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Abstract

Reaching high or inaccessible areas can be challenging, dangerous, or ineffi-
cient for human workers, even with appropriate equipment. Aerial vehicles
have become a well-established solution, offering reliability, customizability,
and scalability. Unlike ground vehicles, they have the advantage of a larger
operational workspace. However, their effectiveness is limited by the absence
of dexterous tools that would enable to physically manipulate the environment.
Tasks such as pick-and-place operations, surface monitoring, and other contact-
based activities require a "dexterity tool" that should be rigidly attached under
the drone. For example, this tool can span from a static perch to a robotic ma-
nipulator. While the former has the main advantage to not significantly increase
the robot weight, it does not introduce any additional degrees of freedom, that
would allow the drone to perform a task in different ways, optimizing criteria
such as manipulability. For this reason, the objective of this thesis relies in
the conception and the control of a custom-designed robotic arm, specifically
designed for aerial vehicles. We reason for a custom-design arm is due to the
lack of commercially-available solutions in the market, since the existing manip-
ulators are often bulky, energy-intensive. On the control side, while grounded
manipulators often prioritize kinematic control over dynamic modeling, tasks
involving environmental interaction or complex systems necessitate the control
at the dynamic level. This is crucial for accurately predicting and controlling
system behavior during contact tasks.

In summary, this thesis focuses on the modeling and control of a lightweight
manipulator, specifically designed for drones, with particular attention to de-
riving an accurate dynamic model. Experimental validation is conducted using
a custom-built robotic arm designed to be mounted on a hexa-rotor drone.





Sommario

Raggiungere aree alte o inaccessibili può essere difficile, pericoloso o inefficiente
per gli operatori umani, anche con attrezzature adeguate. I veicoli aerei sono
diventati una soluzione consolidata, che offre affidabilità, personalizzazione e
scalabilità. Tuttavia, la loro efficacia è limitata dall’assenza di strumenti che
permettano di manipolare fisicamente l’ambiente. Compiti come le operazioni
di pick-and-place, il monitoraggio di superfici e altre attività basate sul contatto
richiedono uno strumento rigidamente posto sotto il drone. Ad esempio, questo
strumento può andare da un’asta statica a un manipolatore robotico. Se da un
lato il primo ha il vantaggio principale di non aumentare significativamente il
peso del robot, dall’altro non introduce alcun grado di libertà aggiuntivo, che
permetterebbe al drone di eseguire un compito in modi diversi, ottimizzando cri-
teri come la manipolabilità. Per questo motivo, l’obiettivo di questa tesi si basa
sulla concezione e sul controllo di un braccio robotico progettato su misura,
specificamente pensato per i veicoli aerei. La ragione di un braccio progettato
su misura è dovuta alla mancanza di soluzioni disponibili sul mercato, poiché
i manipolatori esistenti sono spesso ingombranti e ad alto consumo energetico.
Per quanto riguarda il controllo, mentre i manipolatori a terra spesso privile-
giano il controllo cinematico rispetto alla modellazione dinamica, i compiti che
prevedono l’interazione con l’ambiente o con sistemi complessi richiedono il
controllo a livello dinamico. Questo è fondamentale per prevedere e controllare
accuratamente il comportamento del sistema durante i compiti di contatto.

In sintesi, questa tesi si concentra sulla modellazione e sul controllo di un
manipolatore leggero, progettato specificamente per i droni, con particolare
attenzione alla derivazione di un modello dinamico accurato. La validazione
sperimentale è stata condotta utilizzando un braccio robotico progettato per
essere montato su un drone esa-rotor.
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1
Introduction

Aerial vehicles have become a widely adopted solution due to their reliability,
versatility, and scalability. Unlike ground vehicles, they provide the benefit of
a significantly larger operational workspace. By integrating a manipulator,
the range of tasks that the vehicle can perform is significantly expanded. As
there are currently no commercially available manipulators designed for aerial
manipulation, the decision was made to develop a custom-designed manipulator
specifically for interaction with the environment.

Understanding the dynamics of the robot is crucial for model-based control,
allowing for high-performance motion and precise force interactions. Addition-
ally, the coupling effects between two torque-controlled systems, such as the
drone and the arm, are significant and must be considered in the control design.

The robot dynamics is influenced by its geometry as well as rigid-body pa-
rameters, such as link inertia and friction. Dynamic parameters can be identified
using computer-aided design (CAD) software, through experimental testing of
individual robot components, or by employing regression methods based on
dynamic models. Dynamic parameters have physical meaning and are there-
fore constrained by physically values, which are taken into consideration during
the estimation process.

The manipulator was designed at LAAS and manufactured using PLA
through a 3D printing process. A four-degree-of-freedom configuration was
selected as a compromise between system complexity and dexterity. Given
the maneuverability constraints of the drone, a fully-actuated arm was deemed
excessive and would have unnecessarily increased the overall weight.

The kinematic and dynamic control algorithms were primarily developed in
Python, as it allows for easy portability across different platforms and provides
access to many well-optimized libraries. For the motor control boards, where the
low-level feedback loops are implemented, C++ was chosen as the programming
language to accommodate the microcontroller’s requirements.
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This document is organized as follows. Section 2 introduces the theoretical
background of rigid body modeling and control, followed by a detailed descrip-
tion of the linear parameter formulation and the procedure for estimating a
feasible set of parameters (Section 3). Section 4 presents the analysis of joint mo-
tion and the mechanical components, as well as the implemented motor control
algorithms, including an examination of the joint parameters. Section 5 dis-
cusses the Gazebo robotics simulator and the corresponding developed model,
along with the experiments conducted for data collection and the subsequent
analysis of the results.
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2
Theoretical Framework

2.1 Manipulator model

The term rigid body refers to a solid object which, even when subjected to
external forces, deformation is negligible. In a rigid body, the distance between
all internal points remains constant regardless of the application of external
forces or moments. Rigid bodies can be either discrete, i.e. a finite union of
masses, or with a continuous distribution of mass.

The position of a rigid body refers to all the particles of which it is composed.
Since the body parts cannot move between them, it is possible to represent the
object by its center of mass. Mechanical calculations are often simplified when
expressed relative to the center of mass, a hypothetical point where an object’s
entire mass is assumed to be concentrated, allowing for easier visualization of
its motion. This is the point to which a force may be applied to cause a linear
acceleration without an angular acceleration.

A rigid body, unlike a material point, can be associated with a reference
coordinate system. The origin of this system is arbitrary, though it is commonly
placed at the center of mass. The rigid boy is completely described by its position
and orientation with respect to a reference frame.

The linear position can be represented by a vector, expressed in the chosen
coordinate system, usually pointing to the center of mass of the object. The
orientation on the other hand has several way to be mathematically described:
a set of three Euler angles, a rotation matrix or a quaternion.

3



2.2. KINEMATIC MODEL

Figure 2.1: Position and orientation of two coordinate systems which could
represent the world and body relation.

In general, the motion of a rigid body results in time-varying changes to
both its position and orientation. From a kinematic perspective, these changes
are described as translation and rotation, mathematically represented as a roto-
translation between two coordinate systems: the body frame and the world
frame.

2.2 Kinematic model

In the following theory, we assume that the arm consist in a open kinematic
chain, namely there is just one sequence of joints and links that connect the
base with the end effector. In the open kinematic chain every joint provides the
structure with a single degree-of-freedom (dof), namely 𝑛 𝑗𝑜𝑖𝑛𝑡𝑠 = 𝑛𝑑𝑜 𝑓 .

2.2.1 Related Spaces

The position and orientation, potentially as functions of time, must be spec-
ified to define the task of the end-effector. This task depends on the specific
application of the manipulator, and, in general, we refer to the operational space
as the space in which the manipulator’s task is defined.

In contrast, the joint variables represent the degrees of freedom available to
the user for controlling the end-effector. The joint space (or configuration space) is
then defined as the space to which the vector of joint variables q =

[
𝑞1, . . . , 𝑞𝑛

]𝑇
belongs.

The parametrization of the end-effector pose 𝑥𝑒 defines the dimensionality
of the operational space, R𝑚 . As previously mentioned, the pose embeds both
the position and orientation of an object. By specifying the orientation using
a triplet of Euler angles, which constitutes a minimal representation, it follows
that 𝑚 ≤ 6. Specifically, three components represent the position pe, while the

4



CHAPTER 2. THEORETICAL FRAMEWORK

remaining three describe the orientation Φe.

x𝑒 =

[
pe

Φe

]
p𝑒 =


𝑝𝑒𝑥
𝑝𝑒𝑦
𝑝𝑒𝑧

 ∈ R3

The orientation vector Φ𝑒 is no further specified since it depends on the specific
choice triplet of angle. Also in many cases the computation of the three compo-
nents of Φ𝑒 cannot be performed in close form but goes through the computation
of the end-effector rotation matrix.

There are instances in which only a subset of the operational space is of
interest, and in such cases, we refer to this as the task space. For instance, if the
objective of the end-effector is positioning in space, only the Cartesian variables
p𝑒 are considered.

2.2.2 Direct kinematic

The direct or forward kinematics equations allow the position and orientation
of the end-effector frame to be expressed as function of the joint variables with
respect to the base frame.

In order to simplify the computation of the end-effector pose a good approach
is to divide the problem into a combination of simpler sub-problems. In this
case, the process can be decomposed into a sequence of sub steps, where each
step relates the elementary motion of each link to the preceding one. Specifically,
a sequence of reference frames can be placed approximately at each joint and
the relative motion between them can be characterized using homogeneous
transformation matrices.

𝑨𝑖−1
𝑖 (𝑞𝑖) =


𝑹𝑖−1
𝑖 (𝑞𝑖) o𝑖−1

𝑖

0 0 0 1


𝑻0
𝑛 (q) = 𝑨0

1(𝑞1) . . .𝑨𝑛−1
𝑛 (𝑞𝑛)

(2.1)

In equation 2.1, 𝑨𝑖−1
𝑖 (𝑞𝑖) is the homogeneous transformation between two con-

secutive frames, it depends only on the value of the joint between the two
coordinate systems. 𝑹𝑖−1

𝑖 (𝑞𝑖) is a rotation matrix, while o𝑖−1
𝑖 is the translation

vector between the frame origins. The composition of the elementary motion,
gives 𝑻0

𝑛 (q): the homogeneous transformation matrix from the last frame to
the base one. At this stage, given a fixed joint configuration, the pose of the
end-effector can be determined.

The direct kinematic function 2.2, represent a mapping from the joint space

5



2.2. KINEMATIC MODEL

Figure 2.2: Schematic of the manipulator with joint reference frames, follow-
ing the Denavit-Hartenberg (DH) convention. The reference frames consist of
orthonormal bases, following the right-hand rule.

to the operational space.
K :R𝑛 −→ R𝑚

q −→
[
pe

Φe

]
= x𝑒

(2.2)

This function varies depending on the specific application and the task of interest
for the manipulator.

In this paper we are interested only on the position of the end-effector (so
only on the translation component of 𝑻0

𝑛 (q)) as orientation tasks are performed
by the drone.

The position, orientation, and number of these coordinate systems are arbi-
trary; however, adopting a systematic approach facilitates the construction of a
clearer model and prevents the inclusion of excessive frames. In the literature,
it is common practice to position reference frames along the kinematic chain
following the Denavit-Hartenberg (DH) convention. Due to space and content
constraints, this systematic procedure will not be detailed in this document, but
a comprehensive explanation is available at [4].

In the designed manipulator only revolute joints are included, again because
the drone performs the moving. Hence the joint variables enters in the DH-table
(Table 2.1) as the angle parameter 𝜃𝑖 , which is the angle between two consecutive
x-axis as shown in Figure 2.2.

As it is possible to observe from table 2.1, the only kinematic parameter re-
lated to this structure is 𝑑3, namely the length of the arm. In the specific case

6



CHAPTER 2. THEORETICAL FRAMEWORK

joint 𝑎𝑖 𝑑𝑖 𝛼𝑖 𝜃𝑖
1 0 0 𝜋/2 𝑞1
2 0 0 𝜋/2 𝑞2 + 𝜋/2
3 0 𝑑3 𝜋/2 𝑞3
4 0 0 0 𝑞4

Table 2.1: DH parameter of the experimental manipulator.

𝑑3 = 0.65𝑚.

2.3 Dynamic model

The dynamic model of a rigid body provides the relation between generalized
forces acting on the robot and the motion of the same. The development of
a manipulator’s dynamic model is essential for motion simulation, structural
analysis, and the design of control algorithms.

Simulating the motion of a manipulator enables the evaluation of control
strategies and motion planning techniques without the need for a physically
available system. Furthermore, the analysis of the dynamic model is instrumen-
tal also in the mechanical design of prototype arms. Calculating the forces and
torques necessary to execute typical movements provides valuable insights for
the design of joints, transmissions, and actuators.

The primary assumption in this document is that the agents can be modeled
as a composition of one or more rigid bodies: physical entities that do not
undergo deformation or, more realistically, experience deformations so minimal
that their effects can be neglected.

The equation of motion can be derived in two formalisms: Newton-Euler
(NE) formulation and Lagrange formulation. In the following, only the latter
approach will be presented, as it provides a systematic framework that facilitates
direct analysis for control tasks. However, due to its recursive formulation,
the NE principle is better suited for real time applications, and is the method
implemented in the code of this project. Notably, both formalisms yield the
same dynamic model.

2.4 Lagrange formulation

The equation of motion can be derived in a systematic way, independently of
the reference coordinate frame [4, pp.247-259].

