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Abstract

In this work, we consider self-adjoint Schrödinger operators in one dimension,
with potentials which are either compactly supported or periodic. These op-
erators are perturbed by a compactly supported dissipative term of the form
iγ χ[0,R], where γ and R are non-negative real parameters. Of particular
interest is the limit of the (both Neumann and Dirichlet) spectrum as R
tends to in�nity. The Titchmarsh-Weyl M -functions are computed in all
these cases, in order to �nd isolated eigenvalues of the perturbed (non-self-
adjoint) operators. Some counter-intuitive results are obtained which show
that any limit points of the spectrum o� the lines {λ ∈ C : Im(λ) = γ} and
{λ ∈ C : Im(λ) = 0} are either non-existent (in the case of compactly sup-
ported background potentials) or else countable, with no �nite accumulation
(periodic case). According to some numerical experiments, it is also conjected
that this set is in general empty, similarly to the free case (null potential).
It is �nally shown that the limit points, if they exist, can be characterized
in terms of the eigenvalues of a certain PT -symmetric Schrödinger operator
on the whole real line.
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Sommario

In questo lavoro, consideriamo operatori di Schrödinger auto-aggiunti in una
dimensione, con potenziali a supporto compatto o periodici. Questi operato-
ri sono perturbati mediante un termine dissipativo ed a supporto compatto
della forma iγ χ[0,R], dove γ e R sono parametri reali non negativi. Parti-
colarmente interessante è il limite dello spettro (Neumann e Dirichlet) per
R che tende all'in�nito. Nei casi di studio, è stata calcolata la funzione di
Titchmarsh-Weyl (M -function), che permette di individuare gli autovalori
isolati dell'operatore perturbato (non auto-aggiunto). Sono stati ottenuti al-
cuni risultati contro-intuitivi che mostrano come eventuali punti limite dello
spettro al di fuori delle rette {λ ∈ C : Im(λ) = γ} e {λ ∈ C : Im(λ) = 0}
non esistono (nel caso di potenzali di fondo a supporto compatto) oppure
costituiscono un insieme al più numerabile, privo di punti di accumulazione
(caso periodico). Sulla base di alcuni esperimenti numerici e dell'analogia
con il caso libero, si congettura che tale insieme sia in generale vuoto. Si è
inoltre dimostrato che tali punti limite, se esistono, possono essere caratteriz-
zati in termini di un certo operatore di Schrödinger PT -simmetrico de�nito
sull'intero asse reale.
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Introduction

This work is devoted to the study of the spectrum of Schrödinger operators,
de�ned on the real semi-axis, of the form

HR,γ = − d2

dx2
+ q(x) + iγχ[0,R](x)

where γ and R are non-negative real numbers. These operators are non-self-
adjoint perturbations of self-adjoint (i.e. physical) Schrödinger operators

H = − d2

dx2
+ q(x) ;

in particular we consider background potentials q which are either compactly
supported or periodic functions, for which the background spectrum is real
and has a well-known structure.

However, the perturbation of H into HR,γ, de�ned by the dissipative mul-
tiplication operator iγχ[0,R](x), is compact relative to H, thus the essential
spectrum of the operators HR,γ remains unchanged for all γ and R; there-
fore, �nding the spectrum of HR,γ is only a matter of calculating the isolated
eigenvalues of the operator. To do this, a very useful tool is the Titchmarsh-
Weyl M -function associated with the operator HR,γ, which has the property
that its poles are precisely the eigenvalues of HR,γ.

Our interest in the study of this family of operators and specially in

lim
R→∞

σ(HR,γ)

(for �xed γ) comes from the context of spectral pollution, i.e. appearance of
spurious eigenvalues of the unperturbed operator H while trying to calculate
numerically its spectrum by using variational methods (based on discretiza-
tion) or by truncating the solution on �nite subintervals of the real semi-axis.
Several studies have been done, which present methods of di�erent natures
to detect and prevent spectral pollution (see [1, 5, 12, 19, 20]).
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In this thesis, we are following Marletta's approach in [21] and [22] (the
latter with Scheichl), where it is proposed changing the self-adjoint and pol-
luted problem by replacing the potential q with

q(x) + i s(x) ,

being s a compactly supported �cut-o�� function which takes constantly value
1 inside a ball of large radius (e.g. s(x) = χ[0,R](x)). In this way, genuine
eigenvalues are shifted up into the complex plane and can be easily identi�ed
from the spectrum of HR,γ, while spurious eigenvalues generally stay close to
the real axis.
Let us now give a brief description of the content of the thesis.

In the beginning of Chapter 1, the main problem of this work is presented
and formalized; in particular, invariance of the essential spectrum under rel-
atively compact perturbation is derived. Chapter 1 also provides the notions
and results which are necessary to the study of the problem and to the se-
quel of the thesis: Section 1.2 contains some preliminary information on
basic functional analysis, spectral theory and complex analysis; Section 1.3
is meant to be an introduction to abstract Titchmarsh-Weyl M -functions,
essentially based on the content of [7]; in Section 1.4 the classical limit-point,
limit-circle theory for Sturm-Liouville operators, also known as Weyl alterna-
tive, and the more recent Sims classi�cation are presented; Section 1.5 treats,
in more detail than this introduction, the problem of spectral pollution which
motivates our study of the family of operators HR,γ, and gives the �avour of
some of the strategies adopted to deal with this problem.

In Chapter 2, both in the free and in the compactly supported case
the Neumann-to-Dirichlet Titchmarsh-Weyl function associated with HR,γ

is computed. It is shown that the spectrum of HR,γ, qualitatively, has to lie
in the strip

{z ∈ C : Re(z) > −‖q‖∞, 0 < Im(z) < γ}

and that in both cases the following theorem holds true (see Theorems 2.1
and 2.2):

Theorem. Let q be a compactly supported function. For every compact set
K ⊂ {z ∈ C : 0 < Im(z) < γ}, there exists R̄ = R̄K such that for every
R ≥ R̄ both the Neumann and the Dirichlet spectra of the operator HR,γ are
such that

σ (HR,γ) ∩K = ∅ .

This is somewhat a counter-intuitive fact, because, by continuity of the
Titchmarsh-Weyl function with respect to the real parameter R, one would

xii



expect that for increasing R more and more spectral points move o� the
(real) spectrum of H into the complex upper half-plane and reach the spec-
trum of the limiting operator H + iγI on the line Im(γ), �lling up the strip
with eigenvalues of the perturbed operator HR,γ. But this does not happen
in these two cases.

The aim of the �nal Chapter 3 is to formulate an extension to the case
when q is a periodic function. In the beginning, the main results of classical
Floquet theory for periodic Schrödinger operators (see [14]) are presented: in
particular, Floquet theorem, which is an explicit description for a linear basis
of solutions of the spectral equation, and two theorems about the structure of
the spectrum (Theorems 3.3 and 3.4), become very useful in the calculation
of the Titchmarsh-Weyl function, which is the main issue of Section 3.2.
It is shown that there is at most a discrete set D, with no accumulation point,
in which there can possibly be accumulation points of eigenvalues of HnL,γ,
where n is a (large) natural number and L is a period of q. The theorem which
has been stated for null and compactly supported background potentials has
to be modi�ed as follows (Theorem 3.5):

Theorem. Let q be a periodic function with period L; let D be as above. For
every compact set

K ⊂ {z ∈ C : 0 < Im(z) < γ, z /∈ D} ,

there exists N̄ = N̄K such that for every n ≥ N̄ both the Neumann and the
Dirichlet spectra of the operator Hper

nL,γ are such that

σ
(
Hper
nL,γ

)
∩K = ∅ .

However, we believe in and formulate some equivalent conjectures, based on
numerical experiments contained in Section 3.3, which essentially say that
the set D is empty, like in the free case.
With the additional assumption that q(x) can be coherently extended as an
even function for negative x, the points of D, if there be any, can be char-
acterized in terms of the eigenvalues of a certain PT -symmetric Schrödinger
operator on the whole real line. This is the object of Theorem 3.6 in Section
3.4:

Theorem. Let q be a periodic even function with period L, de�ned on R.
The set D is empty if, and only if, the Schrödinger operator

Hper

Q̃γ
:= − d2

dx2
+ Q̃γ(x) ,
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where

Q̃γ(x) :=

{
q(x)− iγ

2
, if x > 0

q(x) + iγ
2

, if x < 0
,

has no eigenvalues.
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Chapter 1

Preliminaries

1.1 De�nition and formalization of the problem

In this work, we shall consider one-dimensional Schrödinger operators of the
form

H = − d2

dx2
+ q(x) (1.1)

on the Hilbert space L2([0,+∞[), having domain

D (H) =
{
u ∈ L2 ([0,+∞[) : −u′′ + q u ∈ L2([0,+∞[), u′(0) = 0

}
, (1.2)

that is, for any u ∈ D(H), x ∈ [0,+∞[, H acts as follows:

Hu(x) = −u′′(x) + q(x)u(x) .

In order to get self-adjointness of the operator H, the function q, which
is often referred to as potential because of its physical meaning, has to be
a real-valued measurable function, of class L1 on some interval [0, ε] and
locally integrable on ]0,+∞[. The choice of the domain made above in (1.2)
is actually the best one, in the sense that the most general hypothesis on q
are made (see [2] and [13] for a wide explanation). We will not prove the self-
adjointness of H; however, in Section 1.2 we will present a su�cient criterion
for self-adjointness of Schrödinger operators (Sears Theorem).

In the thesis, we shall study Schrödinger operators having potentials
which are either compactly supported or periodic; we will also assume for
the sake of simplicity that q ∈ L∞([0,+∞[, so that our choice of the do-
main is less general than the one made in (1.2): indeed, in this case, to get
self-adjointness it is enough that

D (H) =
{
u ∈ L2 ([0,+∞[) : −u′′ ∈ L2([0,+∞[), u′(0) = 0

}
=
{
u ∈ H2 ([0,+∞[) : u′(0) = 0

}
.

(1.3)

1



2 Chapter 1

This weaker assumption, however, does not change the meaning of the ideas
that will be developed in the sequel.

Self-adjoint operators always have real spectrum (Theorem 1.7); in par-
ticular the spectra of compactly supported and periodic potentials can be
thoroughly characterized (this will be done respectively in Chapters 2 and
3). For reasons that will be clear from Section 1.5, we will consider and study
dissipative perturbations of these potentials that are de�ned as follows:

HR,γ := H + iγχR(x) , (1.4)

having the same domain of H, where χR denotes the characteristic function
of the interval [0, R], γ and R are non-negative parameters. In other terms,
if u ∈ D(HR,γ) = D(H),

HR,γ u(x) = −u′′(x) + (q(x) + iγχR(x)) u(x) .

In this work, we are interested in the following question: for �xed positive γ,
how does the spectrum of HR,γ evolve as R tends to in�nity?

First of all, we know that the operator HR,γ converges to H+ iγI strongly,
that is

HR,γf
L2

−→ Hf + iγf

for every f ∈ D(H) = D(HR,γ). But it also comes straightforward that the
operatorial norm

‖HR,γ − H‖ = γ > 0

for every R. This class of operators is not self-adjoint, since it is not even
symmetric: indeed, for u, v ∈ D(HR,γ)

(HR,γu, v)L2 =

∫
[0,+∞[

[−u′′(x) + (q(x) + iγχR(x)) u(x)] v̄(x) dx

= −u′v̄|+∞0 +

∫
[0,+∞[

[u′v̄′ + (q + iγχR)uv̄] dx

=

∫
[0,+∞[

u(x) [v̄′′(x) + (q(x) + iγχR(x)) v̄(x)] dx

= (u,HR,−γv)L2 6= (u,HR,γv)L2 .

So, non-self-adjointness make us lose the information that the spectrum is
real. Also, we are not able to apply some of the well-known results of conver-
gence for spectrum of self-adjoint operators. To explain the last statement,
let us �rst introduce the following de�nition of resolvent convergence and
then we will formulate some theorems (all taken from [24]).
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De�nition 1.1. Let {Tn}n∈N and T be self-adjoint operators. Then Tn is said
to converge to A (as n→∞) in the norm resolvent sense if Rλ(Tn)→ Rλ(T )
in norm for all λ with Imλ 6= 0. Tn is said to converge to T in the strong
resolvent sense if Rλ(Tn)ϕ → Rλ(T )ϕ for all λ such that Imλ 6= 0 and
admissible ϕ.

The following theorem gives a characterization of norm resolvent and strong
resolvent convergence.

Theorem 1.1. Let Tn and T be self-adjoint operators.

• If Tn → T in the norm resolvent sense, then ‖Tn − T‖ → 0.

• If Tn → T in the strong resolvent sense, then Tnϕ→ Tϕ for all admis-
sible ϕ.

Theorem 1.2. Let µ ∈ C, Tn and T be self-adjoint operators and suppose
that Tn → T in the norm resolvent sense. If µ /∈ σ(T ), then µ /∈ σ(Tn) for n
su�ciently large and

‖Rµ(Tn)→ Rµ(T )‖ → 0 .

Theorem 1.3. Let Tn and T be self-adjoint operators and suppose that Tn →
T in the strong resolvent sense. If a, b ∈ R, a < b, and ]a, b[∩σ(Tn) = ∅ for
all n, then ]a, b[∩σ(T ) = ∅. In other terms, if λ ∈ σ(T ), then there exists a
sequence {λn}n, λn ∈ σ(Tn) such that λn → λ.

Theorem 1.3 tells us that that, under strong resolvent convergence, the spec-
trum of the limiting operator T cannot suddenly expand (spectral inclusion).
If Tn converges to T in norm resolvent sense, Theorem 1.2 says that the spec-
trum of T cannot suddenly contract, i.e. if λ ∈ σ(Tn) for all su�ciently large
n, then λ ∈ σ(T ) (spectral exactness). Unfortunately, it is clear that this is
not our case because both the operators considered

Tn = HRn,γ ,

where Rn is a sequence of real numbers tending to in�nity, and the limiting
operator

T = H + iγI

are not self-adjoint. It is important to note that the principle of noncontrac-
tion of the spectrum in the norm resolvent limit is still valid even when Tn and
T are not self-adjoint, while the principle of nonexpansion of the spectrum
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under strong resolvent convergence is not always true. In our case, in partic-
ular, the multiplication operator iγχR is a relatively compact perturbation,
therefore the essential spectra1 of HR,γ and H are such that

σess(HR,γ) = σess(H)

for all R. Also, in our cases of study (compactly supported and periodic
background potential), the essential spectrum of the operator H is non-trivial
and in the periodic case the spectrum is purely essential (band-gaps structure,
see Section 3.1).
In addition to this, we know, since iγ is a constant complex number, that
the spectrum of the limiting operator H + iγI is simply a �vertical shift� in
the complex plane of the unperturbed spectrum, i.e.

σ(H + iγI) = iγ + σ(H) .

So, in order to characterize the spectrum of HR,γ as R → ∞, it remains to
�nd, if they exist, isolated eigenvalues of the operator HR,γ, for large R, in
the strip 2 {z ∈ C : 0 ≤ Im(z) ≤ γ}. This shall be done in Chapters 2 and
3; a useful tool will be the Titchmarsh-Weyl M -function, which is presented
in Section 1.3.

The following Sections 1.2-1.4 are devoted to the justi�cation and study
of the notions and facts that we have used and that we use in the development
of the work.

1.2 Preliminary notions and results

1.2.1 Classical notions and results of spectral theory

In this section, the classical concepts of resolvent, spectrum and numerical
range for linear operators will be presented. Also some important results of
spectral theory, which are used in the sequel of the thesis, will be shown.
Good references can be [2], [11] and [24]. Before starting, let us introduce
some notation for this section.

Notation. The symbol H will always denote a Hilbert space, so we will not
de�ne it every time. Unless di�erently stated, the symbol T will denote a
linear operator T : D(T ) ⊂ H → H having dense domain D(T ) ⊂ H (which
sometimes will be implicit in the de�nition of T ).

1The de�nition of essential spectrum will be given in Section 1.2.2
2The spectrum of HR,γ is necessarily contained in the strip {z ∈ C : 0 ≤ Im(z) ≤ γ}.

Basically, this comes from estimates on the numerical range and will be proved in Section
2.1.3.
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Let us recall some de�nitions in the context of Hilbert spaces, keeping
well in mind that almost all of them can be given in more general frameworks
(Banach spaces):

De�nition 1.2. Given a linear operator T , its kernel, denoted by ker(T ) is
the set

ker(T ) := {ϕ ∈ D(T ) : Tϕ = 0H} ;

the set
Ran(T ) := {ψ ∈ H : ∃ϕ ∈ D(T ) s.t. Tϕ = ψ}

is called range of the operator T .

De�nition 1.3 (Bounded operator). T is said to be a bounded operator if
there exists C > 0 such that

‖Tϕ‖H ≤ C ‖ϕ‖H . (1.5)

for all ϕ ∈ D(T ). The family of all bounded operators on the Hilbert space
H is denoted by B(H).

De�nition 1.4 (Closed operator). T is said to be a closed operator if, for
any sequence {ϕn}n∈N ⊂ D(T ) such that ϕn → ϕ and Tϕn → ψ in H,
necessarily ϕ ∈ D(T ) and ψ = Tϕ. An operator is closable if it has a closed
extension, i.e. there exists T1 : D(T1) ⊂ H → H such that D(T ) ⊂ D(T1)
and T1|D(T ) = T . The minimal extension of T is called closure of T and

denoted by T .

De�nition 1.5 (Resolvent). Let T be a closed operator. The resolvent set
is the set

ρ(T ) :=
{
z ∈ C : (T − zI)−1 ∈ B(H)

}
.

The operator Rλ(T ) := (T − zI)−1 is called resolvent operator or simply
resolvent.

The resolvent set and the resolvent operator have the following properties:

Theorem 1.4. Let T be a closed operator in H; let z0 ∈ ρ(T ). Then:

• B
(
z0,

1

‖Rz0 (T )‖

)
⊂ ρ(T );

• ρ(T ) is an open set in C;

• the map R(·)(T ) : ρ(T )→ B(H), λ 7→ Rλ(T ) is analytic.
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Proof. The proof is based on the Neumann series expansion for the resolvent
operator:

Rz(T ) =
+∞∑
n=0

(z − z0)nRz0(T )n+1 ,

which holds for z ∈ C such that |z − z0| < 1

‖Rz0 (T )‖ . See [24] for a detailed

explanation.

Let us de�ne now the spectrum of a closed operator:

De�nition 1.6. The spectrum σ(T ) of T is the complementary of ρ(T ) in
the complex plane:

σ(T ) := C \ ρ(T ) .

It has the following properties:

Theorem 1.5. Let T be a closed operator in H. Then:

• its spectrum σ(T ) is closed in C;

• for all z ∈ ρ(T ) the estimate

‖Rz(T )‖ ≥ 1

dist (z, σ(T ))
(1.6)

holds.

There are several ways of expressing and classifying the spectrum of a
linear operator. The most widely used classi�cation divides the spectrum in
three parts:

(i) point spectrum, denoted by σpp(T ), which is the set of λ ∈ C such that
T − λI is not injective (the analogue of the eigenvalues of the �nite
dimensional theory);

(ii) continuous spectrum, denoted by σc(T ), which is the set of λ such that
T − λI is invertible, but the inverse is not continuous;

(iii) residual spectrum, denoted by σr(T ), which is what remains:

σr(T ) := σ(T ) \ (σpp(T ) ∪ σc(T )) .

