
UNIVERSITÀ DEGLI STUDI DI PADOVA

DEPARTMENT OF INFORMATION ENGINEERING

Master Thesis in AUTOMATION ENGINEERING

ADAPTIVE NON-LINEAR MODEL

PREDICTIVE CONTROL FOR UAV-UGV
COORDINATION

Supervisor Master Candidate

PROF. ANGELO CENEDESE DANIELE BARNABÒ

20 OCTOBER 2022
ACADEMIC YEAR 2021/2022

i

Abstract

Unmanned Aerial Vehicles (UAV) have gained a great amount of popularity

in the last years. Among the features that make them so successful are the

cost, the portability, their airborne nature and their ability to perform Vertical

Take-Off and Landing (VTOL). Since the different tasks that UAVs are given

may require them to travel long distances, the small batteries that they are using

can prove to be a problem if they have to return to the home-base to recharge.

A solution can be sending a Unmanned Ground Vehicle (UGV) along with the

UAVs, since they can have a much longer autonomy and provide a moving

base.

In particular this thesis wants to improve the landing manoeuvre in such a way

that the landing will be smooth and most accurate. The first part of this work

is dedicated the implementation of the Non-linear Model Predictive Control

(NMPC) as the baseline controller. This controller creates an optimal control

that minimizes a given cost function along the chosen prediction horizon, while

respecting the model constraints. For this work the non-linear version of the

algorithm was chosen given the non-linearity of the model of the UAV in

question, i.e. the quadrotor. One of the main features of this controller is the

dependency on the internal model of the system, which gives it its name.

In the second part another complementary controller is added to the NMPC.

Adaptive control is meant to deal with varying or unknown model parameters

and for this reason L1 Adaptive Control (L1AC) was chosen for the task. L1AC

is a slight variation of the Model Reference Adaptive Control (MRAC), which

tries to deal with errors at the input level, setting a new input counterpart to

negate them.

The combination of the two controllers is meant to exploit each other’s strength,

while helping with the other’s weakness, to create an overall stable and well

performing algorithm that allows to account for the kinematics and dynamics

of the quadrotor, while being extremely robust against the potential errors of

the internal model or external disturbances.

The proposed method is then tested in various scenarios and validated through

results on Matlab & Simulink.

Keywords: UAV, UGV, Quadrotor Landing, Nonlinear Model Predictive

Control, L1 Adaptive Control, Ground Effect

Contents

Glossario ix

1 Introduction 1

1.1 State of the art . 1

1.2 Thesis structure . 3

2 Preliminary and agent model 5

2.1 Pose of a rigid body . 5

2.1.1 Euler angles . 8

2.2 Unit quaternion . 10

2.2.1 Advantages of unit quaternion notation 12

2.3 Agent model . 12

2.3.1 Dynamic Model . 13

3 Model Predictive Control and Problem formulation 19

3.0.1 Model Predictive Control 19

3.1 Problem formulation . 22

4 UAV Control via NMPC and L1AC 27

4.1 Runge-Kutta Integration . 27

4.2 UAV NMPC Controller . 28

4.2.1 Definition of the cost function 29

4.2.2 NMPC controller architecture 32

4.3 L1AC Controller . 33

4.3.1 Complete controller architecture 35

5 Simulation and results 37

5.1 Simulation setup . 37

5.2 Landing Simulation with Ground Effect 41

5.3 Landing Simulation at High Speed 45

5.4 Landing Simulation with Additional Weight 47

iii

iv CONTENTS

5.5 Landing Simulation with Broken Rotor 48

6 Conclusion 51

A Appendix 53

A.1 Time derivative of rotation matrices 53

A.2 Time derivative of unit quaternions 54

Bibliography 57

List of Figures

2.1 Position and orientation of a rigid body with respect to the world

frame. 5

2.2 Elementary rotations about the coordinate axes. (a) rotation by

an angle α about x axis, (b) rotation by an angle β about y axis

and (c) rotation by an angle γ about z axis. 7

2.3 Representation of Roll±Pitch±Yaw angles along the respective x, y

and z axis . 9

2.4 Picture of a Crazyflie Nano Quadcopter. This image was taken

from their website. 12

2.5 The main two configurations of quadrotor: (a) the cross-configuration,

where the rotors point at a 45° angle with respect to the x and y

axis and (b) the plus-configuration, where the rotors point in the

same direction of the x and y axis. 13

2.6 Schematic picture of a quadrotor, where the forces and moments

in action are highlighted. Particular attention is given to the

direction of all these components. 15

2.7 Representation of the quadrotor dynamic model with a block

scheme, where the coupling through the rotation matrix between

control force and the control torque is made clear. 16

3.1 Principle of MPC. 22

3.2 Graph representing the ratio Tinput/Toutput, as the height of the

quadrotor changes. 26

4.1 Chordal (a) and Riemaniann (b) geodesic metrics representation.

The chordal metric on S2 ∈ R3 is measured directly in R3, while

the geodesic metric is measured along S2. 31

4.2 NMPC control architecture. 33

4.3 Architecture of the combination of both controllers. 36

5.1 NMPC control test for quadrotor hovering. 40

v

vi LIST OF FIGURES

5.2 Thrust force exerted by the propellers during the NMPC regu-

lated hovering task. 41

5.3 NMPC test for quadrotor landing without ground effect. 43

5.4 NMPC without ground effect. 44

5.5 Juxtaposition of the altitude errors for the cases of NMPC and

L1AC when the ground effect is considered. 45

5.6 Altitude error of the quadrotor with high reference speed. . . . 46

5.7 Performance of the NMPC and L1AC when the weight of the

quadrotor is greater than expected. 47

5.8 L1AC thrust with additional weight. 48

5.9 Performance of the NMPC and L1AC during emergency landing

with broken propeller. 49

5.10 Input thrust of the L1AC for quadrotor with broken propeller. . 50

A.1 Frame A is fixed while frame B is rotating. 53

List of Tables

5.1 Crazyflie quadrotor parameters. 38

5.2 Numerical simulation parameters. 39

5.3 Numerical simulation parameters for landing manoeuvre. . . . 42

vii

LIST OF TABLES ix

Chapter 1

Introduction

1.1 State of the art

Unmanned Aerial Vehicles (UAV) have gained attention lately and appear

to have secured a place in our future [1]. Among them, quadrotors are a popular

example thanks to their simplicity and ability to perform vertical take-off and

landing (VTOL) [2].

UAVs can be used for multiple applications, from patrolling and mapping tasks

[3][4] to carrying actual objects across various distances [5]. These tasks can also

be performed in autonomy by the UAVs, but one of the problems that arise is

the battery life of the drone, which typically does not last long since the UAV

has to sustain its own weight [6].

Having a Unmanned Ground Vehicle (UGV) that moves along the UAVs could

prove to be extremely helpful. In fact, the drones could have a moving base on

which to descend once the batteries are empty or any kind of other problem

occurs [7], instead of having to return to a fixed position like a home base [8].

In this type of operation, precision in the landing procedure plays an extremely

important role since it could help fitting multiple quadrotors onto a relatively

small surface. In an extreme case, good tracking precision could be used to

make a UAV land in a charging device, situated on the UGV [9].

One way to achieve such precision is to utilize Model Predictive Control (MPC)

[10] [11] [12], which exploits the knowledge of the system. MPC is a control

method that predicts the future states of a system based on an internal model it

is given. It then creates an optimal path according to some error measurements

and a set of weights for these errors, which usually represent the difference

between reference and actual state. This kind of control, which is also called

Receding Horizon Estimation and Control and Moving Horizon Optimal Control,

has been used to confront a variety of problems [13] [14] [15]. MPC has been

successful and adopted in a variety of problems since it allows to easily include

constraints in the controller formulation and in the last years it proved to be an

1

2 1 − Introduction

excellent tool both according to theory and in practice [16]. This kind of linear

controller, however, cannot be used with most systems since usually they are

non-linear because of kinematic/dynamic characteristics of the plant or due

to its components (sensors, actuators, etc...). For this reason Non-linear Model

Predictive control (NMPC) was introduced. It has the capability of capturing

the non-linearities of the plant [17] and thanks to the recent development

of embedded systems with computing capabilities it has become extremely

popular in general and in particular with UAVs, due to the non-linearities that

are intrinsic to the model.

NMPC has been used by a great number of researchers for quadrotor control

[18] [19] [20], but this thesis contribution is the addition of Adaptive Control.

Adaptive control covers a set of techniques that provide a systematic approach

for automatic adjustment of controllers in real time, in order to achieve or

maintain a desired level of control system performance when the parameters of

the plant dynamic model are unknown and/or change in time [21]. This kind of

control can be used either when the parameters of the system are constant and

unknown or when they are time-varying and unpredictable[22]. Throughout

the last six decades adaptive control has evolved and has gradually given results

about its stability both in continuous and discrete time [23] [24], in systems that

may be non-linear [25] or with bounded input [26].

In particular this thesis focuses on L1 Adaptive Control (L1AC), which is a

variation of Model Reference Adaptive Control (MRAC). MRAC is based on the

fact that the model of the plant is known and that correction of the parameter

estimation can be performed by looking at the prediction error of the states. This

creates a feedback control law that tries to give the plant output a performance

similar to the reference output. This kind of control has been used extensively for

quadrotor control [27] [28] and has seen successful results in the improvement

over other control methods. L1AC differs from MRAC in the fact that the

adaptive controller works at a higher frequency than the base controller. This is

meant to reduce the oscillations that may occur otherwise. L1AC extends the

state-predictor-based MRAC and handles the trade-off between performance

and robustness with fast adaptation in a transparent and effective way [29].

Another way to define the L1AC is a MRAC with a low-pass filter acting on the

control input [30]. This kind of approach, applied to quadrotor and octarotor

control, has encountered a lot of success in the recent years [31] [32] [33].

§1.2 − Thesis structure 3

1.2 Thesis structure

The thesis is organized in the following manner:

• In chapter 2 we provide the preliminary notions about the 3D pose of

a rigid body using both the rotation matrices notation and the quater-

nions notation. Then, kinematics and the dynamics of the quadrotor are

examined to derive its mathematical model.

• In chapter 3, a brief presentation of the model predictive control principles

is presented. Then, the problem is formalized and all the assumptions

used for this work are defined.

• In chapter 4 contains the controller formulation and the problem simula-

tion. Cost functions, constraints and agent architectures and environment

effect are defined. Then, adaptive control is introduced with the relative

theory applied to the quadrotor model.

• Chapter 5 reports the results obtained. First, simple simulation results

are presented to validate the controller and model. Then more interesting

simulations are used to test the actual effectiveness of the architecture.

• Finally, in chapter 6 all the main results are summarized and suggestions

for future works are given.

Chapter 2

Preliminary and agent model

2.1 Pose of a rigid body

A rigid body can be described by its position and orientation, which are

always measured with respect to a reference frame and they define the pose of

the object. If we call Fw the reference or world frame found in the orthonormal

base x y z, then the pose of the object is fully described by the new body frame

Fb , as shown in Figure 2.1. Here we can see that the position corresponds to

Fw

O

x

y

z FB

O′

p x′

y′
z′

Figure 2.1: Position and orientation of a rigid body with respect to the world frame.

the coordinates of the body in the world frame Fw, but the orientation of the

body needs a new tool to be described. To this end we can introduce rotational

matrices. A rotational matrix R is a matrix whose columns are the coordinates

of the body frame axis x′ y′ z′ expressed with respect to the world frame Fw.

5

6 2 − Preliminary and agent model

There are important properties that can be assigned to rotation matrices, among

which we can find orthogonality. A matrix in general can be called orthogonal, if

RTR = I3 (2.1.1)

where I3 represents the 3-by-3 identity matrix. From Equation 2.1.1 we can find,

by multiplying on both sides by R−1, that

RT = R−1 (2.1.2)

This tells us that to find the inverse of a rotational matrix we only have to

transpose it. In particular we say that if det(R) = 1 we are using the right-

hand-rule, if det(R) = −1 the left-hand-rule. Although equivalent, generally

the right-hand-rule is used and matrices whose det(R) = 1 represent the Special

Orthogonal group SO(3), while those with det(R) = −1 can be interpreted

as improper rotations, meaning that there is also a reflection along with the

rotation.

