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Chapter 1

Introduction

In 1852 the English mathematician Francis Guthrie, while coloring the map
of England, noticed that four colors were enough for two regions that share
a boundary to do not have the same color. Thus, he conjectured that four
colors were enough to color any map. This conjecture has been immediately
recognised as the “Four Color Conjecture” which later became the “Four
Color Theorem”. Guthrie, who could not solve the conjecture by himself,
asked his brother Frederick and his professor Augustus De Morgan for trying
to solve the problem. Despite its simple-sounding statement, Guthrie gave
rise to a problem that took more than a century and a half as well as the
work of many mathematicians to be proven.

As we shall see below, the Four Color Theorem, besides being a challenge
for mathematicians, represents the “marriage” between mathematics and
computer science. In other words computer programming was applied in
mathematics in order to prove a theorem. Initially these techniques were
not easily accepted by the mathematical world since the concept of proof
had always been that of absolute truth checkable by any mathematician,
while the employment of computer programming appeared unreliable.

In the following we analyse the history of the Four Color Theorem, from
Guthrie’s conjecture to the final (assisted) proof by Georges Gonthier.

In Chapter 2 we give some notions of Graph Theory, to better frame
the problem. We will use Graph Theory as an environment for proving the
theorem, thus as a mathematical model for geographic maps.

In Chapter 3 we analyse the property of planarity for a graph along with
a very important theorem concerning such property: Kuratowski’s theorem.

In the first part of Chapter 4 we define and give an account on graph-
colorability. After that we state and prove the “Six Color Theorem” and
the “Five Color Theorem”.

Chapter 5 represents the main section of this work since the statement of
the “Four Color Theorem” is given. In the first part we look at the problem
from a historical point of view [13]. Then, we focus on the correspondence
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between geographic maps, planar graphs and triangulations. After that,
one of the most important attempts to prove the theorem is described: we
highlight the idea (by Kempe) that underlies the proof [12]. Moreover, we
put our attention on Appel and Haken’s proof [5], [4]: we describe its main
concepts, reducibility [3] and discharging [2]. Finally, two more proofs (the
one by Robertson et al. [14] and those by Gonthier) are briefly discussed
and compared to each other. In particular, the increasing involvement of
computer programming is emphasized.

In the last chapter, we present the main features of proof assistants
[11] together with the linked problem of reliability [9]. To conclude, some
philosophical considerations on the concept of mathematical proof related
to the employment of computers in mathematical proofs are given [15].
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Chapter 2

Basics of Graph Theory

2.1 DEFINITION. A graph G consists of a finite non-empty set V together
with a prescribed set X of unordered pairs of distinct elements of V .

From now on, we will write V (G) and X (G) in place of V and X ,
respectively when it is not clear which graph we are taking into account:
this might avoid some ambiguous situations. Moreover, if G is a graph with
|V | = p and |X | = q, then we call G a (p, q) graph.

We will call the elements of V vertices and the elements of X edges.
Thus, a (p, q) graph is a graph whose set of vertices has cardinality p and
whose set of edges has cardinality q.

We say that two vertices u, v ∈ V are adjacent if there exists an edge
x ∈ X such that x = {u, v}. From here on we will also use the term
neighborhood with the following meaning: if u and v are adjacent vertices,
then u is said to be a neighbor of v and, conversely, v is a neighbor of u.
Moreover, we call two edges incident if they share a common vertex. In
addition, if two distinct edges x, y ∈ X are incident, they are said to be
adjacent edges. Analogously, we say that an edge is incident to a vertex if
the vertex is an element of the edge.

Notice that there exists an easy way to graphically represent graphs: we
will draw the vertices of a graph as points and the edges as arcs or lines
joining the points.

Example. Let us consider the following graph:

We have the set of vertices V = {v1, v2, v3, v4} and the one of edges
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X = {x2, x3, x4, x5, x6}.

We have that v1 and v2 are adjacent vertices since there exists an edge
x2 = {v1, v2}; however, v2 and v3 are not adjacent because an edge which
joins the two vertices does not exist. Moreover, x2 and x5 are adjacent edges
as they are incident to the common vertex v2 while x3 and x5 are not.

Notice that the definition of graph does not allow loops which are edges
joining a vertex to itself.

2.2 DEFINITION. A subgraph H of G is a graph whose vertices and edges
are vertices and edges of G, that is X (H) ⊆ X (G) and V (H) ⊆ V (G).

For example, in the figure below three graphs are shown; let us call the
first one G and the second one H. The graph H is a subgraph of G (we may
also say that G is a supergraph of H). Moreover H is a spanning subgraph
of G since it contains all the vertices of G i.e.V (G) = V (H). Finally, let us
define the subset S = {v1, v2, v3} of V (G): the induced subgraph ⟨S ⟩ of G
is the maximal subgraph of G with vertex set S (third graph in the figure).
This means that, once the set S is defined, the maximal subgraph of G is
the subgraph whose edges are all the edges of G that join the elements of S.

In addition, we may consider the subgraph G − vi of G with vi ∈ V
consisting of all the vertices of G except vi, and all the edges of G that do
not contain the vertex vi. Such operation is called the removal of vi from
the graph G. The induced graph ⟨S ⟩, in the figure above, is the example of
the removal of the vertex v4 from G, i.e. it represents G− v4.

Furthermore, the removal of an edge xi ∈ X from G yields a subgraph
G− xi whose edges are those of X except xi and whose vertices remain the
same. Thus G−vi and G−xi are the maximal subgraphs of G not containing
vi and xi, respectively. Finally, it is possible to remove more than a single
vertex or edge: the definition of this operation on a graph is defined by the
removal of a single element in succession. As we can see in the figure above,
the subgraph H of G (second picture) is the subgraph G− {x2, x5, x6}.

2.3 DEFINITION. A walk on a graph G is an alternating sequence of ver-
tices and edges v0, x1, v1, ..., xn, vn, beginning and ending with vertices, in
which each edge is incident with the two vertices immediately preceding and
following it.
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We say that the walk is closed if v0 = vn, and it is open otherwise. The
walk is said to be a trail if all the edges are distinct and that it is a path if
all the vertices (and hence all the edges) are distinct. Finally a cycle is a
closed walk whose vertices v1, . . . , vn are distinct with n ≥ 3 (it still holds
v0 = vn).

We denote by Cn the graph that is an n vertex cycle and by Pn the
graph consisting of a path with n vertices. In the figure below C5 and P5

are represented, respectively:

2.4 DEFINITION. A graph is connected if every pair of vertices can be
connected by a path.

We say that a subgraph H of G is a (connected) component if it is a
maximal connected subgraph of G.

Some connected graphs can be disconnected by the removal of a vertex
or an edge. Let us define such elements:

2.5 DEFINITION. A cutpoint of a graph G is a vertex whose removal
increases the number of components of G. Moreover, a bridge is an edge
whose removal increases the number of components of G.

By this definition, if v is a cutpoint of a graph G, we have that G − v
is a disconnected graph. Analogously, it happens for a bridge x so that the
graph G− x would be disconnected. In addition, we define a non-separable
graph as a non-trivial1 connected graph, having no cutpoints. Finally a
block of a graph G is a maximal non-separable subgraph of G. In the figure
below the removal of the cutpoint v is shown.

Let us state a proposition that will be useful later:

1We call a graph trivial if it is a (1,0) graph.
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2.6 PROPOSITION. Let v be a vertex of a connected graph G. We have
that v is a cutpoint of G if and only if there exists a partition of the set
V (G) − {v} into subsets U and W , such that for any vertices u ∈ U and
w ∈W , the vertex v is on every path joining u and w.

Proof. Let us prove the first implication: let us assume that v is a cutpoint
of the graph G, hence G − v is a disconnected graph with at least two
components. We may identify two sets (with empty intersection) of the
vertices: the first one is given by a component of the disconnected graph
G− v, while the second is composed by all the others components of G− v
(at least one). These two sets of G− v can be seen as a partition of the set
V (G)−{v} and we call them U and W , respectively. Consider any vertices
u ∈ U and w ∈ W : they lie in different components of G− v and therefore
every path in G joining u and w must contain the vertex v.

On the other hand, let us prove the opposite implication. Let us assume
that there exists a partition of the set V (G) − {v} into subsets U and W ,
such that for any vertices u ∈ U and w ∈ W , the vertex v is on every path
joining u and w. In particular these two vertices, u and w, are in the graph
G and they are distinct from v. Thus, by assumption, v is on every path in
G joining u and w, which implies that there cannot exist a path in G − v
joining these two vertices. This means that the graph G− v is disconnected
and therefore v is a cutpoint in G.

Let us state some definitions and results on connectivity.

2.7 DEFINITION. A graph G is k-connected if one can remove k vertices
from G in such a way that G becomes disconnected, but there is no way to
remove less than k vertices from G in order to disconnect it.

In other words, a graph G is said to be k-connected if k is the low-
est number of vertices that we need to remove from the graph in order to
disconnect it.

The lenght of a walk is the number of occurences of edges in it so that
if we consider the walk v0, x1, v1, ..., xn, vn we have that its lenght is n.

We want to define the distance between two vertices u, v in a graph G.

2.8 DEFINITION. The distance d(u, v) is the lenght of a shortest path
joining them if any; otherwise we set d(u, v) =∞.
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Notice that when we consider a connected graph the distance is a metric,
i.e. the following properties hold:

1. d(u, v) ≥ 0 for all vertices u, v in G;

2. d(u, v) = d(v, u) for all vertices u, v in G.

3. d(u, v) + d(v, w) ≥ d(u,w) for all vertices u, v, w in G

2.9 THEOREM. Let G be a connected graph with at least three vertices. If
G is a block then every two vertices of G lie on a common cycle.

Proof. Let u, v be two distinct vertices of G, and let U be the set of vertices
different from u which lie on a cycle containing u. By assumption G is a
block with at least three vertices, thus it has no cutpoint nor bridges as for a
connected graph with at least three vertices having a bridge implies having
a cutpoint. Moreover, U is non-empty since every vertex adjacent to u is in
U and G is connected. Suppose, by contradiction, that v is not in U and
let w be a vertex in U such that the distance d(w, v) is minimum. Let P0

be a shortest path from w to v and let P1 and P2 be two different paths of
a cycle joining u and w. Since w is not a cutpoint, there exists a path P ′,
joining u and v, that does not contain w. Let w′ be the vertex nearest to u
such that it is both in P0 and P ′; moreover, let u′ be the last vertex of the
subpath of P ′ joining u and w′ that belongs to P1 or P2 as well. Without
loss of generality, we may assume that u′ is in P1.

Let Q1 be the path joining u and w′ consisting of the subpath of P1

joining u and u′ and the subpath of P ′ joining u′ and w′. Analogously,
let Q2 be the path joining u and w′ consisting of P2 and the subpath of
P0 joining w and w′. It follows that Q1 and Q2 are two different disjoint
paths joining u and w′ hence they form a cycle, so w′ is in U. Since w′ is
on a shortest path joining w and v, it holds that d(w′, v) < d(w, v) and this
contradicts the choice of w, so that the thesis is proved.

2.10 PROPOSITION. Let G be a connected graph with at least three ver-
tices. If every two vertices of G lie on a common cycle, then every vertex
and edge of G lie on a common cycle.
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Proof. Let u be a vertex and {v, w} an edge of G; moreover let Z be a cycle
of G containing both u and v. Let us build a cycle Z ′ which contains both
u and {v, w}.

If w is on Z, then Z ′ consists of {v, w} along with the path joining v and
w of Z, that contains u.

On the other hand, if w does not belong to the cycle Z, however, there
must be a path, say P , which joins w and u and not v, since otherwise, by
Proposition 2.6, v would be a cutpoint and that would lead to a contradic-
tion. Let u′ the first vertex in the path P that also belongs to the cycle
Z. Z ′ consists of the edge {v, w}, together with the path joining w and u′

(it exists since it is a subpath of P ) and the path of Z that joins u′ and v,
which contains the vertex u.

2.11 DEFINITION. Let G be a graph. The degree of a vertex vi in V (G)
is the number of edges which contain vi and it is denoted by di or deg vi.