In Section 1.2.2, we will introduce another characterization of the spectrum,
based on the theory of compact operators. Some other important properties
of the spectrum arise when T is also self-adjoint. Let us �rst recall the
de�nition.
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De�nition 1.7. The operator T ∗ : D(T ∗) ⊂ H → H de�ned by

(T ∗ϕ, ψ)H = (ϕ, Tψ)H

where

D(T ∗) = {ψ ∈ H : ∃C > 0 : |(Tϕ, ψ)| ≤ C‖ϕ‖ ∀ϕ ∈ D(T )}

is called adjoint of T . T is called symmetric if T ∗ is an extension of T , i.e.
for every ϕ, ψ ∈ D(T )

(Tϕ, ψ)H = (ϕ, Tψ)H .

The operator T is said to be self-adjoint if D(T ) = D(T ∗) and T = T ∗. T is
said to be essentially self-adjoint if T is closable and T = T ∗.

Remark 1.2.1. It can be shown that every self-adjoint operator is in par-
ticular closed. The converse statement is false.

There are several criteria for checking self-adjointness and essential self-
adjointness. For example:

Theorem 1.6. Let T be a symmetric operator acting on H. Then, T is
self-adjoint if, and only if, the range of the two operators T ± iI is precisely
the whole Hilbert space H.

From this it follows that:

Theorem 1.7. Let T be a symmetric operator acting on H. Then, T is
self-adjoint if, and only if, its spectrum is real.

Also, it is known that:

Theorem 1.8. Let T be a self-adjoint operator on H. Then, the residual
spectrum σr(T ) is empty.

As we are talking about Schrödinger operators, it is worth mentioning a
su�cient condition for (essential) self-adjointness.

Theorem 1.9 (Sears). Let us consider the Schrödinger operator H de�ned
by

Hu(x) = −u′′(x) + q(x)u(x)

on D(H) de�ned in (1.3), where q is a real-valued, measurable and locally
bounded function of x ∈ [0,+∞[. Let q also satisfy

q(x) ≥ −V (x), x ∈ [0,+∞[ ,
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where V is a positive even continuous function, which is non-decreasing and
satis�es ∫ +∞

0

1√
V (2x)

dx = +∞ .

Then H is essentially self-adjoint.

Proof. A detailed proof can be found in [4, Chap. 2].

A very useful tool to determine the spectrum of closed operators are Weyl
(or singular) sequences.

De�nition 1.8. Let T be a closed operator; let λ ∈ C. A Weyl (or singular)
sequence associated with λ is a sequence (un)n∈N ⊂ D(T ) such that

• ‖un‖H = 1 for every n;

• ‖(T − λI)un‖H −→ 0 as n→∞.

Proposition 1.1 (Weyl's criterion). Let λ ∈ C, T be a closed linear operator.

(i) If there exists a Weyl sequence associated with λ, then λ ∈ σ(T ).

(ii) If λ ∈ σ(T ) ∩ ρ(T ), then there exists a Weyl sequence associated to λ.

Proof of (i). Suppose that such a sequence exists. If λ were in the resolvent
set ρ(T ), then

1 = ‖un‖H = ‖R(λ, T )(T − λI)un‖H ≤ ‖R(λ, T )‖ · ‖(T − λI)un‖H −→ 0

as n→∞, which is a contradiction.

Proof of (ii). By hypothesis λ ∈ ρ(T ). Thus, there exists a sequence {λn} ⊂
ρ(T ) such that λn → λ. Since λ is also in σ(T ), dist (λn, σ(T )) ≤ |λn − λ|.
Then, the estimate (1.6)

‖Rλn(T )‖ ≥ 1

dist (λn, σ(T ))

shows that ‖Rλn(T )‖ → ∞. By de�nition of operatorial norm, there exists
a sequence ϕn ∈ H, ϕn 6= 0 such that

‖Rλn(T )ϕn‖H
‖ϕn‖H

≥ ‖Rλn(T )‖
2

−→∞ (1.7)
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as n→∞. Let ψn := Rλn(T )ϕn; we may suppose, without loss of generality,
that ‖ψn‖H = 1. So, (1.7) tells that ‖ϕn‖H → 0. By de�nition of ψn, we
have that (A− λn)ψn = ϕn; then

‖(A− λ)ψn‖H = ‖φn + (λn − λ)ψn‖H ≤ ‖ϕn‖H + |λn − λ|
n→∞−→ 0 ,

which proves that {ψn} is a Weyl sequence for λ.

Using Proposition 1.1, part (ii), a further result about the spectrum of self-
adjoint operators can be proven.

Proposition 1.2. Let α ∈ R, H be a Hilbert space, T : D(T ) ⊂ H −→ H a
self-adjoint linear operator such that for every ϕ ∈ D(T )

(Tϕ, ϕ)H ≥ α ‖ϕ‖2
H . (1.8)

Then the spectrum of T is contained in [α,+∞[.

Proof. We can suppose α = 0. Indeed, if α 6= 0, we can replace T by the
operator T − α.

First, the spectrum has to be real, because T is self-adjoint. It just
remains to prove that every λ < 0 belongs to the resolvent set ρ(T ), that is
the resolvent operator Rλ(T ) is de�ned and continuous for every λ.
Let λ < 0, ϕ ∈ D(T ). Since T is a symmetric operator, by (1.8), we have
that:

‖(T − λI)ϕ‖2
H = ‖Tϕ‖2

H + λ2 ‖ϕ‖2
H − λ(Tϕ, ϕ)H − λ(ϕ, Tϕ)H

= ‖Tϕ‖2
H + λ2 ‖ϕ‖2

H − 2λ(Tϕ, ϕ)H

≥ λ2 ‖ϕ‖2
H ,

that is

‖(T − λI)ϕ‖H ≥ |λ| ‖ϕ‖H
If (ϕn)n∈N ⊂ D(T ) is a sequence such that ‖ϕn‖H = 1 for every n, then

‖(T − λI)ϕn‖H ≥ |λ| > 0 ;

thus it is impossible that ‖(T − λI)ϕn‖H −→ 0. This means, according to
Proposition 1.1, part (ii), that λ ∈ ρ(T ).

Finally, we introduce the notion of numerical range, which will also be
important to determine approximately the spectrum of the class of operators
HR,γ.
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De�nition 1.9. Let T be a densely de�ned closed operator on H. The nu-
merical range of T is the set

Num(T ) := {(Tϕ, ϕ)H : ϕ ∈ D(T ) and ‖ϕ‖H = 1} .

The numerical range of an operator is closely related to its spectrum.

Theorem 1.10. Let T be a densely de�ned closed operator on a Hilbert space
H. Suppose that C \ Num(T ) is connected and contains at least one point
not in σ(A); then

σ(T ) ⊂ Num(T ) .

Moreover, for all z ∈ C, ϕ ∈ D(T )

‖(T − zI)ϕ‖H ≥ dist
(
z,Num(T )

)
‖ϕ‖H . (1.9)

1.2.2 Invariance of the essential spectrum under rela-

tively compact perturbations

There are really many de�nitions one can give about the essential spectrum
of a closed operator T (see De�nition 1.14). The easiest way to think about it
- in the self-adjoint case - is as the set of non-isolated points of the spectrum
of T (Theorem 1.15). However, our aim here is to show that the essential
spectrum of a self-adjoint operator is invariant under relatively compact per-
turbations. This is the case for example when T = H and the relatively
compact perturbation is given by the multiplication operator iγχR(x).

Following [15], we shall explain the concept of essential spectrum and
then state the announced result about invariance of the essential spectrum.
First, we de�ne what a compact operator is. Again, unless di�erently stated,
we will assume that H is a Hilbert space and T is a linear operator T de�ned
on H, having some dense domain D(T ). Note that the de�nition could be
given in the more general framework of Banach spaces.

De�nition 1.10 (Compact operator). A linear operator T is said to be com-
pact (or completely continuous) if, for any bounded subset B ∈ D(T ), the
closure T (B) of T (B) is compact. Equivalently, T is compact if, and only
if, for every bounded sequence {ϕn} ⊂ D(T ), {Tϕn} contains a convergent
subsequence.

We denote by K(H) the family of all compact operators on the Hilbert
space H (when possible, not declaring what is the domain); also, we set
nul(T ) := dim(ker(T )): nul(T ) is called the nullity of T .
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Theorem 1.11. Every compact operator is bounded; also if T1 and T2 are
bounded operators on H, then T1 T2 ∈ K(H) if at least one between T1 and
T2 is compact.

Theorem 1.12. Suppose that the identity map on H is a compact operator.
Then dim(H) <∞.

The spectrum of compact operators has peculiar properties.

Theorem 1.13. Let T ∈ K(H); let λ ∈ C \ {0}. Then:

(i) if Ran(T − λI) = H, then T − λI is injective and (T − λI)−1 ∈ B(H);

(ii) Ran(T − λI) is closed;

(iii) if T − λI is injective, then (T − λI)−1 ∈ B(H);

(iv) nul(T − λI) <∞.

In particular, Theorem 1.13 says that, if λ 6= 0, either λ belongs to the
resolvent set ρ(T ), in which case Ran(T − λI) = H, or λ is in the point
spectrum σpp(T ), in which case Ran(T − λI) is a proper closed subset of
H. Also, it is worth remarking that, if dim(H) = ∞, then 0 ∈ σ(T ) for
all T ∈ K(H). Indeed, suppose that 0 ∈ ρ(T ) for some compact T ; then
T−1 ∈ B(H) and so T T−1 = I is compact (Theorem 1.11). Then, Theorem
1.12 gives the desired contradiction.
Before introducing the various de�nitions of essential spectrum, let us give
the notion of Fredholm (bounded) operator.

De�nition 1.11. Let T be a bounded operator on H. T is said to be a
Fredholm operator if Ran(T ) is closed, nul(T ) <∞ and

def(T ) := codim(Ran(T )) <∞ ;

def(T ) is called the de�ciency of T . The index ind(T ) of T is de�ned by

ind(T ) := nul(T )− def(T ) .

Remark 1.2.2. It can be shown, using Theorem 1.13 and other properties of
compact operators (see [15, Theorem 1.15]), that if T is a compact operator,
then T − λI is a Fredholm map of index 0 (for λ 6= 0).

The de�nition can be coherently extended to closed operators.
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De�nition 1.12. Let T be a closed operator. T is called a semi-Fredholm
operator if Ran(T ) is closed and at least one of nul(T ) and def(T ) is �nite;
it is said to be Fredholm if Ran(T ) is closed and both nul(T ) and def(T ) are
�nite.

De�nition 1.13. The set of all semi-Fredholm maps T ∈ B(H) having
nul(T ) < ∞ (def(T ) < ∞) will be denoted by F+(H) (F−(H)). The set
of all (bounded) Fredholm operators will be denoted by F(H).

Remark 1.2.3. De�nition 1.13, however, works also for closed operators.
Indeed, if T is closed, then T ∈ B(X(T ),H), where X(T ) denotes the space
D(T ) equipped with the graph norm; ker(T ) and Ran(T ) are then unchanged
by this new view of the operator T .

The class of semi-Fredholm operators is invariant under compact perturba-
tions. This will be crucial in proving our result about invariance of the
spectrum.

Theorem 1.14. Let T ∈ F±(H) and S ∈ K(H). Then S + T ∈ F±(H) and
ind(S + T ) = ind(T ).

We are now ready to give some of the many de�nitions of essential spectrum
which can be found in the literature (we follow the de�nition contained in
[15]):

De�nition 1.14 (Essential spectrum). Let T be a closed, densely de�ned
linear operator on H. Let

Φ±(T ) = {λ ∈ C : T − λI ∈ F±(H)} .

The various essential spectra 3 are de�ned to be the sets

σess, j(T ) := C \∆j(T ) ,

j = 1, . . . , 5, where

∆1(T ) = Φ+(T ) ∪ Φ−(T ) ,

∆2(T ) = Φ+(T ) ,

∆3(T ) = {λ ∈ C : T − λI ∈ F(H)} = Φ+(T ) ∩ Φ−(T ) ,

∆4(T ) = {λ ∈ C : λ ∈ ∆3(T ) and ind(T − λI) = 0} ,
∆5(T ) = union of all components of ∆1(T) which intersect ρ(T ) .

3A di�erent notion of essential spectrum is given in [13]: the essential spectrum of T
is the set of complex numbers λ such that the range of T − λI is not closed in H. Reed
and Simon, in [24], give yet another de�nition for self-adjoint operators: let PΩ(T ) denote
the spectral projection of a self-adjoint operator T on a Borel set of R, Ω; λ belongs to
the essential spectrum of T if the closure RanP]λ−ε,λ+ε[(T ) is in�nite dimensional for all
ε > 0.
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The sets σd, j := σ(T ) \ σess, j(T ), j = 1, . . . , 5, are called discrete spectra
for a reason that will be clear later (Theorem 1.15). The essential spectral
radius is de�ned by

σess, j(T ) := sup{|λ| : λ ∈ σess, j(T )}

for all j = 1, . . . , 5.

Maybe, the most common de�nition of essential spectrum is σess, 3, i.e. the
set of λ such that T − λI is not a Fredholm operator. Also, for some of the
de�nitions, the essential spectrum can be characterized by Weyl sequences;
for example

Proposition 1.3. Let T be a closed operator. Then λ ∈ σess, 2(T ) if, and
only if, there exists a Weyl sequence for T corresponding to λ.

However, when T is self-adjoint, all the de�nitions given above are equivalent4

and, in that case, the discrete spectrum can be characterized as follows.

Theorem 1.15. Let T be a self-adjoint operator de�ned on H. Then λ ∈
σd(T ) if, and only if, it is an isolated eigenvalue of �nite multiplicity.

Now, let us introduce the notion of relative compactness.

De�nition 1.15. Let S, T be densely de�ned, closed operators on H. The
operator S is said to be T -compact (or compact relative to T ) if

• D(T ) ⊂ D(S), and

• for every sequence {ϕn} ⊂ D(T ) such that {ϕn} is bounded in the T -
graph norm, {Sϕn} contains a convergent subsequence in H.

Equivalently, S is T -compact if, and only if, S ∈ K(X(T ),H).

Remark 1.2.4. The multiplication operator de�ned by

S = iγχR(x)

is H-compact. Indeed, let {un} ⊂ D(H) be a a bounded sequence in the
graph norm ‖ · ‖H, i.e. there exists C > 0 such that

‖un‖H = ‖un‖2 + ‖Hun‖2 < C .

Then, since L2 is a re�exive space, there is a subsequence {unk} which con-
verges weakly in X(T ) to some u, in particular it converges weakly in H. It
clearly follows that, in particular, S un = iγ un −→ S u = iγ u strongly in
L2. Also, D(S) = L2([0,+∞[) ⊃ D(H).

4See [15, IX.Theorem 1.6]
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Finally, we are able to show the announced stability theorem under relatively
compact perturbations.

Theorem 1.16. Let S, T be densely de�ned, closed operators on H; let S be
T -compact. Then

σess, j(T ) = σess, j(T + S)

for j = 1, . . . , 4. If T is self-adjoint

σess(T ) = σess(T + S)

This �nally explains why we have said that the essential spectrum of the
perturbed operators HR,γ is the same of H.

1.2.3 Some theorems of complex analysis

We will cite here only few well-known results of (one-variable) complex anal-
ysis, since we will use them in the following chapters.

Theorem 1.17 (Montel). Let {fn}n∈N, f be analytic functions of one vari-
able, having as common domain the open set Ω ⊂ C. Suppose fn −→ f
pointwise on a compact set K and suppose that the family {fn} is uniformly
bounded on an open set containing K. Then fn −→ f uniformly on K.

Theorem 1.18 (Identity principle). Let Ω be a connected open set in C; let
f : Ω→ C be an analytic function. For c ∈ Ω, the following are equivalent:

• c is an accumulation point of the zero-set of f , Z(f);

• c is contained in the topological interior of Z(f);

• f (n)(c) = 0 for all n ∈ N, n ≥ 0.

Moreover, if Ω is also connected, f is identically 0 on Ω if, and only if, Z(f)
has at least one accumulation point.

Theorem 1.19 (Argument principle). Let f be analytic on an open con-
nected set Ω except for a �nite set P of polar singularities, and with a �nite
set of zeros Z. If Γ is a loop in Ω \ (P ∪ Z), nullhomologus in Ω, then

1

2πi

∫
Γ

f ′(z)

f(z)
dz =

∑
c∈Z∪P

indΓ(c) mult(f, c) ,

where indΓ(c) is the winding number of Γ around c and mult(f, c) denotes
both the order of c as a pole of f and the multiplicity of c as a zero for f .
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Theorem 1.20 (Schwarz re�ection principle). If f is an analytic function
of one complex variable, de�ned on the upper half-plane and real-valued on
the real axis, then

f(z̄) = f(z)

de�nes an analytic extension of f on the whole C.

1.2.4 Molli�ers and functions of �cap-shaped� type

In this section we will introduce the concepts of molli�er and �cap-shaped�
function, which we will use in Section 2.1.1 to construct a Weyl singular
sequence associated with the continuous spectrum of the free (unperturbed)
Schrödinger operator. The discussion here is based on [9].

De�nition 1.16 (Kernel of molli�cation). A function ω : Rn → R is said to
be a kernel of molli�cation if

ω ∈ C∞0 (Rn), suppω ⊂ B(0, 1) and

∫
Rn
ω dx = 1 .

For δ > 0 and x ∈ Rn we set ωδ(x) := 1
δn
ω
(
x
δn

)
.

Remark 1.2.5. Clearly, by de�nition, ωδ ∈ C∞0 (Rn), suppωδ ⊂ B(0, δ) and∫
Rn ωδ dx = 1.

Example 1.2.1. Kernels of molli�cation do exist. For example, the function

ω(x) :=

{
c · e

1
|x|2−1 , if |x| < 1
0 , if |x| ≥ 1

,

where

c =

(∫
B(0,1)

e
1

|x|2−1 dx

)−1

,

is a kernel of molli�cation.

De�nition 1.17 (Molli�er with step δ). Let Ω ⊂ Rn be a measurable set and
δ > 0. For a function f de�ned on Ω and such that, for each bounded set B,
f ∈ L1(Ω ∩B), the molli�er with step δ is the operator Aδ de�ned by

(Aδf) (x) =
1

δn

∫
Ω

ω

(
x− y
δ

)
f(y) dy

for almost all x in Rn
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Remark 1.2.6. Note that5

(Aδf) (x) =
1

δn

∫
Ω

ω

(
x− y
δ

)
f ◦(y) dy =

∫
Rn
ωδ(x−y)f ◦(y) dy = (ωδ ∗ f ◦) (x) .

Moreover, it can be shown that for each admissible f , ∀ α ∈ Nn

DαAδf = (Dαωδ) ∗ f ◦ ,

thus Aδf ∈ C∞ (Rn), and

suppAδf ⊂ (supp f)δ ,

where for a set G, Gδ :=
⋃
x∈GB(x, δ) is the so-called δ-neighbourhood of G.

De�nition 1.18 (�Cap-shaped� type function). A function η is said to be of
�cap-shaped� type if

• η ∈ C∞(Rn);

• supp η ⊂ Ωδ;

• 0 ≤ η ≤ 1 and η ≡ 1 on Ω.

�Cap-shaped� type functions can be constructed with the help of non-negative
kernels of molli�cation (they exist, see Example 1.2.1) for example by

η = A δ
4
χ

Ω
δ
2
.

Indeed, η is of the class C∞(Rn), 0 ≤ η ≤ 1 (because we have chosen a
non-negative kernel), η ≡ 1 on Ω and

supp η ⊂
(

suppχ
Ω
δ
2

) δ
4

=
(

Ω
δ
2

) δ
4 ⊂ Ωδ .