As said before, a rotation matrix columns are the coordinates of the body frame

expressed in the world frame. Each of these rotations can be expressed in a

combination of rotations around the axis, also called elementary rotations and

they are positive when in counter-clockwise direction around the axis. As an

example we can look at a rotation around the x axis, by the angle α, from the

frame Fw to the new frame Fw′ . Then Rx can be calculated in the following

manner:

Rx(α) =

1 0 0

0 cos α − sin α

0 sin α cos α

 (2.1.3)

We can notice that all points on the x axis do not change, while the rest change

values on the remaining plane according to the value of the angle α. With the

same process we can calculate the other two elementary rotations by the angles

β and γ:

Ry(β) =

cos β 0 sin β

0 1 0

− sin β 0 cos β

 (2.1.4)

Rz(γ) =

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 (2.1.5)

With quick look at the rotation matrices 2.1.3-2.1.5 we can check that the

property 2.1.2 holds, as the inverse of a rotation is a rotation in the opposite

§2.1 − Pose of a rigid body 7

x = x
′

y

z

α

y
′

z
′

(a)

x

y = y′

z

β

x′

z′

(b)

x

y

z = z
′

γ

x
′

y
′

(c)

Figure 2.2: Elementary rotations about the coordinate axes. (a) rotation by an angle α

about x axis, (b) rotation by an angle β about y axis and (c) rotation by an
angle γ about z axis.

direction and

R(−θ) = RT(θ) (2.1.6)

Since the rotation matrix is used to align a new frame Fw′ with the reference

frame Fw, it can also be used to express a point in the new frame p′ in the

reference frame p. This is accomplished by pre-multiplying p′ by R

p = Rp′. (2.1.7)

Here we can only go from the new frame Fw′ to the reference frame Fw, however

8 2 − Preliminary and agent model

if we pre-multiply by R−1 on both sides we get

R−1p = R−1Rp′ (2.1.8)

p′ = RT p (2.1.9)

remembering from 2.1.2 that R−1 = RT.

If more frames are considered for different rotations, it is possible to derive a

total rotation starting from the single ones. Let’s suppose that there are three

frames Fw0, Fw1, Fw2 that have no translation between them, meaning they are

placed on the same origin point O, we can call the rotations to any frame i from

another frame j, Ri
j. Any point p0, p1 and p2 are related by the following:

p0 = R0
1p1 (2.1.10)

p1 = R1
2p2 (2.1.11)

From these two relationships we can derive the third equation

p0 = R0
1R1

2p2 (2.1.12)

R0
2 = R0

1R1
2 (2.1.13)

In the same manner any rotation can be expressed as a composition of multiple

rotation, which is usually the case since it is intuitive and easier to decompose

rotations in elementary rotations as we will see in the next section. An important

fact to keep in mind is that rotations in SO(3) are not commutative and that

pre-multiplication and post-multiplication have different meanings and may

give different results.

2.1.1 Euler angles

Rotation matrices work well and can define any rotation in SO(3), however

they need a lot of elements. If we look at a generic rotation in SO(m), then

m(m − 1)/2 parameters are needed to fully characterize it.In the case of SO(2)

this works since one angle is enough to describe each rotation, which is less than

the four values of a 2-dimensional rotation matrix. In the case of 3-dimensional

rotations each matrix is composed of nine elements which are dependent from

each other. The condition of orthogonality 2.1.1 bounds these values with six

constraints, which leaves the parameters actually needed to represent an SO(3)

rotation to just three. The following theorem can then be brought to our attention

Theorem 2.1.1 (Euler’s rotation theorem). A generic rotation matrix can be obtained

by composing a suitable sequence of three elementary rotations while guaranteeing that

two successive rotations are not made about parallel axes.

§2.1 − Pose of a rigid body 9

x

y

z

Yaw (ψ)

Roll (ϕ)
Pitch (θ)

Figure 2.3: Representation of Roll±Pitch±Yaw angles along the respective x, y and z axis
.

The last part of the theorem gives us a condition that limits the total number

of combinations of elementary rotations that can describe a generic rotation. In

fact we have a free choice for the first one, while the second and third elementary

rotations are limited to two possible axis. This gives us a total of 12 acceptable

combinations, instead of 27 possible combinations. Since they are equivalent,

from now on the only sequence that will be considered is x axis, y axis and z

axis, which are called Roll-Pitch-Yaw angles respectively.

This is the format that is commonly used in the aircraft field to describe the

orientation of airborne vehicles and the corresponding angles are Φ = [φ θ ψ]T,

which describe the rotation around the fixed frame attached to the center of

mass of the aircraft Figure 2.3.

The rotation can be decomposed in am elementary rotation by the angle φ

around the x axis (roll), an elementary rotation by the angle θ around the y

axis (pitch) and an elementary rotation by the angle ψ around the z axis (yaw).

Finally the whole rotation cane be calculated, with respect to the reference fixed

frame, by pre-multiplication of the corresponding rotation matrices, giving

R(Φ) = Rz(ψ)Ry(θ)Rx(φ)

=

cψcθ −sψcφ + cψsθsφ sψsφ + cψsθcφ

sψcθ cψcφ + sψsθsφ −cψsφ + sψsθcφ

−sθ cθsφ cθcφ

(2.1.14)

where c and s are abbreviations for cosine and sine respectively. It is possible to

10 2 − Preliminary and agent model

derive the triplets of angles Φ from R. Too that end, we start from

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (2.1.15)

A solution can always be found for values of θ ̸= ±
π

2
, or cθ ̸= 0 and it is

φ = atan2(r32, r33)

θ = asin(−r31)

ψ = atan2(r21, r11)

(2.1.16)

if θ = ±
π

2
we can only determine the quantity φ±ψ and not their single values.

This is commonly known as gimbal lock in literature and will be important in

the next section.

2.2 Unit quaternion

Although Euler angles perform well in describing rotations, they suffer from

the previously mentioned gimbal lock. To avoid these problems, a new tool

can be used, which is called Hamilton’s quaternion. A quaternion is hyper-

complex number used to represent SO(3) rotations. It is composed of a real and

a complex part, but on the contrary of normal classic complex numbers, the

complex part is composed by three numbers

q = η
︸︷︷︸

real

+ iϵi + jϵj + kϵk
︸ ︷︷ ︸

complex

= η + ϵ =

[

η

ϵ

]

(2.2.1)

where (i, j, k) create the relationship between the elements of the quaternion,

which follow Hamilton’s rules

i2 = j2 = k2 = ijk = −1

ij = k jk = i ki = j

ji = −k kj = −i ik = −j

(2.2.2)

Any rotation can be represented with a quaternion, which only uses one param-

eter more than Euler angles. The different rotations are encoded in the following

manner

q =

[

η

ϵ

]

=

[

cos θ
2

e sin θ
2

]

(2.2.3)

§2.2 − Unit quaternion 11

where e represents the axis around which the rotation is performed and θ the

angle of the rotation around said axis. The quaternion q is unitary, meaning that

∥q∥2 = η2 + ϵTϵ = cos2
(

θ

2

)

+ sin2
(

θ

2

)

= 1. (2.2.4)

A tool we have to compute the rotation matrix R ∈ SO(3) from a quaternion

is the Rodrigues rotation formula. This gives us an efficient method to inter-

change the different representation, starting from the unit vector ω ∈ R3 and

the angle of the rotation θ. The rotation matrix R(θ, ω) is then given by

R(θ, ω) = exp ([ω]x) = I3 +
sin θ

θ
[ω]x +

1 − cos θ

θ2 [ω]2x (2.2.5)

where [ω]x is the skew-symmetric matrix for the vector ω and is calculated in

the following manner

[ω]x =

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.2.6)

To relate unit quaternion and rotation matrix directly we can use the following

formula

R(q) = I3 + 2η[ϵ]x + 2[ϵ]2x

=

η2 + ϵ2
i − ϵ2

j − ϵ2
k 2(ϵiϵj − ηϵk) 2(ϵiϵk + ηϵj)

2(ϵiϵj + ηϵk) η2 − ϵ2
i + ϵ2

j − ϵ2
k 2(ϵjϵk − ηϵi)

2(ϵiϵk − ηϵj) 2(ϵjϵk + ηϵi) η2 − ϵ2
i − ϵ2

j + ϵ2
k

(2.2.7)

where we combined the fact that θ = ∥ω∥ and the information in Equation

(2.2.3). In the last equation we can notice that a quaternion q and its opposite

−q represent the same rotation R(q). This property is called double coverage.

The relationship that goes from quaternion to Euler angles can be derived

substituting 2.2.7 into 2.1.16, obtaining

φ = atan2(2ϵjϵk + 2ηϵi, η2 − ϵ2
i − ϵ2

j + ϵ2
k)

θ = asin(2ηϵj − 2ϵiϵk)

ψ = atan2(2ϵiϵj + 2ηϵk, η2 + ϵ2
i − ϵ2

j − ϵ2
k)

(2.2.8)

12 2 − Preliminary and agent model

2.2.1 Advantages of unit quaternion notation

Quaternions and Euler angles are both valid and commonly used methods

to describe rotations in R3, however, as it was explained in the previous section,

Euler angles suffer from the problem of the gimbal lock. Besides this, they

need to work together with the respective rotation matrices, which contain nine

parameters with six constraints that are due to the orthonormality that is implicit

of the representation (i.e. RTR = I3) and the additional constraint det R = +1

due to the simple rotation that does not involve reflections. Finally, due to

numerical problems it is possible to have problems in both the orthonormality

of the rotation matrix when performing matrix pre or post-multiplication as

well as having problems the quaternion norm. The quaternion is again the more

convenient choice since it is much easier to correct it and make it unitary, rather

than correcting the orthogonality of the rotation matrix.

2.3 Agent model

At this point we want to give a definition of the quadrotor model and

dynamics. From these we will define the controller in the later sections. The

quadrotor model that will be used is the one described in [34]. In particular in

this thesis the quadrotor model will have the parameters of the Crazyflie Nano

Quadcopter, which is shown in Figure 2.4, a small quadrotor that is found in

[35]. This was just one of the possible choices and did not have a special reason

behind it, since our attention is elsewhere. Quadrotors are under-actuated

Figure 2.4: Picture of a Crazyflie Nano Quadcopter. This image was taken from their
website.

by nature,since they are not able to apply instantaneous acceleration in any

§2.3 − Agent model 13

direction, but just vertically. To be fully actuated the quadrotor would have

to be able to deal with all 6 degrees of freedom (DoFs), which are composed of

3 translational DoFs and 3 rotational DoFs, but only has 4 control inputs. The

classic setup of a quadrotor is composed of a rigid cross-shaped frame with

four brush-less DC (BLDC) motors, as shown in Figure 2.5. The rotors impart

(a) (b)

Figure 2.5: The main two configurations of quadrotor: (a) the cross-configuration,
where the rotors point at a 45° angle with respect to the x and y axis and (b)
the plus-configuration, where the rotors point in the same direction of the x
and y axis.

the forces and moments necessary to move the quadrotor with agility and

usually have one of two configurations. What differentiates them is the angle

the reference axis make with the rotors position. In the first one, shown in Figure

2.5a, is called cross-configuration, where the axis make a 45° angle with the

rotors position; the second one, in Figure 2.5b, is called plus-configuration and

has the rotor and the axis pointing in the same direction. The main difference

between the two is that in the first one has all rotors active at most times, making

it more stable, while the latter is more common and less stable and is generally

used for acrobatic tasks.

