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Abstract

Conducting performance tests on applications is a crucial step in the software
development process. Many companies have dedicated teams responsible for
monitoring application performance (APM) and conducting necessary tests
on developed components, services and applications. However, due to its
distinct nature compared to other common tests, performance testing is not
frequently carried out on a daily basis within companies. Nevertheless, it is
essential to integrate continuous performance testing during and after feature
development to ensure that the system under test meets the desired perfor-
mance metrics. In this thesis, we discuss the existing approach in a static en-
vironment and its limitations, then propose a new approach in an ephemeral
environment, and perform common types of performance testing including
load tests and stress tests.

Additionally, as the needs of the application evolve, the design of the system
changes accordingly. Therefore we need a way to apply and evaluate these
changes as a part of the testing process. This is where ephemeral environ-
ments help. Using ephemeral environments, rather than static ones, enables
us to configure and deploy the required infrastructure within each run, allow-
ing us to match the same production setup or quickly assess the performance
of different alternatives. This improves reliability, flexibility as well as re-
peatability of the tests, helping to properly automate them instead of relying
on manual actions. Moreover, this simplified setup and execution of perfor-
mance tests - entirely handled as code - enables software engineers to incor-
porate testing into their daily routines, reducing the reliance on centralized
APM teams. The conclusion of this thesis includes developing an automated
performance test application, leveraging ephemeral environments to facilitate
the testing process. A temporary environment, configured and scaled very
much like the production one, is created and used to run performance tests,
then destroyed at the end of the run to mitigate cloud-related costs.
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Chapter 1

Introduction

1.1 Company Overview

Verizon Communications Inc. (NYSE, Nasdaq: VZ) was formed in June 2000
and is one of the leading providers of technology and communications ser-
vices in the world. Based in New York City and with a presence around the
world, Verizon offers data, video and voice services and solutions on its net-
works and platforms, fulfilling the customer’s demand for mobility, reliable
network connectivity, security and control [1]. In 2016, Verizon brought to-
gether three best-in-class telematics companies (as a global SaaS) to meet the
needs of any business fleet and rebranded them as Verizon Connect.

Verizon Connect is guiding a connected world on the go by automating,
improving and revolutionizing the way people, vehicles and things move
through the world. Verizon Connect provides connectivity and data insights
to enable its customers to be more informed about vehicle and worker loca-
tion, efficiency, safety, productivity and compliance [2]. Vehicle telematics is
the monitoring of the status of a vehicle or other asset. It combines navigation,
safety, security and communication into one piece of technology and oversees
status by recording and transmitting telemetry data via an installed device
called a vehicle tracking unit (VTU). Data can include information such as
vehicle location, speed, fuel usage, etc. These information is used in near real-
time analysis to improve driver safety, efficiency and vehicle performance and
are used heavily in fleet tracking and management.

1
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1.2 Software Engineering Terms

Some of the commonly used terms and practices of software engineering are
discussed in the following Sections 1.2.1, 1.2.2 and 1.2.3, which all have been
widely applied during the work of this thesis.

1.2.1 Software Development Lifecycle

Software development can be a difficult task, especially on a scale. This re-
quires breaking large software into small deliverable parts so that each smaller
part works properly and allows the merging of these parts to achieve the fi-
nal result. This is difficult because a piece of software typically has many
stakeholders, and developing a large software can involve multiple cross-
functional teams. Moreover, at each step in this process, product requirements
can change based on stakeholder needs, so breaking down large problems
into smaller parts can help avoid this problem. Therefore, the Software De-
velopment Life Cycle (SDLC) is one such systematic approach to complete the
software development process in time and also develop and maintain high-
quality software [3]. In general, some benefits of SDLC [4] are:

• Increased visibility of the development process for all stakeholders in-
volved

• Efficient estimation, planning, and scheduling

• Improved risk management and cost estimation

• Systematic software delivery and better customer satisfaction

All activities involved in the SDLC are categorized into independent units,
called phases [3], during the process. Some of the main phases are Require-
ment Analysis, Plan, Design, Implementation, Test, Release and Maintenance.
Consequently, there are different types of SDLC models that can be followed
to obtain the phases mentioned above, from traditional models such as Wa-
terfall as described in Section 1.2.1.1 to contemporary models like Agile as de-
scribed in Section 1.2.1.2. For each project, rather than asking which method-
ology is superior [5], it must be considered which will be the best option to
increase productivity according to the requirements and will result in a suc-
cessful attempt to build a deliverable.
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1.2.1.1 Waterfall SDLC Model

Waterfall methodology is a linear model with less customer involvement. All
requirements and planning are done beforehand, and once the project starts,
it is very less likely to change the initially evaluated requirements. It is quite
rigid, but at the same time, it is a pillar of the waterfall, that is, the entire scope
of the project is outlined in advance [5].

Figure 1.1: SDLC Waterfall Model

As phases demonstrated in Figure 1.1 [6], in the first step all business re-
quirements are analyzed, following which the architecture of the application
is designed. As part of the development process, the project is divided into
smaller components. Each piece is tested once it has been developed to find
errors or security issues. After fixing the issues, the finished and polished ver-
sion is ready for public distribution. Some advantages of this model are that
the phases are very straightforward to follow and at the end of each phase,
we have deliverables. However, this model has certain disadvantages. Test-
ing is done only after the development phase has been completed, which is
not ideal since once the development is complete, changes might be time con-
suming and costly, which might also cause the project to be late.

1.2.1.2 Agile SDLC Model

Agile methodology emphasizes incremental delivery and continuous improve-
ment. In this model, every team is open to changes and collaboration, which
results in continuous modification based on customer needs. It is not as rigid
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as Waterfall, with the documentation beforehand; instead communication with
the customer is more important than the terms of the contract [6].

As phases demonstrated in Figure 1.2 [6], the cycle begins with planning
which at this step the major project requirements, costs and timelines are de-
fined. The software architecture prototype is then designed, developed, and
delivered to be reviewed and tested in the next phase. After the client and the
testers have reviewed the developed prototype and the bugs have been fixed,
the component is deployed. After deployment, the customer, the testers,
and the developers continue to communicate until the solution is ready to
be launched at the end.
Some advantages of this model are cost saving, incremental delivery, and fast
feedback cycle. On the other hand, if the user requirements are not clearly
defined at the beginning, the project might quickly fail.

Figure 1.2: SDLC Agile Model

This thesis was a secondary project based on the main feature in devel-
opment at the time, which implemented Agile methodology using the Kan-
ban framework. In this framework, tasks are represented visually in different
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columns such as backlog, in progress, testing and done allowing others to
easily track the progress of each task.

1.2.2 Containerization

Considering an application that needs to be executed on a system, this sys-
tem must have all the necessary resources that the application requires dur-
ing runtime to ensure its smooth operation. This setup is beneficial only if the
individual who developed the project is also the end user. Otherwise, exe-
cuting this application on a system with a different user involves numerous
prerequisite steps to ensure the application runs smoothly. This is where the
concept of containerization comes into play. It helps avoiding such issues by
encapsulating the application along with all its required prerequisites within
a single software package, or a container. Accordingly, any user can execute
this container on any infrastructure, without the need, for example, to have
the application’s programming language installed on the system.

Software developers create container images (i.e., files containing the nec-
essary information to run a containerized application) that could be used by
a containerization tool to build their program. Any other user intending to
execute the program needs to have a containerization tool installed on their
operating system. This tool acts as an intermediary between the program and
the operating system, handling all the dependencies needed to execute the
program [7]. One of the famous tools that has been used a lot in the work of
this thesis is Docker.

Docker has been identified as an open source platform that runs applica-
tions and makes the process easier to distribute [8]. Docker is used to de-
ploy many containers simultaneously on a given host. Containers are more
resource efficient compared to virtual machines because the additional re-
sources needed for each OS is eliminated and instances are smaller and faster
to create. Cloud service providers are more interested in containers because
far more containers can be deployed with the same hardware [9]. Container-
ization using Docker on the Amazon Web Services (AWS) cloud environment
has been widely used in the work of this thesis, which will be explored further
in Chapter 3.
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1.2.3 Continuous Integration/Continuous Delivery

In the context of modern software development, it is necessary to quickly
bring the smaller parts of a large project to production as often as possible.
This is where Continuous Integration/Continuous Delivery (CI/CD) plays
an important role. CI/CD refers to automation that allows incremental code
changes from the developer’s desktop to be delivered quickly to production
[10]. The part about CI concerns the integration and merging of several small
changes into the main branch using an automated system that builds and tests
the software system, and often processes run on each commit [11]. As a result
of CD, reliable software is delivered in a short cycle to ensure that it can be
deployed at any time.

As this work aims at automating performance testing, it could potentially
be incorporated into a future CI/CD pipeline to ensure that system reliability
issues are checked at different stages of the development and the release pro-
cess. It is about planning performance tests as part of the SDLC for continuous
performance testing.

1.3 Software Testing

Testing is a crucial activity to ensure the quality of a software being developed
and that it meets the user expectation. Usually, a software system is tested on
several levels, starting with unit testing that checks the smallest parts of the
code until acceptance testing, which is focused on the validations with the
end user [12]. The focus of this work was on the performance testing of a web
application as will be described in Section 1.3.1.

1.3.1 Performance Testing

Performance testing is a type of software testing aimed at assessing the re-
sponse time, sensitivity, reactivity, reliability, and scalability of a system under
average and above-average loads of data. Performance testing aims to iden-
tify bottlenecks and ensure that the system can handle the expected number
of users or transactions.