We call δ(G) the minimum degree among the vertices of a graph G and
∆(G) the largest of such number.

Moreover, if G is a graph with |V | = p and |X | = q, i.e. it is a (p, q) graph
we have that 0 ≤ deg vi ≤ p− 1 for every vi ∈ V . We call regular of degree
r a graph whose vertices have all the same degree r. Notice that if a graph
G is regular then δ(G) = ∆(G) = r, and conversely, if δ(G) = ∆(G) = r

holds, then the graph is regular of degree r.
Moreover, a complete graph is a graph which has every pair of its p

vertices adjacent and it is called Kp. In particular Kp is a regular graph of
degree p− 1.
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In the figure below we can see a regular graph of degree 0, a regular graph
of degree 2 and a regular graph of degree 3 (also called cubic), respectively.

Let us state a paramount result:

2.12 THEOREM. Let G be a (p,q) graph. The sum of the degrees of the
vertices of G is twice the number of edges, i.e. it holds

∑

vi∈V (G)

deg vi = 2q.

Proof. Let us call I(vi) the set of all the edges that are incident to the vertex
vi ∈ V (G).

∑

vi∈V (G)

deg vi =
∑

vi∈V (G)

∑

q∈I(vi)

1 =
∑

q∈X (G)

∑

vi∈V (G)
s.t. q∈I(vi)

1 =
∑

q∈X (G)

2 = 2q

2.13 DEFINITION. A bigraph (or bipartite graph) G is a graph whose set
of vertices V can be partitioned into two subsets V1 and V2 such that every
edge of the graph joins vertices of V1 with vertices of V2 .

If G contains all the edges joining V1 with V2 the graph is a complete
bigraph. If we set |V1 | = m and |V2 | = n we write G = Km,n.

Example. The following graph is K3,4 with V1 = {v1, v2, v3} and V2 =
{v4, v5, v6, v7}.

2.14 DEFINITION. Let G be a graph and u, v ∈ V (G) be any two adjacent
vertices. An elementary contraction of G is obtained by identifying the two
adjacent vertices u and v; in other words it is the removing of the two

15



vertices u and v together with the addition of a new vertex, say w, adjacent
to those vertices to which u or v was adjacent.

Moreover we say that a graph G is contractible to a graph H if H can
be obtain from G by a sequence of elementary contractions.

Let G be a graph and x = {u, v} one of its edges; then we will denote
with G · x the contracted graph given by removing x and identifying u and
v.

It is important to notice that a graph G, that is contracted to a new
graph G′, is not necessary homeomorphic2 to it. The following example
shows that “Petersen graph” is contractible to K5 but, since every vertex
has degree three, it does not contain any subgraph homeomorphic to K5.

Example. Petersen graph is contracted to K5 by removing the vertices ui
and vi and replacing them with wi for i = 1, ..., 5. The figure below may
clarify the situation.

2The definition of graphs homeomorphism is given in Chapter 3.
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Chapter 3

Planarity

In this chapter we will introduce the notions of planar graph and planar map.
Next, we will state Euler’s formula and some results which follow from it.
Finally, we will deal with the proof of Kuratowski’s Theorem, establishing
a criterion for planarity.

3.1 Plane Graphs, Plane Maps and Convex Poly-

hedrons

3.1 DEFINITION. A graph G is said to be embedded in a surface S if,
when it is drawn on S, no pair of edges intersect.

3.2 DEFINITION. A graph G is planar if it can be embedded in the plane.

We call a graph that has been embedded in the plane a plane graph.

Remark: If a graph G can be embedded in the plane then, by a stere-
ographic projection, it can be embedded on the sphere S

2 as well.

The figure below clarifies the difference between planar and plane graphs.
The first graph is a planar graph as it can be embedded in the plane (see
the second picture) but a pair of its edges still intersects while the second
graph represents one of its embedding in the plane.

We will call faces the regions bounded by edges of a plane graph and
exterior face the unbounded region.
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3.3 DEFINITION. A maximal plane graph is a graph to which no edge can
be added without losing planarity.

This implies that whenever an edge is added to a maximal plane graph
it will intersect at least one other edge of the graph.

3.4 DEFINITION. A plane map is a connected plane graph together with
all its faces.

This definition establishes a correspondence between plane maps and
plane graphs; whenever a (p, q) graph, say G, is given, we can identify (with
the same notation) the (p, q) plane map, which is the map associated to the
graph G.

Let us see some results on plane maps.
It is possible to associate a plane graph to every polyhedron, in such

a way that vertices and edges of the polyhedron corresponds to those of
the graph. Moreover, if we consider all the faces of a convex polyhedron, a
plane map can be associated to it. This means that there is a correspondence
between vertices, edges and faces of convex polyhedrons and those of plane
maps. The figure below may clarify such a relation.

The following theorem explains the relationship between vertices, edges
and faces of a polyhedron:

3.5 THEOREM (Euler’s Formula). [8] For any convex polyhedron with V
vertices, E edges and F faces the following holds

V − E + F = 2 (3.1.1)

18



As we have already seen above, there is a correspondence between convex
polyhedrons and plane maps thus this theorem can be restated in graph
theoretic terms. We may indicate the number of vertices of the map with p,
the number of edges with q and the number of faces (including the external
one) with r. The following table highlights the correspondence between
convex polyhedrons and plane maps.

convex polyhedrons plane maps

V p

E q

F r

Thanks to this relation (3.1.1) turns to

p− q + r = 2. (3.1.2)

The following result follows from (3.1.2):

3.6 Corollary. If G is a (p,q) plane map in which every face is a n-cycle
then

q =
n(p− 2)

n− 2
(3.1.3)

Proof. By hypothesis we have that every face of the plane map is a n-cycle
and that each edge of G is in two faces. Thus nr = 2q i.e. r = 2q

n
which

replaced into (3.1.2) gives (3.1.3).

The next result is about maximal plane graph:

3.7 Corollary. If G is a (p,q) maximal plane graph, then every face of the
associated plane map is a triangle and q = 3p − 6. Moreover, if every face
of the plane map associated to G is a 4-cycle, then q = 2p− 4.

Proof. If the G is a maximal plane graph, then every face is a triangle. In
particular, it suffices to replace n with 3 or 4 into (3.1.3), respectively and
the thesis is proved.

Thanks to this result it holds that the maximal number of edges in
a plane graph occurs when all its faces are triangles, thus we obtain the
following:

3.8 Corollary. If G is a plane (p, q) graph with p ≥ 3, then

q ≤ 3p− 6. (3.1.4)

Moreover, if G has no triangle then

q ≤ 2p− 4. (3.1.5)
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Proof. This follows from the previous Corollary since a maximal plane graph
is a graph with the largest number of edges thus we get the two inequalities.

3.9 Corollary. The graphs K5 and K3,3 are non-planar.

Proof. It is enough to notice that the graph K5 is a (5,10) graph, therefore
it does not satisfy (3.1.4). Furthermore, according to (3.1.5), K3,3 is a non-
planar graph as well.

3.10 THEOREM. Every planar graph G has a vertex of degree not exceeding
5.

Proof. Let us prove this by contradiction. Suppose G is a (p, q) planar
graph in which every vertex has degree at least 6, i.e. deg vi ≥ 6 for every

vi ∈ V (G). By Theorem 2.12 we have that
∑

vi∈V (G)

deg vi = 2q. Moreover,

according to (3.1.4) it holds that q ≤ 3p− 6, therefore, we get the following
chain of inequalities

6p ≤
∑

vi∈V (G)

deg vi = 2q ≤ 6p− 12

that is a contradiction.

We need to keep in mind this result as it will be taken up later.

3.11 DEFINITION. Two graphs are homeomorphic if both can be obtained
from the same graph by a sequence of subdivisions of lines.

Moreover, two graphs are isomorphic if there exists a bijective function
between their vertices sets, which preserves adjacency, and whose inverse
preserves adjacency as well. In particular, as we can see in the figure be-
low, any two cycles are homeomorphic but cycles of different length are not
isomorphic.

Furthermore, the graphs G1 and G2 in the figure below are isomorphic
under the correspondence ui ←→ vi.
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3.2 Kuratowski’s Theorem

In this section we give a proof of Kuratowsi’s Theorem [10], whose statement
is as follows:

3.12 THEOREM. A graph is planar if and only if it has no subgraph home-
omorphic to K5 or K3,3

Proof. The first part of the theorem follows from Corollary 3.9; K5 and K3,3

are non-planar graphs, thus if a graph contains a subgraph homeomorphic
to either of these it is also non-planar.

The converse requests a bit more effort: in order to complete the proof
we will state and prove some results.

Before doing this, we assume that there exists a graph that is a non-
planar graph with no subgraph homeomorphic to either K5 or K3,3. Let G
be such a graph which has the minimum number of edges.

Let us state our first proposition:

3.13 PROPOSITION. Any minimally non-planar graph is at least 2-connected.

Proof. Let us proceed by contradiction; assume that there exists a minimally
non-planar graph, say G, that is strictly less then 2-connected (i.e. it is ≤
1-connected), hence there is at least a vertex, say v that we can delete from
G, which disconnects G. Let us call such resulting components G′

1, . . . , G
′

n

and let G1 = ⟨V (G′

1) ∪ {v}⟩, . . . , Gn = ⟨V (G′

n) ∪ {v}⟩.

Notice that G1, . . . , Gn are all planar graphs since all these components
are subgraphs of G.We have that for any planar graph Gi and any face fi of
Gi, it is possible to draw Gi in the plane in such a way that fi is the outside
face of Gi. To see this, it is enough to consider a planar embedding of Gi on
the unit sphere such that the face fi contains the “north pole” (the point
(0,0,1)) of the sphere. By a stereographic projection, we obtain a planar
embedding in R

2, such that the face f is the outside face.
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Let fi be the face that contains v on each Gi. We may place the vertex v
at the origin of the plane in which we are embedding each Gi and by resizing
all Gi’s and placing all of them together, each adjacent to the other, in such
a way that each of them is bounded in a less then 2π

n
degrees region. The

resulting graph is a planar embedding of G, despite the fact that G was
non-planar. Thus, we get a contradiction that provides that our assumption
that G was less then 1-connected was false.

We now want to show that G must be a block:

3.14 PROPOSITION. If G is a non-planar graph which contains no sub-
graphs homeomorphic to K5 or K3,3 and it has the minimum number of
edges among all of these graphs, then G is at least 3-connected.

Proof. Let us prove this proposition by contradiction.

Consider any such graph G; by Proposition 3.13 it must be at least
2-connected.

The goal now is to show that if we suppose that G is 2-connected we get
a contradiction, so that it must be at least 3-connected. If G is 2-connected,
then there must be two vertices, say v, w, such that, if they are removed
the graph will be disconnected into different components. We call such
components G′

1, . . . , G
′

n and we define G1 = ⟨V (G′

1) ∪ {v, w, x}⟩, . . . , Gn =
⟨V (G′

n) ∪ {v, w, x}⟩, where x is the edge joining v and w, even if it is not
in X (G). We now aim to show that there exists an index i such that Gi is
non-planar. Suppose not, i.e. each Gi is a planar graph, therefore it can be
drawn in the plane in a way such that the face containing x is the outer face
of the graph (in particular both v and w are on the outer face as well). We
now want to create a new graph in the following fashion: starting from G1,
we draw it in the plane. The following step is to draw the graph G2 in such
a way that the edge x of G2 is overlapped to that of G1 (the edge x belongs
to both G1 and G2 by construction) and draw the rest of G2 in such a way
that it entirely “surrounds” G1. We may do the same for every Gi to create
a sequence of nested planar graphs. The result is a planar graph again, but
this contradicts the fact that G is non-planar and therefore there is at least
one of the Gi’s that is non-planar. Let Gĩ be such a graph: by assumption
G is a non-planar graph which does not contain any subgraph isomorphic
to K5 or K3,3 with the minimum number of edges, thus Gĩ must contain a
subgraph homeomorphic to either K5 or K3,3.

