
University of Padua

DEPARTMENT OF MATHEMATICS ”TULLIO LEVI-CIVITA”

Master degree in Mathematics

Automatic algorithm for foreign object damages detection on
engine compressor’s blades

Candidate:

Marco Agugiaro
1132552

Thesis advisor:

Prof. Fabio Marcuzzi

Research supervisors:

Dr. Giulia Antinori
Julian von Lautz

Thesis submitted on the 28th September 2018





Contents

1 Problem description 7

1.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Damages classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 State of the art 13

2.1 Previous work on the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Motivation and objective of the partitioning . . . . . . . . . . . . . . . . . 14

2.2 Splines functions and approximation . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Alternative approximating functions: polynomials . . . . . . . . . . . . . . 16

2.3 Least square approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Penalized splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Penalized least square approximation . . . . . . . . . . . . . . . . . . . . . 18

2.4 Strategy to detect the location of damages . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Damage classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Sample Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 23
2.7 PCA applications: shape analysis and orientation . . . . . . . . . . . . . . . . . . 24

3 Proposed solution 27

3.1 Strategy for surface partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 Airfoil partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Edges partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Top part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4 Corners partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.5 Fillet partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Approximating function choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Strategy for identifying potential location of the damages . . . . . . . . . . . . . 38
3.4 Damage classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Components analyzed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Result structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6.1 Approximant parameters choice . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.2 Thresholds choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.3 Displayed results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Application of the detection algorithm to blisk analysis 45

4.1 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 First partitioning method . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Second partitioning method . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3



4 Contents

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Application of the algorithm to the analysis of worn blades 65

5.1 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Border . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Top part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusions and improvement ideas 81

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.1 Blisk summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.2 Worn blades summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.1 Partitioning method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.2 Approximating function construction . . . . . . . . . . . . . . . . . . . . . 84

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A Code 89

A.1 Main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.1 blisk_main_spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.2 blade_main_spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.3 blisk_main_poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.1.4 blade_main_poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.2.1 analysis_spline_main . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.2.2 analysis_spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.2.3 analysis_poly_main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2.4 analysis_poly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.3 Partition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
A.3.1 partition_main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.3.2 partition_re�nement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.3.3 partition_grid_cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.3.4 utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



Introduction

In this thesis will be presented an algorithm to analyze the surface of jet engine blades. The
purpose of the algorithm is to locate damages and imperfections on the blade and to classify
them. In particular, impact caused by foreign object damages, or FODs for brevity, will be
distinguished by other forms of damages, like corrosion.

The informations collected can be used, for example, to develop new components more resis-
tant and durable.

At the moment the detection task is manually performed, which is an extremely time con-
suming process. The result obtained are also subjective because the similar shape of FODs and
other damages often makes it di�cult to tell them apart. The algorithm proposed greatly reduce
the time necessary for the inspection and the results returned lack any kind of subjectivity.

The �rst chapter contains the description of the problem, the characteristics of the data avail-
able and the feature of the damages to be found. The second chapter presents the mathematical
tools used to develop the algorithm and previous work on the topic of damage detection.

The third chapter describes thoroughly the proposed method. The algorithm is based on the
comparison between a scan of the surface and a smoothed version of it, through which anomalies
are detected. Principal component analysis is then used to classify them.

Chapters four and �ve show the results obtained applying the algorithm to the blades in
di�erent states, newly manufactured and already used.

In chapter four newly produced blisk blades are analyzed to detect blemishes caused by the
manufacturing process. Damages on those blades are fewer in number and all imperfection must
be identi�ed as relevant. In chapter �ve corrosion and deformations are also present due to the
usage, making the detection harder and requiring the selection of only the relevant damages.

The conclusions are presented in chapter six, along with ideas on possible future direction of
research. In the appendix a Python implementation of the method is available.