There are various types of performance tests, and the specific type to be
carried out is determined by the requirements of a particular system and the
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objectives of the test. The following are a few of the types of performance tests
that have been performed during several attempts in the work of this thesis:

• Load Testing: Load testing can be identified as the base performance
test and other types of tests can be derived from it. In this test, a system
is put under varying loads, usually between low and typical transac-
tions [13] of concurrent users, to see if it can handle these transactions.

• Stress Testing: Stress testing is similar to load testing except that in this
case the system is put under peak loads to assess its performance.

• Breakpoint Testing: Breakpoint testing also known as capacity testing
is a scenario in which the system is under a very high and unrealistic
load to find the limits of the system at which it breaks and becomes
problematic. This test often has to be stopped manually or automatically
as thresholds start to fail [14]. At this point, it is known that the system
has reached its limits, and this brings the teams involved together to
plan and prepare an action for a similar event. For instance, scalability
testing, described in the next item, would be another testing scenario as
a solution to the results of breakpoint testing.

• Scalability Testing: In all above-mentioned tests, the performance of the
existing system and resources is assessed. However, scalability testing
aims to understand how the service is scalable. There are two types of
scalability namely Horizontal and Vertical. Horizontal scalability simply
adds up to the same existing resources, while vertical scalability adds
more capacity to the existing resource in terms of more CPU or allocated
memory. By performing this type of test in an isolated environment,
a decision can be made as to whether horizontal scalability or vertical
scalability will be the right fit to improve the overall ability of the system
to handle higher loads [15].

1.4 Serverless Cloud Computing

Cloud computing has been a reality for approximately two decades as a re-
sult of virtualization in software systems [16]. Cloud computing provides its
customers with high availability, reliability and scalability in such a way that
it eliminates the need for individuals to manage the difficult part of having
physical servers on-premise and taking care of them constantly. Users can
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access these cloud services via the Internet without having to maintain the
majority of that system on their personal computers. Cloud computing can
be divided into three main categories that provide different levels of abstrac-
tion, namely:

1. Infrastructure as a Service (IaaS): With this level of abstraction, the
cloud provider supports for low-level details of underlying resources
like networking, servers, storage and virtualization and the customer is
in charge of managing the operating systems, databases, security and its
applications.

2. Platform as a Service (PaaS): In this category, all resources are man-
aged by the cloud provider, except for the application. Developers ac-
cess these services to deploy, run, and manage their applications [16].

3. Software as a Service (SaaS): Here, everything is managed by the cloud
provider and uses simply use the service provided to them.

Although cloud computing seems to solve many resource management
problems specifically while having a PaaS, there are still some challenges. Us-
ing a PaaS service model, cloud users are still in charge of the scalability of
their systems. So, it involves a manual step in configuring parameters for au-
toscaling policies. In addition, the pricing system for such a service is that
the customer pays for the whole capacity that they have reserved to use from
the cloud provider, which is not ideal. These challenges have led to the intro-
duction of another cloud computing model, which is called Serverless Cloud
Computing [17]. Serverless computing offers Backend as a Service (BaaS) and
Function as a Service (FaaS). BaaS consists of the required resources of the sys-
tem such as database, service, etc. FaaS relies on BaaS supporting developers
to interact with the resources by writing small pieces of functions. FaaS is con-
sidered the most dominant model of serverless and is also known as event-
driven functions [18]. AWS Lambda is the most widely known FaaS provider
that runs user code in response to events, automatically managing the under-
lying compute resources. Jobs can be triggered by other AWS services such
as S3 1 or DynamoDB 2 and can be written in .NET, Python, JavaScript or Java
[19].

1https://aws.amazon.com/s3/
2https://aws.amazon.com/dynamodb/

https://aws.amazon.com/s3/
https://aws.amazon.com/dynamodb/
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Our ephemeral environment is built on AWS Cloud. Some of the well-
known AWS services that have been widely used in this thesis are explained
further in the following Sections 1.4.1, 1.4.2, 1.4.3 and 1.4.4.

1.4.1 Networking

As an initial step in the configuration of any serverless system, we should
think of how the network will be created in a secure and reliable way. AWS
has multiple geographic areas called Regions in which you can choose to setup
your system. Each region can have multiple Availability Zones called AZs that
are isolated locations within each region. A Virtual Private Network (VPC) is
a virtual network logically isolated from other VPCs in which you can define
the resources you want. A VPC spans a whole region, and subnets are used to
specify IP address ranges inside AZs of a region to allocate to virtual machines
and other services [20].

1.4.2 Container Orchestration

To manage the underlying infrastructure, an orchestration tool is needed to
properly manage the service containers deployed in the cloud environment.
AWS helps to run containers in a reliable and scalable environment. The Ama-
zon Elastic Container Service (ECS) 3 has been widely used in the work of this
thesis to run containerized applications inside. There are two computing op-
tions available for ECS:

• Amazon Elastic Compute Cloud (EC2) 4 which runs containers with server-
level control offering flexible scaling based on application needs. It is
ideal for specialized tasks which some of its use cases are presented in
Chapter 3.

• AWS Fargate 5 which runs containers without managing servers, acceler-
ating the process of going from idea to production on the cloud making
it suitable for microservices architectures.

3https://aws.amazon.com/ecs/
4https://aws.amazon.com/pm/ec2/
5https://aws.amazon.com/fargate/

https://aws.amazon.com/ecs/
https://aws.amazon.com/pm/ec2/
https://aws.amazon.com/fargate/
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1.4.3 Monitoring and Observability

Once a system is deployed in the cloud, it is necessary to be properly moni-
tored. Since there are several resources distributed at different geographical
locations in the cloud, without proper monitoring of services, enterprises may
not achieve the performance and benefits provided by the cloud [21].

One of the most effective tools for observability in the AWS cloud is Cloud-
Watch 6. With Amazon CloudWatch, you can track system performance, mon-
itor events and logs, set alarms for unexpected events, and better react to
them. Further, CloudWatch log events can be used for root cause analysis,
debugging, and reducing the overall mean time to resolution.

Another widely used monitoring tool is Grafana 7. Grafana provides means
to quickly make a dashboard in which metrics and data can be visualized us-
ing different built-in widgets. It can unify data from different sources, such as
CloudWatch, making it a great tool to combine all information from different
services of AWS for a better monitoring experience.

In this work, a Grafana dashboard connected to CloudWatch is built to
monitor performance tests online. A dashboard contains queries that retrieve
data from different CloudWatch logs and metrics and store them together.

1.4.4 Infrastructure as Code

Since automation is one of the keys to success, Infrastructure as Code (IaC)
can play an important role. IaC is commonly used in software development
to build components and deploy them. Instead of manually setting up and
managing the computing infrastructure, IaC uses code to provision and sup-
port the system. When we manage applications at scale, manual infrastruc-
ture management is time consuming and prone to error. Infrastructure as
code lets you define the desired state of your infrastructure without including
all the steps to get to that state [22]. By automating infrastructure manage-
ment, developers can focus on building and improving applications instead
of managing environments.

6https://aws.amazon.com/cloudwatch/
7https://grafana.com/

https://aws.amazon.com/cloudwatch/
https://grafana.com/
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1.4.4.1 Provisioning Tool

To take an action on following IaC, AWS provides a widely known tool as
CloudFormation 8. CloudFormation helps in developing the use piece infras-
tructure by writing Infrastructure as Code in YAML (or JSON) which gen-
erates a CloudFormation Stack to create the resources. Although it can be
useful, it has some limitations due to its declarative nature and the need to
configure the resources with so many details, which requires a good under-
standing of AWS services. This is where AWS Cloud Development Kit (CDK) 9

comes into play and provides the ability to create the infrastructure with pop-
ular programming languages like Python, Java or .NET.

With this work, we focused on using CDK as our automation tool where
we built the resources we want using CDK .NET to create different CloudFor-
mation stacks that could be deployed in an ephemeral environment.

8https://aws.amazon.com/it/cloudformation/
9https://aws.amazon.com/cdk/

https://aws.amazon.com/it/cloudformation/
https://aws.amazon.com/cdk/


Chapter 2

Background

2.1 State of the Art

Many companies provide services to customers that they need to ensure that
the system performs well under high loads. That is why they follow per-
formance tests. However, the procedure of doing a performance test is very
time-consuming. To conduct a performance test in a proper way, a couple of
steps need to be followed. These steps are depicted in Figure 2.1 suggested by
a study [23] on the load testing of large-scale software systems.

Figure 2.1: Performance Testing Process

Accordingly, there are 3 general steps in conducting a performance test:

1. Plan and Design Tests: This phase consists of designing the load that
will be tested on the system considering the objectives of the system
under test (SUT).

Depending on the different types of subject programs, developers may
choose the measures listed in Table 2.1 to associate with performance
bug symptoms [24] and to plan their tests. Jin et al. [25] emphasize that

12
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performance bugs are software defects where relatively simple changes
to the source code can significantly improve performance.