We now have these four cases:

1. The edge x is not an edge of the subgraph ofGĩ homeomorphic to either
K5 or K3,3 but x is in G. This is not possible as G would contain such
subgraph homeomorphic to either K5 or K3,3 since removing x from
G would not affect the rest of the subgraph Gĩ.
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2. The edge x is neither an edge of the subgraph of Gĩ homeomorphic to
either K5 or K3,3, nor in G. This case is similar to the previous one.

3. The edge x is an edge of both the subgraph homeomorphic to either
K5 or K3,3 and G. In this case we get a contradiction since G would
contain the subgraph of Gĩ homeomorphic to either K5 or K3,3.

4. The edge x belongs to the subgraph homeomorphic to K5 or K3,3 and
it is not an edge of G. We may consider any other component Gj

and a vertex u of G′

j . Since G is 2-connected, there must exist a path
joining the vertex u with both v and w in Gj , as otherwise we may
disconnect u from Gĩ simply by removing one between v or w. Thus,
there must be a path joining v and w in Gj so that if we replace x
with such path in Gj we still have a graph homeomorphic to either
K5 or K3,3 (we only split an edge). This leads to a contradiction as G
would contain a subgraph homeomorphic to either K5 or K3,3.

Since all the possible cases lead to a contradiction the proof is completed.

Let us now have a look at a proposition that provides that 3-connectedness
still holds if a graph is contracted in some way.

3.15 PROPOSITION. If G is a graph with at least 5 vertices that is at least
3-connected, then there is some edge x ∈ X (G) such that G · x is at least
3-connected.

Proof. Let us assume, by contradiction, that for every edge x = {u, v} ∈
X (G) the graph G · x is less than 3-connected. Notice that one of these
2-disconnecting vertices of G · x must be the new vertex, say vx, created by
the contraction of the graph G, since otherwise the whole graph G may be
disconnected by the removing of just two vertices despite the fact that G
is at least 3-connected. Before starting, we may convey that we will call a
vertex w a “mate” of x = {u, v} whenever {vx, w} is a 2-disconnecting set
in G · x. The assumption we just made provides that every edge {u, v} has
a mate w, therefore the removing the two vertices of any edge x = {u, v}
together with its mate w will disconnect the graph G, since removing vx
together with w disconnects the contracted graph G · x.

Let us call G1, . . . , Gn the connected components of G obtained by re-
moving three vertices u, v, w.

Among all the possible edges {u, v} together with their mate w whose
removing disconnects the graphG, take the one that give rise to the “largest”
component of G. Without loss of generality let us call such edge {u, v}, the
mate w and the largest component G1.

Moreover, there must exist an edge from w to another vertex, say z, that
belongs to a connected component Gi with i ̸= 1, as otherwise, the graph G
would be disconnected by the removing of the two vertices u, v only, despite
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the fact that G is at least 3-connected. Without loss of generality we call
G2 the component which contains z.

Let r be a mate of the edge {w, z} so that the removing of the ver-
tices {w, z, r} disconnects the graph G− {w, z, r} into components. Let us
consider the following cases.

1. If r = u then the subgraph ⟨V (G1)∪{v}⟩ of G is a connected subgraph
of the graph G which is larger than G1. This is a contradiction since
we assumed that G1 was the largest.

2. If r = v then the subgraph ⟨V (G1)∪{u}⟩ of G is a connected subgraph
of the graph G which is larger than G1. This is a contradiction since
we assumed that G1 was the largest.

3. If r belongs to any of the connected components Gi with i ̸= 1, then G
would be disconnected into different components, one of which would
contain G1 together with the two vertices u, v, however that is not
possible as G1 is the largest component.

4. If r belongs to G1, then the removing of {z, r, w} does not disconnect
the graph G. Let us see why: Let a be any vertex in any component
Gj , thus there must exist two vertex-disjoint paths joining a with both
u and v, as otherwise, it would be enough deleting r along with at most
another vertex on this path in order to disconnect a from other vertices
in our graph. This implies that, once that a vertex has been removed
from any Gj , there still must be a path joining any vertex a ∈ V (Gj)
to either u or v. However, this implies that the graph G− {z, r, w} is
still connected since it is possible to find a path that joins any vertex
a (which belongs to any component Gj) to either u or v and any other
vertex, say b, in any other component Gk.

Since both the analysed cases lead to a contradiction, there must be
some edge x ∈ X (G) such that G · x is still 3-connected.

The following proposition provides that whenever a graph G, which does
not contain any subgraph homeomorphic to K5 or K3,3, is contracted then
neither G · x does.

3.16 PROPOSITION. If G is a graph which does not have any subgraph
homeomorphic to either K5 or K3,3, then neither its contraction G · x does
for every edges x ∈ X (G).

Proof. Let us prove this claim by its contrapositive statement, i.e. if G · x
has a subgraph homeomorphic to either K5 or K3,3, then so G does.

Consider any graph G and any edge x ∈ X (G), such that G · x has
a subgraph homeomorphic to either K5 or K3,3: let us call it K. Let us
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denote with vx the vertex that results after the contraction of x; we have
the following cases:

1. if vx is not a vertex of the subgraph of G · x that is homeomorphic to
to either K5 or K3,3, then it easily follows that G contains the same
subgraph.

2. Let us suppose that vx is a vertex of the subgraph of G · x that is
homeomorphic to either K5 or K3,3.

First, let us notice that each vertex of either K5 or K3,3 has degree 4
or 3 respectively. This means that a graph that is homeomorphic to
one of those must contain vertices that have degree at least 2 and at
most 4. Let us examine each of these three cases:

• Consider the case in which the vertex vx has degree 2: there are
two possibilities up to switching the role of the two vertices u and
v.

The first one occurs if both edges of K have the vertex v as their
endpoint. The graph, when expandend, would still be homeo-
morphic to either K5 or K3,3.

The second (and last) case occurs when a edge of K has v as its
endpoint, and the other has u instead. In this case also, when we
expand back K into the original graph G, we would still have a
subgraph that is still homeomorphic to either K5 or K3,3.
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• Let us consider the case in which vx has degree 3: there are two
possibilities.

On the one hand suppose that all the three edges of K have the
same endpoint v. In this case, expanding back K to the original
graph, it still is a subgraph that is homeomorphic to either K5

or K3,3.

On the other hand, suppose that two edges of K have v as end-
point and the other has u. In this case also we still would have
a subgraph of G that is homeomorphic to either K5 or K3,3 once
K is expanded back.

• Let us finally consider the case in which deg vx = 4. Let us face
all the (three) possibilities which may occur.

In the first one we may have all the four edges of K have the
same endpoint vertex v.

The second case occurs when we suppose that three edges of K
have v as their endpoint, and only one has u.

In either case, the graph subgraph K is still a subgraph that is
homeomorphic to either K5 or K3,3 when expanded back out to
G.

Last, we may consider the case in which two edges have v as their
endpoint and the two have u.
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This configuration is not as simple as the above ones. Since we are
considering that deg vx = 4, K has to be a graph that is homeo-
morphic to K5. Let wi with i = 1, . . . , 4 be the four vertices that
along with vx form the subgraph K5 of K. In our assumptions,
without loss of generality, we may consider that, when we expand
back K out to the original graph there are two edges, say x1, x2,
such that x1 = {w1, v} and x2 = {w2, v}, and another pair of
edges, x3, x4 such that x3 = {w3, u} and x4 = {w4, u}. If we con-
sider the two sets of points S1 = {v, w3, w4} and S2 = {u,w1, w2},
we have that they form a subgraph that is homeomorphic to
K3,3

1.

This proves our claim: if G does not have any subgraph homeomorphic to
either K5 or K3,3, then neither does G · x

So far, by the propositions above2, we proved that given any at least
3-connected graph with no subgraph homeomorphic to either to K5 or K3,3,
there exists a contraction whereby these two properties are preserved.

Let us prove another important result.

3.17 PROPOSITION. If G is a graph at least 3-connected and it does not
contain any subgraph homeomorphic to K5 or K3,3, then G is planar.

Proof. Let us prove this by induction on the number of vertices of G.

Before starting, let us notice that if G admits a convex embedding in the
plane in which no three vertices lie on a line i.e. they are not aligned, then
G is planar. A convex embedding in the plane is a planar embedding in

1To see it we may toss the edges {w1, w2} and {w3, w4} of G.
2Proposition 3.14, Proposition 3.15, Proposition 3.16.
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which all the edges are straight lines and all of the internal faces are convex
polygons. In order to prove the claim, we will prove that G admits a convex
embedding, in fact.

Base step. If the graph G has strictly less than five vertices, since it is
at least 3-connected by hypothesis then G must be the complete graph K4

3,
therefore it admits a convex embedding in the plane with no three vertices
on a line.

Inductive step. By assumption, we have that G is any at least 3-
connected graph with no subgraph homeomorphic to either K5 or K3,3.
Thanks to the propositions above (3.14, 3.15, 3.16), there exists an edge
x = {v, u} of G, such that it holds that the contracted graph G · x is still
at least 3-connected and it has no subgraph homemomorphic to either K5

or K3,3, therefore by the inductive hypothesis 4, the graph G · x admits a
convex embedding in the plane with no three vertices on a line.

Consider such G · x’s embedding: let vx be the vertex that takes the
place of the edge x in G · x and let us remove it. It holds that the face that
contains where vx used to be is a cycle as otherwise it would be enough to
remove at most one other vertex to disconnect G, which implies that G · x
would be at most 2-connected. Since G · x admits a planar embedding, all
the neighbors (adjacent vertices) of vx must be on this cycle, therefore the
very same holds for u and v’s neighbors.

Let vi for i = 1, . . . , n and ui for i = 1, . . . ,m be the neighbors of v and
u respectively, labeled in cyclic order. Let us examine u’s neighbors setting.

1. Consider the case in which u has at least three neighbors in common
with v, say w1, w2, w3. That leads to a contradiction, since there would
be a subgraph of G homeomorphic to K5.

3K4 is the only 3-connected graph with less than 5 vertices.
4since the graph G · x has a vertex less that G
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2. Consider the case in which at least two neighbors of u alternate with
two of v, i.e. there is the sequence uk, vi, uj , vi+1 for some k, j ∈ {1, . . . ,m} and j ̸=
k and i = {1, . . . , n − 1}. That leads to a contradiction, since there
would be a subgraph of G homeomorphic to K3,3.

3. Consider the case in which all the neighbors of u are between two
consecutive neighbors of v (say vi, vi+1)

5. In this case it is possible to
create a convex embedding of G by moving u into the triangle formed
by the vertex v and its two consecutive neighbors vi, vi+1 which contain
all the neighbors of u.

This argument proves the following claim “if G is at least 3-connected graph
and it does not contain any subgraph homeomorphic to K5 or K3,3, then
G admits a convex embedding with no three points that lie on a line” that
implies that G is planar.

In order to conclude the proof it is enough to notice that if a non-
planar graph G does not contain any subgraph homemomorphic to either
K5 or K3,3 and, without loss of generality, it is minimal with respect to the
number of edges, then, by Proposition 3.14, it must be at least 3-connected.
At the same time, by Proposition 3.17, it holds that if a graph is at least
3-connected and it does not contain any subgraph homeomorphic to K5 or
K3,3, then it is planar. Contradiction.

In particular, if we assume that G exists, then we get a contradiction,
therefore the theorem is proved.

5Notice that u and v may have at most two common neighbors that are the two
consecutive neighbors of v that “bound” all the neighbors of u.
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Chapter 4

The Six and the Five Colour

Theorems

4.1 Colorability

4.1 DEFINITION. A coloring of a graph is an assignment of colors to its
vertices so that no two adjacent vertices have the same color.

In other words, let us consider the graph G: an n-coloring of G is a
mapping

φ : V (G) −→ {1, ..., n}

such that φ(u) ̸= φ(v) for every u, v ∈ V (G) that are adjacent.

It is clear the correspondence between the assigned color of a vertex and
a number between 1 and n. This convention will be used in the following as
it simplifies notations.