The method proposed in this work does not include neural networks, which are often used
for image recognition and analysis purposes, and was developed according to the nature of the
problem and the available data. The damages to be found, in fact, present themselves in a variety
of shapes and sizes, and the blades themselves have di�erent features depending on their model.
The blades visually analyzed, while numerous, were not enough to guarantee a su�ciently big
training set. In addition the subjectivity of the visual detection could cause problem with the
training on the smaller damages.

The method proposed resulted e�ective, highly adaptable to di�erent blade models, and it
only requires the setting of a limited number of parameters to be properly applied.

As the results show, the method is not absolutely perfect, but it is considered satisfactory for
the company. In particular it is worth highlighting that the algorithm is being actually applied
by the company as an extra safety check for blisk blades. The use as an auxiliary tool for visual
damage detection on worn down blades was also discussed.

5





Chapter 1

Problem description

Scope of this thesis is to present an algorithm to detect and classify damages on inner com-
ponents of jet engines. The method presented aim to locate automatically the position of the
impacts and analyze their shape.

Foreign object damages, shortened FODs, refers to damages on aircrafts, helicopters, launch
vehicles engines or other aviation equipment which take place when a foreign object strikes
the engines, �ight controls, airframe and other operating systems [10]. For a more in-depth
dissertation on the foreign object nature refer for example to [11] and for their speci�c e�ects to
[22].

FODs are a serious issue in aviation maintenance industry that can only be properly controlled
by performing regular and accurate controls over aircraft and engine components.

Engines in particular tends to draw small objects (and unlucky birds), ice and dust particles
along with the large amount of air ingested to function. Any solid materials sucked in can impact
with velocities in the range 100− 350 m/s depending on the rotational speed of the blades.

In this thesis we will deal speci�cally with engine blades and the dents left on them by
FO, with focusing in particular on dents small enough to be hard to detect with direct visual
inspections. Collected data on the shape, size and position of those indents is useful to better
understand the FO dynamic in the engine and help design more resistant components.

To explain the interest in small damages must be remembered that deformations big enough
to be noticed during regular controls are immediately substituted. Their prevention is mainly
dependent on the the correct following of the safety procedures while the aircraft is on the ground
[11]. The e�ects of smaller indents are less evident but have e�ect on longer term.

Turbine engines blades experience low-cycle fatigue (LCF) loading due to normal start-�ight-
landing operations and high-cycle fatigue (HCG) loading due to vibration and resonant air�ow
dynamics. The small surface indentation caused by FOs impacts can increase the speed of the
wearing and become fatigue crack initiation sites [23].

To minimize those kind of failures the components must be substituted on a regular basis
as a precaution, even when no damages are immediately apparent. This increases substantially
the maintenance costs, prompting for the companies in the airline industry to research over this
subject.

A better understanding of those damages position and e�ect would provide insights on how
to improve the designs of blades and components in general, justifying the interest on the topic.
Obtaining an extensive collection of data on FOD features and locations is a fundamental pre-
requisite for any study on their prevention.

Right now the detection and classi�cation of these micro-impact on dismissed blades is per-
formed by an operator checking on a 3D visual representation of the surface. The model is
obtained from the physical blades through the use of white light scanner technology.

7



8 Problem description

(a)

(b)

(c)

Figure 1.1: On the left (1.1a) a photo of one engine compressor blade, on the upper right (1.1b)
a picture of an engine compressor. On the lower right (1.1b) a detail of damages on one corner.



1.1 Data structure 9

Figure 1.2: Basic structure of a jet engine from [25]. Blades of di�erent shapes are present in
the fan, low and high pressure compressor, low and high pressure turbines.

This visual analysis is an extremely time-consuming process and various days of work can be
spent to analyze a single blade. Those time-frames are necessary to perform an accurate search
on the magni�ed image of the blades. The reasons are the small dimensions of the damages, in
the tenth of millimeters, and the need to look at the model from di�erent angles to detect all
the imperfections on it.

An automatic algorithm would not only save time but also give less subjective results.
Before de�ning the characteristics of the damages, it can be useful to understand the structure

of the available data and their simpler properties.