At first a set on generalized coordinates must be chosen to describe the n-
dimensional system. In the case of a manipulator these variables are the joint
positions, namely 𝑞𝑖 , 𝑖 = 1, . . . , 𝑛 where q =

[
𝑞1, . . . , 𝑞𝑛

]𝑇 ∈ R𝑛 . The Lagrangian

7



2.4. LAGRANGE FORMULATION

formalism exploits the kinetic energy K and the potential energy U as function
of the generalized coordinates (and derivatives) in the Lagrangian ℒ.

ℒ(q, q¤ ) = K(q, q¤ ) − U(q) (2.3)

The Lagrange equations can then be computed and in their compact form, they
are expressed as follows:

𝑑
𝑑𝑡

(
𝜕ℒ
𝜕q¤

)𝑇
−
(
𝜕ℒ
𝜕q

)𝑇
= 𝝃 (2.4)

where the vector 𝝃 describes non conservative torques and forces doing work at
each manipulator joint. In general, 𝝃 may represent any force acting on the
manipulator, i.e. actuation torques, the friction effects, aerodynamic effects and
the interaction with environment forces.

For a rigid body, the kinetic and potential energy can be explicitly calculated
for each link and corresponding joint motor. For simplicity, motors are assumed
to have zero mass, making their contribution as independent rigid bodies negligi-
ble. In other words, they are assumed to exhibit no inertia or gyroscopic effects
and, consequently, do not appear as independent terms in the Lagrangian. How-
ever, their mass is incorporated into the total mass of the respective link.

For standard mechanical systems (composition of rigid bodies), the kinetic
energy can be proven to have be quadratic form of the type K = 1

2q¤𝑇𝑩(q)q¤ ,
where 𝑩(q) is the inertia matrix and it can be shown to be a (𝑛 × 𝑛) symmetric
and positive-definite matrix, independently on the generalized vector q. Notably,
the potential energy depends only on the joint position q.

Taking the derivatives required by Lagrange equations in 2.4 and rearranging
the centrifugal and Coriolis terms into matrix form, it yields

𝑩(q)q¥ + 𝑪(q, q¤ )q¤ + g(q) = 𝝃 (2.5)

The matrix 𝑪(q, q¤ ) is a suitable (𝑛 × 𝑛) matrix whose entries 𝑐𝑖 𝑗 satisfy a certain
equation, resulting from the Lagrange equations. Occasionally, to simplify
notation, the Coriolis and gravitational effects are embedded into a single vector:
𝑪(q¤ , q)q¤ + g(q) = n(q¤ , q).

8
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𝑩−1(q)
∫ ∫q¥ q¤ q

n(·, ·)

−

q¤

𝝃 +

Figure 2.3: Representative diagram of the robot dynamics: the integrators pro-
vide a mathematical representation of the system’s internal processes. The joint
torques serve as inputs, while the joint positions and velocities are outputs,
characterizing the system’s behavior.

Regarding the generalized force vector 𝝃 it takes into account for the actuation
torques, and may also includes environmental interaction forces. If the manipu-
lator’s end-effector is in contact with the environment, a portion of the actuation
torques is used to balance the torque induced at the joints by these contact forces.
Denoting by h𝑒 the vector of forces and moments exerted by the end-effector,
the resulting joint torques are given by

𝝉e = 𝑱𝑇(q)h𝑒

where the configuration dependent matrix 𝑱(q) is the geometric Jacobian deriving
from the differential kinematics.

2.4.1 Joint Friction

The vector 𝝃 can also be used to incorporate friction effects. Friction is a
complex non-linear phenomena, especially during motion reversal. However,
the following non-linear formulation in the joint velocity, is often an acceptable
simplification for many robotics applications

𝜏 𝑓𝑖 = 𝑓𝑣𝑖 𝑞¤ 𝑖 + 𝑓𝑠𝑖 sgn 𝑞¤ 𝑖 (2.6)

This formulation has the clear advantage to be linear with the parameters 𝑓𝑣𝑖 ,
𝑓𝑠𝑖 : property that will be exploited later in the document.

In equation 2.5, it is possible to include the friction contributions, yielding
complete model as shown in equation 2.7.

𝑩(q)q¥ + 𝑪(q, q¤ )q¤ + g(q) + 𝑭𝒗 q¤ + 𝑭𝒔 sgn(q¤ ) = 𝝉 − 𝑱𝑇(q)h𝑒 (2.7)

where 𝑭𝑣 = 𝑑𝑖𝑎𝑔
{
𝑓𝑣1 , . . . , 𝑓𝑣𝑛

}
is the viscous friction matrix and 𝑭𝑠 = 𝑑𝑖𝑎𝑔

{
𝑓𝑠1 , . . . , 𝑓𝑠𝑛

}
is the Coulomb or static friction matrix.

9
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Equation 2.7 is named Equation of Motion (EoM) as it provides the relation
between the motion of the body with the generalized force contributions.

Figure 2.3 schematically illustrates the behavior of the rigid body when a
given torque vector 𝝃 is applied.

2.4.2 Direct and inverse dynamics

Given the dynamic model equation in the form of 2.7, two frameworks related
to system dynamics can be considered:

• the direct dynamics problem consists in determining the system’s motion,
expressed through the generalized coordinates q, q¤ , q¥ , given the input
torque vector 𝝃 and the system’s initial conditions. This approach is par-
ticularly useful for simulation purposes.

• Conversely, the inverse dynamics problem takes the motion variables as
input and calculates the required torque to achieve the desired trajectory,
making it well-suited for control applications.

10
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CTRL BOARDS

q𝑑
q¤ 𝑑
𝝉𝑑

𝑖𝑞

q
q¤

𝝉

Figure 2.4: Control Scheme: signal flows to and from the manipulator. The joints
are controlled via current, although the control boards also support position and
velocity commands. Additionally, the boards provide measurements of position,
velocity, and torque, which can be utilized for feedback control.

2.5 Basic controllers

A variety of joint space control techniques are presented, which can be
classified into two categories. Decentralized control schemes involve controlling
each manipulator joint independently of the others, whereas centralized control
schemes account for the dynamic interaction effects between the joints.

Task specifications, such as end-effector motion and applied forces, are typi-
cally defined in the operational space, while control actions, such as the general-
ized forces of the joint actuators, are executed in the joint space. This distinction
naturally gives rise to two general control schemes: joint space control and
operational space control. In both schemes, the control structure incorporates
closed-loop feedback to exploit its advantages, including robustness to modeling
uncertainties and the mitigation of disturbance effects. For general manipulator
applications, the reference trajectory is typically defined in the operational space,
namely x𝑑. However in the joint space control problem this motion has to be
transformed in the corresponding motion q𝑑 in the joint space which is what
can be tracked by the controller.

Although the operational space variables x𝑒 are not directly controlled, and
the pose moves according to the manipulator structure. It is clear that any
structural uncertainties, such as construction tolerances, lack of calibration, gear
backlash, or elasticity, as well as any imprecision in the knowledge of the end-
effector’s pose relative to the object being manipulated, result in reduced accu-
racy of the operational space variables.

On the other hand the operational space control problem relies on the the
feedback loop directly in the operational space coordinates. Its conceptual
advantage lies in the ability to act directly on the operational space variables.
However, this advantage is largely theoretical, as operational space variables
are often not measured directly but are instead obtained by evaluating direct
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kinematics functions based on the measured joint space variables.
First will be discussed an implementation of the decentralized control, since it

will be useful in the parameter estimation section, then some dynamic controllers
will be presented.

2.5.1 Decentralized kinematic control

Kinematic control involves designing the controller while neglecting the
robot’s dynamics. To compensate for this omission, a Low-Level Feedback (LLF)
loop is necessary which ensures that the commanded velocities are accurately
tracked.

When a manipulator is actuated by electric motors with high-ratio reduction
gears, the gears tend to linearize the system dynamics and decouple the joints,
thereby mitigating non-linearity effects. However, this advantage comes at the
cost of joint friction, elasticity, and backlash, which can impose greater limi-
tations on system performance than configuration-dependent inertia, Coriolis
forces, centrifugal forces, and other factors.

The decentralized control strategy ignores the overall dynamics of the system
and establishes 𝑛 independent control schemes, as illustrated in Figure 2.5,
where each joint is considered as single-input/single-output system. The non
linearities are treated as disturbances in the control loop. Then the control must
be properly selected and tuned to reject them.

To guide selection of the controller structure, start noticing that an effective
rejection of the disturbance 𝑑 on the output 𝑞¤ 𝑖 is ensured by:

• a large value of the amplier gain before the point of intervention of the
disturbance,

• the presence of integral action in the controller helps to eliminate the effect
of the gravitational component on the output at steady state, where these
effects remain constant.

These requisites clearly suggest the use of a Proportional-Integral (PI) control
action in the forward path whose transfer function is

𝐶𝑉(𝑠) = 𝐾𝑃 + 𝐾𝐼 1𝑠
Even though the system dynamics, as described in Section 2.4, is clearly non-
linear and coupled, by implementing a low-level feedback we can approximate
the scheme of Figure 2.5 as an integrator. The inner loop, or the main controller
is implemented in the driver boards. In this way the control bandwidth is higher
enough to consider it as analog loop.

Once the controllers are tuned the low level loop, of Figure 2.5 is then seen as
a simple integrator for each joint. Then the kinematic control introduced before
can be implemented, as in section 2.5.2 and 2.5.3.

12
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𝐶𝑉(𝑠) ACTUATOR
ROBOT

DYNAMIC
𝑞¤★𝑖 𝑖★𝑞 𝑖𝑞 𝑞𝑖

𝑞¤ 𝑖
−

Figure 2.5: Decentralized control scheme. This structure is implemented for
every joint 𝑖. Due to the high bandwidth of the motor current, the control loop
can be approximately considered as analog.

In the context of this project, the trajectory is already defined in the joint
space, thus eliminating the need for a reference generator, as would be required
in the general case.

A brief description of two possible kinematic control strategies, exploiting
the above-mentioned approximation are now presented.

2.5.2 Kinematic control of joint motion

In this case as input the Cartesian trajectory of the end effector p𝑑 and p¤ 𝑑 is
considered. The trajectory needs to be translated to the joint space to serve as
the system’s input.

To achieve this, the inverse differential kinematic theory must be exploited,
which is what the block 𝑱−1(q𝑑) of scheme 2.6 is designed to do. The reason of
the nomenclature comes from the derivation of the direct kinematic. Indeed the
time derivative of relation 2.2 is

x¤ 𝑒 =
[
p¤ 𝑒
Φ¤ 𝑒

]
=

[
𝑱𝑝(q)
𝑱Φ(q)

]
q¤ = 𝑱𝐾(q)q¤ (2.8)

where 𝑱𝐾(q) is the analytical Jacobian of K(q). Given that we are considering
only the Cartesian variables p¤ 𝑒 , the relation to invert is p¤ 𝑒 = 𝑱𝑝(q)q¤ . This
operation is generally non-invertible and requires careful considerations. For
simplicity in the schematic 2.6, the inversion is represented using standard
matrix notation.

13
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𝑱−1(q𝑑)
∫

𝑲
∫

K(·)

Reference generator

Arm

q𝑑p¤ 𝑑
q¤ 𝑑

e +
q¤

q+
−

p𝑒

Figure 2.6: Kinematic control scheme of joint motion. The arm dynamic is
approximated as an integrator, assuming the presence of the LLF. The end
effector position is then computed through direct kinematic.

The reference generator exploit the kinematic relation between joint velocity
and velocity of Cartesian variables. It is performed over the desired trajectory,
hence it can be computed offline.

The error converges to zero if the gain matrix 𝑲 � 0. Indeed, from the scheme
2.6, it holds:

e¤ = q¤ 𝑑 − q¤ = q¤ 𝑑 − (q¤ 𝑑 + 𝑲(q𝑑 − q)) = −𝑲e e = q𝑑 − q

Thus, the evolution of the error e is described by a first-order differential equa-
tion, with an exponential decay rate determined by the gain matrix 𝑲.

2.5.3 Kinematic control of Cartesian motion

The second approach involves compensating for the error that arises in the
Cartesian space. In this case, the reference generator functions is an integrator
that provides the position trajectory in accordance with p¤ 𝑑. Typically, precise
knowledge of the end-effector’s position is unavailable and must therefore be
determined through direct kinematics. The scheme of Figure 2.7 shows the
general view of this approach.

∫
𝑲 𝑱−1(q)

∫
K(·)

Ref. gen.

Arm

p¤ 𝑑 +p𝑑
q¤

e +
p¤ q

p𝑒
−

Figure 2.7: Kinematic control scheme of Cartesian motion. The conversion is
inherently integrated into the feedback loop, as the sensors measure the joint
state, and direct kinematics transform this data into Cartesian space.

Similarly to the previous case if 𝑲 � 0 the system has exponential error
convergence. The limitation of this approach arises from the need for real-time
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computation of the Jacobian inverse. Singularities must be foreseen and care-
fully managed. When singularity issues related to the desired motion become
relevant, it is necessary to account for the robot’s dynamic terms and dissipative
effects.

2.6 Dynamic controllers

For applications requiring high operational speeds, varying payload condi-
tions, or direct-drive actuators, the nonlinear coupling terms significantly affect
system performance and can no longer be treated as mere disturbances. In such
cases, it is recommended to design control algorithms that leverage a detailed
understanding of the manipulator’s dynamics to compensate for these nonlinear
coupling effects. Centralized algorithms take advantage of a detailed knowledge
of the manipulator dynamics to compensate for the non-linear coupling terms.
In this approach the manipulator is not a set of 𝑛 independent system but it is a
multi-variable, non-linear system, where the inputs are the 𝑛 − 𝑗𝑜𝑖𝑛𝑡 torques and
the output the 𝑛 − 𝑗𝑜𝑖𝑛𝑡 positions.