Let us consider a coloring of a graph G. A color is assigned to each
vertex, therefore, it is possible to consider the color class, which is the set
of all vertices that have the same color, hence defining a partition of the set
V (G). We say that an n-coloring of a graph G uses n colors.

In the figure above the following partition is represented

V1 = {v1, v6}, V2 = {v3, v7} V3 = {v2, v4, v5, v8}
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Each color, blue, red and green, is associated to a number 1, 2 and 3,
respectively.

4.2 DEFINITION. The chromatic number χ(G) is the minimum n for which
a graph G has an n-coloring.

We say that G is n-colorable if χ(G) ≤ n and that it is n-chromatic if
χ(G) = n.

We may notice that if G is a (p, q) graph, then it has both a p-coloring
and a χ(G)-coloring therefore G must have a n-coloring for χ(G) ≤ n ≤ p.

Example. In the figure below two different colorings of the same graph are
represented.

There is no known method for determining the chromatic number of an
arbitrary graph. However, in some cases it is immediate to determine it, for
example the complete graph Kp must have chromatic number χ(Kp) = p,
while for the complete bipartite graph Km,n it holds that χ(Km,n) = 2. For
all the other cases there is not a general rule, but many results on colorability
have been found.

4.2 The Six Color Theorem

In the following section the proof of the Six Color Theorem is given. the
Theorem states that every planar graph is 6-colorable i.e. six colors are suf-
ficient to color the vertices of a planar graph so that two adjacent vertices
do not have the same color.

4.3 THEOREM. Let G be a planar graph, then there exists a 6-coloring of
G.

Proof. Let G be a planar graph which does not admit a 6-coloring and let
G be the minimal with respect to the number of vertices. We may suppose
that the number of vertices of G is greater than 6, otherwise the graph is
trivially 6-colorable. By Theorem 3.10 there exists a vertex, say v, of G
which has degree that does not exceed 5.

By assumption, we have that the planar graph G−v admits a 6-coloring,
hence we shall color all the vertices of G − v with six colors. Since v has
at most five adjacent vertices in G, these are colored with less then six
different colors. Therefore, by assigning to v a color that it has not been
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used to color its neighbors, we end up with a 6-coloring of G, that contradicts
our assumptions.

It is immediate to see that the hypothesis of planarity for the graph is
necessary. Just think of the nonplanar graph K8: each vertex is connected
to all the other seven vertices, so six colors would not be enough.

4.3 The Five Color Theorem

In this section we present the Five Color Theorem. The focus should be on
the idea that underlies the proof of this Theorem, together with the whole
technique it is used to prove it.

4.4 THEOREM. Every planar graph is 5-colorable.

Proof. Let us proceed by induction on the number p of vertices of the graph.

If we consider a graph with p ≤ 5 vertices the result follows trivially
since the graph is p-colorable.

Let us now assume that all planar graphs with p > 5 vertices are 5-
colorable and let G be a planar graph with p+1 vertices. By Theorem 3.10,
G contains a vertex, say v, of degree 5 or less therefore, by assumption,
the graph G − v is 5-colorable. Consider now a 5-color assignment for the
vertices of the graph G − v and let us denote these colors by a number i
with i = 1, ..., 5. We now face two possibilities:

• If at least one of the 5 colors, say j ∈ {1, . . . , 5}, is not used in the
coloring of the vertices adjacent with v, then it suffices to assign the
color j to v and so that the graph G is 5-colored. The figure below
shows an example of a graph G, which as a vertex v whose neighbors
are colored with colors 1, 2, 3 and 4, but none of them is colored with
the color 5. This allows to assign color 5 to the vertex v and hence
5-coloring the graph G.
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• If v has degree 5 and all the colors are used for its adjacent vertices,
we may assume, without loss of generality1, that the five colors are
assigned cyclically about v as shown in the figure below (we call vi the
vertex adjacent with v that is colored with the color i for i = 1, ..., 5).

Let G1,3 be the subgraph of G− v induced by those vertices colored 1
or 3.2

If v1 and v3 belong to different components of G1,3, we may switch the
colors of the vertices of the component of G1,3 which contains v1 such
that the color 1 is not involved in the coloration of any vertex adjacent
with v. Therefore, we may assign the color 1 to v and the 5-coloring
of G results.

1It suffices to permute the vertices.
2In the following we will refer to such subgraphs as 1-3 tree-subgraph of G.
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On the other hand, if v1 and v3 belong to the same component of G1,3,
then there exists a path, say P , in G joining v1 and v3, whose vertices
are colored with colors 1 or 3 only (we are considering G1,3). We may
consider the cycle composed by P together with the path v1vv3: the
cycle must encloses the vertex v2 or both the vertices v4 and v5. In any
case, there cannot exists a path joining v2 and v4 whose vertices are
colored with colors 2 or 4 only, otherwise planarity would be violated.
Thus, it is enough to consider G2,4, so that the unique possibility is
the one that provides that v2 and v4 lie in different components of
G2,4; therefore, as above, we can swap the colors of the vertices of
the component of G2,4 which contains v2, in such a way that no vertex
adjacent to v has color 2 and by assigning to v the color 2, a 5-coloring
of G results.

It is important to note that in this case, as well as in the previous one,
the planarity assumption plays a key role. A counterexample is given by the
non-planar graph K7, which turns out not to be 5-colorable.
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Chapter 5

The Four Color Theorem

We have all either asked ourselves how many colors it suffices to paint any
geographic map at least once in our lives or just noticed how beautifully
these maps are colored. We may think that it would be an easy problem to
solve, but it is not, in fact.

5.1 A Historical Introduction to The Four Color

Problem

The first that wondered himself about the problem of coloring a geographic
map had been Francis Guthrie, who conjectured that the countries of every
map could always be colored with only four colors in such a way that no
two adjacent countries1 have the same color. In 1852 he wrote his brother
Frederick about this tricky issue, but, since he was not able to solve it, he
asked his professor Augustus De Morgan for some help. They were able to
state that the three color conjecture is false since a map with four countries
such that each country is adjacent to the other three can be drawn and it
requires four colors. The following figure represents an example of planar
map that cannot be colored with three colors since each region is adjacent
to the others.

1By adjacent countries we mean the neighbors of a country i.e. all the countries that
share a border with that country.
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Moreover, DeMorgan proved that it is not possible for five countries to
be in a position such that each of them is adjacent to the other four2. This
statement looks like the solution of the “Four Color Conjecture” but it is
not in fact and many mathematicians have been tricked by that.

This simple-sounding statement started to become a very difficult and
complicated problem, that took many mathematicians’ effort and more than
a century to be solved. The first attempt was done by Arthur Bray Kempe,
who published a paper that claimed to prove that the conjecture was true.
Kempe’s argument turned out to be very clever, however an error was found
by Percy John Heawood eleven years later. Despite this flaw, Kempe’s proof
has been the guide for all the succeeding proofs.

In 1913, George David Birkhoff analysed Kempe’s error and developed
new techniques to approach the problem starting from Kempe’s ideas. In
the following years these new methods supplied very powerful tools to all
later mathematicians in order to verify the conjecture. In 1950, Philip
Franklin showed that every planar map with less than 36 countries admits
a 4-coloring.

After these achievements, two more main concepts were introduced and
developed by Heinrich Heesch: reducibility and discharging. In 1977, the fi-
nal proof has been published by Kenneth Appel and Wolfgang Haken. What
is surprising and bothering at the same time it is the involving of comput-
ers’ effort and programming work, something that has been concerning the
mathematical community for a long time.

It is now clear how the “Four Color Theorem” started to become a
worldwide problem, despite its “good-looking” statement:

5.1 THEOREM. The regions of any planar map3 can be colored with four
colors, in such a way that any two adjacent regions have different colors.

5.2 Geographic Maps

In this section we analyse the correspondence between geographic maps and
plane graphs. In addition, without loss of generality, we will make some
explicit restrictions on the maps we will consider.

A geographic map can always be seen as a plane divided into different
regions separated by borderlines. We say that two regions are adjacent if
they share a borderline. In particular, if two countries share only a point
they are not adjacent. If two regions, R and S, share a borderline we will
call S a neighbor of R and viceversa. Moreover we will call “neighborhood”
of a region the set of all the countries that are adjacent to such region.

2This result can be easily obtained from Theorem 3.12, since such a map is associated
to the graph K5, which is non-planar.

3See Section 5.2
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The figure below represents an example of geographic map, where R and
S are neighbors, but T and R are not.

Any geographic map can be associated with a plane map in the sense
described above. Furthermore, any region can be approximated to a polygon
of n, with n the number of neighbors it has, such that each side is the
boundary with another region. It now becomes clear how a geographic map
can be associated with a plane graph, since the correspondence between a
plane map and a plane graph has already been dealt with (see Chapter 3).

The following image represents a geographic map together with the as-
sociated plane map and plane graph respectively.

In the following, we will see how it is possible to make this correspondence
even more useful to the proof of the Four Color Theorem.

While discussing the Four Color Theorem, we will restrict ourselves to
maps that do not have disconnected countries (both enclaves and exclaves
are not allowed), otherwise four colors could be not enough to color maps
having many states with either inclaves or exclaves. For that reason coloring
the planisphere requires more than four colors (oceans should be colored
as well) as an ocean borders with each state on the coast as well as all
the islands. Moreover, we will consider maps where no country completely
surrounds another country or group of countries, and no more than three
countries meet at any point. This last restriction will be better explained
in the next section, and it will be clear how it will not lead to a loss of
generality.

It is important to keep in mind that from now on, when we appeal to
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plane maps we are referring to maps of the type described above.

Let us now consider any geographic map as described above. We just
saw how it is always possible to restrict ourselves to a plane map.

In order to prove Theorem 5.1, we may rephrase its statement as follows:

5.2 THEOREM. Every plane graph admits a vertex-coloring with at most
4 different colors such that all the vertices have different colors pairwise.

Let us show why this two sentences are equivalent. We start by showing
that Theorem 5.1 implies Theorem 5.2 and then conversely.

Proof. Consider a plane map: the dual graph is the graph constructed by
choosing a point (it could be seen as the capital city) on each country of
the map, and joining all the points that lie in two adjacent countries with
an edge. In this way a plane graph is produced, whose vertices are all the
“cities” chosen to represent each country, and the edges are the lines that
connect two cities of two adjacent countries. The degree of each vertex in
the dual graph is the number of neighbors of the country (of the original
map) represented by that vertex.

On the other hand, if we consider a plane graph whose vertices can be
four colored such that any two adjacent vertices do not have the same color,
it is always possible to surround each vertex by a n-polygon such that n
is the number of adjacent vertices the vertex we are taking in account has.
In this way, each polygon is a region of the plan map formed by collecting
all the polygons together. Notice that this operation preserves adjacency
so that it suffices to assign to the region surrounding each vertex the same
color as the vertex.

In the figure below we can see an example of a plane map (the one with
black boundaries) and its dual graph (the red one):

Now, it is clear how a four coloring of a plane map corresponds to a
vertex four coloring of a plane graph.
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5.2.1 Planar Graphs and Triangulations

Below, we make explicit some assumptions we took in the previous section.

5.3 DEFINITION. A cubic map is a map where there are strictly three
borderlines at every meeting point of countries.

Any map can be turned into a cubic map. This is done by replacing a
point where more than three countries meet by a new region. This region
will have a borderline with all the other regions. This operation will not
affect whether the map can be four colorable or not. Indeed, if this new
map can be colored with four colors, then so can the original map since
the original regions are still not adjacent in the new cubic map. Removing
the new region will not alter the coloring of the map. So proving that the
theorem is true with cubic maps proves that it is true for all maps.

Thanks to the relationship between planar maps and graphs that we
discussed earlier, we want to define the notion of triangulation and make
explicit the relationship with cubic maps. With an abuse of notation, we
will refer to the faces of a planar graph as the regions bounded by vertices
and edges of the graph associated with any planar map.

5.4 DEFINITION. Let f be a face of a planar graphG. f is called triangular
if it is bounded by exactly three edges of G.

A plane graph is called a triangulation ∆ if all its faces are triangular.