1.3 Boundary triplets and Titchmarsh-WeylM-

functions: basic concepts and notation

The content of this section is essentially founded on the article [7]. We would
like to introduce here a very useful tool, the Titchmarsh-Weyl function, which
will allow us to �nd the isolated eigenvalues of the family of perturbed non-
selfadjoint Schrödinger operators HR,γ, which is the object of this thesis. We
will cite here some results and the basic ideas developed in the article.
Let us start with a de�nition, which is crucial in our context as we are talking
about non self-adjoint operators:

5Here f◦ denotes the extension of f by zero outside Ω.
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De�nition 1.19. Let A and Ã be densely de�ned, closed operators on a
Hilbert space H. The operators A and Ã are said to be an adjoint pair if
A∗ ⊇ Ã and Ã∗ ⊇ A.

Throughout, we will assume that:

(i) the operators A and Ã are an adjoint pair;

(ii) the linear space D(Ã∗) is equipped with the graph norm, so that, since
Ã∗ is closed, it is a Hilbert space.

Proposition 1.4. For each adjoint pair of closed densely de�ned operators A
and Ã on H, there exist �boundary spaces� K1, K2 and �boundary operators�

Γ1 : D(Ã∗) −→ K1, Γ2 : D(Ã∗) −→ K2,

Γ̃1 : D(A∗) −→ K2, Γ̃2 : D(A∗) −→ K1

such that for u ∈ D(Ã∗) and v ∈ D(A∗) there is an abstract Green formula

(Ã∗u, v)H − (u,A∗v)H = (Γ1u, Γ̃2v)K1 − (Γ2u, Γ̃1v)K2 . (1.10)

The boundary operators Γ1, Γ2, Γ̃1, Γ̃2 are bounded with respect to the graph
norm and surjective. Moreover, we have

D(A) = D(Ã∗) ∩ ker Γ1 ∩ ker Γ2 and D(Ã) = D(A∗) ∩ ker Γ̃1 ∩ ker Γ̃2 .
(1.11)

The collection
{
K1 ⊕K2, (Γ1,Γ2), (Γ̃1, Γ̃2)

}
is called a boundary triplet for

the adjoint pair A, Ã.

Proof. See [7] for detailed references.

We will consider the following extensions of A and Ã.

De�nition 1.20. Let B ∈ L(K2,K1), B̃ ∈ L(K1,K2) and de�ne

AB := Ã∗
∣∣∣
ker(Γ1−BΓ2)

and ÃB̃ := A∗|ker(Γ̃1−B̃Γ̃2) .

Remark 1.3.1. AB is actually an extension of A because

D(AB) = D(Ã∗) ∩ ker(Γ1 −BΓ2)

and, according to (1.11),

D(A) = D(Ã∗) ∩ ker Γ1 ∩ ker Γ2 ⊂ D(Ã∗) ∩ ker(Γ1 −BΓ2) .
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De�nition 1.21. Let us assume that ρ(AB) 6= ∅. For λ ∈ ρ(AB), the
(Titchmarsh-Weyl) M -function is the mapping

MB(λ) : Ran(Γ1 −BΓ2) −→ K2

de�ned by

MB(λ)(Γ1 −BΓ2)u = Γ2u ∀u ∈ ker(Ã∗ − λ) ;

for λ ∈ ρ(ÃB̃), we de�ne

M̃B̃(λ) : Ran(Γ̃1−B̃Γ̃2) −→ K1, M̃B̃(λ)(Γ̃1−B̃Γ̃2)v = Γ̃2v ∀v ∈ ker(A∗−λ)

Remark 1.3.2. Since the function MB(λ) is a linear mapping, when this
is possible without ambiguity, we will refer to the term MB(λ) also as the
Titchmarsh-Weyl coe�cient, keeping in mind that the coe�cient is still a
function of λ.

Reading De�nition 1.21 with some imagination, we can view MB(λ) as the
function which maps a �generalized� Robin boundary condition (Γ1−BΓ2)u
into a �generalized� Neumann or Dirichlet condition Γ2u. We will see this
more clearly in the following examples.

Example 1.3.1. Let the Hilbert space beH = L2([0, 1]); let V be a complex-
valued locally integrable function de�ned on [0, 1]. Consider the Schrödinger
operator A de�ned by Au := −u′′ + V u with domain

D(A) =
{
u ∈ H2([0, 1]) : u(0) = 0 = u(1), u′(0) = 0 = u′(1)

}
;

let also Ã be the operator

Ãu = −u′′ + V̄ u

with same domain D(Ã) = D(A). With this setting we have that

A∗u = −u′′ + V̄ u and Ã∗u = −u′′ + V u ,

with respective domains D(A∗) = D(Ã∗) = H2([0, 1]). In this way A and Ã
form an adjoint pair. We do not need Proposition 1.4 to prove the existence
of an abstract Green formula like (1.10), because we can �nd it explicitly.
Indeed, if u ∈ D(Ã∗) and v ∈ D(A∗)

(Ã∗u, v)H − (u,A∗v)H =

∫ 1

0

[
(−u′′ + V u) v̄ − u (−v′′ − V̄ v)

]
dx

= [−u′(x)v̄(x) + u(x)v̄′]
x=1
x=0

=
(
−u′(1)v(1) + u′(0)v(0)

)
−
(
−u(1)v′(1) + u(0)v′(0)

)
= (Γ1u,Γ2v)C2 − (Γ2u,Γ1v)C2 ,
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choosing

Γ1 = Γ̃1 : U 7→
(
−U ′(1)
+U ′(0)

)
, Γ2 = Γ̃2 : U 7→

(
U(1)
U(0)

)
as �boundary operators� in the �boundary space� C2. In this case, B ∈ L(C2)
can be represented as a two-by-two matrix.

Therefore, if u is a solution in L2([0, 1] of the spectral equation

−u′′ + V u = λu

satisfying the boundary condition(s)

(Γ1 −BΓ2)u =

(
−u′(1)
+u′(0)

)
−B

(
u(1)
u(0)

)
=

(
f1

f2

)
∈ C2 ,

the Titchmarsh-Weyl function MB(λ) is the mapping

(Γ1 −BΓ2)u ∈ C2 7→ Γ2u ∈ C2 ,

which, as announced, looks like a �generalized� Robin-to-Dirichlet mapping
on C2 (Neumann-to-Dirichlet if B is the null matrix).

Example 1.3.2. In this second model, let H = L2([0, b]), with b > 0. Let A
and Ã as above but with domains

D(A) = D(Ã) =
{
u ∈ H2([0, b]) : u(0) = 0 = u(b), u′(0) = 0

}
;

the respective adjoint operators have here domains

D(A∗) = D(Ã∗) =
{
u ∈ H2([0, b]) : u(b) = 0

}
.

We have that

(Ã∗u, v)H − (u,A∗v)H =

∫ b

0

[
(−u′′ + V u) v̄ − u (−v′′ − V v)

]
dx

= [−u′(x)v̄(x) + u(x)v̄′]
x=b
x=0

=
(
u′(0)v(0)− u(0)v′(0)

)
= (Γ1u,Γ2v)C − (Γ2u,Γ1v)C ,

where
Γ1 = Γ̃1 : U 7→ U ′(0), Γ2 = Γ̃2 : U 7→ U(0) .

Here B is simply a complex number. Thus, the Titchmarsh-Weyl is precisely
a Robin-to-Dirichlet map.
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Remark 1.3.3. For our problem on L2([0,+∞[) we will use yet another
model; it will be presented in full details through Section 2.1.

In order to prove the results which follow, we require an abstract unique
continuation hypothesis, which is satis�ed under fairly general conditions
(again, see [7] for references), for example for Schrödinger operators.

De�nition 1.22. We say that the operator Ã∗ − λ satis�es the unique con-
tinuation hypothesis if

ker(Ã∗ − λ) ∩ ker Γ1 ∩ ker Γ2 = {0} ;

similarly A∗ − λ satis�es the unique continuation hypothesis if

ker(A∗ − λ) ∩ ker Γ̃1 ∩ ker Γ̃2 = {0} .

Lemma 1.1. Assume that the unique continuation hypothesis holds for A∗−
λ̄. Then, the range of Ã∗ is dense in H.

Theorem 1.21. Let µ ∈ C be an isolated eigenvalue of a �nite algebraic
multiplicity of the operator AB. Assume that the unique continuation hy-
pothesis holds for Ã∗ − µ and A∗ − µ̄. Then µ is a pole of �nite multiplicity
of MB(·) and the order of the pole of R(·, AB) at µ is the same as the order
of the pole of MB(·) at µ.

Under slightly stronger hypotheses, it can be shown that the isolated eigen-
values of AB correspond exactly to the isolated poles of the M -function.

Theorem 1.22. Let µ ∈ C. Assume that ρ(AB) 6= ∅ and that there exist
operators B, C ∈ L(K2,K1) such that µ ∈ ρ(AC) ∩ ρ(AB−C). Then, µ is an
isolated eigenvalue of �nite algebraic multiplicity of the operator AB if and
only if µ is a pole of �nite multiplicity of MB(·); moreover, the order of the
pole of R(·, AB) at µ is the same as the order of the pole of MB(·) at µ.

We will not prove these two theorems, as the proof requires a lot of notation
and intermediate results. For details, again, see the article [7]. However,
a very basic proof can be found for the following proposition, which gives
a useful relation between M -functions associated with di�erent boundary
conditions.

Proposition 1.5. Let B, C ∈ L(K2,K1). For λ ∈ ρ(AB) ∩ ρ(AB+C), we
have that

MB+C(λ)(I− CMB(λ)) = MB(λ) .
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Proof. For u ∈ ker(Ã∗ − λ)

MB+C(λ)(I− CMB(λ))(Γ1 −BΓ2)u = MB+C(λ) [(Γ1 −BΓ2)u− C(Γ2u)]

= MB+C(λ) [(Γ1 − (B + C)Γ2)u]

= Γ2u .

Corollary 1.1. Let B ∈ L(K2,K1), λ ∈ ρ(A0) ∩ ρ(AB). Then

MB(λ)(I−BM0(λ)) = M0(λ) .

Remark 1.3.4. When (Γ1−BΓ2)u = 0 represents a (complex) Robin bound-
ary condition, Γ1u = 0 a Neumann condition and consequently (Γ2)u = 0 a
Dirichlet condition, like in Example 1.3.2, the poles of R(·, AB), that is the
poles of the �Robin-to-Dirichlet� M -function de�ned in De�nition 1.21, are
usually referred to as Robin eigenvalues ; if B = 0, which will be our case, we
will call them Neumann eigenvalues.
Moreover, it can be easily seen, using the identity in Proposition 1.5 and
adapting the statement of Theorem 1.22, that the Dirichlet eigenvalues are
precisely the zeros of the M -function.

1.4 Limit-point case, limit-circle case and Sims

classi�cation for Sturm-Liouville operators

In this section, we will present the classical Weyl limit-point, limit-circle
classi�cation for Sturm-Liouville and its most famous extension, the Sims
classi�cation. In particular, the concept of Titchmarsh-Weyl function intro-
duced in Section 1.3 arises from both these theories.

1.4.1 Limit-point and limit-circle alternative

Let L be the self-adjoint di�erential operator de�ned on a real interval [a, b[,
with −∞ ≤ a < b ≤ +∞, by

Lu := − (−pu′)′ + q(x)u(x) , (1.12)

where it is assumed that p, p′,q are real and continuous functions6, p > 0.
If [x1, x2] is an interval over which L is de�ned and f and g are any two

6To get self-adjointness, it su�ces for q to be integrable over every �nite subinterval of
[a, b] and p absolutely continuous.



22 Chapter 1

functions such that Lf , Lg make sense, then the following Green's formula
holds true: ∫ x2

x1

(
ḡ Lf − f Lg

)
dx = [f g](x2)− [f g](x1) , (1.13)

where

[f g](x) := p(x) (f(x)ḡ′(x)− f ′(x)ḡ(x))

is the so-called modi�ed Wronskian.

Remark 1.4.1. This family of operators is usually referred to as the family
of Sturm-Lioville operators. Clearly, it is a generalization of the class of
(physical) Schrödinger operators, since for a Schrödinger operator p ≡ 1.

In what follows, we shall deal only with the interval [0,+∞[. The case
[R,+∞[ is very similar, while the case ]−∞,+∞[ requires more work. Let
us start with the Weyl limit-point, limit-circle classi�cation.

De�nition 1.23 (Limit-point and Limit-circle cases). If, for a particular
complex number λ0, every solution u of the di�erential equation (often called
spectral equation)

Lu = λ0u (1.14)

is in L2([0,+∞[), then L is said to be of the limit-circle type at in�nity;
otherwise L is said to be of limit-point type at in�nity.

Remark 1.4.2. The de�nition of limit-circle depends only on the operator
L and not on the particular λ0 chosen. Indeed, it can be shown that, if every
solution of Lu = λ0u is of class L2([0,+∞[) for λ0, then, for any complex
number λ, every solution of Hu = λu is in L2([R,+∞[).

Clearly, according to De�nition 1.23, in the limit-point case at most one
non-trivial solution of the spectral equation Lu = λu is of class L2([0,+∞[).
Actually, there is exactly one solution (up to constant multiples) of Lu = λu
which is in L2([0,+∞[) for any λ ∈ C such that Im(λ) 6= 0, as shown by the
following:

Theorem 1.23. Let λ ∈ C such that Im(λ) 6= 0; let φλ, ψλ be two linearly
independent solutions of (1.14) satisfying(

φλ(0)
p(0)φ′λ(0)

)
=

(
sinα
− cosα

)
,

(
ψλ(0)

p(0)ψ′λ(0)

)
=

(
cosα
sinα

)
,
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where 0 ≤ α < π; let m ∈ C, θλ := φλ + mψλ; let b be a real number,
0 < b < +∞. Then θλ satis�es the real boundary condition

cos β u(b) + sin β u′(b) = 0 (1.15)

for some 0 ≤ β < π, if and only if m lies on a circle Cb in the complex plane
whose equation is

[θλ θλ] (b) = 0 .

As b −→ +∞, either Cb tends to m∞, a limit point, or Cb −→ C∞, a limit
circle. In the �rst case exactly one non-trivial solution is in L2([0,+∞[); all
solutions of Lu = λu are in L2([0,+∞[) in the latter case.
Moreover, in the limit-circle case, a point is on the limit circle C∞(λ) if, and
only if,

lim
b→+∞

[θλ θλ] (b) = 0

Proof. According to the theory of complex linear systems, φλ(x) = φ(x, λ),
ψλ, φ

′
λ and ψλ and are analytic functions of the complex spectral parame-

ter λ and continuous in both the variables (x, λ). Moreover, the (classical)
Wronksian of the two solutions [φλ ψλ](x) = 1 for all x ∈ [0,+∞[.

Every other solution θλ of Lu = λu is, up to constant multiples, of the
form

θλ = φλ +mψλ

for somem depending on λ. In order to satisfy the boundary condition (1.15)
at b, clearly m must be

m = −cot β φλ(b) + p(b)φ′λ(b)

cot βψλ(b) + p(b)ψ′λ(b)
(1.16)

Since φλ, ψλ, φ
′
λ and ψλ are analytic and real-valued when λ is real, it follows

that m = m(λ, b, β) is a meromorphic function of the variable λ and real for
real λ. Putting z = cot β and holding (λ, b) �xed, (1.16) can be written as

m = −Az +B

C z +D

with A, B, C, D �xed while z varies over the real line as 0 ≤ β < π. From
well-known properties of Möbius transformations, the real axis of the z-plane
is mapped into a circle Cb in the m-plane. Thus, θλ satis�es (1.15) if, and
only if, m lies on Cb. Moreover, the circle can be explicitly found. Indeed,
clearly

z = −B +Dm

A+ C m
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and the condition of reality of z, Im(z) = 0, becomes

(Ā+ C̄ m̄)(B +Dm)− (A+ C m)(B̄ + D̄m̄) = 0 ,

that is

(C̄D−CD̄)|m|2 + (ĀD− B̄C)m− (AD̄−BC̄)m̄+ (ĀB−AB̄) = 0 . (1.17)

This is an equation for a circle Cb of center

m̃b =
AD̄ −BC̄
C̄D − CD̄

and radius

rb =
|AD −BC|
|C̄D − CD̄|

.

By de�nition of A, B, C, D, it is readily seen that (1.17) can be written as

[θλ θλ] (b) = 0 . (1.18)

and that

AD̄ −BC̄ = [φλ ψλ] (b)

C̄D − CD̄ = − [ψλ ψλ] (b)

AD −BC =
[
φλ ψ̄λ

]
(b) = 1 .

So

m̃b = − [φλ ψλ] (b)

[ψλ ψλ] (b)
and rb =

1

[ψλ ψλ] (b)
.

The interior of Cb in the m-plane is given by

[θλ θλ] (b)

[ψλ ψλ] (b)
< 0 . (1.19)

By Green's formula (1.13),

[θλ θλ] (b) = 2iIm(λ)

∫ b

0

|θλ|2 dx+ [θλ θλ] (0)

and

[ψλ ψλ] (b) = 2iIm(λ)

∫ b

0

|ψλ|2 dx .
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Since [θλ θλ] (0) = −2iIm(λ), the equation for the interior of Cb (1.19) be-
comes for Im(λ) > 0 ∫ b

0

|θλ|2 dx <
Im(m)

Im(λ)
;

the radius rb is given for λ in the upper half-plane by

rb =

(
2iIm(λ)

∫ b

0

|ψλ|2 dx

)−1

. (1.20)

Now, let 0 < a < b <∞. Then if m is inside or on Cb∫ a

0

|θλ|2 dx <

∫ b

0

|θλ|2 dx ≤ Im(m)

Im(λ)
,

which means that Cb is contained in the interior of Ca. Therefore, if Im(λ),
as b→∞ the circles Cb have to converge either to a circle C∞ or to a point
m∞. If the Cb converges to a circle, then its radius r∞ is positive, thus by
(1.20) ψλ ∈ L2([0,+∞[). If m̂∞ is any point of C∞, then m∞ is inside any
Cb, hence ∫ b

0

|φλ + m̂∞ψλ|2 dx <
Im(m̂∞)

Im(λ)
;

letting b → ∞ one sees that φλ + m̂∞ψλ, that is any solution except ψλ is
in L2([0,+∞[). The same argument holds if Cb reduces to the point m∞, in
which case - again by (1.20)- ψλ /∈ L2([0,+∞[), so there is only one non-trivial
solution (up to constant multiples) of class L2([0,+∞[).

The classi�cation is then consistent: the two cases are mutually exclusive.
Sometimes, this is referred to as the Weyl alternative.
In particular, the periodic Schrödinger operator is in the limit-point case, as
implied by the following criterion.

Theorem 1.24. Let S be a positive di�erentiable (real) function and k1, k2

positive constants such that for large x

q(x) ≥ −k1S(x) ,

∫ +∞

0

(pS)
1
2 = +∞ ,∣∣∣p 1

2 (x)S ′(x)S−
3
2 (x)

∣∣∣ ≤ k2 . (1.21)

Then L is in the limit-point case at in�nity.
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Proof. Suppose that θ is a real solution of Lu = 0 belonging to L2([0,+∞[).
Then for some c∫ x

c

(pθ′)′θ

S
dx′ =

∫ x

c

q

S
θ2 dx′ ≥ −k1

∫ t

c

θ2 dx′ .

Integrating by parts, it comes straightforward that

−pθ
′θ

S
+

∫ x

c

p(θ′)2

S
dx′ −

∫ x

c

pθ′θS ′

S2
dx′ < k3

for some constant k3. Calling

I(x) =

∫ x

c

p(θ′)2

S
dx′ ,

by Cauchy-Schwarz inequality and hypothesis (1.21)∣∣∣∣∫ x

c

pθ′θS ′

S2
dx′
∣∣∣∣2 ≤ k2

2 I(x)

∫ t

c

θ2 dx′ .