Quadrotors are highly unstable by nature. This is due to unstable dynamics that

are caused by the variations in the quadrotor parameters. This can be associated

with environmental reasons (e.g. the wind). Disturbances play an important

role as well since there is a strong coupling between the DoFs and there is a

lack of damping in the vehicle.

2.3.1 Dynamic Model

The dynamical model of the quadrotor is usually derived with one of two

methods: the Euler-Lagrange Formalism or the Newton-Euler Formalism. The for-

mer a less intuitive energy based formulation that makes use of the Euler-

Lagrange Equation; the latter instead, is a simpler to understand approach that

14 2 − Preliminary and agent model

works directly on the forces and moments. They are both equally valid ap-

proaches, so we will use the Newton-Euler Formalism. In particular in the next

paragraph the attitude model will be derived only using the rotation matrices

first, to then move to quaternions.

We define as Fw the inertial world frame and as FB the body frame of the

quadrotor, centered in the center of mass (CoM) OB of the platform. We then

call p ∈ R3 the position of the CoM OB with respect to the world frame Fw. To

describe the orientation of the quadrotor with respect to the world frame we

use the rotation matrix R ∈ SO(3). Now the pair (p, R) ∈ R3 × SO(3) fully

describe the pose of the quadrotor. The next pair necessary to describe the

dynamics of the quadrotor is (v, ω), where v ∈ R3 is the velocity of the CoM in

Fw and ω ∈ R3 is the angular velocity of the platform in the inertial frame Fw.

The kinematics of the quadrotor are then

ṗ = v (2.3.1a)

Ṙ = R[ω]× (2.3.1b)

where the last equation is derived in Section (A.1).

Looking at the dynamics, the equations are derived from the forces and torques

that are applied to the quadrotor from the single propellers. Each one rotates

around its own axis with a spinning rate ωi ∈ R, which can be either working

in a clockwise manner (CW), or in a counter-clockwise one (CCW). In the first case

the angular velocity of the propeller would be −ωiezi
, while in the second one

it would be ωiezi
. These propellers are alternated in such a way that two of the

same kind lay on opposite sided of the platform. If we call the control input

Ωi = ωi|ωi| ∈ R, then the forces created by each propeller are

fi = c fi
Ωiezi

(2.3.2)

where c fi
∈ R+ is a constant parameter, meant to represent the thrust coefficient

of the i-th propeller. The moments τt
i ∈ R3 associated to each propeller are

generated from these forces and are found through the following equation

τt
i = pi × fi = c fi

pi × ezi
(2.3.3)

The rotation of each propeller causes a drag moment, called τd
i ∈ R3, that points

in the opposite direction with respect to the angular velocity. We can find its

value in FB through the equation

τd
i = cτi

Ωiezi
(2.3.4)

§2.3 − Agent model 15

where cτi
∈ R is a constant parameter, meant to represent the drag coefficient

of the i-th propeller. It is positive if the rotor is spinning in a CW direction,

negative otherwise.

Looking at the the Equations 2.3.2-2.3.4, we can finally deduce the total force

fc ∈ R3 and total torque τc ∈ R3 that act on the CoM of the quadrotor

fc =
4

∑
i=1

fi =
4

∑
i=1

c fi
Ωiezi

(2.3.5a)

τc =
4

∑
i=1

τt
i + τd

i =
4

∑
i=1

(c fi
pi × ezi

+ cτi
ezi

)Ωi (2.3.5b)

where the quantities are defined with respect to the body frame FB. All this

forces and moments can be observed in Figure 2.6.

Figure 2.6: Schematic picture of a quadrotor, where the forces and moments in action
are highlighted. Particular attention is given to the direction of all these
components.

We can relate the force and torque we just found to the propeller input

Ω = [Ω1Ω2Ω3Ω4]
T in the following manner

fc = FΩ (2.3.6a)

τc = MΩ (2.3.6b)

where l the length of the quadrotor arm, while F ∈ R3×4 and M ∈ R3×4 are the

matrices defines as

F =

0 0 0 0

0 0 0 0

c f1
c f2 c f3 c f4

 M =

0 lc f2 0 −lc f4

−lc f1
0 lc f3 0

−|cτ1 | |cτ2 | −|cτ3 | |cτ4 |

 (2.3.7)

This is a simpler model that does not take into consideration more complex

effect that may happen in a more realistic flight simulation. Most of them would

16 2 − Preliminary and agent model

only cause minor perturbations in a robotic system, but an aircraft such as a

quadrotor is more vulnerable to these effects. In this thesis these second order

effects are neglected for simplicity sake, however other effects such as ground

effect will be explored in the later sections. For now we will limit to following

the system of Newton-Euler equations

m Èp = −mge3 + R fc (2.3.8a)

Jω̇ = −ω × Jω + τc (2.3.8b)

where g > 0, m > 0 and J ∈ R3×3 are, respectively, the gravitational accelera-

tion and the drone total mass and inertia. R is the rotation matrix embedded in

the drone pose and e3 ∈ R3 is the vertical direction, which corresponds to the

third component of the world frame Fw.

If we then combine the kinematic equations (2.3.1b) and the dynamics equations

(2.3.8), we get a full description of the quadrotor model

ṗ = v (2.3.9a)

Ṙ = R[ω]× (2.3.9b)

v̇ = −ge3 + m−1R fc (2.3.9c)

ω̇ = J−1(−ω × Jω + τc) (2.3.9d)

Remembering that the only control inputs are fc and τc, we can notice how the

rotational dynamics 2.3.9d have an effect on the translational dynamics 2.3.9c

through the rotational kinematics 2.3.9b. This kind of coupling can be better

understood by looking at Figure 2.7.

Attitude dynamics

Translational dynamics
R

R, ω

fc

τc

p, v

Figure 2.7: Representation of the quadrotor dynamic model with a block scheme, where
the coupling through the rotation matrix between control force and the
control torque is made clear.

Since, as it was explained before, quaternions can perform better than rota-

tion matrices, the equations in 2.3.9 can be updated to

§2.3 − Agent model 17

ṗ = v (2.3.10a)

q̇ =
1
2
q ◦

[

0

ω

]

=
1
2

M(q)

[

0

ω

]

(2.3.10b)

v̇ = −ge3 + m−1R(q) fc (2.3.10c)

ω̇ = J−1(−ω × Jω + τc) (2.3.10d)

where the values of the rotation matrices were replaced by quaternions where

possible or derived from them in the translational kinematics. Partial proof of

the equation 2.3.10b can be found in Section (A.2), where the same assumptions

were made as in the previous equations.

Chapter 3

Model Predictive Control and

Problem formulation

3.0.1 Model Predictive Control

Let us first introduce the concept of Infinite horizon optimal control problem.

The generic continuous time system in question is the one described by the

following dynamic equation

ẋ(t) = f (x(t), u(t)) (3.0.1)

in which x ∈ Rn is the state and u ∈ Rm is the input. Our aim is finding u(t)

with t ∈ [0, +∞) that minimizes the following cost function defined over an

infinite horizon with as initial condition x(0) = x̃0

J∞(x, u) =
∫ ∞

0
V(x(t), u(t)) dt (3.0.2)

Although the problem is not easy to solve in general, it is possible to prove

that if V(·) is positive definite and both f (·) and V(·) are regular enough, then

u∗(t) with t ∈ [0,+∞], the input that minimizes (3.0.2), stabilizes the origin of

the system (3.0.1) for initial conditions in a neighborhood of x̃0 [16]. In particular,

we want to minimize the following quantity

min
u(·)

J∞(x, u) =
∫ ∞

0
xT(t)Qx(t) + uT(t)Ru(t) dt (3.0.3a)

subject to

ẋ(t) = Ax(t) + Bu(t) (model dynamics)

x(0) = x̃0 (initial condition)

where Q and R are chosen cost weights, which follow the conditions Q ≥ 0

and R > 0, then the solution is guaranteed and is obtained in closed form

19

20 3 − Model Predictive Control and Problem formulation

through the Theorem (3.0.1).

Theorem 3.0.1 (Solution of the infinite horizon LQ optimal control problem).

Let Q
1
2 be a matrix such that Q = (Q

1
2)TQ

1
2 . It holds that:

1. the Algebraic Riccati Equation (ARE),

ATP + PA − PBR−1BTP + Q = 0 (3.0.4)

has a unique positive semi-definite solution P∞. Moreover, if (A, Q
1
2) is observ-

able, then P∞ is positive definite.

2. the state feedback control law:

u(t) = −Kx(t) with K = R−1BTP∞ (3.0.5)

minimise the infinite horizon quadratic cost function (3.0.3a), and makes the

closed±loop system asymptotically stable.

if and only if (A, B) is stabilizable and (A, Q
1
2) is detectable ([36]).

Let us remember that in (3.0.3a) we are considering a special case where the

model of the system is linear and the cost function is a linear-quadratic one,

but in general, when V(·) and f assume a generic form, the optimal input that

minimizes (3.0.2) cannot be found in close form. Another issue is that this kind

of problem is not suitable to be solved numerically, in the first place because

the solution space is infinite dimensional and in the second place because

the time interval of interest is infinite as well. Moreover, when it is possible,

the computed control input is open loop and represents a solution obtained

using the exact model defined by f (·), which is, in many cases, an inexact

representation of the actual system. Indeed, we are looking for a closed loop

system that is robust to model errors.

For this reason, we will simplify the problem with an approximate numerical

solution. The first assumption is to address the problem to discrete time models.

Although most systems have a continuous dynamical model by nature, it is

preferred to use discrete dynamical models as the controller will certainly be

implemented on a digital device and this makes it more feasible to compute the

input to be applied to the system. Then we can discretize the model described

in (3.0.1) with the proper technique and the sample time Ts, to finally get

x(k + 1) = fk(x(k), u(k)) (3.0.6)

where, with a slight abuse of notation, it holds that k = hTs, h ∈ N.

The infinite horizon was the second problem, but we can simplify it by consid-

ering a finite time interval [0, T]. Since we address the problem as a discrete

21

time system, this time interval can be sampled obtaining a finite set of samples

of length N, referred to as control horizon. The optimal problem then changes to

the new form

Problem 3.0.1. Find u∗(0) . . . u∗(N − 1) that minimizes the following optimization

problem

min
u(·)

J =
k−1

∑
k=0

V(x(k), u(k)) + V(x(N))

subject to

x(k + 1) = fk(x(k), u(k)) (model dynamics)

x(0) = x̃(t) (initial condition)

x(k) ∈ X (state constraint)

u(k) ∈ U (input constraint)

where J(·) represents the cost function, x(·) and u(·) are the system state and

manipulated variable (system control) respectively, X and U are the states space and

input space respectively.

We can notice that the formulation of constraints are embedded in the opti-

misation problem, since the set X represents the possible states that the system

can assume and the set U the possible inputs.

Model Predictive Control is an approach based on the iterative solution of

the Optimal Control Problem (OPC) (3.0.1) at each time instant t. The cost func-

tion takes into account the evolution of the system over the next N instances

of the horizon and by minimising this function we get a series of inputs

u∗(0) . . . u∗(N − 1) that is linked to the minimum cost index. If we want to

have close-loop control, we need to take as input only the first element of the

series, namely u∗(0), so that each iteration the system evolves producing a new

state, which is measured, and a new control problem is constructed. The main

idea behind the MPC concept is described in Figure 3.1.

22 3 − Model Predictive Control and Problem formulation

Figure 3.1: Principle of MPC.

