the common squarks mass consistently with the
approximated formulae given in Eqs. (4.94).
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Figure 4.6: In the figure we show the results of the direct detection analysis performed with micrOmegas
4.2.5 . In the panel (a) is shown the SD Higgsino-proton scattering cross-section (pink)
with the analytical result (blue-dashed line), the shaded regions are the excluded regions by
LUX-2016 (green) and PICO-60 (brown) experiments. In the left panel (b) is shown the
SD Higgsino-neutron scattering cross-section (yellow) and the analytical result (blue-dashed
line), with the experimental bounds from LUX-2016 (green) and XENON100 (purple). In
the below panel (c) we show the result for the SI Higgsino-nucleon scattering cross-section
(orange) and the analytical result (blue-dashed line), with the excluded limits given by the
LUX-2016 (green) and PANDAX-2016 (red) experiments. The squark masses run from 2TeV
to 8TeV and the analytical results are found using Eqs. (4.94).

The combined effect of the SD and SI interactions can be estimated with the help of
Eq. (4.67) which, using the values of JA, A and 〈Sp,n〉 for 131Xe nucleus given in the pure
Bino section, reads as

σH̃ Xe
0 ' µ2

N

µ2
p

A2
[
σH̃p0 SI + 8× 10−6σH̃p0 SD

]
(4.95)

where we used the fact that from the values given in Table 4.7 we have that
√
σH̃n0 SD/σ

H̃p
0 SD ' 0.9.

Here the ratio between the SD Higgsino-Xe scattering cross-section and the SI one is about
σH̃ Xe
0 SD /σH̃ Xe

0 SI ' 0.03. Therefore for a pure Higgsino LSP the relative contribution of the SD
interaction is negligible respect to the SI one. As a consequence a separate analysis of the SD
and SI contribution, as the one performed in Fig. 4.6, is justify.

Anyway from Fig. 4.6 it is appreciable that the expected Higgsino-nucleon scattering cross-
sections (SD and SI) are well below the today’s direct detection bounds. Thus from direct
detection constraints an heavy Higgsino LSP with a mass of about 1TeV seems to be a good
DM candidate.
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Nevertheless with this high |µ| value there would be a potential theoretical issue. This
problem is related to the fact that the low energy MSSM model has to reproduce the electroweak
symmetry breaking (EWBS). As we know in order to do this we have to minimize the MSSM
Higgs potential, given in Eq. (3.33). This operation imposes a relation between the Z0 boson
mass, mZ0 , the Higgs soft-mass parameters, mHu

,mHd
, and the parameter µ [54], [22]. This

relation at tree-level and in terms of tanβ reads as [22]

m2
Z0

2
=
m2
Hd

+ |mHu |
2
tan2 β

tan2 β − 1
− |µ|2. (4.96)

In the limit of moderate large tanβ (condition which is desirable in order to avoid the need for
a gigantic stop mass to find the right mass of the lightest Higgs boson [22]) Eq. (4.96) reduces
to [22]

−
m2
Z0

2
' |µ|2 − |mHu |

2
. (4.97)

From this relation the EWSB fine tuning problem is more clear. In fact if we take values of µ of
order o few TeV the required values of mHu

have to be relatively fine tuned in order to obtain
the observed value of mZ0 . Therefore a pure Higgsino LSP with a mass of about |µ| ' 1TeV
resolves the DM problem, but has also the effect to reintroduce a fine tuning problem in the
theory [11]. This is in net contrast with the original motivations at the base of SUSY theory,
which was introduced precisely to reproduce the EW scale without too much fine tuning.

Furthermore the possibility of a pure Higgsino DM can be ruled out by future indirect
searches. Indirect detection experiments try to observe the radiation produced by DM anni-
hilations in the galaxy [19]. The flux of these gamma radiation depends on the annihilation
cross-section of the particular DM candidate. In particular these photons come, indirectly, from
the disintegration of the W± bosons produced by the DM annihilation and, directly, from the
one-loop annihilation processes such as χ̃χ̃ → γγ and χ̃χ̃ → γZ0, where χ̃ denotes the DM
candidate.7. The former processes produce a continuous photon spectrum which falls increas-
ing the energy of the processes, while the latter processes give a distinct signature against the
background [17]. In particular, for a Higgsino LSP, the one-loop processes are H̃1H̃1 → γγ and
H̃1H̃1 → γZ0, a sample of the possible Feynman diagrams for these processes is

W±

H̃±

H̃±

H̃±

H̃1

H̃1 γ, Z0

γ

H̃±

W±

W±

W±

H̃1

H̃1 γ, Z0

γ

(4.98)

In the limit of a heavy pure Higgsino LSP the thermal average cross-section times velocity of
these one-loop annihilation processes are nearly constant i.e. they do not depend on the LSP
mass (or the energy of the process) [17], and their values are about 〈σv〉γγ ≈ 10−28cm3/s for
two photons emission and 〈σv〉γZ0 ≈ 8×10−29cm3/s for one photon emission [39]. In particular
in this energy regime these one-loop processes dominate over the ones for the W± emission.
Furthermore because the annihilation occurs in a non-relativistic regime, the energy of the
emitted photons would be Eγ = |µ| for two photons emission, while Eγ = |µ|(1−m2

Z0/(4|µ|))
for one photon emission [16]. So what we expect is a narrow line in the emitted gamma spectrum
that would be peaked at an energy roughly equal to the mass of the Higgsino LSP. Nowadays
this typical signal, at Eγ ' 1TeV is not yet observed [2], probably because the small values
of the Higgsino annihilation cross-section into photons. Nevertheless a major sensitivity of the
future experiments could exclude pure Higgsino dark matter. However it is worth to note that
indirect detection searches suffer of a certain amount of uncertainty due to the fact that the
flux of gamma-ray emission depends also on the DM density profile, which is not well known.

7Note that these processes are possible when the DM candidate is nearly degenerate with the lightest chargino
and so it can couple with the W± SM bosons.
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Anyway these arguments suggest that the Higgsino LSP mass has to be strictly less of 1TeV.
This requirement implies that a pure Higgisino LSP has a relic abundance which is too small
to agree with the one observed for DM and so it is not acceptable as DM candidate [11]. Note
that this situation is diametrically opposed to the one of a pure Bino LSP which, as we said in
the previous section, tends to have a relic abundance which is too large compared with the DM
one.

4.4 Pure Wino LSP
The last purity configuration which we consider, is the one provided by the pure Wino LSP.
This configuration is achieved when in the LSP definition, given in Eq. (3.44), we send [50]

N12 →1

N11, N13, N14 → 0.

The more direct way to satisfied these relations, is to impose at the electroweak scale that

M2 �M1 < |µ| (4.99)

where M2 is the Wino mass parameter. In fact taking into account Eqs. (3.48) and Eqs. (3.49)
we can see that imposing the above relation we obtain that

N11 ' − tWm
2
W (M2 + µ sin 2β)

(M1 −M2) (µ2 −M2
2 )

' O

(
m2
W

M1µ

)
(4.100a)

N12 ' 1 + O

(
m2
W

µ2

)
(4.100b)

N13 '
(
tWm

2
W (M2 + µ sin 2β)

(µ2 −M2
2 ) cosβ

+
mW sinβ

µ

)
' O

(
mW

µ

)
(4.100c)

N14 '
(
M2

µ

tWm
2
W (M2 + µ sin 2β)

(µ2 −M2
2 ) cosβ

+
mW cosβ

µ

)
' O

(
mW

µ

)
, (4.100d)

where as above we have assumed that |µ|, (|µ| − M2) � mW and that m2
H � m2

h. As a
consequence the lightest neutralino is nearly a pure Wino, χ̃0

1 = W̃ 0, with a mass, at the
leading order, equal to mχ̃0

1
' M2. Observing at Eqs. (3.56) we note that the above relation

among the neutralino mass parameters, imposes also that the lightest chargino is the charged
Wino, χ̃±

1 = W̃±, with a mass equal to mχ̃±
1
' M2 up to corrections of order mW /µ, is. So,

as in the pure Higgsino case, we have a condition of nearly perfect mass degeneration between
the LSP and the lightest chargino. Using Eq. (3.48) and Eq. (3.56) we can evaluate the mass
splitting between the Wino LSP and the charged Wino which is about [39]

δmW̃ =
m4
Z0

M1µ2
s2W c

2
W sin2 2β ≈ 5× 10−6 GeV

(1TeV)3

M1µ2
+ O

(
m2
W

M2
1

,
m4
Z0

µ4

)
. (4.101)

Comparing this result with the one given in Eq. (4.88) for the pure Higgsino case, we note
that, in the pure Wino case, the mass splitting between LSP and lightest chargino is more
extreme, because it is suppressed by three powers of the mass parameters; conversely, as is
evident from Eq. (4.88), in the pure Higgsino case, the suppression was only of one power of the
mass parameters[39]. Taking into account this and assuming that M1, |µ| > 1TeV we obtain
that the mass splitting is about

δmW̃ < 5× 10−6 GeV. (4.102)

Therefore in the pure Wino case the condition for the effectiveness of the co-annihilations read
as

δmW̃

M2
<

1

xfo
(4.103)
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Initial states Final states Channels

W̃ 0W̃ 0 W±W∓ u(W̃±), t(W̃±)

W̃±W̃ 0 W±γ, W±Z0 t(W̃±), s(W±)
f ′f̄ s(W±)

W̃±W̃∓
W±W∓ t(W̃ 0), s(γ), s(Z0)

Z0Z0, γγ t(W̃±)
ff̄ s(γ), s(Z0)

W̃±W̃± W±W± t(W̃ 0), u(W̃ 0)

Table 4.8: In the table are summarized the possible final state of the co-annihilation processes between
the neutral and charged Winos. Note that in the table we do not show the processes mediated
by sfermions, because they are suppressed by the high sfermion masses.

MSSM Parameter Value-Range

M2 100− 2500GeV
M1 3TeV
µ 4TeV
M3 5TeV
ml̃L,R

> 3TeV
mq̃L,R > 2.5TeV
tanβ 10

Table 4.9: In the table are summarized the MSSM parameters used for the numerical simulation of the
pure Wino LSP configuration.

which for δmW̃ given above, M2 > 100GeV and as usual xfo ∼ 20 − 30, is certainly satis-
fied. Thus the co-annihilations between the neutral Winos and the chraged ones become of
fundamental importance in the computation of the Wino LSP relic abundance.

For a pure Wino LSP the dominant annihilation and co-annihilations channels are into
gauge bosons and fermion anti-fermion pairs, in Table 4.8 we summarize these processes with
the exchanged particles. In Appendix E we compute the annihilation cross-sections of the
processes given in Table 4.8, in the limit of a perfect degeneration between W̃ and W̃±. Note
that in principle, as occurred in the Bino LSP case, there is also a possible contribution from
annihilation into final fermion anti-fermion pairs through sfermion exchange. In our analytic
analysis we neglect these processes because they are relatively high suppressed by the high
sfermions masses.

Substituting into Eq. (2.78) the cross-sections given in the Eqs. (E.116) and then using
Eq. (2.86), we obtain that the thermal average of the effective cross-section times velocity for
a Wino LSP is

〈σeffv〉W̃ =

3∑
i,j

σij
9

=
3g4

16πM2
2

+ O

(
1

x

)
. (4.104)

Using this result into the relic density formula given in Eq. (2.90), we get that

ΩW̃h
2 = 0.15

(
M2

2.5TeV

)2

, (4.105)

which gives a good approximation of the relic density provided by a pure Wino LSP as a
function of its mass. Our numerical analysis of the pure Wino LSP takes into account the
values of the MSSM parameters given in Table 4.9. In particular the results of the micrOmegas
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4.2.5 simulation sets that a Wino LSP fulfill the DM constraint if it has a mass in the range,
2016GeV . M2 . 2140GeV. In Fig. 4.7 we compare the result of the numerical analysis with
the analytical one obtained using Eq. (4.105). As is evident both the analytical and numerical
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Figure 4.7: In the figure is shown the contribution to Ωh2 of a pure Wino LSP as a function of its mass,
obtained from the micrOmegas 4.2.5 simulation (green line), compared with the analytical
result (blue line) obtained using Eq. (2.90). The width of band, in the numerical analysis, is
obtained varying the parameters ml̃ and mq̃ from 3TeV to 10TeV.

analysis show that a value of the Wino mass as larger as M2 ∼ 2000GeV is required in order to
reproduce the correct DM relic density. In Fig. 4.7 the band of the numerical result is obtained
varying the slpeton and the squark mass parameters from 3TeV to 10TeV. The smallness of
the width of this band, reflects the small contribution of the annihilation processes mediated
by sfermions.

For what concern the direct detection analysis, substituting the results given in Eqs. (4.100)
into Eq. (4.17) and Eq. (4.18) we get that

α
SD(qi)

W̃
=
g2(ηi11)

2

16

[
1

(m2
q̃1i

−M2
2 )

+
1

(m2
q̃2i

−M2
2 )

]
+

g2

16 (M2
2 − µ2)

(−1)i cos 2β (4.106a)

α
SI(qi)
W̃

= −g
2mqi

4m2
h

(
M2 + µ sin 2β

M2
2 − µ2

)
(4.106b)

note that in the SI independent interaction is absent the term relative to the squarks exchange,
because it is suppressed by a factor (mqimW )/(µm2

q̃1i,2i
). Substituting these equations into

Eq. (4.35) and Eq. (4.61) we find that the Wino-nucleon cross-sections at zero momentum
transferred are equal to

σW̃p
0 SD =

12

π

(
M2mp

M2 +mp

)2[∑
qi

α
SD(qi)

W̃
∆q(p)

]2
(4.107a)

σW̃n
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M2mn

M2 +mn
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W̃
∆q(n)

]2
(4.107b)

σ
W̃p/n
0 SI =
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π
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M2mp

M2 +mp
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[ ∑
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mp/n
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(p/n)
Tq α

SI(qi)
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2

27
fTG

∑
q=c,b,t

mp/n

mq
α
SI(qi)

W̃

]2
. (4.107c)

In Fig. 4.8 we plot the micrOmegas 4.2.5 results for the SD and SI scattering cross-sections on
nucleons for a Wino LSP with the excluded experimental regions and in Table 4.10 we collect
these numerical results.

For a pure Wino LSP in the limit where mq̃1i
' mq̃2i

= mq̃ � M2, and of heavy squark
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Cross-section Value-Range

σW̃p
0 SD 1× 10−11 − 1.4× 10−9 pb
σW̃n
0 SD 4.5× 10−11 − 2.3× 10−9 pb

σW̃p,n
0 SI 7.3× 10−13 − 7.7× 10−13 pb

Table 4.10: In the table are listed the upper and lower values of the SD and SI Wino-nucleon cross-sections
computed with micrOmegas 4.2.5 .
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Figure 4.8: In the plot (a) is shown the SD Wino-proton scattering cross-section (pink band) with the
experimental excluded regions (shaded regions) provided by LUX-2016 (green) and PICO-
60 (brown) experiments. In the left panel (b) is shown the SD Wino-neutron scattering
cross-section (yellow band), here the excluded regions are given by the LUX-2016 (green)
and XENON100 (purple) experiments. In the below panel (c) we show the result for the SI
Wino-nucleon scattering cross-section with the excluded limits given by the LUX-2016 (green)
and the PANDAX-2016 (red) analysis. In every graph the squark masses are varying within
the range 2.5TeV . mq̃ . 8TeV and the regions between the blue-dashed lines represent
the analytical results which are found using the approximate formulae given in Eqs. (4.108).
Note as all the numerical results are well below the forbidden regions.

masses which implies ηi11 → 1 and ηi12 → 0, Eqs. (4.108) are well approximated by

α
SD(qi)

W̃
' g2

8m2
q̃

− g2

16µ2
(−1)i cos 2β + O
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M2

2
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(4.108a)

α
SI(qi)
W̃

' g2mqi sin 2β

4m2
h|µ|

+ O

(
M2

2

µ2

)
. (4.108b)
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These results confirm the numerical ones plotted in Fig. 4.8. In particular assuming that
µ & mq̃, in the SD interaction the dominant term would be the one relative to squarks ex-
change. In fact the width of the band in plots (a) and (b) of Fig. 4.8, correspond to a common
squark mass which is varying from 2.5TeV to 8TeV. In the SI case, plot (c), this dependence
disappears, consistently with Eq. (4.108b) where the dominant term is the one relative to the
Higgs exchange.

As usual, using Eq. (4.67) and the values of JA, A and 〈Sp,n〉 for 131Xe nucleus given in the
pure Bino section, we can approximately evaluate the total Wino-Xe scattering cross-section,
which becomes equal to

σH̃ Xe
0 ' µ2

N

µ2
p

A2
[
σ
W̃p/n
0 SI + 1.5× 10−5σW̃p

0 SD

]
. (4.109)

To obtain this result we used the fact that
√
σW̃n
0 SD/σ

W̃p
0 SD ' 1.3, where the values of σW̃n

0 SD

and σW̃p
0 SD are given in Table 4.10. For a Wino LSP we have that the ratio between the SD

neutralino-nucleus scattering cross-section and the SI one, is about σW̃ Xe
0 SD /σW̃ Xe

0 SI ' 2.7× 10−2.
Thus also for a Wino LSP the contribution of the SI interaction is the dominant one.

Although a pure Wino LSP satisfied both direct detection and DM constraints, just as
occurred for the pure Higgsino LSP configuration, also here the huge LSP mass value, needed
to fit the right DM relic abundance, implies that a significant fine tuning is needed to reproduce
the EW scale. Note that in the pure Wino case the situation is even more extreme than in the
pure Higgsino one [11]. In fact the requirement that the right LSP mass is M2 ∼ 2TeV imposes
that |µ| � 2TeV in order to respect the condition given in Eq. (4.99). As a consequence we
need more fine tuning, in Eq. (4.96), to find the observed value of mZ0 .

Furthermore also here there are constraints from indirect searches of gamma-ray emission.
For a pure Wino the characteristic one-loop annihilation processes are similar to those for the
pure Higgsino, schematically they are W̃W̃ → γγ and W̃W̃ → γZ0, and the possible Feynman
diagrams are similar to those given in Eq. (4.98) with H̃1 and H̃± respectively replaced by W̃
and W̃±. The thermal average of their annihilation cross-sections times velocity are respectively
equal to 〈σv〉γγ ≈ 1.6× 10−27cm3/s for two photons emission and 〈σv〉γZ0 ≈ 1.1× 10−26cm3/s
for one photon emission [39]; also here it can be demonstrated that, in the limit of high Wino
LSP mass, the cross-sections do not depend on LSP mass [17]. Thus we expect a characteristic
gamma line at an energy Eγ = M2 in the emitted gamma-ray spectrum. Conversely to what
occurred in the pure Higgsino case, for a pure Wino LSP the cross-section values are well above
the limits reached by the more recent gamma-ray detection experiments such as HESS [2]. So
the non observation of typical the gamma line at Eγ ' 2TeV exclude the possibility that a pure
Wino LSP is a good DM candidate [39].

4.5 Well-Tempering
As we saw in the previous sections varying the mass of the proposed DM candidates, we note
that we pass from a pure Bino configuration (without co-annihilations), which typically gives
a relic abundance which is too large compared to the one of DM, to a pure Higgsino and then
to a pure Wino configurations which, conversely, tend to give a relic abundance which is too
small to fulfill the DM constraints. This pattern suggests that in the regions where the mixing
between Bino and Higgsino or Bino and Wino become important, the resulting neutralino
LSP can fulfill the DM constraint for a LSP mass in the range from 100GeV to 1TeV. Note
that this is possible because Ωh2, via 〈σv〉, is a continuous function of the mass parameters
[11]. From our previous analysis is evident that in this mass range the various problems,
theoretical and experimental ones, which affect the purities configurations can be alleviated.
In particular the problem encountered for the pure Higgsino LSP relative to the excessive fine
tuning required to reproduce the Z0 mass, in this LSP mass range can be partially avoided
[11], [9]. Furthermore, the fact that the LSP mass is less than 1TeV, implies that the one-
loop annihilation processes into final photons are strongly inhibited, and so the constraints
from indirect detection experiments can be satisfied. Note also that a LSP with a mass grater
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than 100GeV, naturally satisfied the LEP and LHC constraints on the lightest chargino mass,
mχ̃± & 100GeV, which as we will see it would be nearly degenerate with the LSP [60], [11]. In
the next we will focus on two mixed configurations of this type; in particular the mixing between
Bino, Higgsino and Wino states of these configurations, are adjusted such that the resulting
LSP has a thermal relic abundance, which fits the one observed for DM in a wide range of
the MSSM parameter space. For this reason these configurations are called "Well-Tempered"
neutralino [11] and their realization needs specific relations among neutralino mass parameters,
M1, M2 and µ.

4.6 Well-Tempered Bino/Higgsino

The configuration of Well-Tempered Bino/Higgsino (B̃/H̃) is realized when [11], [25]

M1 ' |µ|. (4.110)

Note that, as we said in Chapter 3, we cannot fix the sign of µ; as a consequence we can have
a Well-Tempered B̃/H̃ configuration both when µ is positive i.e. when M1 ' µ, and when µ
is negative i.e. when M1 ' −µ8. We assume that all the others superpartners and the Higgs
scalars are decoupled, exception made for the SM Higgs (mh ' 125GeV [60]). In particular we
are assuming that M2 � M1, |µ| and hence the DM candidate composition is fully described
by three parameters, namely M1, |µ| and β. The fact that the Wino states is more heavier
than the Higgsino and the Bino states, allow us to take into account the effective mass terms
obtained decoupling the Wino state [11], which are

Leff
W̃/H̃

=
g2v2u
2M2

H̃0
uH̃

0
d +

g2v2d
2M2

H̃0
dH̃

0
d +

g2vuvd
M2

H̃0
uH̃

0
d . (4.111)

Redefining H̃0
u and H̃0

d via Eqs. (4.86) we can recast Eq. (4.111) as

Leff
W̃/H̃

= −(1 + s2β)
M2
W

2M2
H̃0

1 H̃
0
1 − (1− 2s2β)

M2
W

2M2
H̃0

2 H̃
0
2 − M2

W

M2
c2βH̃

0
1 H̃

0
2 (4.112)

where we have redefined sin 2β ≡ s2β and cos 2β ≡ c2β . Therefore in the basis B̃, H̃0
1 , H̃0

2 the
effective neutralino mass Lagrangian reads as

Leff
Mass =

M1

2
B̃B̃−sβ + cβ√

2
sWmZ0H̃0

1 B̃+
sβ − cβ√

2
sWmZ0H̃0

2 B̃+
µ

2
H̃0

1 H̃
0
1−

µ

2
H̃0

2 H̃
0
2+h.c.+Leff

W̃/H̃

(4.113)
and so the neutralino mass matrix for a B̃/H̃ configuration with a decoupled Wino is given by

MB̃/H̃ =


M1 −(µ−M1)θ+ (µ+M1)θ−

−(µ−M1)θ+ µ− m2
W

2M2
(1 + s2β) −m2

W

2M2
c2β

(µ+M1)θ− −m2
W

2M2
c2β −µ− m2

W

2M2
(1− s2β)

+ O

(
m2
W

M2
2

)
,

(4.114)
where the quantities θ+ and θ− are defined as

θ+ ≡ (sβ + cβ)sWmZ0√
2(µ−M1)

θ− ≡ (sβ − cβ)sWmZ0√
2(µ+M1)

. (4.115)

The details of diagonalization of MB̃/H̃ are given in Appendix C. In the limit where M1, µ,
|M1 − |µ|| > mZ0 , we can assume that the quantities θ± are moderate, and thus the eigenvalues

8Conversely M1 is taken to be a positive quantity, see Chapter 3.
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of MB̃/H̃ are approximately given by

mχ̃1
=M1 + θ2±(M1 ∓ µ) + O

(
mW

M2
, θ3±

)
(4.116a)

mχ̃2 = ∓µ+ O

(
mW

M2
, θ3±

)
(4.116b)

mχ̃3
= µ− θ2±(M1 ∓ µ) + O

(
mW

M2
, θ3±

)
(4.116c)

where the upper signs refer to the case M1 ' µ while the lower ones refer to the case M1 ' −µ
. Using the ortogonal matrix N which diagonalized MB̃/H̃ given in Appendix C we can find
that the associated eigenvectors are equal to

χ̃1 =

(
1−

θ2+
2

−
θ2−
2

)
B̃ + θ+H̃

0
1 + θ−H̃

0
2 (4.117a)

χ̃2 = −θ−B̃ + θ+θ−
(M1 − µ)

2µ
H̃0

1 +

(
1−

θ2−
2

)
H̃0

2 (4.117b)

χ̃3 = −θ+B̃ +

(
1−

θ2+
2

)
H̃0

1 − θ+θ−
(M1 + µ)

2µ
H̃0

2 (4.117c)

The fact that the Wino state is completely decoupled has also the effect that the lightest
chargino is Higgsino like, namely

χ̃±
1 = H̃±. (4.118)

Its mass can easily read off from Eqs. (3.56) and at the leading order is equal to

mχ̃±
1
= |µ|+ O

(
mW

M2

)
. (4.119)

Note that, from Eqs. (4.116), the lightest chargino, up to corrections of order mW /M2, is
perfectly degenerate with the neutralino χ̃2

9.
From Eqs. (4.117) and the definitions given in Eqs. (4.115) we can observe that whenM1 ' µ

we have that θ− → 0, and so the B̃ and H̃0
1 states mix with an angle θ+ while H̃0

2 becomes
nearly a pure state with mass |µ|. Conversely when M1 ' −µ we have that θ+ → 0 and so B̃
and H̃0

2 states mix with an angle θ− while H0
1 is nearly a pure state with mass |µ| [11].

Note that the mixing angles, in particular θ−, have also a dependence on the value of tanβ.
Rewriting Eqs. (4.115) in terms of tanβ as

θ+ ≡ cβ(1 + tanβ)sWmZ0√
2(µ−M1)

θ− ≡ cβ(1− tanβ)sWmZ0√
2(µ+M1)

, (4.120)

we can see that when tanβ → 1 implies that θ− → 0. Hence when M1 ' −µ and tanβ ' 1 the
mixing between B̃ and H̃0

2 is quite absent. Observing at Eqs. (4.120) we can also note that,
for large values of tanβ, the configurations M1 ' µ and M1 ' −µ tend to coincide giving the
same results [11].