There exists a constant k4 such that

−pθ
′θ

S
+ I − k4 I

1
2 < k3 . (1.22)

If I(x) −→ +∞ as x → ∞, then (1.22) would imply that for large x, θ
and θ′ have the same sign, which clearly contradicts the assumption θ ∈
L2([0,+∞[). Thus I has to remain �nite.

Now, suppose that there are two linearly independent (real) solutions of
Lu = 0 on L2([0,+∞[), say ψ and ψ (limit-circle case). For the sake of
simplicity, assume that these solutions have Wronskian 1. It follows that

φ
p

1
2ψ′

S
1
2

− ψp
1
2φ′

S
1
2

=
1

(p S)
1
2

. (1.23)

Again by Cauchy-Schwartz integral inequality, the left hand side of (1.23) is
integrable over [c,+∞[. This contradicts the hypothesis that

∫ +∞
0

(pS)
1
2 =

+∞. Thus the limit-circle case is ruled out.

Indeed, in the periodic Schrödinger case, all the conditions above are sat-
is�ed, since q is clearly bounded from below (thus M is a constant function)
and p(x) ≡ 1. Also, we can use weaker assumptions for the Schrödinger
operators to be in the limit-point case.
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Corollary 1.2. If p(x) = 1 for any positive x and q(x) ≥ −kx2 for some
positive constant k, then L is in the limit point case at in�nity.

In the limit-point case, if m is any point on the �circle� Cb, then m tends
to the limit point m∞ as b→∞, and this holds independent of the choice of
β in the boundary condition (1.15). In particular, when β = 0, that is

u(b) = 0 ,

the limit point is given by

m∞(λ) = − lim
b→+∞

φλ(b)

ψλ(b)
. (1.24)

The limit point computed above, viewed as a function of the complex variable
λ has got interesting properties.

Theorem 1.25. In the limit-point case, the limit point m∞ is an analytic
function of λ for Imλ > 0 (and Imλ < 0). Moreover, Im(m∞) > 0 if
Imλ > 0 (i.e. m∞ is a Nevanlinna function) and, if m∞ has zeros or poles
on the real axis, they are all simple.

Sometimes the limit point m∞ is called Titchmarsh-Weyl coe�cient, like
in De�nition 1.21, which is however a more general (and abstract) extension
because in that case the operator is not necessarily self-adjoint. The general
Titchmarsh-Weyl theory for self-adjoint problems, which extends what we
have done to complex valued p and q, may be developed either using mehods
of complex analysis (like in Titchmarsh's original works, 1946) or using the
theory of de�ciency indices for symmetric operators on Hilbert spaces (see
[13]).

1.4.2 The Sims classi�cation

In 1957, A.R. Sims obtained an extension of the classical Weyl alternative
for the (Schrödinger) di�erential equation

H[u] = −u′′ + q u = λu , λ ∈ C , (1.25)

on an interval [a, b[, where q is complex valued and the end-points a, b are,
respectively, regular and singular (for example if a = 0 and b = +∞). Under
the assumption that Im(q(x)) ≤ 0 for all x ∈ [a, b[, he proved that for λ in
the upper (complex) half-plane, there exists at least one solution of (1.25)
which is in the weighted space L2 ([0,+∞[; Im(λ− q)dx); such a solution also
lies in L2([0,+∞[). There are three alternatives for λ such that Im(λ) > 0:
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(i) there is precisely one7 solution of (1.25) in L2 ([0,+∞[; Im(λ− q)dx)
and in L2([0,+∞[);

(ii) only one solution lies in the weighted space L2 ([0,+∞[; Im(λ− q)dx),
but all are in L2([0,+∞[);

(iii) all solutions are in L2 ([0,+∞[; Im(λ− q)dx).

Similarly to the limit-point, limit-circle cases presented in the previous sec-
tion, the classi�cation is independent of λ: indeed, if all solutions are in
L2([0,+∞[) or L2 ([0,+∞[; Im(λ− q)dx) for some λ in the upper half-plane,
then it remains so for all λ ∈ C.
In [8], the pioneering work of Sims has been extended to more general Sturm-
Lioville operators:

M [u] =
1

w
(−(p u′)′ + q u)

on [a, b[, where

• p, q are complex valued;

• p 6= 0 almost everywhere on [a, b[;

• q, 1/p ∈ L1
loc([a, b[);

• w > 0 and w ∈ L1
loc([a, b[).

In this paper, also, an analogue of the Titchmarsh-Weyl M -function in the
Sims case is constructed.

1.5 Motivation: spectral pollution

This section is meant to be an introduction to the problem of spectral pol-
lution and an explanation of the reasons for our interest in the study of the
spectrum of the operator

HR,γ = − d2

dx2
+ q(x) + iγχR(x)

and of the limit
lim
R→∞

σ(HR,γ) .

Firstly, let us explain what spectral pollution is. This phenomenon may
occur for example when one tries to calculate numerically the spectrum of a

7Up to constant multiples.
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self-adjoint operator L on an in�nite-dimensional (separable) Hilbert space
H, using a projection method on �nite-dimensional subspaces. Let {ψj}∞j=1

be an orthonormal basis of H, where ψj ∈ D(L); let

MN := span {ψ1, . . . , ψN} .

De�ne for N ∈ N the N ×N matrices

LN := [(Lψi, ψj)H]Ni, j=1 , (1.26)

which are the ortogonal projections of the operator L onto the subspaceMN .
Eigenvalues of L are so approximated by eigenvalues of the �nite-dimensional
matrices LN . Ideally, one would like that

lim
N→∞

σ(LN) = σ(L) .

This is not true, in general. However, with the help of some natural conditions
onMN , the inclusion

σ(L) ⊆ lim
N→∞

σ(LN)

can be guaranteed. Spectral pollution appears when

lim
N→∞

σ(LN) * σ(L) ;

in other terms, in this context, λ /∈ σ(L) is said to be a point of spectral
pollution if there exists a sequence of complex numbers {λN}N∈N such that
λN ∈ σ(LN) for all N and

λN −→ λ

as N → ∞. Points of spectral pollution are also referred to as spurious
eigenvalues.

Spectral pollution is typical when the essential spectrum of L has a dis-
connected band-gaps structure (e.g. periodic Schrödinger operators) and one
wishes to compute eigenvalues in the gaps of the essential spectrum, due to
the instrinsic nature of variational methods like the one presented above:
what happens is that the spectral gaps �ll up with eigenvalues of the discrete
problem, which are so closely spaced that it is impossible to distinguish the
spectral gaps from the spectral bands. Variational eigenvalues (i.e. below
inf σess(L)), instead, are safe from spectral pollution, due to the min-max
theorem.
In principle, one should think that there is no universal recipe to prevent
or detect spurious eigenvalues using the projection method. Several meth-
ods have been proposed to deal with the problem: see [12], [19] and [5] for
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variants of the standard variational methods, [20] for a di�erent approach
founded on the choice of a special basis for the Hilbert space.

For di�erential operators on in�nite domains or with singularities, spec-
tral pollution can be also caused by domain truncation. An explicit example
of this phenomenon has been given in [1].

Example 1.5.1. Let L be a self-adjoint Schrödinger operator

L := H = − d2

dx2
+ q(x)

de�ned on the Hilbert space L2([0,+∞[), with Dirichlet boundary condition
0. Suppose that σess(H) is disconnected and bounded below (for example
when the potential q is periodic). It is proven therein that:

(i) if λ < inf σess(H), then every non-trivial solution of the λ-spectral
equation

−u′′ + q u = λu (1.27)

has �nitely many zeros in ]0,∞[;

(ii) if λ > inf σess(H), then every non-trivial solution of (1.27) has in�nitely
many zeros in ]0,∞[.

Take a solution of (1.27) u satisfying u(0;λ) = 0 and u′(0;λ) = 0. Take λ
in a spectral gap, that is λ > inf σess(H) and λ /∈ σ(H). By (ii), there are
in�nitely many zeros of u(· ;λ), say {Zn}∞n=1; of course, Zn ↑ ∞ as n→∞.

Consider now the regular problems

−v′′ + q v = µ v

v(0) = 0

v(Zn) = 0

on L2([0, Zn]) for n ∈ N. So, λ is an eigenvalue of all these problems
(with eigenfunction u), but λ is not eigenvalue of the limiting problem on
L2([0,+∞[ (having Dirichlet boundary condition at 0). A spurious eigenvalue
for the operator H on [0,∞[ has been then generated.

However, in this case, pollution can be always avoided by choosing appropri-
ate λ-adapted boundary conditions on the boundary of the truncated domain.

In this thesis, we are considering yet another method, proposed by Mar-
letta in [21] in the more general context of PDEs. Considering the computa-
tion of eigenvalues of self-adjoint Schrödinger operators

H = −∆ + q(x)
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in in�nite domains in Rd, having band-gaps spectral structure, he proposes
changing the problem by perturbing the potential as follows:

q(x) −→ q(x) + iγ s(x) ,

where s is a compactly supported function which takes the value 1 every-
where inside a ball of radius R, γ is a non-negative number. Compactness
of supp s implies that the essential spectrum of the problem is unchanged.
The eigenfunctions belonging to isolated eigenvalues in the spectral gaps are
exponentially decaying and, if R is large, they will �see� the function s(x)
almost as if it took the value 1 everywhere: consequently, the corresponding
genuine eigenvalues, say λ, which are perturbed into λγ, are approximately

λ ≈ Re(λγ) ≈ Re(λ+ iγ) .

So, when R is su�ciently large, true isolated eigenvalues are lifted up into
the upper half-plane; on the other hand, spurious eigenvalues stay close to
the real axis, as shown in [22, Theorem 2]. Numerical results in [21] and
error bounds in the more recent [22] say that the quality of this approach
for many problems is really good and the error due to the perturbation is
many orders of magnitude smaller than the error due to discretization, even
without requiring that γ is small.

This explains why we are interested in the study of the family of one-
dimensional Schrödinger operators

HR,γ = − d2

dx2
+ q(x) + iγ χR(x)

and in the limit of σ(HR,γ) for largeR, being here s(x) = χR(x). In particular,
one would wish that there be no isolated eigenvalues of HR,γ inside the strip
{z ∈ C : 0 < Im(z) < γ}, so that the perturbed versions λγ of the genuine
eigenvalues can be easily identi�ed.
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Chapter 2

Solution of the problem for

compactly supported background

potentials

In this Section we study the spectrum of the operator

HR,γ = − d2

dx2
+ q(x)

either when the potential q is identically zero (free case) and when q has
compact support in [0,+∞[. The main tool for calculating the spectrum
(actually, the isolated eigenvalues of HR,γ, since the essential spectrum is
known in both cases) is the Titchmarsh-Weyl function, already presented
throughout Section 1.3.

2.1 A �rst example: the Titchmarsh-Weyl M-

function of the free (perturbed) case

We will consider as a �rst example the self-adjoint Schrödinger operator

Hfree := − d2

dx2
, (2.1)

with domain

D
(
Hfree

)
=
{
u ∈ L2([0,+∞[) : −u′′ ∈ L2([0,+∞[), u′(0) = 0

}
, (2.2)

in the Hilbert space L2([0,+∞[), and its perturbed version:

Hfree
R,γ := − d2

dx2
+ iγ χR(x) = Hfree + iγ χR(x) ,

33
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where R, γ are non-negative parameters and χR denotes the characteristic
function of the interval [0, R].

2.1.1 Spectrum of Hfree

The spectrum of the operator Hfree is simply the half-line [0,+∞[. To prove
this, let us recall Propositions 1.1 and 1.2.

Proposition (Weyl's criterion). Let λ ∈ C, H be a Hilbert space, T : D(T ) ⊂
H −→ H be a closed linear operator.

(i) If there exists a Weyl sequence associated to λ, that is (un)n∈N ⊂ D(T )
such that

• ‖un‖H = 1 for every n,

• ‖(T − λI)un‖H −→ 0 as n→∞,

then λ ∈ σ(T ).

(ii) If λ ∈ σ(T ) ∩ ρ(T ), then there exists a Weyl sequence associated to λ.

Proposition. Let α ∈ R, H be a Hilbert space, T : D(T ) ⊂ H −→ H a
self-adjoint linear operator such that for every ϕ ∈ D(T )

(Tϕ, ϕ)H ≥ α ‖ϕ‖2
H .

Then the spectrum of T is contained in [α,+∞[.

The operator Hfree : D
(
Hfree

)
⊂ L2([0,+∞[) −→ L2([0,+∞[) is self-

adjoint and such that

(
Hfreeu, u

)
L2 = −

∫ +∞

0

u′′ ū dx = − u′ ū|+∞0 +

∫ +∞

0

u′ ū′ dx ≥ 0 .

Thus σ(Hfree) is contained in [0,+∞[. Also, if λ > 0, the spectral equation

(Hfree − λI)u = 0 (2.3)

does not even have a (non trivial) solution in L2([0,+∞[), a fortiori neither
in D

(
Hfree

)
; thus the operator (Hfree−λI) is injective: this means that there

cannot be point spectrum.
Our aim is now to construct a Weyl sequence for Hfree associated with

λ > 0. To this purpose, let η ∈ C∞c ([0,+∞[) a function of �cap-shaped� type
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(see Section 1.2.4) such that η = 1 on [0, 1] and for every n ∈ N, for every
x ∈ [0,+∞[ let

ηn(x) := η
(x
n

)
.

It is well known that the spectral equation (2.3) for λ > 0 has the following
general solution

u(x) = C1 e
i
√
λ + C2 e

−i
√
λ ; (2.4)

if we want u to be in D(Hfree), then, using the Neumann condition coming
from (2.2), we get C1 − C2 = 0, that is C1 = C2. Clearly, the solution in
(2.4) is not in L2([0,+∞[), unless C1 = 0 (which corresponds to the trivial
solution u ≡ 0); in any case, all non-trivial solutions are bounded on [0,+∞[.
Let us de�ne un := ηnu. Since u and its derivatives are bounded and supp(η)
is contained in some neighbourhood of [0, 1], then supp(ηn) is contained some
neighbourhood of [0, n] and un is in L2 for every n ∈ N; also

• u′n = η′nu+ ηnu
′ ∈ L2([0,∞[),

• u′′n = η′′nu+ 2η′nu
′ + ηnu

′′ ∈ L2([0,∞[),

because, by the de�nition of ηn and an easy change of variables in the inte-
grals, it holds that

‖η′n‖
2
2 =

1

n
‖η′‖2

2 , ‖η′′n‖
2
2 =

1

n3
‖η′′‖2

2 .

Thus, un ∈ D
(
Hfree

)
; we can also assume, without loss of generality, that

every un is multiplied by some normalizing factor, i.e.

‖un‖2 = 1 ∀n ∈ N .

Now

(Hfree − λI)un = −u′′n − λun
= −η′′nu− 2η′nu

′ − ηnu′′ − ληnu
= −η′′nu− 2η′nu

′ + ηn(−u′′ − λu)

= −η′′nu− 2η′nu
′

and ∥∥(Hfree − λI)un
∥∥

2
≤ ‖η′′nu‖+ 2 ‖η′nu′‖2 ;

since

‖η′nu′‖
2
2 =

∫ +∞

0

|η′nu′|
2 ≤ ‖u′‖2

∞ ‖η
′
n‖

2 ≤ K · 1

n
‖η′‖2

2 ,

‖η′′nu‖
2
2 =

∫ +∞

0

|η′′nu|
2 ≤ ‖u‖2

∞ ‖η
′′
n‖

2 ≤ K · 1

n3
‖η′′‖2

2 ,
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it follows that ∥∥(Hfree − λI)un
∥∥

2
→ 0 (2.5)

as n→ +∞.
Therefore, by Proposition 1.1, we can say that every positive λ is in the

spectrum. Also 0 belongs to the spectrum, because the spectrum of any
closed operator is a closed set (Theorem 1.5). This �nally proves that the
spectrum of Hfree is exactly [0,+∞[

2.1.2 Construction of the Titchmarsh-Weyl function

Let us �x γ and, for the moment, keep also R �xed. In order to compute the
M -function we have to consider the spectral equation

Hfree
R,γ u(x) = λu(x) (2.6)

globally in [0,+∞[.
Out of [0, R], (2.6) becomes

−u′′(x) = λu(x) ,

which has general solution of the form

u(x) = c1e
√
−λx + c2e

−
√
−λx .

To get a solution in D(Hfree) ⊂ L2 ([R,+∞[), we need that λ ∈ C r R+ and
c1 = 0 or c2 = 0 depending on the real part of the complex number

√
−λ.

By our choice of the branch of the square root, we know that Re(
√
−λ) > 0,

so the general L2-solution is of the form

u(x) = Ce−
√
−λx (2.7)

with C real constant.
We do not want trivial solutions, so we may assume that C 6= 0. Indeed, if
C = 0, this forces (by existence and uniqueness theorem) the global solution
of (2.6) to be identically null on [0,+∞[. Therefore, note that

u′(x)

u(x)
= −
√
−λ

for every x ≥ R; in particular we will use the value of this constant ratio
at x = R as boundary condition for the solution to the spectral equation in
[0, R] (this will be a �matching� condition at x = R for the global solution).
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In [0, R], equation (2.6) can be written as:

−u′′(x) + iγ u(x) = λu(x) . (2.8)

It has the following general solution:

u(x) = αe
√
iγ−λx + βe−

√
iγ−λx . (2.9)

Our aim is to construct a global solution, but but so far we have just one
boundary condition at x = R, which is

u′(R−)

u(R−)
= −
√
−λ (2.10)

Following the content of Section 1.3, we want to construct a suitable model
for the Titchmarsh-Weyl function of our problem. Let us consider the Hilbert
space H = L2 ([0,+∞[), the operators

A := − d2

dx2
+ i γ χR(x)

having domain

D(A) =
{
u ∈ H2 ([0,+∞[) : u(0) = u′(0) = 0

}
;

and

Ã := − d2

dx2
− i γ χR(x)

on the domain D(Ã) = D(A); the respective adjoint operators are

A∗ = − d2

dx2
− i γ χR(x) , Ã∗ = − d2

dx2
+ i γ χR(x)

with domains D(A∗) = D(Ã∗) = H2 ([0,+∞[). In this way, the operators
A and Ã form an adjoint pair, that is A∗ ⊇ Ã and Ã∗ ⊇ A. By suitable
integrations by parts, we get the following abstract Green formula for u ∈
D(Ã∗) and v ∈ D(A∗):

(Ã∗u, v)H − (u,A∗v)H =

∫ +∞

0

[
(−u′′ + iγu χR) v̄ − u (−v′′ − iγv χR)

]
dx

=
[
−u′v̄ + uv′

]∣∣+∞
x=0

=

= u′(0)v̄(0)− u(0)v̄′(0) =

= (Γ1u,Γ2v)C − (Γ2u,Γ1v)C ,
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where Γ1u := u′(0) and Γ2u := u(0).