On the other hand, in order to generate compensating torques for the nonlin-
ear terms the knowledge of the dynamic model is required, to design a model-
based non-linear control approach. This, in turn, creates the requirement to
estimate the model parameters.

2.6.1 Position control

Initially a position control approach is introduced. Given a desired con-
stant position q𝑑 the objective is to design a controller ensuring global asymptotic
stability of the posture.

The reference position can also be assigned in the operational space, then an
inverse kinematic step must be performed before-hand. Alternatively, the error
feedback, as will be introduced later1, can also be viewed as the error in the task
space, assuming the availability of sensors to measure the end-effector’s pose.

To simplify the procedure, it is assumed that there is no interaction with the
environment, i.e., h𝑒 = 0. Additionally, based on the dynamic model in equation
2.7, we assume the absence of static friction, such that F𝑠 = 0.

The determination of the control input that stabilizes the system around the
equilibrium posture is based on the Lyapunov direct method. The equilibrium state
should consist of the desired joint position with zero joint velocity. A possible

1While the control law remains similar, its interpretation and the convergence proof differ.
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definition is:

x𝑒𝑞 ≔

[
q̃
q¤

]
q̃ ≔ q𝑑 − q (2.9)

where q̃ is the error in joint space.
The candidate Lyapunov function should be strictly positive for all the x ≠ 0,

and zero in the origin. The condition 𝑉(x) > 0 is not sufficient to guarantee
asymptotic stability; it is also necessary that 𝑉¤ (x) < 0 for all x ≠ 0. A valid
Lyapunov function candidate is

𝑉(q̃, q¤ ) = 1
2q¤𝑇𝑩(q)q¤ + 1

2 q̃𝑇𝑲𝑃q̃ (2.10)

where 𝑲𝑃 is a (𝑛 × 𝑛) symmetric positive definite matrix. The inertia matrix 𝑩 is
symmetric and positive definite as well, ensuring the positivity of 𝑉 .

Differentiating equation 2.10 with respect to time, it yields

𝑉¤ (q̃, q¤ ) = q¤𝑇𝑩(q)q¥ + 1
2q¤𝑇𝑩¤ (q)q¤ − q¤𝑇𝑲𝑃q̃ (2.11)

where the constant desired joint position is utilized, specifically ¤̃𝒒 = −q¤ . At this
point the system dynamics can be included. Specifically, based on equation 2.7
and the assumptions outlined, the term 𝑩(q)q¥ can be exploited and substituted
into 𝑉¤ . After rearranging the terms, the expression becomes:

𝑉¤ (q̃, q¤ ) = 1
2q¤𝑇 (

𝑩¤ (q) − 2𝑪(q, q¤ )) q¤ − q¤𝑇𝑭𝑣q¤ + q¤𝑇 (u − g(q) − 𝑲𝑃q̃) (2.12)

It is possible to define the matrix 𝑵 (q, q¤ ) = 𝑩¤ (q) − 2𝑪(q, q¤ ). From the conserva-
tion of energy principle [4, p.259] it holds that

q¤𝑇𝑵 (q, q¤ )q¤ = 0 ∀q¤ (2.13)

The energy derivative function 𝑉¤ can be simplified, and with the choice of the
input as in equation 2.14 it can be state 𝑉¤ < 0.

u = g(q) + 𝑲𝑃q̃ + 𝑲𝐷 ¤̃𝒒 (2.14)

With this choice of input, it cannot be directly inferred from the Lyapunov
function that q̃ = 0 is contained within the equilibrium subspace. Indeed the
only condition appearing from 𝑉¤ on the state

[
q̃𝑇 , q¤𝑇 ]𝑇 is q¤ = 0, as shown in

equation 2.15.

𝑉¤ (q̃, q¤ ) = −q¤𝑇 (𝑭𝑣 + 𝑲𝐷)q¤ ≤ 0 𝑉¤ = 0 ⇐⇒ q¤ = 0, ∀q̃ (2.15)

Regardless that the provided input 𝑢 is asymptotically stabilizing the system.
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𝑲𝑃

𝑲𝐷

MANIPULATOR

g(·)

q𝑑 q̃ + + u
+

−
q¤
q− q

Figure 2.8: Dynamic position control scheme: gravity compensation. The bias
term g(q) is calculated and incorporated as a real-time feedforward action.
The controller gains are typically diagonal matrices. In particular, to ensure
asymptotic stability, it is required that 𝑲𝑃 � 0, 𝑲𝐷 � 0.

By substituting equation 2.14 into the dynamic equation 2.7, it follows that:

𝑩(q)q¥ + 𝑪(q, q¤ )q¤ + g(q) + 𝑭𝒗 q¤ = g(q) + 𝑲𝑃q̃ − 𝑲𝐷q¤ (2.16)

where at the equilibrium subspace obtained in equation 2.15, where in particular
q¤ = 0 and accordingly q¥ = 0, most of the terms are simplified and it remains
q̃ = 0. The scheme implementing this controller is illustrated in Figure 2.8.

The presence of viscous friction determine the rate of energy dissipation.
Due to the uncertainty in the friction term 𝑭𝑣 , a derivative component has been
introduced. The gain 𝑲𝐷 enhances the convergence to the equilibrium. The
inclusion of the derivative term 𝑲𝐷 also contributes to increasing |𝑉¤ | along the
system trajectories.

The selection of control gains 𝑲𝑃 , 𝑲𝐷 influences the robot’s behavior during
transient phases and settling times. Defining optimal values across the entire
workspace is generally challenging.

Given position control as the objective, the dynamic model is exploited only
to compensate the gravity force at each position. For this reason, the presented
controller is often referred to as gravity compensation, as at equilibrium, where
q̃ = 0, q¤ = 0, the input is non-zero but corresponds to u = g(q).

Notably, the control law remains applicable in discrete time, as all terms are
static. The velocity q¤ is measured at each discrete time step. In this implemen-
tation, it is challenging to estimate the rise time and settling time of the system in
advance, as these values depend on various factors such as the masses, control
gains, initial and target positions, and other dynamic influences.
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2.6.2 Trajectory tracking

In this section trajectory controllers will be presented. The reference trajec-
tory is assumed to be provided in joint space, consisting of position, velocity,
and acceleration functions 2.17.

q𝑑(𝑡) q¤ 𝑑(𝑡) q¥ 𝑑(𝑡) (2.17)

If performance is not a critical concern and the target trajectory is relatively slow
compared to the manipulator’s dynamics, it may be feasible to implement a
trajectory tracking algorithm as a sequence of position tracking tasks.

Otherwise, in the general trajectory tracking problem, the complete dynamics
must be exploited. Even in an ideal scenario where the initial conditions are
perfectly known, they may not align with the desired ones, necessitating the use
of a closed-loop control strategy.

𝑩−1(q)
∫ ∫q¥ q¤ q

n(·, ·)

−

q¤Robot Dynamics

n(·, ·)

𝑩(q)

𝑲𝑃

𝑲𝐷

u

+
++a

++

−
q¥ 𝑑 + 𝑲𝐷q¤ 𝑑 + 𝑲𝑃q𝑑

Figure 2.9: Dynamic trajectory controller. It consists of two feedback loops: an
inner loop for feedback linearization (FBL) and an outer loop for stabilizing the
overall system. Once again, to ensure asymptotic stability, the gains have to be
positive definite matrices.

Similarly to the position tracking section we assume absence of forces inter-
acting with the environment, i.e., h𝑒 = 0. and no Coulomb friction forces are
acting on the robot. For the sake of clarity, the dynamic model equation 2.7 is
presented below with a simplified notation.

u = 𝑩(q)q¥ + 𝑪(q, q¤ )q¤ + g(q) + 𝑭𝒗 q¤ + 𝑭𝒔 sgn(q¤ )
u = 𝑩(q)q¥ + n(q, q¤ ) (2.18)

The core concept of this controller relies on the precise knowledge of the dy-
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namic model and the ability to compute the non linear feedback in real-time. The
approach involves utilizing the acceleration vector as the manipulator’s out-
put reference and adapting the controller to transform the system into a linear
structure, enabling the application of a PI/PID control scheme.

q¥ = 𝑩−1(q) [u − n(q, q¤ )] (2.19)

From the above equation, it is possible to compute an initial term that can
be applied to achieve a linearized form. Specifically, the choice presented in
equation 2.20 linearizes the system 2.19, resulting in a second-order differential
equation of the form q¥ = a.

u = 𝑩(q) a + n(q, q¤ ) (2.20)

At this point, the acceleration vector a becomes a degree of freedom in designing
the controller. In the ideal case, setting a = q¥ 𝑑 provides a feedforward action that
enables the tracking of the desired trajectory.

The resulting system q¥ = a can be treated as linear, so a Proportional-Derivative
action can be implemented.

u = 𝑩(q) [q¥ 𝑑 + 𝑲𝑃
(
q𝑑 − q

) + 𝑲𝐷
(
q¤ 𝑑 − q¤ ) ] + n(q, q¤ ) (2.21)

In this way the control law 2.21 ensures asymptotical stability if 𝑲𝑃 � 0, 𝑲𝐷 � 0.
Indeed it comes the second order differential equation 2.22, namely the error
dynamics governed by the gains coefficients 𝑲𝑃 , 𝑲𝐷 . Such an error arises only if
q(0) and q¤ (0) differ from zero, and it converges to zero at a rate determined by
the selected gain matrices 𝑲𝑃 and 𝑲𝐷 .

¥̃𝒒 + 𝑲𝐷 ¤̃𝒒 + 𝑲𝑃 �̃� = 0 (2.22)

The control law 2.21 is depicted in the scheme of Figure 2.9.
Under feedback linearization control, the robot has a dynamic behavior that

is invariant, linear and decoupled in its whole workspace (∀(q, q¤ )). If the control
gains are chosen as positive and diagonal matrices the second-order differential
equation 2.22 becomes a set of 𝑛 independent differential equations.

A drawback of this approach is the reliance on the precise knowledge of the
dynamic model. In practice, the model is often known with a certain degree
of uncertainty due to incomplete information about the manipulator’s mechan-
ical parameters, the presence of unmodeled dynamics, and the dependence on
end-effector payloads, which are not precisely known and therefore cannot be
perfectly compensated.
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3
Dynamic parameters

As with many other applications, the primary assumption in designing a
controller is the knowledge of the system. While it is impossible to achieve a
perfect model, what is required is a sufficiently accurate model for control tasks,
where uncertainties can be compensated. This chapter outlines the procedure
adopted for the estimation of dynamic parameters.

Computing these parameters based on the design data of the mechanical
structure is a complex task. CAD modeling techniques can be employed to com-
pute the inertial parameters of various components (such as links, actuators,
and transmissions) based on their geometry and the materials used. However,
the estimates derived from these techniques are often imprecise due to the sim-
plifications typically introduced in geometric modeling. Additionally, complex
dynamic effects, such as joint friction, cannot be accurately accounted for using
this approach.

A heuristic approach could involve disassembling the various components
of the manipulator and conducting a series of measurements to determine the
inertial parameters. Nevertheless, this technique is challenging to implement
and may pose difficulties in accurately measuring the relevant quantities, not to
mention the inability to estimate any effects arising from the interaction between
links.

3.1 Linear formulation of the problem

The dynamic model written in Lagrangian formulation has the property to
be linear with respect to a suitable set of dynamic parameters [4, pp.259-264]. The
Lagrangian equation 2.5 can be reformulated in the linear form as in equation
3.1. Within this context the generalized forces 𝝃 comprises only the effort (force or
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torque) at the joints.

𝑩(q)q¥ + 𝑪(q, q¤ )q¤ + g(q) = 𝒀 (q, q¤ , q¥ )𝝅 = 𝝉 (3.1)

The matrix 𝒀 (q, q¤ , q¥ ) is referred as regressor matrix and it map the elements
from the parameter’s space R𝑝 to the joint effort space R𝑛 . The regressor matrix
incorporates the information related to the system’s motion, as it is dependent
on the current positions, velocities, and accelerations of the generalized coordinates
(in this case, the trajectory of joints).

The entries of the matrix 𝒀 (q, q¤ , q¥ ) are non-linear functions of position, veloc-
ity and acceleration of the joints and can be retrieved as in the general procedure
2.4 throughout the Lagrangian formulation. In fact they can be derived from
the computation of the kinetic and potential energy link-wise, but with a refor-
mulation of the vectors in the link reference frames.

The primary issue of the standard formulation is the presence of the center
of mass coordinates and inertia components, which enter the expression for kinetic
energy in a nonlinear way. By applying the Huygens-Steiner theorem (equation
3.2), the inertia tensor of the link, originally expressed with respect to its center
of mass (𝑰ℓ𝒊ℓ𝒊 ), can be re-expressed relative to the link frame origin. In this way it
is possible to incorporate both terms in a unique matrix thus making it linearly
parameterizable.

𝑰ℓ𝒊ℓ𝒊 = 𝑰ℓ𝒊ℓ𝒊 + 𝑚𝑖𝑺𝑇(c𝑖𝑖,𝐶𝑖 )𝑺(c𝑖𝑖 ,𝐶𝑖 ) (3.2)

where 𝑺(·) is the skew-symmetric matrix operator,

𝑺(r) =


0 −𝑟𝑧 𝑟𝑦
𝑟𝑧 0 −𝑟𝑥
−𝑟𝑦 𝑟𝑥 0

 for r =


𝑟𝑥
𝑟𝑦
𝑟𝑧


In equation 3.2, 𝑰ℓ𝒊ℓ𝒊 is the inertia tensor relative to link 𝑖 center of mass, 𝑚𝑖 its
mass and 𝑺(c𝑖𝑖,𝐶𝑖 ) the skew symmetric matrix related to the relative distance,
expressed in the link frame coordinates, of the center of mass and the frame
origin itself.