Relaxing the condition |M1 − |µ|| > mZ0 and in particular when |µ±M1| . mZ0(sβ ∓
cβ)sw/

√
2, the mixing angles θ+ and θ− become maximal. As a consequence the eigenvalues

given in Eqs. (4.116) are no longer valid. In this limit, in matrix MB̃/H̃ we can replace µ with
M1 and the diagonalization now gives the following eigenvalues, see Appendix C

mχ̃1
=M1 −

(sβ ± cβ)sWmZ0√
2

+ (1∓ s2β)
s2Wm

2
Z0

8M1
(4.121a)

mχ̃2
= −M1 − (1∓ s2β)

s2Wm
2
Z0

4M1
(4.121b)

mχ̃3
=M1 +

(sβ ± cβ)sWmZ0√
2

+ (1∓ s2β)
s2Wm

2
Z0

8M1
(4.121c)

9As we said in the pure Higgsino LSP section the masses of the particles have always to be intended as the
absolute values of the eigenvalues of the mass matrix, given by Eqs. (4.116).
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where the sign convention is the same as above.
Anyway both when |µ±M1| > mZ0 and when |µ±M1| < mZ0(sβ ∓ cβ)sw/

√
2 the co-

annihilations between the three neutralino states and the lightest chargino are important [25].
To test the entity of the co-annihilations mechanism for the B̃/H̃ configuration we have to
estimate the mass splitting, between the various relevant neutralino states and the cahrgino
state. In particular when |µ±M1| > mZ0 we get that

δm1 ≡ |mχ̃1 −mχ̃2 | ' |M1 ∓ µ|(1 + θ2±) + O

(
mW

M2
, θ3±

)
(4.122a)

δm2 ≡ |mχ̃1
−mχ̃3

| =
∣∣∣mχ̃1

−mχ̃±
1

∣∣∣ ' |M1 ∓ µ|(1 + 2θ2±) + O

(
mW

M2
, θ3±

)
(4.122b)

δm3 ≡ |mχ̃2
−mχ̃3

| =
∣∣∣mχ̃2

−mχ̃±
1

∣∣∣ ' θ2±|M1 ∓ µ|+ O

(
mW

M2
, θ3±

)
(4.122c)

where we have used Eqs. (4.116) and the sign convention is as above. Note that the above mass
differences, in the limit of moderate θ±, are related by δm3 < δm1 ≤ δm2. So the condition
to be satisfied, in order to have a significant co-annihilations mechanism among all the three
neutralinos and the lightest chargino, is

δm2

|µ|
.

1

xfo
, (4.123)

which at the leading order and redefining (|µ| −M1)/|µ| ≡ ∆ read as

|∆| . 1

xfo
. (4.124)

Thus, for xfo ∼ 20, this relation implies that −0.05 . ∆ . 0.05. Note that if ∆ � −0.05 we are
moving towards a pure Higgsino LSP configuration, while for ∆ � 0.05 we are moving towards
a pure Bino LSP configuration.

When |µ±M1| < mZ0(sβ ∓ cβ)sw/
√
2 the mass differences are given by

δm1 ≡ |mχ̃1 −mχ̃2 | '
√
2(sβ ± cβ)sWmZ0 (4.125a)

δm2 ≡ |mχ̃1
−mχ̃3

| =
∣∣∣mχ̃1

−mχ̃±
1

∣∣∣ ' (sβ ± cβ)sWmZ0√
2

(4.125b)

δm3 ≡ |mχ̃2
−mχ̃3

| =
∣∣∣mχ̃2

−mχ̃±
1

∣∣∣ ' −(sβ ± cβ)sWmZ0√
2

(4.125c)

where we used Eqs. (4.121) with the same signs convention used above. Here the relation among
the mass differences is δm2 = δm3 < δm1 and so the co-annihilations are effective if

√
2(sβ ± cβ)sWmZ0

|µ|
<

1

xfo
. (4.126)

which is quite well satisfied because we are assuming that M1, |µ| � mZ0 .
In the limit where θ± are moderate (θ± � 1) the mixing between the Bino and the Higgsino

states is negligible, see Eqs. (4.117), and providing that Eq. (4.124) is quite satisfied, the relic
abundance of a B̃/H̃ is practically determined by the co-annihilations between the Higgsino
states [11]. Thus in this limit the thermal average of the effective cross-section times velocity
is approximately given by

〈σeffv〉B̃/H̃ =
〈σeffv〉H̃[

1 + 1
4

(
M1

µ

)3/2
e
−x

(
µ

M1
−1

)]2 (4.127)

where we have used Eq. (2.78), Eq. (2.86) and the result for the pure Higgsino LSP given in
Eq. (4.90). Using the relic density formula Eq. (2.90) and substituting into it the above result,
we obtain that the relic abundance for a B̃/H̃ is approximately given by

ΩB̃/H̃h
2 ' 0.097

( µ

1TeV

)2 1

RB̃/H̃
(4.128)
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MSSM Parameter Value-Range

M1 100− 1200GeV
µ 0.95M1 − 1.05M1

M2 3TeV
M3 3.8TeV
ml̃L,R

> 1.7TeV
mq̃L,R > 2TeV
tanβ 10

Table 4.11: In the table are listed the values of the MSSM parameters that we take into account for the
numerical analysis of the B̃/H̃ configuration.

where RB̃/H̃ is defined as

RB̃/H̃ ≡
∫ ∞

xfo

dx
x2

[
1 +

1

4

(
M1

µ

)3/2

e
−x

(
µ

M1
−1

)]−2

=

∫ ∞

xfo

dx
x2

[
1 +

1

4
(1−∆)

3/2
e
−x

(
∆

1−∆

)]−2

.

(4.129)

Note that in Eq. (4.128) we have made use of the relic density result for a pure Higgsino
LSP given in Eq. (4.91), because, as we said before, the annihilation rate for a B̃/H̃ in the
limit of moderate θ± is mostly determined by the Higgsino co-annihilations. When the mixing
angles are not negligible and in particular when they become maximal i.e. when |µ±M1| <
mZ0(sβ ∓ cβ)sw/

√
2 the thermal average of the effective annihilation cross-section is no longer

approximate by Eq. (4.127). In fact when the mixing between Bino state and Higgsino state
become important there are more co-annihilation processes to take into account. In particular
a strong mixing between Bino and Higgsino states enhances the possibility of an annihilation
through Higgs exchange into final SM fermions or bosons states.

For our numerical analysis of the B̃/H̃ configuration we used the MSSM parameters, defined
at the EW scale, given in Table 4.11. Our numerical simulations are depicted in Fig. 4.9
and Fig. 4.10 . In particular in Fig. 4.9 we compare the numerical result with the analytical
one obtained using Eq. (4.128) where the integral RB̃/H̃ is computed numerically assuming
∆ ' 0.05. In Fig. 4.10 we analyse the B̃/H̃ configuration varying the Bino mass parameter M1,
for different fixed values of the Higgsino mass parameter |µ|. The numerical results show that
the DM constraint is satisfied by a B̃/H̃ configuration with a LSP mass, MDM, within a range
305GeV < MDM < 715GeV which correspond to ∆ varying in the range −0.05 < ∆ < 0.05. As
we said before the most sensitive configuration to small values of tanβ is for negative values of
the Higgsino mass parameter µ. In Fig. 4.11 we show the numerical results for the relic density
provided by B̃/H̃ configuration assuming µ < 0 and tanβ ' 1.1. As is evident the small mixing
between Bino fraction and the Higgsino one as the effect to enlarge the right LSP mass region,
which is now 261GeV .MDM . 994GeV. Nevertheless it is worth to note that small values of
tanβ are less favourable. In fact in order to avoid the need of a gigantic stop mass, we have to
maximize the Higgs mass at the tree-level, which requires large values of tanβ [22].

For what concern the direct detection analysis we encounter a situation which is radically
different from the purity cases studied above. For a Well-Tempered B̃/H̃, in the limit of
moderate θ±, using Eq. (4.17) and Eq. (4.18) we get that

α
SD(qi)

B̃/H̃
= (−1)i

g2

16m2
Z0 cos2 θW

[
θ2+ − θ2−

]
+ αSD

q̃i + O
(
θ3±
)

(4.130a)

α
SI(qi)
B̃/H̃

= −g
2mqitW
4mWm2

h

[θ+ cosβ − θ− sinβ] + αSI
q̃i + O

(
θ3±
)

(4.130b)

where as usual we have assumed that m2
H � m2

h and so sinα ' − cosβ and cosα ' sinβ.
Substituting Eqs. (4.130) respectively into Eq. (4.35) and into Eq. (4.61) we have that the SD
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Figure 4.9: In the figure is shown the contribution to Ωh2 of a Well-Tempered B̃/H̃ as a function of the
LSP mass, obtained from the micrOmegas 4.2.5 analysis and compared with the analytical
result. The width of the lighter green band correspond to our numerical simulation with ∆
varying in the range −0.05 . ∆ . 0.05 while the darker line is obtained using Eq. (4.128)
and assuming ∆ ' 0.05. As usual the band between the dashed lines denotes the observed
DM abundance within 2σ.
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Figure 4.10: In the plot we use an alternative method of analysis of the B̃/H̃ configuration. We show
the contribution to Ωh2 as a function of the Bino mass parameter M1 taking fixed the value
of |µ|. The dark gray region correspond to an over-abundant relic density Ωh2 > 1 which
has not physical sense, while the dashed line correspond to the observed DM relic density.
The zone well above of this line corresponds to a pure Bino LSP configuration while the
region well below corresponds to a pure Higgsino LSP configuration.

and SI B̃/H̃-nucleon scattering cross-section at zero momentum transferred are equal to

σ
B̃/H̃ p
0 SD =

12

π

(
MDMmp

MDM +mp

)2[∑
q

α
SD(qi)

B̃/H̃
∆q(p)

]2
(4.131a)

σ
B̃/H̃ n
0 SD =

12

π

(
MDMmp

MDM +mp

)2[∑
q

α
SD(qi)

B̃/H̃
∆q(n)

]2
(4.131b)

σ
B̃/H̃ p/n
0 SI =

4

π

(
MDMmp

MDM +mp

)2
[ ∑
q=u,d,s

mp/n

mq
f
(p/n)
Tq α

SI(qi)
B̃/H̃

+
2

27
fTG

∑
q=c,b,t

mp/n

mq
α

SI(qi)
B̃/H̃

]2
.

(4.131c)

In the above results, with αSD
q̃i

and αSI
q̃i

, we refer respectively to the coefficients of the processes
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Figure 4.11: In the figure is shown the contribution to Ωh2 of a Well-Tempered B̃/H̃ as a function of
the LSP mass assuming µ < 0 and imposing tanβ ' 1.1. As above the width of the band
correspond to −0.05 . ∆ . 0.05.

Cross-section Value-Range

σ
B̃/H̃p
0 SD 2.9× 10−6 − 8.5× 10−4 pb
σ
B̃/H̃n
0 SD 2.3× 10−6 − 6.5× 10−4 pb

σ
B̃/H̃p,n
0 SI 5.9× 10−9 − 1.1× 10−8 pb

Table 4.12: In the table we list the upper and lower values of the SD and SI B̃/H̃-nucleon cross-sections
for ∆ ' 0.05.

mediated by squarks in the SD and in the SI cases. From these results we can observe that
the presence of a mixing between the Bino and the Higgsino states, implies that the scattering
processes which proceed through Higgs boson exchange for the SI interaction, and through the
Z0 boson exchange for the SD one, are highly enhanced. In particular in the SI case, as is
evident from Eq. (4.130b), the dominant contribution is the one relative to the Higgs exchange
which, being suppressed only by the square of the SM Higgs mass, is less suppressed than the
terms relative to the squarks exchange whose are always suppressed by the square of the heavy
squark masses (mq̃ > 2TeV). The same thing occur in the SD case where the coefficient of
the scattering process mediated by the Z0 boson is suppressed only by the square of its mass,
mZ0 ' 80GeV [60]. These facts strongly enhance both the SI and SD LSP-nucleon scattering
cross-section. In particular as we can see from Fig. 4.12 this enhancement is so strong that the
SI B̃/H̃-nucleon cross-section is moved, nearly completely, towards the experimental excluded
regions. Note that the enhancement effect is stronger when M1 = |µ| i.e. when the mixing
angle is maximal, while tends to be alleviated when ∆ ' −0.05 or ∆ ' 0.05.

The analytical results in Eqs. (4.131) confirm the numerical behaviours, and in Fig. 4.12
they are plotted using a red dashed line. Note that Eqs. (4.131) have to be compared with the
numerical results for and ∆ ' 0.05 i.e. the blue continuous line in Fig. 4.12.

As we done in the previous sections the total neutralino-nucleus cross-section can be obtained
using Eq. (4.67). For B̃/H̃ we present the approximate result for ∆ ' 0.05, which is

σ
B̃/H̃ Xe
0 ' µ2

N

µ2
p

A2
[
σSI
p + 6.8× 10−6σSD

p

]
(4.132)
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Figure 4.12: In the plot (a) is shown the SD B̃/H̃-proton scattering cross-section with the experimental
excluded regions (shaded regions) provided by LUX-2016 (green) and PICO (brown) obser-
vations. In the left panel (b) is shown the SD B̃/H̃-neutron scattering cross-section, with the
excluded regions given by the LUX-2016 (green) and XENON100 (purple) experiments. In
the below panel (c) we show the result for the SI B̃/H̃-nucleon scattering cross-section with
the excluded limits given by the LUX-2016 (green) and the PANDAX-2016 (red) analysis.
In every plot the two continuous lines correspond respectively to ∆ ' 0.05 (blue line) and
∆ ' 0 (orange line) and the red-dashed lines are the analytical results found with formulae
given in Eqs. (4.131) . Comparing these results with the ones for a pure Higgsino LSP,
Fig. 4.6, or a pure Bino LSP, Fig. 4.2, we note the strong enhancement of the LSP-nucleon
scattering cross-section, in particular for the SI case.

where we use the values of the B̃/H̃-nucleon scattering cross-section given in Table 4.12. For
the B̃/H̃ configuration the comparison between the SD nuclear cross-sections and the SI one
gives σB̃/H̃ Xe

0 SD /σ
B̃/H̃ Xe
0 SI ' 0.04 . Therefore, as occurred in the pure Higgsino and in the pure

Wino cases, the SI interaction is dominant respectively to the SD one, and so we can study
them separately.

For what concern the negative µ values, assuming tanβ 6= 1, the situation is quite similar
to the one for positive values of µ [25]. Nevertheless when µ is negative and tanβ → 1, as we
said before, the mixing angle θ− vanishes. As a consequence the processes mediated by Z0 and
Higgs bosons become more weaker than before. In fact noting that when tanβ → 1 we have
that sin 2β → 1 and cos 2β → 0, the results given in Eqs. (4.131), with the lower signs, vanish
(remember that for µ < 0 we have θ+ → 0). As a consequence the SD and SI B̃/H̃-nucleon
scattering cross-sections are lowered. In Fig. 4.13 we give the numerical results for µ < 0 and
tanβ ' 1.1.

Concluding except in the case when µ < 0 and tanβ = 1, the Well-Tempered B̃/H̃ configu-
ration although it greatly satisfies the DM constraint in a wide range of the MSSM parameters
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Figure 4.13: In figure are shown the SD B̃/H̃-proton (a), SD B̃/H̃-neutron (b) and SI B̃/H̃-nucleon
scattering cross-sections assuming negative µ values, tanβ ' 1.1 and taking M1 ' −µ.
Comparing these results with ones given in Fig. 4.12 we note that the small mixing between
Bino and Higgsino states has the effect of lower the scattering cross-sections below the
experimental limits.

space, it is nearly ruled out by direct detection constraints. Therefore a Well-Tempered B̃/H̃
cannot provide a viable DM candidate.

4.7 Well-Tempered Bino/Wino

As last we analyse the Well-Tempered Bino/Wino (B̃/W̃ ) configuration. Remembering that
we take M1 and M2 to be real and positive, the condition to obtain a Well-Tempered B̃/W̃
configuration is

M1 'M2. (4.133)

Also here we assume that all the others super-particles and the Higgs scalars except the SM
Higgs, are more heavier than the Bino and the Wino. In particular here we will assume that
|µ| � M1,M2. This relation between the neutralino mass parameters, allow us to take into
account the effective mass terms between Bino and Wino states, obtained decoupling the two
Higgsinos, namely

Leff
B̃/W̃

= −
s2W s2βm

2
Z0

µ
B̃B̃ −

c2W s2βm
2
Z0

µ
W̃W̃ +

2sW cW s2βm
2
Z0

µ
B̃W̃ . (4.134)
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Thus in the B̃/W̃ configuration the neutralino mass Langrangian is given by

Lmass
B̃/W̃

=
M1

2
B̃B̃ +

M2

2
W̃W̃ + h.c.+ Leff

B̃/W̃
(4.135)

from which we can define the effective B̃/W̃ mass matrix with decoupled Higgsinos

MB̃/W̃ =

(
M1 0
0 M2

)
+M1θ∆

(
−tW 1
1 −ctW

)
+ O

(
1

µ2

)
(4.136)

where we have redefined tan θW ≡ tW and cotan θW ≡ ctW and the quantities ∆ and θ are
respectively defined as

∆ ≡ M2 −M1

M1
θ ≡

s2W s2βm
2
Z0

2|µ|M1∆
. (4.137)

Note that although we have taken the Higssino states completely decoupled the parameter |µ|
continues to have an important role. In fact from the mass matrix MB̃/W̃ , is evident that the
mixing between Bino and Wino is possible only at the first order in an expansion on mW /|µ|.
This situation is different from the one of the B̃/H̃ case studied in the previous section, where the
mixing between Bino and Higgsinos was appreciable also at the leading order in an expansion
in mW /M2. In particular the fact that the mixing angle θ is always suppressed by the |µ|
parameter, implies that the mixing between the Bino and the Wino states is less stronger than
the mixing between the Bino and Higgsino states in the B̃/H̃ case.

Diagonalizing the matrix MB̃/W̃ , in the limit where M1,M2 > mZ0 and |M2 −M1| >
s2βmZ0 , we find that the eigenvalues are equal to

mχ̃1
=M1 [1−∆(tW θ)] + O

(
m2
Z0

µ2

)
(4.138a)

mχ̃2
=M1 [1 + ∆ (1− ctW θ)] + O

(
m2
Z0

µ2

)
(4.138b)

with associated eigenvectors given by

χ̃1 ' B̃ − θW̃ (4.139a)

χ̃2 ' θB̃ + θW̃ (4.139b)

where we used the orthogonal matrix NB̃/W̃ which diagonalized the mass matrix MB̃/W̃ , given
in Appendix C. Note that in the case of a Well-Tempered B̃/W̃ , the lightest chargino is Wino
like

χ̃±
1 = W̃±. (4.140)

Its mass can be read off from Eq. (3.56), and at the first order is

mχ̃±
1
=M2 −

s2βm
2
W

µ
+ O

(
m2
W

µ2

)
= mχ̃2

. (4.141)

Note that from the definition of θ given in Eq. (4.137), when the difference |M2 −M1| → 0,
the mixing angle θ → ∞ and Eqs. (4.138) and Eqs. (4.139) are no longer valid. So when
|M2 −M1| < s2W s2βm

2
Z0/(2|µ|), in the mass matrix MB̃/W̃ we can replace M2 with M1 and

the eigenvalues are now given by

mχ̃1 =M1 + O

(
m2
Z0

µ2

)
(4.142a)

mχ̃2 =M1

(
1−

m2
Z0s2β

|µ|M1

)
+ O

(
m2
Z0

µ2

)
(4.142b)

mχ̃±
1
=M1

(
1− s2βm

2
W

|µ|M1

)
+ O

(
m2
W

µ2

)
(4.142c)
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where we have also included the lightest chargino mass.
Furthermore the mixing angle depends also on tanβ, in fact Eq. (4.137) can be recast as

θ =
tanβ

1 + tanβ2

s2Wm
2
Z0

2|µ|M1∆
. (4.143)

In particular this equation shows that the mixing angle reaches its maximum value (taking ∆
and µ fixed) when tanβ = 1. Note that for large value of tanβ the mixing angle θ → 0 and so
the mixing effects are more weaker [11].

Also here the co-annihilations between LSP, NLSP and the lightest chargino are effective if
the condition

δmij

M1
<

1

xfo
(4.144)

is satisfied. In the limit of moderate value of the mixing angle θ . 1, the mass differences are
given by

δm12 ≡ |mχ̃2
−mχ̃1

| ' |M1∆[1− 2θt2W ]|+ O

(
m2
Z0

µ2

)
(4.145a)

δm1± ≡
∣∣∣mχ̃±

1
−mχ̃1

∣∣∣ = δm12 (4.145b)

δm2± ≡
∣∣∣mχ̃2

−mχ̃±
1

∣∣∣ = O

(
m2
Z0

µ2

)
(4.145c)

where we used Eqs. (4.138) and Eq. (4.141). As is evident from these results the only mass
difference which survives, up to corrections of order m2

Z0/µ2, is δm12. Thus considering that,
as usual, xfo ' 20 the co-annihilations condition, Eq. (4.144), at the leading order read as

|∆| . 0.05. (4.146)

When the difference |M2 −M1| → 0, from Eqs. (4.142), the mass differences are equal

δm12 ≡ |mχ̃2
−mχ̃1

| =
s2βm

2
Z0

|µ|
+ O

(
1

µ2

)
(4.147a)

δm1± ≡
∣∣∣mχ̃±

1
−mχ̃1

∣∣∣ = s2βc
2
Wm

2
Z0

|µ|
+ O

(
1

µ2

)
(4.147b)

δm2± ≡
∣∣∣mχ̃2

−mχ̃±
1

∣∣∣ = tanβ2

1 + tanβ2

s2βm
2
Z0

|µ|
+ O

(
1

µ2

)
(4.147c)

and thus, in this limit, the co-annihilations condition is approximately given by

s2βm
2
Z0

|µ|
. 0.05. (4.148)

As occurred for the B̃/H̃ configuration, the relic abundance can be analytically approximate
when the mixing angle, θ, is moderate. In particular when θ . 1 the effective annihilation cross-
section is dominated by the Wino co-annihilations [11]. This is due to the fact that all of the
co-annihilation processes between Bino and Winos are proportional to θ2, while the annihilation
among two Binos are mediated by squarks and as a consequence are suppressed by the high
squark masses. Therefore in this limit the thermal average of the effective annihilation cross-
section times velocity for a Well-Tempered B̃/W̃ is

〈σB̃/W̃ v〉 '
〈σW̃ v〉[

1 + 1
3

(
M1

M2

)3/2
e
−x

(
M2
M1

−1
)]2 . (4.149)

Putting this result into the relic density formula, Eq. (2.90), we obtain that

ΩB̃/W̃h
2 ' 0.13

(
M2

2.5TeV

)2
1

RB̃/W̃
(4.150)
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MSSM Parameter Value-Range

M1 100− 1000GeV
M2 0.98M1 − 1.02M1

µ 1000GeV
M3 1.8TeV
ml̃L,R

> 1.2TeV
mq̃L,R > 2TeV
tanβ 1.5− 10

Table 4.13: In the table are listed the values of the MSSM parameters that we take into account for the
numerical analysis of the B̃/W̃ configuration.

where RB̃/W̃ is defined as

RB̃/W̃ ≡
∫ ∞

xfo

dx
x2

[
1 +

1

3

(
M1

M2

)3/2

e
−x

(
M2
M1

−1
)]−2

=

∫ ∞

xfo

dx
x2

[
1 +

1

3

(
1

∆ + 1

)3/2

e−x∆

]−2

.

(4.151)

Our analysis with micrOmegas 4.2.5 is performed taking into account the MSSM parameter
space given in Table 4.13. Fixing tanβ = 10 and varying M1 and M2 within the range given
in the Table 4.13, the micrOmegas 4.2.5 simulation shows that an LSP with a mass, MDM,
in the range 260.14GeV . MDM . 999.48GeV satisfied the DM constraint within 2σ. In
Fig. 4.14 we plot the numerical contribution of a Well-Tempered B̃/W̃ to the relic density as
a function of MDM, compared with the analytical result found using Eq. (4.150) where the
integral RB̃/W̃ is computed numerically, and we have assumed that ∆ ' 0.02; the width of
the band correspond to ∆ varying in the range −0.02 ≤ ∆ ≤ 0.02. In Fig. 4.15 we plot the
contribution to relic density as a function of M1 fixing the value of M2. Lowering the value of

100 200 500 1000
0.00

0.05

0.10

0.15

0.20

0.25

MDM [GeV]

Ωh
2

Bino/Wino LSP

Figure 4.14: In the figure is shown the contribution to Ωh2 of a Well-Tempered B̃/W̃ as a function
of the LSP mass, obtained from the micrOmegas 4.2.5 analysis. The width of the band
correspond to −0.02 . ∆ . 0.02 and the darker blue line is obtained using Eq. (4.150)
assuming ∆ ' 0.02. As usual the band between the dashed lines denotes the observed DM
abundance within 2σ.

tanβ and fixing it at tanβ = 1.5, accordingly with Eq. (4.137) the mixing effect is enhanced.
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Figure 4.15: In the plot is shown the contribution to Ωh2 of a Well-Tempered B̃/W̃ as a function of
the Bino mass parameter M1 taking various fixed values of M2. The dark gray region
correspond to an over-abundant relic density Ωh2 > 1 which has not physical sense. The
dashed line correspond to the observed DM relic density. Comparing this result with the
one for B̃/H̃ configuration given in Fig. 4.10, we note the effect of the parametrically smaller
mixing angle in the B̃/W̃ case, which leads to a more abrupt transition between the pure
Bino configuration (the region above the dashed line) to the pure Wino one (the region
below the dashed line).