The Titchmarsh-WeylMB-function, by de�nition, maps the �Robin� con-
dition (Γ1 − BΓ2)u to the Dirichlet Γ2u; we are interested in the knowledge
of Dirichlet and Neumann poles, so suppose B ≡ 0 (�Neumann-to-Dirichlet�
mapping). So, according to this assumption, the second boundary condition
we need is given by a Neumann condition at the origin:

u′(0) = Γ1u = z ∈ C . (2.11)

Together with the condition (2.10), we have that
α
√
iγ − λ− β

√
iγ − λ = z

α
√
iγ − λ e

√
iγ−λR − β

√
iγ − λ e−

√
iγ−λR

αe
√
iγ−λR + βe−

√
iγ−λR = −

√
−λ

; (2.12)

this gives, by Cramer's rule, the values of α and β:

α =
−z(
√
iγ − λ−

√
−λ)e−

√
iγ−λR

√
iγ − λ

[
(
√
iγ − λ+

√
−λ)e+

√
iγ−λR − (

√
iγ − λ−

√
−λ)e−

√
iγ−λR

] ,
β =

−z(
√
iγ − λ+

√
−λ)e

√
iγ−λR

√
iγ − λ

[
(
√
iγ − λ+

√
−λ)e+

√
iγ−λR − (

√
iγ − λ−

√
−λ)e−

√
iγ−λR

] .
So, we have completely determined the global solution of (2.6); all we need
now is to recover its value at x = 0:

Γ2u = u(0) = α + β ;

therefore the Titchmarsh-Weyl (Neumann-to-Dirichlet) function maps the
complex number z to α + β, that is the Titchmarsh-Weyl coe�cient is

MND(λ) =
−
[
(
√
iγ − λ+

√
−λ)e

√
iγ−λR + (

√
iγ − λ−

√
−λ)e−

√
iγ−λR

]
√
iγ − λ

[
(
√
iγ − λ+

√
−λ)e

√
iγ−λR − (

√
iγ − λ−

√
−λ)e−

√
iγ−λR

] .
(2.13)

2.1.3 Asymptotic behaviour of the M-function for large

R

First of all, we notice that, by estimates on the numerical range of Hfree
R,γ , the

λ's of interest necessarily have to be in the strip {z : 0 ≤ Im(z) ≤ γ}.
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Actually this holds not only for Hfree
R,γ , but in general for HR,γ. Indeed, for

u ∈ D (HR,γ)

(HR,γu, u)L2([0,+∞[) =

∫ +∞

0

[−u′′ + (q + iγ χR)u] ū dx

= −
∫ +∞

0

u′′ ū dx+

∫ +∞

0

q u ū dx+ iγ

∫ R

0

u ū dx

=

∫ +∞

0

u′ ū′ dx+

∫ +∞

0

q u ū dx+ iγ

∫ R

0

u ū dx

=

∫ +∞

0

|u′|2 dx+

∫ +∞

0

q|u|2 dx+ iγ

∫ R

0

|u|2 dx ;

taking ‖u‖2 = 1 as in the de�nition of the numerical range, this implies that

Im (HR,γu, u)L2([0,+∞[) ≤ |iγ| · ‖u‖2 ≤ γ .

Also
Im (HR,γu, u) ≥ 0 ,

because γ ≥ 0; thus the numerical range of Hfree
R,γ has to be contained in the

strip {z : 0 ≤ Im(z) ≤ γ}. We need now to recall Theorem 1.10:

Theorem. Let T be a densely de�ned closed operator on a Hilbert space. Let

Λ :=
{
z ∈ C : dist

(
z,Num(T )

)
> 0
}
. Then, if z ∈ Λ, φ ∈ D(T )

‖(z − T )φ‖ ≥ dist
(
z,Num(T )

)
‖φ‖ . (2.14)

By inequality (2.14) applied to the operator HR,γ, it follows that if λ ∈ Λ, in
particular if λ ∈ {z : Im(z) < 0} or λ ∈ {z : Im(z) > γ}, then

• λ does not belong to the point spectrum σpp(HR,γ), because in such a
case the operator (λ− HR,γ) would be injective, thus not in the point
spectrum;

• λ is not in the continuous spectrum σc(HR,γ), because if (λ− HR,γ)
were invertible, then (λ− HR,γ)

−1 would have to be continuous and
λ ∈ ρ(HR,γ), which is a contradiction.

This proves that the spectrum of HR,γ has to be contained in the strip
{z : 0 ≤ Im(z) ≤ γ}; in particular

σ(Hfree
R,γ ) ⊂ {z : 0 ≤ Im(z) ≤ γ}
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for all R.
In order to characterize the spectrum, we want is to investigate the asymp-

totic behaviour of theM -function as R tends to +∞. Let us de�ne a sequence
{Rn}n∈N of cut-o� values such that Rn −→ +∞.
If λ = iγ, the Titchmarsh-Weyl function is not even de�ned; if Im(λ) = γ
and Re(λ) > 0, then Re(

√
iγ − λ) = 0 and Im(

√
iγ − λ) > 0, which im-

plies that MND(Rn, λ) is oscillating and does not converge to anything as
n −→ +∞; in all the other possible cases, Re(

√
iγ − λ) is striclty positive,

thus the asymptotic behaviour is clear. Indeed, the multiplicative coe�cient
of the Titchmarsh-Weyl function

−
[
(
√
iγ − λ+

√
−λ)e

√
iγ−λRn + (

√
iγ − λ−

√
−λ)e−

√
iγ−λRn

]
√
iγ − λ

[
(
√
iγ − λ+

√
−λ)e

√
iγ−λRn − (

√
iγ − λ−

√
−λ)e−

√
iγ−λRn

] .
tends to (

− 1√
iγ − λ

)
as n −→ +∞.

Moreover, by a suitable application of Montel's theorem, the convergence
of the coe�cient is uniform in any compact set which is contained in the
strip {λ ∈ C : 0 < Im(λ) < γ}.
Indeed, let K ⊂⊂ {λ ∈ C : 0 < Im(λ) < γ} and

c = inf
λ∈K

Re(
√
iγ − λ) = min

λ∈K
Re(
√
iγ − λ) > 0 .

Consider the modulus of the denominator denM(λ,R) of the M -function; we
have that for λ ∈ K

|denM(λ,R)| =
∣∣∣ √iγ − λ e

√
iγ−λR

[
(
√
iγ − λ−

√
−λ)

−(
√
iγ − λ+

√
−λ)e−2

√
iγ−λR

] ∣∣∣
≥

∣∣∣√iγ − λ
∣∣∣ e√iγ−λR [ ∣∣∣√iγ − λ−

√
−λ
∣∣∣

−
∣∣∣√iγ − λ+

√
−λ
∣∣∣ e−2R (Re(

√
iγ−λ))

]
≥ c ecR

(∣∣∣√iγ − λ−
√
−λ
∣∣∣− ∣∣∣√iγ − λ+

√
−λ
∣∣∣ e−2Rc

)
= c ecR

(
|iγ|∣∣√iγ − λ+
√
−λ
∣∣ − ∣∣∣√iγ − λ+

√
−λ
∣∣∣ e−2Rc

)

= c ecR

(
γ∣∣√iγ − λ+
√
−λ
∣∣ − ∣∣∣√iγ − λ+

√
−λ
∣∣∣ e−2Rc

)
.
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Now, in order to ensure uniform positivity, choose R su�ciently large to get

γ∣∣√iγ − λ−√−λ∣∣ −
∣∣∣√iγ − λ−

√
−λ
∣∣∣ e−2Rc > k > 0 ,

where for some (positive) constant k. For example, this is guaranteed by
taking

R >
1

2c
log

(
γ∣∣√iγ − λ−√−λ∣∣2

)
≥ 1

2c
log
( γ
a2

)
,

where
a = sup

λ∈K

∣∣∣√iγ − λ−
√
−λ
∣∣∣ = max

λ∈K

∣∣∣√iγ − λ−
√
−λ
∣∣∣ ,

since
γ∣∣√iγ − λ−√−λ∣∣ −

∣∣∣√iγ − λ−
√
−λ
∣∣∣ e−2Rc

is a continuous function of the variable λ (when γ > 0).
In addition to this, the numerator of the coe�cient of the Titchmarsh-Weyl
function is a continuous function of the variable λ, hence the Titchmarsh-
Weyl coe�cient M(λ) satis�es:∣∣∣∣numM(λ)

denM(λ)

∣∣∣∣ < b · e(Re
√
iγ−λ)R + a

k′ · e(Re
√
iγ−λ)R

≤ b+ a

k′
,

where
b = max

λ∈K

∣∣∣√iγ − λ+
√
−λ
∣∣∣ .

the coe�cient of the sequence of M -functions {MND(Rn, ·)}n∈N is then uni-
formly bounded in the compact set K. By Montel's theorem, we deduce
uniform convergence.

The argument above also proves that the Neumann to Dirichlet function
MND(R, λ) has no poles for su�ciently large R, hence the operator Hfree

R,γ has
got no Neumann eigenvalues.

By a similar estimate, one can show that also the numerator is uniformly
positive if the cut-o� R is su�ciently large, that is Hfree

R,γ has got no Dirichlet
eigenvalues. We have thus proved the following:

Theorem 2.1. For every compact set K ⊂ {z ∈ C : 0 < Im(z) < γ}, there
exists R̄ = R̄K such that for every R ≥ R̄ both the Neumann and the Dirichlet
spectra of the operator Hfree

R,γ are such that

σ
(

Hfree
R,γ

)
∩K = ∅ .
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2.2 Generalization to compactly supported po-

tentials

With minor improvements, it is possible to extend the results of the previ-
ous section to Schrödinger operators with compactly supported background
potentials.
Let q ∈ L∞([0,+∞[) a real valued function with compact support, say [0, b]
(of course b > 0). As we did in Section 2.1, we would like to construct a
model for the Titchmarsh-Weyl function in this case, in order to �nd the
isolated eigenvalues in the strip {z ∈ C : 0 < Im(z) < γ} of the operator

Hc
R,γ := − d2

dx2
+ (q(x) + iγ χR(x))

with γ ≥ 0 and R > b.
Hc
R,γ is a perturbation of the operator

Hc := − d2

dx2
+ q(x)

having domain

D (Hc) =
{
u ∈ L2([0,+∞[) : −u′′ ∈ L2([0,+∞[), u′(0) = 0

}
.

Remark 2.2.1 (Spectrum of Hc). We have already found, in Section 2.1.1,
that the spectrum of the free operator is precisely [0,+∞[.

Using similar methods, we can also say something about the spectrum of
Hc. If for simplicity q is also continuous, since q is compactly supported, it
is clear that ∀ x ∈ [0,+∞[

q(x) ≥ min q =: a

then, integrating by parts, we can see that the following estimate holds for
u ∈ D (Hc):

(Hcu, u)L2 = −
∫ +∞

0

u′′ ū dx+

∫ +∞

0

q(x)u ū dx

=

∫ +∞

0

q(x) |u|2 dx+

∫ +∞

0

|u′|2 dx ≥ a ‖u‖2
2 .

According to Proposition 1.2, we have found that

σ(Hc) ⊂ [a,+∞[ . (2.15)
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If a ≥ 0 there is no point spectrum and the spectrum is exactly [a,+∞[
(repeating the argument of the free case, Section 2.1.1). Instead, if a < 0,
for sure [0,+∞[ is included in the spectrum; in [a, 0[ there may also be some
point spectrum. However, the number of eigenvalues will always be �nite:
indeed, it is estimated by

1

π

∫ +∞

0

√
q−(x)dx ,

where q− denotes the negative part of the potential. This estimate can be
found, for instance, in [3, Chap. 10]; the justi�cation is by the WKB theory.

2.2.1 Construction of the Titchmarsh-Weyl function re-

lated to Hc
R,γ

Let the Hilbert space be, as before, H = L2([0,+∞[). Let also:

A := − d2

dx2
+ q(x) + i γ χR(x)

and

Ã := − d2

dx2
+ q(x)− i γ χR(x)

with domains

D(A) = D(Ã) =
{
u ∈ H2 ([0,+∞[) : u(0) = u′(0) = 0

}
;

in order to form two adjoint pairs, as required by [7], let us de�ne the re-
spective adjoint operators:

A∗ = − d2

dx2
+ q(x)− i γ χR(x) and Ã∗ = − d2

dx2
+ q(x) + i γ χR(x) ,

both having domains D(A∗) = D(Ã∗) = H2 ([0,+∞[).
Now, we would like to �nd an abstract Green formula, in order to identify the
�boundary� operators and spaces prescribed by Proposition 1.4. If u ∈ D(Ã∗)
and v ∈ D(A∗), by suitable integrations by parts, we have that:

(Ã∗u, v)L2 − (u,A∗v)L2 =

∫ +∞

0

(−u′′ + (q(x) + iγ χR)u) v̄ dx

−
∫ +∞

0

u (−v′′ + (q(x)− iγ χR) v) dx

=

∫ +∞

0

(−u′′v̄ + uv̄′′) dx

= u′(0)v̄(0)− u(0)v̄′(0) =

= (Γ1u,Γ2v)C − (Γ2u,Γ1v)C ,
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where Γ1u := u′(0) and Γ2u := u(0).
We look for a global solution on [0,+∞[ of the spectral equation

−u′′(x) + (q(x) + iγ χR(x))u = λu (2.16)

having initial boundary condition

Γ1u = z ∈ C . (2.17)

First, the solution of (2.16) in [0, b[ (where, of course, χR ≡ 1) can be ex-
pressed as

u(x) = α1 φ(x;λ− iγ) + α2 ψ(x;λ− iγ) :

here φ(·;λ − iγ) and ψ(·;λ − iγ) are two linearly independent (non trivial)
solutions of

−u′′ + q(x)u = (λ− iγ)u (2.18)

satisfying(
φ(0;λ− iγ)
φ′(0;λ− iγ)

)
=

(
1
0

)
,

(
ψ(0;λ− iγ)
ψ′(0;λ− iγ)

)
=

(
0
1

)
.

We cannot be more explicit in this case; however in ]b, R], since q ≡ 0, we
can writed the solution in the form:

α3 g+(x;λ− iγ) + α4 g−(x;λ− iγ)

where
g±(x;λ− iγ) := e±

√
iγ−λx

are linearly independent solutions of

−u′′ = (λ− iγ)u .

Finally, in ]R,+∞[, like in the free case, if λ ∈ C \ R+ we can �nd an
exponentially decaying solution:

u(x) = α5 g−(x;λ) = α5 e
−
√
−λx .

In order to �nd a global solution, in addition to the �Titchmarsh-Weyl bound-
ary condition� (2.17), which can be rewritten as

α1 φ
′(0;λ− iγ) + α2 ψ

′(0;λ− iγ) = z ,

we should impose other natural boundary conditions, that is
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• continuity at x = b:

α1 φ(b;λ− iγ) + α2, ψ(b;λ− iγ) = α3 g+(b;λ− iγ) + α4 g−(b;λ− iγ) ;

• derivability at x = b:

α1 φ
′(b;λ− iγ) + α2, ψ

′(b;λ− iγ) = α3 g
′
+(b;λ− iγ) + α4 g

′
−(b;λ− iγ) ;

• �matching� condition in x = R:

α3 g
′
+(R;λ− iγ) + α4 g

′
−(R;λ− iγ)

α3 g+(R;λ− iγ) + α4 g−(R;λ− iγ)
=
g′−(R;λ)

g−(R;λ)
.

We want to determine exactly the global solution, that is the constants α1,
α2, α3 and α4, which are solutions of the linear system with matrix:

0 1 0 0

φ(b) ψ(b) −e
√
iγ−λ b −e−

√
iγ−λ b

φ′(b) ψ′(b) −
√
iγ − λ e

√
iγ−λ b +

√
iγ − λ e−

√
iγ−λ b

0 0 (
√
iγ − λ+

√
−λ)e

√
iγ−λR −(

√
iγ − λ−

√
−λ)e−

√
iγ−λR


and known term 

z
0
0
0

 .

Actually, to compute the Titchmarsh-Weyl function, it su�ces to recover the
value of α1, because, if u is the global solution of (2.16), then

Γ2u = u(0) = α1 φ(0;λ− iγ) + α2 ψ(0;λ− iγ) = α1

by construction of φ and ψ. By the Cramer's rule, the numerator of α1, that
is of the Titchmarsh-Weyl function, is

z
[(√

iγ − λ+
√
−λ
)(
−ψ′(b)−

√
iγ − λψ(b)

)]
e+
√
iγ−λ (R−b)

+
[(√

iγ − λ−
√
−λ
)(
−ψ′(b) +

√
iγ − λψ(b)

)]
e−
√
iγ−λ (R−b) ,

(2.19)

while the denominator denM = denM(λ,R) is given by:

denM =
[(√

iγ − λ+
√
−λ
)(

φ′(b) +
√
iγ − λφ(b)

)]
e+
√
iγ−λ (R−b)

+
[(√

iγ − λ−
√
−λ
)(

φ′(b)−
√
iγ − λφ(b)

)]
e−
√
iγ−λ (R−b) .

(2.20)

Putting b = 0, we can clearly see that this is nothing but a generalization
of the Titchmarsh-Weyl function which have already been computed in the
free case (see formula (2.13) ).
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2.2.2 Asymptotic behaviour of the Titchmarsh - Weyl

function

The asymptotic behaviour (as R −→ +∞) of the Titchmarsh-Weyl is again
leaded by the exponentially growing term

e+
√
iγ−λ (R−b) .

To formulate a similar result to the free case (like in Theorem 2.1), we need
that at least the multiplicative coe�cients of the leading terms in expres-
sions (2.19) and (2.20) are non-null, as stated by the following Lemma and
Corollary.

Lemma 2.1. Let µ ∈ C such that Im(µ) < 0; let g(·) = g(· ;µ) be a non-
trivial solution of equation

−g′′(x) + q(x) g(x) = µ g(x) (2.21)

on [0, b[. Then

g′(b;µ) +
√
−µ g(b;µ) 6= 0 .

Proof. Multiplying both sides of (2.21) by ḡ(x) and integrating on [0, b], we
get:

−
∫ b

0

g′′ ḡ dx+

∫ b

0

q |g|2 dx = µ

∫ b

0

|g|2 dx .

An integration by parts on the �rst integral gives:

−g′(b)ḡ(b) +

∫ b

0

[
|g′|2 + (q − µ) |g|2

]
dx = 0 . (2.22)

Suppose

g′(b;µ) +
√
−µ g(b;µ) = 0 ;

then (2.22) becomes

√
−µ |g(b)|2 +

∫ b

0

[
|g′|2 + (q − µ) |g|2

]
dx = 0 .

In particular, considering the imaginary part

Im
(√
−µ
)
|g(b)|2 + Im(−µ)

∫ b

0

|g(x)|2 dx = 0 .
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Since Im(−µ) > 0, we clearly have that Im (
√
−µ) > 0, so

g(b) = 0 and

∫ b

0

|g(x)|2 dx = 0 .

This is a contradiction, because g is supposed to be a non-trivial solution to
equation (2.21).

Corollary 2.1. If λ ∈ {z ∈ C : 0 < Im(z) < γ}, the functions φ(· ;λ − iγ)
and ψ(· ;λ− iγ) are such that

• φ′(b;λ− iγ) +
√
iγ − λφ(b;λ− iγ) 6= 0 ;

• ψ′(b;λ− iγ) +
√
iγ − λψ(b;λ− iγ) 6= 0 .

Proof. By construction, φ(· ;λ−iγ) and ψ(· ;λ−iγ) are non-trivial solutions
of the equation

−u′′(x) + q(x)u(x) = (λ− iγ)u(x)

on [0, b]; also, since λ ∈ {z ∈ C : 0 < Im(z) < γ}, then Im(λ − iγ) < 0.
Therefore the hypotheses of Lemma 2.1 are satis�ed.

Remark 2.2.2. The theory of complex linear di�erential systems tells us
that the linearly independent solutions of (2.18) φ(· ;λ− iγ) and ψ(· ;λ− iγ)
are analytic functions of the variable λ (for details see [10, Chap. 1, Sec. 8]).

We also know that:

Lemma 2.2. At least one between φ′(b;λ− iγ)−
√
iγ − λφ(b;λ− iγ) and

ψ′(b;λ− iγ)−
√
iγ − λψ(b;λ− iγ) is not zero.