The positive definiteness of the inertia matrix 𝑰ℓ𝒊ℓ𝒊 ensures that the kinetic
energy of the system, which depends on the inertia matrix, is always positive for
any non-zero angular velocity. In general the inertia matrix is always positive
definite when expressed with respect to the center of mass, but when expressed
with respect to other points, its positive definiteness is no longer guaranteed,
and the matrix may become indefinite, depending on the location and mass
distribution. In this case though, the new reference system is not arbitrary, but
it is the link frame, parallel with the center of mass one. It yields then that
𝑰ℓ𝒊ℓ𝒊 � 0. Indeed it is a summation of a positive definite matrix 𝑰ℓ𝒊ℓ𝒊 and a positive
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semidefinite matrix𝑚𝑖𝑺𝑇(c𝑖𝑖,𝐶𝑖 )𝑺(c𝑖𝑖,𝐶𝑖 ). Moreover, given that𝑚𝑖 is a positive scalar,
for every vector x, it holds

x𝑇
(
𝑺𝑇𝑺

)
x = | |𝑺x| |2 ≥ 0

This shows that 𝑺𝑇𝑺 is positive semidefinite since x𝑺𝑇𝑺x ≥ 0 for any x.

Each link is described by a p-dimensional parameter vector 𝜋𝑖 ∈ P ⊂ R𝑝
whose components are a non-linear combination of the dynamic quantities of
the link, namely: mass and inertia moments of first and second order. Typically,
the space in which the vector resides is a subset of R𝑝 , as not all elements of this
space can represent a valid parameter vector due to certain constraints imposed
over it.

Assuming, for the moment, the absence of external forces due to environ-
mental contact and neglecting the contribution of friction to the dynamics, the
parameter vector for each link takes the following form:

𝝅i =
[
𝑚𝑖 , 𝑚𝑖𝑐𝑥,𝑖 , 𝑚𝑖𝑐𝑦,𝑖 , 𝑚𝑖𝑐𝑧,𝑖 , 𝐼 𝑖,𝑥𝑥 , 𝐼 𝑖 ,𝑥𝑦 , 𝐼 𝑖 ,𝑦𝑦 , 𝐼 𝑖,𝑥𝑧 , 𝐼 𝑖,𝑦𝑧 , 𝐼 𝑖,𝑧𝑧

]𝑇
𝝅 =


𝝅1
...

𝝅n


(3.3)

In this representation, the number of unknowns for each joint consists of ten
parameters, denoted as 𝑝 = 10. The inertia components 𝐼𝑥𝑦𝑧 define a unique
quadratic and symmetric matrix 𝑰ℓ𝑖 , which represents the inertia tensor of link
ℓ𝑖 , expressed relative to the origin of the link frame itself.

In the parameter vector 𝝅𝑖 , defined above, the relative distance c𝑖𝑖,𝐶𝑖 between
the link and center of mass frames enters as the first order momentum. To simplify
the notation equation 3.2 can be reformulated to be directly dependent on the
parameter vector’s entries. From 3.2, and recognizing that 𝑚𝑖 > 0, it yields

𝑰ℓ𝒊ℓ𝒊 = 𝑰ℓ𝒊ℓ𝒊 + 𝑺𝑇(𝑚𝑖c𝑖𝑖 ,𝐶𝑖 )𝑺(𝑚𝑖c𝑖𝑖 ,𝐶𝑖 )

where 𝑚𝑖c𝑖𝑖,𝐶𝑖 =
[
𝑚𝑖𝑐𝑥,𝑖 , 𝑚𝑖𝑐𝑦,𝑖 , 𝑚𝑖𝑐𝑧,𝑖

]𝑇 is the first moment of inertia of link ℓ𝑖 ,
namely the components two to four of 𝝅𝑖 . For the parameter set of link ℓ𝑖 to be
feasible, the barycentric inertia must satisfy 𝑰ℓ𝒊ℓ𝒊 � 0. Accordingly, based on the
aforementioned considerations, it follows that:

𝑰ℓ𝒊ℓ𝒊 − 𝑺𝑇(𝑚𝑖c𝑖𝑖,𝐶𝑖 )𝑺(𝑚𝑖c𝑖𝑖,𝐶𝑖 ) � 0 (3.4)

It is important to emphasize the property of positive definiteness, as it will be
utilized in the following section.

As outlined in section 2.4, the most convenient approach to describe the
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friction in the joints is through a linear formulation. At this stage, it is beneficial
to incorporate Coulomb and viscous friction parameters into the parameter
vector. A possible extension of the aforementioned vector 𝝅 is represented by 𝜽

in equation 3.5.
Additionally, the regressor matrix must be adjusted to align with the order of

the new parameter vector. Assuming that the friction in each joint is independent
of the states of the other joints, the matrices 𝑭𝒗 and 𝑭𝒔 , representing viscous and
static friction respectively, are diagonal. Considering the linear model of the
form: 𝜏𝑖 = 𝑓𝑣𝑖 𝑞¤ 𝑖 + 𝑓𝑠𝑖 sgn 𝑞¤ 𝑖 , then it is possible to modify the regressor matrix
as described in equation 3.6. This adjustment corresponds to the extended
parameter vector 𝜽 in equation 3.5.

𝜽 =
[
𝝅1

𝑇 . . .𝝅n
𝑇 , 𝑓𝑣1 . . . 𝑓𝑣𝑛 , 𝑓𝑠1 . . . 𝑓𝑠𝑛

]
(3.5)

𝚽(q, q¤ , q¥ ) =


𝑞¤1 sgn 𝑞¤1

𝒀 (q, q¤ , q¥ ) . . . . . .

𝑞¤𝑛 sgn 𝑞¤𝑛

 (3.6)

The system dynamics, incorporating the friction effects as described in Equation
2.7, can be expressed as: 𝝉 = 𝚽(q, q¤ , q¥ )𝜽 which can clearly be embedded
into a linear regression framework for parameter estimation. At this stage, the
dimension of 𝜽 is 𝑛𝑝, where

𝑝 = 12 (3.7)

and 𝑛 represents the number of degrees of freedom of the manipulator. For the
regressor matrix, it holds: 𝚽 ∈ R𝑛×𝑛𝑝 .

3.2 Optimization problem

The selection of a parameter estimation method involves a trade-off between
accuracy and implementation complexity. Least squares (LS) parameter estima-
tion is a non-iterative approach that determines parameter estimates in a single
step using singular value decomposition.

3.2.1 Identifiability

Consider the linear regressor model of the form y = 𝚽𝜽+w, where w ∼ N(0,𝚺)
(with𝚺 > 0),𝚽 ∈ R𝑀×𝑛𝑝 with𝑀 ≥ 𝑛𝑝 then we can assert that global identifiabil-
ity is achieved if the Fisher information matrix is invertible. In this specific case,
the Fisher information matrix can be computed in closed form as 𝑰(𝜽) = 𝚽𝑇𝚺−1𝚽
which is clearly invertible if and only if the regressor matrix𝚽 is full column rank.
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To achieve this condition, having fixed the size of the parameter vector, it is con-
venient to increase the number of samples to be collected, while maintaining a
trade-off with the complexity of the problem.

�̂�𝑀𝐿 ≡ �̂�𝐿𝑆 = argmin
𝜃

‖y −𝚽𝜃‖2
Σ−1

Under the assumption of Gaussian noise, the least-squares estimation provides
the same estimator as the maximum likelihood method, thus ensuring to be an
Unbiased Minimum Variance of Error (UMVE) estimator.

On the other hand, in the general case (non linear problem and non Gaus-
sian noise), �̂�𝐿𝑆 is a minimum variance over the class of the unbiased and linear
estimators of 𝜽.

The knowledge of the noise covariance matrix makes it possible to discrim-
inate data according to its accuracy. In fact, weighting with the inverse of the
covariance matrix ensures that torque measurements with higher noise are less
influential in parameter estimation.

3.2.2 Least square problem

Given the lack of prior information on the variance of the measurement error,
and the fact that the parameters have physical significance and require feasibility
constraints, a constrained least-squares problem was preferred.

The identification procedure is performed by collecting 𝑀 >> 𝑛𝑝 joint
torque, position and velocity samples so as to avoid ill-conditioning of matrix
�̄�. The samples are collected along a trajectory, as described in the following
sections, while the acceleration samples are computed through differentiation.
For each sample (𝝉𝑘 , q𝑘 , q¤ 𝑘 , q¥ 𝑘) with 𝑘 = 1, . . . , 𝑀 we have

𝝉𝑘 = 𝚽(q𝑘 , q¤ 𝑘 , q¥ 𝑘)𝜽

By stacking the collected samples into a matrix formulation the data takes the
following form


𝝉1
...

𝝉𝑀

 =

𝚽(q1, q¤ 1, q¥ 1)

...

𝚽(q𝑀 , q¤𝑀 , q¥𝑀)

 𝜽 = �̄�(q, q¤ , q¥ )𝜽 = �̄� (3.8)

The solution to the ordinary least squares problem with a non-square matrix �̄�
can be obtained through pseudo-inversion:

�̂� = �̄�
†
�̄�

25



3.2. OPTIMIZATION PROBLEM

Utilizing this procedure does not guarantee to obtain an absolute minimum, as
it is possible to get stuck in local minima. Furthermore, this solution does not
guarantee feasibility, as certain parameters are constrained by physics laws.

3.2.3 Physical consistency

In general the solution vector �̂� may be physically inconsistent, as negative
masses or non positive definite inertia matrices. This of course does not reflect
reality, but may be due to measurement noise, local minima, model errors.

Following the condition 3.4, the set of all feasibility constraints, for each link
ℓ𝑖 , can be written as 

𝑚𝑖 > 0

𝑰ℓ𝒊 − 𝑺𝑇(𝑚𝑖c𝑖)𝑺(𝑚𝑖c𝑖) � 0
(3.9)

The set of all feasible link parameter vectors, called P, can then be defined as

P ≔
{
𝝅 ∈ R10𝑛 : 𝑚𝑖 > 0, 𝑰ℓ𝒊 − 𝑺𝑇(𝑚𝑖c𝑖)𝑺(𝑚𝑖c𝑖) � 0 | 𝑖 = 1, . . . , 𝑛

}
(3.10)

In order to overcome the feasibility problem of the solution, constraints
are then introduced on the components of the parameter vector. In this case,
given the friction model described previously (refer to 2.6), the positivity of its
coefficients is imposed as an additional constraint. The implemented algorithm
is the following non-linear constrained optimization problem

�̂�𝐿𝑆 = argmin
𝜃

‖�̄� − �̄�𝜽‖2

s.t. 𝑰ℓ𝑖ℓ𝑖 � 0 𝑖 = 1, . . . , 𝑛

𝑚𝑖𝑚𝑖𝑛 < 𝑚𝑖 < 𝑚𝑖𝑚𝑎𝑥 𝑖 = 1, . . . , 𝑛

𝑓𝑣𝑖 > 0 𝑖 = 1, . . . , 𝑛

𝑓𝑠𝑖 > 0 𝑖 = 1, . . . , 𝑛

(3.11)

The imposed conditions on masses and friction coefficients have a clear physical
meaning: masses cannot be negative (nor zero), and the friction effect must
oppose the motion. Given that it is possible to weigh the links while they are
unmounted, a range of valid mass values is defined as a constraint, rather than
simply imposing the positivity of the masses.

Whether the solution requires it, additional constraints can be introduced,
such as: total weigh bound, positivity of the diagonal components of the inertia
matrix, or limits on the center of mass coordinates.

Additional constraints are indeed implemented. Since the centers of mass for
each link must lie within their respective convex hulls, bounds on the distance
vector (specified by 𝑟𝑖𝐿𝐵 and 𝑟𝑖𝐿𝐵) are applied. Consequently, limits on the first
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moment of inertia are also incorporated.
𝑚𝑖c𝑖 − 𝑚𝑖r𝑖𝐿𝐵 ≥ 0 𝑖 = 1, . . . , 𝑛

−𝑚𝑖c𝑖 + 𝑚𝑖r𝑖𝑈𝐵 ≥ 0 𝑖 = 1, . . . , 𝑛
(3.12)

A constraint on the total mass of the robot is also imposed, expressed as follows:

𝑚𝑡𝑜𝑡𝑚𝑖𝑛 ≤
∑
𝑖

𝑚𝑖 ≤ 𝑚𝑡𝑜𝑡𝑚𝑎𝑥 (3.13)

The idea behind imposing these constraints is to reduce the solution set
P, thereby preventing the occurrence of local minima or unfeasible solutions.
However, this approach may lead to the problem becoming unsolvable; in such
cases, a constraint relaxation procedure will be implemented, or an alternative
dataset will be utilized.

Regarding the inertia matrices of each link, special attention is required, as
the property of positive definiteness cannot be expressed in linear form. De-
spite this, it is possible to formulate the constraints the form of a Linear Matrix
Inequality (LMI), a common framework in control theory [5]. This formulation
implies that the set defined by conditions of physical feasibility is inherently
convex, thereby enabling the achievement of global optima in optimization
problems. Consequently, this permits the formulation of Semi-Definite Pro-
gramming (SDP) problems, for which effective and fast-solving techniques are
well established.