This leads to a more consistent Wino fraction in the LSP composition. In fact imposing this
value of tanβ, the micrOmegas 4.2.5 analysis shows that the right LSP mass is now within the
range 422GeV . MDM . 1148GeV, resulting in a B̃/W̃ configuration which is lifted towards
the pure Wino region. The numerical result for tanβ = 1.5 is depicted in Fig. 4.16.
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Figure 4.16: In the figure is shown the contribution to Ωh2 of a Well-Tempered B̃/W̃ as a function of the
LSP mass, obtained from the micrOmegas 4.2.5 analysis, imposing tanβ = 1.5. As usual
the width of the band correspond to −0.02 . ∆ . 0.02.

In the case of a B̃/W̃ the matrix elements N13 and N14 are respectively given by Eqs. (4.70)
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and Eqs. (4.100) which after the substitution M1 'M2 =MDM read as

N13 ' mW (MDM + µ sin 2β)

(µ2 −M2
DM) cosβ

+
mW sinβ

µ
+ O

(
m2
W

µ2

)
(4.152a)

N14 ' mW cosβ

µ
+ O

(
MDMmW

µ2

)
. (4.152b)

Thus using these results into Eq. (4.17) and Eq. (4.18), we obtain that

α
SD(qi)

B̃/W̃
=

g2t2W
4(m2

q̃1i
−M2

DM)

[
(ηi11)

2
Y 2
qi L

4
+ (ηi12)

2e2qi

]
+

g2t2W
4(m2

q̃2i
−M2

DM)

[
(ηi12)

2
Y 2
qi L

4
+ (ηi11)

2e2qi

]
+

g2

16µ2
(−1)i cos 2β (4.153a)

α
SI(qi)
B̃/W̃

=
g2t2WYqi Leqiη

i
11η

i
12

4

[
1

(m2
q̃1i

−M2
DM)

− 1

(m2
q̃2i

−M2
DM)

]
− g2tWmqi sinβ

2m2
hµ

. (4.153b)

which substituted into Eq. (4.35) and into Eq. (4.61) give respectively the SD and SI scattering
cross-sections at zero momentum transferred for a B̃/W̃ configuration

σSD
B̃/W̃ p

=
12

π

(
MDMmp

MDM +mp

)2[∑
q

α
SD(qi)

B̃/W̃
∆q(p)

]2
(4.154a)

σSD
B̃/W̃ n

=
12

π

(
MDMmp

MDM +mp

)2[∑
q

α
SD(qi)

B̃/W̃
∆q(n)

]2
(4.154b)

σSI
B̃/W̃ p/n

=
4

π

(
MDMmp

MDM +mp

)2
[ ∑
q=u,d,s
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Tq α

SI(qi)
B̃/W̃

+
2

27
fTG

∑
q=c,b,t

mp/n

mq
α

SI(qi)
B̃/W̃

]2
.

(4.154c)

where to obtain Eqs. (4.153) we have assumed the limit m2
H � m2

h. Note that in the above
results does not appear the mixing angle θ between Bino and Wino states. This is because it
gives rise to terms which are suppressed by 1/(µm2

q̃1,2i
). In the limit where mq̃1i

' mq̃2i
=

mq̃ � MDM, and of heavy squark masses, which implies ηi11 → 1 and ηi12 → 0, we have that
Eqs. (4.153) can be approximated as

α
SD(qi)

B̃/W̃
' g2t2W

4m2
q̃

[
Y 2
qi L

4
+ e2qi

]
+
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16µ2
(−1)i cos 2β + O
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, η212

)
(4.155a)

α
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' g2t2WYqi Leqi
4

mqiµ(tanβ)
(−1)i
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+ O

(
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q̃
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' g2mqitW sinβ

2m2
hµ

+ O

(
M2

DM
m2
q̃

,
mqiµ

m2
q̃

)
. (4.155b)

Thus as occurred to the pure Bino LSP and to the pure Wino LSP, in the SI interaction the
squarks term is suppressed by the vanishing factor (mqiµ)/m

4
q̃, see Eq. (4.155b). Therefore the

SI cross-section is nearly completely determined by the term associated to the Higgs exchange.
Furthermore, assuming that µ & mq̃, the SD interaction is determined by the term relative



4.7 Well-Tempered Bino/Wino 83

Cross-section Value-Range

σ
B̃/W̃p
0 SD 3.4× 10−11 − 1.5× 10−8 pb
σ
B̃/W̃n
0 SD 3.7× 10−12 − 1.1× 10−9 pb

σ
B̃/W̃p,n
0 SI 8.14× 10−14 − 1.7× 10−13 pb

Table 4.14: In the table we list the upper and lower values of the SD and SI B̃/W̃ -nucleon cross-sections
from our numerical analysis.

to the squarks exchange, as we can see from Eq. (4.155a). These theoretical behaviours are
confirmed by the numerical analysis which is summarized in Fig. 4.17 and in Table 4.14. In
particular in plots (a) and (b) we can appreciate the squarks dependence of the SD scattering
cross-section, where the width of the band is due to a common squark mass which varies in the
range 2TeV ≤ mq̃ ≤ 8TeV. On contrary from plot (c) we can observe that the band is nearly
completely absent, i.e. the SI scattering cross-section does not depend on the squark masses.

For the Well-Tempered B̃/W̃ configuration, the analysis of the combined contribution of
the SD and SI interactions gives the following neutralino-nucleus scattering cross-section

σ
B̃/W̃ Xe
0 ' µ2

N

µ2
p

A2
[
σSI
p + 1.4× 10−6σSD

p

]
(4.156)

where we use the values of the B̃/W̃ -Xe scattering cross-sections given in Table 4.14. In
particular for the B̃/W̃ configuration the ratio between the SD neutralino-nucleus scattering
cross-section and the SI one is about σB̃/W̃ Xe

0 SD /σ
B̃/W̃ Xe
0 SI ' 0.12. This result shows that the

contribution of the SD interaction is not entirely negligible respect to the SI one. For this
reason in plot (d) of Fig. 4.17 is shown the total B̃/W̃ -Xe scattering cross-section with the
LUX experimental bound.

Concluding a Well-Tempered B̃/W̃ satisfies both the DM and the direct detection con-
straints. Furthermore it is not excluded by indirect detection searches because its one-loop
annihilation cross-section into final photons is well below the today’s experimental bounds.
Therefore a Well-Tempered B̃/W̃ is still a good DM candidate which satisfied all today exper-
imental constraints from direct, indirect and collider searches.
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Figure 4.17: In the plot (a) is shown the SD B̃/W̃ -proton scattering cross-section with the experimen-
tal excluded regions (shaded regions) provided by LUX-2016 (green) and PICO (brown)
results. In the left panel (b) is shown the SD B̃/W̃ -neutron scattering cross-section, with
the excluded regions given by the LUX-2016 (green) and XENON100 (purple) experiments.
In the below panel (c) we show the result for the SI B̃/W̃ -nucleon scattering cross-section
with the excluded limits given by the LUX-2016 (green) and the PANDAX-2016 (red) ex-
periments. In every plot the width of the band corresponds to squark masses in the range
2TeV . mq̃ . 8TeV and the regions between the blue-dashed lines represent the analytical
results which are found using the approximate formulae given in Eqs. (4.155). As last in
plot (d) we show the total B̃/W̃ -Xe scattering cross-section with the experimental bound
provided by LUX experiment.



Conclusions

In this thesis we have investigated the nature of the non-visible gravitating matter present in
the Universe, the so-called Dark Matter (DM). We focused on the hypothesis of particle DM
specializing on the proposal that DM is a thermal relic produced in the early Universe. The
theoretical framework chosen to describe particle DM is the one provided by supersymmetric
theories, in particular the Minimal Supersymmetric Standard Model (MSSM). In this framework
the DM candidate is the lightest supersymmetric neutralino. In this thesis we considered the
famous “Well-Tempered” neutralino scenario introduced by N. Arkani-Hamed, A. Delgado and
G.F. Giudice [11].

We started taking into account the pure Bino configuration finding that, once the experi-
mental constraints from sleptons searches at LEP are satisfied, its relic density is too large. In
order to reduce the relic density, we have studied the possibility that the Bino is nearly degen-
erate in mass with a right-handed slepton. Exploiting the co-annhilation mechanism, we found
the correct relic abundance in a region of the MSSM parameter space which is not ruled out by
collider experiments. We have also analysed the possible constraints from direct searches. We
found that the Bino-nucleon cross section is well below the current experimental limits both for
spin-independent and spin-dependent interactions. This is due to the fact that in the pure Bino
configuration the LSP-Higgs and LSP-Z0 couplings are vanishing and therefore the scattering
cross-section is highly suppressed. As a consequence, the Bino is a good DM candidate.

Afterwards we have studied the pure Higgsino and Wino scenarios. The relic density analysis
has shown that both of them have a too small relic abundance, unless their masses are heavier
then ∼ 1TeV. Such high values of the masses compromise the possibility that the “hierarchy
problem” can be solved by supersymmetry. After that, we have performed the direct detection
analysis of these two scenarios. We have found that, as in the pure Bino case, also for the pure
Higgsino and Wino cases their vanishing couplings with the Higgs and Z0 bosons reduce the
LSP-nucleon scattering cross-section below the direct detection experimental limits.

At last we have analysed the “Well-Tempered” neutralino scenarios. In particular, we have
considered the mixing between the Bino and Higgsino and between Bino and Wino. We com-
puted the relic density of these candidates, finding that they can satisfy the DM constraints
in wide regions of the parameter space. From the analysis of direct-detection experiments, we
found that a Well-Tempered Bino/Higgsino is excluded for masses below the TeV scale. In
particular, the spin-independent scattering cross-section with nucleons is well above the bounds
imposed by the LUX-2016 and PANDAX-2016 analyses. For what concerns the Well-Tempered
Bino/Wino scenario, we have found that its scattering cross-section with nucleons is well below
the direct search limits. This is again due to the absence of LSP couplings with Higgs and Z0

bosons.
Summarizing, from our analysis it follows that the only scenarios which satisfy both relic

density and direct detection constraints are those featuring a Well-Tempered Bino/Wino LSP
and where a pure Bino LSP co-annihilates with a slepton.

Further investigations beyond our analysis would be welcome. First of all, it would be
interesting to implement both the indirect detection and collider experimental results in a more
systematic way, in order to further constrain the various models proposed. In particular a
deeper study of the current and future indirect detection experimental results could further
constrain our scenarios. Finally, it would be interesting to study the impact of future direct
detection experiments such as XENON1T, LZ, and DARWIN.
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Appendix A

In this appendix we resolve, in an approximate way, the Boltzmann equation demonstrating
the solutions for Y∞ and for xfo respectively given in Eq. (2.32) and in Eq. (2.35). After that
we compute the thermal average of the annihilation cross-section times velocity in the non-
relativistic limit finding the approximate solution given in Eq. (2.57). At last we summarize
the principal steps that we follow to obtain the exact solution of thermal average of 〈σeffv〉 in
the case of co-annihilations given in Eq. (2.57).

A.1 Approximate solution for the Boltzmann equation
We start from the Boltzmann equation in the form given in Eq. (2.31)

∂Y

∂x
= −〈σvM〉s

Hx

{
Y 2 − (Y (0))2

}
, (A.1)

where x = m/T and H is the Hubble constant. Using Eq. (2.24) and Eq. (2.28) we re-express
the factor s/(Hx) as

s

Hx
=

√
π

45

g∗s

g
1/2
∗

mMPl

x2
≡ λ

x2
(A.2)

and Eq. (A.1) becomes
∂Y

∂x
= −λ 〈σvM〉

x2
{
Y 2 − (Y (0))2

}
. (A.3)

Now we consider the above equation in terms of the variable ∆ ≡ Y −Y (0) which expresses the
departure from equilibrium, obtaining

∂∆

∂x
= −∂Y

(0)

∂x
− λ

〈σvM〉
x2

∆
{
∆+ 2Y (0)

}
. (A.4)

At early times, before the “freeze-out” when x � xfo, Y tracks very closely Y (0); thus both ∆
and

∣∣∂∆
∂x

∣∣ are small and so an approximate solution is obtained by setting ∂∆
∂x = 0,

∆ ' − x2

〈σvM〉λ
{
∆+ 2Y (0)

} ∂Y (0)

∂x

' x2

2λ〈σvM〉
.

(A.5)

Note that the quantity Y (0) in terms of the variable x read as

Y (0) ≡ n0

s
=

45

2π2

1

(2π)3/2
g

g∗s
x3/2e−x ≡ wx3/2e−x (A.6)

where we used Eq. (2.13) and Eq. (2.24); thus the derivative of Y (0) would be equal to

∂Y (0)

∂x
= Y (0)

(
3

2x
− 1

)
= −Y (0) + O

(
1

x

)
(A.7)
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which is a good approximation in the non-relativistic limit i.e. when x� 1.
At later times, after the “freeze-out” when x � xfo, Y tracks Y (0) very poorly [51] [19], so
∆ ' Y � Y (0), and the terms involving ∂Y (0)

∂x and Y (0) can be safely neglected. Then Eq. (A.4)
becomes

1

∆2

∂∆

∂x
= −λ 〈σvM〉

x2
. (A.8)

Integrating this equation from xfo to ∞ we get for the left-hand side∫ ∆(∞)

∆(xfo)

d∆

∆2
=

(
1

∆(xfo)
− 1

∆∞

)
' − 1

∆∞
' − 1

Y∞

(A.9)

where we have used the facts that ∆(xfo) � ∆∞ and Y (0) → 0 as x → ∞, as we can see from
Eq. (A.6). For what concerns the right-hand side remembering the definition given in Eq. (2.33)
we have

− λ

∫ ∞

xfo

〈σvM〉
x2

dx ≡ −λJ(xfo), (A.10)

thus equating Eq. (A.9) and Eq. (2.33) we get a solution for Y∞

Y∞ =
1

λJ(xfo)
=

√
45

π

g
1/2
∗

g∗s

1

mMPlJ(xfo)
. (A.11)

To determine xfo, we recall that when x ' xfo, Y ceases to track Y (0); equivalently we can say
that ∆ becomes of order Y (0). In fact, schematically, we have

∆(xfo) = Y (0)

(
Y

Y (0)
− 1

)
≡ cY (0) (A.12)

with the numerical constant c of order unity. Taking into account the early time solution, given
by Eq. (A.5), and the condition (A.12), we have that

cY (0) ' − x2fo
〈σvM〉λY (0)(c+ 2)

∂Y (0)

∂x
. (A.13)

Using for Y (0) the expression in Eq. (A.6), evaluated at xfo, we rewrite the previous equation
as

e−xfo =
x2fo

〈σvM〉λc(c+ 2)

1

wx
3/2
fo

=
x
1/2
fo

〈σvM〉λwc(c+ 2)
.

(A.14)

With this result we can find an iterative solution for xfo given in Eq. (2.35)

xfo ' ln

[
λwc(c+ 2)〈σvM〉

x
1/2
fo

]
= ln

[c(c+ 2)
√

45
2 gMPlm〈σvM〉

4π3g
1/2
∗s x

1/2
fo

]
' ln

[
0.038c(c+ 2)gMPlm〈σvM〉

g
1/2
∗s x

1/2
fo

]
.

(A.15)

A.2 Non-relativistic approximate solution for the thermal
average of σv

Here we give an approximate solution, in the non-relativistic limit, for 〈σv〉 in the case of two
annihilating particles with equal mass m. Recalling Eq. (2.56) we have that

〈σvlab〉lab =

∫
σvlab e

−E1/T e−E2/T d3p1d3p2∫
e−E1/T e−E2/T d3p1d3p2

(A.16)
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where lab means that we are performing the computation in the laboratory frame of particle
1; note that the relation given in Eq. (2.53) assures that the result will be valid in a generic
comoving frame.
In the non-relativistic limit we have that

Ei =
√
p2i +m2 = mi

√
p2i
m2

+ 1 ' m+
p2i
2m

+ O

(
p4i
m3

)
(A.17)

and so 〈σvlab〉lab becomes

〈σvlab〉labn.r. '
∫
σvlab e

−p21/2mT e−p
2
2/2mT d3p1d3p2∫

e−p
2
1/2mT e−p

2
2/2mT d3p1d3p2

(A.18)

where the subscript n.r. means non-relativistic.
We start by computing the denominator, which we redefined as∫

e−p
2
1/2mT e−p

2
2/2mT d3p1d3p2 =

(∫
e−p

2/2mT d3p

)2

≡ D. (A.19)

Performing the integral over the solid angle Ω and changing variable from |~p| to y = |~p|/
√
2mT

we have ∫
e−p

2/2mT d3p = 4π(2mT )3/2
1

2

∫ ∞

0

e−y
2

dy

= (2πmT )3/2
(A.20)

where we have first performed an integration by parts and then a gaussian integration. Therefore
the denominator D is equal to

D = 8(πmT )3. (A.21)

To compute the numerator of Eq. (A.18) we start by changing the integration variables as

~p1 =
~ptot + ~pr

2
(A.22a)

~p2 =
~ptot − ~pr

2
(A.22b)

where ~ptot is the total momentum vector defined as ~ptot = ~p1 + ~p2 and ~pr is the relative
momentum vector, defined as ~pr = ~p1 − ~p2. After this operation the numerator becomes

N ≡
∫

σvlab e
−p21/2mT e−p

2
2/2mT d3p1d3p2

=
1

8

∫
σvlab e

−p2tot/4mT e−p
2
r/4mT d3ptotd3pr

(A.23)

where the pre-factor, 1/8, is the determinant of the Jacobian of the transformation (A.22).
Noting that σvlab depends only on pr, we can integrate over ptot obtaining

N =
1

8

∫
e−p

2
tot/4mT d3ptot

∫
σvlab e

−p2r/4mT d3pr

=
1

2
(4πmT )3/2π

∫ ∞

0

σvlab e
−p2r/4mT d|~pr|.

(A.24)

To go further we have to find the relation between |~pr| and the total kinetic energy per unit of
mass in the laboratory frame, ε, defined in Eq. (2.54) which here we recall

ε =
(E1lab −m) + (E2lab −m)

2m
=
E2lab −m

2m
. (A.25)



90

In the case of particles of equal masses we have that

~v1cm =
~v1 − ~v2

2
(A.26)

where ~v1cm is the velocity of particle 1 in the center-of-mass frame from which we find that ~p1cm

is simply given by

~p1cm = ~v1cmm =
~p1 − ~p2

2
= −~p2cm (A.27)

Comparing this relation with the definition of ~pr in Eq. (A.22), we get

|~p1cm | = |~p2cm | ≡ |~pcm| = |~pr|
2
. (A.28)

Expressing both |~pcm| and ε in terms of the invariant s we find

|~pr|2 = 4|~pcm|2 = s− 4m2, ε =
s− 4m2

4m2
(A.29)

and so
|~pr|2 = 4m2ε. (A.30)

Thanks to this relation we can change the integration variables in the numerator N which
becomes

N = 16(πmT )3/2πm3

∫ ∞

0

σvlab e
−mε/T√ε dε

= 16(πmT )3/2πm3
∞∑
n=0

a(n)

n!

∫ ∞

0

e−mε/T ε1/2+n dε
(A.31)

where in the last equality we have substituted the expansion for σvlab given in Eq. (2.55).
Performing another change of variable from ε to t = mε/T we have

N = 16π5/2(mT )3
∞∑
n=0

a(n)

n!

(
m

T

)−n ∫ ∞

0

e−t t1/2+n dt

= 16π5/2(mT )3
∞∑
n=0

a(n)

n!

(
m

T

)−n ∫ ∞

0

e−t t(3+2n)/2−1 dt

= 16π5/2(mT )3
∞∑
n=0

a(n)

n!

1

xn
Γ

(
3 + 2n

2

) (A.32)

where as usual m/T ≡ x and Γ(z) denotes the Eulero-Gamma function. Now thanks to the
propriety of the Eulero-Gamma function [1]

Γ

(
l

2

)
=

(l − 2)!!

2(l−1)/2

√
π (A.33)

where l is an integer, the last factor in Eq. (A.32) becomes

Γ

(
3 + 2n

2

)
=

(2n+ 1)!!

2n

√
π

2
. (A.34)

Replacing this result in Eq. (A.32) we obtain the final form of the numerator N

N = 8(πmT )3
∞∑
n=0

a(n)

n!

1

xn
(2n+ 1)!!

2n
. (A.35)

Finally, taking the ratio between Eq. (A.35) and Eq. (A.21), we obtain the expansion in powers
of 1/x of the thermal average, 〈σvlab〉labn.r., in the non-relativistic approximation [43]

〈σvlab〉labn.r. ≡
N

D
=

∞∑
n=0

a(n)

n!

1

xn
(2n+ 1)!!

2n

= a(0) +
3

2

a(1)

x
+

15

8

a(2)

x2
+ O

(
1

x3

)
.

(A.36)
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A.3 Thermal average of σeffv

Following [33] we start re-expressing the definition of 〈σeffv〉, given in Eq. (2.78), into a more
convenient form,

〈σeffv〉 =
N∑

i,j=1

〈σijvij〉
n0i
n0

n0j
n(0)

≡ A

(n(0))2
. (A.37)

First we simplify the denominator as

n(0) =
∑
i

gi

∫
d3pi
(2π)3

e−
Ei
T

=
∑
i

gi
2π2

∫ ∞

mi

dEiEi
√
E2
i −m2

i e
−Ei

T

(A.38)

where we have used the relation pi =
√
E2
i −m2

i . Integrating the last integral by parts we get

n(0) =
∑
i

gi T

2π2

∫ ∞

mi

dEi
2E2

i −m2
i√

E2
i −m2

i

e−
Ei
T . (A.39)

Thus making the substitution
Ei
mi

= cosh t (A.40)

the above integral becomes

n(0) =
∑
i

gi
2π2

Tm2
i

∫ ∞

0

dt sinh t
(
2 cosh2 t− 1

sinh t

)
e−

mi
T cosh t

=
∑
i

gi
2π2

Tm2
i

∫ ∞

0

dt cosh (2t)e−
mi
T cosh t.

(A.41)

Now, remembering that the integral form of the modified Bessel functions of second kind of
order ν is [1],

Kν(x) =

∫ ∞

0

dt cosh (νt)e−x cosh t (A.42)

we can write n(0) as

n(0) =
∑
i

gi
2π2

Tm2
iK2

(
mi

T

)
. (A.43)

The numerator of Eq. (A.37), for generic distribution functions fi, fj is equal to

A =
∑
i,j

gigj
(2π)6

∫
d3pid3pjfifjσijvij . (A.44)

It is convenient to recast it in a explicit covariant form, as

A =
∑
i,j

gigj

∫
Wijfifj

d3pi
(2π)32Ei

d3pj
(2π)32Ej

(A.45)

where Wij is the un-polarized annihilation rate per unit volume which is equal to

Wij = 4EiEjσijvij = 4σij

√
(pi · pj)2 −m2

im
2
j = 4pij

√
sσij (A.46)

where we used the definition of the Møller velocity given in Eq. (2.19) and as usual (·) means
the Lorentz scalar product. The quantity pij is the modulus of the 3-momentum of particle
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Xi (or Xj) in the center-of-mass frame of the pair of particles XiXj , which in terms of the
invariant s read as

pij =
√
(pi · pj)2 −m2

im
2
j =

√
(s− (mi +mj)2)(s− (mi −mj)2)

2
√
s

. (A.47)

The general expression of Wij for a n-body final state is

Wij→n =
1

gigjSf

∑
internal
d.o.f.

∫
|M|2(2π)4δ(4)(pi + pj −

∑
f

pf)
∏
f

d3pf

(2π)32Ef

where we averaged over initial and summed over final spins and M is the amplitude of the
processes; Sf is a symmetry factor accounting for identical final state particles. In particular
for a two-body final state we have

Wij→kl =
1

gigjSf

∑
internal
d.o.f.

∫
|M|2(2π)4δ(4)(pi + pj − pk − pl)

d3pk
(2π)32Ek

d3pl
(2π)32El

(A.48)

where now Sf is equal to 2 if the final particles are identical or 1 if they are different and with
i, j we denote the initial particles, while with k, l the final ones. Performing the integral over
d3pk and after the integral over d|pl| we get that [33]

Wij→kl =
pkl

16π2gigjSf
√
s

∑
internal
d.o.f.

∫
dΩ|M|2 (A.49)

Now we want to reduce the integral in the definition of A, given in Eq. (A.45), from a 6
dimensional to a 1 dimensional integral. Using the Maxwell-Boltzmann statistics instead of
generics statistics fi, fj , it reads

A =
∑
i,j

gigj

∫
Wije

−Ei
T e−

Ej
T

d3pi
(2π)32Ei

d3pj
(2π)32Ej

(A.50)

Following ref. [43], we can rewrite the momentum volume element as

d3pid3pj = 4πp2idpi2πp
2
jdpj sin θdθ

= 4π|pi|EidEi4π|pj |EjdEj
1

2
d cos θ

(A.51)

where θ is the angle between ~pi and ~pj . Then we perform a change of the integration variables
from Ei, Ej and θ to E+, E− and s, defined as

E+ = Ei + Ej (A.52)
E− = Ei − Ej (A.53)

s = m2
i +m2

j + sEiEj − 2|pi||pj | cos θ (A.54)

Therefore the volume element becomes equal to

d3pi
(2π)32Ei

d3pj
(2π)32Ej

=
1

(2π)4
|pi||pj |

2
|det{J}|−1dE+dE−ds

=
1

(2π)4
dE+dE−ds

8

(A.55)

where J is the Jacobian of the transformation and

det{J} =

∣∣∣∣∣∣
1 1 2Ej
1 −1 2Ei
0 0 −2|pi||pj |

∣∣∣∣∣∣ = 4|pi||pj | (A.56)
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Note that the new integration region, which in terms of the old variables was Ei ≥ mi, Ej ≥ mj ,
|cos θ| ≤ 1, now reads as

s ≥ (mi +mj)
2 (A.57)

E+ ≥
√
s (A.58)

E+

m2
j −m2

i

s
− 2pij

√
E2

+ − s

s
≤ E− ≤ E+

m2
j −m2

i

s
+ 2pij

√
E2

+ − s

s
(A.59)

With the substitutions given in Eqs. (A.52) the integral in Eq. (A.45) becomes

A =
∑
i,j

∫
gigj

8(2π)4
Wij(s)e

−E+
T dE+dE−ds. (A.60)

Note that Wij depends only on s , and the equilibrium distribution function depends only on
E+, and so we can immediately integrate over E−. Taking into account the region of integration
(A.59), we get

A =
∑
i j

∫
4pij

√
E2

+ − s

s

gigj
8(2π)4

Wij(s)e
−E+

T dE+ds. (A.61)

Now we perform the integral over E+; first we integrate by parts obtaining

A =
T

32π4

∑
i j

∫
pijgigjWij(s)ds

∫ ∞

√
s

E+

s

√
E2

+−s
s

e−
E+
T dE+ (A.62)

then changing variable as

E+ =
√
s coshx⇒ dE+ =

√
s sinhxdx (A.63)

and remembering the form of modified Bessel functions of second kind, given in Eq. (A.42), the
integral becomes

A =
T

32π4

∑
i j

∫
gigjpijWij(s)ds

∫ ∞

0

coshx e−
√

s
T cosh xdx

=
T

32π4

∑
i,j

∫ ∞

(mi+mj)2
dsgigjpijWijK1

(√
s

T

)
.