1.1 Data structure

The last years saw a sharp increase in the use of laser scanners to measure a physical object
and build a 3D model of it. There are a variety of applications for such technology, for instance to
detect imperfections (as in our case) or to digitalize and mold the structure of a new component
to build. Depending of the application there are di�erent ways to both measure the object and
translate them into a 3D structure. The scans involved in this work were obtained using a white
light scan measuring system to produce a triangular mesh as a stl �le.

Stl �les describe unstructured triangular meshes, where each triangle composing it is described
using its vertexes and the unit normal to its surface. If the normal is not given it is automatically
evaluated to be orthogonal to the triangle surface. Let us suppose that the points are distributed
on a horizontal plane, the orientation of the normal depends on the order of the vertexes. Using
the right hand rule the normal will point upwards if the vertices are given in a counter-clockwise
order, downwards otherwise.

The structure of the mesh is richer than the cloud of points formed by the triangles vertices.
The triangles and their normal give a oriented piecewise linear surface and also a proximity



10 Problem description

Figure 1.3: White light scanner mounted on top of a robotic arm and one blade to be measured.
Picture from [24].

relation between the vertexes.
As an example the normal direction allow the distinction between inside and outside of a

surface, to understand if an imperfection is protruding or indented. The triangles structure can
be used to build a graph connecting vertexes of the same triangles. This graph can then be used
to easily select neighborhood of points without measuring the distances.

Working with the scan of one blade, no matter how accurate the scanner can be, implies to
deal with an approximated representation of the object and not a perfect one. Measurement
includes a certain level of noise, and can be imprecise in on certain parts of the object, for the
blades on the thinner parts of edges where the mesh loses its smoothness. The data involved in
this work presented a noise level of 0.001 mm, one order of magnitude smaller than the minimum
depth of a relevant damage (0.02 mm), giving a tight safety margin.

To maintain a error level small enough to detect the damages the order of magnitude of the
number of points involved is in the millions. This implies high costs in terms of memory and
computational time for every analysis involving the whole mesh.

About the distribution of mesh vertices is interesting to notice that the point distribution
along the surface is not uniform in the data used. The mesh construction starts from distinct
measurement taken from di�erent angles and return a mesh with a higher density of points in the
areas with greater curvature and less points on the �atter portions. This allow for a smoother
result by keeping the angle between adjacent faces normal under a threshold without using all
the measurement data.

The coordinate system is set to be the same for every blade, using a bolt near the base as
a reference point. This rototranslation of the whole mesh allow the data to be standardized, at
least in a macroscopic sense.

This procedure is performed separately and won't be discussed in this work, but is important
to notice that translating and rotating the mesh is not su�cient to �t it to a reference model.

Precisely because the blades analyzed are worn it can not be expected for them to be identical.
Trying to use a pristine one as a reference model shows di�erences in the blade shape much bigger
than the damage size. The causes of those deformations are the mechanical stress the blades are
subject and the impacts close to edges and corners.

The combined e�ect of those forces causes small bends to appear on the thinnest parts of the
blades without predictable patterns.

In addition small pieces on edges, corners and topmost portion get occasionally chipped o�



1.2 Damages classi�cation 11

Figure 1.4: Worn blade mesh scan, corner detail. FODs are highlighted in the green, in the red
examples of corrosion and yellow marks some dubious cases.

because of erosion and grazing impacts. This means that is not possible to �nd reliable reference
points usable to identify those deformation. Performing non-rigid transformations to adjust those
small deformation without changing the shape of the damages is then di�cult.

The aligned meshes then have to be assumed similar but with small di�erences, mainly on
the thinnest parts. The scans are too di�erent from each other to use a common reference model
of the blade to make a comparison.

1.2 Damages classi�cation

Detecting FOD on blades does not mean to locate every imperfection on the surface. Even
excluding the noise involved in the measuring process, impacts are not the only source of damages.

Another source of defects to be kept into consideration is corrosion, which gradually erodes
the surface giving it an orange peel appearance. The cavities caused by corrosion are extremely
similar in size to the impact ones and di�ers mainly on their shape. 1

The analysis should be able to distinguish between the two causes of damages. Visually
the di�erence between impact and corrosion is usually clear, but there are no known criteria or
parameter for this speci�c task.