Notice that the graph associated to a cubic map is always a triangulation.
Henceforth, we will indifferently call both the map and its associated graph
triangulation, thus a “full” correspondence between planar maps and planar
graphs is achieved.

5.5 DEFINITION. A planar graph G is called maximal if by adding any
edge, it would not be planar anymore.

Thanks to this definition and Proposition 3.7 we have that all the faces
of a maximal graph G must be bounded by exactly three lines, i.e. the graph
G is a triangulation.

We now want to show that there exists always a triangulation ∆ such
that contains a graph G as a subgraph.

41



First, consider the case where G has 4− i vertices with i = 1, 2, 3, 4, then
we may construct the graph G1 arose from G by adding i vertices in a face
of G (if any). Otherwise, if G has exactly four vertices or more, let G1 = G.

We now face two possibilities: either G1 is maximal or not. If G1 is
maximal, than it must be a triangulation because of what we said earlier.
Otherwise, there are two distinct vertices, say v, w, that lie in the boundary
of a face F of G1 but there is no edge of G joining them. Thus, we construct
the graph G2 by adding to G1 an edge joining v and w that crosses the
interior of the face F . We repeat this process until the graph Gj results
maximal and hence a triangulation ∆ which contains the planar graph G.

It is important to underline that a coloring on the triangulation ∆ leads
to a coloring on the graph G, thus it is not restrictive to work with triangu-
lation instead of general planar graphs.

5.3 Kempe’s Argument

In the following section we present the first attempt to prove the Four Color
Theorem made by Arthur Bray Kempe.

Kempe attacked the conjecture by assuming it is false (that there ex-
ists at least a map which requires five colors) in order to show that this
assumption leads to a contradiction.

Let us consider a plane map such that no more than three countries
meet at a single point and none of its countries encloses other countries
(Kempe called such maps normal maps). This restriction does not affect
any generality of the problem as explained in Section 5.2. From now on, we
will write map in the place of normal map.

Kempe’s idea is to work with a minimal 5-chromatic map4 in order to
show that every such map cannot contain any region with exactly two, three,
four nor five borders5. The English mathematician correctly proved the first
three cases (two, three, four borders), however he made a mistake in the “five
borders” case. The most important thing is the method he used to prove
his claim: despite the error he made, Kempe supplied the argument which
led the ones that came after him to the correct proof a century later.

Consider Euler’s formula 3.1.2

p− q + r = 2

4A minimal 5-chromatic map is a plane map which admits a five coloring. Moreover,
whenever a vertex or an edge is removed the map is four colorable i.e. it does not exist a
5-chromatic map smaller than a minimal 5-chromatic map.

5We are assuming that the countries are polygons which share each side with at most
a country. This kind of maps is always possible to obtain without loss of generality (see
Section 5.2)
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with p the number of vertices, q the number of border lines and r the number
of countries in the map. Since, without loss of generality, every map is a
triangulation we have that p = 2q

3 , therefore the 3.1.2 turns to

3r − q = 6 (5.3.1)

Let fn be the number of countries that have exactly n adjacent countries.
It follows that r = f2+f3+· · ·+fN and 2q =

∑N
i=2 i·fi = 2f2+3f3+· · ·+NfN

with N the largest number of neighbors any country has. 6

If we replace the relation we just presented into (5.3.1) we get

3 · (f2 + f3 + · · ·+ fN )−
1

2
· (2f2 + 3f3 + · · ·+NfN ) = 6 (5.3.2)

that is

4f2 + 3f3 + 2f4 + f5 − f7 − · · · − (N − 6)fN = 12 (5.3.3)

This result has a paramount consequence: since fi for i = 2, . . . , N is a
non negative number and the number on the right of the equation is positive,
there must be some countries with either 2, 3, 4 or 5 border lines. The next
step is to show that a minimal 5-chromatic map that contains such countries
cannot exist.

Case 1: two neighboring regions.

Let us consider the case in which there is a minimal 5-chromatic map
containing a country that has exactly two neighbors.

Let G be the dual graph associated to the map and let v the vertex of
G corresponding to the region of the map which has only two neighbors.
Consider the graph G − v and a four coloring for it which exists by the
minimality of G. Since v has only two adjacent vertices, we have that at

6The reason why we exclude f0 and f1 is that we are assuming that the graph is
connected and that it is not possible to have one country completely surrounding another.
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most two colors are used for the two vertices. Now, it is possible to assign
to v one of the colors that has not been assigned to its neighbors yet. This
operation leads to a four coloring of the graph G, which contradicts our
assumptions.

Case 2: three neighboring regions.
Let us consider the case in which there is a minimal 5-chromatic map

that contains a country with exactly three neighbors.

Let G be the dual graph associated to the map and let v the vertex of
G corresponding to the region of the map which has only three neighbors.
Consider the graph G − v, which is four colorable by assumption. Since v
has three adjacent vertices, we have that at most three colors are needed to
color these three vertices. Now, it is possible to assign to v the color (or one
of the colors) that has not been assigned to its neighbors yet. This operation
leads to a four coloring of the graph G, despite our initial assumptions of
minimality.

Case 3: four neighboring regions.
Let us consider a minimal 5-chromatic map such that there is a country

with four adjacent countries. In this case there exists a vertex v of the dual
graph G which has degree four.

Consider the graph G − v that is four colorable by assumption. There
are two possibilities:

1. If less than four colors are involved in the coloring of the adjacent
vertices of v, then, it is sufficient to assign to v the color (or one of the
colors) which is not involved in the coloring of the neighborhood of v
yet.

2. If the adjacent vertices of v in the graph G are colored with all the
four different colors, then, without loss of generality, we may assume
that the color i is assigned to the neighbor vi of v with i = 1, 2, 3, 4,
in clockwise order. Let us consider the vertices v1 and v3.
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If there is no 1-3 chain7 joining v1 and v3, then we consider the con-
nected subgraph of G whose vertices are the ones that are colored
either 1 or 3 together with v1. We call such connected subgraph of G
the 1-3 tree-subgraph of G starting from v1. Surely, v3 does not belong
to this subgraph as we are assuming that there is no 1-3 chain from v1
to v3. In this case, it is sufficient to interchange vertex colors of such
subgraph such that v1 turns out to be colored with color 3. It now
becomes possible to assign color 1 to the vertex v, since vertex v1 has
been reassigned color 3, and thus no vertex adjacent to v turns out to
be colored with color 1.

Otherwise, a 1-3 chain joining the vertices v1 and v3 exists, then a
2-4 chain cannot exists since G is a plane graph and the two paths
would intersect. In this case, as in the previous one, it is possible to
interchange the colors of the vertices of the 2-4 tree-subgraph of G
starting from v2. Notice that a 2-4 chain cannot exist, thus v4 does
not belong to the 2-4 tree-subgraph of G starting from v2 so that v4
will not be affected from this color interchange. This operation makes
the vertex v2 end up with color 4, so that none of the four neighbors

7A 1-3 chain is a path that alternates a 1-colored vertex with a 3-colored one, i.e. a
path that joins vertices whose assigned colors may be only either 1 or 3 .
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of v is colored with color 2, which can be finally assigned to the vertex
v.

After that Kempe tried to generalize this smart argument to a country
with five neighbors in order to complete the proof. However, it did not work
in this case and some years later, Percy John Heawood pointed out the error
that Kempe committed. Let us see how Kempe’s fault has been pointed out
by Heawood.

Consider the dual graph G of a plane map that contains a country with
five neighbors.

Let vi with i = 1, 2, 3, 4, 5 be the vertices adjacent to v, in clockwise
order. As in the previous case there are two possibilities.

1. If the neighbors of v are colored with less than four colors, than it is
sufficient to color v with a color that has not been used in the coloring
of the neighbors of v yet.

2. Otherwise, since the graph G is a minimal 5-chromatic graph, there
exist a coloring of G − v that involves exactly four colors. Without
loss of generality, assign the colors 1, 2, 1, 3, 4 to the neighbors of v
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in clockwise order starting from v1 i.e. we assign color 1 to v1, color 2
to v2, color 1 to v3, color 3 to v4 and color 4 to v5.

If there exist no 2-4 chain that joins v2 and v5 then we consider the 2-4
tree-subgraph of G starting from v2. Surely v5 does not belong to this
subgraph as we are assuming that there is no 2-4 chain from v2 to v5.
Now we can interchange the colors of vertices of the 2-4 tree-subgraph
of G starting from v2 such that v2 turns out to be colored with color 4.
In this way, it is possible to assign color 2 to the vertex v, since color
4 has been reassigned to the vertex v2 and thus no vertex adjacent to
v is colored with color 2. This operation leads to a contradiction since
four colors would be enough to color the whole graph G.

On the other hand, suppose that a 2-4 chain joining v2 and v5 exists.
Analogously, we may assume that a 2-3 chain joining v2 and v4 exists.
This fact together with the planarity of G imply that cannot exist
neither a 1-3 chain from v1 to v4 nor a 1-4 chain joining v3 and v5. Until
this point Kempe’s work is impeccable, however his conclusion is not
as flawless. According to Kempe, it would be enough to interchange
the colors of the vertices of the 1-3 tree-subgraph of G starting from
v1 and the ones of the 1-4 tree-subgraph of G starting from v3 in order
to end up with v1 colored with color 3 and v3 with color 4. By doing
this, none of the vertices adjacent to v would be colored with color
1, hence color 1 can be assigned to the vertex v. This would imply
a contradiction since four colors would be enough to color the whole
graph G.

Kempe, thanks to this argument, was convinced that he proved the Four
Color Theorem. For instance, he showed that in any minimal 5-chromatic
map there should be at least one country with two or three or four or five
neighboring countries and simultaneously that in such a map it was not
possible to have any of the above possibilities.

Few years later, Heawood pointed out with a counterexample (figure
below) that interchanging colors of the 1-3 tree-subgraph starting from v1
can “produce” a 1-4 chain joining v3 and v5 and no color is available to
be assigned to v. Heawood’s example shows that Kempe’s technique is not
complete, in the sense that it may not always work .

It is important to underline, thanks to Kempe’s work8, that (5.3.3) may
be rephrased (for minimal 5-chromatic cubic maps) as follows:

f5 =

imax
∑

i=7

(i− 6)fi + 12 (5.3.4)

8According to what we just stated above Kempe proved that a country with less than
four neighbors cannot appear in a minimal 5-chromatic cubic map
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Indeed, Kempe was able to show correctly that countries with two, three
and four neighboring countries cannot appear in a minimal 5-chromatic cubic
map. This fact implies that in (5.3.3) we have f2 = 0, f3 = 0 and f4 = 0
(since the number of countries with i neighboring countries for i = 2, 3, 4 is
zero) so that (5.3.4) is obtained.

5.4 Reducibility and Discharging

In the following section we analyse these two paramount methods. First of
all, it would be useful to explain what a configuration is: configurations are
technical devices that allow us to capture the structure of a small part of
a larger triangulation. As we already saw, Kempe proved that there must
be certain configurations in a plane map i.e. there must be a country with
either two, three, four or five border lines (neighbors). This idea may explain
the other important feature: unavoidability. An unavoidable set is a set of
configurations that must occur in any plane map.

In conclusion, Kempe found an unavoidable set of configurations con-
sisting of a country with either two, three, four or five neighbors, that is,
every plane map must contain at least one of these four configurations.

5.4.1 Reducibility

A configuration is said to be reducible if any coloring of the rest of the graph
can be extended onto the configuration. The idea is to apply this concept to
minimal 5-chromatic maps and their associated graphs. If a graph contains
a reducible configuration it cannot be contained in a minimal 5-chromatic
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one. Indeed, the subgraph of a minimal 5-chromatic graph from which the
configuration has been removed is four colorable (as otherwise the original
would not be a minimal one). Since we are assuming that the configuration
is reducible we have that the coloring of the rest of the graph can be extended
onto the configuration, making the whole graph four colorable despite the
fact that is was a 5-chromatic one. In particular, we will find it useful to
characterise a reducible configuration as one that cannot be contained in a
minimal 5-chromatic graph.

Notice that, because of the correspondence between maps and graphs de-
scribed above, we will say indifferently that a reducible configuration cannot
be contained in a minimal 5-chromatic map or graph.