Proof. Suppose that

φ′(b;λ− iγ)−
√
iγ − λφ(b;λ− iγ) = 0 ,

ψ′(b;λ− iγ)−
√
iγ − λψ(b;λ− iγ) = 0 .

(2.23)

We know that the Wronskian of the solutions φ and ψ

Ŵ (φ, ψ)(x) = det

(
φ(x;λ− iγ) ψ(x;λ− iγ)
φ′(x;λ− iγ) ψ′(x;λ− iγ)

)
is constant and equal to Ŵ (φ, ψ)(0), which is 1 by de�nition. In particular

Ŵ (φ, ψ)(b) = φ(b)ψ′(b)− ψ(b)φ′(b) = 1 ;

but, according to the assumptions (2.23)

φ(b)ψ′(b)− ψ(b)φ′(b) =
√
iγ − λφ(b)ψ(b)−

√
iγ − λφ(b)ψ(b) = 0 ,

which clearly is a contradiction.
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We are now ready to formulate the main theorem of this section:

Theorem 2.2. For every compact set K ⊂ {z ∈ C : 0 < Im(z) < γ}, there
exists R̄ = R̄K such that for every R ≥ R̄ both the Neumann and the Dirichlet
spectra of the operator Hc

R,γ are such that

σ
(
Hc
R,γ

)
∩K = ∅ .

Proof. Let K ⊂⊂ {λ ∈ C : 0 < Im(λ) < γ} and

c := inf
λ∈K

Re(
√
iγ − λ) = min

λ∈K
Re(
√
iγ − λ) > 0 ;

let also
C1 := min

λ∈K

∣∣∣φ′(b;λ− iγ) +
√
iγ − λφ(b;λ− iγ)

∣∣∣
and

C2 := max
λ∈K

∣∣∣φ′(b;λ− iγ)−
√
iγ − λφ(b;λ− iγ)

∣∣∣ .
Suppose C2 > 0, otherwise |denM | > 0 for every positive R. Consider the
modulus of denominator of the M -function

|denM | =
∣∣∣(√iγ − λ+

√
−λ
)(

φ′(b) +
√
iγ − λφ(b)

)
e+
√
iγ−λ (R−b)

+
(√

iγ − λ−
√
−λ
)(

φ′(b)−
√
iγ − λφ(b)

)
e−
√
iγ−λ (R−b)

∣∣∣
≥

∣∣∣(√iγ − λ+
√
−λ
)(

φ′(b) +
√
iγ − λφ(b)

)
e+
√
iγ−λ (R−b)

∣∣∣
−
∣∣∣(√iγ − λ−

√
−λ
)(

φ′(b)−
√
iγ − λφ(b)

)
e−
√
iγ−λ (R−b)

∣∣∣
= e

√
iγ−λ (R−b)

[ ∣∣∣√iγ − λ+
√
−λ
∣∣∣ · ∣∣∣φ′(b) +

√
iγ − λφ(b)

∣∣∣
−
∣∣∣√iγ − λ−

√
−λ
∣∣∣ · ∣∣∣φ′(b)−√iγ − λφ(b)

∣∣∣ e−2
√
iγ−λ (R−b)

]
≥ e(R−b)c

(
|iγ| · C1∣∣√iγ − λ−√−λ∣∣ − C2

∣∣∣√iγ − λ−
√
−λ
∣∣∣ e−2(R−b)c

)
.

Now, we want |denM | to be positive, so choose R large enough to get

γ · C1∣∣√iγ − λ−√−λ∣∣ − C2

∣∣∣√iγ − λ−
√
−λ
∣∣∣ e−2(R−b)c > k > 0 ;

for example take

R > b+
1

2c
log

(
γ · C1

C2 · C3

)
=: R̄

(1)
K ,
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where

C3 = max
λ∈K

∣∣∣√iγ − λ−
√
−λ
∣∣∣2 .

This shows that, for large R, the Titchmarsh-Weyl function has got no poles,
that is the operator Hc

R,γ has got no Neumann eigenvalues.

Similarly, if

R > b+
1

2c
log

(
γ · C4

C5 · C3

)
=: R̄

(2)
K ,

where

C4 := min
λ∈K

∣∣∣−ψ′(b;λ− iγ)−
√
iγ − λψ(b;λ− iγ)

∣∣∣
and

C5 := max
λ∈K

∣∣∣−ψ′(b;λ− iγ) +
√
iγ − λψ(b;λ− iγ)

∣∣∣ > 0 ,

the modulus of the numerator of the Titchmarsh-Weyl coe�cient, denoted
by numM , is uniformly positive in K, that is the operator Hc

R,γ has got no
Dirichlet eigenvalues.
Note that if C5 were 0, this would be true for every admissible R.

Taking R̄K := max
{
R̄

(1)
K , R̄

(2)
K

}
, we can conclude.

The spectrum of the operator Hc
R,γ has now been characterized.

Remark 2.2.3. Moreover, the estimates in the proof of the previous theorem
and ∣∣∣∣numM

denM

∣∣∣∣ < C6 · eRe
√
iγ−λ (R−b) + C5 · e−Re

√
iγ−λ (R−b)

k · eRe(
√
iγ−λ) (R−b) ≤ C6 + C5

k

for large R, where

C6 := max
λ∈K

∣∣∣√iγ − λ+
√
−λ
∣∣∣ · ∣∣∣−ψ′(b;λ− iγ)−

√
iγ − λψ(b;λ− iγ)

∣∣∣ ,
together with Montel's theorem (Theorem 1.17), show that the coe�cient of
the M -function converges uniformly (as R tends to in�nity) to

ψ′(b;λ− iγ) +
√
iγ − λψ(b;λ− iγ)

φ′(b;λ− iγ) +
√
iγ − λφ(b;λ− iγ)

6= 0 .

To conclude the Section, we want now to �nd explicitly the Titchmarsh-
Weyl function for a given potential.
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Example. In this example, we want to solve explicitly the problem associ-
ated with the particular compactly supported potential

q(x) :=

{
a , if x < 1
0 , if x ≥ 1

,

where a is a negative real number.
The functional setting is the same of Section 2.2.1.

In [0, 1] (the support of q), the spectral equation for complex λ can be written
as

−u′′ + (a+ iγ)u = λu .

It is known that there are two linearly independent solutions φ(· ;λ− iγ) :=

cosh(
√
a+ iγ − λ ·) and ψ(· ;λ − iγ) := sinh(

√
a+iγ−λ ·)√

a+iγ−λ such that the solution

in [0, 1[ can be written as

u(x) = α1 φ(x;λ− iγ) + α2 ψ(x;λ− iγ) .

In ]1, R[ the solution is of the form

α3 cosh(
√
iγ − λ ·) + α4

sinh(
√
iγ − λ ·)√

iγ − λ

and in ]R,+∞[, since we want the global solution to be in H2([0,+∞[), we
may select the exponentially decaying solution at +∞: that is, in ]R,+∞[
the solution of the spectral equation is

u(x) = α5 e
−
√
−λx .

The global solution should satisfy the following boundary conditions:

α1 cosh(
√
a+ iγ − λ) + α2

sinh(
√
a+ iγ − λ)√

a+ iγ − λ
=

= α3 cosh(
√
iγ − λ) + α4

sinh(
√
iγ − λ)√

iγ − λ
,

α1

√
a+ iγ − λ sinh(

√
a+ iγ − λ) + α2 cosh(

√
a+ iγ − λ) =

= α3

√
iγ − λ sinh(

√
iγ − λ) + α4 cosh(

√
iγ − λ)

and

α3

√
iγ − λ sinh(

√
iγ − λR) + α4 cosh(

√
iγ − λR)

α3 cosh(
√
iγ − λR) + α4

sinh(
√
iγ−λR)√
iγ−λ

= −
√
−λ .
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Also, at x = 0, the global solution must satisfy a general Neumann condition
(by construction of the Titchmarsh-Weyl function):

α1

√
a+ iγ − λ sinh(

√
a+ iγ − λR) + α2 cosh(

√
a+ iγ − λR)

∣∣∣
x=0

= z ,

that is α2 = z. The coe�cient αj, j = 1, . . . , 4, are solutions of the linear
system with known term (z, 0, 0, 0)T and matrix


0 1 0 0

cosh
(√
a+ iγ − λ

) sinh(
√
a+iγ−λ)√

a+iγ−λ − cosh
(√
iγ − λ

)
− sinh(

√
iγ−λ)√

iγ−λ√
a+ iγ − λ sinh

(√
a+ iγ − λ

)
cosh

(√
a+ iγ − λ

)
−
√
iγ − λ sinh

(√
iγ − λ

)
− cosh

(√
iγ − λ

)
0 0 a(λ,R) b(λ,R)


where

a(λ,R) :=
√
iγ − λ sinh(

√
iγ − λR) +

√
−λ cosh(

√
iγ − λR) ,

b(λ,R) := cosh(
√
iγ − λR) +

√
−λ√

iγ − λ
sinh(

√
iγ − λR) .

The Neumann-to-Dirichlet M -function is the mapping

z 7−→ u(0) = α1 ,

so by Cramer's rule the denominator of α1, i.e. of the Titchmarsh-Weyl func-
tion is:

denM = a(λ,R) ·
[
− cosh(

√
iγ − λ) cosh(

√
a+ iγ − λ)

+ sinh(
√
iγ − λ) sinh(

√
a+ iγ − λ)

]
+b(λ,R) ·

[√
iγ − λ sinh(

√
iγ − λ) cosh(

√
a+ iγ − λ)

−
√
a+ iγ − λ cosh(

√
iγ − λ) sinh(

√
a+ iγ − λ)

]
and the numerator

numM = z

{
sinh

(√
a+ iγ − λ

)
√
a+ iγ − λ

[
a(λ,R) cosh

(√
iγ − λ

)
−
√
iγ − λ b(λ,R) sinh(

√
iγ − λ)

]
+ cosh

(√
a+ iγ − λ

)
·
[
b(λ,R) cosh

(√
iγ − λ

)
−a(λ,R)

sinh
(√

iγ − λ
)

√
iγ − λ

]}
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Using

cosh(α± β) = cosh(α) cosh(β)± sinh(α) sinh(β) ,

sinh(α± β) = sinh(α) cosh(β)± cosh(α) sinh(β) ,

it follows for example that

numM = z

{
sinh

(√
a+ iγ − λ

)
√
a+ iγ − λ

[√
iγ − λ sinh

(√
iγ − λ (R− 1)

)
+
√
−λ cosh

(√
iγ − λ (R− 1)

)
+ sinh

(√
a+ iγ − λ

) [
cosh

(√
iγ − λ (R− 1)

)
+

√
−λ√

iγ − λ
sinh

(√
iγ − λ (R− 1)

)}
.
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Solution of the problem for

periodic background potentials

Theorems 2.1 and 2.2 in the previous chapter say that, given any compact
set in the strip {z ∈ C : 0 < Im(z) < γ}, R can be chosen su�ciently large
to ensure that the spectrum of HR,γ (for free and compactly supported q) lies
outside of the compact set. Also, uniform convergence of the Titchmarsh-
Weyl function has been proven. Our object in this chapter is to extend
the free case to the periodic case, using the fact that Floquet theory pro-
vides a good expression for exponentially decaying solutions of the spectral
equation. Unfortunately, the results of Chapter 2 cannot be completely gen-
eralized, since the asymptotic behaviour of the Titchmarsh-Weyl function is
unknown on a discrete, with no accumulation point and possibly countable,
set of points D inside the strip. Some numerical experiments show that it is
reasonable to think that this set is empty.
With the additional assumption that the potential q can be extended as an
even function on the whole real axis, in Section 3.4 it is demonstrated that
the set D can be characterized as the set of eigenvalues of a PT -symmetric
Schrödinger operator on R.

3.1 Floquet theory for the unperturbed case

The main tool in the study of ordinary di�erential equations with periodic
coe�cients is the so-called Floquet theory. In this section, we shall consider
the Floquet theory for periodic Schrödinger operators: it will give in Theorem
3.2 (Floquet theorem) an explicit description of the solutions of the spectral
equation, in terms of basic properties of the dynamical system and of the
period of the potential. This explicit form will be extensively used in the

53
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sequel of the chapter. We shall formulate here some of the known results
about this classical case, without proof except for Theorem 3.1.

Let us �x λ ∈ C and consider the spectral equation associated to such a
λ for a periodic Schrödinger operator, that is:

−u′′(x) + (V (x)− λ)u(x) = 0, x ∈ [0,∞[ (3.1)

on L2 (R), where V is a (general) complex-valued bounded and periodic func-
tion with period L.
Let φλ, ψλ be solutions of (3.1) such that(

φλ(0)
φ′λ(0)

)
=

(
1
0

)
,

(
ψλ(0)
ψ′λ(0)

)
=

(
0
1

)
. (3.2)

Let

Mλ :=

(
φλ(L) ψλ(L)
φ′λ(L) ψ′λ(L)

)
.

Call Mλ monodromy (or Floquet) matrix.

Remark 3.1.1. In the context of dynamical systems, Mλ is usually called
fundamental or wronskian matrix. Note that det(Mλ) = 1, because it is well
known the Wronskian associated to the equation (3.1)

Ŵ (φλ, ψλ)(x) := det

(
φλ(x) ψλ(x)
φ′λ(x) ψ′λ(x)

)
is constant, thus equal to 1 (= Ŵ (φλ, ψλ)(0)).

The following theorem shows an interesting property of some solutions of the
equation (3.1), which will be crucial for Theorem 3.2.

Theorem 3.1. Let λ ∈ C. There exists a non-zero complex number ρ = ρλ
and a non-trivial solution uλ of (3.1) such that for every x ∈ [0,+∞[

uλ(x+ L) = ρ uλ(x) (3.3)

and
u′λ(x+ L) = ρ u′λ(x) .

Proof. φλ and ψλ be, as above, solutions of (3.1) satisfying (3.2). Since also
φλ(x+L) and ψλ(x+L) are solutions of (3.1), using the boundary conditions
(3.2), we can write

φλ(x+ L) = φλ(L)φλ(x) + φ′λ(L)ψλ(x)

ψλ(x+ L) = ψλ(L)φλ(x) + ψ′λ(L)ψλ(x).
(3.4)
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Since every solution uλ(x) of (3.1) can be written as uλ(x) = c1φλ(x) +
c2ψλ(x), it su�ces to show that there exist a vector (c1, c2)t ∈ C2 \ {0} and
a complex number ρ = ρλ such that(

φλ−iγ(L) ψλ−iγ(L)
φ′λ−iγ(L) ψ′λ−iγ(L)

)(
c1

c2

)
= ρ

(
c1

c2

)
,

because, by (3.4), this is equivalent to (3.3)

uλ(x+ L) = ρ uλ(x) .

Therefore, now the question is whether the monodromy matrix Mλ has a
non-zero eigenvector with the corresponding (non-zero) eigenvalue ρ. But
this is clear, because det(Mλ) = 1 and it is not possible forMλ to have a null
eigenvalue.

Let us give some important de�nitions.

De�nition 3.1. Let the symbol Tr denote the trace of a matrix One calls

∆(λ) := Tr [Mλ]

the Floquet discriminant of equation (3.1). The solutions ρ+ and ρ− of the
characteristic equation

ρ2 −∆(λ)ρ+ 1 = 0

are called the Floquet multipliers of equation (3.1). Note that they are the
eigenvalues of Mλ: since detMλ = 1, they can be written in the form

ρ± = e±w(λ)L .

We will also call w(λ) ∈ C the Floquet exponent (or quasi-momentum)
associated with the equation (3.1).

As already announced in the beginning of this section, the key result of
Floquet theory is the so-called Floquet theorem: it gives a description for a
linear basis of solutions of the spectral equation (3.1).

Theorem 3.2 (Floquet). Let λ ∈ C. The equation (3.1) has linearly inde-

pendent solutions u
(+)
λ and u

(−)
λ such that either

u
(+)
λ (x) = e+w(λ)x p+(x;λ) and u

(−)
λ (x) = e−w(λ)x p−(x;λ) , (3.5)

or

u
(+)
λ (x) = e+w(λ)x p+(x;λ) and u

(−)
λ (x) = e+w(λ)x {xp+(x;λ) + p−(x;λ)} ,

where both p+(·;λ) and p−(·;λ) are periodic functions with period L.
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Remark 3.1.2. Sometimes, when there is no ambiguity, we will omit the
dependence of p+(x) and p−(x) on the complex parameter λ.

The notion of stability is also important in the context of Floquet theory:

De�nition 3.2. A solution of the equation (3.1) is said to be stable if it is
bounded and in L2; unstable otherwise.

Corollary 3.1 (Stability test). Fix λ ∈ C and suppose ∆(λ) is real.

(i) If |∆(λ)| < 2, then all solutions of (3.1) are bounded on R.

(ii) If |∆(λ)| > 2, then all non-trivial solutions are unbounded on R.

(iii) If ∆(λ) = 2, then there is at least one non-trivial solution that is peri-
odic with period L. Moreover, if φ′λ(L) = 0 = ψλ(L), then all solutions
are periodic with period L. If either φ′λ(L) 6= 0 or ψλ(L) 6= 0, there do
not exist two linearly independent periodic solutions.

(iv) If ∆(λ) = −2, then there is at least one non-trivial solution that is
semi-periodic with semi-period L. Moreover, if φ′λ(L) = 0 = ψλ(L), all
solutions are semi-periodic with semi-period L. If either φ′λ(L) 6= 0 or
ψλ(L) 6= 0, there do not exist two linearly independent semi-periodic
solution.

If ∆(λ) is not real, then all non-trivial solutions of (3.1) are unbounded on
R.

The spectrum of the periodic Schrödinger operator can be characterized in
terms of the quasi-momentum, as shown by:

Theorem 3.3. The spectrum of the operator Hper is purely continuous and

σ(Hper
V ) = {λ ∈ C : Re (w(λ)) = 0} ,

where w(λ) is the Floquet exponent associated with the equation (3.1).

Corollary 3.2. If λ ∈ C is not in σ(Hper
V ), then there are two linearly inde-

pendent solutions of the spectral equation which can be written like in formula
(3.5) of Theorem 3.2.

Finally, the following theorem gives an explicit description of the structure
of the spectrum of the periodic Schrödinger operator:
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Theorem 3.4 (Bands-gaps structure). Let V be also real-valued. Then, there
exist two sequences of real numbers {λn}n∈N and {λ′n}n∈N, satisfying

λ0 < λ′0 ≤ λ′1 < λ1 ≤ λ2 < λ′2 ≤ λ′3 < λ3 ≤ λ4 < . . .

such that

σ(Hper
V ) =

∞⋃
n=0

(
[λ2n, λ

′
2n] ∪ [λ′2n+1, λ2n+1]

)
.

We will often refer to the intervals [λ2n, λ
′
2n] and [λ′2n+1, λ2n+1] as bands of the

spectrum of Hper, while the complementary intervals, including ] − ∞, λ0[,
are called gaps. Recalling Section 1.5, this kind of structure for the spectrum
represents one of the most typical case in which spectral pollution originates.

These are the results that we will need in what follows. Now we are ready
to compute the Titchmarsh-Weyl function in the periodic perturbed case.

3.2 Spectrum of the perturbed periodic case

Let us consider now a periodic Schrödinger operator, i.e. �x a real-valued,
periodic and essentially bounded function (the potential) q : [0,+∞[−→ R
with period L > 0. Our aim is now to study the spectrum of the non self-
adjoint operator

Hper
R,γ := − d2

dx2
+ q(x) + iγ χR(x) = Hper + iγ χR(x) ,

on the Hilbert space L2 ([0,+∞[), where the parameters R, γ are positive
and the domain of Hper is

D (Hper) =
{
u ∈ L2([0,+∞[) : −u′′ ∈ L2([0,+∞[), u′(0) = 0

}
.