Performance Measure Database Web Service Mobile
CPU Utilization ✓ ✓ ✓

Memory Utilization ✓ ✓ ✓
Cache Hit Rate ✓ ✓
I/O Utilization ✓ ✓ ✓

Socket Utilization ✓ ✓ ✓
Transactions ✓ ✓

Lock Contention Rates ✓ ✓
Response Time ✓ ✓ ✓

Concurrent Request Rates ✓ ✓

Table 2.1: Performance Measures

Moreover, the goal of the load design is to devise a load that can uncover
load-related problems under load [23]. Weyuker et al. [26] stress that
generating a representative workload itself presents a problem, since it
is difficult to identify what a representative workload is. Traffic is mon-
itored in many systems and this provides a so-called Operational Profile
that describes how the system has historically been used and, therefore,
is likely to be used in the future. This is the approach that has been fol-
lowed in this thesis. However, in the absence of this historical data, it is
quite difficult to design the workload in a proper way.

2. Configure Test Environment and Run Tests: In this phase, we configure
our test environment and implement the designed tests in our preferred
scripting language (which might be an external performance tool), and
then we execute our tests.

Several approaches can be taken to execute the tests. The tests can be
conducted by human testers placing loads from different locations [27]
which is the most realistic way to follow. However, since this approach
is manual, it suffers from the fact that one test cannot be reproduced in
the same way again. To overcome this issue and to have the ability to
produce a very high load, load drivers such as HP LoadRunner 1 can be
used to generate this load using concurrent users.

1https://www.opentext.com/products/loadrunner-professional

https://www.opentext.com/products/loadrunner-professional
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SUTs must be deployed and tested in the field or in a field-like envi-
ronment, which presents a challenge in setting up this realistic testing
environment [23]. In this thesis, an ephemeral environment has been
used to overcome this challenge.

3. Analyze Metrics and Detect Problems: Finally, we collect the metrics
we need and, if needed, we rerun the tests to validate the results. There
are different approaches to analyzing the data, in fact, to collect relevant
metrics:

• Analyze and verify metrics against known thresholds.

• Checking the system for some already known problems.

• Find anomalies and strange behaviors in the system.

There is a trade-off between the level of monitoring details and the mon-
itoring overhead [23]. Detailed monitoring has a huge performance
overhead, which may slow down system execution and may even al-
ter system behavior [28]. Depending on the environment in which the
test is running, the execution logs generated by the code instrumenta-
tion, and the performance testing tool that is being used, we can have
different metrics on hand to investigate. Finally, performance is a subject
matter [24] and in many cases is judged based on previous experience
by comparison.

2.2 Overview of the Existing System

In the current existing process for executing performance tests in the com-
pany, there are several limitations. First, it is based on the usage of a static
and shared Perf environment which is not isolated, and multiple test runs
might conflict with each other. A dedicated team as the Application Perfor-
mance Monitoring (APM) team has the permissions and tools to execute tests,
collect insights and provide it to the teams requesting these tests. Test scripts
are implemented as .Net solutions which are then used by HP LoadRunner
to simulate a large number of calls in parallel. The tests are conducted in the
static performance environment mentioned above, which may differ from the
production environment configuration in terms of resources and the size of
instances being used, resulting in high cloud costs even with the same pro-
duction configuration. Moreover, since the environment is static, it is not very
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convenient to change the configuration with regard to new changes in the sys-
tem under test and to evaluate the actual impact of those new changes.

The testing plan must be scheduled well in advance before the intended
test date in order for the APM team to ensure proper organization. Moreover,
the environment is not guaranteed to be isolated, resulting in a major con-
sequence, that is the potential for inaccurate results inside the environment
where multiple teams are running their tests at the same time. Although the
current process is trying to help teams achieve Performance Driven Devel-
opment (PDD), but in reality, this system is not very convenient to be used
during the software development life cycle. Furthermore, it should be con-
sidered that the data need to be prepared manually beforehand with the help
of the APM team. The database is long-living meaning that after every run,
the new data remain in the database, and this affects the later tests since the
initial configuration of the database and, accordingly, the environment, is not
the same as data build up over time. So, the same test cannot be reproduced
in the setting that it was run before. At the end of the test, the APM team
provides the results with snapshots of the performance metrics’ plots, which
are certainly not dynamic to properly investigate further.

It is clear that the process is pretty cumbersome, including many manual
steps, and is basically impossible to have fully reliable and repeatable test
runs or to automate them as part of the CI/CD pipeline. Also, there is no way
to automatically get the results once the tests are done, and the whole process
takes days or weeks from the beginning to the end. On top of everything, we
cannot ignore the fact that the team responsible for executing tests and col-
lecting insights is not the one building the code, so they do not have enough
context to evaluate the results.

2.2.1 Vision

We want the ability to spin up ephemeral environments where we can deploy
only the needed subset of components, so that we can run repeatable and
reliable tests in isolation. This brings us some benefits including:

• Developer teams can run performance tests independently and more
frequently.
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• There is the ability to quickly change the configuration and evaluate dif-
ferent scenarios.

• Having an ephemeral environment helps in reducing cloud-related costs.

• The new process helps improve the reliability of performance tests.

To achieve above goals, everything must be handled as code without any fur-
ther manual step or configuration. Moreover, there must be the ability to sim-
ply configure the data population process, as well as automate the process,
so that the tests can be triggered, the results can be collected, and they can be
reproduced.

2.2.2 Scope

For the first experiment, we considered a simple use piece of the infrastructure
by having a database interacting with a web service deployed on the AWS
cloud. The following aspects were tackled and will be explored in detail in
Chapter 3:

• Offline analysis of related data

• Automation of the data population process

• Setup of the ephemeral environment using CDK

• Selection of a performance testing tool and implementation of a test suite

• Automatic collection of relevant metrics



Chapter 3

Methodology and Implementations

To effectively carry out a performance test, it is necessary to clearly define
the objectives. In our specific case, the initial goal was to assess the perfor-
mance of a particular endpoint with an average and an above-average load of
data. Therefore, our exploration focused on the /kpis/search endpoint within
the coaching feature which is the most crucial endpoint delivered. This deci-
sion was influenced by our initial timing constraints. As we progressed and
achieved stability with this endpoint, we extended our analysis to two addi-
tional endpoints namely /sessions/upcoming and /sessions/completed in the
context of coaching sessions. Later, we also managed to take another step fur-
ther in investigating another endpoint, namely /driver/safety-scores, which
at the time was new and there was ongoing work around it to deliver the
endpoint to customers.

Given the originality of the approach, at first it was unclear what to expect
and what the potential challenges would be. The main goal was to do a per-
formance test while gaining deeper knowledge of the coaching platform and
potential unknown issues. Since developers often focus on building deliver-
able pieces based on user stories, they rarely get the opportunity to explore
cloud-based systems thoroughly and observe their behavior through differ-
ent changes. Moreover, in serverless architectures, in order to achieve post-
development successful deployments in production, a collaborative effort of
various experts in different fields is required. Hence, this opportunity brings
developers closer to other teams in better understanding the system behavior
and potential future improvements.

17
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In this chapter, first, we briefly discuss driver coaching in Section 3.1 and
then we will focus on a sequence of steps in building the application that in-
cludes the preparation of the dataset in Section 3.2, setting up the ephemeral
environment in Section 3.3, selecting a performance tool and setting up the
performance agent in Section 3.4 and finally setting up a monitoring dash-
board and automatic collection of metrics in Section 3.5.

3.1 Driver Coaching

Driver coaching is a feature released in 2024 for Verizon Connect Reveal (Medi-
um/Small) 1 and Fleet (Enterprise) 2 customers. The AI Dashcam enables fleet
managers to proactively prevent serious incidents from happening by identi-
fying coaching opportunities and enabling drivers to coach themselves. This
feature focuses on:

1. Video Event Triage 3.1:

• Add coaching or review status to a video event, such as Review
pending, Coaching needed, Coaching not needed and Coaching completed.

• Add notes to provide context as to why a given coaching status
has been selected and facilitate coaching, or explain the actions that
need to be taken.

2. Video Driver Safety Profile (Coaching) 3.2 3.3:

• Review driver performance, benchmarked against other drivers.

• Review various driving behaviors to coach and related videos that
have been marked as Coaching needed for a specific driver.

• Hold contextual coaching sessions with drivers by setting the video
event status as Coaching needed.

• Complete an end-to-end workflow to coach drivers based on their
behaviors and get a coaching summary.

• Review coaching notes or document coaching actions.

• Review upcoming and completed coaching sessions.
1https://www.verizonconnect.com/ie/login/
2https://fleet-help.verizonconnect.com/hc/en-us

https://www.verizonconnect.com/ie/login/
https://fleet-help.verizonconnect.com/hc/en-us
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(a) Video Events List

(b) A Sample Event in Review Pending Status

Figure 3.1: Video Event Triage
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(a) Driver Video Summary

(b) Video Classification Levels

(c) Behaviors Trend

Figure 3.2: Video Driver Safety Profile
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(a) Upcoming Sessions

(b) Completed Sessions

Figure 3.3: Coaching Sessions

3.1.1 Endpoint Specifications

In the work of this thesis, the primary focus was on performance testing the
/kpis/search endpoint. As can be seen in the video driver safety profile in
Figure 3.2, there are two main plots, namely:

1. Video Classification Levels: This plot demonstrates the driver events
classified by the backend. Users can select a specific time range from the
top right of the page to explore these events.