Furthermore, this constraint is not imposed directly on the matrix derived
from the parameter vector 𝝅 but must instead be applied to the matrix expressed
with respect to the center of mass. In the vector 𝝅𝑖 the inertia matrix referenced
in the link frame, obtained through Huygens-Steiner theorem 3.2, which can be
expressed as follows:

𝑰ℓ𝑖ℓ𝑖 =


𝐼𝑖 ,𝑥𝑥 + 𝑚𝑖(𝑐2

𝑦,𝑖 + 𝑐2
𝑧,𝑖) −𝐼𝑖 ,𝑥𝑦 − 𝑚𝑖𝑐𝑥,𝑖𝑐𝑦,𝑖 −𝐼𝑖 ,𝑥𝑧 − 𝑚𝑖𝑐𝑥,𝑖𝑐𝑧,𝑖

∗ 𝐼𝑖,𝑦𝑦 + 𝑚𝑖(𝑐2
𝑥,𝑖 + 𝑐2

𝑧,𝑖) −𝐼𝑖,𝑦𝑧 − 𝑚𝑖𝑐𝑦,𝑖𝑐𝑧,𝑖
∗ ∗ 𝐼𝑖 ,𝑧𝑧 + 𝑚𝑖(𝑐2

𝑥,𝑖 + 𝑐2
𝑦,𝑖)

 (3.14)

where 𝑰ℓ𝑖ℓ𝑖 is expressed in the coordinate frame 𝑖, but it represents the inertia
tensor relative to the center of mass of link 𝑖. On matrix 𝑰ℓ𝑖ℓ𝑖 the constraint 3.15
holds, which is then what will be imposed in the optimization problem 3.11.

𝑰ℓ𝑖ℓ𝑖 =


𝐼𝑖 ,𝑥𝑥 𝐼𝑖,𝑥𝑦 𝐼𝑖,𝑥𝑧
𝐼𝑖,𝑥𝑦 𝐼𝑖 ,𝑦𝑦 𝐼𝑖,𝑦𝑧
𝐼𝑖,𝑥𝑧 𝐼𝑖 ,𝑦𝑧 𝐼𝑖 ,𝑧𝑧

 � 0 (3.15)
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3.3 Optimization algorithms

The manifold generated by the cost function of the problem 3.11 contains
multiple local minima and therefore starting from different initial conditions
helps to span as much as possible the cost function manifold.

Different algorithms have been implemented to address the problem, which
has a linear cost but with non linear constraints. Since the optimization problem
is scalar, under non-linear constraints the Sequential Least Squares Quadratic
Programming (SLSQP) method was used. By running several runs of the algo-
rithm from different, random starting points, the choice falls on the least-cost
solution.

Following the idea of the optimization algorithm proposed in [1], a second
solver using the Simulated Annealing (SA) technique has been employed. SA
search for an optimal solution by exploring the solution space and probabilisti-
cally accepting worst solutions to escape local minima. It is particularly effective
for problems characterized by a large number of local minima. Constraints are
incorporated into the optimization process by penalizing them as part of the
objective function. Unlike gradient-based methods SA can escape local minima,
making it well-suited for non-convex optimization problems.

3.4 Trajectory parametrization

In theory, the invertibility of the square matrix �̄�
𝑇
�̄� is sufficient to ensure

identifiability. However, in practice, some parameters may be poorly identified
due to inadequately exciting input.

It can generally be concluded that the selection of the trajectory should favor
polynomial forms that are sufficiently rich to enable an accurate evaluation of
the identifiable parameters [3]. This corresponds to ensuring a low condition
number of the matrix �̄� along the trajectory.

The choice of the trajectory is a trade-off between several aspects:

1. The joint positions should cover the majority of the manipulator’s reach-
able workspace and be executed at varying accelerations to accurately
estimate the moments of inertia.

2. On the other side, such trajectories should not excite any unmodeled dy-
namic effects, such as joint elasticity or link flexibility, as these effects could
lead to unreliable estimates of the dynamic parameters.

3. The complexity of parametrization and tracking plays a significant role.
The former can increase the computational burden on the code, while the
latter may impact the performance of the arm.

4. Periodic and band-limited signals are more accurate to process, increasing
the accuracy of the estimates.
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Starting from the last point, the most immediate signal providing a limited
bandwidth are trigonometric functions, whose Fourier transforms are frequency
pulses.

𝑞𝑖(𝑡) = 𝑞𝑖 ,0 +
𝑁∑
𝑘=1

(
𝛼𝑖 ,𝑘 sin(𝑘𝜔0𝑡) + 𝛽𝑖 ,𝑘 cos(𝑘𝜔0𝑡)) (3.16)

Equation 3.16, shows the components of the implemented desired trajectory,
namely q𝑑(𝑡) =

[
𝑞1(𝑡), . . . , 𝑞𝑛(𝑡)

]𝑇 .
Since the manipulator can be controlled through velocity commands the

actual provided signal will be q¤ whose components can be arithmetically derived
as in equation 3.17.

𝑞¤ 𝑖(𝑡) =
𝑁∑
𝑘=1

(
𝛼𝑖 ,𝑘𝑘𝜔0 sin(𝑘𝜔0𝑡) − 𝛽𝑖,𝑘𝑘𝜔0 cos(𝑘𝜔0𝑡)) (3.17)

3.4.1 Amplitude coefficients

The coefficients characterizing the trajectory 𝛼𝑖,𝑘 and 𝛽𝑖 ,𝑘 define the am-
plitude of the signal, along with the bias term 𝑞𝑖,0. These coefficients can be
determined either solving a non linear optimization problem with constraints
imposed by the robot motion, or through trial and error. In this context, they
are randomly selected to meet specific criteria:

• a safety check is performed based on the joint positions to ensure that the
links do not come into contact with each other.

• Direct kinematics is employed to verify the absence of contact with the
ground or the external environment.

• Verify whether the corresponding velocities 3.17 remain within the safe
limits for motor operation.

The position farthest from the ground for the arm is the vertical one, which,
according to the DH parametrization outlined in Section 2.2.2, corresponds to
setting the second joint bias to 90 degrees, in addition to which a random term
is added.

3.4.2 Frequency coefficients

Equation 3.16 explicitly shows the relation between the spectral deltas.
Specifically 𝜔0 = 2𝜋 𝑓0 defines the fundamental harmonic, while as 𝑘 increase
we have harmonic multiples of this. The term 𝑁 is an arbitrary factor that de-
fines the number of spectral lines (or frequency deltas) that will appear in the
frequency domain.

Different tests have been performed varying both 𝑓0 and𝑁 . It has been noted
that a good compromise is 𝑓0 = 0.1𝐻𝑧 and 𝑁 = 5. In particular 𝑓0 = 0.1𝐻𝑧 for
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all joints, which correspond to an angular frequency of 𝜔0 = 2𝜋
10 𝑟𝑎𝑑/𝑠, is chosen

to be an integer multiple of the sampling frequency.
The selection of the fundamental frequency of the trajectory is arbitrary.

However, it is important to note that, in combination with the number of spectral
lines 𝑁 , it determines a highest harmonic at 𝑁 𝑓0. Given that the sampling time
cannot be improved, it is crucial to consider, as per Shannon’s theorem, that
the sampling frequency must satisfy 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 > 2𝑁 𝑓0 to ensure an accurate
reconstruction of the signal.

In the case under study, the sampling frequency is set to 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 1𝑘𝐻𝑧
while the highest harmonic is 2 𝑓0𝑁 = 1𝐻𝑧 which clearly satisfies the require-
ments of the sampling theorem thereby avoiding aliasing effects.

3.5 Filtering trajectory

As discussed in previous chapters, it is assumed that the low-level controllers
are properly tuned. The low-level feedback will be utilized to execute trajectories
without relying on the dynamic model of the arm. Consequently, velocity
commands will be issued to the joints, and it is expected that these commands
will be accurately tracked.

Interconnection between links, vibrations and mechanical disturbances, en-
coder’s noise and many other factors introduce noise in the actual joint trajecto-
ries that will clearly deviate from the commanded ones. The noise introduced
is challenging to model and, for general trajectories, difficult to effectively fil-
ter. However, selecting control commands with a known frequency spectrum
facilitates the filtering process, making noise mitigation more manageable.

−20 −10 0 10 20

0

0.5

1

Time [s]

Impulse response

(a) Time domain 𝑠𝑖𝑛𝑐(𝑥) function.
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(b) Rectangular window in the fre-
quency domain.

Figure 3.1: Impulse response and frequency response of an ideal LPF.
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The motion of the arm will present the same harmonics spectrum as that
of the commanded trajectories but the measurements will introduce more and
different harmonics then the expected ones. About the order of those harmonics
they are expected to be decreasing in frequency, since the behavior of mechanical
systems typically exhibit band-limited behavior, and the controller itself operates
within a limited bandwidth.

The pre-processing step is meant to clean the measured signals before the
identification step. By way of example in Figure 3.2, is depicted a simplified
version of the expected behavior.
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(a) Original noisy signal. sin(𝜔𝑡)
with 𝜔 = 2𝜋10 [𝑟𝑎𝑑/𝑠]
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(b) Anti-transformed filtered sig-
nal.
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(d) Rectangular window filter.

Figure 3.2: Filtering process in the frequency domain: the example signal con-
sists of a single frequency, meaning that the relevant information is concentrated
in the first peak of the frequency spectrum. A rectangular window filter is sub-
sequently applied to isolate this frequency.

The measured signal is assumed to exhibit addictive Gaussian noise (Fig-
ure 3.2a) which has spectral components distributed throughout the frequency
range. In this context, the simplest filter that can be implemented is a rectan-
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gular window. However, certain precautions must be observed when using this
filter, particularly because it is a non causal filter, requiring future samples in
the time domain. In this case, this limitation does not pose an issue, as the signal
is processed post-collection, meaning the entire signal is available for analysis.

The rectangular filter nullifies all frequencies outside the range of interest. In
the example, with a signal frequency of 𝑓0 = 10 [𝐻𝑧], the filter is configured to
eliminate all frequencies above 𝑓 𝑓 = 11.5 [𝐻𝑧]. The resulting frequency-domain
representation is shown in Figure 3.2d. Figure 3.2b illustrates the reconstructed
signal after the inverse transformation step.

The results are not perfectly free of noise because it cannot be removed from
the selected frequencies.

With regard to filtering the torque measurements, there is no prior knowledge
of the resulting signal’s frequency spectrum, unlike the previous case. In general,
a low-pass filter can be applied, with the bandwidth and attenuation tuned
according to the spectrum of the measured data.

3.5.1 Acceleration derivation

Numerical differentiation amplifies the noise present in the measurements,
though the acceleration is computed starting from the filtered version of the
velocity. The numerical differentiation is performed through second order ap-
proximation of the continuous time derivative, by means of python built-in
routine.

An alternative approach involves operating in the frequency domain and
multiplying the filtered spectrum by the continuous-time frequency response of
a pure differentiator, represented by 𝑗𝜔. While this convolution is suitable for
continuous-time signals, it necessitates careful consideration during implemen-
tation in discrete-time.

3.6 Payload estimation

Finally, it is worth noting that the technique described above can be extended
to identify the dynamic parameters of an unknown payload at the manipulators
end-effector. In this scenario, the payload is treated as a structural modification
of the last link, allowing for the identification of the modified link’s dynamic
parameters. If a force sensor is available at the manipulators wrist, it becomes
feasible to directly characterize the payloads dynamic parameters based on the
force sensor measurements.
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When the joints are not mounted in the arm it is possible to estimate the
parameters characterizing the motors and the gear boxes. Since the two radial
gear boxes are printed from the same CAD file, it is reasonable to assume that the
parameters are more or less the same. In practice of course this is not true indeed
many factors may change the parameters, such as: the printing precision, the
manual assembling, the motor shaft and the motor itself (even if it is the same
model).

Since the final goal is to drive the entire body via torque commands at the
joints, it is necessary to have a relation between the commanded signal to the
motors and the applied torque at the joint level. The presence of gears affect this
relation too, in fact in order to describe this map one has to extrapolate as much
information as possible from the transmission chain.

The friction parameters that will be retrieved in this section will be used as
initial guess also for the full arm model. The tests are performed with single
motor in a test bench, so each joint is not solicited by the mass and the inertia
of the others. Hence the derived values will not be congruent with those of the
total model but a reasonable starting point.

4.1 SPM brushless motors

As discussed in previous chapters the efficiency is a key-point of the project.
The choice to use brushless motors is related to weight and efficiency reasons.
Indeed those kind motors are typically more efficient than dc motors. On the
other hand a more complex and expensive control electronics is required.

Brushless motors, also called BrushLess Direct Current (BLDC) motors, are
synchronous motors controlled by periodic voltage waves in the three phases.
There are different type of brushless motors, but the choice addressed to Surface
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Figure 4.1: FOC control scheme for brushless motors.

Permanent Magnet (SPM) motors. Those are characterized by the presence of 𝑝
permanent magnets in the rotor and 𝑛 coils in the stator. In BLDC motors there
is no contact between the stator and the rotor, indeed the power is transferred
via the magnetic field induced by the current flowing in the stator’s windings.
In order to obtain a constant torque along a rotor’s turn the coils are divided in
three groups, called phases. Those are physically separated of 2𝜋

3 𝑟𝑎𝑑 but also
the commanded current signal are phase shifted of 2𝜋

3 𝑟𝑎𝑑.

In a synchronous electric motor the torque is generated by a misalignment
between the magnetic fields of stator and rotor. In some way the brush com-
mutator contacts are replaced by an electronic sensor that detects the angular
position of the rotor allowing synchronisation. The angular frequency of the
sinusoidal current injected in the stator phases determine the angular speed of
the rotor. The current in the three phases is, with the knowledge of the angular
position of the rotor, transformed in the so called synchronous frame, a subset
of the complex domain. In this complex space the real and imaginary axes are
called direct and quadrature axes respectively. In this domain it is possible to
implement the so called Field Oriented Control (FOC). Given that the new ref-
erence frame embed information on rotation, sinusoidal quantities are mapped
into constant values, hence the control law comes straight forward.