3.1 Problem formulation

The objective of this section is to provide an idea of the UAV-UGV coordina-

tion problem we want to solve, along with the assumptions we are going to use

to design our controller and the overall approach for the problem solution. The

UGV has to be tracked by the quadrotor, of which there a complete definition

of the dynamics that it has to obey in its movement. The UGV instead, is not

modeled but will simply move on a flat plane. It was explained in Section (2.2)

why quaternions are preferable over rotation matrices and for this reason only

the model described by the Equations (2.3.10a) - (2.3.10d) will be used in the

following paragraphs. To fully characterize the quadrotor, we want to have

a definition of its position in the reference frame p = [x y z]T, its attitude

through the quaternion q = [q1 q2 q3 q4]
T, its velocity along the frame axis

v = [vx vy vz]T and the angular velocity of its body ω = [ωx ωy ωz]T. At this

point we can define the state vector ξ ∈ R13, i.e.

ξ =

p

q

v

ω

. (3.1.1)

Looking at the problem on the controller side, it was decided that the output

would consist of the thrust values of the single rotors [T0 T1 T2 T3]
T, which are

related to the total thrust and total torque that were presented in (2.3.6a)-(2.3.6b)

§3.1 − Problem formulation 23

through the following equations

fc =

0

0

ΣTi

 . (3.1.2)

In (3.1.2) we can see that all the thrust generated by the propellers is directed

along the z axis in the body frame, as we expected since the quadrotor is under-

actuated.

τc = P

T0

T1

T2

T3

. (3.1.3)

where the P matrix is built according to the quadrotor shape and following its

rotor drag coefficients

P =

−dx0 −dx1 dx2 dx3

dy0 −dy1 −dy2 dy3

−cτ cτ −cτ cτ

 (3.1.4)

We derive the other value needed for the dynamics τc, directly in the body frame.

At this point we can define as input vector the rotors thrusts uc = [T0 T1 T2 T3]
T

and get the following system

ξ̇(t) = f (ξ(t), uc(t)) (3.1.5)

where f (·, ·) comes from the Equations (2.3.10a) - (2.3.10d).

In this work we assume that there are already precise measurements of the

states of the quadrotor, since the focus is not on estimating the quadrotor state.

For this reason the quadrotor has access to the state error ξ̃, which is defined as

ξ̃ =

p̃

ṽ

q̃

ω̃

∈ R
13. (3.1.6)

It is common practice to have multiple layers of control when working with

quadrotors because of their under-actuation. Generally there is a high level

position and speed controller, which generates thrust and reference values for

a lower level attitude controller. Then, the torques generated by the attitude

controller along with the thrusts generated by the position controller are con-

24 3 − Model Predictive Control and Problem formulation

verted to propeller speeds. In this work though, the goal of the controller is

to provide the rotors thrust [T0 T1 T2 T3], which will be tracked by a low-level

controller setting the motor speeds. Here, the motor control is not considered,

since it required a high rate, difficult to reliably achieve with onboard real-time

optimization, to stabilize and get vibration-free flight. For the quadrotor low-

level control, we refer to [37].

Now that we have defined the the general approach to the controller design,

we can define better how each controller is going to have a role in it. The

NMPC is needed to provide a stable and accurate baseline controller, that will

be able to track the reference trajectory. In fact this problem is formulated as a

leader-follower problem, where the leader, the UGV, is moving along its path

and does not have access to any information about the quadrotor, which has

to track the UGV to the best of its capabilities. To this end we will make use

of the NMPC with the addition of a variable weight set that can adjust itself

according to the position error. This is so that the NMPC can work both when

the quadrotor is far from the reference trajectory, as well as when it needs to

make small adjustments in close proximity to the UGV and should not care too

much about attitude error any longer. For this reason the cost function weights

seen in (3.0.3a) will change slightly and have the following formulation at each

iteration

Q(ep) = (1 − e−||ep||22)Q f ar + e−||ep||22 Qclose (3.1.7)

where Q f ar and Qclose are preset weights corresponding to a big position error

ep and a small one respectively. These parameters fine-tuned manually starting

from Q f ar, with the objective of having a stable performance and would not

give too much weight to the position error. The second set of parameters Qclose

was chosen to increase the weight of the position error after the quadrotor

got closer to the reference position, so that it could make ulterior adjustments

without caring too much about the other state errors.

L1AC is meant deal with the errors in the model due to unexpected effects

or errors in the model parameters and in this work we decided to use its

ability to reject the disturbances. The simulated disturbance was the ground

effect. Ground effect is an aerodynamic phenomena which reduces the induced

drag of aircraft and thereby increases its lift-to-drag ratio. It is the lift increase

generated by rotors when an aircraft is close to a surface. The ground effect has

been studied for years and an effective ground effect model for helicopter rotor

has been presented by Cheeseman and Bennett [38]. It is shown that the ratio of

the thrust in ground effect (IGE) to that outside of ground effect (OGE) for a

single rotor operating at constant power, is a function of the rotor radius and

the vertical distance from propeller disk to the ground. In practice the formula

§3.1 − Problem formulation 25

used in the simulation was the following

TIGE

TOGE
=

1

1 −
(

r
4zr

)2 (3.1.8)

Note that TIGE and TOGE are in the case of constant power, and TIGE is always

not less than TOGE. However the empirical formula 3.1.8 is obtained from a

single rotor. It may be unsuitable for quadrotor. The four rotors stand close

to each other for quadrotor, and there may exist some unpredictable airflow

influences between them. In [39] a correction coefficient is introduced into the

previous equation to model the ground effect of the quadrotor, getting the

following equation
Tinput

Toutput
= 1 − ρ

(
r

4zr

)2

(3.1.9)

According to their tests the correct value for ρ was 8.6. Although the result

is based on a different quadrotor, the value was kept the same during the

simulations of this thesis. Although this equation would usually be considered

valid for values of 0.5 <
zr
r < 2, we decided to stop at 0.8, which corresponds

roughly to a ratio of 6 between Tinput and Toutput, so that the output thrust

Toutput would not diverge. In fact, if we look at the Figure 3.2, we can notice that

it diverges for values of zr that are too low.

26 3 − Model Predictive Control and Problem formulation

Figure 3.2: Graph representing the ratio Tinput/Toutput, as the height of the quadrotor
changes.

Chapter 4

UAV Control via NMPC and L1AC

In this chapter we will further look into the Nonlinear Model Predictive Control

(NMPC) and L1 Adaptive Control (L1AC) schemes used for the UGV tracking.

Our aim is to provide all the tools and arguments for the construction of the

cost function, define the input space along with the agent states, provide a

formulation of the L1AC and the controllers schemes.

4.1 Runge-Kutta Integration

The first step consists in showing how the agent dynamics and kinematics

update in a discrete manner. Because of the strong non-linearity describing the

model of the agent, classical discretization techniques cannot be applied. For

this reason, the Runge-Kutta integration method was chosen as the integration

method. It is an effective and widely used method for solving the initial value

problems of differential equations. With it we can construct an accurate high-

order numerical method for the functions themselves without the need for

the high-order derivatives of the functions. Consider first-order initial-value

problem

y′ = f (x, y), a ≤ x ≤ b

y(a) = y0

(4.1.1)

To derive the Runge±Kutta method, we divide the interval [a, b] into N

sub-intervals as [xn, xn+1] n = 0, 1, . . . , N − 1, integrating y′ = f (x, y) over

[xn, xn+1] and utilizing the mean value theorem for integrals. We obtain

y(xn+1)− y(xn) =
∫ xn+1

xn

f (x, y(x)) dx = h f (ε, y(ε)) (4.1.2)

where h = xn+1 − xn, ε ∈ [xn, xn+1], i.e.

y(xn+1) = y(xn) + h f (ε, y(ε)) (4.1.3)

27

28 4 − UAV Control via NMPC and L1AC

If we approximate f (ε, y(ε)) by the linear combination values f (ε1, y(ε1)),

f (ε2, y(ε2)), . . . , f (εm, y(εm)) of f (x, y(x)) on the interval [xn, xn+1], then we

arrive at the general form of Runge-Kutta method

yn+1 = yn + h
m

∑
i=1

ci f (εi, y(εi)) (4.1.4)

Different values for the parameters m, ci and ξi allow us to obtain different

forms of Runge-Kutta computation formula; in this way it is possible to obtain

higher order Runge±Kutta computation formula by choosing suitable values of

parameters. The most widely used Runge±Kutta formula is

yn+1 = yn +
1
6 (k1 + 2k2 + 2k3 + k4)

k1 = h f (xn, yn)

k2 = h f (xn +
1
2 h, yn +

1
2 k1)

k3 = h f (xn +
1
2 h, yn +

1
2 k2)

k4 = h f (xn + h, yn + k3)

(4.1.5)

which is also called four-order Runge±Kutta method due to the need of four

values of function in each step iteration.

We will only consider the discrete-time model describing the agent’s dynamics,

obtained by applying the Runge-Kutta method to the equation (3.1.5). Therefore

we have that

ξ(k + 1) = fk(ξ(k), u(k)). (4.1.6)

Please note that from now on we will write u(·) without the subscript c to

indicate the control input.

4.2 UAV NMPC Controller

The quadrotor has the task of landing on the UGV, which in practice trans-

lates to moving along with the UGV standing directly on top of it. In order

to achieve this goal in a realistic and satisfactory manner it needs to be able

to both bring the quadrotor close to the platform when it is far away and to

accurately make small corrections when it is close to the target destination.

Since we have access to the full state of the quadrotor, we can confront it with

the desired state and minimize the difference. However, this operation has to

be performed while obeying the constraints that are set for the input, for the

model and following the dynamics of the latter. Thus, the optimization problem

§4.2 − UAV NMPC Controller 29

can be formulated as

u∗(·) = argmin
u(·)

J =
N−1

∑
k=0

eT(k)Qe(k) + uT(k)Ru(k) (4.2.1a)

subject to ξ(k + 1) = fk(ξ(k), u(k)) (model dynamics)

(4.2.1b)

ξ(0) = ξ(t) (initial condition)

(4.2.1c)

u(k) ∈ U (input constraint)

(4.2.1d)

where the first term eT(k)Qe(k) is due to the state error in the cost function

and the second term uT(k)Ru(k) is due to the input amplitude.

4.2.1 Definition of the cost function

In the formulation of the cost function we used in (4.2.1a) we did not define

properly what e was. First it must be said that this is the difference of the

state error with respect to the reference state error. Obviously the latter one is

supposed to be always zero, so this value really consists only in the state error

and the reasons behind the use of this more convoluted form of state error will

be explained next. To do that we have to decompose e in its single elements, to

get the following equations

e =

ep

eq

ev

eω

∈ R
13 (4.2.2)

where the values of ep, ev and eω are respectively

ep =

(px − pre fx
)− 0

(py − pre fy
)− 0

(pz − pre fz
)− 0

 ∈ R

3 (4.2.3)

ev =

(vx − vre fx
)− 0

(vy − vre fy
)− 0

(vz − vre fz
)− 0

 ∈ R

3 (4.2.4)

eω =

(ωx − ωre fx
)− 0

(ωy − ωre fy
)− 0

(ωz − ωre fz
)− 0

 ∈ R

3 (4.2.5)

30 4 − UAV Control via NMPC and L1AC

which are all simple differences of the state elements from the corresponding

reference signals.

The quaternion error eq however, is formulated in a different manner. The goal

is to minimize the pitch, roll and yaw angle error of the quadrotor, but there are

multiple ways to choose the type of distance we want to use for this task. In

particular we may opt for a simpler distance measure between the quaternion

q and the reference quaternion qre f , which would be the so-called Frobenius or

chordal metric. In this case the aim is to compute the length of the minimum

curve connecting the two quaternions, but the curve does not have to belong

to the sphere SO
3. This would correspond to taking the difference between the

quaternions in the following manner

d2
F(q, qre f) = ∥q− qre f ∥

2
F (4.2.6)

The other and more significant option is the Riemaniann geodesic metric,

which calculates the length of the minimum curve, belonging to the sphere

SO
3, that connects the two quaternions. However, determining this measure is

not trivial and requires solving an integral in three variables. The equivalent

quaternion based version of this distance is the so-called "Deviation from the

identity metric" does not imply the integral with its complexity for the solution

and is defined as

d2
I (q, qre f) = ∥1q − q

′ ◦ qre f ∥
2
F (4.2.7)

where 1q represents the quaternion corresponding to the identity matrix rota-

tion, namely 1q = [1, 0, 0, 0]T and q
′ is the conjugate of the quaternion q.