2. Behaviors Trend: This plot shows the driver behaviors and the occur-
rences of each, during the selected time period mentioned above.
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Displaying both of these plots on the current page, requires invoking the end-
point with some parameters from the UI. In the provided HTTP POST request
format in Listing 3.1, the startDate and endDate are selected by the user di-
rectly from the UI. The key corresponds to the driver, the value represents the
driver ID associated with a specific account and the aggregtionRange defaults
to a weekly interval. The groupBy parameter is the one which differentiates
the two plots displayed on the page. Grouping by Severity, results in the
video classification levels plot, and alternatively grouping by KPI, results in
the behaviors trend plot. Both severity and KPI will be explained in detail in
Section 3.2. In practice, this endpoint is invoked each time a user navigates
to the video driver safety profile of their chosen driver within their fleet. By
adjusting the date range, users can retrieve updated results and view them on
the page. This usage scenario aligns with typical user behavior.

Next endpoints in line were /sessions/upcoming and /sessions/completed.
As can be seen in Figure 3.3, there are two lists. Upcoming sessions are the ses-
sions the fleet manager has started coaching or has yet to begin (even though
these events were previously selected for coaching). On the other hand, com-
pleted sessions refer to those that the fleet manager has successfully com-
pleted with drivers, addressing their specific behaviors. The simplified for-
mat of these HTTP POST requests can be found in Listing 3.2.

Finally, the last endpoint was /driver/safety-scores which is an HTTP GET
request provided with a specific driver ID. Similar to /kpis/search, this end-
point is invoked each time a user navigates to the video driver safety profile.

header = { vzc -accountId: AccountId }

body = { startDate: StartDate ,

endDate: EndDate ,

filters: [{ key: Driver ,

values: [DriverId] }],

aggregationRange: Week ,

groupBy: Severity/KPI }

Listing 3.1: HTTP Request of /kpis/search

header = { vzc -accountId: AccountId }

body = { driverIds: [ DriverIds ] }

Listing 3.2: HTTP Request of /sessions/upcoming and /sessions/completed
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3.2 Database

In terms of the issue related to the long-running database in the current exist-
ing performance environment (as discussed in Section 2.2), our objective was
to create a database that closely mimics the production environment. This
required two steps. First, we analyzed customer data to identify statistical
patterns. Second, we generated data in a way that aligns with the customer
data. These steps are explained in more detail in the following Subsections
3.2.1 and 3.2.2 respectively.

3.2.1 Data Analysis

The Amazon Redshift 3 data warehouse was studied to derive statistics from
the data. Redshift serverless acts as the main data warehouse cluster in which
one can run analytics workloads of any size without managing the data ware-
house infrastructure [29]. It is important to note that this analysis focused on
general information, avoiding any specific or private personal data (such as
details related to individual drivers). Data analysis covered information from
both Reveal and Fleet customers exploring various aspects even beyond the
database population. In this thesis, our focus centers on discussing only the
necessary aspects for generating the data, including:

• Events Per Account: First, we considered the frequency of events trig-
gered by all the drivers of each account in a specific period. This period
was specifically chosen as Q3 of 2023, right before the start of the project
in Q4.

• Drivers Per Account: Another interesting metric was understanding the
number of drivers in each account.

• Upcoming and Completed Sessions Per Driver: These statistics were
important in populating the tables related to coaching sessions. There
are four indicators in total: the number of upcoming sessions for both
Reveal and Fleet accounts as well as the number of completed sessions
for both Reveal and Fleet accounts.

• Pending Upcoming Sessions Per Driver: This analysis includes all events
that the fleet manager has marked as Coaching needed. At this point, a

3https://aws.amazon.com/redshift/

https://aws.amazon.com/redshift/
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pending session is generated for these events in the upcoming sessions
list. Once the fleet manager clicks the Coach button, the actual coaching
session is created and recorded in the database.

• Proportion of Drivers with Sessions: With this analysis, our goal was to
understand how many drivers, out of the total drivers in each account,
have coaching sessions. This is crucial because the number of drivers
per account varies based on whether they are Reveal or Fleet customers.

• KPI Types Per Event: This analysis was necessary to find the number
of behaviors for each triggered event for a driver. In practice, the main
engine is initially triggered by the behavior of the driver, and this event
may potentially include other behaviors as well. Consequently, all addi-
tional behaviors of an event are recorded if they exist.

The ultimate goal of building the database populator component was to create
a configurable solution. Using seeding variables, we ensured easy modifica-
tions and adaptability for future needs.

In Table 3.1, the number of small/medium and enterprise accounts out
of the total number of accounts are configured in Reveal Customers Percentage
and Fleet Customers Percentage. Then, we configure the number of KPIs for
each type of customer. KPIs play a key role within the coaching system. It
is a calculated value used to track the performance of drivers by capturing
the daily count of their behaviors. Then these behaviors are aggregated by
severity. Given the fact that there are numerous accounts and drivers that
generate KPI rows on a daily basis, query performance becomes a critical fac-
tor. Following the number of KPIs, we configure the maximum number of
drivers, as well as the counts for upcoming and completed sessions, for each
customer type. Furthermore, we incorporate global statistics Pending Upcom-
ing Sessions Per Driver and Proportion of Drivers With Sessions for both types
of customers. In all of the above, we take the median of the relevant statis-
tics for convenience. The First KPI Number and Last KPI Number are statically
configured based on static data in the coaching database, as indicated in Ta-
ble 3.2. Furthermore, we define First Severity Range and Last Severity Range
which range from 1 to 4 (representing minor, moderate, major and critical).
Lastly, one can configure the Year, Starting Month and Ending Month to cover a
maximum of three months in a year. This configuration allows us to generate
data for use by the /kpis/search and /driver/safety-scores endpoints, which is
configurable through the UI in intervals of 4 weeks, 8 weeks and 12 weeks.
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Row Configuration Sample Value
1 Number of Accounts 300
2 Reveal Customers Percentage 0.95
3 Reveal Number of KPIs 1000
4 Reveal Maximum Number of Drivers 10
5 Reveal Number of Upcoming Sessions Per Driver 3
6 Reveal Number of Completed Sessions Per Driver 2
7 Fleet Customers Percentage 0.05
8 Fleet Number of KPIs 2350
9 Fleet Maximum Number of Drivers 1000
10 Fleet Number of Upcoming Sessions Per Driver 3
11 Fleet Number of Completed Sessions Per Driver 2
12 Pending Upcoming Sessions Per Driver 2
13 Proportion of Drivers With Sessions 2
14 First KPI Number 1
15 Last KPI Number 20
16 First Severity Range 1
17 Last Severity Range 4
18 Year 2023
19 Starting Month 10
20 Ending Month 12

Table 3.1: Seeding Configurations

The starting point was the /kpis/search endpoint. This endpoint relates
to a specific table for KPIs, which will be discussed in detail in Section 3.2.2
that consists of the aggregation of events and behaviors that have been kept
in the data warehouse long before the release of coaching. These historical
data are sufficient for investigation and result in seeding configurations that
closely mimic the real data. However, when it comes to seeding configura-
tions of coaching sessions, we have only used data from customers who had
coaching enabled for them after release. This impacts our analysis, since not
much data has been generated yet following the recent release. For example,
we do not observe differences between metrics such as Reveal Number of Up-
coming Sessions Per Driver and Fleet Number of Upcoming Sessions Per Driver or
Reveal Number of Completed Sessions Per Driver and Fleet Number of Completed
Sessions Per Driver. Nevertheless, the positive aspect is that all these metrics
are configurable with the new data entering the database.
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KPI Type ID Name
1 Hard Acceleration
2 Hard Braking
3 Harsh Cornering
4 Sudden Force
5 Tailgating
6 Rolling Stop
7 Pedestrian Collision Warning
8 Speeding
9 Distraction

10 Phone Distraction
11 Phone Call Detection
12 Tiredness
13 Smoking
14 Seat Belt
15 Road Camera Covered
16 Driver Camera Covered
17 Video Events Count
18 Line Departure
19 Video On Demand
20 Distance

Table 3.2: KPI Type IDs

3.2.2 Data Generation

With the necessary seeding configurations in place, we had to implement
the data population logic. In Figure 3.4, we illustrate the relationship be-
tween the tables within the database. The coaching.kpi table has a compos-
ite primary key consisting of system id, account id, driver id, aggregation date,
kpi type id, and severity with a foreign key being kpi type id related to coach-
ing.kpi type table. The coaching.kpi type table contains static values that are
populated during schema creation. These values describe various potential
driver behaviors, including 20 distinct behaviors such as Tiredness, Speed-
ing, Smoking, Hard Braking, and Hard Acceleration. Moreover, there is the
coaching.coachable event table with primary key of coachable event id. This ta-
ble has two foreign keys being trigger kpi type id and session id that are re-
lated to coaching.kpi type and coaching.session tables respectively. First foreign
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key, the trigger kpi type id, is the initial trigger detected by the engine mark-
ing the occurrence of a specific coachable event. This event might include
other unsafe behaviors beyond the behavior that triggered the event. There-
fore, all these additional behaviors (that is, KPI types) are recorded in an-
other table, namely coaching.coachable event kpi type, alongside its correspond-
ing coachable event id. The second foreign key, session id, derives from the last
table, namely coaching.session, which includes the session details generated for
one or more coachable events. Once the fleet manager clicks on the Coach but-
ton in the UI, a session is created and recorded in this table, and after that, all
coachable events inside that session must be updated with the new generated
value of session id.