It is now clear that Kempe correctly showed that three of his four con-
figurations are reducible but he failed to show the reducibility of a country
with five neighbors. The reason why his attempt is important is that he un-
derstood that finding an unavoidable set of reducible configurations would
be sufficient to prove the theorem. Moreover, he set the fashion that all
the later mathematicians followed to prove the conjecture, that is, first to
find an unavoidable set of configurations (i.e. if a minimal 5-chromatic map
existed, then it would certainly contain at least one of its configurations),
and finally to show that each configuration in such set is reducible, hence
it cannot be contained in a minimal 5-chromatic map and such a minimal
5-chromatic counterexample cannot exist.

Heesch was the first, after Kempe, who conjectured that an unavoidable
set of reducible configurations could be found. Moreover, he observed that
at least one of the methods to reduce a graph consisted in a sufficiently me-
chanical procedure to be done by computers. One of Heesch’s students, Karl
Dürre, wrote the first computer program to test the so call D-reducibility.
In order to introduce what being D-reducible means, let us consider a pla-
nar map. We have already seen that it is always possible to consider the
normal map and the graph which is associated to the original map. More-
over we can consider the dual graph so that it results a triangulation. To
show that a configuration C is D-reducible is to show that if the assumption
that C is contained in a minimal 5-chromatic triangulation ∆ leads to a
contradiction: if we consider ∆− C, (i.e. if we remove the configuration C
from the triangulation ∆), then it must be 4-colorable (we are considering
a minimal 5-chromatic map). Thus, if the 4-coloring can be extended to C
i.e. the triangulation ∆ can be 4-colorable, then it contradicts our assump-
tion. To show that a configuration is D-reducible is exactly to end up with
such contradiction which implies that the original triangulation (henceforth
the original map) was not a minimal 5-chromatic one.

Before seeing how this can be checked, let us introduce some terminology.
Let C be a configuration of a planar triangulation ∆ and call C̄ the larger
subgraph of ∆ obtained by adding the vertices adjacent to C and the edges
joining them. The new edges joining a vertex of C with one of C̄ − C are
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called legs, and the part of the triangulation composed by the added vertices
along with the all the edges joining them is called the ring R of C.

We write “n-ring” in the place of “a ring of size n” to denote the amount
of vertices the ring is composed by. If we consider a four coloring of a
ring vertices, say φ, we have that it is possible to obtain equivalent four
colorings by permuting the colors. For this reason we let φn the set of
all the inequivalent four colorings of a n-ring. Now, let us introduce what
an initially good coloring is. Take any four coloring for the ring R of a
configuration C, we say that it is initially good (with respect to C) if it can
be extended to a coloring of the ringed configuration C̄.

It is now clear what our aim is: it suffices to take a minimal 5-chromatic
triangulation ∆, and show that all the (inequivalent) four colorings of R are
initially good with respect to C, thus get a contradiction as we are assuming
that the triangulation is not four colorable. This is exactly showing D-
reducibility.

Consider a minimal 5-chromatic triangulation ∆ which contains a con-
figuration C and list all the four colorings for the ring of C. The clue is
to show that each of them can be “transformed” into an initially good one.
The technique to “transform” a four coloring is as follows:

• Let µ be a four coloring of the ring R of a configuration C of ∆.
There must exist such a coloring since by assumption we have that
∆ is a minimal 5-chromatic triangulation, thus R can be seen as the
restriction ∆−C of the triangulation. We may denote the four colors
as numbers as we did above, hence we will use {1, 2, 3, 4} to indicate
the set of colors.

For example consider the 14-ring of a configuration C and let µ =
12312413421213 one of its four coloring.

• After that, choose a pairing of colors between all the different possi-
bilities

{(1, 3)(2, 4), (1, 4)(2, 3), (3, 4)(1, 2)}

In our example we will consider the pair (1,3) and (2,4).
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• Now, let us define the Kempe components of ∆ − C. G is a Kempe
component of ∆ − C if it is a subgraph of ∆ which contains all the
vertices of ∆ − C and such that two vertices are joined by an edge if
they are adjacent in ∆−C as well as they have paired colors. Moreover,
we define the Kempe component of R as the subgraph of G intersected
with R.

• Label the Kempe components of R as A1, . . . , Am and B1, . . . , Bm such
that every Ai component is colored with the first pair of colors and
every Bi component with the other pair of colors, with i = 1, . . . ,m.

For example we can consider the following Kempe components of R
with respect to the pair (1,3) and (2,4) (see figure below.).

It is important to notice that if Ai and Aj for some i, j ∈ {1 . . . ,m}
are in the same Kempe component of ∆ − C, then any Bh and Bk,
with Aj and i ≤ h < j ≤ k, cannot lie in the same component of
∆ − C, because any two paired color path joining Bh and Bk would
be blocked from the other two paired color path that links Ai.

Furthermore, it is clear that whenever two paired colors of any Kempe
component of ∆ − C are interchanged, then it would produce a new
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four coloring of ∆−C since no pair of adjacent vertices could end up
with the same color.

• Assume that Ai and Ai+1 are in the same Kempe component of ∆ −
C, then we can switch the colors of the vertices of the Bi Kempe
component of R without affecting the colors of any other ring vertices.
This operation leads to a new four coloring, say ψ of the ring R. Let
us suppose that ψ is an initially good four coloring for the ring R, thus
we can conclude that ∆ is four colorable.

For example we can switch the colors of the vertices of B2, so that a
new four coloring of the ring arises.

To briefly summarize the procedure, given a four coloring of ∆ − C,
when restricted to the ring R, it induces the four coloring µ, that can be
changed into the initially good four coloring ψ, therefore it is extendable to
the configuration C and hence to the whole planar triangulation ∆, leading
to a contradiction. Ultimately, to show the D-reducibility of a configuration
C is exactly to show that every four coloring of ∆− C can be transformed
into a four coloring that is extendible to C.

Few years later Birkhoff noticed that it is not necessary to show that each
of the four colorings of ∆− C is extendible to C, but it suffices to consider
particular subsets of φn and to show that they are initially good colorings
with respect to C. A configuration that satisfies this more sophisticated way
of testing reducibility is called C-reducible.

Reduction Obstacles

Heesch, during his studies, observed that a number of distinct phenomena,
occurring into configurations, provide clues to the likelihood of successful
reducibility. He noticed that, under particular conditions, no reducible con-
figuration were never been found. These particular situations are known
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as “reduction obstacles”. In particular, if one wanted reducible configura-
tions, they should avoid these reduction obstacles. The three arrangements
of vertices that Heesch found to appear in any reducible configuration are
the following (in the figure below the three cases are shown respectively):

1. a “≥ 4-legger vertex”, that is a vertex of any degree d which is con-
nected to fewer than d− 3 other vertices of the configuration.

2. A “≥ 3-legger cut vertex”, that is any vertex of degree d that is con-
nected to fewer than d − 2 other vertices of the configuration whose
removal disconnect the configuration.

3. A “hanging pair” which consists in two vertices of degree five of the
configuration that are joined to each other and to other vertices of
the ring, but such that have only one other common neighbor in the
configuration.

Heesch stated an important rule that allows to test a configuration for
reducibility obstacles. Let us see the main steps to test a given configuration:

1. Whenever a ≥ 4-legger vertex occurs in the confguration it may be
removed (along with all the incident edges).

2. Whenever a hanging pair appears, then both vertices may be removed
to form a smaller configuration.

3. Whenever a ≥ 3-legger cut vertex occurs, it may be removed to form
a couple of smaller configurations.

At any stage, one or more vertices are removed from the configuration. The
test ends when none of the previous steps can be applied to the configura-
tion, i.e. the final configuration is either empty or it does not contain any
reduction obstacles. If all the resulting configurations are empty or known to
be non-reducible than the original configuration it is certainly not reducible.

On the other hand, it has been investigate that for a n-ring, the likelihood
of reducibility rapidly increases with the number of vertices inside the ring.
To be more precise, if any configuration, with m vertices, satisfies

m >
3n

2
− 6
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then it almost certainly reducible since the chance to have obstacles to re-
ducibility sharply decreases.

5.4.2 Discharging

The discharging process, created by Heesch, is a method that allows to con-
struct an unavoidable set of configurations. The first example of unavoidable
set, as we already said above, is the one found by Kempe, whose elements are
countries with two, three, four and five neighbors. Unfortunately, despite
Kempe’s incorrect attempt, this set was not proved to be reducible.

The crucial idea of this technique is to assign to every vertex of a tri-
angulation a charge depending on the degree of the vertex and by moving
the charge as on an electrical network, ending up with a (possibly reducible)
unavoidable set of configurations for a minimal 5-chromatic planar triangu-
lation. To deeply describe this discharging process let us recall that Kempe
was able to prove that a vertex of degree less than five cannot occur in a
minimal 5-chromatic planar triangulation. According to (5.3.4) and what
we said above, it holds the following:

v5 − v7 − · · · − (M − 6)vM = 12 (5.4.1)

with vi the number of vertices of degree i for i = 5, . . . ,M . At this point,
once that an initial charge is assigned to each vertex, the aim is to set a list
of discharging rules in order to move the charge around.

The previous formula (5.4.1) sets some constraints that a final distribu-
tion of a configuration must comply with, so that the number of possible
configurations which can occur is finite. The finite possibilities of rearrang-
ing the initial charge form (what we previously called) an unavoidable set.

The main idea is to assign to every vertex of degree i an initial charge
of 6 − i units, such that the only initially positively charged vertices are
those of degree five. An initial negative charge is assigned to each of the
other vertices (except those of degree six) which are called major vertices.
According to (5.4.1), we have that the total initial charge of the triangulation
is positive. We now want to move the charge along the vertices in such a
way that a vertex positively charged transfers some of its charge to a vertex
that is negatively charged. In order to do that, a set of rules is laid down
so that charge transfer is subject to such rules. The result of applying
this discharging process to a triangulation change the initial distribution of
charge into a final one, which must comply with some constraints since the
triangulation’s total charge must stay positive.

Let us give an example in order to clarify the strategy to obtain an
unavoidable set of configurations.

Example. Let us consider the procedure which consists in a single rule: a
degree-five vertex transfers 1

5 unit of charge to each of its major neighbors.
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Our goal is to find the set of all possible configurations that can be formed
by moving the charge between the vertices according to the rule described
above. We claim that such corresponding (unavoidable) set consists of two
configurations: the first one is a pair of degree-five vertices joined by an edge
and the second one is a degree-five vertex joined by an edge to a degree-six
vertex. These two configurations are shown in the figure below where each
vertex’s degree is indicated.

Let us prove that, according to that rule, these two configurations are
the unique situations that may happen, as far as we want to preserve a final
positive charge.

We know from above that for all v in the triangulation an initially charge
of 6−deg v is assigned, so that vertices of degree five are the only ones with
an initially positive charge of 1. Let us study what final configurations are
possible by varying the degrees of a vertex.9

Case 1: degree-five vertex. According to the unique rule established
above, the only way that a degree-five vertex can end up with positive charge
is having at least a non-major neighbor, as otherwise the whole charge of 1
would be transferred to its adjacent vertices. Indeed, if a degree-five vertex
had only degree-seven neighbors, according to the rule, a charge of 1

5 would
be transferred from the degree-five vertex to its five adjacent vertices so that
the degree-five vertex would lose an amount of charge equal to 1

5 ·5 = 1, thus
it would end up completely discharged.10 It is for that reason that a degree-
five vertex (under the rule established above) must have at least a neighbor
of either degree five (the situation corresponding to the first configuration)
or six (corresponding to the second configuration). These two possibilities
are fully identified by those of the set described above.

Case 2: degree-six vertex. No possible configurations are available in
this case as a degree-six vertex cannot lose or gain charge since it is already
discharged.

Case 3: degree-seven vertex. A degree-seven vertex, which has an
initial charge of −1, can only become positive if it has at least six neighbors
that are degree-five vertices. In such situation at least two of them are joined
by an edge so that the first configuration of the unavoidable set occurs.