In Figure 4.1 we can see the difference between the two metrics. In the first case

4.1a, the chordal metric shows an approximation of the distance between the

two quaternion rotations, that creates a chord connecting the two. In the second

case 4.1b, the Riemaniann geodesic metric displays a perfect representation of the

distance between quaternion 1 and quaternion 2, with an arc that spans across

the sphere.

With the previous formulation, at each NMPC iteration we can define the

orientation error as

eq = d2
I (q, qre f) ∈ R

4 (4.2.8)

which is the last term needed for the state derived part of the cost function seen

in (4.2.2).

The cost function has to optimize the input to minimize the state derived errors

and the input, however it also has to follow the model dynamics as reported in

(4.2.1b). For the most part, constraints on the states are not set, since they could

§4.2 − UAV NMPC Controller 31

(a) (b)

Figure 4.1: Chordal (a) and Riemaniann (b) geodesic metrics representation. The
chordal metric on S2 ∈ R3 is measured directly in R3, while the geodesic
metric is measured along S2.

make the problem unsolvable for the NMPC, but rather included in the state

error which is minimized according to the model. The only exception is a bound

on the height of the quadrotor, for obvious reasons, where the formulation is

simply

pz > 0 (4.2.9)

The input, however was given some constraints. This is due to the fact that it

would not make the problem unfeasible and those constraints corresponded to

the maximum thrust that the quadrotor of choice could generate. The constraints

were set according to values found in [40], which was 2.6 and represented the

relationship between the weight of the quadrotor and its maximum thrust,

which was split equally in four parts for the maximum thrust of each propeller,

namely

∀i = 0, 1, 2, 3 max|Ti| = 2.6
mg

4
(4.2.10)

setting in this way the bounds on the input

umin ≤ u(k) ≤ umax (4.2.11)

Another extremely important feature of the NMPC is the prediction horizon

over which it analyzes the state evolution and the corresponding state errors.

In fact the length of this horizon has to be big enough so that it can see far into

the future. However there is a drawback to increasing the horizon indefinitely,

since the computing power of the computer is limited. For each instance in

the horizon the computer has to find the minimum of the cost function and if

the computing time for this minimization along with the other tasks that the

processor has to keep up with have to stay below the sampling time if we want

32 4 − UAV Control via NMPC and L1AC

the algorithm to be applicable in real time. The number of instances that have to

be explored depends directly on the time horizon we desire and the sampling

time, since

N =
Th

Ts
(4.2.12)

where N is the number of instances, Th the period of the whole horizon and Ts

the sampling time of the NMPC. In particular we have that Ts cannot be too

large, or the controller will not be able to keep up with the system, and Th has

to be long enough so that it can see the relatively long-term advantages that

certain input choices may bring.

To help with the effectiveness of the NMPC the reference signal was modified

according to the movement of the UGV. In fact the reference velocity was not

simply set to zero, but estimated from the reference positions. The reference

velocity passed to the NMPC controller was then

v̂re f (k) =
pre f (k)− pre f (k − 1)

Ts
(4.2.13)

where pre f (k − 1) is the previous reference position, delayed by the sampling

time Ts. Once the velocity v̂re f (k) was estimated, the reference position was also

updated according to the new reference velocity. Starting from the reference

position at the k-th instant, the horizon of the reference positions was set to

p̂re f (k + j) = pre f (k) + j · v̂re f (k) (4.2.14)

4.2.2 NMPC controller architecture

Looking at Figure 4.2 we can get a clear and complete idea of how the

NMPC controller works and what its position would be in real system. We can

see that there is a reference signal ξre f that goes through a velocity estimator.

The estimated velocity is the used to correct part of the reference signal and

obtain ξ′re f , which is then fed along with the estimated state ξ̂ to the NMPC

controller. At this point the optimization process we saw in Equation (4.2.1d)

is followed to produce the first input u, which is then applied to the motor

controller. This determines what the propellers thrust T will be. According to

the quadrotor dynamics, which include phenomena like the ground effect, a

new state ξ is produced according to the equations (3.1.2) and (3.1.3) that relate

the input thrust to the more classic model formulation seen in (2.3.9), and it will

be estimated by the sensors to start another cycle.

§4.3 − L1AC Controller 33

Figure 4.2: NMPC control architecture.

4.3 L1AC Controller

The purpose of this thesis is to complement the control performance of

the NMPC with a supplementary L1AC. This interaction between has been

experimented and has proven its capabilities with satisfactory results in the past

years both with with NMPC [41] and other kinds of MPC [42] [43]. The L1AC is

meant to compensate for the model errors and for external disturbances, which

in the case of this work were due to either the ground effect and changes in

weight.

L1AC uses the nonlinear reference model presented in (2.3.10) and estimates

both matched and unmatched uncertainties using a piece-wise constant adapta-

tion law. Like in [41], we want to account for the uncertainties directly at the

rotor thrust level. We can rewrite the dynamics to account for both matched

and unmatched uncertainties as

v̇ = −ge3 + R(q)
T

m
+ R(q)

ζ

m
− Cdv (4.3.1)

ω̇ = J−1(−ω × Jω + τc + ξ) (4.3.2)

where T = fc represents the total thrust of the propellers, ζ = [ζx, ζy, ζz]T is

the uncertainty appearing in the thrust and ξ = [ξx, ξy, ξz]T is the uncertainty

appearing in the torque. Since a quadrotor is an under-actuated system, capa-

ble of providing linear acceleration only along its body z-axis, the unmatched

uncertainties defined as σum = [ζx, ζy]T appear purely in the X and Y linear di-

rections. This can be thought of as existing in the null space of the controllability

matrix and therefore cannot be compensated for directly. Then, what remains

are the matched uncertainties σm = [ζz, ξx, ξy, ξz]T which can be compensated

for directly.

We can now consider the reduced the state variable z = [v, ω]. Then its deriva-

tive e can be broken up as a function of the nominal and uncertain dynamic

behavior as follows

ż = f (R(q)) + g(R(q))(uL1 + σm) + g(R(q))⊥σum (4.3.3)

34 4 − UAV Control via NMPC and L1AC

where f (R(q)) is the desired dynamics

f (R(q)) =

[

g + TNMPC
m eB

z − Cdv

J−1(−ω × Jω + τc)

]

(4.3.4)

In the second part of Equation (4.3.3) we define g(R(q)) as the uncertainty in

the matched component of the dynamics, while g(R(q))⊥ is the unmatched

component.

g(R(q)) =

[
eB

z
m , eB

z
m , eB

z
m

J−1P

]

g(R(q))⊥ =

[
eB

x
m ,

eB
y

m

03×1, 03×1

]

(4.3.5)

Let uL1 be the adaptive control input which can act as a standalone controller,

or complement the NMPC signal via addition. Define the L1 observer as

ˆ̇z = f (R(q)) + g(R(q))(uL1 + σ̂m) + g(R(q))⊥σ̂um + Asz̃ (4.3.6)

where z̃ = ẑ − z and noting that z is the state obtained from an estimator and ẑ

is the state predicted from the L1 observer. Then we can get the derivative of z̃

in the following manner

˜̇z = g(R(q))(σ̂m − σm)) + g(R(q))⊥(σ̂um − σum) + Asz̃ (4.3.7)

To find the close form solution of this problem we need to discretize the Equation

(4.3.7). First we remember that the analytical solution for the continuous model

is

z̃(t) = eAstz̃(0) +
∫ t

0
eAs(t−τ)G[σ̂(τ)− σ(τ)]dτ (4.3.8)

where

G(t) =
[

g(R(q(t))), g(R(q(t)))⊥
]

σ̂(τ) =

[

σ̂m(τ)

σ̂um(τ)

]

(4.3.9)

From now on we will omit the time dependence of G. At this point we want

to proceed with the discretization. First we define z̃(k) = z̃(kTs) and get the

following equations

z̃(k) = eAskTs z̃(0) +
∫ kTs

0
eAs(kTs−τ)G[σ̂(τ)− σ(τ)]dτ

z̃(k + 1) = eAs(k+1)Ts z̃(0) +
∫ (k+1)Ts

0
eAs((k+1)Ts−τ)G[σ̂(τ)− σ(τ)]dτ

z̃(k + 1) = eAsTs z̃(k) +
∫ (k+1)Ts

kTs

eAs((k+1)Ts−τ)G[σ̂(τ)− σ(τ)]dτ

(4.3.10)

If at this point we substitute υ(τ) = (k + 1)Ts − τ and assume the signal

§4.3 − L1AC Controller 35

[σ̂(τ)− σ(τ)] to be constant during the interval Ts, we can say that

z̃(k + 1) = eAsTs z̃(k)−
(∫ υ((k+1)Ts)

υ(kTs)
eAsυdυ

)

G[σ̂(k)− σ(k)]

z̃(k + 1) = eAsTs z̃(k)−
(∫ 0

Ts

eAsυdυ
)

G[σ̂(k)− σ(k)]

z̃(k + 1) = eAsTs z̃(k) + A−1
s

(

eAsTs − I

)

G[σ̂(k)− σ(k)]

(4.3.11)

At this point we are going to ignore the terms −A−1
s

(

eAsTs − I

)

Gσ(k) along

with z̃(k + 1). The motivation for this decision is that it can be proven that

the control will be stable and that all inputs, states and state estimation errors

will remain bounded. The proof can be found in [44], but being extremely

convoluted and out of the scope of this work, it will not be included in this

thesis. With that being said, if we invert the revised equation, we get

A−1
s

(

eAsTs − I

)

Gσ̂(k) = −eAsTs z̃(k) (4.3.12)

If we define Φ = A−1
s

(

eAsTs − I

)

and µ = eAsTs z̃(k) we can write

ΦGσ̂(k) = −µ (4.3.13)
[

σ̂m(k)

σ̂um(k)

]

= σ̂(k) = −G−1
Φ

−1µ (4.3.14)

where Equation 4.3.14 is the same that is reported in the article [41]. At this point

the new input is set to

uL1 = −C(s)σ̂m (4.3.15)

where C(s) is a low-pass filter. In practice, we implement the control law in

discrete time as

uL1,k = uL1,k−1e−ωcoTs − σ̂m,k(1 − e−ωcoTs) (4.3.16)

where co is the cut-off frequency of the strictly proper first order filter. Finally,

the discrete time L1 observer can be propagated forward in time via

ẑ(k + 1) = ẑ(k) + [fk + gk(uL1,k + σ̂m,k) + g⊥k σ̂um,k + Asz̃k]Ts (4.3.17)

4.3.1 Complete controller architecture

In Figure 4.3 we can see where the L1AC stands and understand better the

kind of role it plays. The reference signal does not change, since it is only needed

for the NMPC controller. The L1AC needs as input the state estimation ξ̂ as well

36 4 − UAV Control via NMPC and L1AC

as the NMPC output uNMPC. This information is going to be used to estimate

the disturbances starting from the reduced sate estimation error z̃k and after

passing through a low-pass filter, an additional input uL1 will be summed to

uNMPC. At this point the total input u will behave like in the previous case

depicted in Figure 4.2 and try to compensate the ground effect embedded in the

quadrotor dynamics as well as providing an optimal state evolution.

Figure 4.3: Architecture of the combination of both controllers.

Chapter 5

Simulation and results

In this chapter we will test and validate the proposed NMPC and L1AC

combination for the UGV tracking problem that was described in Chapter 4. In

particular we will first run the simulations with just the NMPC, to then add the

L1AC and compare the performance improvement the L1AC actually produces,

to see whether this control correct the ground effect. To further test it, we will

add model imperfections and external disturbances in a further section. In

order to validate the algorithm we set up a simulation environment in Matlab

& Simulink.