Figure 3.4: Simplified ER Diagram of Coaching Database

The main concern within the data populator logic revolved around elimi-
nating randomness during data generation to ensure that each new run gen-
erates the same data as the previous runs. This allowed us to exclusively
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measure other metrics during the test. In addition to the logical aspects, we
also focused on extensibility of the implementation. In Figure 3.5, you can
find a high-level overview of the database populator component:

Figure 3.5: Database Populator Component

In the above Figure 3.5, we illustrate the architecture of the component.
Starting from the upper level, our application communicates with available
controllers, in this case, the KpiPopulatorService, to execute its desired tasks.
Currently, we only have implemented one service. However, this architecture
is used to ensure that adding new services will not be complicated. The pro-
cedure then continues to the repository layer, which acts as an intermediary
between the service layer and the data layer. The repository layer is responsi-
ble for performing operations on our data layer effectively decoupling input-
output operations from our actual service layer.
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In general, a repository is used to separate interactions with the underlying
data source or web service from the business logic that acts on the model.
The business logic should be agnostic to the type of data that comprises the
data source layer. The repository queries the data source for the data, maps
the data from the data source to a business entity, and persists changes in
the business entity to the data source. This separation between the data and
business tiers has three benefits [30]:

1. It centralizes the data logic or web service access logic.

2. It provides a substitution point for unit tests.

3. It provides a flexible architecture that can be adapted as the overall de-
sign of the application evolves.

3.3 Environment Setup

The application setup consists of different CloudFormation stacks which are
briefly described here and will be explained in detail in the following Subsec-
tions 3.3.1, 3.3.2 and 3.3.3.

• CoachingNetwork: This stack contains the VPC and other resources
needed for communication between the stacks together.

• CoachingDB: This stack contains the resources needed to build the RDS
database engine.

• CoachingDBFlyway: This stack contains the resources needed to build
the desired schemas within the coaching database and populate the static
tables.

• CoachingDBPartition: This stack uses a lambda function to create the
partitioning schemas needed for tables inside the coaching database.

• CoachingDBPopulator: This stack effectively populates the schemas
created previously in the database with the help of our developed database
populator component.

• CoachingAPI: This stack contains the resources needed to get the target
up and running, along with a load balancer sitting behind it.
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• CoachingPerformance: This divides into two stacks, CoachingPerformance-
Master and CoachingPerformanceWorker corresponding to the use of the
performance agent in the distributed mode.

• CoachingGrafana: This stack represents the resources needed for main-
taining observability of the test, which in our case is a Grafana dash-
board.

3.3.1 Network

To build and use network resources, a specific stack is created, namely Coach-
ingNetwork. This CloudFormation stack consists of a VPC and three security
groups, namely:

• PerformanceSecurityGroup: This security group is used in the Coach-
ingPerformanceWorker stack, which is the worker stack for the distributed
mode. There is no specific inbound rule defined for this. What happens
is that after the task to be run is created, it will automatically get started
without any need to other resources. The outbound rule automatically
allows for all outbound traffic.

• LoadBalancerSecurityGroup: This security group is used for the load
balancer behind the target. The inbound rule for the load balancer al-
lows for incoming traffic on port 80 for the performance agent.

• FargateServiceSecurityGroup: This security group is widely used in the
implementation. First, CoachingApi uses this security group for its Far-
gate task definition, defining an inboud rule that allows incoming traf-
fic on ports ranging from 32768 to 65535 for LB communication. Next,
CoachingPerformanceMaster defines another inbound rule that allows in-
coming traffic on port 5557 to allow worker nodes to communicate with
the master. Lastly, CoachingGrafana defines an inbound rule on this secu-
rity group that allows incoming traffic on port 3000 for the Grafana user
interface.

• DatabaseClusterSecurityGroup: This security group consists of two
different inbound rules both allowing communication on port 5432 but
with different sources, the first one is the VPC CIDR block allowing all
incoming requets from all the IPs inside the VPC that database clus-
ter is created. The second allows incoming communications from the
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FargateServiceSecurityGroup to allow the target to communicate with the
database. The first security group is created to ensure that the database
can be queried directly from within the VPC for troubleshooting pur-
poses during the development phase.

3.3.2 Database

In this section, we present four separate CloudFormation stacks that are re-
sponsible for simulating the application database.

3.3.2.1 CoachingDB

This stack is the backbone of the database configuration in which we define
the database engine that we will be using. In the context of coaching plat-
form, an Aurora Postgres database engine is used. Amazon Aurora 4 is a re-
lational database engine that supports MySQL and PostgreSQL with high
performance and is part of the managed database service Amazon Relational
Database Service (Amazon RDS) 5. Amazon RDS is responsible for hosting the
infrastructure of database instances and clusters and makes it easier to set up,
operate, and scale a relational database in the cloud [31]. There are different
engine versions available for Aurora. In this work, since the entire focus was
on replicating the production environment, we went through the RDS pro-
duction configuration and adapted our stack configuration to those of pro-
duction. We use AuroraPostgresEngineVersion.VER 13 8. Another important
factor is the size of the database instances. In this configuration, we have 2
instances: one writer and one reader which are of type R6G Large. This in-
stance type is known to be used for memory-intensive tasks in open-source
databases such as MySQL and PostgreSQL. Some of its hardware details are
in Table 3.3

Instance Class db.r6g.large
vCPU 2
Memory (GiB) 16
Network Bandwidth (Gbps) Up to 10

Table 3.3: Hardware Details for db.r6g.large

4https://aws.amazon.com/rds/aurora/
5https://aws.amazon.com/rds/

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/
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Figure 3.6: Coaching DB

As illustrated in Figure 3.6, there are two database instances inside our
RDS cluster. None of them are explicitly set to be a reader or a writer. AWS
configures it automatically. Both cluster and instances have their own specific
parameter groups. The parameter group is a large list of parameters related
to the database that are defined by system default, so if you create the RDS
and instances and do not set parameter groups, a default would be created
for them having engine default and system default values. These defaults
are based on the engine, the compute class, and the allocated storage of the
instance. Those parameters can be modified that are explicitly set as modifi-
able. Also, some parameters are dynamic, meaning that you can change those
without any need to reboot the instances; instead some of them are static, and
after modifying, a reboot is needed. In our work, we include all the modified
parameter groups in production into our ephemeral environment. We noticed
some performance issues in our initial runs where we did not have these pa-
rameter groups arranged correctly. Here are a few of the important parameter
groups explained [32]:

• apg enable semijoin push down: Enables the use of semijoin filters for
hash joins.
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• shared preload libraries: Lists shared libraries to preload into server.

• shared buffers: Sets the number of shared memory buffers used by the
server.

• idle in transaction session timeout: Sets the maximum allowed dura-
tion of any idling transaction.

• random page cost: Sets the planners estimate of the cost of a non se-
quentially fetched disk page.

3.3.2.2 CoachingDBFlyway

Flyway 6 is a widely used tool in software engineering that provides database
version control and automates database deployments. Flyway updates a database
from one version to the next using migrations that could be either in SQL with
database-specific syntax, or other supported scripting languages. Migration
scripts have version numbers on them and are applied in the database in or-
der. All these changes will then be saved in flyway schema history. Migration
scripts can be manually deployed to target environments or could be auto-
mated by using the Flyway command line or the Docker container.

In order to migrate the schemas of CoachingDB, we had to configure a
Dockerfile. In the AWS environment, you can run your containerized ap-
plications using ECS. By using the Flyway Dockerfile and providing the de-
ployed RDS credentials, migrations will be applied successfully, which can
be checked through logs enabled during deployment for the Flyway Fargate
task definition. After deployment, all schemas are created, as well as the static
data for static tables within the database.

We have an ECS cluster that contains an EC2 container, as illustrated in
Figure 3.7. Since we want this task to run only once after deployment, an EC2
container allows us to have more control over the resource. Using an ECS
Fargate container instead would have required restarts over and over again,
since its management is handled by AWS. Lastly, after deployment, an Event
Bridge rule 7 is used to initiate the task and save its logs to CloudWatch.

6https://flywaydb.org/
7https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rules.html

https://flywaydb.org/
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-rules.html
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Figure 3.7: Coaching DB Flyway

3.3.2.3 CoachingDBPartition

Partitioning in the context of database is multiplying the structure of one root
table and divide the whole data residing in that root table, among all those
created tables, or in other words, organizing data into logical chunks or parti-
tions. Partitioning effectively increases query performance. When the table is
extremely large including a lot of data, it helps to avoid large index scans.

In reality, coaching DB has a partition schema on table coaching.kpi. Since
we needed to replicate the production as much as we could, we had to think of
a way to do this in our ephemeral environment. Production consisted of Cron
jobs running nightly to create future partitions for this table. Since our analy-
sis was based on Q3 of 2023, this required us to have old partitions available
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in the database. We were suggested to contact the DBA team at the company
to manually configure this setting for us. However, since the original goal was
to avoid any manual intervention, we used an alternative method. As shown
in Figure 3.8, a Lambda function is used to run a stored procedure that gener-
ates partition tables in the deployed database. This Lambda function contains
environment variables that include the database credentials to connect to the
database and the specified start and end dates to generate partitions within
that range.

Figure 3.8: Coaching DB Partition

3.3.2.4 CoachingDBPopulator

Finally, the last stack to be deployed to complete the database setup is the one
consisting of our previously developed database populator component. As
resources depicted in Figure 3.9, we have an EC2 container residing in an ECS
cluster. This containerizes a Fargate task by building an image of the Docker-
file of the database populator component. The environment variables are the
credentials required to connect to the database. The whole procedure begins
with an EventBridge rule of a Cron scheduled job, and logs are saved into
CloudWatch for further needs. After the database populator completely pop-
ulates the database, we need to keep some of its data for later use in building
the test scripts. So we retrieve the data we need and, using the AWS SDK
for.NET, we upload these data to a predefined S3 bucket for later retrieval.
The AWS SDK for.NET simplifies the use of AWS services by providing a set
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of libraries that are consistent and familiar to.NET developers. In order to
achieve this, some policy statements need to be defined on the ECS container
to have permissions to upload data to the S3.

