—) DIPARTIMENTO

UNIVERSITA
= DI INGEGNERIA DEGLI STUDI
— DELLINFORMAZIONE DI PADOVA

Department of Information Engineering

Master of Science in Computer Engineering

Automated Performance Testing in Ephemeral
Environments

Supervisor: Prof. Sergio Canazza

Co-Supervisors: Eng. Alessio Frusciante, Eng. Marco Gualtieri

Candidate: Sepide Bahrami

Academic Year 2023/2024
09 July 2024

Abstract

Conducting performance tests on applications is a crucial step in the software
development process. Many companies have dedicated teams responsible for
monitoring application performance (APM) and conducting necessary tests
on developed components, services and applications. However, due to its
distinct nature compared to other common tests, performance testing is not
frequently carried out on a daily basis within companies. Nevertheless, it is
essential to integrate continuous performance testing during and after feature
development to ensure that the system under test meets the desired perfor-
mance metrics. In this thesis, we discuss the existing approach in a static en-
vironment and its limitations, then propose a new approach in an ephemeral
environment, and perform common types of performance testing including
load tests and stress tests.

Additionally, as the needs of the application evolve, the design of the system
changes accordingly. Therefore we need a way to apply and evaluate these
changes as a part of the testing process. This is where ephemeral environ-
ments help. Using ephemeral environments, rather than static ones, enables
us to configure and deploy the required infrastructure within each run, allow-
ing us to match the same production setup or quickly assess the performance
of different alternatives. This improves reliability, flexibility as well as re-
peatability of the tests, helping to properly automate them instead of relying
on manual actions. Moreover, this simplified setup and execution of perfor-
mance tests - entirely handled as code - enables software engineers to incor-
porate testing into their daily routines, reducing the reliance on centralized
APM teams. The conclusion of this thesis includes developing an automated
performance test application, leveraging ephemeral environments to facilitate
the testing process. A temporary environment, configured and scaled very
much like the production one, is created and used to run performance tests,
then destroyed at the end of the run to mitigate cloud-related costs.

Acknowledgements

Almost three years have passed since I left my home, my family and friends
to move to Italy. During this time, I have experienced so much, adapted to a
new culture and language, and grown into a more independent person. As I
write this page, I am close to the end of my journey to earn my degree, and I
cherish each day of this experience, from the intolerable pressure to the most
blissful moments of my life. I could not have achieved this much without
the unwavering support of my family, for which I am deeply grateful. Sim-
ply thinking of their presence has always given me the confidence to continue.

The past eight months have been a turning point in my life while working
on my thesis project at the VZC office in Florence, where I met some incredible
people and had the opportunity to live in the most beautiful city in Italy.

I want to thank my company supervisor, Alessio, who has always kept an eye
on my work and supported me throughout this journey. His curiosity about
people, cultures, science and nearly everything else always inspired me.

A very special thanks goes to Marco, my team lead back at the office who was
always there to listen, support and genuinely care. His attention to detail and
humility are qualities that I aspire to have in my future career.

Thanks to my buddy, Alberto, who has not only been a work companion but
a friend throughout this journey, always pushing me forward and helping me
gain more confidence.

A heartfelt thanks to Francesca and Consuelo, who welcomed me as a friend
from the very first day. At Consuelo’s house, I met Buio, the most affectionate
cat I have ever encountered, who brought me immense joy and companion-
ship. Buio would always be on my lap during the long workdays from 9 to 6,
behind the scenes of every remote working day.

II

I have been fortunate to have one of my best friends from back home here
with me in Padua, with whom I have shared nearly seven wonderful years.
A heartfelt thanks to Solmaz for always being there for me.

Finally, and above all, I want to thank my boyfriend, Farshid, whom I can
never thank enough for being by my side throughout this journey. Life with
him is enriched with joy, hope, and trust. He brings meaning to my life and
helps me be the best version of myself.

In addition, I would like to express my appreciation to my academic su-
pervisor, as well as my colleagues in the office, specifically the Sirius team.
I am also grateful to all my friends in Padua and Milan, each of whom has
played a role in my journey.

This thesis is dedicated to the brave women in Iran who inspire me ev-
ery day with their resilience and courage in standing up to adversity, fighting
passionately for their basic rights. Their bravery has deeply touched me dur-
ing these years away from home, reminding me of the power of perseverance
and the importance of seeking justice.