5.1 Simulation setup

Before starting to tackle scenarios that characterise the study carried out

in this thesis, it is fair to describe the general setup and the tools used. Fur-

thermore, it is interesting to validate the model derived in Section 2.3, and for

this purpose a simple hovering problem is studied. This is useful to test the

NMPC for individual control and make some preliminary considerations on

the cooperative algorithm.

Regarding the implementation of the NMPC, it was very useful to use MATMPC.

This tool aims at providing an easy-to-use NMPC implementation. The optimal

control problem (OCP) that should be solved is transcribed by multiple shooting

and the resulting nonlinear program is solved by Sequential Quadratic Program-

ming (SQP) method. Moreover, this tool supports fixed step (explicit/implicit)

Runge-Kutta integrator for multiple shooting, which was presented in the be-

ginning of Section 2.3. The derivatives that are needed to perform optimization

are obtained by CasADi, the state-of-the-art automatic/algorithmic differentia-

tion toolbox. For further information, please refer to the Matlab and MATMPC

website [45].

To start, we recall that quadrotor control is accomplished by applying the

input uc = [T0, T1, T2, T3]
T, while the system output, which in this work also

37

38 5 − Simulation and results

corresponds to the state measured by the on-board sensors, is ξ as defined in

(3.1.1). The input uc is then connected to the state by the minimization of the

cost function

u∗(·) = argmin
u(·)

k−1

∑
k=0

V(ξ̂(k), u(k))

subject to ξ(k + 1) = fk(ξ(k), u(k)) (model dynamics)

ξ(0) = ξ̃(t) (initial condition)

umin ≤ u(k) ≤ umax (input constraint)

where the function V(·, ·) is given by

V(ξ(k), u(k)) =
N−1

∑
k=0

eT(k)Qe(k) + uT(k)Ru(k) (5.1.2)

and the diagonal matrixQ can be decomposed in all the coefficients for the

different errors

Q = diag([cp, cq, cv, cω]) (5.1.3)

Some simulations are shown below with the purpose of validating the model

and simulink scheme used for this thesis. Throughout the thesis, as an example,

the Crazyflie platform data is used to implement the model related to agents.

The values of the model parameters are available, but are listed below anyway

in the Table 5.1.

Agent parameters

m [kg] 0.027

l [m] 0.042

r [m] 0.023

Jx [kg·m2] 2.4 · 10−5

Jy [kg·m2] 2.4 · 10−5

Jz [kg·m2] 3.2 · 10−5

cτ [m] 3.7 · 10−3

Cd [kg/s] 4 · 10−4

Table 5.1: Crazyflie quadrotor parameters.

Here m represents the mass of the quadrotor, l and r the arm length from

center to rotor and propeller radius respectively, [Jx, Jy, Jz] are the inertial values

that compose the corresponding diagonal matrix, cτ is the rotor drag torque

constant, used in (3.1.4), and Cd is the wind friction coefficient.

§5.1 − Simulation setup 39

Next we present the NMPC setup that was used for the hovering task.

Initial condition

p(0) [m]
[

0 0 0
]T

v(0) [m/s]
[

0 0 0
]T

q(0)
[

1 0 0 0
]T

ω(0) [rad/s]
[

0 0 0
]T

Reference

pd [m]
[

0 0 5
]T

q
d

[

0 0 0 1
]T

NMPC parameters

Ts [s] 0.01

N 100

cp f

[

7 7 1
]T

cpc

[

1000 1000 100
]T

cq f

[

20 20 20 20
]T

cqc

[

20 20 20 20
]T

cv f

[

2 2 3
]T

cvc

[

1 1 1
]T

cω f

[

7 7 7
]T

cωc

[

3 3 3
]T

Ti,min [N] −0.172

Ti,max [N] 0.172

Table 5.2: Numerical simulation parameters.

where the far and close values for Q change based on the position error

of the quadrotor, according to Equation 3.1.7. Ti,min and Ti,max represent the

minimum and maximum thrusts that the i-th propeller can exert.

In the MPC, the tuning of parameters assumes a significant role, in particular

because by acting on them it is possible to get different responses based on the

chosen parameters. With regard to the sample time TS and prediction horizon N,

the computing time does not represent a limitation in Simulink as the simulation

is not real time, and the computation can be as long as needed. The sampling

40 5 − Simulation and results

time was kept at the more classical value of TS = 0.01 s, while the prediction

horizon was set to N = 100 to cover a whole second.In the testing this proved

to be the smallest value for the correct functioning of the algorithm. The NMPC

parameters shown in the Table 5.2 are the result of several simulations in search

of a good system response, providing stability for the quadrotor and bringing

the state error to zero.

(a) Altitude error

(b) Attitude error

Figure 5.1: NMPC control test for quadrotor hovering.

This first simulation where the task was simple hovering was a success

and the results is reported in Figure 5.1. It is possible to see that the control is

effective, in fact both altitude and attitude errors converge to zero, thus the

quadrotor stabilizes at the desired position. From the graphs in 5.2 it can be seen

that the altitude steady state error is about zero and that there is no overshoot

for both. Instead, from the graph 5.2 we can observe that the input after an

§5.2 − Landing Simulation with Ground Effect 41

Figure 5.2: Thrust force exerted by the propellers during the NMPC regulated hovering
task.

initial agitated phase, finds stability and converges. We remember that the

goal of this test is to validate the used model and the simulation scheme and

therefore we have not gone to depth in search of improved results since we

don’t want to assess controller performance at this stage.

5.2 Landing Simulation with Ground Effect

Here are some results about the ability of the quadrotor to perform a landing

manoeuvre on a UGV. To simulate this event a reference state was created,

which was meant to represent the ideal position for the landing, slightly above

the UGV platform. The UGV would also be moving at constant speed in a

chosen direction (which was chosen to be in the x-axis direction for simplicity

reasons) for a total time of 10 s. This would test the ability of the algorithm to

land the quadrotor without the need to stop the other vehicle.

One of the biggest challenges with the ground effect is that it creates a distur-

bance that varies in space and is therefore hard to compensate. On a positive

note though, this effect pushes the aircraft up rather then down, making over-

shoots less likely.

While the parameters of the NMPC were left the same as in the hovering case,

the parameters of the L1AC were added in this simulation. They included the

adaptation gain As and the cutoff frequency co, which were necessary for the

adaptation law reported in Equations (4.3.6) and (4.3.16) respectively. As had to

be an Hurwitz matrix, so for simplicity reasons it was kept to an identity matrix

multiplied by a constant. It was then fine tuned manually. The parameter co

instead was chosen as the highest value for the low-pass filter cutoff frequency

that allowed for a relatively smooth controller output. All the new parameters

42 5 − Simulation and results

used in the simulations are the following

Initial condition

p(0) [m]
[

2 0 5
]T

v(0) [m/s]
[

0 0 0
]T

q(0)
[

0 0 0 1
]T

ω(0) [rad/s]
[

0 0 0
]T

Reference

pd(0) [m]
[

0 0 5
]T

q
d

[

0 0 0 1
]T

vd [m/s]
[

−0.5 0 0
]T

L1AC parameters

As −1 · 16

co 10

Table 5.3: Numerical simulation parameters for landing manoeuvre.

To assess the effectiveness of the L1AC the simulation was first run simply

implementing the NMPC. At this point the ground effect was added and the

performance of the NMPC was tested again in such condition. Finally the L1AC

was added to the control scheme, with as expected result a restoration of the

initial performance of the NMPC without disturbances thanks to the ability of

the L1AC to compensate for external disturbances and model errors.

In the Simulink the ground effect block was set after the saturation block

that limited the sum of the controller inputs according to the constraints in

(4.2.11). This decision was motivated by the fact that this phenomenon, although

generating thrust, does not depend on the capabilities of the quadrotor.

In Figure 5.3 we can see the performance of the NMPC alone, when the ground

effect in not effecting the quadrotor performance and having the L1AC still

inactive. This simulation is meant to give us an idea of the optimal performance

for the NMPC. Here we can see in Figure 5.3a that the position error converges

quickly to zero and that there is no overshoot. This is especially important in

this task, since an overshoot in a landing manoeuvre could bring to a crash of

the quadrotor.

Next, in Figure 5.3b, we can appreciate how the attitude error stay close to zero

at all times. In fact the UAV is set in same orientation as the reference in the

beginning and changes it only slightly to increase change its position, since it is

§5.2 − Landing Simulation with Ground Effect 43

under-actuated.

(a) Position error

(b) Attitude error

(c) Thrust force

Figure 5.3: NMPC test for quadrotor landing without ground effect.

44 5 − Simulation and results

In Figure 5.3c we see the individual thrusts exerted by each individual

propeller. The NMPC output acts strongly in the beginning to accelerate the

platform, but then stabilizes around the steady state, moving along with the

UGV. This can be considered a successful performance in tracking the UGV and

would allow a smooth landing.

Next we focus on the two other cases. In the first one the only change is the

addition of the ground effect. As mentioned before in Section 3.1 this effect

amplifies the input thrust and pushes the quadrotor upwards. The NMPC is

extremely precise in this case as well, having a performance that would look

nearly identical to the previous case, especially thanks to the varying weights

implemented using (3.1.7).

The only notable difference is in the steady-state of the altitude error, since it

is in the direction the ground effect is acting upon. Here, although the error

is still small, it amounts to about nine times what it was before the ground

effect was added. Finally the simulation was run a third time, adding the L1AC

to compensate for the ground effect. The results showed a perfect correction

of the disturbance and brought the altitude steady-state error down to the

initial values, making the performances virtually the same. These results can be

observed in Figure 5.5, where the correction that L1AC achieves is extremely

clear.

In the simulations of the next sections the ground effect will always be present

to create a more realistic environment.

Figure 5.4: NMPC without ground effect.

§5.3 − Landing Simulation at High Speed 45

(a) NMPC with ground effect

(b) NMPC with ground effect and L1AC

Figure 5.5: Juxtaposition of the altitude errors for the cases of NMPC and L1AC when
the ground effect is considered.

5.3 Landing Simulation at High Speed

This section is dedicated at the exploration of the possibility of pushing the

quadrotor to faster speeds. This test was meant to check whether the control,

in particular the base NMPC, would work at different reference velocities than

the preset one, while keeping the control law the same. The reference speed

was increased from 0.5 m/s to 1.5 m/s and the simulation was run in the same

manner of the one in Section 5.2.

46 5 − Simulation and results

(a) NMPC with high reference speed

(b) L1AC with high reference speed

Figure 5.6: Altitude error of the quadrotor with high reference speed.

Looking at the results we can see in Figure 5.6a-5.6b that the increased

velocity caused some oscillations in both cases. Like in the previous cases, it

is clear that although the NMPC was able to follow the reference trajectory in

a satisfactory manner. The L1AC was able to bring the altitude error to zero

and kept oscillating with an amplitude similar to the NMPC alone. The only

downside to the L1AC in this case is a slight overshoot, mostly due to the

aggressive behaviour necessary to track such a reference state and the fact that

it was able to neutralize the ground effect, bringing the quadrotor closer to the

platform.

§5.4 − Landing Simulation with Additional Weight 47

5.4 Landing Simulation with Additional Weight

Next we want to test our algorithm when the quadrotor is carrying addi-

tional weight. This is not an unlikely case, since quadrotors may have hardware

attached to them that was not taken into account when setting the internal

model parameters. Hence, this is also a test to the robustness of the L1AC to

model parameter errors.

To accomplish this task the weight of the quadrotor was increased to twice

the original weight. This increase in weight was chosen since it would have

significant effect on the algorithm performance, while remaining reasonable,

given that the quadrotor maximum thrust was able support a maximum of 2.6

times the original weight.

(a) NMPC with additional weight

(b) L1AC with additional weight

Figure 5.7: Performance of the NMPC and L1AC when the weight of the quadrotor is
greater than expected.