(A.64)

Now we define the quantities

peff ≡ p11 =

√
s− 4m2

1

2
(A.65)

and

Weff ≡
∑
i,j

pij
peff

gigj
g21

Wij =
∑
i,j

√
[s− (mi +mj)2][s− (mi −mj)2]

s(s− 4m2
1)

gigj
g21

Wij . (A.66)

Note that Weff is well defined because Wij(s) = 0 iff s ≤ (mi + mj)
2, so the radicand in

Eq. (A.66) cannot be negative; with these definitions Eq. (A.64) now reads

A =
Tg21
32π4

∫ ∞

4m2
1

ds peffWeffK1

(√
s

T

)
=
Tg21
4π4

∫ ∞

0

dpeff p
2
effWeffK1

(√
s

T

) (A.67)

where in the last equality we have changed variable from s to peff using the definition (A.65)
and the consequent relation ds = 8peffdpeff. To conclude using Eq. (A.67) and Eq. (A.43) we
can perform the ratio A/(n(0))2, finding that

〈σeffv〉 =
∫∞
0

dpeff p
2
effWeffK1

(√s
T

)
m4

1T
[∑

i
gi
g1

m2
i

m2
1
K2

(
mi

T

)]2 . (A.68)
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Note that the above exact formula for the thermal average of cross-section in the case of co-
annihilations can be reduced to an exact formula for the thermal average of the cross-section in
the standard case i.e. two equal mass annihilating particles. This can be done observing that
the definition for Weff in the standard case becomes

Weff =W11. (A.69)

Thus Eq. (A.68) turns out to be

〈σv〉 = 1(
m2

1K2

(
m1

T

))2 ∫ ∞

0

dp11 p211W11K1

(√s
T

)
. (A.70)



Appendix B

MSSM Feynman rules

In this appendix we list the MSSM Feynman rules, which will be useful in the evaluation of
the neutralino annihilation cross-sections and neutralino-quark scattering cross-sections. We
follows ref [63].
We start from the interaction between neutralino/chargino with gauge bosons:

χ̃i

Z0
µ

χ̃j

= − ig

2cW
γµ(γ

5)i+j+1 (N4iN4j −N3iN3j) ≡ αχ̃χ̃Z0 (B.1a)

χ̃i

W±
µ

χ̃±
j

= −igγµ
[(
N2iU1j −

1√
2
N4iU2j

)
PL +

(
N2iV1j +

1√
2
N3iV2j

)
PR

]
(B.1b)

χ̃±
i

Z0
µ

χ̃±
j

= − ig

2cW
γµ
(
U1iU1jPL + V1iV1jPR + δijc2W

)
(B.1c)

χ̃±
i

γµ

χ̃±
j

= −igsW γµδij , (B.1d)

where with χ̃ we denote a neutralino, with χ̃± a chargino and Nij , Uij , Vij are the matrix
elements respectively of the matrices which diagonalize the neutralinos and the charginos mass
matrices. Note that the indices i and j run from 1 to 4 for neutralinos, χ̃i, and from 1 to 2 for
charginos, χ̃±

i .
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For the interaction between the lightest neutralino quark and squark we have:

u

ũ1

χ̃1

= i
√
2

{
−
[
ηu11

(
YuL

2
g′N11 + g

N12

2

)
+ ηu12

mug

2mW sinβ
N14

]
PL+

(
ηu12eug

′N11 − ηu11
mug

2mW sinβ
N14

)
PR

}
≡ i

√
2 {−X1PL + Y1PR}

(B.2a)
u

ũ2

χ̃1

= i
√
2

{
−
[
ηu21

(
YuL

2
g′N11 + g

N12

2

)
+ ηu22

mug

2mW sinβ
N14

]
PL+

(
ηu22eug

′N11 − ηu21
mug

2mW sinβ
N14

)
PR

}
≡ i

√
2 {−U1PL + V1PR}

(B.2b)

d

d̃1

χ̃1

= i
√
2

{
−
[
ηd11

(
YdL
2
g′N11 − g

N12

2

)
+ ηd12

mdg

2mW cosβ
N13

]
PL+

(
ηd12edg

′N11 − ηd11
mdg

2mW cosβ
N13

)
PR

}
≡ i

√
2 {−X2PL + Y2PR}

(B.2c)

d

ũ2

χ̃1

= i
√
2

{
−
[
ηd21

(
YdL
2
g′N11 − g

N12

2

)
+ ηd22

mdg

2mW cosβ
N13

]
PL+

(
ηd22edg

′N11 − ηd21
mdg

2mW cosβ
N13

)
PR

}
≡ i

√
2 {−U2PL + V2PR}

(B.2d)

where we have redefined, consistently with ref [34], the quantities Xi, Yi, Ui, Vi respectively as

Xi ≡
[
ηi11

(
YiL
2
g′N11 + (−1)i+1g

N12

2

)
+ ηi12

mig

2mWBi
N1(5−i)

]
(B.3)

Yi ≡ ηi12eig
′N11 − ηi11

mig

2mWBi
N1(5−i) (B.4)

Ui ≡
[
ηi21

(
YiL
2
g′N11 + (−1)i+1g

N12

2

)
+ ηi22

mig

2mWBi
N1(5−i)

]
(B.5)

Vi ≡ ηi22eig
′N11 − ηi21

mig

2mWBi
N1(5−i). (B.6)

The index i is i = 1 for up-type quarks or i = 2 for down-type quarks. The quantity Bi is
B1 = sinβ while B2 = cosβ and ηikl are the matrix elements of the orthogonal matrices which
diagonalize the square mass squark matrix. With YiL we refer to the hypercharge of the l.h.
quarks while with ei to the quark electric charge.
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For what concern the interaction between the the lightest neutralino and the neutral Higgs
bosons we have

χ̃1

h

χ̃1

= − i

2
[(N13 sinα+N14 cosα) (N11g

′ −N12g)] ≡ αχ̃χ̃h

χ̃1

H

χ̃1

=
i

2
[(N13 cosα−N14 sinα) (N11g

′ −N12g)] ≡ αχ̃χ̃H

χ̃1

A

χ̃1

=
i

2
γ5 [(N13 sinβ −N14 cosβ) (N11g

′ −N12g)] ≡ αχ̃χ̃A,

while for the interaction between quarks and Higgs bosons we have

u

h

u

= −ig
2

mu sinα

mW sinβ
≡ α

(1)
qqh,

u

H

u

= −ig
2

mu cosα

mW sinβ
≡ α

(1)
qqH

u

A

u

= −ig
2
γ5

mu

mW
cotanβ ≡ α

(1)
qqA,

d

h

d

= i
g

2

md cosα

mW cosβ
≡ α

(2)
qqh

d

H

d

= −ig
2

md sinα

mW cosβ
≡ α

(2)
qqH ,

d

A

d

= i
g

2

md

mW
tanβ ≡ α

(2)
qqA.

As last we recall some useful SM Feynman rules. For the interaction between gauge bosons and
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SM fermions

f

γµ

f

= −igefγµ,

e

Z0
µ

e

= i
g

2cW
γµ
(
PL − 2s2W

)

u

W±
µ

d

= −i g√
2
γµPL,

e

W±
µ

ν

= −i g√
2
γµPL,

ν

Z0
µ

ν

= −i g

2cW
γµPL

d

Z0
µ

d

= i
g

2cW
γµ

(
PL − 2

3
s2W

)
≡ γµ

(
v(2) + γ5a(2)

)

u

Z0
µ

u

= −i g

2cW
γµ

(
PL − 4

3
s2W

)
≡ γµ

(
v(1) + γ5a(1)

)
,

where f = u, d, e and with ef we mean the electric charge of the fermion f . The quantities vi
and ai are respectively defined as

vi ≡ (−1)i
g

2cW

(
1

2
− 2eis

2
W

)
(B.7)

ai ≡ (−1)i+1 g

4cW
γ5. (B.8)

The Feynman rules for the SM triple gauge interactions are

p

q

k

W±
α

Z0
µ

W∓
β

= igcW [gαβ(k − p)µ + gβµ(q − k)α + gµα(p− q)β ]

p

q

k

W±
α

γµ

W∓
β

= −igsW [gαβ(k − p)µ + gβµ(q − k)α + gµα(p− q)β ]
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For what concern the propagators we have

p

=
i

p2 −m2

[
−gµν +

pµpν

m2

]
p

=
i

p2 −m2
(6 p+m)

p

=
i

p2 −m2

where with m we denote the mass of the exchange particle.
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Appendix C

Matrix diagonalization

In this appendix we perform the diagonalization of the mass matrices for the Well-Tempered
neutralino configurations. We start from the mass matrix for the B̃/H̃, given in Eq. (4.114)

MB̃/H̃ =


M1 −(µ−M1)θ+ (µ+M1)θ−

−(µ−M1)θ+ µ 0

(µ+M1)θ− 0 −µ

+ O

(
mW

M2

)
(C.1)

where θ± are defined in Eqs. (4.115). The characteristic polynomial of this matrix is

P(λ) = −(M1 − λ)(µ2 − λ2) + θ2+(µ−M1)
2(µ+ λ)− θ2−(µ+M1)

2(µ− λ). (C.2)

In the case of µ > 0 from Eqs. (4.115) we see that θ− → 0 so we can approximate the above
characteristic polynomial as

P(λ) = (µ+ λ)
[
(M1 − λ)(λ− µ) + θ2+(µ−M1)

2
]
+ O(θ2−) (C.3)

which give the three approximated eigenvalues

λ1 =M1 + θ2+(M1 − µ) + O
(
θ2−, θ

3
+

)
(C.4)

λ2 = −µ+ O
(
θ2−, θ

3
+

)
(C.5)

λ3 = µ− θ2+(M1 − µ) + O
(
θ2−, θ

3
+

)
. (C.6)

In the case of µ < 0 the situation is reverse, so from Eqs. (4.115) we have θ+ → 0 and the
characteristic polynomial in Eq. (C.2) can be approximated as

P(λ) = (µ− λ)
[
−(M1 − λ)(µ+ λ)− θ2−(µ+M1)

2
]
+ O(θ2+) (C.7)

with zeros approximated by

λ1 =M1 + θ2−(M1 + µ) + O
(
θ2+, θ

3
−
)

(C.8)

λ2 = µ+ O
(
θ2+, θ

3
−
)

(C.9)

λ3 = −µ− θ2−(M1 + µ) + O
(
θ2+, θ

3
−
)
. (C.10)

Resolving the relation MB̃/H̃vi = λivi where vi denotes an eigenvectors, we have that, up to
corrections of order θ3±, they are respectively given by

v1 =

α1

θ+
θ−

 , v2 =

 −θ+
α2

−µ+M1

2µ θ−θ+

 , v3 =

 −θ−
M1−µ
2µ θ−θ+
α3

 . (C.11)
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The parameters α1, α2, α3 can be fixed requiring that the above vectors are normalized to one,
obtaining that

v1 =

1− θ2+
2 − θ2−

2
θ+
θ−

 , v2 =

 −θ+
1− θ2+

2

−µ+M1

2µ θ−θ+

 , v3 =

 −θ−
M1−µ
2µ θ−θ+

1− θ2−
2 .

 (C.12)

Note that the above eigenvectors are equal both in the case µ > 0 that µ < 0. Using this
eigenvectors we can find that the orthogonal matrix N which diagonalizes MB̃/H̃ , is

N =


1− θ2+

2 − θ2−
2 −θ+ −θ−

θ+ 1− θ2+
2 −µ+M1

2µ θ−θ+

θ−
M1−µ
2µ θ−θ+ 1− θ2−

2

 . (C.13)

When θ± are not moderate and in particular when is verified the relation |µ±M1| . mZ0(sβ∓
cβ)sw/

√
2, we cannot expand the characteristic polynomial and its zeros for θ± → 0. In this

situation the above results are not longer valid. However in this limit we can assume that M1

is nearly equal to µ (−µ), and so we can rewrite the matrix MB̃/H̃ as

MB̃/H̃ =

 M1 − sβ+cβ√
2
sWmZ0

sβ−cβ√
2
sWmZ0

− sβ+cβ√
2
sWmZ0 ±M1 0

sβ−cβ√
2
sWmZ0 0 ∓M1

 (C.14)

where the upper signs are for M1 = µ configuration, while the lower ones for the M1 = −µ
configuration. The associated characteristic polynomial is given by

P(λ) = −(M1−λ)(M2
1−λ2)+

[
sβ + cβ√

2
sWmZ0

]2
(M1+λ)−

[
sβ − cβ√

2
sWmZ0

]2
(M1−λ) (C.15)

Using the NewtonRaphson method we can find that the three eigenvalues are given by

λ1 =M1 −
(sβ ± cβ)sWmZ0√

2
+ (1∓ s2β)

s2Wm
2
Z0

8M1
+ O

(
m2
Z0

M2
1

)
(C.16)

λ2 = −M1 − (1∓ s2β)
s2Wm

2
Z0

4M1
+ O

(
m2
Z0

M2
1

)
(C.17)

λ3 =M1 +
(sβ ± cβ)sWmZ0√

2
+ (1∓ s2β)

s2Wm
2
Z0

8M1
+ O

(
m2
Z0

M2
1

)
. (C.18)

For what concern the B̃/W̃ configuration the mass matrix is give in Eq. (4.136)

MB̃/W̃ =

(
M1 −M1θ∆ tW M1θ∆

M1θ∆ M2 −M1θ∆ ctW

)
+ O

(
m2
Z0

µ2

)
(C.19)

where ∆ and θ are given in Eqs. (4.137). The associated characteristic polynomial is given by

P(λ) = (M1 −M1θ∆ tW − λ)(M2 −M1θ∆ ctW − λ)−M2
1 θ

2∆2 (C.20)

which, at the second order in θ, gives the following eigenvalues

λ1 =M1 − (M2 −M1)
[
tW θ + θ2

]
+ O

(
θ3
)

(C.21)

=M1

[
1−∆

(
tW θ + θ2

)]
+ O

(
θ3
)

(C.22)

λ2 =M2 − (M2 −M1)
[
ctW θ − θ2

]
+ O

(
θ3
)

(C.23)

=M1

[
1 + ∆

(
1− ctW θ + θ2

)]
+ O

(
θ3
)
. (C.24)
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The associated eigenvectors are equal to

v1 =

(
1− θ2

2
θ + (tW − ctW )θ2

)
, v2 =

(
−θ − (tW − ctW )θ2

1− θ2

2

)
, (C.25)

thus the orthogonal matrix N which diagonalized the B̃/W̃ mass matrix is

N =

(
1− θ2

2 θ + (tW − ctW )θ2

−θ − (tW − ctW )θ2 1− θ2

2

)
. (C.26)

As occurred in the B̃/H̃ case when the difference between M1 and M2 approaches zero the
value of θ diverges and the above results, which are all obtained expanding in terms of θ → 0,
are non longer valid. Thus when θ is not moderate the B̃/W̃ mass matrix can be rewrite as

MB̃/W̃ =

M1 − s2W s2β
m2

Z0

µ sW cW s2β
m2

Z0

µ

sW cW s2β
m2

Z0

µ M1 − c2W s2β
m2

Z0

µ

+ O

(
m2
Z0

µ2

)
(C.27)

where we have approximate M2 with M1. Its characteristic polynomial is given by

P(λ) = λ2 + λ

(
s2β

m2
Z0

µ
− 2M1

)
+M1

(
M1 − s2β

m2
Z0

µ

)
(C.28)

which has the following zeros

λ1 =M1 + O

(
m2
Z0

µ2

)
(C.29)

λ2 =M1 −
m2
Z0s2β
µ

+ O

(
m2
Z0

µ2

)
. (C.30)
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Appendix D

In this appendix we evaluate the normalization constant k and the velocity integral given in
Eq. (4.11). Then we review the principal steps that lead us to find the effective four-fermions
Langragian, which suitable describes the neutralino-quark elastic scattering. After that we give
the non-relativistic expansion of the scattering of the neutralino-nucleon amplitudes, which are
useful in computing the associated scattering cross-sections. We always assume CP conserva-
tion neglecting terms which are not CP -invariant. We principally follows refs. [34], [27].

D.1 Velocity integral

The normalization condition of the velocity distribution function fG(~vG) is∫
fG(~vG) d3v =

1

k

∫
e−(~v+~vE)2/v20Θ(vesc − vG) d3v = 1 (D.1)

where we have used the definition given in Eq. (4.10). Therefore the normalization constant
would be equal to

k =
1

k

∫
v2e−(~v+~vE)2/v20Θ(vesc − vG)dvdΩ

= 2π

∫ vmax

0

v2e−(v2+v2E)/v20

∫ cmax

−1

e−2vvE cos θ/v20 d(cos θ)dv.
(D.2)

In order to find vmax and cmax we use the condition imposed by the Θ(x) which is that vG ≤ vesc
where vesc is the local escape velocity. In terms of ~v and ~vE this condition reads as

(~v + ~vE)
2 ≤ v2esc. (D.3)

Thus to find vmax we have to resolve the system{
v2 + v2E + 2vvE cos θ ≤ v2esc
−1 ≤ cos θ ≤ 1

(D.4)

which can be recast as {
v2esc − v2 − v2E ≥ −2vvE
v2esc − v2 − v2E ≤ 2vvE

(D.5)

Imposing that v > 0 the solutions of the above equations are{
v ≤ vesc + vE
v ≤ vesc − vE

(D.6)

which imply that vmax = vesc+vE. In particular when v ≤ vesc−vE we have that −1 ≤ cos θ ≤ 1
always, and so cmax = 1. When vesc − vE < v ≤ vesc + vE we have that −1 ≤ cos θ ≤
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(v2esc − v2 − v2E)/2vvE and so cmax = (v2esc − v2 − v2E)/2vvE. Therefore the integral in Eq. (D.2)
becomes

k = 2π

{∫ vesc−vE

0

v2e−(v2+v2E)/v20

∫ 1

−1

e−2vvE cos θ/v20 d(cos θ)dv

+

∫ vesc+vE

vesc−vE
v2e−(v2+v2E)/v20

∫ (v2esc−v
2−v2E)/2vvE

−1

e−2vvE cos θ/v20 d(cos θ)dv
}

=
πv20
vE

{∫ vesc−vE

0

v e−(v2+v2E)/v20

[
e2vvE/v

2
0 − e−2vvE/v

2
0

]
dv

+

∫ vesc+vE

vesc−vE
v e−(v2+v2E)/v20

[
e2vvE/v

2
0 − e−(v2esc−v

2−v2E)/v20

]
dv
}

(D.7)

where in the second equality we have performed the integral over d(cos θ). After some manip-
ulations the above result can be recast as

k =
πv20
vE

{∫ vesc+vE

0

v e−(v−vE)2/v20 dv −
∫ vesc−vE

0

v e−(v+vE)2/v20 dv − e−v
2
esc/v

2
0

∫ v+vE

v−vE
v dv

}
.

Now making the substitutions (v− vE)/v0 = y and (v+ vE)/v0 = y respectively in the first and
in the second integral, and computing the last integral we obtain

k =
πv20
vE

{
v0

[ ∫ vesc/v0

−vE/v0
(v0y + vE) e

−y2 dy −
∫ vesc/v0

vE/v0

(v0y + vE) e
−y2 dy

]
− 2vescvEe

−v2esc/v
2
0

}
=
πv20
vE

{
v20

∫ vE/v0

−vE/v0
y e−y

2

dy +
∫ vesc/v0

0

e−y
2

dy − 2vescvEe
−v2esc/v

2
0

}
=
πv20
vE

{∫ vesc/v0

0

e−y
2

dy − 2vescvEe
−v2esc/v

2
0

}
.

Recalling the definition of the error function [1]

erf(x) ≡ 2√
π

∫ x

0

e−x
2

dx (D.8)

we can rewrite k as

k = 2πv20

[√
π

2
erf

(
vesc
v0

)
− vesc

v0
e−v

2
esc/v

2
0

]
. (D.9)

For what concern the velocity integral what we have to compute is

A(vmin, vE, vesc) =

∫
v≤vmax

ve−(~v+~vE)2/v20 dvdΩ. (D.10)

This integral is similar to the one given in Eq. (D.2), thus following the same steps made above
we obtain that

A(vmin, vE, vesc) = 2π

{∫ vesc−vE

vmin

ve−(v2+v2E)/v20

∫ 1

−1

e−2vvE cos θ/v20 d(cos θ)dv

+

∫ vesc+vE

vesc−vE
ve−(v2+v2E)/v20

∫ (v2esc−v
2−v2E)/2vvE

−1

e−2vvE cos θ/v20 d(cos θ)dv
}

=
πv20
vE

{∫ vesc+vE

vmin

e−(v−vE)2/v20 dv −
∫ vesc−vE

vmin

e−(v+vE)2/v20 dv

− e−v
2
esc/v

2
0

∫ v+vE

v−vE
dv
}

(D.11)
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where we have assumed that vmin < (vesc − vE). Now, as before, making the substitutions
(v − vE)/v0 = y and (v + vE)/v0 = y in the first and in the second integral and performing the
last one, we obtain

A(vmin, vE, vesc) =
πv20
vE

{
v0

[∫ vesc/v0

(vmin−vE)/v0

e−y
2

dy −
∫ vesc/v0

(vmin+vE)/v0

e−y
2

dy

]
− 2vEe

−v2esc/v
2
0

}

=
πv20
vE

{
v0

∫ (vmin+vE)/v0

(vmin−vE)/v0

e−y
2

dy − 2vEe
−v2esc/v

2
0

}

=
πv20
vE

{
v0

[∫ (vmin+vE)/v0

0

e−y
2

dy −
∫ (vmin−vE)/v0

0

e−y
2

dy

]
− 2vEe

−v2esc/v
2
0

}
.

Using the definition of the error function given in Eq. (D.8) the last result can be rewritten as

A(vmin, vE, vesc) =
πv20
vE

[
v0
√
π

2

[
erf

(
vmin + vE

v0

)
− erf

(
vmin − vE

v0

)]
− 2vEe

−v2esc/v
2
0

}
.

(D.12)

D.2 Effective Langrangian for neutralino-quark interaction

As we said in Chapter 4 the tree-level scattering processes between neutralinos and quarks
can be mediated by the Z0 boson, the squarks q̃ and the Higgs bosons h,H,A, where with
h we refer to the SM Higgs, with H to the heavier neutral Higgs scalar and with A to the
neutral pseudo-scalar Higgs boson. Therefore the relevant interaction terms from the MSSM
Langrangian are

Lχ̃q =i
√
2q̃1i χ̃(−XiPL + YiPR)qi + i

√
2q̃2i χ̃(−UiPL + ViPR)qi + αχ̃χ̃Z χ̃γ

µγ5χ̃Z0
µ

+ qiγ
µ(vi + aiγ5)qiZ

0
µ + αiqqh qiqih+ αiqqH qiqiH + αχ̃χ̃h χ̃χ̃h

+ αχ̃χ̃H χ̃χ̃H + αχ̃χ̃A χ̃γ
5χ̃A+ αiqqA qiγ

5qiA+ h.c.

(D.13)

where the coefficients Xi, Yi, a, v and the α’s are given in Appendix A and i = 1 denotes up-type
quarks while i = 2 denotes down-type quarks. Note that we are considered the eigenvectors of
the squark mass matrices given in Chapter 3 which are denote respectively with the subscripts
1 and 2. With PL and PR we refer respectively to the left-handed (l.h.) and to the right-handed
(r.h.) chirality projectors which are defined as [61]

PL ≡ 1− γ5

2
, PR ≡ 1 + γ5

2
. (D.14)

This interaction terms lead to the following effective neutralino-quark interaction Langrangian

Leff
χ̃q =− 2

m2
q̃1i

−m2
χ̃

χ̃(−XiPL + YiPR)qiqi(−XiPR + YiPL)χ

− 2

m2
q̃2i

−m2
χ̃

χ̃(−UiPL + ViPR)qiqi(−UiPR + ViPL)χ

+
αχ̃χ̃Z
m2
Z0

χ̃γµγ5χ̃qiγµ(v
i + aiγ5)qi +

αiqqhαχ̃χ̃h

m2
h

χ̃χ̃qiqi

+
αiqqHαχ̃χ̃H

m2
H

χ̃χ̃qiqi +
αiqqAαχ̃χ̃A

m2
A

χ̃γ5χ̃qiγ
5qi.

(D.15)

Now we want to rewrite the first two terms in the form χ̃Γχ̃qiΓqi where Γ denotes a generic
combination of gamma matrices. To do this we start expliciting the l.h. and r.h. projectors, so
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the first term read as

− X2
i

4(m2
q̃1i

−m2
χ̃)

(
χ̃qiqiχ− χ̃γ5qiqiγ

5χ− χ̃γ5qiqiχ+ χ̃qiqiγ
5χ
)
+

− Y 2
i

4(m2
q̃1i

−m2
χ̃)

(
χ̃qiqiχ− χ̃γ5qiqiγ

5χ− χ̃γ5qiqiχ+ χ̃qiqiγ
5χ
)
+

+
XiYi

(m2
q̃1i

−m2
χ̃)

(
χ̃qiqiχ+ χ̃γ5qiqiγ

5χ
)
.