Figure 3.9: Coaching DB Populator

3.3.3 Service

By having the database ready and in place, it is time to deploy the piece of in-
frastructure needed to run the service on top of it. Here we use an ECS Fargate
container instead of an EC2 container since we need the service to constantly
be up and running. The Dockerfile is used to build the image and run it in the
container. The default scaling policy on the service limits us to have only 2
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tasks available, meaning that after deployment 2 replicas of the Coaching ser-
vice will be available. Each task in a CloudWatch log group has a specific log
stream in which all service logs are saved, including Serilog, a logging library
used in .NET Core applications to provide structured logs.

In the process of developing and testing, we sometimes encountered dif-
ficulties understanding the metrics provided by CloudWatch. This need led
us to think of a way to develop some custom metrics to help eliminate this
ambiguity. To implement these custom metrics within the code base, other
members of the team completed several side tasks. Then, as a result, even
before the changes merged into development, we used the feature branches
to deploy the service. The ability to quickly change the configuration was
really interesting, because not only did we benefit in terms of performance
testing, but we could also test some of the related features developed in this
new way. This is the reason that some policy statements are defined in this
stack to give the required permissions to the service to be able to publish its
custom calculated metrics to CloudWatch.

Figure 3.10: Coaching API

The deployed service is sit behind a Load Balancer which helps in automati-
cally distributing the incoming traffic across the targets. As depicted in Fig-
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ure 3.10, we have 3 availability zones for the load balancer. Our service based
on its default scaling policy has a minimum of two task available at time of
deployment. Each of these two replicas of the service take place in one of this
availability zones. However, as usage increases, the system may scale out to
support high loads by adding more tasks. In that case all other new task take
into place either in that remaining availability zone or in others. Figure 3.11
presents some details on load balancer. A listener resource is typically created
so that the load balancer can listen to incoming requests on a particular port.
Then we have some rules defined which forwards the requests to a specific
target group. This target group is the actual service that has been deployed
namely ApiTargetGroup. Based on what load balancing algorithm the load bal-
ancer is using, requests will be divided between the two healthy targets in this
target group.

Figure 3.11: Load Balancer Configuration

3.4 Selection of Performance Testing Tool

Once we had the base environment in place, we had to choose the best per-
formance testing tool for the job. Performance testing tools are applications
designed to facilitate the planning, execution and monitoring of performance
tests. They generally differ in scope, but all come with features to support
testers throughout the performance testing life cycle [33]. One of the most
important capabilities of a tool is to simulate the load conditions of the SUT.
Among many tools available for this matter, we narrowed our search to two
options being Locust 8 and K6 9.

8https://locust.io/
9https://k6.io/

https://locust.io/
https://k6.io/
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Locust

Language: Python
Architecture: Standalone & Distributed
Advantages:

• Simple to setup and use distributed mode.

• Supports high load even in the standalone mode.

Disadvantages:

• Not very straightforward to define staging in tests.

K6

Language: JavaScript
Architecture: Standalone & Distributed
Advantages:

• Could be integrated with Grafana dashboard directly which is the one
we will be using.

• Rich built-in metrics.

Disadvantages:

• Distributed nodes need access to Kubernetes and does not have aggre-
gated results.

• Only limited to available modules.

Although we tried and ran some tests with both tools, in the end we decided
to move on with Locust because of the easier configuration. Since we defi-
nitely wanted to implement the distributed mode, K6’s Kubernetes use would
have limited us in doing so. After choosing the tool, we had to figure out a
way of how to integrate it into our ephemeral environment in AWS cloud by
using CDK which is described in the following Section 3.4.1.
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3.4.1 Performance Agent

To execute performance tests using Locust, we need to script the desired test-
ing scenarios in Python. With the Dockerfile of the script, we can easily run
a container with some environment variables defined by Locust that set up
the test. In the Locust distributed mode, there is a single master and one or
more worker nodes that connect to the master from various devices. To de-
ploy this using CDK, we use the test Dockerfile twice. The first time is for the
master node, where we run the container and select a port that will be bound
to listen for worker node connections. We then use the Dockerfile again with
some new environment variables for the worker nodes, which are the mas-
ter IP and port. After the master stack is deployed, we use the AWS SDK
for .NET to retrieve the private IP of the machine running the container. We
then provide this along with the container port that was previously bound, to
the worker environment variable so that workers can connect to the master.
Once the deployment is complete, all workers connect to the master one by
one. Essentially, for each worker, an ECS Fargate container is up. Once all are
connected, the test begins and the task sets inside the test scripts are run for
each of these workers.

Figure 3.12: Coaching Performance Agent

Looking at Figure 3.12, we see two different CDK stacks deployed. Fi-
nally, it is necessary to define some policy statements for the worker nodes
to enable them to read data from the previously established S3 bucket. This
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bucket is where we uploaded some data following the database population
phase. These data are crucial for accurately generating HTTP request bodies
that perfectly align with the available data inside the database. This ensures
that our requests are more realistic, their responses are incorporated into our
database, and we avoid scenarios where we are not hitting the database.

3.5 Automatic Collection of Relevant Metrics

Following the deployment of performance agent stacks, we needed to monitor
the relevant metrics. These metrics could potentially be from resource moni-
toring metrics published in CloudWatch, or they could be advanced metrics
exclusively available to them. Additionally, given that the monitoring is on-
line, there should be an alternative method that allows us to store the metrics
offline.

3.5.1 Monitoring Dashboard

The monitoring dashboard, as mentioned previously, is a Grafana dashboard.
By adding CloudWatch as its DataSource, we can query any metrics we want,
such as ECS cluster metrics, load balancer metrics, or some basic RDS met-
rics. However, some resources might have some advanced metrics under the
insights naming, such as the RDS performance insights metrics, which in-
clude some metrics that are not typically published in CloudWatch. Since we
needed to monitor these metrics at some point, we had to find a way to re-
trieve them within CloudWatch. Therefore, a few steps are taken:

1. As part of the deployment, a Lambda function within the CDK stack is
used to publish Performance Insights (PI) metrics to CloudWatch.

2. The Grafana base image is spun up on the container, and its public IP is
published for accessing its monitoring UI.

3. Upon successful deployment of the stack, Grafana is initialized by cre-
ating a Datasource, Dashboard, and Panels using a Python script.

4. Once the test is completed, another Python script is utilized to upload all
the monitored metrics to our S3 bucket, serving as a backup for future
reference.
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3.5.2 Automation

All parts of CDK deployments and building the Grafana dashboard, and their
subsequent teardown after the test, are automated using shell scripts. To exe-
cute the test, it is only necessary to set up a few variables within three config-
uration files for the database populator, Locust, and environment setup.



Chapter 4

Experimental Results

In this chapter, we present a few of the important tests that have been run
on four main endpoints in the Coaching API, namely /kpis/search in Section
4.1, /sessions/upcoming and /sessions/completed in Section 4.2 and finally
driver/safety-scores in Section 4.3.

4.1 Search KPIs

4.1.1 Tests with Autoscaling Enabled and Disabled

As of the first attempts, we started with some runs on the /kpis/search end-
point. Several attempts were made to troubleshoot possible issues regarding
the implementation at each step until we reached a stable point where we
could run tests with different scenarios to deep dive into understanding the
system. Having a base test to compare others with, we ran a test with 100
RPS. Upon first glance at the resultant plots, what caught our attention was
the increase in the load balancer target response time at the time of autoscal-
ing. This also results in a huge drop in the number of requests. This is the
result of having the cold start problem in the service, in which resources take
some time to process the new requests. This latency is called a cold start in
serverless computing and has negative effects, such as delayed responses, in-
consistent performance, increased resource consumption, and poor user ex-
perience [34]. Figure 4.1 demonstrates our findings on the first stable run on
/kpis/search with default scaling as in the production configuration with 100
RPS (6k RPM) for 10 minutes.

43
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(a) LB Target Response Time (b) LB Request Count

(c) Container Task Count (d) Cluster CPU Utilization

Figure 4.1: Performance metrics of test for /kpis/search with default scaling with
100 RPS (6k RPM) for 10 minutes

The cold start problem occurs right at the start point of the test, where new
requests are coming to the server for the first time. Later, from 10:50 we see a
spike in the response time resulting also in quite a huge drop in the number
of requests served by the load balancer. Looking at the plot 4.1c, the container
task count is increasing, which means that the service is scaling out, and those
are the new instances facing the same issue of cold start because they are serv-
ing new requests. This forced us to make another attempt to investigate how
the same run configuration would be with autoscaling disabled. Figure 4.2
is the same run with disabled scaling with 100 RPS (6k RPM) for 10 minutes.
As we can see, in the early minutes of the run we face the issue of cold start
for the starting two tasks of the service, as it happened with the previous test.
However, later during the run we see much more stability as the number of
tasks is always 2. In the 12:52-12:54 time period, there is only a slight increase
in response time and a decrease in requests, which is caused by high CPU
utilization. Therefore, it seems that the service is doing well under this load
even without autoscaling, which is a default property enabled for it on the
production environment.
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(a) LB Target Response Time (b) LB Request Count

(c) Container Task Count (d) Cluster CPU Utilization

Figure 4.2: Performance metrics of test for /kpis/search with disabled scaling with
100 RPS (6k RPM) for 10 minutes

With the previous two tests, in addition to investigating the autoscaling,
we noticed another possible issue worth investigating further. There is a large
spike in the ReadIOPS metric in the first minute of the test, and then it de-
creases to zero for the remainder, as can be seen in Figure 4.3.