In general a Proportional-Integral control is implemented in both direct and
quadrature variables as showed in Figure 4.1. Even though the chain made of
transformations, inverter and motor is not linear there are techniques that allow
a simplified study of the problem.

For classical SPM motors, where the magnets are mounted externally the
rotor, the instantaneous power input to the motor is obtained as the sum of the
instantaneous power of the single phases, namely: 𝑃𝑖𝑛 = 𝑣𝐴𝑖𝐴 + 𝑣𝐵 𝑖𝐵 + 𝑣𝐶 𝑖𝐶 .
The equivalent version of this formula in the synchronous reference frame is
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equation 4.1.

𝑃𝑖𝑛(𝑡) = 3
2
[
𝑣𝑞 𝑖𝑞 + 𝑣𝑑 𝑖𝑑

]
(4.1)

According to the electrical equation of the motor, the input power can be ex-
pressed as the sum of three terms:

• 𝑃𝐽 : the joule losses in the winding resistance. In particular 𝑃𝐽 = 3
2𝑅(𝑖2𝑑+ 𝑖2𝑞).

• 𝑃𝑊 : the power associated with the variation of the magnetizing energy
stored in the magnetic circuit.

• 𝑃𝑒𝑚 : the remaining power, which is converted in mechanical power output
of the motor. 𝑃𝑒𝑚 = 𝜏𝑒𝑚 𝜔𝑚

From the motor’s electrical equation, it can be concluded that the torque
generated is linearly proportional to the current: equation 4.2. Further details
are provided in Section A.1 of the appendix.

𝜏𝑒𝑚 = 𝐾𝑖 𝑖𝑞 (4.2)

Where 𝜔𝑚 is the electrical angular velocity1 of the motor, 𝜏𝑒𝑚 is the output
torque, 𝑖𝑞 is the current in the quadrature axis. 𝐾𝑖 is the torque constant, it
depends on physical parameters of the motor. In particular 𝐾𝑖 = 3

2𝑝Λ𝑚 , where
𝑝 is the number of pole pairs and Λ𝑚 is the flux linkage due to the permanent
magnets. In other words the electromagnetic torque is given by the interaction
between the flux linkage produced by the PMs on the rotor and the stator current
component in quadrature. The current in the direct axis 𝑖𝑑 does not play any
role in the output torque, but it still affect the joule losses 𝑃𝐽 . In normal flux
configurations, it is convenient to set the reference 𝑖★𝑑 to zero in the control loop
of Figure 4.1.

In general commercial BLDC motors are characterized by the 𝐾𝑣 value and
the number of rotor pair poles. The 𝐾𝑣 rating of a brushless motor is the ratio of
the motors unloaded speed (in rpm) to the peak voltage on the wires connected
to the coils (in Volts). From this constant it is possible to determine the torque
constant of the motor.

Assuming that the low level controller keeps the current in the direct axis at
zero and for low quadrature axis current, then the torque constant 𝐾𝑖 can be
computed from the motor constant 𝐾𝑣 with the formula 4.3.

𝐾𝑖 =
3
2

1√
3

60
2𝜋

1
𝐾𝑣

(4.3)

1Electrical speed refers to the speed of the rotating magnetic field as opposed to mechanical
speed being the actual speed of the rotor. The electrical speed is number of polar pairs times
the mechanical speed.
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𝑝 𝐾𝑣
[ 𝑟𝑝𝑚
𝑉

]
𝐾𝑖

[
𝑁𝑚
𝐴

]
𝐼𝑚𝑎𝑥[𝐴] 𝜏𝑚𝑎𝑥[𝑁𝑚]

mn4004 12 300 0.027 9.0 0.243
mn4006 12 380 0.022 16.0 0.352
mn5006 14 300 0.027 20.0 0.54

Table 4.1: Electrical parameters of the motors used in the project: 𝑝 denotes the
number of pole pairs, and together with 𝐾𝑣 (motor velocity constant) and 𝐼𝑚𝑎𝑥
(maximum current), these specifications can be obtained from the datasheet.

In the case of study the motors are of two different types. The motor constant
𝐾𝑣 comes from the motor’ specifications while the torque constant is computed
via equation 4.3.

Controller gains

The SPI message is characterized by three gain fields, namely: 𝐾𝑝 , 𝐾𝑑, 𝐾𝑖 .
The imposed control law is reported in equation 4.4, where the 𝐹𝐹 term is a
possible bias current value, also named feed-forward.

𝑖𝑞(𝑡) = 𝐾𝑝 �̃�(𝑡) + 𝐾𝑑 �̃�(𝑡) + 𝐾𝑖
∫ 𝑡

0
�̃�𝑑𝑡 + 𝐹𝐹 (4.4)

where: �̃� = 𝜃𝑟𝑒 𝑓 − 𝜃𝑚𝑒𝑎𝑠 and �̃� = 𝜔𝑟𝑒 𝑓 − 𝜔𝑚𝑒𝑎𝑠 are position and velocity errors.
The gain values are meant to design a complete PID over the position reference,
but they can be used also to implement a PI control over the velocity reference.

Indeed equation 4.4 can be seen as a PI control for velocity tracking as
equation 4.5

𝐼𝑞(𝑠) =
(
𝐾𝑝 + 𝐾𝑖

𝑠

)
ΔΩ(𝑠)

Which in the time domain is equivalent to:

𝑖𝑞(𝑡) = 𝐾𝑝 �̃�(𝑡) + 𝐾𝑖
∫ 𝑡

0
�̃�(𝜏) 𝑑𝜏 = 𝐾𝑝 �̃�(𝑡) + 𝐾𝑖�̃�(𝑡) (4.5)

imposing 𝐾𝑖 = 0 and 𝐹𝐹 = 0 in equation 4.4, it is equivalent to 4.5 with a
different nomenclature. Despite the different names, the coefficients have the
same meaning.

4.2 Gearbox

The torque produced by the bare motors is not enough to the purpose, even
in maximum current condition, which is not ideal. A gearbox is then placed in
between the motor and the load in order to increase the output torque.

The gearbox reduction ratio is what characterizes the torque increase. This
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value is constant and it is defined as the ratio between the output and motor
speed, namely: 𝑘𝑔 = 𝜔𝐿

𝜔𝑀
. Under this definition it is necessary to have 𝑘𝑔 < 1 to

increase the output torque. In the following, it is convenient to distinguish the
output torque as the load (L) torque, while referring to the input as the motor
(M) torque.


𝜔𝐿 = 𝑘𝑔 𝜔𝑀 (4.6)

𝜏𝐿 = 𝜂𝑔
𝜏𝑀
𝑘𝑔

(4.7)

In practical applications of gearboxes, the input power is not fully transmitted
to the output due to inherent losses within the gear mechanism. By applying
power balance equations that account for the gear’s efficiency 𝜂𝑔 , the resulting
torque equation 4.7 can be derived.

In the project two types of gears were used: herringbone and cycloidal gear.
The former type has been used for radial joints with a gear ratio of 𝑘𝑔 = 1

27 , while
the latter has been used for the axial joints with 𝑘𝑔 = 1

31 . As the cycloidal gear
transmits motion between the two internal discs through friction, the friction is
expected to be higher than the herringbone gear. However, the former type offers
greater compactness and makes it easier the achievement of higher reduction
ratios.

(a) Herringbone gears used for radial joints. 𝑘𝑔 = 1
27 (b) Cycloidal gears used for ax-

ial joints. 𝑘𝑔 = 1
31

Figure 4.2: Types of gearboxes used in the manipulator.

4.3 Control board and Encoder

Regarding the components of the control scheme, a custom-designed board
developed in-house was selected, enabling the simultaneous control of two
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𝑆𝑃𝐼 𝑖𝑞

Figure 4.3: Simplified motor control chain diagram: The control algorithm is
executed on the Raspberry Pi, which transmits commands to the brushless motor
control board via the SPI protocol. The control board then regulates the motors
by applying the desired current.

motors. Due to the three-phase nature of the system, the control board must
incorporate a microcontroller capable of managing the motor’s low-level oper-
ations. Since the final objective is to control the motor via torque commands,
the board must support this functionality. Moreover certain experiments re-
quire position or velocity control of the motors. Standard Electronic Speed
Controllers (ESCs) for drones, which also typically use brushless motors, rely
on the relationship between speed and propeller thrust, thereby prevent the
need for torque feedback.

The project utilized custom boards developed in-house at the LAAS-CNRS
laboratory. Each board is capable of controlling a pair of motors. The firmware
was modified to meet the specific requirements of the project, particularly by
incorporating the capability to monitor the input power of the motors. This
feature was added to enable energy consumption monitoring and to support
certain experimental procedures.

This board operates with an internal execution frequency of 40 𝑘𝐻𝑧, meaning
that the internally implemented controller has a discretization step of only a
few microseconds. The microprocessor, motors board, communication protocol
determine the maximum sampling rate of the system.

In this case, a Raspberry Pi 4 was selected as the board to implement the
controller. The communication protocol utilized is Serial Peripheral Interface
(SPI), with custom messages designed to meet the specific requirements of the
project and they have been implemented in order to match between all the parts
of the communication line.

With the selected hardware, a sampling rate of 𝑓𝑠 = 1 𝑘𝐻𝑧 was achieved.
The cascading of boards, however, reduces the performance of the protocol. If
required, the sampling frequency can be improved by switching to a Controller
Area Network (CAN) protocol.

The motor’s driver has an open source firmware that allows to customize all
the features of the low level control loop. In this way the decentralized controller
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described in Section 3 was set by sending the reference trajectory command.
The encoders are of the capacitive type and are mounted on-axis with the

motor. The adopted encoders output𝑁 = 4096 pulses per turn, so the resolution
is 𝑟 = 360◦

4096 = 0.088◦.

4.4 Motor parameters

The connection between the gearbox and the mechanical load is assumed
to be rigid (i.e. no elasticity is present in between the two elements); then it
is reasonable to assume that the actual gear ratio coefficient corresponds to the
anticipated value.

For each pair of motor and gearbox it is necessary to estimate both the static
and dynamic friction. To conduct the experiment without external sensors at
the end of the chain, we assume that the mechanical power input to the gearbox
is fully transmitted to the output. Under this hypothesis equation 4.7 becomes
𝜏𝐿 = 1

𝑘𝑔
𝜏𝑀 .

Any knowledge of motor and gearbox efficiencies would not have brought
any practical advantage, as it would not have been included in the controller.
This is because, by way of example, estimating the efficiency of the individual
motor proved to be non-constant depending on the load.

The experiments are performed with the gearboxes in an unloaded condition,
and the current applied by the controller is measured. To achieve this a low-level
feedback loop is implemented on the motor control board. A PI controller is
used to track a reference velocity, and the measured phase current is considered
to represent the torque exerted by the motor at the output.

4.4.1 Friction estimation

To set up the experiment, it is necessary to establish a model that accurately
describes the friction. In general, for a motor, the torque equation can be seen
at the motor side or at the load side (after the gearbox). On the load side, any
externally applied torque can be modeled as 𝜏𝑑.

𝐽𝑚
𝑑𝜔𝑚

𝑑𝑡
+ 𝑏𝑚𝜔𝑚 = 𝜏𝑚 − 𝜏′𝐿 (4.8)

𝐽𝐿
𝑑𝜔𝐿

𝑑𝑡
+ 𝑏𝐿𝜔𝐿 = 𝜏𝐿 − 𝜏𝑑 (4.9)

The gears in use exhibit significant friction effects, thus the free parameter 𝜏𝑑
is used to model the Coulomb friction within the mechanical transmission. The
static friction can be modelled as a constant resistant torque which opposes to
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𝜏𝑚 , 𝜔𝑚 motor side torque and speed
𝜏𝐿 , 𝜔𝐿 load side torque and speed
𝜏′𝐿 the load torque seen at motor side. In particular 𝜏𝐿 =

𝜂𝑔
𝑘𝑔

𝜏′𝐿
𝜏𝑑 disturbance torque applied to the load inertia

𝐽𝑚 , 𝑏𝑚 inertia and viscous friction at motor side
𝐽𝐿 , 𝑏𝐿 load moment of inertia and viscous friction
𝑓 static (or Coulomb) friction
𝑘𝑔 gearbox ratio

𝑖𝑞 , 𝐾𝑖 quadrature current and motor torque constant

Table 4.2: Motor and gearbox: symbols definitions.

the load movement, namely:

𝜏𝑑 = 𝑓 sgn(𝜔𝐿) 𝑓 > 0 (4.10)

Since all measurable quantities are at motor side, it is more practical to adopt this
convention moving forward. Equations 4.8, 4.9 can be combined into equation
4.11 through the application of equation 4.7.

𝐽𝑒𝑞
𝑑𝜔𝑚

𝑑𝑡
+ 𝑏𝑒𝑞𝜔𝑚 + 𝑓 𝑘𝑔 sgn(𝜔𝑚) = 𝜏𝑚 (4.11)

where:
𝐽𝑒𝑞 = 𝐽𝑚 + 𝐽𝐿𝑘2

𝑔 𝑏𝑒𝑞 = 𝑏𝑚 + 𝑏𝐿𝑘2
𝑔

are the equivalent inertia and friction parameters seen at motor side.

For the purpose of the project the knowledge of the inertia is irrelevant;
therefore, the experiment is designed to eliminate its influence. A possible way
to measure the friction parameters is to impose a constant velocity and remove
all external loads, in this way the inertia contribution can be neglected.

Given that it is not available a direct measure of the motor torque, but the
latter is proportional to the current; equation 4.11 can be reformulated into 4.12.
This scenario can be formulated as least square problem, whose unknowns are
𝑏𝑒𝑞 and 𝑓 .