Case 4: degree-eight (or higher) vertex. A vertex of degree eight
or higher cannot become positive even if all of its neighbors are degree-five
vertices. This can be easily seen by examine a degree-eight vertex (the

9Notice that it is non-sense studying vertices of degree lower than five since they cannot
occur in a minimal 5-chromatic planar triangulation.

10Same situation would happen if the degree-five vertex had only major neighbors.
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reasoning for vertices with higher degrees follows the same idea). An initial
charge of -2 is assigned to each vertex of degree eight, so that even if it had
all degree-five neighbors the maximum charge it can gain is 8 times 1

5 , that
is less than two, hence it cannot end up with a positive charge.

Since all the possible degrees for a vertex have been surveyed, the two
(non reducible) configurations form an unavoidable set, i.e. at least a member
of the two-configurations set will be found in every minimal 5-chromatic
planar triangulation.

In conclusion, the work made by Appel and Haken focused on the de-
velopment of the set of rules defining the discharging process, which could
supply a not-too-large unavoidable set, whose elements can all be shown
to be reducible configurations. In order to improve the set of unavoidable
configurations, the discharging method has been developed in the years that
followed.11

In the following we present the earliest version of the discharging pro-
cedure made by Haken and Appel (the first version only provided for one
rule).

Rule. Whenever the triangulation contains an edge that joins a vertex
of degree five with a major vertex a charge of 1

2 of unit is transferred along
the edge from the degree-5 vertex to the major one (such a transfer is called
regular discharging or also R-discharging).

It can be seen that, under such rule, the possibilities to get a final positive
distribution of charge on a vertex v of the triangulation are the following:

1. v has degree 5 and has either 0 or 1 major neighbors;

2. v has degree 7 and has between 3 and 7 neighbors of degree five;

3. v has degree 8 and has between 5 and 8 neighbors of degree five;

4. v has degree 9 and has between 7 and 9 neighbors of degree five;

11In 1976 the unavoidable set consisted of 1936 configurations. Since then, Appel and
Haken found and eliminated about 100 redundancies, that are those configuration that
were accidentally listed twice or were a part of other configurations. Moreover, thanks to
the new discharging techniques, they found other 352 configurations that were not really
needed. Finally, in 1985, 16 more redundancies were found, bringing the size of the set
down to 1476 configurations.
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5. v has degree 10 and has either 9 or 10 neighbors of degree five;

6. v has degree 11 and has 11 neighbors of degree five.

Since the total charge is positive, at least one of these situations occurs
in the triangulation, thus the set of all the unavoidable configurations may
be construct collecting all these cases.

The problem is that, once all these cases are listed, proving the re-
ducibility of all the configurations may not be always possible, so that the
unavoidable set would not result reducible. For example, consider the case
number 4: the figure below shows the set of all the configurations that sat-
isfy the condition of the case considered, thus at least one of those must
occur. In order to indicate the degree of each vertex in a configuration, we

use symbols that Heesch introduced and their meanings are explained by
the figure below.

The problem is that the first three configurations shown in the figure
above are reducible, while the last one, once the Heesch’s rule is applied to
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it, it result to be non-reducible. All the stages of Heesh’s rule are illustrated
below.

Appel and Haken spent most of their work in boosting such discharging
procedure. They begun by considering some exceptions to avoid “bad” cases
as the one shown above. In some situation, a charge of less than 1

2 is moved
from a 5-vertex to a major one; such a transfer is called a small-discharging
or S-discharging. Analogously, in some situations a charge greater than 1

2
is transferred from a 5-vertex to a major one and those are called large
dischargings or L-dischargings.

By introducing these new rules, in spite of removing some “bad” configu-
rations (in terms of reducibility), they added some others of larger ring size.
The two mathematicians, in order to restrict the number of configurations of
the unavoidable set and the maximal ring-size that occurs among its mem-
bers, expanded the discharging procedure with the transversal dischargings
or T-discharging.

Appel and Haken finally produced an unavoidable set of 1825 reducible
configurations, which they later made decrease to 1476 elements.

5.5 From a Computer-Checked to a Fully Formal-

ized Proof of the Four Color Theorem

This theorem has an important role in the sense that it has been the first
theorem that needed computers to be involved in its proof. Most of the
mathematical community was skeptical and distrustful about the use of
computers into a mathematical proof. The reason of this rejection is that
mathematicians pretend to find a solution as well as to understand its accu-
racy. Moreover, they do not even stress about whether the proof is correct
but rather whether the proof is a valid proof. Finally, with the possibility
of a computing error, mathematicians do not feel comfortable relying on a
machine to do their work as they would be if it were a simple hand-proof.
For all these reasons many mathematicians are still looking for a “better”
hand-checkable proof for this problem.

5.5.1 Appel and Haken’s Computer-Verified Proof

In order to find an avoidable set of reducible configurations, Appel and
Haken, as we already showed above, used two particular methods: reducibil-
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ity and discharging.

The two mathematicians used a computer program to search for these
configurations. They begun to work at a discharging algorithm in order to
get an unavoidable set of configurations which had to be tested for reducibil-
ity.

Whenever a configuration failed to be reducible, they modified the algo-
rithm in order to get a better discharging procedure that allowed them to
construct an unavoidable set that avoids configurations which were previ-
ously proved to be non-reducible. First, in order to simplify the problem,
they considered a restricted type of configurations, those called geograph-
ically good12. The first run of the computer program in 1972 gave a lot
of information on these particular configurations although many flaws and
problems arose. It took almost six months to write a program that would
provide a set of unavoidable geographically good configurations.

In 1975 Appel and Haken improved the algorithm by extending it to
obstacle free configurations rather than geographically good ones. The size
of the unavoidable set doubled; however, for the first time, the two mathe-
maticians figured out that there was a chance to find an unavoidable set of
configurations that could be tested for reducibility.

Although the computer work was necessary to find the final unavoidable
set, Apple and Haken were able to specify by hand the correct discharging
procedure and prove that this procedure produced such unavoidable set of
configurations. Indeed, a surveyable proof that the set is unavoidable is
presented in [1].

On the other hand, to conclude the proof of the “Four Color Theorem”,
it is necessary to prove that all the configurations of the unavoidable set are
reducible. Appel and Haken established that all the configurations in the
unavoidable set previously found were reducible by computer programming.
This procedure, unlike the previous one, is not replaceable with a hand-
checking work since most of the configurations have a large ring-size (13 or
14). They begun writing a program to test for reducibility, working with
the assembler language13 for the “University of Illinois IBM 360” computer.
After some time Appel and Haken started a cooperation with John Koch,
a graduated student in computer science, who wrote a program to check
for reducibility up to 11-ring size configurations. Despite the collaboration
brought important results in testing reducibility, other problems were found,
thus the discharging procedure has been improved one more time.

In June 1976, they finally completed the construction of the unavoid-
able set of reducible configurations, so that the “Four Color Theorem” was
proved. The final discharging procedure required the hand analysis of al-
most 10 000 neighborhoods other than the machine analysis of about 2 000

12Configurations that do not contain the first two Heesch’s reduction obstacles.
13A law-level programming language
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cases. After a century of many mathematicians’ effort, errors and approxi-
mately 1200 hours passed over different computers, the theorem has finally
been proved. Although the discharging procedure can be checked by hand
in a couple of months, it would be impossible to verify the reduction com-
putations in this way. In fact, when the authors of this innovative proof
presented it to the Illinois Journal of Mathematics, its referees checked the
discharging procedure from the complete notes but they had to check the
reducibility computations by running an independent computer program.
The part of the proof concerning unavoidability did not pose any particular
problem, as the proof was only guided by the use of a computer program, but
then entirely manually rewritten. On the other hand, the issue concerning
reducibility became problematic as the proof was only provided on micro-
film, and if one wanted to check it, one would have to use super-computers,
which were hardly available at the time.

The use of a computer program in this proof consists of a “simple”
verification of a large collection of cases. In particular, the design of the
proof and the input for a computer program are still provided by a human.
What the computer does it to check whether all possible cases fall under the
desired characteristic.

5.5.2 Robertson et al.’s Computer-Verified Proof

Another proof of the Four Color Theorem has been carried out by Neil
Robertson, Daniel Sanders, Paul Seymour and Robin Thomas. Initially,
their idea was to fully check the entire proof made by Appel and Haken;
however checking the computer part would require a lot of programming
and even the part that was supposed to be hand-checkable turned out to
be extremely complicated. They soon gave up and started to work on their
own proof. In particular, they followed the same idea of Appel and Haken.

First, they exhibited a set of configurations; they used Heesch’s con-
jecture14 (which later was confirmed by the team) to reduce the number of
configurations of the set to check for reducibility and unavoidability down to
633 rather than almost 1400. After that, they proved that none of them can
occur in a minimal 5-chromatic triangulation i.e. in a minimal counterex-
ample of the “Four Color Theorem” (this step is exactly proving reducibil-
ity). Finally, thanks to Birkhoff’s lemma which provides that every minimal
counterexample to the “Four Color Theorem” is an internally 6-connected
triangulation [7], they verified that at least one of the 633 configurations
always occurs in a internally 6-connected planar triangulation (namely they
proved unavoidability). In such a way a contradiction is given and hence
the Four Color Theorem is proved as such a minimal counterexample cannot
exist.

14A reducible configuration can be found in the second neighborhood of an overcharged
vertex.
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As in Happel and Haken’s proof, the team of mathematicians used the
help of computer programs to guide the search for the set of unavoidable
configurations. In addition, they were able to supply both the fully human-
performed version and the computer-made one so that it would be easier to
check. They thus provided two possibilities for the reader: the first, veri-
fiable by hand in a couple of months, and the second, checkable through a
computer program in a couple of minutes. In contrast, concerning reducibil-
ity, they were “only” able to provide codes to check the correctness of the
program by using special computers. This broadened the possibility for a
larger number of readers to check the results independently from different
devices.

The difference between Robertson’s proof and that of Appel and Haken
is how they handled unavoidability: Robertson et al. defined a set of 32
discharging rules, despite the one designed by Appel and Haken of about 487
(rules). Furthermore, they replaced the Apple and Haken’s gigantic hand-
checkable proof of unavoidability by another gigantic one, which however is
formally written, therefore can be checked by a computer in a very short
time.

5.5.3 Gonthier’s Fully Formalized Proof

The ultimate proof of the Four Color Theorem was finally achieved in 2005
by Georges Gonthier, who provided a formal proof inspired by that of
Robertson et al. Gonthier used the so-called proof assistant Coq to suc-
ceed in presenting a fully formalized version of the theorem.

Formalizing a proof normally requires much more effort than writing a
traditional one, and the result is also much more verbose. On the other hand,
a formalized proof leaves no room for human error (such as that committed
by Kempe), since the only things to rely on and trust are the correctness of
the definitions and axioms used as well as the system employed.

To formalize the very statement of the theorem as well as its proof,
Gonthier was forced to resort to more sophisticated tools. Working with
graphs embedded in the plane or in the sphere had become more com-
plicated because the properties of these structures did not facilitate such
formalization process. It is for this reason that Gonthier shifted the focus
of his proof to the so-called “hypermaps”. This structure allowed a better
and “easier” formalization of the problem, thus enabling its combinatorial
nature to emerge. It turned out that describing the property of planarity
for hypermaps was even easier and that many information were intrinsically
encoded. In addition, properties that hold for plane graphs can be carried
over to these “new objects”.15

15For example “Euler’s formula” (3.1.1) can be rephrased in such a way that it can be
applied to hypermaps.
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In order to prove reducibility, Gonthier iterated a formalized version of
Kempe’s argument. Unlike the previous proofs (those of Appel and Haken
and Robertson at al.), the mathematician used the fact that four coloring
the faces of a cubic map is equivalent to three coloring its edges. This result
goes back to Tait in 1880, and the reason why this result was employed is
that it better exploits the symmetries that hypermaps provide. However, he
still used Robertson’s set of 633 reducible configurations.