III

Contents

Abstract
Acknowledgements

1 Introduction
1.1 Company Overview
1.2 Software Engineering Terms
1.2.1 Software Development Lifecycle
1.2.2 Containerization
1.2.3 Continuous Integration/Continuous Delivery
1.3 SoftwareTesting
1.3.1 Performance Testing
14 Serverless Cloud Computing
141 Networking,
142 Container Orchestration

143 Monitoring and Observability
144 InfrastructureasCode

2 Background
21 StateoftheArt. o L.
2.2 Overview of the Existing System
221 Vision
222 5COPe

3 Methodology and Implementations
31 DriverCoaching
3.1.1 Endpoint Specifications

IV

3.2 Database
3.2.1 Data Analysis . .
3.2.2 Data Generation

3.3 Environment Setup . . .
3.3.1 Network
3.3.2 Database
3.3.3 Service

3.4 Selection of Performance Testing Tool
34.1 Performance Agent
3.5 Automatic Collection of Relevant Metrics
3.5.1 Monitoring Dashboard

3.5.2 Automation . . .

4 Experimental Results
41 SearchKPIs

41.1 Tests with Autoscaling Enabled and Disabled
412 Test on RDS Shared Buffer Size and Caching

42 Coaching Sessions
4.3 Driver Safety Scores . . .

431 Performance Testin Isolation
4.3.2 Performance Tests in Combination

5 Conclusions

Appendix
A Performance Monitoring

Chapter 1

Introduction

1.1 Company Overview

Verizon Communications Inc. (NYSE, Nasdaq: VZ) was formed in June 2000
and is one of the leading providers of technology and communications ser-
vices in the world. Based in New York City and with a presence around the
world, Verizon offers data, video and voice services and solutions on its net-
works and platforms, fulfilling the customer’s demand for mobility, reliable
network connectivity, security and control [1]. In 2016, Verizon brought to-
gether three best-in-class telematics companies (as a global SaaS) to meet the
needs of any business fleet and rebranded them as Verizon Connect.

Verizon Connect is guiding a connected world on the go by automating,
improving and revolutionizing the way people, vehicles and things move
through the world. Verizon Connect provides connectivity and data insights
to enable its customers to be more informed about vehicle and worker loca-
tion, efficiency, safety, productivity and compliance [2]. Vehicle telematics is
the monitoring of the status of a vehicle or other asset. It combines navigation,
safety, security and communication into one piece of technology and oversees
status by recording and transmitting telemetry data via an installed device
called a vehicle tracking unit (VTU). Data can include information such as
vehicle location, speed, fuel usage, etc. These information is used in near real-
time analysis to improve driver safety, efficiency and vehicle performance and
are used heavily in fleet tracking and management.

Chapter 1. Introduction 2

1.2 Software Engineering Terms

Some of the commonly used terms and practices of software engineering are
discussed in the following Sections|1.2.1} [1.2.2]and [1.2.3} which all have been
widely applied during the work of this thesis.

1.2.1 Software Development Lifecycle

Software development can be a difficult task, especially on a scale. This re-
quires breaking large software into small deliverable parts so that each smaller
part works properly and allows the merging of these parts to achieve the fi-
nal result. This is difficult because a piece of software typically has many
stakeholders, and developing a large software can involve multiple cross-
functional teams. Moreover, at each step in this process, product requirements
can change based on stakeholder needs, so breaking down large problems
into smaller parts can help avoid this problem. Therefore, the Software De-
velopment Life Cycle (SDLC) is one such systematic approach to complete the
software development process in time and also develop and maintain high-
quality software [3]. In general, some benefits of SDLC [4] are:

* Increased visibility of the development process for all stakeholders in-
volved

¢ Efficient estimation, planning, and scheduling
¢ Improved risk management and cost estimation
¢ Systematic software delivery and better customer satisfaction

All activities involved in the SDLC are categorized into independent units,
called phases [3], during the process. Some of the main phases are Require-
ment Analysis, Plan, Design, Implementation, Test, Release and Maintenance.
Consequently, there are different types of SDLC models that can be followed
to obtain the phases mentioned above, from traditional models such as Wa-
terfall as described in Section to contemporary models like Agile as de-
scribed in Section For each project, rather than asking which method-
ology is superior [5], it must be considered which will be the best option to
increase productivity according to the requirements and will result in a suc-
cessful attempt to build a deliverable.

Chapter 1. Introduction 3

1.2.1.1 Waterfall SDLC Model

Waterfall methodology is a linear model with less customer involvement. All
requirements and planning are done beforehand, and once the project starts,
it is very less likely to change the initially evaluated requirements. It is quite
rigid, but at the same time, it is a pillar of the waterfall, that is, the entire scope
of the project is outlined in advance [5]].

D -
- X
- Ny
B .. 3

Figure 1.1: SDLC Waterfall Model

As phases demonstrated in Figure [1.1][6], in the first step all business re-
quirements are analyzed, following which the architecture of the application
is designed. As part of the development process, the project is divided into
smaller components. Each piece is tested once it has been developed to find
errors or security issues. After fixing the issues, the finished and polished ver-
sion is ready for public distribution. Some advantages of this model are that
the phases are very straightforward to follow and at the end of each phase,
we have deliverables. However, this model has certain disadvantages. Test-
ing is done only after the development phase has been completed, which is
not ideal since once the development is complete, changes might be time con-
suming and costly, which might also cause the project to be late.