48 5 − Simulation and results

Figure 5.8: L1AC thrust with additional weight.

Looking at the results of the simulations in Figure 5.7b we can see the per-

formance of the NMPC alone. The algorithm is again able to compensate for

the additional weight thanks to its robustness, however we can notice that it

overshot the reference altitude by considerable amount. This can be problematic

especially if we are aiming for precise landing and may cause damage to the

quadrotor on impact.

On the other side, in Figure 5.7b the L1AC is able to follow the reference altitude

much better, although there is some instability in the beginning, the overshoot

is much smaller than the previous case, by a significant amount.

Finally, in Figure 5.8, we can have a look at the L1AC input thrust during the

landing. It is clear how in the beginning the controller compensates for the addi-

tional weight up to around 2.5 seconds. After that point it starts compensating

with negative thrust since the ground effect has surpassed the effect of the extra

weight. At this point we see the input stabilize.

5.5 Landing Simulation with Broken Rotor

The last simulation is a test of an emergency situation, where one propeller

of the quadrotor is partially broken. In this case it was not sensible to test a

completely broken propeller, because of the mechanics that regulate L1AC.

In fact, in the event of a completely broken propeller, the L1AC would try

to increase the broken propeller thrust without any success. In this case we

simulated the inconvenience as a loss of a certain percentage of the selected

rotor thrust. This was achieved in the following manner

Tbreak = diag([1, 1, 1, 0.5])[T0, T1, T2, T3] (5.5.1)

§5.5 − Landing Simulation with Broken Rotor 49

giving the 4-th rotor a deficit of 50% of its input thrust. This caused great

problems in the control of the aircraft along with an unstable behaviour when

compared with the other tests, although being an emergency scenario, it was

expected.

The results are depicted in Figure 5.9. In particular we can observe the extremely

long time it took the NMPC to bring the quadrotor to the UGV in Figure 5.9a.

The NMPC proved again its robustness and avoided crashing the UAV. In Figure

5.9b we can instead appreciate how the L1AC is able to bring the quadrotor

down in a much quicker time, drastically improving the performance of the

NMPC alone.

(a) NMPC with broken propeller

(b) L1AC with broken propeller

Figure 5.9: Performance of the NMPC and L1AC during emergency landing with
broken propeller.

50 5 − Simulation and results

Figure 5.10: Input thrust of the L1AC for quadrotor with broken propeller.

In Figure 5.10 the L1AC input is represented. We can clearly see how the

controller tries to compensate for the damaged propeller and exert a stronger

thrust on the 4-th rotor only.

Chapter 6

Conclusion

In this thesis the control of a quadrotor via non-linear MPC and L1 Adaptive

Control have been studied, with special attention for the landing manoeuvre

and the challenges that are associated with it. The aircraft was tasked with

performing such landing on a moving platform situated on a UGV, which had

the role of the leader in the leader-follower relationship between the two un-

manned vehicles.

Although NMPC is a form of optimal control and can achieve great robustness,

it is heavily dependent on the internal model of the quadrotor. The L1AC, on

the other hand, can be used to compensate the model deficiencies that may

occur by compensating them at the input via an observer estimation. Moreover,

the L1AC does not require heavy calculations, in contrast with the NMPC, since

it does not perform an optimization procedure, but instead makes use of a

closed form solution. For these reasons the coupling between the two control

methods works well and the already well-performing NMPC can be improved

with the L1AC.

The control methods were tested in different scenarios, to validate the im-

provements that the L1AC could add to the NMPC. To that end each test was

performed first with the NMPC, to appreciate its performance. Then a second

simulation was run with the addition of the adaptive control and the results

were compared to evaluate the actual change in converging speed or steady-

state error. Rejection of the ground effect, which is caused by the propellers of a

quadrotor when in close vicinity to the ground, as well as different speeds of

the UGV during the landing manoeuvre. Next the control was tested against

errors in the model parameters of the quadrotor, which are essential for the

NMPC. Finally a test of an emergency situation was run, to see how a damaged

propeller could influence the results.

This thesis provides a few starting points for future works:

• We tested and validated control methods based on NMPC and the corre-

sponding optimization procedure on Matlab & Simulink, where the time

51

52 6 − Conclusion

constraints that a real-time control were not an issue. A future work could

try to find a way to implement these techniques in real time and obeying

the relative constraints, see [41], and validate them in another real-time

environment such as ROS Gazebo and then in the laboratory.

• This thesis assumed that the UGV was simply moving at constant velocity

and that the quadrotor should try to land without any help from the

leader. A future work could combine the actions of the two vehicles, since

the NMPC gives us the tools to do so.

• In this work a single quadrotor was simulated, but the problem could

be extended to a more complex case where multiple quadrotors have to

coordinate their landing and take off from the UGV

Appendix A

Appendix

A.1 Time derivative of rotation matrices

In this section will explain how to obtain the time derivative of a rotation

matrix RW,b ∈ SO(3), which represents the orientation of the body fixed frame

Fb with respect to the world inertial frame FW when a angular rate ω is applied.

We recommend [46] for more details. Considering a point P in the 3D space, its

coordinates, expressed in an inertial frame, are denoted with the vector p ∈ R3.

Assuming that P possesses an angular rate ω ∈ R3, that has axis ω/∥ω∥ ∈ S2

passing though the origin of the inertial frame and magnitude ∥ω∥ > 0.

Figure A.1: Frame A is fixed while frame B is rotating.

The position vector p ∈ R3 can then be derived as

ṗ = ω × p. (A.1.1)

Consider now, ew,i ∈ S2, i = 1, 2, 3 the vectors representing the canonical

vectors ei ∈ S2, axes of frame Fb, w.r.t. the inertial frame FW , namely ew,i =

RW,bei. Then, if we call ωw ∈ R3 the value of the angular rate ω expressed in

the inertial frame. Then

53

54 A − Appendix

ėw,i = ωw × ew,i. (A.1.2)

By calling ew,i, where i = 1, 2, 3, the i-th column of RW,b and recalling the

properties of the skew-symmetric matrices, we find that

ṘW,b = [ωw]×RW,b (A.1.3)

ṘW,b is the time derivative of the rotation matrix that expresses Fb with

respect to the frame FW , assuming the angular rate is expressed in FW instead.

Note that (A.1.3) still holds even if both frames are not inertial, since this fact

was not exploited in this reasoning.

A.2 Time derivative of unit quaternions

The following proposition is taken from [47], which we recommend for more

details.

Proposition A.2.1. Given the unit quaternion qi ∈ S3 representing the orientation of

Fi w.r.t. FW , its time derivative has expression

q̇i =
1
2

ω+
w ◦ qi (A.2.1)

where ω+
w = [0 ωT

w]
T ∈ R4, with ωw ∈ R3 an angular rate expressed in FW .

Proof. Let x+0 ∈ R4 be any given vector (quaternion with zero scalar part) fixed

at time t0 and x+t ∈ R4 the same vector at time t. The two can be related through

the unit quaternion qt,

x+t = qt ◦ x+0 ◦ q−1
t . (A.2.2)

Differentiating (A.2.2), it results

ẋ+t = q̇t ◦ x+0 ◦ q−1
t + qt ◦ x+0 ◦ q̇−1

t . (A.2.3)

From equations (A.2.2) and (A.2.3) it holds

ẋ+t = q̇t ◦ q
−1
t ◦ x+0 + x+0 ◦ qt ◦ q̇

−1
t . (A.2.4)

Since the norm of quaternion is unit qt ◦ q
−1
t = 1, we have

d

dt
qt ◦ q

−1
t = q̇t ◦ q

−1
t + qt ◦ q̇

−1
t = 0. (A.2.5)

It follows from equations (A.2.4) and (A.2.5) that

§A.2 − Time derivative of unit quaternions 55

ẋ+t = q̇t ◦ q
−1
t ◦ x+0 − x+0 ◦ q̇t ◦ q

−1
t . (A.2.6)

Define p+ = q̇t ◦ q
−1
t , then, denoting with η(q) and ϵ(q) the scalar and

imaginary parts of the quaternion q ∈ S3, we have

η(p+) = η(q̇t)η(q
−1
t)− ϵ(q̇t)

Tϵ(q−1
t)

= η(q̇t)η(qt)− ϵ(q̇t)
Tϵ(qt) = 0,

(A.2.7)

because the norm of qt is unit and η(p+) =
1
2

d

dt
∥qt∥. Then, η(p+) is a pure

quaternion, and being also x+t a pure quaternion, it holds that

ẋ+t = p+
t ◦ x+t − x+t ◦ p+

t =

0

2(pt × xt)

 . (A.2.8)

On the other and, ẋt ∈ R3 has expression

ẋt = ω × xt (A.2.9)

being the time derivative of a vector with fixed length. Putting together

equations (A.2.8) and (A.2.9) it follows that

ω+
t = 2p+

t = 2q̇t ◦ q
−1
t (A.2.10)

thus,

q̇t =
1
2

ω+
t ◦ qt. (A.2.11)

Bibliography

[1] G.D. Goh, S. Agarwala, G.L. Goh, V. Dikshit, S.L. Sing, and W.Y.

Yeong. Additive manufacturing in unmanned aerial vehicles (uavs):

Challenges and potential. Aerospace Science and Technology, 63:140±151,

2017. ISSN 1270-9638. doi: https://doi.org/10.1016/j.ast.2016.12.019.

URL https://www.sciencedirect.com/science/article/pii/

S127096381630503X. (Cited at page 1)

[2] Guillaume J.J. Ducard and Mike Allenspach. Review of designs and flight

control techniques of hybrid and convertible vtol uavs. Aerospace Science

and Technology, 118:107035, 2021. ISSN 1270-9638. doi: https://doi.org/

10.1016/j.ast.2021.107035. URL https://www.sciencedirect.com/

science/article/pii/S1270963821005459. (Cited at page 1)

[3] Sophie Jordan, Julian Moore, Sierra Hovet, John Box, Jason Perry,

Kevin Kirsche, Dexter Lewis, and Zion Tsz Ho Tse. State-of-the-

art technologies for uav inspections. IET Radar, Sonar & Naviga-

tion, 12(2):151±164, 2018. doi: https://doi.org/10.1049/iet-rsn.2017.

0251. URL https://ietresearch.onlinelibrary.wiley.com/

doi/abs/10.1049/iet-rsn.2017.0251. (Cited at page 1)

[4] Yuncheng Lu, Zhucun Xue, Gui-Song Xia, and Liangpei Zhang. A survey

on vision-based uav navigation. Geo-spatial Information Science, 21(1):21±

32, 2018. doi: https://doi.org/10.1080/10095020.2017.1420509. (Cited at

page 1)

[5] Christopher M. Korpela, Todd W. Danko, and Paul Y. Oh. Mm-uav: Mobile

manipulating unmanned aerial vehicle. Journal of Intelligent and Robotic

Systems, 65:93±101, 2012. doi: https://doi.org/10.1007/s10846-011-9591-3.

(Cited at page 1)

[6] Boris Galkin, Jacek Kibilda, and Luiz A. DaSilva. Uavs as mobile infras-

tructure: Addressing battery lifetime. IEEE Communications Magazine, 57

(6):132±137, 2019. doi: 10.1109/MCOM.2019.1800545. (Cited at page 1)

57

58 BIBLIOGRAPHY

[7] Marcos Felipe Santos Rabelo, Alexandre Santos Brandão, and Mário

Sarcinelli-Filho. Landing a uav on static or moving platforms using

a formation controller. IEEE Systems Journal, 15(1):37±45, 2021. doi:

10.1109/JSYST.2020.2975139. (Cited at page 1)

[8] Thien Hoang Nguyen, Muqing Cao, Thien-Minh Nguyen, and Lihua Xie.

Post-mission autonomous return and precision landing of uav. In 2018

15th International Conference on Control, Automation, Robotics and Vision

(ICARCV), pages 1747±1752, 2018. doi: 10.1109/ICARCV.2018.8581117.