(D.16)

note that the same result holds for the second term in Eq. (D.15) with q̃2i , Ui, Vi respectively
in place of q̃1i , Xi, Yi. Using the Fierz transformations [59] the above result can be rewritten as

+
X2
i

2(m2
q̃1i

−m2
χ̃)

[
1

2

(
χ̃γµγ5χ̃qiγµγ

5qi + χ̃γµχ̃qiγµqi
)
+

+
1

4

(
χ̃σµν χ̃qiσµνγ

5qi − χ̃σµνγ5χ̃qiσµνqi
)]
+

+
Y 2
i

2(m2
q̃1i

−m2
χ̃)

[
1

2

(
χ̃γµγ5χ̃qiγµγ

5qi + χ̃γµχ̃qiγµqi
)
+

+
1

4

(
−χ̃σµν χ̃qiσµνγ5qi + χ̃σµνγ5χ̃qiσµνqi

)]
+

− XiYi
2(m2

q̃1i
−m2

χ̃)

(
χ̃χqiqi + χ̃σµν χ̃qiσµνqi + χ̃γ5χ̃qiγ

5qi
)
.

(D.17)

Knowing that a Majorana fermion must satisfied

χ̃i = Cχ̃i
T (D.18)

the following equalities hold

χ̃iγ
µχ̃j = −χ̃jγµχ̃i (D.19)

χ̃iσ
µν χ̃j = −χ̃jσµν χ̃i (D.20)

χ̃iσ
µνγ5χ̃j = −χ̃jσµνγ5χ̃i (D.21)

χ̃iγ
µγ5χ̃j = χ̃jγ

µγ5χ̃i (D.22)

χ̃iγ
5χ̃j = χ̃jγ

5χ̃i (D.23)

χ̃iχ̃j = χ̃jχ̃i, (D.24)

and in particular when i = j we have

χ̃γµχ̃ = χ̃σµν χ̃ = χ̃σµνγ5χ̃ = 0. (D.25)

Taking into account this some of the terms in Eq. (D.17) cancel leaving us with

+
X2
i + Y 2

i

4(m2
q̃1i

−m2
χ̃)
χ̃γµγ5χ̃qiγµγ

5qi −
XiYi

2(m2
q̃1i

−m2
χ̃)

(χ̃χqiqi + χ̃γ5χqiγ
5qi). (D.26)

Using this result we can rewrite the effective Langarngian given in Eq. (D.15) as

Leff
χ̃q = β1iχ̃γ

µγ5χ̃qiγµγ
5qi + β2iχ̃χqiqi + β3iχ̃γ

µγ5χ̃qiγµqi + β4iχ̃γ
5χqiγ

5qi (D.27)
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where the β’s are defined as

β1i ≡ +
X2
i + Y 2

i

4(m2
q̃1i

−m2
χ̃)

+
U2
i + V 2

i

4(m2
q̃2i

−m2
χ̃)

+
αχ̃χ̃Za

i

m2
Z0

β2i ≡ − XiYi
2(m2

q̃1i
−m2

χ̃)
− UiVi

2(m2
q̃2i

−m2
χ̃)

+
αiqqhαχ̃χ̃h

m2
h

+
αiqqHαχ̃χ̃H

m2
H

β3i ≡
αχ̃χ̃Zv

i

m2
Z0

β4i ≡ − XiYi
2(m2

q̃1i
−m2

χ̃)
− UiVi

2(m2
q̃2i

−m2
χ̃)

+
αiqqAαχ̃χ̃A

m2
A

D.3 Non-relativistic expansion of scattering amplitudes
From the effective Langrangian given in Eq. (D.27) we can read off four effective operators
which describe the interaction between neutralinos and quarks. This effective operators induce
an effective Langrangian which describes the interaction between neutralinos and nucleons, in
particular

Leff
χ̃n = fnχ̃χ̃nn+ cnχ̃γ

µγ5χ̃nγµγ
5n+ anχ̃γ

µγ5χ̃nγµn+ bnχ̃γ
5χ̃nγ5n (D.28)

where the quantities cn and fn are given in Chapter 4. Because the scattering processes between
DM and ordinary matter occur at low energies, we want to express the amplitudes of the various
processes in the non-relativistic limit. To do this we start from the Dirac equation expresses in
the momentum space

(γµpµ −m)u(p)s = 0 (D.29)
wherem is the mass of the particle (nucleon or neutralino) and pµ ≡ (E, ~p) is its four momentum.
The solution u(p)s can be expressed as [61]

u(p)s =

(√
pµσµ ξ

s√
pµσµ ξ

s

)
(D.30)

where σµ ≡ (1, σi), σµ ≡ (1,−σi) and with σi we denote the Pauli matrices. Taking into
account that

(pµσµ)(p
νσν) = m2 (D.31)

we have that the quantity

(
√
pµσµ +

√
pµσµ)

2 = pµσµ + pµσµ + 2m = 2(E +m) (D.32)

where we used the definitions of σµ and σµ. Using this result we can usefully re-express the
spinor expression in Eq. (D.30) as

u(p)s =

√
pµσµ +

√
pµσµ

√
pµσµ +

√
pµσµ

(√
pµσµ ξ

s√
pµσµ ξ

s

)
=

1√
2(E +m)

(
(pµσµ +m) ξs

(pµσµ +m) ξs

)
. (D.33)

Using this result an taking the non-relativistic limit, (E → m) we obtain that

u(p)s =
1

2
√
m

(
(2m− piσi) ξ

s

(2m+ piσi) ξ
s

)
+ O

(
p2

m2

)
(D.34)

With this expression we can express the relevant spinor bilinears at the first order in the 3-
momentum expansion, as

us(p)us(p′) ' 2mξ†sξs

us(p)γµγ5us(p′) '
(
P iξ†sσiξ

s

2mξ†sσiξ
s

)
'
(
2P isi
4m~s

)
us(p)γµus(p′) '

(
2m

~P + εijkq
iξ†sσjξ

s

)
'
(

2m
~P + 2εijkq

isj

)
us(p)γ5us(p′) ' qiξ†sσiξ

s ' 2qisi
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where Pi ≡ p′i + pi, qi ≡ p′i − pi and we have redefined si ≡ ξ†s σi

2 ξ
s.

Using the above non-relativistic expressions for Dirac bilinears we can see that the terms of
the effective Langrangian in Eq. (D.28) give rise to amplitudes respectively equal to

〈χ̃, n| χ̃χ̃nn |χ̃, n〉 ' 4mχ̃mn (D.35)

〈χ̃, n| χ̃γµγ5χ̃nγµγ5n |χ̃, n〉 ' −16mχ̃mn~sχ̃ · ~sn (D.36)

〈χ̃, n| χ̃γµγ5χ̃nγµn |χ̃, n〉 ' 8mχ̃

[
mn

(
~Pχ̃
mχ̃

−
~Pn
mn

)
· ~sχ̃ + i (~sn × ~q) · ~sχ̃

]

' 8mχ̃

[
mn

(
2~v − ~q

µn

)
· ~sχ̃ + i (~sn × ~q) · ~sχ̃

]
(D.37)

〈χ̃, n| χ̃γ5χ̃nγ5n |χ̃, n〉 ' 4 (~q · ~sχ̃) (~q · ~sn) . (D.38)

In the third line we have used the fact that

~Pχ̃ = 2~pχ̃ − ~q (D.39)
~Pn = 2~pn − ~q (D.40)

which implies that
~Pχ̃
mχ̃

−
~Pn
mn

= 2~v − ~q

µn
(D.41)

where ~v ≡ ~vχ̃−~vn is the relative velocity between the incoming particles, and µn = mχ̃mn/(mχ̃+
mn) is the reduced mass. Note that the quantities ~v ,~q and the spins ~sχ̃ and ~sn are all invariant
under Galilean velocity transformations [27].

Because we are interested in processes at zero momentum transferred and which occur
at small relative velocities we can neglect the last two amplitudes of the above list, because
they depend on ~v and on ~q. Note that this is equivalent to neglect the last two terms in the
Langrangians given in Eq. (D.28) and in Eq. (D.27). As a consequence the relevant effective four
fermion Langrangian which we take into account when we analyse neutralino-quarks scattering
processes will be

Leff
χ̃q = β1iχ̃γ

µγ5χ̃qiγµγ
5qi + β2iχ̃χqiqi. (D.42)



Appendix E

In this appendix we perform the calculation of the neutralinos annihilation/co-annihilation
cross-sections. We start summarizing the kinematical invariants and their expansion in terms
of the total kinetic energy per unit of mass ε, which will be useful in the non relativistic
expansion of the cross-sections. After that we explain our convention and Feynman rules for
Majorana fermions. In the last part of this appendix we compute the neutralino annihilation/co-
annihilation cross-sections.

E.1 Kinematical quantities

In the next we will refer to 2 → 2 annihilation processes calculated in the center of mass frame,

~k1 ~k2

~p1

~p2

θ

where k1, k2 are the four-momentum vectors of the initial particles and p1, p2 are the four-
momentum vectors for final particles.

Choosing the z axes in the direction of the outgoing particles and the x axes perpendicular
to it the various four-momentum vectors are defined as

kµ1 ≡


E1∣∣∣~k1∣∣∣ sin θ
0∣∣∣~k1∣∣∣ cos θ

 , kµ2 ≡


E2

−
∣∣∣~k1∣∣∣ sin θ

0

−
∣∣∣~k1∣∣∣ cos θ

 , pµ1 ≡


E′

1

0
0

|~p1|

 , pµ2 ≡


E′

2

0
0

−|~p1|

 (E.1)

remember that in the center-of-mass (CoM) frame we have that ~p1 = −~p2 and ~k1 = −~k2, and
θ is the angle between ~k1 and ~p1 in the CoM frame.

Because the processes in which we are interested involve also massive vector bosons we give
the expressions of the polarization vectors. The two transverse polarizations, in the chosen
frame, can be expressed as [61]

ε+µ ≡ 1√
2


0
1
i
0

 , ε−µ ≡ 1√
2


0
1
−i
0

 , (E.2)

where the upper-scripts + and − means respectively right-handed and left-handed. For massive
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vector bosons there is also the longitudinal polarization, which can be defined as [61]

εLµ ≡ 1

mV


|~p|
0
0
E

 , (E.3)

where ~p, E and mV are respectively the three-momentum vector the energy and the mass of
the vector boson. In the limit where E � mV we have that the longitudinal polarization vector
can be approximated as [61]

εLµ ' pµ
mV

+ O

(
m2

V
E

)
(E.4)

Note that for the transverse polarization vectors given in Eqs. (E.2) the following relations hold

ε+ · ε+ = ε− · ε− = ε+ ·
(
ε−
)∗

= 0 (E.5a)

ε+ · ε− = ε+ ·
(
ε+
)∗

= ε− ·
(
ε−
)∗

= −1, (E.5b)

where as usual the (·) means the Lorentz scalar product.
Now we go further recalling the Mandelstam variables [61]

s ≡ (k1 + k2)
2 = (p1 + p2)

2 (E.6a)

t ≡ (k1 − p1)
2 = (k2 − p2)

2 (E.6b)

u ≡ (k2 − p1)
2 = (k1 − p2)

2. (E.6c)

Considering the identity
s+ t+ u =

∑
i

(m2
i +M2

i ), (E.7)

where mi is the mass of the final i-particle and Mi is the mass of the initial i-particle, we can
rewrite Eq. (E.6b) and Eq. (E.6c) as

t =
1

2

(∑
i

(m2
i +M2

i )− s+ (t− u)

)
(E.8a)

u =
1

2

(∑
i

(m2
i +M2

i )− s− (t− u)

)
. (E.8b)

The quantity (t− u) is equal to

t− u = − (M2
1 −M2

2 )(m
2
1 −m2

2)

s
+
∣∣∣~k1∣∣∣|~p1| cos θ (E.9)

where
∣∣∣~k1∣∣∣ and |~p1| are the magnitude of the three-momentum in the CoM frame, which are

given by ∣∣∣~k1∣∣∣ = √
(s− (M1 +M2)2)(s− (M1 −M2)2)

2
√
s

(E.10a)

|~p1| =
√
(s− (m1 +m2)2)(s− (m1 −m2)2)

2
√
s

. (E.10b)

Now thanks to the relations given in Eqs. (E.9), Eq. (E.10a) and Eq. (E.10b) we can rewrite
the Mandelstam variables t and u as functions of s and θ.

Now, since our computation of the annihilation cross-sections will performed in the non-
relativistic limit, we are more interested in the non-relativistic expansion of s, t, and u variables
in terms of the total kinetic energy per unit of mass, ε, given in Eq. (A.25), or, equivalently, in
terms of the relative velocity of incoming particles, v. Assuming equal masses for the colliding
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particles (M1 = M2 ≡ M) and the limit of massless final particles (m1 = m2 = 0), the
expansions in terms of ε of the Mandelstam variables E.6a, E.6b and E.6c are

s ' 4M2(1 + ε) + O(ε2) (E.11a)

t ' −M2(1 + 2ε− 2
√
ε cos θCM) + O(ε2) (E.11b)

u ' −M2(1 + 2ε+ 2
√
ε cos θCM) + O(ε2). (E.11c)

To finish this section we recall the cross-section formula [61]

σ =
1

64π2

|~p1|

s
∣∣∣~k1∣∣∣

∫
|M|

2
dΩ (E.12)

with |~p1| and
∣∣∣~k1∣∣∣ given by Eqs. (E.10).

Since in the relic density formula enters 〈σv〉, namely the thermal average of the cross-section
times velocity, another important formula is

σv =

∣∣∣~k1∣∣∣√s
E1E2

σ =
|~p1|

(E1E2)64π2
√
s

∫ ∣∣M∣∣2dΩ (E.13)

where E1 and E2 are the energies of the colliding particles; In the laboratory frame of particle
1 and in the limit (M1 =M2 ≡M) and (m1 = m2 = 0) Eq. (E.13) becomes

σv =
1

128M2(2ε+ 1)π2

∫ ∣∣M∣∣2dΩ (E.14)

where we have used the explicit expression of ε in the laboratory frame given in Eq. (A.25).
As last we give some useful formulae for the computation of the trace of gamma matrices

[61]

Tr {γµγν} = 4gµν (E.15a)

Tr
{
γµγνγαγβ

}
= 4

(
gµνgαβ − gµαgνβ + gµβgνα

)
(E.15b)

Tr
{
γµγνγαγβγ5

}
= −4iεµναβ (E.15c)

where εµναβ is the total anti-symmetric tensor.

E.2 Majorana fermions and Feynman rules
When we compute annihilation cross-sections in supersymmetry we have often to deal with
neutralinos, which are Majorana particles. For this reason we dedicate this paragraph to list a
useful set of Feynman rules involving Majorana fermions. We start recalling some proprieties
of the charge conjugation matrix

(i) C†=C−1,

(ii) CT=−C,

(iii) With Γi = 1, iγ5, γµγ5, σµν we have C†ΓiC = ηiΓ
T
i ,

where ηi = +1 for the first six Γi = 1, iγ5, γµγ5 and ηi = −1 for the last ten Γi = γµ, σµν . The
operation of charge conjugation of a generic fermion field is defined as

ψc = Cψ
T
, ψc = −ψTC† (E.16)

where ψc means charge conjugated field and ψ ≡ ψ†γ0. In particular a Majorana field satisfied

ψcM = Cψ
T

M = ψM, ψcM = −ψTMC† = ψM. (E.17)
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The most important consequence of the Eq. (E.17) is the fact that a Majorana field cannot be
invariant under any U(1), global or local, symmetry. In particular this implies that a Majorana
fermion cannot carry any conserved additive quantum number, such as the electric charge or
the fermion number. Thus any interaction that involves both Majorana and Dirac fermions
violates the conservation of the fermion quantum number, and so we cannot use the ordinary
Feynman rules. What we need is a more extended set of rules that takes into account the fact
that a Majorana fermion cannot be associated with any fermion number flow. We will denote
a Majorana fermion with a solid line without any arrow and a Dirac fermion with a solid line
with an arrow, which indicates the flow of the conserved fermionic number. For the Feynman
rules involving Majorana fermion we follow reference [30], which gives the following rules for
the vertices,

ψM
a

iΓab =

ψM
b

ψM
a

iΓab =

ψM
b

ψa

iΓab =

ψb

ψa

iΓ
′

ab =

ψb

ψa

iΓab =

ψM
b

ψM
a

iΓab =

ψb

ψa

iΓ
′

ab =

ψM
b

ψM
a

iΓ
′

ab =

ψb

(E.18)

where Γ
′
= CΓTC† and the thin arrows indicate the verse of the fermionc flow. The Feynman

rules for propagators are

= iS(q)

= iS(−q)
= iS(q)

(E.19)

with S(q) = 1
6q−m , m the fermion mass, and we take the momentum flow from left to right. The

Feynman rules for external fermion legs are

ū(p, s)

v(p, s)

u(p, s)

v̄(p, s)

(E.20)

where like before the momentum flow is from left to right.
The idea is to follow a fermionic flow (the thin arrow), which corresponds to an orientation

of the complete fermions chain, formed by Dirac and/or Majorana fermions, instead to follow
the fermionic number flow (the arrows over Dirac fermions). The choice of the orientation, of
the fermionic flow, is totally arbitrary and a matter of convenience.

Following [30] we can summarize the Feynman rules as:

• Draw all independents Feynman diagrams that contribute to a given process.

• Fix a fermion flow for each fermionic chain (the choice of the direction of the flow is
arbitrary) .
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• Write down Dirac matrices and the appropriate spinors following in the opposite direction
the chosen fermion flow.

• For each fermion line, propagator and vertices use the analytic expressions given in E.18,
E.19 and E.20.

• To find any relative signs between different Feynman diagrams, multiply by (−1) every
odd permutation of the spinors with respect to an already fixed reference order.

As last when we have to compute cross-sections or decay rates we usually average and sum
over initial and final spin state of the fermions involved in the interaction. To do this we use
the familiar spins sum formulas [61]∑

s

u(p, s)u(p, s) = ( 6 p+m) (E.21a)∑
s

v(p, s)v(p, s) = ( 6 p−m) (E.21b)

wherem is the fermion mass. However when we have to deal with Majorana fermions Eqs. (E.21)
are not enough. Using the relations

u(p, s) = Cv(p, s)T (E.22a)

v(p, s) = Cu(p, s)T (E.22b)

which are valid for every spinor that satisfied the Dirac equations, ( 6 p − m)u(p, s) = 0 and
(6 p + m)v(p, s) = 0, we can obtain other spins sum formulas that will be useful in processes
which involve Majorana fermions∑

s

u(p, s)vT (p, s) = ( 6 p+m)(−C) (E.23a)∑
s

uT (p, s)v(p, s) = C†( 6 p−m) (E.23b)∑
s

vT (p, s)u(p, s) = C†( 6 p+m) (E.23c)∑
s

v(p, s)uT (p, s) = ( 6 p−m)(−C). (E.23d)

E.3 Pure Bino LSP annihilation cross-section
Here we compute the tree-level annihilation cross-section times velocity which is important in
the evaluation of the relic abundance provided by a pure Bino LSP, without co-annihilations.

As we said in Chapter 3 the Bino, B̃, is the fermionic superpartner of the B SM gauge boson.
It is a gauge singlet whose annihilation into a pair of fermion and anti-fermion occurs through

sfermion exchange, in u/t-channel, B̃B̃ f̃−→ f̄f , where f̃ denotes a sfermion. The associated
interaction terms in the supersymmetric lagrangian are given by

LB̃f̃f = −g′f̃Rf̄RB̃
YfR√
2
− g′f̃Lf̄LB̃

YfL√
2
+ h.c. (E.24)

where g′ is the U(1)Y coupling constant and YfR and YfL are respectively the right-handed and
left-handed fermion hypercharges, defined by

YfR,L

2
≡ τ3fL −QfR,L , (E.25)

where τ3fL denote the component of the SU(2)L diagonal generator associated to the fermion
fL, and QfR,L denote the electric charge of the fermion fL,R. The associated Feynman rule for



116

the vertex in Eq. (E.24) is

fR,L

B̃

f̃R,L

= ig′
YfR,L√

2
= ig tan θW

YfR,L√
2
. (E.26)

The relevant Feynman diagrams for the annihilation process B̃B̃ f̃−→ f̄f are the t-channel
diagram

f̃R,L

B̃, k1 f̄R,L, p1

B̃, k2 fR,L, p2

and, because the two annihilating particles are equals, there is also the u-channel diagram
obtained exchanging the two initial particles

f̃R,L

B̃, k1 f̄R,L, p1

B̃, k2 fR,L, p2

Following the rules given in Eqs. (E.18), Eqs. (E.19) and Eqs. (E.20), the amplitude of the
t-channel diagram is equal to

iMt =
g2 tan2 θWY

2
fL,R

2(t−m2
f̃L,R

)
ūf (p1, r1)PL,RuB̃(k1, s1)v̄B̃(k2, s2)PR,Lvf (p2, r2) (E.27)

where the ki and si denotes respectively the four momentum and the spin of the incoming
Bino particles while the pi and ri denotes the four momentum and the spin of the outgoing
fermion and anti-fermion particles; with mf̃L,R

we denote the mass of the exchange sfermion.
The u-channel has an amplitude given by

iMu = −
g2 tan2 θWY

2
fL,R

2(u−m2
f̃L,R

)
ūf (p1, r1)PL,RuB̃(k2, s2)v̄B̃(k1, s1)PR,Lvf (p2, r2) (E.28)

note the appearance of the minus sign in front of the amplitude for the u-channel diagram due
to the fact that we have exchange the two initial fermions. The total amplitude is given by

iMB̃B̃ = iMt + iMu. (E.29)

Now in order to find the cross-section of the process, we have to square the total amplitude and
then to average over initial spins, si, and sum over final ones, namely ones, ri

|MB̃B̃ |
2
≡ 1

4

∑
si,ri

|MB̃B̃ |
2
=

1

4

∑
si,ri

|Mt|2 + |Mu|2 − 2Re
[
MuM

†
t

]
(E.30)

where we have explicited the relative minus sign in front of the interference term.
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We perform the computation assuming massless final state, mf = 0. In this limit the first
term of the sum Eq. (E.30) is∑

si,ri

|Mt|2 =
g4 tan4 θWY

4
fL,R

4(t−m2
f̃L,R

)2
Tr{6 p1PL,R(6 k1 +MB̃)PR,L}×

Tr{6 p2PL,R(6 k2 −MB̃)PR,L}

=
g4 tan4 θWY

4
fL,R

4(t−m2
f̃L,R

)2
[4(p1k1)(p2k2)]

= g4 tan4 θWY
4
fL,R

(t−M2
B̃
)2

4(t−m2
f̃L,R

)2

(E.31)

where MB̃ is the Bino mass parameter. The second term of the sum in Eq. (E.30) is equal to
the t-channel result given in Eq. (E.31), with the variable t replaced by the variable u, thus we
have ∑

si,ri

|Mu|2 = g4 tan4 θWY
4
fL,R

(u−M2
B̃
)2

4(u−m2
f̃L,R

)2
(E.32)

For what concern the interference term, MuM
†
t , we have that∑

si,ri

MuM
†
t =

∑
si,ri

g4 tan4 θWY
4
fL,R

4(t−m2
f̃L,R

)(u−m2
f̃L,R

)
×

ūf (p1, r1)PL,RuB̃(k2, s2)v̄B̃(k1, s1)PR,Lvf (p2, r2)×
v̄f (p2, r2)PL,RvB̃(k2, s2)ūB̃(k1, s1)PR,Luf (p1, r1)

=
∑
si

g4 tan4 θWY
4
fL,R

4(t−m2
f̃L,R

)(u−m2
f̃L,R

)
×

[ūB̃(k1, s1)PR,L 6 p1PL,RuB̃(k2, s2)]×
v̄B̃(k1, s1)PR,L 6 p2PL,RvB̃(k2, s2).

(E.33)

As it stands there is no obvious way to perform the sum over initial spins using standard trace
technologies. However taking the transpose of the term in the square brackets and using the
spins sum formulae given in Eq. (E.23) we obtain∑

si,ri

MuM
†
t =

∑
si

g4 tan4 θWY
4
fL,R

4(t−m2
f̃L,R

)(u−m2
f̃L,R

)
×

[uT
B̃
(k2, s2)P

T
L,R 6 pT1 PTR,LūTB̃(k1, s1)]×

v̄B̃(k1, s1)PR,L 6 p2PL,RvB̃(k2, s2)

=
g4 tan4 θWY

4
fL,R

4(t−m2
f̃L,R

)(u−m2
f̃L,R

)
×

Tr{( 6 k2 −MB̃)(−C)PTL,R 6 pT1 PTR,LC†(6 k1 −MB̃)PR,L 6 p2PL,R}

=
g4 tan4 θWY

4
fL,R

4(t−m2
f̃L,R

)(u−m2
f̃L,R

)
×

Tr{( 6 k2 −MB̃)PL,R 6 p1PR,L( 6 k1 −MB̃)PR,L 6 p2PL,R}

(E.34)

where C is the charge conjugation operator, and we made explicit use of the proprieties of
charge conjugation matrix given in the previous section. Performing the trace we have∑

si,ri

MuM
†
t =

g4 tan4 θWY
4
fL,R

4(t−m2
f̃L,R

)(u−m2
f̃L,R

)
[2(p1p2)M

2
B̃
]

= g4 tan4 θWY
4
fL,R

sM2
B̃

4(t−m2
f̃L,R

)(u−m2
f̃L,R

)
.