In conclusion, Gonthier provided formal proof scripts for both the math-
ematical and computational parts of the proof which were run through the
Coq proof checking system to verify their correctness.
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Chapter 6

Towards Assisted Proofs

In this last chapter we look at the “Four Color Theorem” under a different
prospective. The importance of this theorem does not stand in what it
states rather than how the proof has been carried out over the years. We
look at the proof of this theorem as the starting point of the increasingly
involvement of computers in mathematical proofs.

6.1 Proof Assistants

In order to achieve greater and greater consistency in the demonstrations,
many mathematicians and others began to want to verify their proofs us-
ing computers. To do that, the main idea is to translate traditional proofs
into proofs expressed through a formal language, so that they can be more
easily examined and surveyed by a computer. Once this formalization work
has been done, the focus becomes the pure verification of each step; this
task is perfectly performed by the so-called proof-checkers, which are small
programs that can be verified by hand by a user. On the other hand, a proof-
development system is needed by the user in order to make such formaliza-
tion work more practical and suitable. It is a interactive system that helps
the user to develop a proof. A proof-assistant consists of a proof-developer
system together with a proof-checker. It is an interaction between these
two features and the user, that is able to generate a “verified” proof. This
interaction can take place at various levels, i.e. proof assistants encompass
the whole spectrum between those which purely verify (pure proof-checkers)
and those which, given a statement, try to find the proof if it exists (au-
tomated theorem provers). Both cases at the extremes are difficult to deal
with, since as concern the first case the full formalization of the problem
is a difficult task, while in the second one the use of more highly advanced
theories becomes necessary. Let us see in more detail how they works.

Let us consider a context Γ and a statementA. First the proof-development
system acts, formalizing the given context and the statement A, in order
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to construct a proof. Rather than creating a proof (as a term) directly,
the proof-development system interacts with the user, who provides the so-
called tactics, which are hints that serve to guide the system towards the
creation of the proof-term. This is why it is considered a machine-human
interaction, as the user guides the system to create a term through certain
patterns.

After that, once the proof-term has been found, the proof-checker takes
it as an input and verifies its correctness, scanning through every single
formal step, using the formal rules of the logic of the context.

6.1.1 Type Theory: Proofs as Terms and Propositions as

Types

Usually, as we have already seen above, mathematical results are written in
a rigorous but “informal” way:

in a situation Γ it holds A

and a proof p of this statement is given

In “every-day mathematics” Γ represents a environment where A holds; they
are both given informally as well as the proof p. In logic, both the context
Γ and the statement A can be written in a formal language and the notion
of provability can be formalized using derivation trees. It is for this reason
that it is better to work with logic, which provides an even more rigorous
environment and allows mathematical results to be rewritten more feasibly.
Thus, the above result can be rewritten as

Γ ⊢L A

proof: p

With Type Theory this aspect improves even further: propositions can
be translated as types and proofs as terms. Again, going back to the previous
example, we translate the proposition A (logic language) as a type [A] (type
theory) and the proof p as a term [p] (type theory). It then becomes possible
to translate informal mathematical results into more formal ones using the
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language of logic and finally, by using Type Theory, to further improve the
rigour and the formality. The correspondence explained above is fully shown
below:

If Γ holds, then p is a proof of A ⇐⇒ Γ ⊢ A with proof p ⇐⇒ [Γ] ⊢ [p] : [A]

The last item represents the mathematical problem formalized in Type
Theory. The most interesting feature of this powerful theory is that it can
be rephrase in a even better way, which a proof-checker can take as input

TypeΓ([p]) = [A]

This means that the proof-checker generates a type of [p] in the context [Γ], if
it finds one (otherwise it returns false), and it “compares” it to the type [A].
A consequence of this correspondence is that “checking the proof” becomes
the same as “checking the type”. This feature is known as proof-as-terms.

Let us go back to the above-mentioned proposition-as-types feature,
which identifies exactly this relationship between logic propositions and
types. In particular, a correspondence is established between logic and
function theory. For example, proving the logical implication A ⊃ B is
equivalently translated as a method of obtaining a proof of B from one
of A. It forms a function space and such relation can better be seen as
A→ B = {f | ∀a : A.f(a) : B}. Analogously, a proof of A & B is identified
by a pair

〈

p, q
〉

where p is a proof of A and q is a proof of B. It embodies
the Cartesian Product, thus A × B = {

〈

p, q
〉

| p : A and q : B}. A proof
of A + B is translated by the couple

〈

b, p
〉

, where b is either 0 or 1 and p

is a proof of A or B respectively. This is interpreted as the disjoint union
A+B = {

〈

0, p
〉

| p : A} ∪ {
〈

1, p
〉

| p : B}.
In conclusion, Type Theory plays a paramount role in formalizing proofs,

in order to transfer the problem from the proof-checking to what we called
above the type-checking.

6.1.2 Reliability

In this subsection we deal with the problem of reliability concerning proof-
checkers. Since they are programs themselves, they need to be verified
in order for the output to be considered consistent. Surely, being a good
programmer or the fact that the program is often tested are both factors that
underlie the confidence we place in the correct running of a proof-checker.
But how can we be sure that there are no typos from the user, or that
the system responds correctly to what it is supposed to do, or that it does
exactly what we intend it to do? In the following, other ways to ensure the
reliability of a checked proof are listed.

• Independent Logic: As we have already seen above it is extremely
convenient to work with logic, since it supplies a method that allows
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to formalize mathematics. It becomes very useful to supply a system-
independent description of the logic, so that we can establish whether
our mathematical definitions of objects fully fit our purpose or whether
the steps of the proof make sense. Indeed, it provides an independent
way to express mathematical features, so that the reliability would not
depend only on that of the system. Thus, it becomes extremely im-
portant to describe and define a logical system-independent language.

• Checking the System Itself: Since the proof assistant is “just” a
program, it should be verified itself. First of all, due to the fact that
the formalization is independent (see the point above) it constitutes
a secure part of the program. It is enough to believe in the formal-
ization that it is obtained independently of the system itself. Next, it
is necessary to prove that when the program verifies some statement
then it means that a demonstration tree has been found in the logic,
verifying that all tactics are consistent and that they are derivable via
some inference rules of the logic.

• Small Kernel: It is important for the system to have a small ker-
nel, so that the code that rules the system can be “easily” manually
checked. In such a way the user needs to have confidence into a small
likely trustable kernel only.

• De Bruijn Criterion: A proof assistant satisfies the de Bruijn crite-
rion if the proof terms (generated by the system) can be independently
checked by a small program, which can be verified manually. In other
words, if it can output a proof which is checkable by a much simpler
program

6.1.3 The Concept of Mathematical Proof and Some Philo-

sophical Considerations

From a philosophical point of view, mathematics has always been seen as
analytical truth, however mathematical error is old as mathematics itself.
In order to see the problem from a better perspective, let us see what the
mathematical community means by the notion of proof.

In mathematics a proof is absolute. It consists in a sequence of steps
that, starting from a collection of assumptions, leads to the thesis.

However, most of the proofs we usually deal with are not written in a
formal fashion. Traditional mathematical proofs are rigorous but they do
not explicit every single detail, thus often they rely on intuitive arguments,
omitting basic logical steps.

In mathematics a proof plays two different roles: it is needed to convince
the reader that a proposition holds and to explain why the proof itself works.
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As far as concern the first feature, it is basically to verify the correctness
of every step that leads to the conclusion. On the other hand, the second
point concerns the more difficult question of providing a reason why a process
works or where an idea comes from.

Often the first task is totally satisfied by traditional proofs, which, start-
ing with hypotheses, are concerned with verifying the logical steps of an
argument. The second task is more complicated and laborious, and it repre-
sents a limit for traditional proofs. Proof assistants are systems that make
it possible to investigate this second feature as well. It is clear that proof
assistants are capable of accomplishing the first task as well, and even in
less time.

The reason why the Four Color Theorem was dealt with lies not so much
in the result itself as in the method in which it was achieved. Indeed, the
importance of this theorem is mainly the idea behind its proof and how it
has been reached. In other words, the Four Color Theorem can be seen as
the starting point which later became the “gymnasium” for the development
and the application of computer programming in mathematical proofs.

Dwelling on this topic in [6] the author divides the involvement of com-
puters in proofs into two categories (which may overlap): benign and pseudo-
benign. Within the first category Appel places all proofs that can be hand-
checked by a human in a quite short amount of time. This is the case in
which, for example, the computer is trivially used as a calculator, thus when
there is the possibility of verifying the result manually. In this case, as well
as in general, computer programs are used because of the speed they can
provide. In addition, human work is likely to be affected by tiredness and
minor distracting errors, which can be more easily avoided by the use of a
computer. The second category that Appel discusses is that of the so-called
pseudo-benign proofs. This covers all those proofs that can be checkable by
hand by a single mathematician in a lifetime work. This is exactly the case
of the proof of the Four Color Theorem. It involves so many cases to check
that if one wished to spend all the life in surveying all of them, one could.
Thus, a pseudo-benign proof would require either the search for a shorter
proof or the existence of a human checker of unerring patience, accurate
and never tired, nothing more than a computer. Now, it comes clear the
reason why the Four Color Theorem plays such an important role: before
that, proofs would only be considered correct if they could be understood
and checked in their entirety by a human.
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Chapter 7

Conclusion

In 1852 Guthrie, probably unaware of what he would begin, provided a new
problem to the mathematical world. In the following years this conjecture
has been the focus of research and study for several mathematicians. A first
result was achieved by Kempe, who, although he made a mistake, provided
all his successors with more than a cue to work on. His technique represented
the basis of all later attempts to prove the Four Color Theorem. The first
real attempt that led to the solution of the problem was that conducted
by Appel and Haken who, after working on it for several years and with
the help of several mathematicians, succeeded in providing a proof to the
conundrum proposed by Guthrie almost a century earlier. The importance
of this theorem is not the result itself but how it was achieved. The proof
proposed by Appel and Haken consisted of the checking of millions of cases,
work that would have been difficult to accomplish by hand. For this reason,
for the first time, they involved the use of computer programming in the
proof of a theorem. This fact aroused, besides a stir, quite a bit of skepticism
within the mathematical community, which could not immediately accept it
easily.

After this first attempt there have been further ones including the one
by Robertson et al., which took up and partly developed the previous one.
In addition, to reduce the number of cases to be checked, they provided
a code to verify the computer program involved in the automation of the
proof. Even this attempt, was limited in the eyes of the mathematical world
since the code provided could not be tested by any computer, undermining
the reliability of the proof.

Finally, in 2005, Georges Gonthier and his team succeeded in entirely
formalizing the Four Color Theorem and through the proof assistant Coq,
solving the more than a century-old problem. Gonthier’s proof is based on a
formalization of the one previously formulated by Robertson et al. In order
to achieve this result Gonthier makes use of hypermaps, which are technical
devices that allow the problem to be framed from a more useful point of
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view for the purpose of solving the problem.
As we have just briefly summarized, this important theorem, although

its easy-looking statement, has a long history and it is this on which we
wanted to focus on. The Four Color Theorem has played a fundamental role
in the history of mathematics, since it turned out to be the ”propelling” the-
orem for the involvement of proof assistants in proofs. This development,
as we have already seen, was initially slow and gradual as the mathematical
world turned out to be skeptical of these new systems. Initially, computer
programming was introduced only for a multiple-case verification task, re-
sulting suspicious in any case at the time. After several corrections to the
many attempts to prove the theorem, the idea of using a computer for a
mathematical proof became increasingly consolidated among mathemati-
cians, who gradually developed the technique. In 2005 Gonthier succeeded
in presenting a proof of the theorem in which the computer no longer were
merely used as a case-checker, but rather as a proof-developer.

Being able to accept an entirely computerized proof became the subject
of a long discussion among mathematicians and other scientists. Topics as
reliability and correctness for a proof became among the most important
issues to be resolved.

Proof assistants have now become devices that support and in some cases
even guide human effort in proving theorems. The problem of reliability has
been tackled by the employment of an independent logic as well as using a
small kernel for the system.

In conclusion, the Four Color Theorem is not only proved theorem, but
it also launched and promoted the use of proof assistants in the search for
proving theorems.
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