Remark 3.2.1. As already said in Chapter 1, this is not the most general
assumption which can be made on the potential and on the domain of the
operator Hper. Indeed, in order to get self-adjointness of Hper, the �best�
(minimal) assumption is to consider q ∈ L1

loc([0,+∞[) ∩ L1([0, ε]) for some
positive ε and take

D (Hper) =
{
u ∈ L2([0,+∞[) ∩H2

loc([0,+∞[) :

−u′′ + q u ∈ L2([0,+∞[), u′(0) = 0
}
.

For details, see [2].
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3.2.1 The Titchmarsh-Weyl function associated with the

perturbed operator

We will use the same model of the free and compactly supported cases.
De�ne:

• H = L2([0,+∞[);

• A := − d2

dx2 + q(x) + i γ χR(x) with

D(A) =
{
u ∈ H2 ([0,+∞[) : u(0) = u′(0) = 0

}
;

• Ã := − d2

dx2 + q(x) + i γ χR(x), having domain D(Ã) = D(A).

The respective adjoint operators are

A∗ = − d2

dx2
+ q(x)− i γ χR(x), Ã∗ = − d2

dx2
+ q(x) + i γ χR(x) ,

with domains D(A∗) = D(Ã∗) = H2 ([0,+∞[), so that the operators A and
Ã form an adjoint pair. As in the case of compactly supported background
potential, integrating by parts, we obtain that for u ∈ D(Ã∗) and v ∈ D(A∗):

(Ã∗u, v)H − (u,A∗v)H = u′(0)v̄(0)− u(0)v̄′(0) = (Γ1u,Γ2v)C − (Γ2u,Γ1v)C ,

where Γ1u := u′(0) and Γ2u := u(0).
The Titchmarsh-Weyl function of interest is again the mapping

Γ1u 7−→ Γ2u .

Once we have a global solution of the spectral equation

Hper
R,γu = λu , (3.6)

we may recover its value at 0, i.e. Γ2u, in terms of Γ1u.
First, let us consider the spectral equation in [R,+∞[:

−u′′ + q(x)u = λu , (3.7)

where λ ∈ C. If λ is not in the spectrum of Hper, there is a L2([R,+∞[)
solution of the form:

u(x) = C p−(x;λ)e−w̃(λ)x , (3.8)
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where p−(·;λ) is a periodic function with period L and w̃(λ) is the Floquet
quasi-momentum (chosen with positive real part) associated with the equa-
tion (3.7) with monodromy matrix

M̃λ
(R)

:=

(
Φλ(R + L) Ψλ(R + L)
Φ′λ(R + L) Ψ′λ(R + L)

)
.

Here Φλ and Ψλ are solutions of (3.7) such that(
Φλ(R)
Φ′λ(R)

)
=

(
1
0

)
,

(
Ψλ(R)
Ψ′λ(R)

)
=

(
0
1

)
.

However, taking R as an integer multiple of the period L, since we are in-
terested in the limit as R → ∞ the spectral equation (3.7) in [R,+∞[ is
translation-invariant, so equivalent to the same equation in [0,+∞[; so, in
this case, w̃(λ) is the quasi-momentum w(λ) associated with the standard
monodromy matrix

Mλ :=

(
φλ(L) ψλ(L)
φ′λ(L) ψ′λ(L)

)
,

where φλ and ψλ are solutions of (3.7) such that(
φλ(0)
φ′λ(0)

)
=

(
1
0

)
,

(
ψλ(0)
ψ′λ(0)

)
=

(
0
1

)
.

Let us make this assumption to simplify notation.

Remark 3.2.2. Note that, since λ is supposed to be not in the spectrum,
then, by Theorem 3.3, Re(w(λ)) 6= 0. The solution in (3.8) has to be
in H2([0,+∞[), thus we are allowed to choose w(λ) in such a way that
Re(w(λ)) > 0.

Conversely, in the interval [0, R] (let us suppose R ≥ L) the spectral
equation is

−u′′ + (q(x) + iγ) u = λu

that is
−u′′ + q(x)u = (λ− iγ)u ; (3.9)

it is clear that, comparing this equation with the spectral equation out of
[0, R], the di�erence is just a shift equal to −iγ of the spectral parameter λ.
Therefore, the general solution can be written as

u(x) = αP+(x)e+W (λ)x + β P−(x)e−W (λ)x ,
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where P±(·) = p±(·;λ−iγ) are periodic functions with period L and the term
W (λ) := w(λ− iγ) is the quasi-momentum associated to the equation (3.9)
with monodromy matrix Mλ−iγ. Note again that, if λ − iγ does not belong
to the spectrum of Hper, or equivalently if λ is not in the shifted spectrum
σ(Hper) + iγ, then we can choose W (λ) such that Re(W (λ)) > 0.

In order to �nd a global solution, let us impose the following �matching�
condition at x = R:

u′(R−)

u(R−)
=
u′(R+)

u(R+)
,

that is

p′−(R)− w(λ)p−(R)

p−(R)
=
α
[
eW (λ)R

(
P ′+(R) +W (λ)P+(R)

)]
αP+(R)eW (λ)R + βP−(R)e−W (λ)R

+
β
[
e−W (λ)R

(
P ′−(R)−W (λ)P−(R)

)]
αP+(R)eW (λ)R + βP−(R)e−W (λ)R

,

(3.10)

where it has been omitted the dependence of the functions p−, P+ and P−
on the respective spectral parameters.

Remark 3.2.3. Note that if λ is not real, p−(R) has to be non-zero, so that
the expression above in the left hand side of (3.10) is well de�ned.
Indeed, let us suppose that p−(R) = 0. Then, by periodicity of p−, also
p−(R + L) = 0. These two conditions imply, in particular, that the solution
u of (3.7) is 0 at the points x = R and x = R + L. It is well known the
regular Dirichlet problem

−u′′ + q(x)u = λu

u(R) = 0

u(R + L) = 0

is self-adjoint, therefore λ has to be a real number, in order to have a non-
trivial eigenfunction u. This contradicts the hypothesis.

Calling

f(λ,R) :=
p′−(R)− w(λ)p−(R)

p−(R)
(3.11)

and
G±(λ,R) := P ′±(R)± P±(R) (W (λ)∓ f(λ,R)) , (3.12)

the condition (3.10) becomes

αG+(λ,R)eW (λ)R + β G−(λ,R)e−W (λ)R = 0. (3.13)
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In order to construct the Titchmarsh-Weyl function, we also have to impose
a generic Neumann condition at x = 0:

α
(
P ′+(0) +W (λ)P+(0)

)
+ β

(
P ′−(0)−W (λ)P−(0)

)
= z . (3.14)

Let us de�ne

F±(λ− iγ) := p′±(0;λ− iγ)±w(λ− iγ)p±(0;λ− iγ) = P ′±(0)±W (λ)P±(0) ,

so that the boundary condition (3.14) can be simply written as

αF+(λ− iγ) + β F−(λ− iγ) = z . (3.15)

Solving the system of two linear equations (3.13) and (3.15) by the Cramer's
rule, we get

α =
−z G−(λ,R) e−W (λ)R

G+(λ,R) · F−(λ− iγ) eW (λ)R −G−(λ,R) · F+(λ− iγ) e−W (λ)R
(3.16)

and

β =
z G+(λ,R) e+W (λ)R

G+(λ,R) · F−(λ− iγ) eW (λ)R −G−(λ,R) · F+(λ− iγ) e−W (λ)R
(3.17)

Therefore the Neumann-to-Dirichlet Titchmarsh Weyl function is the map-
ping

z 7−→ αP+(0) + β P−(0) ,

that is

z 7−→ z
P−(0)G+(λ,R) e+W (λ)R − P+(0)G−(λ,R) e−W (λ)R

G+(λ,R) · F−(λ− iγ) eW (λ)R −G−(λ,R) · F+(λ− iγ) e−W (λ)R
.

(3.18)

Remark 3.2.4. At this point, it is important to notice that w(λ), P+(· ;λ),
P−(· ;λ), F+(λ−iγ), F−(λ−iγ), G+(λ,R) and G+(λ,R), viewed as functions
of the complex variable λ, are analytic functions, at least inside the strip
{z ∈ C : 0 < Im(z) < γ}. This comes from the theory of complex linear
di�erential systems (see [10, Chap. 1, Sec. 8])

Our aim is now to show that the Titchmarsh-Weyl coe�cient above in
(3.18) is well de�ned. First, we notice that:

Lemma 3.1. If λ is contained in the strip {z ∈ C : 0 < Im(z) < γ}, the
functions P+ and P− are such that:
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• P±(0) 6= 0;

• F±(λ− iγ) = P ′±(0)±W (λ)P±(0) 6= 0.

Proof. Let φλ−iγ and ψλ−iγ solutions of the spectral equation

−u′′ + q u = (λ− iγ)u

satisfying the initial conditions(
φλ−iγ(0) ψλ−iγ(0)
φ′λ−iγ(0) ψ′λ−iγ(0)

)
=

(
1 0
0 1

)
.

Let

g+(x;λ− iγ) = P+(x) e+w(λ−iγ) .

Since φλ−iγ and ψλ−iγ form a basis of solutions of the spectral equation above,
g+ can be expressed in the form

g+(x) = c1 φλ−iγ(x) + c2 ψλ−iγ(x) ;

therefore also the derivative of g+ can be written as

g′+(x) = c1 φ
′
λ−iγ(x) + c2 ψ

′
λ−iγ(x) .

Then, it is clear that

g+(0) = P+(0) = c1 ,

g′+(0) = P ′+(0) + P+(0)w(λ− iγ) = c2 .

According to the proof of Theorem 3.1, the vector

(
c1

c2

)
is an eigenvector

of the monodromy matrix

Mλ−iγ =

(
φλ−iγ(L) ψλ−iγ(L)
φ′λ−iγ(L) ψ′λ−iγ(L)

)

with eigenvalue e+w(λ−iγ)L, that is the vector

(
P+(0)

P ′+(0) + P+(0)w(λ− iγ)

)
solves the system(

φλ−iγ(L)− ew(λ−iγ)L ψλ−iγ(L)
φ′λ−iγ(L) ψ′λ−iγ(L)− ew(λ−iγ)L

)(
X1

X2

)
=

(
0
0

)
.
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Let us de�ne

Eλ−iγ :=

(
φλ−iγ(L)− ew(λ−iγ)L ψλ−iγ(L)

φ′λ−iγ(L) ψ′λ−iγ(L)− ew(λ−iγ)L

)
;

therefore, the vector

(
P+(0)

P ′+(0) + P+(0)w(λ− iγ)

)
belongs to ker(Eλ−iγ).

Note that

det(Eλ−iγ) = e2w(λ−iγ)L −
(
φλ−iγ(L) + ψ′λ−iγ(L)

)
ew(λ−iγ)L + 1 = 0 ,

because ew(λ−iγ)L, eigenvalue of the monodromy matrix Mλ−iγ, is a solution
of the characteristic equation of the linear system. Also, both φ′λ−iγ(L) and
ψλ−iγ(L) are not 0: indeed, if -say- φ′λ−iγ(L) were 0, then φλ−iγ would be
solution of the self-adjoint (Neumann) problem:

−u′′ + q(x)u = (λ− iγ)u

u′(0) = 0

u′(L) = 0 ;

this would imply, by self-adjointness, that λ−iγ is real, but this is not possible
by the hypothesis that λ ∈ {z ∈ C : 0 < Im(z) < γ}. A similar argument is
used to prove that ψλ−iγ(L) 6= 0.
Since det(Eλ−iγ) = 0, then all the entries of the matrix Eλ−iγ are not null.
This means that

ker(Eλ−iγ) =

{
t

(
φλ−iγ(L)− ew(λ−iγ)L

ψλ−iγ(L)

)
: t ∈ C

}
and, in particular, P+(0) = 0 if and only if P ′+(0) + P+(0)w(λ− iγ) = 0.
A very similar proof also shows that P−(0) = 0 if and only if P ′−(0) −
P−(0)w(λ− iγ) = 0. Finally, using periodicity and self-adjointness as we did
above in Remark 3.2.3 to show that p−(R) 6= 0, it follows that P+(0) 6= 0,
P−(0) 6= 0 and, equivalently, F±(λ− iγ) 6= 0.

Lemma 3.2. Let t ≥ 0, µ ∈ C \σ(Hper); let g(x;µ) be the Jost solution (i.e.
belonging to D(Hper) ⊂ L2([0,+∞[)) of the spectral equation

−u′′ + q(x)u = µu .

Then,

Im

(
g′(t;µ)

g(t;µ)

)
has the same sign as Im(µ).
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Proof. By Floquet theory, it is known that g(x) ≡ g(x;µ) can be written as
p(x;µ)e−w(µ)x, where Re(w(µ)) > 0 and p(t;µ) 6= 0, because µ is not in the
spectrum of Hper (like in Remark 3.2.3); clearly g is such that

−g′′(x) + q(x) g(x) = µ g(x) . (3.19)

Multiplying both sides of (3.19) by ḡ(x) and integrating on [t,+∞[, we get:

−
∫ +∞

t

g′′ḡ dx+

∫ +∞

t

q |g|2 dx = µ

∫ +∞

t

|g|2 dx ;

then, a suitable integration by parts on the �rst integral gives:

g′(t)ḡ(t) +

∫ +∞

t

|g′|2 dx+

∫ +∞

t

q |g|2 dx = µ

∫ +∞

t

|g|2 dx . (3.20)

In the same way, starting from the complex conjugate version of equation
(3.19), we get:

ḡ′(t)g(t) +

∫ +∞

t

|g′|2 dx+

∫ +∞

t

q |g|2 dx = µ̄

∫ +∞

t

|g|2 dx . (3.21)

Subtracting (3.20) and (3.21) and dividing both sides by g(0) · ḡ(0) 6= 0, we
have that:

g′(t)

g(t)
− ḡ′(t)

ḡ(t)
=

(µ− µ̄)

|g(t)|2
∫ +∞

t

|g|2 dx .

This is equivalent to

Im

(
g′(t)

g(t)

)
= Im (µ)

1

|g(t)|2
∫ +∞

t

|g|2 dx ,

which �nally proves the Lemma.

Lemma 3.3. If λ is contained in the strip {z ∈ C : 0 < Im(z) < γ}, then

G−(λ,R) 6= 0 .

Proof. Let us recall that

G−(λ,R) = p′−(R;λ− iγ)− p−(R;λ− iγ) [w(λ− iγ) + f(λ,R)]

and

f(λ,R) =
p′−(R;λ)− w(λ) p−(R;λ)

p−(R;λ)
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Suppose that G−(λ,R) = 0, that is

p′−(R;λ− iγ)− w(λ− iγ) p−(R;λ− iγ)

p−(R;λ− iγ)
=
p′−(R;λ)− w(λ) p−(R;λ)

p−(R;λ)
.

(3.22)
Let

g−(x;λ) := p−(x;λ)e−w(λ)

and

g−(x;λ− iγ) := p−(x;λ− iγ)e−w(λ−iγ) ,

respectively Jost solutions of

−u′′ + q(x)u = λu

and

−u′′ + q(x)u = (λ− iγ)u

on [R,+∞[. By de�nition, the condition (3.22) can be rewritten as

g′−(R;λ− iγ)

g−(R;λ− iγ)
=
g′−(R;λ)

g−(R;λ)
,

in particular

Im

(
g′−(R;λ− iγ)

g−(R;λ− iγ)

)
= Im

(
g′−(R;λ)

g−(R;λ)

)
.

But this is not possible because, by Lemma 3.2

sgn

(
Im

(
g′−(R;λ)

g−(R;λ)

))
= sgn (Im(λ)) > 0 ,

while

sgn

(
Im

(
g′−(R;λ− iγ)

g−(R;λ− iγ)

))
= sgn (Im(λ− iγ)) < 0 .

According to the previous results, we may expect that the asymptotic
behaviour of the M -function in this case is similar to the free case ( and
to the compactly supported case). However, there is no evidence that the
coe�cients of the exponentially growing terms, both in the numerator and
in the denominator, are not zero.
As we are interested in the knowledge of this function for large R and we have
chosen R = nL (in order to guarantee translation invariance of the spectral
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equation), we can simplify the notation, using periodicity of the functions
p−, P+ and P−: indeed

f(λ, nL) =
p′−(nL)− w(λ)p−(nL)

p−(nL)
=
p′−(0)− w(λ)p−(0)

p−(0)
= f(λ, 0)

and

G±(λ, nL) = P ′±(nL)± P±(nL) (W (λ)∓ f(λ, 0)) = G±(λ, 0) .

Thus, if R is an integer multiple of the period L, the expression of the
(Neumann-to-Dirichlet) Titchmarsh-Weyl function becomes much simpler,
because the dependence on R is just in the argument of the exponentials:

z 7−→ z
P−(0)G+(λ, 0) e+nW (λ)L − P+(0)G−(λ, 0) e−nW (λ)L

G+(λ, 0) · F−(λ− iγ) e+nW (λ)L −G−(λ, 0) · F+(λ− iγ) e−nW (λ)L
.

Unfortunately, as already said, it is not possible to apply the same procedure
of Lemmata 3.2 and 3.3 to prove that

G+(λ, 0) 6= 0 ,

because the following holds true.

Lemma 3.4. Let µ ∈ C \ σ(Hper); let g+(x;µ) be the Jost solution of the
spectral equation

−u′′ + q(−x)u = µu

on L2(]−∞, 0]). Then,

Im

(
g′+(0;µ)

g+(0;µ)

)
has the same sign as −Im(µ).

Proof. The proof is very similar to the one of Lemma 3.2, except that the
integration is made on ]−∞, 0] and not on [t,+∞[.

Using the de�nition of G+, the condition

G+(λ, 0) = 0

is equivalent to
g′−(0;λ)

g−(0;λ)
=
g′+(0;λ− iγ)

g+(0;λ− iγ)
, (3.23)

which is not a contradiction in this case, at least according to Lemma 3.4.
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Call

h1(λ) :=
g′−(0;λ)

g−(0;λ)

and

h2(λ) :=
g′+(0;λ− iγ)

g+(0;λ− iγ)
.

Condition (3.23) thus becomes

h1(λ) = h2(λ) . (3.24)

Since h1 and h2 are analytic functions, de�ned on {z ∈ C : 0 < Im(z) < γ}
(see Remark 3.2.4), by the identity principle we can say that the set of λ's
such that (3.24) holds is (a priori) either discrete, with no �nite accumulation
point, or

h1(z) = h2(z)

for all z in the strip.
Actually, we can say more:

Lemma 3.5. Let
D := {z ∈ C : (3.24) holds} . (3.25)

Then
D 6= {z ∈ C : 0 < Im(z) < γ} .

and D is a discrete set, at most countable, having no accumulation point in
{z ∈ C : 0 < Im(z) < γ}.