(E.35)
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Finally, summing up all these results, we obtain that the total average square amplitude for

the process B̃B̃ f̃−→ f̄f , is

|MB̃B̃ |
2
=
g4 tan4 θWY

4
fL,R

16

[
(t−M2

B̃
)2

(t−m2
f̃L,R

)2
+

(u−M2
B̃
)2

(u−m2
f̃L,R

)2
−

2sM2
B̃

(t−m2
f̃L,R

)(u−m2
f̃L,R

)

]
. (E.36)

Now to compute the relic density what we need is the expansion of σB̃B̃→f̄fv in terms of
the kinetic energy per unit of mass, ε. Thus what we have to do now is to expand the total
average square amplitude, Eq. (E.36), in terms of ε. Using the expansions of the Mandelstam
variables given in Eqs. (E.11) we can expand Eq. (E.36) at the first order in ε. Thus, defining
∆ ≡ (M2

B̃
+m2

f̃L,R
), for the first term of Eq. (E.36) we have

(t−M2
B̃
)2

(t−m2
f̃L,R

)2
'

4M4
B̃

∆2

{
1 +

[
2−

4M2
B̃

∆
+

(
1 +

12M4
B̃

∆2
−

8M2
B̃

∆

)
cos2 θCM

]
ε

}
+O(ε2), (E.37)

while the second term of Eq. (E.36) becomes

(u−M2
B̃
)2

(u−m2
f̃L,R

)2
'

4M4
B̃

∆2

{
1 +

[
2−

4M2
B̃

∆
+

(
1 +

12M4
B̃

∆2
−

8M2
B̃

∆

)
cos2 θCM

]
ε

}
+O(ε2), (E.38)

and as last the interference term is equal to

2sM2
B̃

(t−m2
f̃L,R

)(u−m2
f̃L,R

)
'

8M4
B̃

∆2

[
1 +

(
1−

4M2
B̃

∆
+

4M4
B̃

∆2
cos2 θCM

)
ε

]
+O(ε2). (E.39)

Note that we have neglected terms proportional to
√
ε or to ε

√
ε because they are always multiply

by odd powers of cos θCM and they will vanish, upon an integration over dΩ. Summing up the
above equations we obtain the expansion, at first order of the total amplitude |M|

2
, which is

∣∣M∣∣2 '
g4 tan4 θWY

4
fL,R

8∆2

[
1 +

(
1−

8M2
B̃

∆
+

8M4
B̃

∆2

)
cos2 θCM

]
ε+ O(ε2). (E.40)

Note the absence of the leading order term in this expansion. This is due to fact that we
have considered massless final states. Substituting Eq. (E.40) in the formula for σv given in
Eq. (E.14) and then integrate over dΩ, at the first order in ε we obtain that

σB̃B̃→f̄fv '
g4 tan4 θWY

4
fL,R

48πm2
f̃L,R

r(1 + r2)

(1 + r)4
ε+ O(ε2) (E.41)

where r is defined as r ≡ M2
B̃
/m2

f̃L,R
. In order to obtain the total cross-section times velocity,

this result must be summed over all possible final states, so

σB̃B̃v '
∑
fL,R

g4 tan4 θWY
4
fL,R

48πm2
f̃L,R

r(1 + r2)

(1 + r)4
ε+ O(ε2). (E.42)

E.4 Pure Wino LSP annihilation and co-annihilation cross-
sections

Here we compute the relevant annihilation and co-annihilation cross-sections times velocity, at
tree-level, which are relevant in the evaluation of the pure Wino LSP relic abundance. We take
into account three annihilating states (W̃ , W̃±) with equal mass M2, and we assume the limit
M2 � mW , where mW is the mass of the W± SM gauge bosons. We also assume that all
the supersymmetric scalars, such as squarks and sleptons, and the Higgs scalars (except the
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SM Higgs, h), are more heavier than the LSP. All the relevant processes are summarized in
Table 4.8. The fundamental Feynman rules which we need can be obtained from the general
ones listed in Appendix B with the substitutions N11, N13, N14 → 0, N12 → 1 and U11, V11 → 1,
U12, V12 → 0.

The annihilation process between two neutral Winos into final gauge bosons occur via the

exchange, in t/u-channel, of a charged Wino, schematically W̃W̃
W̃±

−−→W+W−. The associated
Feynman diagrams are

qW̃+

W̃ , k1 W−, p1

W̃ , k2 W+, p2 ,

q′W̃+

W̃ , k1 W−, p1

W̃ , k2 W+, p2

which are respectively the t-channel and u-channel process. The associated amplitudes are

iMt =
g2

t−M2
2

v̄(k2, s2)γ
ν( 6 q +M2)γ

µu(k1, s1)εν(p2)εµ(p1), (E.43)

for the t-channel process and

iMu = − g2

u−M2
2

v̄(k1, s1)γ
ν( 6 q′ +M2)γ

µu(k2, s2)εν(p2)εµ(p1), (E.44)

for the u-channel one. In the above expressions the exchange four-momentums are qµ = kµ1 −p
µ
1

and q′µ = k2µ − p1µ. Note that in order to write down the amplitudes for both processes we
have chosen the verse of the fermionic flow from up to down. Using the Dirac equations

(6 p−M2)u(p) = 0, (6 p+M2)v(p) = 0 (E.45)

the amplitudes given in Eq. (E.43) and Eq. (E.44) can be rewritten as

iMt =
g2

t−M2
2

[2v̄(k2, s2)γ
νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)], (E.46a)

iMu = − g2

u−M2
2

[2v̄(k1, s1)γ
νu(k2, s2)εν(p2) (q

′ · εµ(p1))

+ v̄(k1, s1)γ
νγµ 6 p1u(k2, s2)εν(p2)εµ(p1)]. (E.46b)

Now in order to find the total average square amplitude of the process we first compute the
average square amplitudes for definite final polarization states and then we sum up the various
results. We start by considering the transverse polarizations. Considering the expressions given
in Eqs. (E.2) and in Eqs. (E.1) we have that

ε± · p1,2 = 0 (E.47)

and

ε± · k1,2 = ±

∣∣∣~k1∣∣∣
√
2
sin θ ' O(

√
ε) (E.48)

where with ε±µ we refer to one of the transverse polarization vectors given in Eqs. (E.2) and ε is
the total kinetic energy for unit of mass given in Eq. (A.25). In particular we ignore terms of
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order
√
ε because we are interested to find the leading order of the expansion of the cross-section

times velocity in ε. Using these results the amplitudes given in Eqs. (E.46) become

iMt =
g2

t−M2
2

v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)ε±ν ε±µ + O(

√
ε), (E.49a)

iMu = − g2

u−M2
2

v̄(k1, s1)γ
νγµ 6 p1u(k2, s2)ε±ν ε±µ + O(

√
ε). (E.49b)

where with ε±1 µ we refer to the polarization vector associated to the vector boson with momen-
tum p1 while with ε±2 µ to the one associated to the vector boson with momentum p2. Squaring
and averaging over initial states the t-channel amplitude, we obtain

|Mt|
2
=

1

4

∑
s1, s2

g4

(t−M2
2 )

2
v̄(k2, s2)γ

νγµ 6 p1u(k1, s1)ū(k1, s1) 6 p1γαγβv(k2, s2)ε±1 νε
±
2 µ

(
ε±1 αε

±
2 β

)∗
=

g4

4(t−M2
2 )

2
Tr
{
(6 k2 −M2) 6 ε±2 6 ε±1 6 p1( 6 k1 +M2) 6 p1 6 ε± ∗

1 6 ε± ∗
2

}
=

g4

4(t−M2
2 )

2
Tr
{
6 k2 6 ε±2 6 ε±1 6 p1 6 k1 6 p1 6 ε± ∗

1 6 ε± ∗
2

}
− g4m2

WM
2
2

4(t−M2
2 )

2
Tr
{
6 ε±2 6 ε±1 6 ε± ∗

1 6 ε± ∗
2

}
=

g4

4(t−M2
2 )

2
Tr
{
6 k2 6 ε±2 6 ε±1 6 p1 6 k1 6 p1 6 ε± ∗

1 6 ε± ∗
2

}
+ O

(
m2
W

M2
2

, ε

)
(E.50)

where in the last equality we dropped out terms which would be suppressed by the ratio
m2
W /M

2
2 . Using the Clifford algebra

{γµ, γν} = 2gµν (E.51)

the above trace, of eight gamma matrices, is equal to

Tr
{
6 k2 6 ε±2 6 ε±1 6 p1 6 k1 6 p1 6 ε± ∗

1 6 ε± ∗
2

}
= 2(p1 · k1)Tr

{
6 k2 6 ε±2 6 ε±1 6 p1 6 ε± ∗

1 6 ε± ∗
2

}
+m2

WTr
{
6 k2 6 ε±2 6 ε±1 6 k1 6 ε± ∗

1 6 ε± ∗
2

}
= 2(p1 · k1)(p1 · k2)Tr

{
6 ε±2 6 ε±1 6 ε± ∗

1 6 ε± ∗
2

}
= 8(p1 · k1)(p1 · k2)

[ (
ε±2 · ε±1

) (
ε±1 · ε±2

)∗
−
(
ε±2 · ε± ∗

1

) (
ε±1 · ε± ∗

2

)
+
(
ε±2 · ε± ∗

2

) (
ε±1 · ε± ∗

1

)]
(E.52)

where in the second passage we have neglect term proportional to m2
W and in the last step we

made use of the formula for the trace of four gamma matrices given in Eq. (E.15). Substituting
this result into Eq. (E.50) we find that

|Mt|
2
=

2g4

(t−M2
2 )

2
(p1 · k1)(p1 · k2)

[ (
ε±2 · ε±1

) (
ε±1 · ε±2

)∗
−
(
ε±2 · ε± ∗

1

) (
ε±1 · ε± ∗

2

)
+
(
ε±2 · ε± ∗

2

) (
ε±1 · ε± ∗

1

)]
+ O

(
m2
W

M2
2

, ε

)
=
g4

2

u−M2
2

t−M2
2

P(±, ±) + O

(
m2
W

M2
2

, ε

) (E.53)

where in the last step we used the relations

2(p1 · k1) = 2(p2 · k2) =M2
2 +m2

W − t (E.54a)

2(p1 · k2) = 2(p2 · k1) =M2
2 +m2

W − u, (E.54b)

and we have redefined[ (
ε±2 · ε±1

) (
ε±1 · ε±2

)∗ − (ε±2 · ε± ∗
1

) (
ε±1 · ε± ∗

2

)
+
(
ε±2 · ε± ∗

2

) (
ε±1 · ε± ∗

1

)]
≡ P(±, ±). (E.55)
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The average over initial states of the square of the u-channel amplitude can be calculated
following the same steps used for the t-channel one, obtaining that

|Mu|
2
=
g4

2

t−M2
2

u−M2
2

P(±, ±) + O

(
m2
W

M2
2

, ε

)
. (E.56)

The average over initial states of the interference term Re
[
MtM

†
u

]
read as

Re
[
MtM

†
u

]
=

1

4

∑
s1, s2

− g4

(t−M2
2 )(u−M2

2 )
v̄(k2, s2)γ

νγµ 6 p1u(k1, s1)ū(k2, s2) 6 p1γαγβv(k1, s1)×

ε±1 νε
±
2 µ

(
ε±1 αε

±
2 β

)∗
.

(E.57)

Following the same procedure applied for the computation of the interference for the Bino
annihilation process we obtain that

Re
[
MtM

†
u

]
= − g4

4(t−M2
2 )(u−M2

2 )
Tr
{
(6 k2 −M2) 6 ε±2 6 ε±1 6 p1( 6 k1 +M2) 6 ε± ∗

2 6 ε± ∗
1 6 p1

}
= − g4

4(t−M2
2 )(u−M2

2 )
Tr
{
6 k2 6 ε±2 6 ε±1 6 p1 6 k1 6 p1 6 ε± ∗

2 6 ε± ∗
1

}
(E.58)

where in the last step we used the Clifford algebra and we neglected term proportional to m2
W .

The above trace can be performed following the same method used above obtaining

Re
[
MtM

†
u

]
= −2g4

(p1 · k1)(p1 · k2)
(t−M2

2 )(u−M2
2 )

[ (
ε±2 · ε±1

) (
ε±1 · ε±2

)∗ − (ε±2 · ε± ∗
2

) (
ε±1 · ε± ∗

1

)
+
(
ε±2 · ε± ∗

1

) (
ε±1 · ε± ∗

2

)]
+ O (ε)

= −g
4

2
P′(±, ±) + O (ε)

(E.59)

where we used Eqs. (E.54) and the redefinition[ (
ε±2 · ε±1

) (
ε±1 · ε±2

)∗ − (ε±2 · ε± ∗
2

) (
ε±1 · ε± ∗

1

)
+
(
ε±2 · ε± ∗

1

) (
ε±1 · ε± ∗

2

)]
≡ P′(±, ±) (E.60)

The possible transverse polarizations are the four configurations (+,−), (−,+), (+,+), (−,−)
and using the definitions of P(±, ±) and of P′(±, ±), respectively given in Eq. (E.55) and
Eq. (E.60), we can observe that

P(+,−) = P(−,+) = 2, P(+,+) = P(−,−) = 0 (E.61a)
P′(+,−) = P′(−,+) = P′(+,+) = P′(−,−) = 0. (E.61b)

For what concern longitudinal polarizations, taking into account the approximation for
the longitudinal polarization vector given in Eq. (E.4) and substituting it into the t-channel
amplitude given in Eqs. (E.46a) we obtain that

iMLL
t =

g2

t−M2
2

[2v̄(k2, s2)γ
νu(k1, s1)

p2 ν
m2
W

(q · p1)

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)

p1 µ p2 ν
m2
W

] + O

(
m2
w

M2
2

)
=

g2

t−M2
2

[2v̄(k2, s2) 6 p2u(k1, s1)
(q · p1)
m2
W

+ v̄(k2, s2) 6 p2γµ 6 p1u(k1, s1)] + O

(
m2
W

M2
2

)
=

g2

t−M2
2

[
2
(k1 · p1)
m2
W

− 1

]
v̄(k2, s2) 6 p2u(k1, s1) + O

(
m2
W

M2
2

)
= − g2

m2
W

v̄(k2, s2) 6 p2u(k1, s1) + O

(
m2
W

M2
2

)

(E.62)
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where in the last passage we used the relations given in Eqs. (E.54). Following the same steps
the u-channel amplitude given in Eq. (E.46b) becomes

iMLL
u =

g2

m2
W

v̄(k1, s1)γ
νγµ 6 p1u(k2, s2) + O

(
m2
w

M2
2

)
(E.63)

which using the relations given in Eqs. (E.22) can be recast as

iMLL
u =

g2

m2
W

v̄(k1, s1) 6 p2u(k2, s2) + O

(
m2
W

M2
2

)
=

g2

m2
W

[v̄(k1, s1) 6 p2u(k2, s2)]T + O

(
m2
W

M2
2

)
=

g2

m2
W

[
v̄(k2, s2)C

T 6 pT2 Cu(k1, s1)
]T

+ O

(
m2
W

M2
2

)
=

g2

m2
W

v̄(k2, s2) 6 p2u(k1, s1) + O

(
m2
W

M2
2

)
(E.64)

where in the last line we used the proprieties of the charge conjugation operator. Thus summing
up the two amplitudes we get that

iMLL = iMLL
t + iMLL

u ' O

(
m2
W

M2
2

)
(E.65)

So in the limit whereM2
2 � m2

W and at the leading order the non-relativistic expansion, we have
that the longitudinal polarizations do not contribute to the total amplitude of the annihilation

process W̃W̃
W̃±

−−→W+W−. Note that the amplitudes for the emission of one longitudinal and
one transverse vector boson give rise to an identical result. In fact taking, for example, εL(p1)
and ε±(p2) we would obtain the same result as above with the vector ε±(p2) in place of p2.

In light of this the total average square amplitudes for the process W̃W̃
W̃±

−−→W+W− is

|MW̃W̃ |
2
=
∑
(±±)

|Mt|
2
+ |Mu|

2
+ 2Re

[
MtM

†
u

]
(E.66)

where the sum runs over all possible transverse polarization configurations because the lon-
gitudinal ones are of order m2

W /M
2
2 . Thus using the expressions found for |Mt|

2
, |Mu|

2
and

Re
[
MtM

†
u

]
, and exploiting the results found in Eqs. (E.61), we obtain that

∣∣MW̃W̃

∣∣2 =
∑
(±±)

g4

2

u−M2
2

t−M2
2

P(±, ±) +
g4

2

u−M2
2

t−M2
2

P(±, ±)− g4 P′(±, ±) + O

(
m2
W

M2
2

, ε

)

= 2g4
u−M2

2

t−M2
2

+ 2g4
t−M2

2

u−M2
2

+ O

(
m2
W

M2
2

, ε

)
= 4g4 + O

(
m2
W

M2
2

, ε

)
(E.67)

where in the last step we used the expansions of the Mandelstam variables given in Eqs. (E.6).
Substituting this result into the cross-section times velocity formula given in Eq. (E.14) and
integrating over dΩ we find that

σW̃W̃ v =
g4

8πM2
2

+ O

(
m2
W

M2
2

, ε

)
. (E.68)

Now we go further computing the cross-section times velocity, at the leading order in the
non-relativistic expansion, for the co-annihilation process between a Wino LSP, W̃ , and a
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charged Wino, W̃±. The possible final states of this annihilation are summarized in Table 4.8.
We start from the process W̃W̃± → Z0W±. The tree-level Feynman diagrams are

W̃±

W̃±, k1 Z0, p1

W̃ , k2 W±, p2

W±

W̃±, k1

W̃ , k2

Z0, p2

W±, p1

The t-channel process has an amplitude equal to

iMt =
g2cW
t−M2

2

[2v̄(k2, s2)γ
νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)]

while the s-channel process has an amplitude given by

iMs =
g2cW
s−m2

W

v̄(k2, s2)γ
µu(k1, s1)

[
−gµν +

(k1 + k2)µ (k1 + k2)ν
m2
W

]
Γναβεα(p1)εβ(p2) (E.69)

where for the massive vector boson propagator we used the Feynman rules given in Appendix B.
Note that both the t-channel and s-channel amplitudes are obtained choosing the verse of the
fermionc flow from up to down. The tensor Γναβ is defined as

Γναβ =
[
gαβ(p2 − p1)

ν − gβν(2p2 − p1)
α + gαν(2p1 + p2)

β
]
. (E.70)

Using the Dirac equation and the fact that the masses of W̃ and W̃± are equal, the s-channel
amplitude reduce to

iMs = − g2cW
s−m2

W

v̄(k2, s2)γ
µu(k1, s1)gµν Γ

ναβεα(p1)εβ(p2). (E.71)

As first we compute the average square amplitudes for specific final polarization configurations
and then we sum up, the various results. We start by considering the transverse polarizations.
Using the relation in Eq. (E.47) and the explicit form of the tensor Γναβ the s-channel amplitude
on transverse polarization read as

iMs = − g2cW
s−m2

W

v̄(k2, s2)γ
µu(k1, s1)

[(
ε±2 · ε±1

)
(p2 − p1)µ − 2ε±2 µ

(
p2 · ε±1

)
+ 2ε±1 µ

(
p1 · ε±2

)]
= −g

2cW
s

v̄(k2, s2)γ
µu(k1, s1)

(
ε±2 · ε±1

)
(p2 − p1)µ + O

(
m2
W

M2
2

)
.

(E.72)

This expression can be further simplify using the Dirac equation and the four momentum
conservation, obtaining

iMs = −2
g2cW
s

v̄(k2, s2) 6 p2u(k1, s1)
(
ε±2 · ε±1

)
+ O

(
m2
W

M2
2

)
. (E.73)

The average over initial states of the square of this amplitude is equal to∣∣Ms

∣∣2 =
g4c2W
s2

Tr
{
(6 k2 −M2

2 ) 6 p2(6 k1 +M2
2 ) 6 p2

} ∣∣(ε±2 · ε±1
)∣∣2 + O

(
m2
W

M2
2

)
= 4

g4c2W
s2

[2(k2 · p2)(k1 · p2)]
∣∣(ε±2 · ε±1

)∣∣2 + O

(
m2
W

M2
2

)
= 2

g4c2W
s2

(t−M2
2 )(u−M2

2 )
∣∣(ε±2 · ε±1

)∣∣2 + O

(
m2
W

M2
2

) (E.74)
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where as usual we with ε1,2 we refer to the polarization vectors associated respectively to the
outgoing gauge bosons with momentums p1,2. The t-channel amplitude given in Eq. (E.69) on
transverse polarization read as

iMt =
g2cW
t−M2

2

v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)ε±ν ε±µ + O(

√
ε) (E.75)

where we dropped out terms which are of order
√
ε. In order to calculate the average over initial

states of the square of the t-channel amplitude given in Eq. (E.69) we can exploit the result of
Eq. (E.53), so using the right coefficients we get that

∣∣Mt

∣∣2 =
g4c2W
2

u−M2
2

t−M2
2

P(±, ±) + O

(
m2
W

M2
2

, ε

)
. (E.76)

As last the average over initial states of the interference term Re
[
MtM

†
s

]
is equal to

Re
[
MtM

†
s

]
=

1

4

∑
s1,s2

−2
g4c2W

(t−M2
2 )s

v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)ū(k1, s1) 6 p2v(k2, s2)ε±ν ε±µ×

(
ε±2 · ε±1

)∗
+ O

(
m2
W

M2
2

, ε

)
=

1

4

∑
s1,s2

2
g4c2W

(t−M2
2 )s

v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)ū(k1, s1) 6 p1v(k2, s2)ε±ν ε±µ×

(
ε±2 · ε±1

)∗
+ O

(
m2
W

M2
2

, ε

)
=

g4c2W
2(t−M2

2 )s
Tr
{
( 6 k2 −M2

2 ) 6 ε2 6 ε1 6 p1(6 k1 +M2
2 ) 6 p1

} (
ε±2 · ε±1

)∗
+ O

(
m2
W

M2
2

, ε

)
(E.77)

where in the second passage we used the conservation of the four momentum and the Dirac
equation. Computing the trace with the help of the Clifford algebra, we obtain that

Re
[
MtM

†
s

]
= 4

g4c2W
(t−M2

2 )s
[(k2 · p2)(k1 · p2)]

∣∣(ε±2 · ε±1
)∣∣2 + O

(
m2
W

M2
2

, ε

)
=
g4c2W
s

(u−M2
2 )
∣∣(ε±2 · ε±1

)∣∣2 + O

(
m2
W

M2
2

, ε

) (E.78)

where we made use of the relations given in Eqs. (E.54). Now we consider the amplitude
for the emission of two longitudinal boson in the limit E � m2

W . The t-channel amplitude
for longitudinal polarizations is similar, apart for the vertex coefficients, to the one given in
Eq. (E.62) for the two neutral Winos annihilation. So we have that

iMLL
t = −g

2cW
m2
W

v̄(k2, s2) 6 p2u(k1, s1) + O

(
m2
W

M2
2

)
. (E.79)

Substituting the approximation given in Eq. (E.4) into the expression of the s-channel amplitude
given in Eq. (E.71) we obtain

iMLL
s = − g2cW

s−m2
W

v̄(k2, s2)γ
µu(k1, s1)gµνΓ

ναβ p1 αp2 β
m2
W

+ O

(
m2
W

M2
2

)
= −g

2cW
s

v̄(k2, s2)γ
µu(k1, s1)

[
(p1 · p2)
m2
W

+ 1

]
(p1 − p2)µ + O

(
m2
W

M2
2

)
= 2

g2cW
s

v̄(k2, s2) 6 p2u(k1, s1)
[
(p1 · p2)
m2
W

+ 1

]
+ O

(
m2
W

M2
2

) (E.80)
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where we used the explicit expression of Γναβ , the conservation of the four momentum and the
Dirac equation. Remembering that 2(p1 · p2) = s+ 2m2

W the above result becomes

iMLL
s =

g2cW
m2
W

v̄(k2, s2) 6 p2u(k1, s1) + O

(
m2
W

M2
2

)
. (E.81)

Summing the t-channel contribution, given Eq. (E.79), with s-channel the one, we have that

iMLL = iMLL
t + iMLL

s ' O

(
m2
W

M2
2

)
(E.82)

and as a consequence up to correction of order m2
W /M

2
2 the longitudinal polarizations do not

contribute to the total amplitude of the process W̃W̃± → Z0W±. Note that we have a similar
result for the emission of one longitudinal and one transverse vector bosons. Thus the total
average square amplitude,

∣∣MZ0 W±
∣∣2, for the annihilation process W̃W̃± → Z0W±, at the

leading order in ε and m2
W /M

2
2 is determined only by the transverse polarization configurations.

So we get∣∣MZ0 W±
∣∣2 =

∑
(±±)

∣∣Mt

∣∣2 + ∣∣Ms

∣∣2 + 2Re
[
MtM

†
s

]
=
∑
(±±)

g4c2W
2

u−M2
2

t−M2
2

P(±, ±) + 2
g4c2W
s2

(t−M2
2 )(u−M2

2 )
∣∣(ε±2 · ε±1

)∣∣2
+ 2

g4c2W
s

(u−M2
2 )
∣∣(ε±2 · ε±1

)∣∣2 + O

(
m2
W

M2
2

, ε

)
= 2g4c2W

u−M2
2

t−M2
2

+ 4
g4c2W
s2

(t−M2
2 )(u−M2

2 ) + 4
g4c2W
s

(u−M2
2 ) + O

(
m2
W

M2
2

, ε

)
= g4c2W + O

(
m2
W

M2
2

, ε

)
(E.83)

where we used the results for
∣∣Mt

∣∣2, ∣∣Ms

∣∣2 and Re
[
MtM

†
s

]
. Note that in the last two steps we

used the relations given in Eqs. (E.61) and Eqs. (E.5), and the expansions of the Mandelstam
variables given in Eqs. (E.6).

From Table 4.8 the other process which contribute to the co-annihilation between W̃ and
W̃± is W̃W̃± → γW±, where γ denotes a photon, which has associated Feynman diagrams

W̃±

W̃±, k1 γ, p1

W̃ , k2 W±, p2

W±

W̃±, k1

W̃ , k2

γ, p2

W±, p1

.