𝐾𝑖 𝑖𝑞 = 𝑏𝑒𝑞𝜔𝑚 + 𝑓 𝑘𝑔 sgn(𝜔𝑚) =
[
𝜔𝑚 , 𝑘𝑔 sgn(𝜔𝑚)

]
=

[
𝑏𝑒𝑞
𝑓

]
(4.12)

A regressor matrix 𝚽 and the corresponding torque vector 𝚪 are constructed
from measurements taken at various velocities. To ensure the identifiability of
parameters within a linear regression framework, the regressor matrix must be
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joint type 𝑏𝑒𝑞 [𝑁𝑚𝑠] 𝑓 [𝑁𝑚]
mn4004 axial 2.42𝑒−6 0.122
mn4006 radial 3.96𝑒−6 0.103
mn5006 axial 6.45𝑒−6 0.247

Table 4.3: Results of the estimated friction coefficients. As expected the static
friction of the axial joints, which mount cycloidal gears, is higher than the radial
one.

full column rank.

𝚪 =


𝜏𝑚1
...

𝜏𝑚𝑁

 =

𝜔𝑚1 , 𝑘𝑔 sgn(𝜔𝑚1)

...

𝜔𝑚𝑁 , 𝑘𝑔 sgn(𝜔𝑚𝑁 )


[
𝑏𝑒𝑞
𝑓

]
= 𝚽𝝁 (4.13)

In this context, given the structure of the regressor matrix, measuring two dis-
tinct velocities would be sufficient to obtain a solution to the problem. However,
to ensure a more reliable result, multiple samples at varying speeds are collected.

The solution is given by equation 4.14. In Figure 4.4, the behavior of the
individual joints as a function of varying velocity can be observed. The selected
linear model effectively represents the friction behavior. Indeed the fitted curves
represent the estimated friction based on the collected data, namely �̂�𝑚 = �̂�𝜔𝑚 +
�̂� 𝑘𝑔 sgn(𝜔𝑚). These results, presented in table 4.3, should be considered valid
for speed values within the measured range, as it is challenging to predict the
behavior of friction at higher velocities.[

�̂�𝑒𝑞
�̂�

]
= �̂� =

(
𝚽𝑇 𝚽

)−1
𝚽𝑇𝚪 (4.14)

From Table 4.3 it is possible to conclude that cycloidal gears, adopted for axial
joints, present the higher Coulomb friction effort. Furthermore, the larger the
motor, the greater the viscous friction. Specifically, the mn5006 motor exhibits
the highest value.
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(a) Cycloidal gear for axial joint.
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(b) Herringbone gear for radial joint.

−100 −50 0 50 100
−1

−0.5

0

0.5

1
·10−2

𝜔𝑚 [rad/s]

𝜏 𝑚
[N

m
]

Motor mn5006

𝑑𝑎𝑡𝑎
𝑓 𝑖𝑡

(c) Cycloidal gear for base axial joint.

Figure 4.4: Measured data and least square fit of motor torque at the specified
velocity. The fit is the best linear approximation of the overall friction effort. It
represent: 𝜏𝑚 = �̂�𝜔𝑚 + �̂� 𝑘𝑔 sgn(𝜔𝑚).
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(a) Axial joint, motor
mn4004. In the experi-
mental arm this design is
placed as third joint.

(b) Radial joint with motor mn4006.
This joint structure is used for joints two
and four.

(c) Axial joint, with of motor mn5006
used as base joint.

Figure 4.5: Types of joints used in the manipulator. The terminal connector
permits the interchange of the order, which must be correspondingly updated
in the simulation model.
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5
Analysis

In the following sections, an overview of the simulation environment and
the associated background algorithms is provided.

Subsequently, the results of the real-world experiments are presented and
discussed, including the definition of a comparison metric to assess the accuracy
of the estimates.

Finally, a simulation of the dynamic trajectory controller is presented.

Figure 5.1: The physical manipulator positioned within the arena for safety
testing.

5.1 Real time dynamic algorithm

As discussed in Section 2.4, the Lagrangian approach is not ideal for real-time
applications. It provides a closed-form, analytical solution that is dependent
on 𝑛, the number of generalized variables. An alternative derivation of the
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dynamics is achieved through the Newton-Euler (NE) formalism. This method
provides a recursive approach, where the motion of each link is coupled with
that of the others via kinematic relationships for velocities and accelerations.

The NE formalism is based on a balance of all the forces acting on the generic
link of the manipulator. This balance can be computed recursively using the
Recursive Newton-Euler Algorithm (RNEA), which consists of two primary
stages: a forward recursion and a backward recursion. In the forward recursion,
velocities and accelerations propagate sequentially from the first rigid body
to the last, determining each link’s kinematic quantities based on those of its
predecessor in the chain. Conversely, in the backward recursion, forces and
torques are propagated back from the last rigid body, typically the robot’s end
effector, to the first link.

In this project, a recursive formulation has been implemented to meet real-
time performance requirements. To obtain good performances in computing
both the dynamics and their derivatives, the Pinocchio library [2] has been uti-
lized. Pinocchio is one of the most efficient libraries for computing the dynamics
of articulated bodies moreover has the advantage to be open-source.

The library allows also the computation of the regressor matrix, as in equation
3.1.

5.2 Simulation environment

In order to test the controllers before the application in the real manipulator
it is useful to use a simulator. In theory, a tool that solves non-linear differential
equations would be sufficient to describe the motion of the arm. However there
are some drawbacks with this types of simulators.

• Typically, the visual interface only allows the observation quantity plots
rather than the actual motion of the bodies, which can make interpreting
the system’s behavior more challenging.

• These simulators highly dependent on the specified model equations,
meaning they do not simulate physics but rather evolves the system from
initial conditions and inputs. Conversely, a physics engine is a computa-
tional tool that approximates the simulation of physical systems, incorpo-
rating collision detection and rigid body dynamics.

• It is hard to extend in projects with multi-bodies.

Based on these considerations, it has been chosen to implement the manip-
ulator in Gazebo, an open-source robotics simulator. Gazebo supports multiple
high-performance physics engines, including ODE, Bullet, and DART.

An advantage of using Gazebo, lies in the integration with ROS and other
customable middleware. This simplifies the change between the simulation and
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the real system, as there is no need to re-write the functions that send messages
to the various components.

In Gazebo, a model is defined in a Unified Robotic Description Format
(URDF) file, where the body is composed of links: elements that describe physi-
cal properties of each individual body within the model. Each link is specified
with the following three fields which will influence the simulation.

• Collision. A collision element defines the geometry used by the simulation
engine for collision detection and contact force propagation. These shapes
should remain simple to reduce computational complexity.

• Visual. As the name suggests, this field specifies the visualized meshes.
Mesh files can be imported from CAD software to enhance model realism,
though this field does not influence the simulation itself.

• Inertial. The inertial element describes the dynamic properties of the link,
such as mass and inertia matrix.

Then joint elements connects two links and characterize the relationship
between them, along with other features. An example of the URDF file is
provided in Appendix Section A.4.

In the inertia field, parameters such as mass, inertia, and the pose of the
center of mass of each link can be defined. Moments of inertia are directly
proportional to mass; however, they vary non-linearly with size. Furthermore,
constraints on the relative values of the principal moments make estimating
moments of inertia considerably more challenging than determining mass or
center of mass location. This complexity justifies using specialized software tools
for calculating moments of inertia, which is why this information is typically
derived from the CAD model of the body, once the material properties are
specified. These parameters are, however, estimates; thus, the model will be
refined using parameters obtained from the optimization process.

In Figure 5.2c, boxes surrounding each link are shown, with each boxs center
aligned to the specified center of mass of its respective link. The sizes and
orientations of these boxes represent unit-mass boxes designed to exhibit the
same inertial behavior as their corresponding links. This is useful for debugging
the inertial parameters.

5.3 Parameter estimation results

As outlined in Section 3.4, the trajectory is generated randomly. It is subse-
quently verified to satisfy workspace coverage and velocity variability conditions
within the Gazebo simulator. Although the dynamic model is not required for
arm control, the CAD parameters are included in the models URDF file for
simulation purposes.
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(a) The arm is in neutral position, where
𝑞𝑖 = 0 for 𝑖 = 1, . . . , 4. The colors indicate
individual links.

(b) In this representation, the centers of
mass are marked by black and white
spheres within the links, with the sphere
size proportional to the mass of each link.
The joint frames are also highlighted.

(c) The inertia of each link is represented
by a box centered at the link’s center of
mass (CoM), approximately fitting within
the links geometry.

Figure 5.2: Manipulator model in Gazebo simulator.
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The robot performs the identification trajectory for 20 𝑠. At a sampling
frequency of 1 𝑘𝐻𝑧, with a total of 𝑀 = 20, 000 samples for position, velocity
and torque for each joint. With this setup, the regressor matrix �̄�has dimensions
(80, 000 × 48), corresponding to the number of parameters, 𝑛𝑝 = 48 (defined in
3.7).

Since computing the singular value decomposition (SVD) of a large rectan-
gular matrix, such as �̄� is computationally inefficient, the relationship between
the singular values of �̄� and �̄�

𝑇
�̄� has been exploited, as outlined in equation

5.1.
𝜎
(
�̄�
𝑇
�̄�
)
= 𝜎2

1 , . . . , 𝜎
2
𝑟

𝜎
(
�̄�
)
= 𝜎1, . . . , 𝜎𝑟

(5.1)

where 𝜎(𝑨) represent the set of singular values of 𝑨 and 𝑟 = 𝑟𝑎𝑛𝑘(�̄�). In
the experiment, the regression matrix has rank 𝑟 = 30. The maximum and
minimum singular values of �̄�

𝑇
�̄� are preserved after the application of the

square root operation, as consequence of the monotonicity property of the square
root function. Consequently, the condition number can be computed as in
equation 5.2.

For the identification trajectory, the computed condition number is 𝑐 = 47.
Therefore the regressor matrix can be considered well-conditioned (Gautier and
Khalil, 1992).

𝑐 =
𝜎𝑚𝑎𝑥
𝜎𝑚𝑖𝑛

(5.2)

5.3.1 Identification trajectory

As the excitation trajectory, the one depicted in Figure 5.3 has been selected.
For each link, the desired and resulting trajectories are shown. Additionally,
Section A.2 of the Appendix presents the executed position trajectory and the
corresponding differentiated acceleration. As observed in Figure 5.3, the first
joint, and particularly the second, exhibit a larger tracking error, especially dur-
ing motion reversals. This discrepancy results from the arm’s weight, which,
in rapid direction changes, pushes the respective motors to their current limits,
preventing a smooth behavior. Additionally, the connectors between consecu-
tive links, subject to tolerance variations from 3D printing, introduce a slight
slack. Nonetheless, the measured velocities remain essential in calculating the
regressor, though these factors also impact the exerted torque. Hence, the mea-
sured velocities are utilized in the computation of the regressor instead of the
theoretical values, despite these effects also being reflected in the exerted torque.
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Figure 5.3: Actual and desired joint velocities for the identification trajectory are
shown. Due to their greater mass, the first two joints track the trajectory with
lower accuracy compared to the final two joints.
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5.3.2 Estimation assessment

To validate the estimated parameters, a validation trajectory is generated
using the same techniques applied to the identification trajectory, though with
different initial conditions. Consequently, the validation trajectory maintains
the same harmonic components but exhibits different amplitudes. Also in the
validation case the duration of the experiment is of 20 𝑠.

To evaluate the accuracy of the torque predictions, a performance metric is
introduced. Based on the approach outlined in [5, eq.(84)], the torque prediction
error percentage is defined as follows:

𝜖𝜏 = 100 · ‖�̄� − �̄� �̂�‖
‖�̄�‖ (5.3)

where �̂� is the estimated parameter vector.

�̂�𝐶𝐴𝐷 �̂�𝑆𝐿𝑆𝑄𝑃 �̂�𝑆𝐴

Identification 41.0% 35.7% 25.8%
Validation 45.4% 40.3% 34.2%

Table 5.1: Relative error percentages, calculated using equation 5.3, of the pre-
dicted torque for identification and validation trajectories.

In Section A.3 are reported the parameters obtained in the estimation via
CAD software and via the optimization processes.

Figure 5.4 shows plots of the measured torque and the predicted one, using
�̂�𝑆𝐴 estimate. It can be observed that for the first two joints predicted torque
tracks the measured ones well. In contrast, for the last two joints, a noticeable
degradation in tracking performance is present. This discrepancy is attributed to
the smaller torque values, as the inertial parameters for these links are relatively
small (or at least smaller in comparison to the parameters of the first links).

On the other side Figure 5.5 presents the behavior of the estimated model
in predicting a different trajectory torque. The observed behavior is consistent
with the results discussed for the identification trajectory, although the first joint
exhibits increased tracking noise, likely due to higher noise levels in the mea-
surements. This observation is further supported by the values of 𝜖𝜏 presented
in Table 5.1.

The error of the torque predictions is presented in Table 5.1. It can be
observed that, for both the identification and validation trajectories, the error is
relatively high. This can primarily be attributed to the physical and assembly
characteristics of the manipulator. Factors such as the assembly process, 3D
printing tolerances, the use of plastic materials, and mounting screws introduce
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Figure 5.4: Identification trajectory. Measured torque vs predicted torque of the
SA solution: �̂�𝑆𝐴.

flexibilities in the connections between links, resulting in deformations that are
not accounted for by the dynamic model.

Furthermore, due to the substantial weight of the links, the motors at joints
one and two, during certain segments of the trajectory, are required to generate
torque near their current limit. This challenges the assumptions made in the
current-to-torque approximation, leading to non-linearities in the current-to-
torque relationship.