Figure 4.3: DB Read IOPS with Default Shared Buffer Cache Size
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What we were initially expecting was to have I/O operations throughout the
run. This led us to get one step back and improve the body requests generate
by Locust files from being static and repeated to a more dynamic way in the
sense that the requests will always hit all the populated data in the database.
The test in Section 4.1.2 demonstrates a deeper investigation of the ReadIOPS
metric.

4.1.2 Test on RDS Shared Buffer Size and Caching

The reader instance should always have the I/O operations since /kpis/search
retrieves data from the database. However, with multiple different runs, we
always faced a plot like in Figure 4.3. To find some insight into what was hap-
pening, we focused on the RDS reader instance and examined all its metric
plots, since the information relating only to ReadIOPS was not helpful. What
we found was another metric, namely DB Cache hit from RDS performance
insights metrics that was clearly showing after the first two minutes of the
test, there is always cache hit in the reader instance.

Next, we explored the reader instance and its cache buffer size. It is an
instance of size R6G.LARGE and so by querying the Postgres on the machine,
we could find the amount of shared buffer available. PostgreSQL has the
concept of shared buffering, meaning that this buffer is shared among all the
queries that come to all the databases on the instance. As long as the query
results are in this cache, Postgres simply retrieves it and speeds up the query
execution, otherwise it accesses the data blocks from the disk that are encoun-
tered for disk I/O operations.

Table 4.1 shows information on the details of the instance. Originally,
the amount of shared buffer cache is about 10 GB, which is quite high and
makes this instance appropriate for memory-intensive workloads. Following
the first two minutes of the run, Locust’s generated requests are cached in the
shared buffer, and this is why disk I/O operations are not seen. In order to
verify this interpretation, with a new run, we decreased the amount of shared
buffer cache to 10 MB. Moreover, we knew that each small/medium account
inside the database consists of about 0.06 MB of data, and therefore we popu-
lated the database with around 3335 accounts having almost 200 MB of data
to verify what is the point at which the cache is not enough to contain all the
possible responses. Finally, Figure 4.4 shows the graph of DB Read IOPS with
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this run, which could be seen to be greatly affected by the reduction in cache
size. At this point, we were sure that getting back to the original configuration
and having Read IOPS as zero for a major part of our test is not an issue to be
investigated further and it is simply how the system works.

Parameter Value
Instance Type db.r6g.large
RAM 16 GB
Original Shared Buffer 10 GB
Reduced Shared Buffer 10 MB
Small/Medium Account Data Size 0.06 MB
Desired Accounts 3335 (approx. 200 MB)

Table 4.1: Database Instance Cache Parameters

Figure 4.4: DB Read IOPS with Reduced Shared Buffer Cache Size

4.2 Coaching Sessions

To run a performance test on the coaching sessions endpoints namely /ses-
sions/upcoming and /sessions/completed, we had to write new Locust test
scripts. Since both of these endpoints share an identical HTTP request format
as we have seen in Listing 3.2, both Locust files of these tests use the same
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setup to generate the body request. As part of these new tests, we worked
from the beginning of the procedure to generate the request bodies in a way
that did not allow for caching and could generate as many different requests
as possible. For these two endpoints, what matters the most is having a list
of all account IDs and all related drivers with sessions for each account. To
achieve this, the database populator component was modified to have this
ability to get these data after the population and put them inside a predefined
S3 bucket for later use. In this way, while writing the test script, simply by
using the AWS SDK in Python, the S3 bucket can be accessed to retrieve all
the accounts and their corresponding drivers having sessions.

Our first trial run showed that, based on a glance at the graphs, the LB
target response time and the database elapsed time were on average higher
than the same configuration for the /kpis/search endpoint. At peak time, the
elapsed time of the database query was around 36% of the total response time
of the load balancer. This initial observation concerned us with understanding
this finding further. So we started the investigation by doing some runs with
reduced load so that the system would be in much more stable mode, and so
the results would be reliable. The following are the mentioned runs:

RPS DB Elapsed Time (s) LB Response Time (s) % DB / LB
100 9 25 36%
50 8 18 44%
25 7.5 15 50%

Table 4.2: Initial runs on Coaching Sessions with high percentages of DB Elapsed
Time pver LB Response Time

Looking at the above Table 4.2, we see that as we get closer to a more stable
run in the system, the query percentage increases, which is what we expect
in general. In the coaching API, the two mentioned endpoints use a stored
procedure to retrieve the results, which according to the system engineers,
the query percentage is anticipated to be around 70-80% of the total response
time from the API. However, the above result still deviates significantly from
the expected percentage. As we explored further through the coaching API
logs, we realized that comparing the DB elapsed time with the LB target re-
sponse time is not a valid comparison for our purpose at this point. What
we should compare was the DB elapsed time with the total elapsed time from
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the coaching API itself. The load balancer is a system that we may not have
full awareness of how it operates, and it likely introduces some delays in the
backend. This investigation was interesting and we decided to continue by
examining the load balancer itself. To understand why this was happening,
we used a Python script to extract all elapsed times from the coaching API
logs provided by Serilog RequestLoggingMiddleware in order to compare them
with the load balancer target response times. From Table 4.3, we see that the
load balancer response times are much higher than coaching API logs, for in-
stance, in the third minute of the run, it is almost 4 times higher. Following
this, we started an investigation on load balancer logs. Generally, the load
balancer generates some logs inside an S3 bucket, and we had to find a way
to go through all those logs and possibly analyze them. So we used Amazon
Athena 1 to create a table based on the load balancer log template, and from
there we queried the logs according to our needs.

Minute API Elapsed Time (ms) LB Response Time (ms)
1 9.59 13
2 10.39 24
3 11.33 44
4 9.82 22

Table 4.3: A short run on Coaching Sessions comparing API Elapsed Time and LB
Response Time in different minutes

One potential reason for the delays could have been the use of Cross Zone
functionality of the load balancer. Disabling cross zone load balancing would
allow us to confine a potential service disruption only to a restricted number
of users being served by that availability zone. However, if cross zone load
balancing is enabled, all customers could occasionally be impacted when their
request happens to be sent to the faulty zone. Figure 4.5 [35] demonstrates the
effect of the cross zone feature, and the following Table 4.4 reports tests with
the cross zone enabled and disabled. We can see that with cross zone disabled
the delay is less, although that it differs very little from the enabled mode. The
run with cross zone enabled reports results from the same run as in Table 4.3
while the run with cross zone disabled is a run with the same configuration
only differing in the cross zone setting.

1https://aws.amazon.com/athena/

https://aws.amazon.com/athena/
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(a) Cross Zone Disabled (b) Cross Zone Enabled

Figure 4.5: Effect of Cross Zone Disabled Vs. Enabled

Cross Zone AVG (Request + Response Time) (ms) RPS
Disabled 13 25
Enabled 18 25

Table 4.4: Runs on Coaching Sessions with Cross Zone enabled and disabled

Looking at the data, particularly from Table 4.4, we observe that the com-
munication time between the load balancer and the target is minimal, at 18
ms when the cross zone is enabled. Taking into account the average time of
11.33 ms from the coaching API logs in the third minute of the run, as shown
in Table 4.3, and adding it to the 18 ms, we arrive at a total of 29.33 ms, which
is still quite far from the response time reported by the load balancer at that
moment being 44 ms. This means that there is still a delay in between these
communications, from the moment the load balancer sends the request to the
target up to the moment the target actually starts processing the request. For
the latter, we know that the target is using RequestLoggingMiddleware, in
which it samples time at the start of logging middleware, invokes the rest
of the pipeline, samples time at the end, and then calculates the difference.
Therefore, we are sure that all backend processing time from our target is in-
cluded in this calculation. What happens is that there is a web server behind
the target, and in this case it is a Kestrel web server in ASP.NET Core. Requests
go directly to the server after passing the load balancer. It may happen that
this server is sometimes the bottleneck and cannot handle a huge amount of
requests, so it keeps the requests inside a queue until it is able to respond.
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In the final run, we focused solely on comparing database elapsed time
and coaching API elapsed time. The following Table 4.5, includes the details
of this run. What we observe from this table is that at the first two minutes
of the run the percentage of query over the total elapsed time is in our ex-
pected range of being between 70-80%, and in the following minutes we see
a decrease in the percentage. This is the result of database caching that is
happening inside RDS. In the first two minutes of run we get around 3000
requests given that the RPS is 25; therefore it is highly likely that the majority
of possible different requests has been generated so far and once the database
responds to them, it is saved in the cache. For the following minutes, RDS
benefits from this and as a result we see a decrease in the query time. The
following Figure 4.6 illustrates the caching plot of RDS.