Choosing the verse of the fermionic flow from up to down and using the Feynman rules given
in Appendix B the associated amplitudes are

iMt =
g2sW
t−M2

2

[2v̄(k2, s2)γ
νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)]

for the t-channel process and

iMs = − g2sW
s−m2

W

v̄(k2, s2)γ
µu(k1, s1)gµν Γ

ναβεα(p1)εβ(p2) (E.84)
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for the s-channel one. Note that apart for the vertex coefficients these amplitudes are identical
to the one given in Eq. (E.69) and in Eq. (E.71). Therefore following the same procedures used
above we obtain that on transverse polarizations the average of the square amplitudes and of
the interference term are respectively equal to

∣∣Mt

∣∣2 =
g4c2W
2

u−M2
2

t−M2
2

P(±, ±) + O

(
m2
W

M2
2

, ε

)
(E.85a)

∣∣Ms

∣∣2 = 2
g4c2W
s2

(t−M2
2 )(u−M2

2 )
∣∣(ε±2 · ε±1

)∣∣2 + O

(
m2
W

M2
2

)
(E.85b)

Re
[
MtM

†
s

]
=
g4c2W
s

(u−M2
2 )
∣∣(ε±2 · ε±1

)∣∣2 + O

(
m2
W

M2
2

, ε

)
. (E.85c)

Furthermore also here the total amplitude for the emission of one transverse and one longitudinal
bosons1 is of order (m2

W /M
2
2 ) and so don not contribute to the total amplitude of the process.

Therefore as above the total average square amplitude for the process W̃W̃± → γW± is equal
to

∣∣Mγ W±
∣∣2 =

∑
(±±)

∣∣Mt

∣∣2 + ∣∣Ms

∣∣2 + 2Re
[
MtM

†
s

]
= 2g4s2W

u−M2
2

t−M2
2

+ 4
g4s2W
s2

(t−M2
2 )(u−M2

2 ) + 4
g4s2W
s

(u−M2
2 ) + O

(
m2
W

M2
2

, ε

)
= g4s2W + O

(
m2
W

M2
2

, ε

)
(E.86)

The last process which contributes to the co-annihilation between W̃ and W̃± is W̃W̃± → f̄Lf
′
L

where with fL and f ′L we denote two SM left-handed fermions2. The Feynman diagram for this
process is

W−

W̃±, k1

W̃ , k2

f̄L, p2

f ′L, p1

.

with associated amplitude given by

iMff ′ =
g2√

2(s−m2
W )

v̄(k2, s2)γ
µu(k1, s1)

[
−gµν +

(k1 + k2)µ (k1 + k2)ν
m2
W

]
ū(p1, r1)γνPLv(p2, r2)

= − g2√
2(s−m2

W )
v̄(k2, s2)γ

µu(k1, s1)ū(p1, r1)γµPLv(p2, r2)

(E.87)

where we have chosen the verse of the fermionic flow from up to down for both the fermion
chains and we used the Feynman rules given in Appendix B. Note that the second term in the
square bracket can be removed using the Dirac equation. In the limit M2 � mW ,mf where
with mf we denote the mass of an outgoing fermion, the average of the square amplitude given

1Note that, here, this is the only possible configuration which involve longitudinal polarizations; in fact the
photon, being a massless gauge boson, has only two transverse polarizations.

2Note that from charge and flavor conservation the possible couples of SM fermions are
(e, νe), (µ, νµ), (τ, ντ ), (q, d), (c, s), (t, b).
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in Eq. (E.87) is equal to∣∣Mff ′
∣∣2 =

g4

8s2
Tr{(6 k2 −M2)γ

µ(6 k1 +M2)γ
ν}Tr{6 p1γµ 6 p2γνPL}+ O
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+ O
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+ O
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(E.88)

where we used the trace formulae given in Eqs. (E.15). Note that the term proportional to the
antisymmetric tensor εαβµν vanishes because of the symmetry, under the exchange of µ ↔ ν
indices, of the tensor

[
kµ2 k

ν
1 + kν2k

µ
1 − gµν((k1 · k2) +M2

2 )
]
. Substituting into the above result

the expansions of the Mandelstam variables given in Eqs. (E.6) we find that∣∣Mff ′
∣∣2 =

g4

2
+ O

(
m2
W

M2
2

, ε

)
. (E.89)

To find the total cross-section for the co-annihilation among W̃ and W̃± we have to sum the
total average square amplitudes associated to the various contributing processes. Note that this
is possible, at this level, because in the assumed limit (M2 � mW ,mZ0 ,mf ) the final states
can be considered all massless and so the phase spaces associated to them would be identical.
Thus the total average square amplitude for the co-annihilation between W̃ and W̃± is∣∣MW̃W̃±

∣∣2 =
∑
f,f ′

Nc
∣∣Mff ′

∣∣2 + ∣∣Mγ W±
∣∣2 + ∣∣MZ0 W±

∣∣2
= 6g4 + g4c2W + g4s2W + O

(
m2
W

M2
2

, ε

)
= 7g4 + O

(
m2
W

M2
2

, ε

) (E.90)

where we used the results given in Eq. (E.83), Eq. (E.86) and Eq. (E.89). Note that in the
above expression the sum run over the admitted final SM fermion states and Nc is a colour
factor, which is Nc = 3 for quarks and Nc = 1 for leptons. Inserting this expression into the
cross-section times velocity formula, Eq. (E.14), we obtain that

σW̃W̃±v =
7g4

32πM2
2

+ O

(
m2
W

M2
2

, ε

)
. (E.91)

Now we go on computing the co-annihilation between two charge Winos with opposite
charge. The processes which contribute to this co-annihilation are listed in Table 4.8. We start
by considering the process W̃±W̃∓ → W±W∓, which is described by the following Feynman
diagrams

W̃

W̃±, k1 W±, p1

W̃∓, k2 W∓, p2

Z0

W̃±, k1

W̃ , k2

W±, p2

W∓, p1

γ

W̃±, k1

W̃∓, k2

W±, p2

W∓, p1

(E.92)

The related amplitudes are equal to

iMt =
g2

t−M2
2

[2v̄(k2, s2)γ
νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)]
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for the t-channel process,

iMs Z0 =
g2c2W
s−m2

W

v̄(k2, s2)γ
µu(k1, s1)

[
−gµν +

(k1 + k2)µ (k1 + k2)ν
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]
Γναβεα(p1)εβ(p2)

= − g2sW
s−m2

W

v̄(k2, s2)γ
µu(k1, s1)gµν Γ

ναβεα(p1)εβ(p2)

(E.93)

for the s-channel process mediated by the Z0 boson and

iMs γ = − g2s2W
s−m2

W

v̄(k2, s2)γ
µu(k1, s1)gµν Γ

ναβεα(p1)εβ(p2). (E.94)

for the s-channel process mediated by the photon. Note that in the expression for the amplitude
mediated by the Z0 boson we used the Dirac equation. As usual we compute the average over
initial states of the square amplitudes and of the interference terms for definite final polarization
states. As first we consider the transverse polarizations. Exploiting the results found for the
previous processes it is possible to argue that the average of the square amplitudes and of the
interference terms on transverse polarizations read as

∣∣Mt

∣∣2 =
g4c2W
2

u−M2
2

t−M2
2

P(±, ±) + O

(
m2
W
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2
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)
(E.95a)
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(E.95b)

∣∣Ms γ

∣∣2 = 2
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(E.95c)

Re
[
MtMs Z0

†
]
=
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(E.95d)

Re
[
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†
]
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(E.95e)

Re
[
Ms Z0Ms γ

†
]
= 2
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2
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)
. (E.95f)

For what concern the longitudinal polarizations, replacing the polarization vectors with the
approximation given Eq. (E.4) into the three amplitudes given in Eq. (E.93), Eq. (E.93) and
Eq. (E.94), and applying the same methods used in the previous cases we find that

iMLL
t = − g2

m2
W

v̄(k2, s2) 6 p2u(k1, s1) + O

(
m2
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M2
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)
(E.96a)

iMLL
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iMLL
s γ =

g2s2W
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v̄(k2, s2) 6 p2u(k1, s1) + O

(
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W

M2
2

)
. (E.96c)

Thus summing up together these contributes we have that

iMLL = iMLL
t + iMLL

s Z0 + iMLL
s γ = O

(
m2
W

M2
2

)
(E.97)

and so as occurred for the previous processes the longitudinal bosons, in the assumed limit,
give a contribution which is of order (m2

W /M
2
2 ). Therefore the total average square amplitude
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for the annihilation process W̃±W̃∓ →W±W∓ becomes∣∣MW± W∓
∣∣2 =

∑
(±±)

∣∣Mt
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where in the last step we used the expansion of the Mandelstam variables given in Eqs. (E.6).
The other processes which contributes to the co-annihilation among W̃± and W̃∓ are W̃±W̃∓ →
Z0γ, W̃±W̃∓ → Z0Z0 and W̃±W̃∓ → γγ with associated Feynman diagrams given by

W̃±

W̃±, k1 Z0, p1

W̃∓, k2 γ, p2

W̃±

W̃±, k1 γ, p1

W̃∓, k2 Z0, p2

W̃±

W̃±, k1 Z0, p1

W̃∓, k2 Z0, p2

W̃±

W̃±, k1 Z0, p1

W̃∓, k2 Z0, p2

W̃±

W̃±, k1 γ, p1

W̃∓, k2 γ, p2

W̃±

W̃±, k1 γ, p1

W̃∓, k2 γ, p2

Choosing the verse of the fermionic flow from up to down, we have that the related amplitudes
are equal to

iMt Z0γ =
g2cW sW
t−M2

2

[2v̄(k2, s2)γ
νu(k1, s1)εν(p2) (q · εµ(p1))
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νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)] (E.99a)
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′ · εµ(p2))
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νγµ 6 p2u(k1, s1)εν(p1)εµ(p2)] (E.99b)

for the process W̃±W̃∓ → Z0γ,

iMt Z0Z0 =
g2c2W
t−M2

2

[2v̄(k2, s2)γ
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iMu Z0Z0 =
g2c2W
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[2v̄(k2, s2)γ
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′ · εµ(p2))

+ v̄(k2, s2)γ
νγµ 6 p2u(k1, s1)εν(p1)εµ(p2)] (E.100b)
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for the process W̃±W̃∓ → Z0Z0 and

iMt γγ =
g2s2W
t−M2

2

[2v̄(k2, s2)γ
νu(k1, s1)εν(p2) (q · εµ(p1))
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iMu γγ =
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′ · εµ(p2))

+ v̄(k2, s2)γ
νγµ 6 p2u(k1, s1)εν(p1)εµ(p2)] (E.101b)

for the process W̃±W̃∓ → γγ. In the above expressions the transferred momentum q′ is
q′µ = k1 µ − p2 µ. Noting that the amplitudes just given, apart some vertex coefficients, are
identical to the ones given for the Wino annihilation process, see Eqs. (E.46), we can use the
results found above to write down the average over initial states of the square amplitudes for
transverse polarizations. In particular note that for the u-channel processes the first term of
the amplitudes is unimportant for transverse polarizations. Thus on transverse polarizations
we have ∣∣Mt Z0γ

∣∣2 =
g4s2W c

2
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∣∣Mu Z0γ
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†
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for the process W̃±W̃∓ → Z0γ,∣∣Mt Z0Z0
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for what concern the process W̃±W̃∓ → Z0Z0 and∣∣Mt γγ
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∣∣Mu γγ
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Re
[
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†
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(E.104c)

for the process W̃±W̃∓ → γγ. The longitudinal polarizations as in the previous cases, in the
limit where M2 � mW do not contribute. To see this we can substitute the approximation
for longitudinal polarization vectors given in Eq. (E.4) into the various amplitudes given in
Eqs. (E.99) and Eqs. (E.100)3. Thus for example the amplitudes in Eqs. (E.100) on longitudinal
bosons read as

iMLL
t Z0Z0 = −g

2c2W
m2
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v̄(k2, s2) 6 p2u(k1, s1) + O
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2
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iMLL
u Z0Z0 = −g
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= +
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W
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(
m2
W

M2
2

)
(E.105b)

3Note that these arguments do not apply to the process W̃±W̃∓ → γγ because the two final photons can
have only transverse polarizations.
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where in the last step we used the conservation of the four momentum and the Dirac equation.
The sum of the two contributes is

iMLL
Z0Z0 = iMLL

t Z0Z0 + iMLL
u Z0Z0 = O

(
m2
W

M2
2

)
(E.106)

which shows that, at the leading order, the longitudinal polarizations do not contribute to the
total amplitude. Note that a similar result can be found for the emission of one longitudinal
and one transverse boson final states. As a consequence the total average square amplitudes
for the processes W̃±W̃∓ → Z0γ, W̃±W̃∓ → Z0Z0 and W̃±W̃∓ → γγ are respectively equal
to ∣∣MZ0 γ

∣∣2 =
∑
(±±)

∣∣Mt Z0γ

∣∣2 + ∣∣Mu Z0γ

∣∣2 + 2Re
[
Mt Z0γMu Z0γ

†
]

= 2g4s2W c
2
W

[
u−M2

2

t−M2
2

+
t−M2

2

u−M2
2

]
+ O

(
m2
W

M2
2

, ε

)
= 4g4s2W c

2
W + O

(
m2
W

M2
2

, ε

)
(E.107a)∣∣MZ0 Z0

∣∣2 =
∑
(±±)

∣∣Mt Z0Z0

∣∣2 + ∣∣Mu Z0Z0

∣∣2 + 2Re
[
Mt Z0Z0Mu Z0Z0

†
]

= 2g4c4W

[
u−M2

2

t−M2
2

+
t−M2

2

u−M2
2

]
+ O

(
m2
W

M2
2

, ε

)
= 4g4c4W + O

(
m2
W

M2
2

, ε

)
(E.107b)∣∣Mγ γ

∣∣2 =
∑
(±±)

∣∣Mt γγ

∣∣2 + ∣∣Mu γγ

∣∣2 + 2Re
[
Mt γγMu γγ

†
]

= 2g4s4W

[
u−M2

2

t−M2
2

+
t−M2

2

u−M2
2

]
+ O

(
m2
W

M2
2

, ε

)
= 4g4s4W + O

(
m2
W

M2
2

, ε

)
(E.107c)

From Table 4.8 the last process which contributes to the W̃±W̃∓ co-annihilation is W̃±W̃∓ →
f̄f where as usual f denote a SM fermion. Not that now the final states are fermion anti-fermion
pairs. The Feynman diagrams which describe this process are

Z0

W̃±, k1

W̃∓, k2

f̄ , p2

f, p1

γ

W̃±, k1

W̃∓, k2

f̄ , p2

f, p1

.

which have amplitudes equal to

iMZ0 ff =
g2

2(s−m2
W )

v̄(k2, s2)γ
µu(k1, s1)

[
−gµν +

(k1 + k2)µ (k1 + k2)ν
m2
Z0

]
×

ū(p1, r1)γν
(
PL − 2eqs

2
W

)
v(p2, r2)

= −g
2

2s
v̄(k2, s2)γ

µu(k1, s1)ū(p1, r1)γµ
(
PL − 2eqs

2
W

)
v(p2, r2) + O

(
m2
W

M2
2

)
(E.108a)

iMγ ff = −g
2s2W
s

v̄(k2, s2)γ
µu(k1, s1)ū(p1, r1)γµv(p2, r2). (E.108b)

where with eq we refer to the electric charge of the outgoing fermions in unit of e. Summing
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these contributions we have that the total amplitude for the process W̃±W̃∓ → f̄f is

iMff = iMZ0 ff + iMγ ff

=
g2

2s
v̄(k2, s2)γ

µu(k1, s1)ū(p1, r1)γµPLv(p2, r2) + O

(
m2
W

M2
2

)
.

(E.109)

Thus using the result found for the process W̃W̃± → f̄Lf
′
L given in Eq. (E.89) we have that

the total square amplitude for the annihilation between W̃±W̃∓ into final fermion anti fermion
pairs is equal to ∣∣Mff

∣∣2 =
g4

2s2

[
(u−M2

2 )
2

2
+

(t−M2
2 )

2

2
+M2

2 s

]
+ O

(
m2
W

M2
2

)
=
g4

4
+ O

(
m2
W

M2
2

, ε

)
.

(E.110)

Remembering that in the limit where M2 � mW ,mZ0 ,mf all the final states can be con-
sidered massless, to find the total cross-section times velocity for the co-annihilation between
W̃±W̃∓, we sum all the total average square amplitudes of the various contributing processes
and then we substitute the result into Eq. (E.14). So using the results given in Eq. (E.98),
Eqs. (E.107) and Eq. (E.110) the total average square amplitude for the W̃±W̃∓ co-annihilation
is ∣∣MW̃±W̃∓

∣∣2 =
∑
f

Nc
∣∣Mff

∣∣2 + ∣∣MW± W∓
∣∣2 + ∣∣MZ0 γ

∣∣2 + 1

2

∣∣MZ0 Z0

∣∣2 + 1

2

∣∣Mγ γ

∣∣2
= 6g4 + g4 + 2g4

(
2c2W s

2
W + c4W + s4W

)
O

(
m2
W

M2
2

, ε

)
= 9g4 + O

(
m2
W

M2
2

, ε

)
.

(E.111)

where Nc is the colour factor defined above. Note the appearance of the pre-factor 1/2 in front
of
∣∣MZ0 Z0

∣∣2 and
∣∣Mγ γ

∣∣2. This is a symmetry factor which is due to the fact that the final
particles are equals. Substituting this result into Eq. (E.14) we find that

σW̃±W̃∓v =
9g4

32πM2
2

+ O

(
m2
W

M2
2

, ε

)
. (E.112)

The last co-annihilation process which is important for the computation of the relic density
associated to a pure Wino LSP, is the one between two charge Winos with identical charge,
schematically W̃±W̃± → W±W±. This process can occur only via t/u-channel exchange of a
neutral Wino. The related Feynman diagrams are

W̃

W̃±, k1 W±, p1

W̃±, k2 W±, p2

W̃

W̃±, k1 W±, p1

W̃±, k2 W±, p2

with associated amplitudes given by

iMt =
g2

t−M2
2

[2v̄(k2, s2)γ
νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)], (E.113a)

iMu = − g2

u−M2
2

[2v̄(k1, s1)γ
νu(k2, s2)εν(p2) (q

′ · εµ(p1))

+ v̄(k1, s1)γ
νγµ 6 p1u(k2, s2)εν(p2)εµ(p1)]. (E.113b)
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Note that, because we have assumed that W̃ and W̃± have the same mass, these amplitudes are
exactly identical to the one given in Eqs. (E.46) for the annihilation between two neutral Winos.
Therefore performing the same steps as above the total average square amplitude associated to
the process W̃±W̃± →W±W± is

∣∣MW̃±W̃±

∣∣2 = 4g4 + O

(
m2
W

M2
2

, ε

)
(E.114)

and so substituting this result into Eq. (E.14), the cross-section times velocity is equal to

σW̃±W̃±v =
1

2

(
g4

8πM2
2

)
+ O

(
m2
W

M2
2

, ε

)
=

g4

16πM2
2

+ O

(
m2
W

M2
2

, ε

)
. (E.115)

where appears the symmetry factor 1/2 because the final particles are identical.
Summarizing we have that the total annihilation/co-annihilation cross-sections times veloc-

ity at the leading order in ε and m2
W /M

2
2 expansions, for a Wino LSP are

σW̃W̃ v =
g4

8πM2
2

+ O

(
m2
W

M2
2

, ε

)
(E.116a)

σW̃W̃±v =
7g4

32πM2
2

+ O

(
m2
W

M2
2

, ε

)
(E.116b)

σW̃±W̃∓v =
9g4

32πM2
2

+ O

(
m2
W

M2
2

, ε

)
(E.116c)

σW̃±W̃±v =
g4

16πM2
2

+ O

(
m2
W

M2
2

, ε

)
. (E.116d)

E.5 Pure Higgsino LSP annihilation and co-annihilation
cross-sections

In this section we compute the relevant cross-section times velocity for the evaluation of the relic
abundance associated to a pure Higgsino LSP. We consider annihilations and co-annihilations
among four Higgsino states with equal mass |µ|, namely H̃1, H̃2, H̃

± where H̃1 and H̃2 are
defined in Eqs. (4.86). In the computation we assume the limit where |µ| � mW and we take
heavy supersymmetric scalars. The various processes are listed in Table 4.5.

The relevant Feynman rules which involve the four Higgsino states can be deduced from the
general ones given in Appendix B with the substitutions N14, N13, N23 → 1/

√
2, N24 → −1/

√
2,

N11, N12 → 0 and U22, V22 → 1, U12, V12 → 0. As we will see many processes will have
amplitudes which, apart some vertex coefficients, will be similar to those encountered in the
previous section, and so, in the next, we will often refer them.

Looking at Table 4.5 the first process which we take into account is the annihilation between
two Higgsino LSP4. This annihilation can occur via t/u-channel exchange of a charged Higgsino,
H̃±, into charged SM vector bosons, W±, schematically H̃1,2H̃1,2 →W±,W∓. The associated
Feynman diagrams are

qH̃±

H̃1,2, k1 W∓, p1

H̃1,2, k2 W±, p2 ,

q′H̃±

H̃1,2, k1 W∓, p1

H̃1,2, k2 W±, p2

4Note that because we assumed that H̃1 and H̃2 are mass degenerate the annihilation process among two
Higgsino LSPs is identical to the one between two Higgsino NLSPs.
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Thus we have that the associated amplitudes are

iMt W±W∓ =
g2

4(t− µ2)
[2v̄(k2, s2)γ

νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)], (E.117a)

iMuW±W∓ = − g2

4(u− µ2)
[2v̄(k1, s1)γ

νu(k2, s2)εν(p2) (q
′ · εµ(p1))

+ v̄(k1, s1)γ
νγµ 6 p1u(k2, s2)εν(p2)εµ(p1)]. (E.117b)

Using the results given in the above section for the annihilation process W̃W̃ → W±W∓, we
have that the average over initial states of the square amplitudes and of the interference term
for final transverse polarizations, are equal to∣∣Mt W±W∓

∣∣2 =
g4

32

u− µ2

t− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.118a)

∣∣MuW±W∓
∣∣2 =

g4

32

t− µ2

u− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.118b)

Re
[
Mt W±W∓M

†
uW±W∓

]
= −g

4

32
P′(±, ±) + O

(
m2
W

µ2
, ε

)
. (E.118c)

The longitudinal polarizations, as occurred in the Wino annihilation case, also here give a
contribution which is of order m2

W /µ
2. Thus the total average square amplitude associated to

the process H̃1,2H̃1,2 →W±,W∓ is equal to∣∣MW±W∓
∣∣2 =

∑
(±±)

∣∣Mt W±W∓
∣∣2 + ∣∣MuW±W∓

∣∣2 + 2Re
[
Mt W±W∓M

†
uW±W∓

]
=
g4

8

[
u− µ2

t− µ2
+
t− µ2

u− µ2

]
+ O

(
m2
W

µ2
, ε

)
=
g4

4
+ O

(
m2
W

µ2
, ε

) (E.119)

where we used the relations given in Eqs. (E.61) and the expansions of the Mandelstam variables
given in Eqs. (E.6).

The annihilation between two H̃1,2 can also occur via t/u-channel exchange of a neutral
Higgsino, H̃2,1, into two Z0 bosons, schematically H̃1,2H̃1,2 → Z0Z0. The associated Feynman
diagrams are

qH̃2,1

H̃1,2, k1 Z0, p1

H̃1,2, k2 Z0, p2 ,

q′H̃2,1

H̃1,2, k1 Z0, p1

H̃1,2, k2 Z0, p2

note that the exchange Higgsino must be different from the annihilating ones i.e. if the an-
nihilation occurs between two H̃1 the exchange Higgsino would be H̃2 and vice versa. The
amplitudes for the t and u channels are

iMt Z0Z0 =
g2

4c2W (t− µ2)
[2v̄(k2, s2)γ

νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)], (E.120a)

iMu Z0Z0 = − g2

4c2W (u− µ2)
[2v̄(k1, s1)γ

νu(k2, s2)εν(p2) (q
′ · εµ(p1))

+ v̄(k1, s1)γ
νγµ 6 p1u(k2, s2)εν(p2)εµ(p1)]. (E.120b)
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Exploiting the results for the process H̃1,2H̃1,2 →W±W∓ we have that, for transverse outgoing
bosons, the average over initial states of the squares of the amplitudes just given are

∣∣Mt Z0Z0

∣∣2 =
g4

c4W 32

u− µ2

t− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.121a)

∣∣Mu Z0Z0

∣∣2 =
g4

c4W 32

t− µ2

u− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.121b)

Re
[
Mt Z0Z0M

†
u Z0Z0

]
= − g4

c4W 32
P′(±, ±) + O

(
m2
W

µ2
, ε

)
. (E.121c)

As before the contribution of the longitudinal polarizations to the total amplitude is of order
m2
W /µ

2, this can be seen applying the same procedure used for the annihilation between two
Winos, see Eq. (E.62). Thus the total average square amplitude for the process H̃1,2H̃1,2 →
Z0Z0 is ∣∣MZ0Z0

∣∣2 =
∑
(±±)

∣∣Mt Z0Z0

∣∣2 + ∣∣Mu Z0Z0

∣∣2 + 2Re
[
Mt Z0Z0M

†
u Z0Z0

]
=

g4

c4W 8

[
u− µ2

t− µ2
+
t− µ2

u− µ2

]
+ O

(
m2
W

µ2
, ε

)
=

g4

c4W 4
+ O

(
m2
W

µ2
, ε

)
=
g4

4
(1 + t2W )2 + O

(
m2
W

µ2
, ε

) (E.122)

where in the last step we have used the identity 1/c2W ≡ (1 + t2W ).
Therefore the total average square amplitude associated to the annihilation process between

two identical neutral Higgsinos H̃1,2 and H̃1,2 is∣∣∣MH̃1,2H̃1,2

∣∣∣2 =
∣∣MW± W∓

∣∣2 + 1

2

∣∣MZ0 Z0

∣∣2
=
g4

4
+
g4

8

(
1 + t2W

)2
+ O

(
m2
W

µ2
, ε

)
=
g4

4

[
3

2
+ t2W +

t4W
2

]
+ O

(
m2
W

µ2
, ε

)
.