(Cited at page 1)

[9] Sepehr Seyedi, Yasin Yazicioğlu, and Derya Aksaray. Persistent surveil-

lance with energy-constrained uavs and mobile charging stations. IFAC-

PapersOnLine, 52(20):193±198, 2019. ISSN 2405-8963. doi: https://doi.

org/10.1016/j.ifacol.2019.12.157. URL https://www.sciencedirect.

com/science/article/pii/S2405896319320087. 8th IFAC Work-

shop on Distributed Estimation and Control in Networked Systems NEC-

SYS 2019. (Cited at page 1)

[10] Maidul Islam, Mohamed Okasha, and Erwin Sulaeman. A model pre-

dictive control (mpc) approach on unit quaternion orientation based

quadrotor for trajectory tracking. International Journal of Control, Au-

tomation and Systems, 17:2819±2832, 2019. doi: https://doi.org/10.1007/

s12555-018-0860-9. (Cited at page 1)

[11] Abolfazl Eskandarpour and Inna Sharf. A constrained error-based mpc for

path following of quadrotor with stability analysis. Nonlinear Dynamics, 99:

899±918, 2020. doi: https://doi.org/10.1007/s11071-019-04859-0. (Cited at

page 1)

[12] Tong Lv, Yanhua Yang, and Li Chai. Extended state observer based mpc

for a quadrotor helicopter subject to wind disturbances. In 2019 Chinese

Control Conference (CCC), pages 8206±8211, 2019. doi: https://doi.org/10.

23919/ChiCC.2019.8865370. (Cited at page 1)

[13] Nicola Lissandrini, Giulia Michieletto, Riccardo Antonello, Marta Galvan,

Alberto Franco, and Angelo Cenedese. Cooperative optimization of uavs

formation visual tracking. Robotics, 8(3), 2019. ISSN 2218-6581. doi: 10.3390/

robotics8030052. URL https://www.mdpi.com/2218-6581/8/3/52.

(Cited at page 1)

[14] Elio Tuci, Muhanad HM Alkilabi, and Otar Akanyeti. Cooperative object

transport in multi-robot systems: A review of the state-of-the-art. Frontiers

in Robotics and AI, 5:59, 2018. (Cited at page 1)

BIBLIOGRAPHY 59

[15] Zhi Feng, Guoqiang Hu, Yajuan Sun, and Jeffrey Soon. An overview

of collaborative robotic manipulation in multi-robot systems. Annual

Reviews in Control, 49:113±127, 2020. ISSN 1367-5788. doi: https://doi.org/

10.1016/j.arcontrol.2020.02.002. URL https://www.sciencedirect.

com/science/article/pii/S1367578820300043. (Cited at page 1)

[16] J.B. Rawlings, D.Q. Mayne, and M. Diehl. Model Predictive Con-

trol: Theory, Computation, and Design. Nob Hill Publishing, 2017.

ISBN 9780975937730. URL https://books.google.it/books?id=

MrJctAEACAAJ. (Cited at pages 2 and 19)

[17] Michael A. Henson. Nonlinear model predictive control: current status

and future directions. Computers Chemical Engineering, 23(2):187±202, 1998.

ISSN 0098-1354. doi: https://doi.org/10.1016/S0098-1354(98)00260-9.

URL https://www.sciencedirect.com/science/article/pii/

S0098135498002609. (Cited at page 2)

[18] Andrea Zanelli, Greg Horn, Gianluca Frison, and Moritz Diehl. Nonlinear

model predictive control of a human-sized quadrotor. In 2018 European

Control Conference (ECC), pages 1542±1547, 2018. doi: 10.23919/ECC.2018.

8550530. (Cited at page 2)

[19] Bárbara Barros Carlos, Tommaso Sartor, Andrea Zanelli, Gianluca Frison,

Wolfram Burgard, Moritz Diehl, and Giuseppe Oriolo. An efficient real-

time nmpc for quadrotor position control under communication time-delay.

In 2020 16th International Conference on Control, Automation, Robotics and

Vision (ICARCV), pages 982±989, 2020. doi: 10.1109/ICARCV50220.2020.

9305513. (Cited at page 2)

[20] Dong Wang, Quan Pan, Yang Shi, Jinwen Hu, and Chunhui Zhao. Efficient

nonlinear model predictive control for quadrotor trajectory tracking: Algo-

rithms and experiment. IEEE Transactions on Cybernetics, 51(10):5057±5068,

2021. doi: 10.1109/TCYB.2020.3043361. (Cited at page 2)

[21] Ioan Doré Landau, Rogelio Lozano, Mohammed M’Saad, and Alireza

Karimi. Adaptive control: algorithms, analysis and applications. Springer

Science & Business Media, 2011. (Cited at page 2)

[22] Anuradha M Annaswamy and Alexander L Fradkov. A historical perspec-

tive of adaptive control and learning. Annual Reviews in Control, 52:18±41,

2021. (Cited at page 2)

[23] AP Morgan and KS Narendra. On the uniform asymptotic stability of

certain linear nonautonomous differential equations. SIAM Journal on

Control and Optimization, 15(1):5±24, 1977. (Cited at page 2)

60 BIBLIOGRAPHY

[24] Kumpati S Narendra and Anuradha M Annaswamy. Persistent excitation

in adaptive systems. International Journal of Control, 45(1):127±160, 1987.

(Cited at page 2)

[25] Changyun Wen and David J Hill. Adaptive linear control of nonlinear

systems. IEEE transactions on automatic control, 35(11):1253±1257, 1990.

(Cited at page 2)

[26] Joseph E Gaudio, Anuradha M Annaswamy, and Eugene Lavretsky. Adap-

tive control of hypersonic vehicles in the presence of rate limits. In 2018

AIAA Guidance, Navigation, and Control Conference, page 0846, 2018. (Cited

at page 2)

[27] Zachary T Dydek, Anuradha M Annaswamy, and Eugene Lavretsky. Adap-

tive control of quadrotor uavs: A design trade study with flight evaluations.

IEEE Transactions on control systems technology, 21(4):1400±1406, 2012. (Cited

at page 2)

[28] Alia Abdul Ghaffar and Tom Richardson. Model reference adaptive control

and lqr control for quadrotor with parametric uncertainties. International

Journal of Mechanical and Mechatronics Engineering, 9(2):244±250, 2015. (Cited

at page 2)

[29] Paul De Monte and Boris Lohmann. Position trajectory tracking of a

quadrotor helicopter based on l1 adaptive control. In 2013 European Control

Conference (ECC), pages 3346±3353. IEEE, 2013. (Cited at page 2)

[30] Saeid Jafari, Petros Ioannou, and Lael E Rudd. What is l1 adaptive control.

In AIAA guidance, navigation, and control (GNC) Conference, page 4513, 2013.

(Cited at page 2)

[31] Hossein Beikzadeh and Guangjun Liu. Trajectory tracking of quadrotor fly-

ing manipulators using l1 adaptive control. Journal of the Franklin Institute,

355(14):6239±6261, 2018. (Cited at page 2)

[32] Randy Beard, Chengyu Cao, and Naira Hovakimyan. An l1 adaptive pitch

controller for miniature air vehicles. In AIAA guidance, navigation, and

control conference and exhibit, page 6777, 2006. (Cited at page 2)

[33] Irene Gregory, Chengyu Cao, Enric Xargay, Naira Hovakimyan, and Xiao-

tian Zou. L1 adaptive control design for nasa airstar flight test vehicle. In

AIAA guidance, navigation, and control conference, page 5738, 2009. (Cited at

page 2)

BIBLIOGRAPHY 61

[34] Xiaodong Zhang, Xiaoli Li, Kang Wang, and Yanjun Lu. A survey of

modelling and identification of quadrotor robot. In Abstract and Applied

Analysis, volume 2014. Hindawi, 2014. (Cited at page 12)

[35] Benoit Landry et al. Planning and control for quadrotor flight through cluttered

environments. PhD thesis, Massachusetts Institute of Technology, 2015.

(Cited at page 12)

[36] Ettore Fornasini and Giovanni Marchesini. Appunti di teoria dei sistemi.

Libreria progetto, 2011. (Cited at page 20)

[37] Robert Mahony, Vijay Kumar, and Peter Corke. Multirotor aerial vehicles:

Modeling, estimation, and control of quadrotor. IEEE Robotics Automation

Magazine, 19(3):20±32, 2012. doi: 10.1109/MRA.2012.2206474. (Cited at

page 24)

[38] IC Cheeseman and WE Bennett. The effect of the ground on a helicopter

rotor in forward flight. 1955. (Cited at page 24)

[39] Li Danjun, Zhou Yan, Shi Zongying, and Lu Geng. Autonomous landing

of quadrotor based on ground effect modelling. In 2015 34th Chinese control

conference (CCC), pages 5647±5652. IEEE, 2015. (Cited at page 25)

[40] Guanya Shi, Wolfgang Hönig, Yisong Yue, and Soon-Jo Chung. Neural-

swarm: Decentralized close-proximity multirotor control using learned

interactions. In 2020 IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 3241±3247. IEEE, 2020. (Cited at page 31)

[41] Drew Hanover, Philipp Foehn, Sihao Sun, Elia Kaufmann, and Davide

Scaramuzza. Performance, precision, and payloads: Adaptive nonlinear

mpc for quadrotors. IEEE Robotics and Automation Letters, 7(2):690±697,

2021. (Cited at pages 33, 35 and 52)

[42] Jintasit Pravitra, Kasey A Ackerman, Chengyu Cao, Naira Hovakimyan,

and Evangelos A Theodorou. 1-adaptive mppi architecture for robust and

agile control of multirotors. In 2020 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 7661±7666. IEEE, 2020. (Cited

at page 33)

[43] Mingcheng Liu, Fubiao Zhang, and Shuaipeng Lang. The quadrotor posi-

tion control based on mpc with adaptation. In 2021 40th Chinese Control

Conference (CCC), pages 2639±2644. IEEE, 2021. (Cited at page 33)

[44] Enric Xargay, Naira Hovakimyan, and Chengyu Cao. L 1 adaptive con-

troller for multi-input multi-output systems in the presence of nonlinear

62 BIBLIOGRAPHY

unmatched uncertainties. In Proceedings of the 2010 American control confer-

ence, pages 874±879. IEEE, 2010. (Cited at page 35)

[45] Yutao Chen, Mattia Bruschetta, Enrico Picotti, and Alessandro Beghi.

Matmpc-a matlab based toolbox for real-time nonlinear model predic-

tive control. In 2019 18th European Control Conference (ECC), pages 3365±

3370. IEEE, 2019. URL https://github.com/chenyutao36/MATMPC.

(Cited at page 37)

[46] Shiyu Zhao. Time derivative of rotation matrices: A tutorial. arXiv preprint

arXiv:1609.06088, 2016. (Cited at page 53)

[47] Basile Graf. Quaternions and dynamics. arXiv preprint arXiv:0811.2889,

2008. (Cited at page 54)

	Glossario
	Introduction
	State of the art
	Thesis structure

	Preliminary and agent model
	Pose of a rigid body
	Euler angles

	Unit quaternion
	Advantages of unit quaternion notation

	Agent model
	Dynamic Model

	Model Predictive Control and Problem formulation
	Model Predictive Control
	Problem formulation

	UAV Control via NMPC and L1AC
	Runge-Kutta Integration
	UAV NMPC Controller
	Definition of the cost function
	NMPC controller architecture

	L1AC Controller
	Complete controller architecture

	Simulation and results
	Simulation setup
	Landing Simulation with Ground Effect
	Landing Simulation at High Speed
	Landing Simulation with Additional Weight
	Landing Simulation with Broken Rotor

	Conclusion
	Appendix
	Time derivative of rotation matrices
	Time derivative of unit quaternions

	Bibliography