Time DB Elapsed Time (ms) API Elapsed Time (ms) % DB / API
09:16:00 11218 16006.48 70.08%
09:17:00 291 385.41 75.50%
09:18:00 98 226.43 43.28%
09:19:00 102 198.73 51.33%
09:20:00 92 154.27 59.65%

Table 4.5: Final run on Coaching Sessions comparing DB and API Elapsed Times in
different minutes

Figure 4.6: DB Elapsed Time Cache Hit
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4.3 Driver Safety Scores

The next focus after coaching sessions was on driver safety scores initiative,
which was developed after the release of the coaching. This includes conduct-
ing performance tests on the /driver/safety-scores endpoint. To achieve this,
new data were needed:

• KPI Type Penalties: This is a static table, populated as a part of the
database deployment using the CoachingDBFlyway CDK stack, as dis-
cussed in Section 3.3.2. Given a KPI type and a severity, each row con-
tains a penalty that could be applied for the safety score calculation.

• Distance KPIs Per Driver: The need was to have KPIs of type = 20 (dis-
tance) populated in the context of our database populator. For simplic-
ity, we have one distance KPI per driver per day, with a random value
between 50000 to 250000 (i.e. 50 to 250Km).

Then, at this point, only by writing the test script in Locust for this endpoint,
we started with some simple tests locally with Docker. After making sure
that there were no issues, we deployed the test in our ephemral environment.
Two scenarios were discussed to be tested that are described in the following
Sections 4.3.1 and 4.3.2.

4.3.1 Performance Test in Isolation

For this scenario, we run the test, calling the /driver/safety-scores endpoint
only. Figure 4.7 presents the results of running the test at 50 RPS for a dura-
tion of 10 minutes. The percentage of DB elapsed time over the API elapsed
time is notably high for most minutes, approximately 99 percent except for
the initial minute and subsequent peak moments. In the first minute, the DB
elapsed time is particularly high because there are no data in the DB cache at
that point, but it improves later as caching processes take effect. Additionally,
the service experiences a slow start due to the cold start issue, which sub-
sequently improves after the initial minutes. Then a peak in the API elapsed
time is observed at 9:30 attributed to increased CPU usage, as shown in Figure
4.8, although the database responded quite fast. A similar pattern is observed
at 9:32. The results and interpretation of the events in this test closely mimic
the last run of Coaching Sessions, indicating consistent and reasonable per-
formance. Therefore we proceeded with testing this endpoint together with
/kpis/search endpoint as described in the next Section.
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Figure 4.7: /driver/safety-scores in Isolation comparing DB and API Elapsed
Times in different minutes

Figure 4.8: Cluster CPU Utilization

4.3.2 Performance Tests in Combination

For this scenario, we duplicate the existing test configuration of /kpis/search
endpoint and expand it to also include a call to the /driver/safety-scores end-
point as part of the execution. The following Figure 4.9 shows the results
of running Test-1 with the same test configuration in Section 4.3.1 having 50
RPS, 25 per endpoint for 10 minutes. In Test-1, we can see that there is a higher
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elapsed time than in the isolated test since we are calling two endpoints and
thus doubling the load on the system. The result is a ratio of 39.03% and
28.92% of the DB elapsed time over the API elapsed time in the peak mo-
ments. Again, this is because the cluster’s CPU utilization is high at those
times and autoscaling still has not started.

Figure 4.9: /driver/safety-scores in combination with /kpis/search comparing DB
and API Elapsed Times in different minutes with 25 RPS per endpoint

Next test namely Test-2 was with a new configuration of 100 RPS, having
50 RPS per endpoint for 10 minutes. The reason for doing this test was to
go beyond the load we had been testing so far to possibly find some break-
ing points, which happened in this case. In this run, what we noticed was a
degraded performance due to some problems with the reader instance. So af-
ter the first two minutes of run with 50 RPS per endpoint using the R6G.Large
database instance, there were missing datapoints from the metrics reported by
the RDS performance insights. Moreover, the morning after the run, we faced
some recommendations from the AWS RDS classified as highly important re-
garding the recommendation to increase the capacity of the reader instance.
We further investigated the missing datapoints and also involved the sup-
port from AWS. The issue concluded with the fact that the database load and
CPU usage on the instance were really high during the performance test in-
terval. This is expected behavior of the agent. When the load on the instance
is really high, the agent goes into a back-off mode where the metric collec-
tion frequency is reduced. Hence, the database counters were collected every
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2 minutes instead of every minute and resulted in the visualization of miss-
ing data points on our Grafana plots, as shown, for example, in Figure 4.10,
which is one of the metrics reported by performance insights. Datapoints are
reported per two minutes after the first 3 minutes of run, meanwhile, the load
is increasing gradually in the system.

Figure 4.10: DB Queries

This led us to make some runs to improve the reader instance and investigate
further the effect of the changes. It involved two runs as described below:

1. Increasing the reader instance size: This investigation consisted of mod-
ifying the CDK code so that the sizes of the RDS reader and the writer
instance are R6G.XLARGE instead of the one in production, R6G.Large.
Effectively, this change reduces the maximum response time to about
57%, which is quite considerable. Moreover, with this modification,
there is no further issue regarding the missing datapoints as in the pre-
vious Test-2. The effect of this change is depicted in Figure 4.11.

2. Using two reader instances: This investigation rather consisted of using
two reader instances of the same size in production rather than using
one. This approach reduces the response time to about 37%, which is
quite low compared to the previous approach. By default, the hardware
specification of the R6G.XLARGE is double that of the R6G.LARGE, and
in reality we expect them to behave the same. However, these two runs
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show that having two different instances of the same size has more over-
head compared to having only one instance of larger size. The effect of
this change is depicted in Figure 4.12.

(a) R6G.Large Reader Instance (b) R6G.XLarge Reader Instance

Figure 4.11: LB Target Response Time performance metric of test for /driver/safety-
scores with /kpis/search with default and increased reader instance size

(a) 1 R6G.Large Reader Instance (b) 2 R6G.Large Reader Instances

Figure 4.12: LB Target Response Time performance metric of test for /driver/safety-
scores with /kpis/search with 1 and 2 reader instances of default size



Chapter 5

Conclusions

By using the AWS Cloud Development Kit (CDK), this thesis presents an
ephemeral environment built and deployed fully in code using either native
AWS services or third-party services to execute different types of performance
tests on an isolated .NET web service.

An infrastructure piece is selected in advance and a sequence of steps is
followed to build this ephemeral environment. Beginning with the lowest
layer that includes the database of the service, it requires to closely replicate
the service database in the production environment in terms of the resource
sizes, configurations, availability and the amount of data residing in it. For the
latter, a series of analysis is done on the historical data of the system. On top
of the database, the actual API is deployed, ensuring that it mirrors all con-
figurations from the real service in production. Subsequently, a performance
testing tool is evaluated and selected among the various options available.
By putting the desired testing scenarios into Python scripts, the tool helps to
generate high loads of data to be applied to a list of predefined endpoints for
testing purposes. Having selected the tool, a performance agent is deployed
to perform the test in a distributed manner through many ECS Fargate ser-
vices in a specific region. Different types of test can be performed including
load test, stress test, breakpoint test and scalability test. An online monitor-
ing dashboard, namely Grafana, is created during the test runtime to proac-
tively follow the test and observe the predefined metrics collected automati-
cally from AWS CloudWatch or other exclusive metrics of the used services.
Once the test is completed, the metrics are kept in an S3 bucket as a backup.
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The outlined procedure is entirely automated by code without any manual
steps involved, which greatly streamlines the testing process within a possi-
ble CI/CD pipeline and greatly reduces the execution time from weeks down
to less than an hour. The resources (i.e. the ephemeral environment) are de-
stroyed after the execution of test to mitigate extra AWS charges.

Future Developments

Several future directions can be considered for this work. First, the database
populator component can be improved in terms of population logic. Rather
than relying only on the median statistic of the analyzed data, it can go further
in incorporating additional statistics and generating a load which resembles
the real distribution of data even more.

Next, the Coordinated Omission problem can be investigated further. This
problem in performance testing occurs when a tool fails to record response
times accurately due to backlogged requests, leading to misleadingly low av-
erage response times. The difference is immense because the coordinated
omission problem causes the response time to reflect only the service time,
hiding the fact that things stalled [36]. This happens because delayed requests
are skipped and only those processed quickly are measured. As a result, the
tool underestimates the actual load handling capacity of the system.

Lastly, the selected infrastructure can potentially be extended to include
additional services around the current ones. This will expand the portion of
the platform under testing, allowing us to discover additional insights and
better resembling the real environment.



Appendix

A Performance Monitoring

This appendix consists of additional work conducted in the context of perfor-
mance. As a next step, after running the performance tests in isolation, we
moved into the production environment to start a task regarding the perfor-
mance monitoring of the whole system composed of two components, Coach-
ing API and Coaching BFF API implementing the Backend for Frontend de-
sign pattern. Our goal was to build a dashboard to quickly analyze perfor-
mance metrics. Our focus initially was on using CloudWatch service logs. By
querying these logs within Grafana, we built a dashboard exposing info such
as the following:

• 5 Most Failing Endpoints

• 5 Slowest Endpoints

• Overall Percentage of Failures Over the Total

• Distribution of Response Times (avg, 50th %ile, 85%ile, 99%ile)

Before we could build widgets for the above information, we first needed to
aggregate all endpoint paths with variables into a generic path string. Fol-
lowing that, using CloudWatch Logs Insights, we queried the info needed,
and using the appropriate panel in Grafana, we visualized them. This dash-
board could potentially be enriched later with info from other sources as well,
to have this it as a single place to monitor the platform. A snapshot of this
dashboard is depicted in Figure 1.
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Figure 1: Performance Monitoring Dashboard
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