1.2.1.2 Agile SDLC Model

Agile methodology emphasizes incremental delivery and continuous improve-
ment. In this model, every team is open to changes and collaboration, which
results in continuous modification based on customer needs. It is not as rigid

Chapter 1. Introduction 4

as Waterfall, with the documentation beforehand; instead communication with
the customer is more important than the terms of the contract [6].

As phases demonstrated in Figure [1.2|[6], the cycle begins with planning
which at this step the major project requirements, costs and timelines are de-
fined. The software architecture prototype is then designed, developed, and
delivered to be reviewed and tested in the next phase. After the client and the
testers have reviewed the developed prototype and the bugs have been fixed,
the component is deployed. After deployment, the customer, the testers,
and the developers continue to communicate until the solution is ready to
be launched at the end.

Some advantages of this model are cost saving, incremental delivery, and fast
feedback cycle. On the other hand, if the user requirements are not clearly
defined at the beginning, the project might quickly fail.

Deploy Test
—. .—
Test Develop
— @ [

T Plan T Design T Launch

Figure 1.2: SDLC Agile Model

This thesis was a secondary project based on the main feature in devel-
opment at the time, which implemented Agile methodology using the Kan-
ban framework. In this framework, tasks are represented visually in different

Chapter 1. Introduction 5

columns such as backlog, in progress, testing and done allowing others to
easily track the progress of each task.

1.2.2 Containerization

Considering an application that needs to be executed on a system, this sys-
tem must have all the necessary resources that the application requires dur-
ing runtime to ensure its smooth operation. This setup is beneficial only if the
individual who developed the project is also the end user. Otherwise, exe-
cuting this application on a system with a different user involves numerous
prerequisite steps to ensure the application runs smoothly. This is where the
concept of containerization comes into play. It helps avoiding such issues by
encapsulating the application along with all its required prerequisites within
a single software package, or a container. Accordingly, any user can execute
this container on any infrastructure, without the need, for example, to have
the application’s programming language installed on the system.

Software developers create container images (i.e., files containing the nec-
essary information to run a containerized application) that could be used by
a containerization tool to build their program. Any other user intending to
execute the program needs to have a containerization tool installed on their
operating system. This tool acts as an intermediary between the program and
the operating system, handling all the dependencies needed to execute the
program [7]. One of the famous tools that has been used a lot in the work of
this thesis is Docker.

Docker has been identified as an open source platform that runs applica-
tions and makes the process easier to distribute [8]. Docker is used to de-
ploy many containers simultaneously on a given host. Containers are more
resource efficient compared to virtual machines because the additional re-
sources needed for each OS is eliminated and instances are smaller and faster
to create. Cloud service providers are more interested in containers because
far more containers can be deployed with the same hardware [9]. Container-
ization using Docker on the Amazon Web Services (AWS) cloud environment
has been widely used in the work of this thesis, which will be explored further
in Chapter

Chapter 1. Introduction 6

1.2.3 Continuous Integration/Continuous Delivery

In the context of modern software development, it is necessary to quickly
bring the smaller parts of a large project to production as often as possible.
This is where Continuous Integration/Continuous Delivery (CI/CD) plays
an important role. CI/CD refers to automation that allows incremental code
changes from the developer’s desktop to be delivered quickly to production
[10]. The part about CI concerns the integration and merging of several small
changes into the main branch using an automated system that builds and tests
the software system, and often processes run on each commit [11]. As a result
of CD, reliable software is delivered in a short cycle to ensure that it can be
deployed at any time.

As this work aims at automating performance testing, it could potentially
be incorporated into a future CI/CD pipeline to ensure that system reliability
issues are checked at different stages of the development and the release pro-
cess. It is about planning performance tests as part of the SDLC for continuous
performance testing.

1.3 Software Testing

Testing is a crucial activity to ensure the quality of a software being developed
and that it meets the user expectation. Usually, a software system is tested on
several levels, starting with unit testing that checks the smallest parts of the
code until acceptance testing, which is focused on the validations with the
end user [12]. The focus of this work was on the performance testing of a web
application as will be described in Section[I.3.1}

1.3.1 Performance Testing

Performance testing is a type of software testing aimed at assessing the re-
sponse time, sensitivity, reactivity, reliability, and scalability of a system under
average and above-average loads of data. Performance testing aims to iden-
tify bottlenecks and ensure that the system can handle the expected number
of users or transactions.

There are various types of performance tests, and the specific type to be
carried out is determined by the requirements of a particular system and the

Chapter 1. Introduction 7

objectives of the test. The following are a few of the types of performance tests
that have been performed during several attempts in the work of this thesis:

* Load Testing: Load testing can be identified as the base performance
test and other types of tests can be derived from it. In this test, a system
is put under varying loads, usually between low and typical transac-
tions [13] of concurrent users, to see if it can handle these transactions.

* Stress Testing: Stress testing is similar to load testing except that in this
case the system is put under peak loads to assess its performance.