(E.123)

where as usual the term associated to the process with identical final particles is multiply by
the symmetry factor 1/2. Substituting this result into Eq. (E.14), we find that the cross-section
times velocity for the annihilation among two identical Higgsinos at the leading order in ε and
m2
W /µ

2 is equal to

σH̃1,2H̃1,2
v =

g4

128πµ2

[
3

2
+ t2W +

t4W
2

]
+ O

(
m2
W

µ2
, ε

)
. (E.124)

Now we move on considering the co-annihilation between H̃1,2 and H̃2,1. From Table 4.5 we
can see that the final states can be two charged vector bosons of opposite charge, or fermion
anti-fermion pairs, schematically H̃1,2H̃2,1 → W±W∓ and H̃1,2H̃2,1 → f̄f . The Feynman
diagram associated to the former process are

H̃±

H̃1,2, k1 W±, p1

H̃2,1, k2 W∓, p2

Z0

H̃1,2, k1

H̃2,1, k2

W∓, p2

W±, p1 (E.125)
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with associated amplitudes

iMt =
g2

2(t− µ2)
[2v̄(k2, s2)γ

νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)], (E.126a)

iMs = − g2

2(s−m2
Z0)

v̄(k2, s2)γ
µu(k1, s1)gµν Γ

ναβεα(p1)εβ(p2) (E.126b)

where Γναβ is defined in Eq. (E.70) and in the last amplitude we used the Dirac equation. The
associate square amplitudes and interference terms averaged over initial states and considering
final transverse polarizations, are

∣∣Mt

∣∣2 =
g4

8

u− µ2

t− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.127a)

∣∣Ms

∣∣2 =
g4

8
(t− µ2)(u− µ2)

∣∣(ε±2 · ε±1
)∣∣2 + O

(
m2
W

µ2

)
(E.127b)

Re
[
MtM

†
s

]
=
g4

4s
(u− µ2)

∣∣(ε±2 · ε±1
)∣∣2 + O

(
m2
W

µ2
, ε

)
(E.127c)

(E.127d)

Summing up these contributions we have that the total average square amplitude for the the
process H̃1,2H̃2,1 →W±W∓ is∣∣MW±W∓

∣∣2 =
∑
(±±)

∣∣Mt

∣∣2 + ∣∣Ms

∣∣2 + 2Re
[
MtM

†
s

]
=
g4

2
+
g4

4
− g4

2
+ O

(
m2
W

µ2
, ε

)
=
g4

4
+ O

(
m2
W

µ2
, ε

) (E.128)

The other process which contributes to the co-annihilation between H̃1,2 and H̃2,1 is H̃1,2H̃2,1 →
f̄f , with associated Feynmna diagram

Z0

H̃1,2, k1

H̃2,1, k2

f̄ , p2

f, p1

and amplitude

iMff = − g2

4c2W s
v̄(k2, s2)γ

µu(k1, s1)ū(p1, r1)γµ
(
PL − 2eqs

2
W

)
v(p2, r2) + O

(
m2
W

µ2

)
. (E.129)

The total average square amplitude associated to the above result is

∣∣Mff

∣∣2 =
g4

16c4W s
2

[
1− 2eqs

2
W + 4e2qs

4
W

][ (u− µ2)2

2
+

(t− µ2)2

2
+ µ2s

]
+ O

(
m2
W

µ2

)
=

g4

16c4W

[
1− 4eqs

2
W + 16e2qs

4
W

]
+ O

(
m2
W

µ2
, ε

)
.

(E.130)

Thus summing up the contributions of the processes H̃1,2H̃2,1 → W±W∓ and H̃1,2H̃2,1 → f̄f

we obtain that the total average square amplitude for the co-annihilation between H̃1 and H̃2
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is ∣∣∣MH̃1,2H̃2,1

∣∣∣2 =
∑
f

Nc
∣∣Mff

∣∣2 + ∣∣MW± W∓
∣∣2

=
g4

4

[
29

4
+

21

2
t4W

]
+ O

(
m2
W

µ2
, ε

)
.

(E.131)

where the sum runs over all admitted SM fermions. Substituting this result into Eq. (E.14) we
obtain the total cross-section times velocity for the H̃1,2H̃2,1 co-annihilation, which is

σH̃1,2H̃2,1
v =

g4

128πµ2

[
29

4
+

21

2
t4W

]
+ O

(
m2
W

µ2
, ε

)
. (E.132)

The other co-annihilation process which we take into account is the one between one charged
and one neutral Higgsinos H̃1,2, H̃

∓. All the processes which contributes to this co-annihilation
are summarized in Table 4.5. In particular those with vector bosons as final states are

H̃1,2H̃
± H̃±

−−→ Z0W∓, H̃1,2H̃
± H̃2,1−−−→ Z0W∓ H̃1,2H̃

± W±

−−→ Z0W∓ (E.133a)

H̃1,2H̃
± H̃±

−−→ γW∓, H̃1,2H̃
± W±

−−→ γW∓ (E.133b)

with associated Feynman diagrams given by

H̃±

H̃±, k1 Z0, p1

H̃1,2, k2 W±, p2

H̃2,1

H̃±, k1 W±, p1

H̃1,2, k2 Z0, p2

W±

H̃±, k1

H̃1,2, k2

Z0, p2

W±, p1

H̃±

H̃±, k1 γ, p1

H̃1,2, k2 W±, p2

W±

H̃±, k1

H̃1,2, k2

γ, p2

W±, p1

.

The amplitudes related to the processes given in Eq. (E.133a) are

iMt Z0W± =
g2(c2W − s2W )

4cW (t− µ2)
[2v̄(k2, s2)γ

νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)], (E.134a)

iMu Z0W± =
g2

4cW (u− µ2)
[2v̄(k1, s1)γ

νu(k2, s2)εν(p2) (q
′ · εµ(p1))

+ v̄(k1, s1)γ
νγµ 6 p1u(k2, s2)εν(p2)εµ(p1)] (E.134b)

iMs Z0W± = − g2cW
2(s−m2

W )
v̄(k2, s2)γ

µu(k1, s1)gµν Γ
ναβεα(p1)εβ(p2). (E.134c)

The ones associated to the processes given in Eq. (E.133b) are

iMt γW± =
g2sW

2(t− µ2)
[2v̄(k2, s2)γ

νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)], (E.135a)

iMs γW± = − g2sW
2(s−m2

W )
v̄(k2, s2)γ

µu(k1, s1)gµν Γ
ναβεα(p1)εβ(p2). (E.135b)
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Using the results found in the previous section for the process W̃W̃± → Z0W± we can argue
that, on transverse polarizations, the average over initial states of the square amplitudes just
given and the interference terms, are equal to∣∣Mt Z0W±

∣∣2 =
g4

32

(c2W − s2W )2

c2W

u− µ2

t− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.136a)

∣∣Mu Z0W±
∣∣2 =

g4

c2W 32

t− µ2

u− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.136b)

∣∣Ms Z0W±
∣∣2 =

g4c2W
2s2

(t− µ2)(u− µ2)
∣∣(ε±2 · ε±1

)∣∣2 + O

(
m2
W

µ2

)
(E.136c)

Re
[
Mt Z0W±M

†
u Z0W±

]
= −g

4

32

(c2W − s2W )

c2W
P′(±, ±) + O

(
m2
W

µ2
, ε

)
(E.136d)

Re
[
Mt Z0W±M

†
s Z0W±

]
= (c2W − s2W )

g4

8s
(u− µ2)

∣∣(ε±2 · ε±1
)∣∣2 + O

(
m2
W

µ2
, ε

)
(E.136e)

Re
[
Mu Z0W±M

†
s Z0W±

]
=
g4

8s
(t− µ2)

∣∣(ε±2 · ε±1
)∣∣2 + O

(
m2
W

µ2
, ε

)
(E.136f)

for the process H̃1,2H̃
± → Z0W∓, while for the process H̃1,2H̃

± → γW∓ they are given by

∣∣Mt γW±
∣∣2 =

g4s2W
8

u− µ2

t− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.137a)

∣∣Ms γW±
∣∣2 =

g4s2W
8

(t− µ2)(u− µ2)
∣∣(ε±2 · ε±1

)∣∣2 + O

(
m2
W

µ2

)
(E.137b)

Re
[
Mt γW±M

†
s γW±

]
=
g4s2W
4s

(u− µ2)
∣∣(ε±2 · ε±1

)∣∣2 + O

(
m2
W

µ2
, ε

)
(E.137c)

(E.137d)

Also here the longitudinal polarization, up to correction of order m2
W /µ

2, do not contribute to
the total amplitude of the processes in Eqs. (E.133). This is possible to see substituting the
approximation given in Eq. (E.4) into the amplitudes given in Eqs. (E.134) and Eqs. (E.135)
and then sum up the results. Thus the total average square amplitudes for the processes given
in Eqs. (E.133) are∣∣MZ0W±

∣∣2 =
∑
(±±)

∣∣Mt Z0W±
∣∣2 + ∣∣Mu Z0W±

∣∣2 + ∣∣Ms Z0W±
∣∣2 + 2Re

[
Mt Z0W±M

†
u Z0W±

]
+ 2Re

[
Mt Z0W±M

†
s Z0W±

]
+ 2Re

[
Mu Z0W±M

†
s Z0W±

]
=
g4

8

(c2W − s2W )2

c2W
+

g4

8c2W
+
g4c2W
4

− (c2W − s2W )
g4

4
− g4

4
+ O

(
m2
W

µ2
, ε

)
=
g4t2W
4

− g4s2W
4

+ O

(
m2
W

µ2
, ε

)
(E.138)

for the process H̃1,2H̃
± → Z0W∓, and∣∣MγW±

∣∣2 =
∑
(±±)

∣∣Mt γW±
∣∣2 + ∣∣Ms γW±

∣∣2 + 2Re
[
Mt γW±M

†
s γW±

]
=
g4s2W
2

+
g4s2W
4

− g4s2W
2

+ O

(
m2
W

µ2
, ε

)
=
g4s2W
4

+ O

(
m2
W

µ2
, ε

) (E.139)

for the process H̃1,2H̃
± → γW∓.
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From Table 4.5 we can observe that the other process which contribute to the co-annihilation
among H̃1,2 and H̃± proceeds exchanging a W± vector boson in s-channel, with two SM
fermions as finals states, f and f ′, schematically H̃1,2H̃

± → f̄Lf
′
L . The Feynman diagram is

W±

H̃±, k1

H̃1,2, k2

f̄L, p2

f ′L, p1

.

with associated amplitude given by

iMff ′ =
g2

2
√
2(s−m2

W )
v̄(k2, s2)γ

µu(k1, s1)

[
−gµν +

(k1 + k2)µ (k1 + k2)ν
m2
W

]
ū(p1, r1)γνPLv(p2, r2)

= − g2√
2(s−m2

W )
v̄(k2, s2)γ

µu(k1, s1)ū(p1, r1)γµPLv(p2, r2).

(E.140)

Noting that this amplitude, apart an extra 1/2 factor, is identical to the one for the process
W̃W̃± → f̄Lf

′
L, given in Eq. (E.87), we have that the average square amplitude for the annihi-

lation between H̃1,2 and H̃± into final fermions is

∣∣Mff ′
∣∣2 =

g4

8
+ O

(
m2
W

µ2
, ε

)
. (E.141)

Therefore the total average square amplitude for the co-annihilation among H̃1,2 and H̃±

is given by the sum of the contributions in Eq. (E.138), Eq. (E.139), and Eq. (E.141), namely

∣∣∣MH̃1,2H̃±

∣∣∣2 =
∑
f,f ′

Nc
∣∣Mff ′

∣∣2 + ∣∣Mγ W±
∣∣2 + ∣∣MZ0 W±

∣∣2
=

3

2
g4 +

g4s2W
2

+
g4t2W
4

− g4s2W
2

+ O

(
m2
W

µ2
, ε

)
=
g4

4

[
6 + t2W

]
+ O

(
m2
W

µ2
, ε

) (E.142)

where Nc is the colour factor defined above. Thus substituting this result into Eq. (E.14) we
have that the associated cross-section times velocity is

σH̃1,2H̃±v =
g4

128πµ2

[
6 + t2W

]
+ O

(
m2
W

µ2
, ε

)
. (E.143)

Another co-annihilation process which is important in the evaluation of the relic density of
a pure Higgsino LSP, is the one between two charged Higgsinos with opposite electric charge,
namely H̃± and H̃∓. The relevant processes which contribute to this co-annihilation are sum-
marized in Table 4.5. We start by those processes in which the final states are gauge vector
bosons. The various processes can be schematically summarized as

H̃±H̃∓ H̃1,2−−−→W±W∓, H̃±H̃∓ Z0

−−→W±W∓, H̃±H̃∓ γ−→W±W∓ (E.144a)

H̃±H̃∓ H̃±

−−→ Z0Z0, H̃±H̃∓ H̃±

−−→ γγ, H̃±H̃∓ H̃±

−−→ Z0γ (E.144b)
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with associated Feynman diagrams given by

H̃1

H̃±, k1 W±, p1

H̃∓, k2 W∓, p2

H̃2

H̃±, k1 W±, p1

H̃∓, k2 W∓, p2

Z0

H̃±, k1

H̃∓, k2

W±, p2

W∓, p1

γ

H̃±, k1

H̃∓, k2

W±, p2

W∓, p1

H̃±

H̃±, k1 Z0, p1

H̃∓, k2 γ, p2

H̃±

H̃±, k1 γ, p1

H̃∓, k2 Z0, p2

H̃±

H̃±, k1 Z0, p1

H̃∓, k2 Z0, p2

H̃±

H̃±, k1 Z0, p1

H̃∓, k2 Z0, p2

H̃±

H̃±, k1 γ, p1

H̃∓, k2 γ, p2

H̃±

H̃±, k1 γ, p1

H̃∓, k2 γ, p2

Using the Feynman rules given in Appendix B we have that the various amplitudes are equal
to

iMt1 =
g2

4(t− µ2)
[2v̄(k2, s2)γ

νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)] (E.145a)

iMt2 =
g2

4(t− µ2)
[2v̄(k2, s2)γ

νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)] (E.145b)

iMs Z0 = −g
2(c2W − s2W )

2(s−m2
W )

v̄(k2, s2)γ
µu(k1, s1)gµνΓ

ναβεα(p1)εβ(p2) (E.145c)

iMs γ = −g
2s2W
s

v̄(k2, s2)γ
µu(k1, s1)gµν Γ

ναβεα(p1)εβ(p2). (E.145d)

for the processes given in Eq. (E.144a). Exploiting the facts that up to corrections of order
m2
W /µ

2 the amplitudes for Ms Z0 and Ms γ are equal, and that the Higgsinos H̃1 and H̃2 have
the same mass, we can sum up these amplitudes as

iMt = iMt1 + iMt2

=
g2

2(t− µ2)
[2v̄(k2, s2)γ

νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)] (E.146a)

iMs = iMs Z0 + iMs γ

= −g
2

2s
v̄(k2, s2)γ

µu(k1, s1)gµνΓ
ναβεα(p1)εβ(p2) + O

(
m2
W

µ2

)
. (E.146b)
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The other amplitudes related to the processes given in Eqs. (E.144), are

iMt Z0γ =
g2

t− µ2

(c2W − s2W )sW
2cW

[2v̄(k2, s2)γ
νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)] (E.147a)

iMu Z0γ =
g2

u− µ2

(c2W − s2W )sW
2cW

[2v̄(k2, s2)γ
νu(k1, s1)εν(p1) (q

′ · εµ(p2))

+ v̄(k2, s2)γ
νγµ 6 p2u(k1, s1)εν(p1)εµ(p2)] (E.147b)

for the process H̃±H̃∓ → Z0γ,

iMt Z0Z0 =
g2

t− µ2

(c2W − s2W )2

4c2W
[2v̄(k2, s2)γ

νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)] (E.148a)

iMu Z0Z0 =
g2

u− µ2

(c2W − s2W )2

4c2W
[2v̄(k2, s2)γ

νu(k1, s1)εν(p1) (q
′ · εµ(p2))

+ v̄(k2, s2)γ
νγµ 6 p2u(k1, s1)εν(p1)εµ(p2)] (E.148b)

for the process H̃±H̃∓ → Z0Z0 and

iMt γγ =
g2s2W
t− µ2

[2v̄(k2, s2)γ
νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)] (E.149a)

iMu γγ =
g2s2W
u− µ2

[2v̄(k2, s2)γ
νu(k1, s1)εν(p1) (q

′ · εµ(p2))

+ v̄(k2, s2)γ
νγµ 6 p2u(k1, s1)εν(p1)εµ(p2)] (E.149b)

for the remaining one, namely H̃±H̃∓ → γγ. As discussed in the previous section also here
the longitudinal polarizations do not contribute in the assumed limit i.e. up to corrections of
order m2

W /µ
2. Thus the total square amplitudes of the various processes are determined by

the transverse polarizations. Therefore using the results of the previous section we have that
on transverse polarizations the average of the squares of the amplitudes just given are∣∣Mt

∣∣2 =
g4

8

u− µ2

t− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.150a)

∣∣Ms

∣∣2 =
g4

8s2
(t− µ2)(u− µ2)

∣∣(ε±2 · ε±1
)∣∣2 + O

(
m2
W

µ2

)
(E.150b)

Re
[
MtM

†
s

]
=
g4

4s
(u− µ2)

∣∣(ε±2 · ε±1
)∣∣2 + O

(
m2
W

µ2
, ε

)
(E.150c)

for the process H̃±H̃∓ →W±W∓ which sum up to give a total square amplitude equal to∣∣MW±W∓
∣∣2 =

∑
(±±)

∣∣Mt

∣∣2 + ∣∣Ms

∣∣2 + 2Re
[
MtM

†
s

]
=
g4

16
+ O

(
m2
W

µ2
, ε

)
.

(E.151)

The average square amplitudes related to H̃±H̃∓ → Z0γ are∣∣Mt Z0γ

∣∣2 =
g4(c2W − s2W )2t2W

8

u− µ2

t− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.152a)

∣∣Mu Z0γ

∣∣2 =
g4(c2W − s2W )2t2W

8

t− µ2

u− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.152b)

Re
[
Mt Z0γM

†
u Z0γ

]
= −g

4(c2W − s2W )2t2W
8

P′(±, ±) + O

(
m2
W

µ2
, ε

)
(E.152c)
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which sum up giving∣∣MZ0γ

∣∣2 =
∑
(±±)

∣∣Mt Z0γ

∣∣2 + ∣∣Mu Z0γ

∣∣2 + 2Re
[
Mt Z0γM

†
u Z0γ

]
= g4(c2W − s2W )2t2W + O

(
m2
W

µ2
, ε

)
.

(E.153)

The square amplitudes average over initial states for what concern the process H̃±H̃∓ → Z0Z0

are ∣∣Mt Z0Z0

∣∣2 =
g4

32

(c2W − s2W )4

c4W

u− µ2

t− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.154a)

∣∣Mu Z0Z0

∣∣2 =
g4

32

(c2W − s2W )4

c4W

t− µ2

u− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.154b)

Re
[
Mt Z0Z0M

†
u Z0Z0

]
= −g

4

32

(c2W − s2W )4

c4W
P′(±, ±) + O

(
m2
W

µ2
, ε

)
(E.154c)

and summing up together we obtain∣∣MZ0Z0

∣∣2 =
∑
(±±)

∣∣Mt Z0Z0

∣∣2 + ∣∣Mu Z0Z0

∣∣2 + 2Re
[
Mt Z0Z0M

†
u Z0Z0

]
=
g4

4

(c2W − s2W )4

c4W
+ O

(
m2
W

µ2
, ε

)
.

(E.155)

As last the square amplitudes for the process H̃±H̃∓ → γγ are∣∣Mt γγ

∣∣2 =
g4s4W
2

u− µ2

t− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.156a)

∣∣Mu γγ

∣∣2 =
g4s4W
2

t− µ2

u− µ2
P(±, ±) + O

(
m2
W

µ2
, ε

)
(E.156b)

Re
[
Mt γγM

†
u γγ

]
= −g

4s4W
2

P′(±, ±) + O

(
m2
W

µ2
, ε

)
(E.156c)

which give a total average square amplitude equal to∣∣Mγγ

∣∣2 =
∑
(±±)

∣∣Mt γγ

∣∣2 + ∣∣Mu γγ

∣∣2 + 2Re
[
Mt γγM

†
u γγ

]
= 4g4s4W + O

(
m2
W

µ2
, ε

)
.

(E.157)

The other process which contribute to the co-annihilation among H̃± and H̃∓ is the one
where the final states are fermion anti-fermion pairs. The associated Feynman diagrams are

Z0

H̃±, k1

H̃∓, k2

f̄ , p2

f, p1

γ

H̃±, k1

H̃∓, k2

f̄ , p2

f, p1

.

with associated amplitudes given by

iMZ0 ff = −g
2

4s

(c2W − s2W )

c2W
v̄(k2, s2)γ

µu(k1, s1)ū(p1, r1)γµ
(
PL − 2eqs

2
W

)
v(p2, r2) + O

(
m2
W

µ2

)

(E.158a)

iMγ ff = −g
2eqs

2
W

s
v̄(k2, s2)γ

µu(k1, s1)ū(p1, r1)γµv(p2, r2). (E.158b)
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which can be sum up giving

iMff = iMZ0 ff + iMγ ff

=
g2

2s
v̄(k2, s2)γ

µu(k1, s1)ū(p1, r1)γµ

(
PL

(1− t2W )

2
− eqt

2
W

)
v(p2, r2) + O

(
m2
W

µ2

)
.

(E.159)

So using the results of the previous section we arrive to the following average square amplitudes

∣∣Mff

∣∣2 =
g4

4s2

[(
1− t2W

)2
4

+ eq
(
1− t2W

)
t2W + 2e2qt

4
W

][
(u− µ2)2

2
+

(t− µ2)2

2
+ µ2s

]
+ O

(
m2
W

µ2

)

=
g4

8

[(
1− t2W

)2
4

+ eq
(
1− t2W

)
t2W + 2e2qt

4
W

]
+ O

(
m2
W

µ2
, ε

)
.

(E.160)

Therefore the total average square amplitude associated with the co-annihilation between two
charged Higgsino with opposite charge is equal to

∣∣MH̃±H̃∓

∣∣2 =
∑
f

Nc
∣∣Mff

∣∣2 + ∣∣MW± W∓
∣∣2 + ∣∣MZ0 γ

∣∣2 + 1

2

∣∣MZ0 Z0

∣∣2 + 1

2

∣∣Mγ γ

∣∣2
=
g4

4

[
29

4
+ t2W + 11t4W

]
+ O

(
m2
W

µ2
, ε

)
,

(E.161)

which substituted into Eq. (E.14) gives the total cross-section times velocity, that is

σH̃±H̃∓v =
g4

128πµ2

[
29

4
+ t2W + 11t4W

]
+ O

(
m2
W

µ2
, ε

)
. (E.162)

The last co-annihilation process which we take into account is the annihilation between
two charged Higgsinos with the same charge, namely H̃± and H̃±. This process can occur
only exchanging a neutral Higgsino, in t/u-channel, into two charged vector bosons, W±. The
Feynman diagrams are

H̃1,2

H̃±, k1 W±, p1

H̃±, k2 W±, p2

H̃1,2

H̃±, k1 W±, p1

H̃±, k2 W±, p2

with associated amplitudes given by

iMt =
g2

2(t− µ2)
[2v̄(k2, s2)γ

νu(k1, s1)εν(p2) (q · εµ(p1))

+ v̄(k2, s2)γ
νγµ 6 p1u(k1, s1)εν(p2)εµ(p1)], (E.163a)

iMu = − g2

2(u− µ2)
[2v̄(k1, s1)γ

νu(k2, s2)εν(p2) (q
′ · εµ(p1))

+ v̄(k1, s1)γ
νγµ 6 p1u(k2, s2)εν(p2)εµ(p1)]. (E.163b)

where we used the fact that H̃1 and H̃2 have the same mass, which allow us to sum the amplitude
for the process mediated by H̃1 with the one mediated by H̃2. Now using the result given in
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Eqs. (E.118) we have that on transverse polarizations the total square amplitude is∣∣MW±W∓
∣∣2 =

∑
(±±)

∣∣Mt

∣∣2 + ∣∣Mu

∣∣2 + 2Re
[
MtM

†
u

]
=
g4

2

[
u− µ2

t− µ2
+
t− µ2

u− µ2

]
+ O

(
m2
W

µ2
, ε

)
= g4 + O

(
m2
W

µ2
, ε

) (E.164)

Note that also here the longitudinal polarization do not contribute in the limit µ � mW .
Thus substituting the result just found into Eq. (E.14), and remembering to take into account
the symmetry factor of 1/2 because the final particles are identical, we have that the total
cross-section times velocity is

σH̃±H̃±v =
g4

64πµ2
+ O

(
m2
W

µ2
, ε

)
. (E.165)

Summarizing we have that the total cross-sections times velocity at the leading order, rele-
vant for the computation of the relic density of a Higgsino LSP are

σH̃1,2H̃1,2
v =

g4

128πµ2

[
3

2
+ t2W +

t4W
2

]
+ O

(
m2
W

µ2
, ε

)
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σH̃1H̃2
v =

g4

128πµ2

[
29

4
+

21

2
t4W

]
+ O

(
m2
W

µ2
, ε

)
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σH̃1,2H̃±v =
g4

128πµ2
(6 + t2W ) + O

(
m2
W

µ2
, ε

)
(E.166c)

σH̃±H̃∓v =
g4

128πµ2

[
29

4
+ t2W + 11t4W

]
+ O

(
m2
W

µ2
, ε

)
(E.166d)

σH̃±H̃±v =
g4

64πµ2
+ O

(
m2
W

µ2
, ε

)
. (E.166e)
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