Proof. Suppose that D coincides with {z ∈ C : 0 < Im(z) < γ}.
Numerical range reasoning tells us that the real part of the spectrum is
bounded below. Indeed,(

Hper
R,γu, u

)
L2

=

∫ +∞

0

q(x) |u|2 dx+ iγ

∫ R

0

|u|2 dx+

∫ +∞

0

|u′|2 dx ,

which implies that Re(λ) ≥ c, where c = −‖q‖∞. Thus (3.24) cannot hold
also for Re(λ) < c.
The functions h1 and h2 are analytic on {z ∈ C : 0 < Im(z) < γ, Re(z) > c}
and have cut singularities on the lines {λ ∈ C : Re(λ) ≥ c, Im(λ) = 0} and
{λ ∈ C : Re(λ) ≥ 0, Im(λ) = γ} (where the spectra of Hper and Hper + iγ
are contained), so (3.24) has to hold everywhere in the complex plane except
possibly on the two cut-lines. In particular, (3.24) holds for some λ such
that Re(λ) < c, which is impossible. So, by the identity principle for ana-
lytic functions, we can conclude that the set D has to be discrete with no
accumulation point inside the strip {z ∈ C : 0 < Im(z) < γ} .
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Therefore, we can state the following theorem about the spectrum of HR,γ

in the periodic case.

Theorem 3.5. Let D be as in (3.25). For every compact set

K ⊂ {z ∈ C : 0 < Im(z) < γ, z /∈ D} ,

there exists N̄ = N̄K such that for every n ≥ N̄ both the Neumann and the
Dirichlet spectra of the operator Hper

nL,γ are such that

σ
(
Hper
nL,γ

)
∩K = ∅ .

Proof. Using Lemmata 3.1 and 3.3, and the assumption that D is discrete,
we are able to prove uniform positivity of the moduli of the denominator
and of the numerator of the Titchmarsh-Weyl coe�cient and its uniform
boundedness. The proof is very close to the proofs of theorems 2.1 and
2.2.

Example (The free case). The potential q(x) ≡ 0 is, in particular, a periodic
function, with arbitrary period L - say L = 1. We would like now to use
all the notation of this section to study again the free case via the Floquet
theory we have developed so far.

Let φλ and ψλ be solutions of

−u′′ = λu (3.26)

such that (
φλ(0)
φ′λ(0)

)
=

(
1
0

)
,

(
ψλ(0)
ψ′λ(0)

)
=

(
0
1

)
.

Solving the spectral equation above, we have that if λ 6= 0

φλ(x) = cos(
√
λx)

and

ψλ(x) =
1√
λ

sin(
√
λx) .

The monodromy matrix is thus

Mλ =

(
φλ(1) ψλ(1)
φ′λ(1) ψ′λ(1)

)
=

(
cos(
√
λ) 1√

λ
sin(
√
λx)

−
√
λ sin(

√
λx) cos(

√
λ)

)
.



Solution of the problem for periodic background potentials 69

Note that detMλ = 1. The eigenvalues ρ± of Mλ are solutions of the char-
acteristic equation

ρ2 − 2 cos(
√
λ)ρ+ 1 = 0 ,

that is

ρ± = cos(
√
λ)±

√
cos2(

√
λ)− 1 = cos(

√
λ)± i sin(

√
λ) = ei

√
λ ;

therefore, the quasi-momentum is

w(λ) = i
√
λ =
√
−λ ,

chosen with positive real part.
Also, we can �nd two linearly independent solutions of (3.26) which can be
written in the form:

u
(±)
λ = p±(x;λ) e±w(λ)x = ±e±

√
−λx

as stated in Theorem 3.2. Note that the periodic functions p+ and p− are in
this case constant functions (we have assumed that p± ≡ ±1).
The real part of the Floquet exponent is 0 if and only if λ ≥ 0; according to
Theorem 3.3, we discover again that

σ(Hfree) = [0,+∞[ .

The functions f , F± and G± are easy to compute. Indeed

F±(λ− iγ) = p′±(0)± w(λ− iγ)p±(0) =
√
iγ − λ ,

f(λ,R) =
p′−(R)− w(λ)p−(R)

p−(R)
= −
√
−λ ,

G±(λ,R) = p′±(R)± p±(R) (w(λ− iγ)∓ f(λ,R))

=
√
iγ − λ±

√
−λ .

If λ is contained in the strip {z ∈ C : 0 < Im(z) < γ}, we have that

F±(λ− iγ) 6= 0

and
G−(λ, 0) 6= 0 ,

as expected according to Lemmata 3.1 and 3.3. Also, in this case

G+(λ, 0) 6= 0 ,
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so the discrete set D is empty.
The �periodic� Titchmarsh-Weyl coe�cient is then the same we have com-

puted in the free case:

−
[(√

iγ − λ+
√
−λ
)
e+
√
iγ−λR +

(√
iγ − λ−

√
−λ
)
e−
√
iγ−λR

]
√
iγ − λ

[(√
iγ − λ+

√
−λ
)
e+
√
iγ−λR −

(√
iγ − λ−

√
−λ
)
e−
√
iγ−λR

] .
3.3 Numerical experiments

In this section, we will show the results of some numerical experiments that,
to some extent, justify the idea that the Titchmarsh-Weyl function in the
general periodic case behaves exactly like in the free case, i.e. the term

G+(λ, 0) = p′+(R) + p+(R) (w(λ− iγ)− f(λ,R))

is not 0 in the strip {z ∈ C : 0 ≤ Im(z) ≤ γ}. In order to do that, we will
choose some periodic potentials on the real half-line, then build G+(λ) ≡
G+(λ, 0) for complex λ's and �nally try to see if there can be zeros in the
cases of study. In particular, we will show it by doing several �contour plots�
of the function |h|, where

h(λ) :=
p′−(0;λ)− w(λ)p−(0;λ)

p−(0;λ)
−
P ′+(0) + w(λ− iγ)P+(0)

P+(0)
.

The code has been developed in Matlab (see Appendix A for details).
First, let us start with sin as background potential. Figure 3.1 shows a

contour plot of the function |h| around the strip

{z ∈ C : 0 ≤ Re(z) ≤ 4, 0 ≤ Im(z) ≤ γ} .

According to Figure 3.1, it seems that h never has null modulus in the strip.
There are some (apparently) critical points on the lines {z ∈ C : Im(z) = 0}
and {z ∈ C : Im(z) = γ}, but they are local maxima for the function |h| (see
Figure 3.2). The function h has been also computed over a given mesh with
vertical and horizontal steps equal to 10−3 and it does not show signi�cant
changes of signs both in the real and in the imaginary part.

A similar experiment has been repeated choosing cos as background po-
tential (see Figure 3.3). Again, there are some points close to the lines
{z ∈ C : Im(z) = 0} and {z ∈ C : Im(z) = γ}, which are local maxima of
the modulus of h.

According to these examples, we may formulate the following Conjecture,
which has already been proven in the free background case.
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Figure 3.1: Contour plot of |h| associated with sin for γ = 0.2

Figure 3.2: Zoom around the local maxima of |h|

Conjecture 3.1. If λ is contained in the strip {z ∈ C : 0 < Im(z) < γ},
then

G+(λ,R) 6= 0 .

Equivalently

Conjecture 3.2. The set D de�ned in Section 3.2 is empty.

Conjectures 3.1 and 3.2 lead to Conjecture 3.3, which has a completely similar
form to Theorem 2.1 for free background potentials.

Conjecture 3.3 (Spectrum of the perturbed periodic operator). For every
compact set

K ⊂ {z ∈ C : 0 < Im(z) < γ}
there exists N̄ = N̄K such that for every n ≥ N̄ both the Neumann and the
Dirichlet spectra of the operator Hper

nL,γ are such that

σ
(
Hper
nL,γ

)
∩K = ∅ .
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Figure 3.3: Contour plot of |h| associated with cos for γ = 0.2

3.4 A characterization in terms of a PT - sym-

metric Schrödinger operator on the real line

In this section, we are able to say something more about our problem and
about Conjecture 3.1, under the additional assumption that the periodic
potential q is de�ned on all R and it is an even function, i.e. extending q as
follows:

q(−x) := q(x) ∀ x > 0 .

In this way, the condition

g′−(0;λ)

g−(0;λ)
6=
g′+(0;λ− iγ)

g+(0;λ− iγ)
, (3.27)

which is equivalent to Conjecture 3.1 (see Section 3.2), brings to a new,
equivalent:

Conjecture 3.4. Let

Qγ(x) :=

{
q(x) , if x > 0

q(x) + iγ , if x < 0
.

The spectral problem

−u′′(x) +Qγ(x)u(x) = λu(x) (3.28)

on L2(R) has no eigenvalues in the strip {z ∈ C : 0 < Im(z) < γ}.
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Indeed, if (3.27) were false, this would mean that the function

U(x) =

{
g−(x;λ) , if x ≥ 0

g+(x;λ− iγ) , if x < 0

is an eigenvector (in L2(R)) of (3.28) with eigenvalue λ, since the Jost func-
tions

g−(x;λ) = p−(x;λ)e−w(λ) ∈ L2([0,+∞[) ,

g+(x;λ− iγ) = p+(x;λ− iγ)e+w(λ−iγ) ∈ L2(]−∞, 0])

�match� with (second order) derivability at x = 0

g′−(0;λ)

g−(0;λ)
=
g′+(0;λ− iγ)

g+(0;λ− iγ)
. (3.29)

We have thus proven the equivalence between conjectures 3.1 and 3.4, that
is:

Theorem 3.6. If q is a periodic even function with period L, the function
G−(·, 0), de�ned in (3.12), is never null if, and only if, problem (3.28) on
the real line has no eigenvalues.

Problem (3.28) has some interesting properties, which are typical in the
context of PT -symmetric operators1.
First, one can show that the eigenvalues of the Schrödinger operator on L2(R)

Hper
Qγ

= − d2

dx2
+Qγ(x) ,

having domain D(Hper
Qγ

) = D(Hper), occur in complex pairs which are sym-

metric with respect to the line
{
z ∈ C : Im(z) = γ

2

}
.

Proposition 3.1. If λ is an eigenvalue of the problem (3.28), so is λ̃ :=
λ̄+ iγ.

Proof. Let λ be eigenvalue of the problem (3.28) with eigenvector u ∈ L2(R),
i.e. u is such that{

−u′′(x) + q(x)u(x) = λu(x) if x > 0
−u′′(x) + q(x)u(x) = (λ− iγ)u(x) if x < 0

;

1A PT -symmetric operator is an operator which has the property of space-time re�ec-
tion symmetry. For example a Sch�rodinger operator H = − d2

dx2 + Q(x) is PT -symmetric

if the potential is such that Q(x) = Q(−x).
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clearly, u also satis�es{
−ū′′(x) + q(x) ū(x) = λ̄ ū(x) if x > 0
−ū′′(x) + q(x) ū(x) = (λ̄+ iγ) ū(x) if x < 0

.

Call v(x) := ū(−x); then v belongs to L2(R) and is such that{
−v′′(−x) + q(x) v(−x) = (λ̃− iγ) v(−x) if x > 0

−v′′(−x) + q(x) v(−x) = λ̃ v(−x) if x < 0
.

Since q is an even function, v satis�es{
−v′′(x) + q(x) v(x) = λ̃ v(x) if x > 0

−v′′(x) + q(x) v(x) = (λ̃− iγ) v(x) if x < 0

i.e. v is an eigenvector for problem (3.28) associated with the eigenvalue
λ̃.

Remark 3.4.1. If we consider a shift of λ, such that the new spectral pa-
rameter is z := λ− iγ

2
and λ̃ becomes λ̃− iγ

2
= λ̄ + iγ

2
= z̄, equation (3.28)

can be rewritten as

−u′′(x) + Q̃γ(x)u(x) = z u(x) ,

where Q̃γ(x) := Qγ(x)− iγ
2
. For every x ∈ R, Q̃γ is such that

Q̃γ(−x) = Q̃γ(x) ; (3.30)

so, according to (refeq:ptsympot) the Schrödinger operator

Hper

Q̃γ
:= − d2

dx2
+ Q̃γ(x)

is in the class of PT -symmetric operators. Note that its eigenvalues occur
in complex conjugate pairs.

Now, note that, according to the assumption on q, the spectral equation
on L2(R)

−u′′(x) + q(x)u(x) = µu(x)

is symmetric with respect to the real axis, therefore it is enough to consider
it on L2([0,+∞[); also, we have that g−(x;µ) = g+(−x;µ), in particular for
µ = λ and µ = λ− iγ. Then the matching condition (3.29) becomes

g′−(0;λ)

g−(0;λ)
= −

g′−(0;λ− iγ)

g−(0;λ− iγ)
.
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De�ne for z ∈ C
m(µ) =

g′−(0;µ)

g−(0;µ)
;

it can be seen as the multiplicative coe�cient of a Dirichlet-to-Neumann
Titchmarsh-Weyl function (see Section 1.4). Equation (3.29) is then equiva-
lent to

m(λ) = −m(λ− iγ) . (3.31)

We have seen that solutions of (3.31), if they exist, occur in complex pairs.
So far, in our analysis, the non-negative parameter γ has been kept �xed;

now we will show that, moving γ so that it is su�ciently small, the relation
(3.31) may not be valid under some limiting hypotheses.

Suppose that, for su�ciently small γ, equation (3.31) has a pair of solu-
tions λγ and λ̃γ = λ̄γ + iγ. Suppose also that there exists λ0 such that

lim
γ↓0

λγ = λ0 ,

i.e. for every ε there exists δ > 0 such that |γ| < δ implies that |λγ − λ0| < ε.
The same has to hold for λ̃: λ̃γ −→ λ̄0.
Suppose that λ0 is not in the essential spectrum; in particular it has to belong
to R \ σess(Hper), i.e. λ0 = λ̄0. This implies that

dist(λγ, λ̃γ) = 2
∣∣∣Im(λγ)−

γ

2

∣∣∣
tends to 0 as γ ↓ 0.
Consider a regular open subset of the strip {z ∈ C : 0 < Im(z) < γ}, con-
taining λγ and λ̃γ: for example, a ball centered at c := Re(λγ) + iγ

2
with

radius ρ :=
∣∣Im(λγ)− γ

2

∣∣ + aγ, where a is a constant chosen to ensure that
the ball is strictly contained in the strip for every γ. Let us now de�ne the
closed curve

Γγ := ∂B(c, ρ) ,

oriented counter-clockwisely. Note that as γ tends to 0, Γγ shrinks to Γ0 =
{λ0}.
Let

h(λ) = m(λ) +m(λ− iγ) .

Since h(·) is an analytic function having two zeros λγ and λ̃γ inside Γγ, by
the argument principle it is known that

1

2πi

∮
Γγ

h′(z)

h(z)
dz = 2 .
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By dominated convergence

1

2πi

∮
Γγ

h′(z)

h(z)
dz

γ↓0−→
∮
{λ0}

h′(z)

h(z)
dz = 0 ,

which leads to a contradiction. We have thus proved:

Proposition 3.2. For small γ's, equation (3.31)

m(λ) = −m(λ− iγ)

has no zeros with real part Re(λ) /∈ σess(Hper).

So, we have seen that if the projection of λ on the real axis (call it π(λ))
lies in the spectral gaps of the periodic background operator

m(λ) = −m(λ− iγ)

cannot be true for small γ's. Also, this holds if π(λ) is in the interior of the
spectral bands (which are closed intervals, see Theorem 3.4), as shown by
the following:

Proposition 3.3. Let λ ∈ C such that π(λ) ∈ int(σess(H
per)). Then, for

su�ciently small γ

m(λ) 6= −m(λ− iγ) .

Proof. Suppose that there exists λγ such that

m(λγ) = −m(λγ − iγ) .

Then also λ̃γ is a solution of the equation. By hypothesis, the real point
Re(λγ) = Re(λ̃γ) belongs to the essential spectrum of Hper, in particular to
one of the (in�nitely many) spectral bands. Call l the width of this spectral
band.
Denote by B+(c; ρ) the upper half of the ball B(c, ρ) in the complex plane,
having center at

c :=

(
Re(λγ) +

iγ

2

)
+

i

100

∣∣∣Im(λγ)−
γ

2

∣∣∣
and radius

ρ := inf
(∣∣∣Im(λγ)−

γ

2

∣∣∣+ γ, l
)
,
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where a is chosen in order to guarantee that B+(c; ρ) is a strict subset of{
z ∈ C : γ

2
< Im(z) < γ

}
. Consider the following closed path surrounding

λγ:

Γγ := ∂B+(c; ρ) ∪ {z ∈ C : |Re(z − c)| ≤ ρ and Im(z) = Im(c)} .

Similarly for λ̃γ, de�ne

Γ̃γ := ∂B−(c̃; ρ) ∪ {z ∈ C : |Re(z − c̃)| ≤ ρ and Im(z) = Im(c̃)} ,

where

c̃ =

(
Re(λγ) +

iγ

2

)
− i

100

∣∣∣Im(λγ)−
γ

2

∣∣∣ .
As γ tends to 0, both Γγ and Γ̃γ shrink to π(λγ).
Again, by Cauchy's formula

1

2πi

∮
Γγ

h′(z)

h(z)
dz = 1

and
1

2πi

∮
Γ̃γ

h′(z)

h(z)
dz = 1

But this is a contradiction, because both the integrals above converge to zero
as γ ↓ 0.



78 Chapter 3



Appendix A

Codes

In this section we would like to present the Matlab codes which have been
written for the purposes of Section 3.3. The aim was to construct the function
G+(λ, 0) de�ned in Chapter 3 for some given periodic potentials and see if it
could be null somewhere in the strip. We conject that it is never 0.

First of all, the following function called 'monodromy' computes the mon-
odromy matrix associated with a potential q:

function M=monodromy(lambda,q)

phi_0=1; Dphi_0=0; % initial values phi

psi_0=0; Dpsi_0=1; % initial values psi

per=2*pi; % chosen period

time_span=[0,2*per]; % time interval for the solution

function xp= A(x,Y) % 1-dim vector field

xp=zeros(2,1);

xp(1)=Y(2);

xp(2)=(q(x)-lambda)*Y(1);

end;

sol=ode45(@A,time_span,[phi_0,Dphi_0]);

Phi=deval(sol,per);

sol=ode45(@A,time_span,[psi_0,Dpsi_0]);

Psi=deval(sol, per);

M=[Phi Psi];

79
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end;

The function 'eigenratioM' produces the value of the ratio

g′−(0; z)

g−(0; z)

for x ∈ C.

function r=eigenratioM(z,q)

[V D]=eig(monodromy(z,q));

a=D(1,1);

if real(a)<0

r=V(2,1)/V(1,1);

else

r=V(2,2)/V(1,2);

end;

end;

Similarly, the ratio
g′+(0; z)

g+(0; z)

can be computed as follows by 'eigenratioP'.

function r=eigenratioP(z,q)

[V D]=eig(monodromy(z,q));

a=D(1,1);

if real(a)>0

r=V(2,1)/V(1,1);

else

r=V(2,2)/V(1,2);

end;

end;

Then, let us de�ne, for λ ∈ C

h(λ) :=
g′−(0;λ)

g−(0;λ)
−
g′+(0;λ− iγ)

g+(0;λ− iγ)
.
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function x=h(lambda,q,gamma)

x=eigenratioM(lambda,q)-eigenratioP(lambda-gamma*i,q);

end;

That G+(λ, 0) = 0 is equivalent to h(λ) = 0. In order to prove or disprove it,
in Section 3.3 we made a contour plot of the absolute value of the function
h. Actually, the function 'graphcont' written here below does this job: it
returns a matrix of values of the function h in a given rectangular domain
and plots the �contour� of the absolute value |h|.

function L=graphcont(q,gamma,xmin,xmax,ymin,ymax,stx,sty)

nx=floor(1+(xmax-xmin)/stx);

ny=floor(1+(ymax-ymin)/sty);

x=(0:nx-1)*stx+xmin;

y=(0:ny-1)*sty+ymin;

L=zeros(ny,nx);

for h=1:ny

for k=1:nx

param=xmin+(k-1)*stx+i*(ymin+(h-1)*sty);

L(h,k)=h( param, q, gamma );

end;

end;

contour(x,y,abs(L));

end;
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