¢ Breakpoint Testing: Breakpoint testing also known as capacity testing
is a scenario in which the system is under a very high and unrealistic
load to find the limits of the system at which it breaks and becomes
problematic. This test often has to be stopped manually or automatically
as thresholds start to fail [14]. At this point, it is known that the system
has reached its limits, and this brings the teams involved together to
plan and prepare an action for a similar event. For instance, scalability
testing, described in the next item, would be another testing scenario as
a solution to the results of breakpoint testing.

¢ Scalability Testing: In all above-mentioned tests, the performance of the
existing system and resources is assessed. However, scalability testing
aims to understand how the service is scalable. There are two types of
scalability namely Horizontal and Vertical. Horizontal scalability simply
adds up to the same existing resources, while vertical scalability adds
more capacity to the existing resource in terms of more CPU or allocated
memory. By performing this type of test in an isolated environment,
a decision can be made as to whether horizontal scalability or vertical
scalability will be the right fit to improve the overall ability of the system
to handle higher loads [15]].

1.4 Serverless Cloud Computing

Cloud computing has been a reality for approximately two decades as a re-
sult of virtualization in software systems [16]. Cloud computing provides its
customers with high availability, reliability and scalability in such a way that
it eliminates the need for individuals to manage the difficult part of having
physical servers on-premise and taking care of them constantly. Users can

Chapter 1. Introduction 8

access these cloud services via the Internet without having to maintain the
majority of that system on their personal computers. Cloud computing can
be divided into three main categories that provide different levels of abstrac-
tion, namely:

1. Infrastructure as a Service (IaaS): With this level of abstraction, the
cloud provider supports for low-level details of underlying resources
like networking, servers, storage and virtualization and the customer is
in charge of managing the operating systems, databases, security and its
applications.

2. Platform as a Service (PaaS): In this category, all resources are man-
aged by the cloud provider, except for the application. Developers ac-
cess these services to deploy, run, and manage their applications [16].

3. Software as a Service (SaaS): Here, everything is managed by the cloud
provider and uses simply use the service provided to them.

Although cloud computing seems to solve many resource management
problems specifically while having a PaaS, there are still some challenges. Us-
ing a PaaS service model, cloud users are still in charge of the scalability of
their systems. So, it involves a manual step in configuring parameters for au-
toscaling policies. In addition, the pricing system for such a service is that
the customer pays for the whole capacity that they have reserved to use from
the cloud provider, which is not ideal. These challenges have led to the intro-
duction of another cloud computing model, which is called Serverless Cloud
Computing [17]. Serverless computing offers Backend as a Service (BaaS) and
Function as a Service (FaaS). BaaS consists of the required resources of the sys-
tem such as database, service, etc. FaaS relies on BaaS supporting developers
to interact with the resources by writing small pieces of functions. FaaS is con-
sidered the most dominant model of serverless and is also known as event-
driven functions [18]. AWS Lambda is the most widely known FaaS provider
that runs user code in response to events, automatically managing the under-
lying compute resources. Jobs can be triggered by other AWS services such
as S3 E| or DynamoDB [|and can be written in .NET, Python, JavaScript or Java
[19].

Thttps://aws.amazon.com/s3/
Zhttps://aws.amazon.com/dynamodb/

https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/

Chapter 1. Introduction 9

Our ephemeral environment is built on AWS Cloud. Some of the well-
known AWS services that have been widely used in this thesis are explained
further in the following Sections|1.4.1}(1.4.2} [1.4.3|and [1.4.4]

1.4.1 Networking

As an initial step in the configuration of any serverless system, we should
think of how the network will be created in a secure and reliable way. AWS
has multiple geographic areas called Regions in which you can choose to setup
your system. Each region can have multiple Availability Zones called AZs that
are isolated locations within each region. A Virtual Private Network (VPC) is
a virtual network logically isolated from other VPCs in which you can define
the resources you want. A VPC spans a whole region, and subnets are used to
specify IP address ranges inside AZs of a region to allocate to virtual machines
and other services [20].

1.4.2 Container Orchestration

To manage the underlying infrastructure, an orchestration tool is needed to
properly manage the service containers deployed in the cloud environment.
AWS helps to run containers in a reliable and scalable environment. The Ama-
zon Elastic Container Service (ECS) E|has been widely used in the work of this
thesis to run containerized applications inside. There are two computing op-
tions available for ECS:

* Amazon Elastic Compute Cloud (EC2) E|WhiCh runs containers with server-
level control offering flexible scaling based on application needs. It is
ideal for specialized tasks which some of its use cases are presented in

Chapter

e AWS Fargateﬂwhich runs containers without managing servers, acceler-
ating the process of going from idea to production on the cloud making
it suitable for microservices architectures.

3https://aws.amazon.com/ecs/
“https://aws.amazon.com/pm/ec2/
Shttps://aws.amazon.com/fargate/

https://aws.amazon.com/ecs/
https://aws.amazon.com/pm/ec2/
https://aws.amazon.com/fargate/

Chapter 1. Introduction 10

1.4.3 Monitoring and Observability

Once a system is deployed in the cloud, it is necessary to be properly moni-
tored. Since there are several resources distributed at different geographical
locations in the cloud, without proper monitoring of services, enterprises may
not achieve the performance and benefits provided by the cloud [21].