5.4 Dynamic controller simulation

Due to time constraints the dynamic controllers were tested only in the
simulation environment of gazebo. In particular after the estimation phase the
new link parameter vector was included in the URDF model of the manipulator.

The estimated dynamic parameters were incorporated into the URDF model
of the simulation file, while the CAD-based estimation was used as input for
the controller model. In other words, the controller utilizes the theoretical
parameters, whereas the simulation operates on the estimated model.

To evaluate the system, several test trajectories were generated using the
same procedure as for the exciting trajectory. The torque commands, derived
from equation 2.21, were then applied to the control boards. The resulting
Cartesian tracking error is shown in Figure 5.6, where the motion of the end-
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Figure 5.5: Validation trajectory. Measured torque and predicted torque with the
SA solution: �̂�𝑆𝐴.

effector is illustrated. This phase aimed to assess the performance of the dynamic
controllers and validate the system parameters.

It was observed that, for certain trajectories, the error in the simulation does
not asymptotically converge to zero. Therefore, for experiments involving the
real manipulator, robust control techniques must be implemented to mitigate
the effects of unmodeled dynamics.
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Figure 5.6: Cartesian trajectory controlled via torque commands. The blue
trajectory represents the desired end-effector position assuming perfect tracking
of the joint trajectory, while the orange trajectory depicts the position executed
by the simulation.
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6
Conclusions and Future Works

In this thesis, we presented a manipulator designed for aerial manipulation
tasks. The arm was developed at LAAS-CNRS, with the specific objective of
extending its workspace beyond the area occupied by the drones propellers.

Brushless motors were selected to actuate the joints, equipped with gearboxes
at their output. The system includes brushless motors, encoders, and control
boards. Since full access to motor information is available, it is possible to focus
controller development on optimizing the energy used by the manipulator, a
key point for battery-powered applications.

Low-level feedback control loops have been designed for the joints, providing
high performance in terms of execution speed and tracking accuracy. Different
control structures have been implemented, including decentralized control for
parameter estimation and centralized impedance loops leveraging the system
dynamics. In the estimation of dynamic parameters feasibility constraints were
considered, where the feasible set can be further restricted to accommodate
additional constraints. However, the adopted optimization method was com-
putationally slow, suggesting that alternative approaches, such as exploiting
positive semidefinite constraints, may enhance the estimation process. Despite
the optimization process, the prediction error remained high. To enhance the
estimation accuracy, a precise measurement of the motor torque constant at high
currents is necessary. Additionally, the use of 3D-printed plastic for the gears
proved suboptimal, as it introduced backlash and degraded over time. Unmod-
eled effects significantly influenced the estimation; however, the performance
improved for slower trajectories.

With the models of the arm and the drone independently identified, it be-
comes possible to analyze the coupling effects to develop a comprehensive full-
body model. The interaction forces transmitted along the arm can be introduced
into the system and subsequently compensated for or used for control purposes.
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Appendix

A.1 Brushless motor - torque constant

There exists a fundamental relationship between an electric BLDC motor’s
velocity constant (𝐾𝑣), armature current (𝑖𝑞) and torque (𝜏). The relation in
object is described in equation 4.3 and reported below for convenience.

𝐾𝑖 =
3
2

1√
3

60
2𝜋

1
𝐾𝑣

𝜏 = 𝐾𝑖 𝑖𝑞

Where 𝐾𝑣 is in 𝑟𝑝𝑚
𝑉 , 𝑖𝑞 [𝐴] and 𝜏 [𝑁𝑚]. It is worth notice that the voltage in 𝐾𝑣

refers to a line-to-line voltage, while in the computation below all the voltages
refer to phase voltage. In a three phase system the relation between line-to-line
and phase quantities is: 𝑉𝐿𝐿 =

√
3𝑉𝑃 .

Under the following hypothesis it is possible to state that, with the above-
mentioned 𝐾𝑖 , the torque is linear to the quadrature current.

• The low level controller (FOC) maintains 𝑖𝑑 ≈ 0,

• there is a low voltage drop in the coils resistance,

• given as parameters of the motor 𝐿𝑠 , the equivalent or synchronous in-
ductance, and Λ𝑚 the flux linkage due to the permanent magnets, then
𝐿𝑠 𝑖𝑞 << Λ𝑚 . In practice it is reasonable to assume since the synchronous
inductance is usually very small.

It is worth notice that bigger the current (both in 𝑑 or 𝑞 axes) bigger is the
voltage drop in the resistance and the linear relation is lacking.

From electric equations of SPM motors, for voltage smaller than the nominal
one, it holds:

𝑣2 = (𝑅𝑖𝑑 − 𝜔𝑚𝐿𝑠 𝑖𝑞)2 + (𝑅𝑖𝑞 + 𝜔𝑚 (Λ𝑚 + 𝐿𝑠 𝑖𝑑))2
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Where 𝜔𝑚 is the electrical speed, and 𝑣 is the norm of the voltage in the syn-
chronous frame. Under the hypothesis above it is possible to re-write this
equation as follows:

Λ2
𝑚 =

𝑣2

𝜔2
𝑚

=⇒ 𝜔𝑚 =
1
Λ𝑚

𝑣 (A.1)

From the motor’s power equation 4.1, after accounting for power losses, the
remaining mechanical power can be converted into torque. In particular 𝜏 =
3
2𝑝Λ𝑚 𝑖𝑞 (where 𝑝 is the number of pole pairs). This relation is linear but it does
not depend explicitly on 𝐾𝑣 .

Given the relation between mechanical (𝜔) and electrical (𝜔𝑚) speed: 𝜔 =

𝑝 𝜔𝑚 , then the above equation can be rewritten as 𝜔 = 1
Λ𝑚 𝑝

𝑣 = 𝐾′
𝑣 𝑣.

As mentioned 𝐾𝑣 refers to line-to-line voltage, so it must be converted to
phase voltage. Also the speed measure is not standard and a conversion in 𝑟𝑎𝑑

𝑠

is required.

𝐾′
𝑣 =

2𝜋
60

√
3𝐾𝑣 𝐾𝑣

[
𝑟𝑝𝑚
𝑉𝐿𝐿

]
𝐾′
𝑣

[
𝑟𝑎𝑑
𝑠 𝑉𝑃

]
At this point equation 4.3 is straightforward

𝜏 =
3
2𝑝Λ𝑚 𝑖𝑞 =

3
2

1
𝐾′
𝑣
𝑖𝑞 =

3
2

1√
3

60
2𝜋

1
𝐾𝑣
𝑖𝑞 = 𝐾𝑖 𝑖𝑞 (A.2)

In other words: the factor 60
2𝜋 is the conversion term 𝑟𝑝𝑚 → 𝑟𝑎𝑑

𝑠 , 1√
3

is for
converting the line-to-line voltage to phase voltage and 3

2 is the scaling factor of
three phases systems.

A.2 Identification trajectory

Figure A.1 shows both the commanded and measured position trajectory in
joint space used to compute the regressor matrix for the identification process.
As discussed, and clearly coherently, with the velocity plot of figure 5.3 also in
this case the first two joints present the lowest precision in tracking the desired
trajectory.

In Figure A.2, the acceleration is shown. The acceleration is derived from
the filtered joint velocity to mitigate the dominance of noise. The numeri-
cal derivative is computed offline using a second-order approximation of the
continuous-time derivative.
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Figure A.1: Actual and desired joint position for the identification trajectory.
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5.3, namely acceleration computed offline.
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A.3 Link parameter vectors

Table A.1 presents 𝑛𝑝 = 48 dynamic parameters of the manipulator. In
particular, the parameter vectors from the CAD framework and the estimation
process are shown.

�̂�𝐶𝐴𝐷 �̂�𝑆𝐿𝑆𝑄𝑃 �̂�𝑆𝐴
m1 2.76e-1 2.76e-1 2.27e-1

m*Cx1 0.00e+2 1.50e-4 -3.37e-3
m*Cy1 0.00e+2 -8.11e-5 2.30e-3
m*Cz1 2.87e-2 2.87e-2 5.64e-2
Ixx1 4.33e-3 4.35e-3 2.73e-2
Ixy1 0.00e+2 1.55e-4 -1.84e-5
Iyy1 4.33e-3 4.29e-3 2.73e-2
Ixz1 0.00e+2 -2.86e-5 3.79e-4
Iyz1 0.00e+2 2.34e-4 8.68e-4
Izz1 1.53e-4 2.01e-4 1.00e-4
m2 5.54e-1 5.54e-1 4.00e-1

m*Cx2 1.16e-1 1.16e-1 2.00e-1
m*Cy2 0.00e+2 1.77e-4 -5.00e-2
m*Cz2 1.99e-3 2.23e-3 5.00e-2
Ixx2 3.16e-4 2.75e-4 1.00e-4
Ixy2 0.00e+2 -1.46e-4 -4.59e-3
Iyy2 3.07e-2 3.07e-2 1.41e-1
Ixz2 -3.50e-4 -2.61e-4 -2.43e-2
Iyz2 0.00e+2 -2.21e-4 8.03e-2
Izz2 3.08e-2 3.06e-2 1.00e-4
m3 5.28e-1 5.28e-1 8.00e-1

m*Cx3 2.06e-3 2.08e-3 -5.79e-3
m*Cy3 0.00e+2 9.94e-5 -2.43e-3
m*Cz3 9.98e-2 9.98e-2 2.13e-2
Ixx3 2.54e-2 2.55e-2 1.57e-1
Ixy3 0.00e+2 1.88e-4 5.46e-2
Iyy3 2.54e-2 2.53e-2 1.16e-1
Ixz3 -3.44e-4 -2.45e-4 2.83e-2
Iyz3 0.00e+2 7.70e-5 5.98e-2
Izz3 3.25e-4 3.80e-4 2.18e-2
m4 1.29e-1 1.29e-1 5.00e-2

m*Cx4 6.13e-3 6.09e-3 0.00e+2
m*Cy4 0.00e+2 -6.80e-5 8.81e-3
m*Cz4 0.00e+2 -5.06e-5 1.00e-2
Ixx4 5.10e-5 3.77e-5 1.00e-5
Ixy4 0.00e+2 3.22e-5 -6.06e-3
Iyy4 4.90e-4 5.96e-4 7.08e-3
Ixz4 4.49e-5 6.50e-5 1.04e-3
Iyz4 0.00e+2 1.93e-4 7.00e-3
Izz4 4.83e-4 5.34e-4 1.00e-5
fv1 5.30e-6 1.30e-4 3.57e-1
fv2 4.20e-6 0.00e+2 3.23e-1
fv3 8.00e-6 3.09e-5 1.30e-1
fv4 4.20e-6 0.00e+2 5.02e-3
fs1 2.00e-1 2.00e-1 3.00e-1
fs2 1.10e-1 1.10e-1 4.81e-2
fs3 1.50e-1 1.50e-1 4.64e-2
fs4 1.10e-1 1.10e-1 2.25e-1

Table A.1: Initial parameter estimates and final estimated parameters of the
manipulator.

60



APPENDIX A. APPENDIX

A.4 URDF model of the manipulator

The code snippet below demonstrates an example of defining a link and its
subsequent joint.

As described in Section 5.2, a link object can be declared with three main
fields: inertial, visual, and collision. Each of these fields requires the specifica-
tion of the object’s pose, defined in terms of translation (𝑥𝑦𝑧) and rotation using
an Euler angle triplet 𝑟𝑝𝑦 (Roll-Pitch-Yaw), relative to the preceding joint in the
chain’s reference frame. The collision object should be defined using a simple
geometric shape to avoid overloading the simulation. In the example provided,
a cylindrical shape has been specified.

A joint object, on the other hand, connects two links, referred to as the
parent and child links. It includes a type attribute and additional parameters
characterizing the joint, such as friction, limits, and the axis of rotation. All
units of measurement are expressed in standard format, specifically meters and
radians.

1 <l ink name=" l ink1 ">
2 < i n e r t i a l >
3 <mass value=" 0 .276 "/>
4 <or ig in rpy=" 0 0 0 " xyz=" 0 . 0 0 . 0 0 .104 "/>
5 < i n e r t i a ixx=" 0 .001342508 " ixy=" 0 . 0 " ixz=" 0 . 0 " iyy=" 0 .001342508 " iyz=" 0 . 0 "

i zz=" 0 .000152961 "/>
6 </ i n e r t i a l >
7 <v i sua l name=" l i nk1_v i sua l ">
8 <or ig in xyz=" 0 0 0 . 0 " rpy=" 0 0 0 "/>
9 <geometry>

10 <mesh fi lename="/meshes/ l ink1 . s t l " s c a l e =" 1 1 1 "/>
11 </geometry>
12 </v i sua l>
13 < c o l l i s i o n name=" link1_geom ">
14 <or ig in xyz=" 0 0 0 .07 " rpy=" 0 0 0 "/>
15 <geometry>
16 <cy l inder length=" 0 . 09 " radius=" 0 . 04 "/>
17 </geometry>
18 </ c o l l i s i o n >
19 </l ink>
20 < j o i n t name= ’ j o i n t 2 ’ type= ’ revo lu te ’>
21 <parent l ink=" l ink1 "/>
22 <ch i ld l ink=" l ink2 "/>
23 <or ig in rpy=" 1 .5707 0 . 0 0 . 0 " xyz=" 0 . 0 0 . 0 0 .167 "/>
24 <ax i s xyz=" 0 0 1 "/>
25 < l i m i t e f f o r t =" 50 . 0 " lower=" −6.283 " upper=" 6 .283 " v e l o c i t y =" 5 . 0 "/>
26 <dynamics damping=" 3 .96 e−6" f r i c t i o n =" 0 .103 "/>
27 </ j o i n t >

Code A.1: Example of Link and Joint definition in a URDF File.
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