One of the most effective tools for observability in the AWS cloud is Cloud-
Watch H With Amazon CloudWatch, you can track system performance, mon-
itor events and logs, set alarms for unexpected events, and better react to
them. Further, CloudWatch log events can be used for root cause analysis,
debugging, and reducing the overall mean time to resolution.

Another widely used monitoring tool is Grafana ﬂ Grafana provides means
to quickly make a dashboard in which metrics and data can be visualized us-
ing different built-in widgets. It can unify data from different sources, such as
CloudWatch, making it a great tool to combine all information from different
services of AWS for a better monitoring experience.

In this work, a Grafana dashboard connected to CloudWatch is built to
monitor performance tests online. A dashboard contains queries that retrieve
data from different CloudWatch logs and metrics and store them together.

1.4.4 Infrastructure as Code

Since automation is one of the keys to success, Infrastructure as Code (IaC)
can play an important role. IaC is commonly used in software development
to build components and deploy them. Instead of manually setting up and
managing the computing infrastructure, IaC uses code to provision and sup-
port the system. When we manage applications at scale, manual infrastruc-
ture management is time consuming and prone to error. Infrastructure as
code lets you define the desired state of your infrastructure without including
all the steps to get to that state [22]. By automating infrastructure manage-
ment, developers can focus on building and improving applications instead
of managing environments.

https://aws.amazon.com/cloudwatch/
"https://grafana.com/

https://aws.amazon.com/cloudwatch/
https://grafana.com/

Chapter 1. Introduction 11

1.4.4.1 Provisioning Tool

To take an action on following IaC, AWS provides a widely known tool as
CloudFormation ﬂ CloudFormation helps in developing the use piece infras-
tructure by writing Infrastructure as Code in YAML (or JSON) which gen-
erates a CloudFormation Stack to create the resources. Although it can be
useful, it has some limitations due to its declarative nature and the need to
configure the resources with so many details, which requires a good under-
standing of AWS services. This is where AWS Cloud Development Kit (CDK)H
comes into play and provides the ability to create the infrastructure with pop-
ular programming languages like Python, Java or .NET.

With this work, we focused on using CDK as our automation tool where
we built the resources we want using CDK .NET to create different CloudFor-
mation stacks that could be deployed in an ephemeral environment.

8https://aws.amazon.com/it/cloudformation/
‘https://aws.amazon.com/cdk/

https://aws.amazon.com/it/cloudformation/
https://aws.amazon.com/cdk/

Chapter 2

Background

2.1 State of the Art

Many companies provide services to customers that they need to ensure that
the system performs well under high loads. That is why they follow per-
formance tests. However, the procedure of doing a performance test is very
time-consuming. To conduct a performance test in a proper way, a couple of
steps need to be followed. These steps are depicted in Figure[2.1|suggested by
a study [23] on the load testing of large-scale software systems.

Plan and Design Co_n figure Test Analyze Metrics and
Environment and

Tests Run Tests Detect Problems

Figure 2.1: Performance Testing Process

Accordingly, there are 3 general steps in conducting a performance test:

1. Plan and Design Tests: This phase consists of designing the load that
will be tested on the system considering the objectives of the system
under test (SUT).

Depending on the different types of subject programs, developers may
choose the measures listed in Table 2.1] to associate with performance
bug symptoms [24] and to plan their tests. Jin et al. [25] emphasize that

12

Chapter 2. Background 13

performance bugs are software defects where relatively simple changes
to the source code can significantly improve performance.

Performance Measure Database | Web Service | Mobile
CPU Utilization v v v
Memory Utilization v v v
Cache Hit Rate v v
I/0 Utilization v v v
Socket Utilization v v v
Transactions v v
Lock Contention Rates v v
Response Time v v v
Concurrent Request Rates v v

Table 2.1: Performance Measures

Moreover, the goal of the load design is to devise a load that can uncover
load-related problems under load [23]. Weyuker et al. [26] stress that
generating a representative workload itself presents a problem, since it
is difficult to identify what a representative workload is. Traffic is mon-
itored in many systems and this provides a so-called Operational Profile
that describes how the system has historically been used and, therefore,
is likely to be used in the future. This is the approach that has been fol-
lowed in this thesis. However, in the absence of this historical data, it is
quite difficult to design the workload in a proper way.

2. Configure Test Environment and Run Tests: In this phase, we configure
our test environment and implement the designed tests in our preferred
scripting language (which might be an external performance tool), and
then we execute our tests.

Several approaches can be taken to execute the tests. The tests can be
conducted by human testers placing loads from ditferent locations [27]
which is the most realistic way to follow. However, since this approach
is manual, it suffers from the fact that one test cannot be reproduced in
the same way again. To overcome this issue and to have the ability to
produce a very high load, load drivers such as HP LoadRunner E| can be
used to generate this load using concurrent users.

Ihttps://www.opentext.com/products/loadrunner-professional

https://www.opentext.com/products/loadrunner-professional

Chapter 2. Background 14

SUTs must be deployed and tested in the field or in a field-like envi-
ronment, which presents a challenge in setting up this realistic testing
environment [23]. In this thesis, an ephemeral environment has been
used to overcome this challenge.

3. Analyze Metrics and Detect Problems: Finally, we collect the metrics
we need and, if needed, we rerun the tests to validate the results. There
are different approaches to analyzing the data, in fact, to collect relevant
metrics:

* Analyze and verify metrics against known thresholds.
* Checking the system for some already known problems.

* Find anomalies and strange behaviors in the system.

There is a trade-off between the level of monitoring details and the mon-
itoring overhead [23]. Detailed monitoring has a huge performance
overhead, which may slow down system execution and may even al-
ter system behavior [28]. Depending on the environment in which the
test is running, the execution logs generated by the code instrumenta-
tion, and the performance testing tool that is being used, we can have
different metrics on hand to investigate. Finally, performance is a subject
matter [24] and in many cases is judged based on previous experience
by comparison.

2.2 Overview of the Existing System

In the current existing process for executing performance tests in the com-
pany, there are several limitations. First, it is based on the usage of a static
and shared Perf environment which is not isolated, and multiple test runs
might conflict with each other. A dedicated team as the Application Perfor-
mance Monitoring (APM) team has the permissions and tools to execute tests,
collect insights and provide it to the teams requesting these tests. Test scripts
are implemented as .Net solutions which are then used by HP LoadRunner
to simulate a large number of calls in parallel. The tests are conducted in the
static performance environment mentioned above, which may differ from the
production environment configuration in terms of resources and the size of
instances being used, resulting in high cloud costs even with the same pro-
duction configuration. Moreover, since the environment is static, it is not very

Chapter 2. Background 15

convenient to change the configuration with regard to new changes in the sys-
tem under test and to evaluate the actual impact of those new changes.

The testing plan must be scheduled well in advance before the intended
test date in order for the APM team to ensure proper organization. Moreover,
the environment is not guaranteed to be isolated, resulting in a major con-
sequence, that is the potential for inaccurate results inside the environment
where multiple teams are running their tests at the same time. Although the
current process is trying to help teams achieve Performance Driven Devel-
opment (PDD), but in reality, this system is not very convenient to be used
during the software development life cycle. Furthermore, it should be con-
sidered that the data need to be prepared manually beforehand with the help
of the APM team. The database is long-living meaning that after every run,
the new data remain in the database, and this affects the later tests since the
initial configuration of the database and, accordingly, the environment, is not
the same as data build up over time. So, the same test cannot be reproduced
in the setting that it was run before. At the end of the test, the APM team
provides the results with snapshots of the performance metrics” plots, which
are certainly not dynamic to properly investigate further.

It is clear that the process is pretty cumbersome, including many manual
steps, and is basically impossible to have fully reliable and repeatable test
runs or to automate them as part of the CI/CD pipeline. Also, there is no way
to automatically get the results once the tests are done, and the whole process
takes days or weeks from the beginning to the end. On top of everything, we
cannot ignore the fact that the team responsible for executing tests and col-
lecting insights is not the one building the code, so they do not have enough
context to evaluate the results.

2.2.1 Vision

We want the ability to spin up ephemeral environments where we can deploy
only the needed subset of components, so that we can run repeatable and
reliable tests in isolation. This brings us some benefits including:

* Developer teams can run performance tests independently and more
frequently.

Chapter 2. Background 16

¢ There is the ability to quickly change the configuration and evaluate dif-
ferent scenarios.

* Having an ephemeral environment helps in reducing cloud-related costs.
* The new process helps improve the reliability of performance tests.

To achieve above goals, everything must be handled as code without any fur-
ther manual step or configuration. Moreover, there must be the ability to sim-
ply configure the data population process, as well as automate the process,
so that the tests can be triggered, the results can be collected, and they can be
reproduced.

2.2.2 Scope

For the first experiment, we considered a simple use piece of the infrastructure
by having a database interacting with a web service deployed on the AWS
cloud. The following aspects were tackled and will be explored in detail in

Chapter
¢ Offline analysis of related data

¢ Automation of the data population process

Setup of the ephemeral environment using CDK

Selection of a performance testing tool and implementation of a test suite

Automatic collection of relevant metrics

Chapter 3

Methodology and Implementations

To effectively carry out a performance test, it is necessary to clearly define
the objectives. In our specific case, the initial goal was to assess the perfor-
mance of a particular endpoint with an average and an above-average load of
data. Therefore, our exploration focused on the /kpis/search endpoint within
the coaching feature which is the most crucial endpoint delivered. This deci-
sion was influenced by our initial timing constraints. As we progressed and
achieved stability with this endpoint, we extended our analysis to two addi-
tional endpoints namely /sessions/upcoming and /sessions/completed in the
context of coaching sessions. Later, we also managed to take another step fur-
ther in investigating another endpoint, namely /driver/safety-scores, which
at the time was new and there was ongoing work around it to deliver the
endpoint to customers.

Given the originality of the approach, at first it was unclear what to expect
and what the potential challenges would be. The main goal was to do a per-
formance test while gaining deeper knowledge of the coaching platform and
potential unknown issues. Since developers often focus on building deliver-
able pieces based on user stories, they rarely get the opportunity to explore
cloud-based systems thoroughly and observe their behavior through differ-
ent changes. Moreover, in serverless architectures, in order to achieve post-
development successful deployments in production, a collaborative effort of
various experts in different fields is required. Hence, this opportunity brings
developers closer to other teams in better understanding the system behavior
and potential future improvements.

17

Chapter 3. Methodology and Implementations 18

In this chapter, first, we briefly discuss driver coaching in Section 3.1jand
then we will focus on a sequence of steps in building the application that in-
cludes the preparation of the dataset in Section setting up the ephemeral
environment in Section selecting a performance tool and setting up the
performance agent in Section 3.4 and finally setting up a monitoring dash-
board and automatic collection of metrics in Section 3.5

3.1 Driver Coaching

Driver coaching is a feature released in 2024 for Verizon Connect Reveal (Medi-
um/Small) and Fleet (Enterprise)|"|customers. The Al Dashcam enables fleet
managers to proactively prevent serious incidents from happening by identi-
tying coaching opportunities and enabling drivers to coach themselves. This
feature focuses on:

1. Video Event Triage
* Add coaching or review status to a video event, such as Review

pending, Coaching needed, Coaching not needed and Coaching completed.

* Add notes to provide context as to why a given coaching status
has been selected and facilitate coaching, or explain the actions that
need to be taken.

2. Video Driver Safety Profile (Coaching)

¢ Review driver performance, benchmarked against other drivers.

* Review various driving behaviors to coach and related videos that
have been marked as Coaching needed for a specific driver.

¢ Hold contextual coaching sessions with drivers by setting the video
event status as Coaching needed.

e Complete an end-to-end workflow to coach drivers based on their
behaviors and get a coaching summary.

* Review coaching notes or document coaching actions.

* Review upcoming and completed coaching sessions.

Thttps://www.verizonconnect.com/ie/login/
Zhttps://fleet-help.verizonconnect.com/hc/en-us

https://www.verizonconnect.com/ie/login/
https://fleet-help.verizonconnect.com/hc/en-us

Chapter 3. Methodology and Implementations

19

Video

Groups
None Selected

Choose the grouping you want to see

Events Starred

Search

Type vehicle or driver name

Classification

All Selected v

Total events: 118

Events > Vehiclel

v Looking for a video not on the list? GET VIDEO

08:4159

Drivers Coaching
Drivers Vehicles Start date End date
None Selected v None Selected v 2/13/2024 -] 3/13/2024 =]
Triggers and events Viewed status Coaching status.
None Selected v All Selected v None Selected v CLEAR
EXPORT CSV
vr Vehiclet @ Review pending
p TP —— - N N
TRIGGER (Hard braking) EVENT(S) (_Posted speed exceeded) (_Tailgating)
Driver Name: Driver 1 Time: 08:41:59 AM PDT
Address: Date: 3/13/24
Date:3/13/24 Time: 0B:4t59AMPDT Expiring in: 80 days @) DOWNLOAD VIDEO O Review pending v h ¢
Eﬂ 9 # e 5
Lot F
\ <®
Lincoln | (2)
ey
o R
= c
2 5
& "B0ets oy
S ¢
LAKE
PIETY COR
HISTORI
= DISTRIC
P %
SILVER HILL s,
. o WEST END o,
g &£
s +7%
© HASTINGS & -
ofZoogle B Mapdata £2024 Google Terms Reporta map error
View on Replay
Analysis

* The vehicle's tracker detected: hard braking.

« The post-event analysis detected: posted speed
exceeded and tailgating.

= Our Al software suggests there was an elevated risk
of an accident happening.

TRIGGER

08:42.01 08:42.03

08:42:00 J T ———
((Hard braking)

(b) A Sample Event in Review Pending Status

Figure 3.1: Video Event Triage

Chapter 3. Methodology and Implementations

20

Video driver safety profile

Profile data helps you to identify how this driver can maintain or improve safer driving habits over time. Learn More [/

© Classification and behavior data syncs to within one day of the selected date range.

Driver1 Test

Phone number
N/A

Driver1 Test

Phone number
N/A

Driver1 Test

Phone number

N/A

Driver video summary

Review pending Coaching needed Starred
141 12 o]
View events View events View your starred events

(a) Driver Video Summary
Video classification levels @

W Critical M Major M Moderate M Minor | © Coaching complete @ Discretion required Learn More [}
300

200

100

o .

9 o 2 oo oo 9 9 o
Jan 14 Jan 21 Jan 28 Febd Feb 11 Feb 18 Feb25 Mar 3 Mar 10 Mar 17
Jan 20 Jan 27 Feb3 Feb 10 Feb 17 Feb24 Mar 2 Mar 9 Mar 16 Mar 23

@ Events/1000mi O Total

(b) Video Classification Levels

Behaviors trend @ Hard braking v

— Behavior | @ Discretion required Learn More [

01/14/2024 - 04/03/2024

Last

12 weeks

Last coached 03/27/2024

Requested

View

3

events

Minor events @)

L4
Mar 24 Mar 31
Mar 30 Apr3

Minor events

PR
20
15
10
5
o o—-—o—" >
o o
Jan 14 Jan21 Jan28 Feb4 Feb 1t Feb 18 Feb25 Mar 3 Mar 10 Mar 17 Mar 24 Mar 31
Jan 20 Jan 27 Feb3 Feb10 Feb 17 Feb24 Mar 2 Mar 9 Mar 16 Mar 23 Mar 30 Apr3

@ Events/1000mi O Total
(c) Behaviors Trend

Figure 3.2: Video Driver Safety Profile

Chapter 3. Methodology and Implementations 21

Video

Groups

None Selected v Looking for a video not on the list? GET VIDEO o]
Choose the grouping y

Events Starred Drivers Coaching
Upcoming !
DRIVER EVENTS TO COACH BEHAVIORS LAST COACHED ADDED TO THE LIST ACTION
Test, Drivert (Vehiclef 7 Hard acceleration, Hard braking, Harsh cornering, Road camera 04/22/2024 Jan 29 (3 months ago) RESUME
covere
Test, Drivert (Vehiclet) 2 Hard braking 04/22/2024 Jan 29 (3 months ago) RESUME
Test, Drivert (Vehiclet) 1 Hard acceleration 04/22/2024 Jan 29 (3 months ago) RESUME
Test, Drivert (Vehicle 1 Hard braking 04/22/2024 Feb 07 (2 months ago) RESUME
Test, Drivert (Vehiclet 2 04/22/2024 Feb 15 (2 months ago) RESUME
Test, Drivert (Vehiclet) 3 Hard braking 04/22/2024 Apr 02 (27 days ago) RESUME

(a) Upcoming Sessions

Completed i N
DATE COMPLETED DRIVER EVENTS COACHED SESSION NOTES COACHED BEHAVIORS COACH ACTION
Apr 22,2024 Test, Driver1 (Vehiclef 1 N t Hard braking Video Manual Test VIEW
Apr 18,2024 Test, 1 1) 1 N te Hard braking Video Manual Test VIEW

Apr 11,2024 Test, Driver (Vehicled) 1 VIEW
Mar 27,2024 Test, Drivert (Vehiclet) 1 Video Manual Test VIEW
Mar 26, 2024 Test, Driver! 1 1 Video Mar VIEW
Mar 26, 2024 Test, Drivert (Vehiclet) 1 No not Hard braking Video Manual Test VIEW

(b) Completed Sessions

Figure 3.3: Coaching Sessions

3.1.1 Endpoint Specifications

In the work of this thesis, the primary focus was on performance testing the
/kpis/search endpoint. As can be seen in the video driver safety profile in
Figure[3.2] there are two main plots, namely:

1. Video Classification Levels: This plot demonstrates the driver events
classified by the backend. Users can select a specific time range from the
top right of the page to explore these events.

2. Behaviors Trend: This plot shows the driver behaviors and the occur-
rences of each, during the selected time period mentioned above.

Chapter 3. Methodology and Implementations 22

Displaying both of these plots on the current page, requires invoking the end-
point with some parameters from the UL In the provided HTTP POST request
format in Listing the startDate and endDate are selected by the user di-
rectly from the UL The key corresponds to the driver, the value represents the
driver ID associated with a specific account and the aggregtionRange defaults
to a weekly interval. The groupBy parameter is the one which differentiates
the two plots displayed on the page. Grouping by Severity, results in the
video classification levels plot, and alternatively grouping by KPI, results in
the behaviors trend plot. Both severity and KPI will be explained in detail in
Section In practice, this endpoint is invoked each time a user navigates
to the video driver safety profile of their chosen driver within their fleet. By
adjusting the date range, users can retrieve updated results and view them on
the page. This usage scenario aligns with typical user behavior.

Next endpoints in line were /sessions/upcoming and /sessions/completed.
As can be seen in Figure 3.3} there are two lists. Upcoming sessions are the ses-
sions the fleet manager has started coaching or has yet to begin (even though
these events were previously selected for coaching). On the other hand, com-
pleted sessions refer to those that the fleet manager has successfully com-
pleted with drivers, addressing their specific behaviors. The simplified for-
mat of these HTTP POST requests can be found in Listing

Finall