Qualitatively speaking impact damages are rounder, deeper and more de�ned while corrosion
is wider, more shallow and often elongated and branched with irregular patterns. Those unfor-
tunately are only guidelines, sometimes corrosion run deeper than small FOD, or the impact is
inside a corroded part.

On the edges of the blade the impacts are instead more elongated and scratch-like, given the
di�erent type of impact involved [21].

The shape of the potential FOD is the main discriminant, simply looking at their dimensions,
length width and depth, does not usually allow for a safe distinction. What we look for are then
the "rounder" and deeper impacts, while everything else will be classi�ed as corrosion.

One common feature for both impacts and corrosion is that the depth is usually one order of
magnitude smaller than length and width of the damage . This detail is important during the

1There are also other types of damages possible, like cracks, but will not be discussed in this work because
their size was too small to be detected by the scanner. Given more accurate measurements the same approach
proposed should still be usable to detect them, with di�erent search parameters, as shown in [2].



12 Problem description

analysis of the damages shapes.
Once again is important to highlight the small di�erence between the two kind of damages

in both dimensions and shape. The minimum size of a relevant impact is extremely small, with
a depth in the tens of micron, similar to the corrosion.

The accuracy requirements explain why non-rigid transformations of the blades are risky,
and why small deformations of less than a millimeter spread along the length of the whole blade
present such a big obstacle.



Chapter 2

State of the art

The problem of identifying and measuring damages or imperfections on scans of physical
objects is surely not new. Various works which propose possible solutions has been published,
in both general and speci�c cases. However, the requirement for this speci�c application are too
restrictive to apply one of the available methods.

The algorithm proposed here is similar to the one in [2] mainly regarding the methods used
to classify the structure of potential damaged zones. The identi�cation of the damaged zones is
instead an original idea.

In this chapter the algorithm presented in the article is described to give an idea on how this
type of problem is solved in a di�erent �eld of application. The mathematical methods used both
there and in our solution will also be shown, while the algorithm we propose will be discussed in
the next chapter.

2.1 Previous work on the problem

The article [2] describe an algorithm to detect damages on wind turbines. The authors
propose a method based on the comparison between scans of the objects and a 3D reference model
of a pristine turbine to locate the damages. The imperfections identi�ed are then distinguished
between impacts, cracks and corrosion.

The most remarkable di�erence between the application discussed in the article and the one
of this thesis is the size of the analyzed objects.

While jet engine blades are even less than 10 centimeters big the size of a wind turbine varies
from 40 to 90 meters in diameter [7] with blades up to 80 meters long [8]. This di�erence has
consequences over the level of deformation acceptable and the size of the regular damages. A
bending of 0.1 millimeters is enough to prevent the use of a reference model for engine blades,
the same level of deformation is instead irrelevant for wind turbines.

For the same reason the size of damages of interest is vastly di�erent, but once re-scaled they
should present roughly the same shape and features.

Despite the di�erences between applications, the fundamental ideas on how to classify the
imperfections presented in [2] are also useful for our problem, with due modi�cations.

Getting back to the algorithm, the authors �rst divide the surface in smaller patches and build
a parametric approximation of each of them. Those approximating surfaces are then compared
to the corresponding portion of the reference model. The model is also de�ned piecewise on the
same portions of the object, and with the same kind of approximating function.

By evaluating the di�erences between the two surfaces the locations of the damages are
identi�ed as the locations where the di�erences are higher than a minimum threshold. The

13



14 State of the art

(a) (b)
(c)

Figure 2.1: In green the points to be modeled, the grid represent the approximant. The result
in 2.1c, with only half the surface, is clearly more accurate to the one with superimposition of
points (2.1a) or almost vertical sides (2.1b).

focus is then shifted to classifying the imperfections based on their type, speci�cally impacts,
cracks and corrosion. This is done by considering both the dimensions of the clusters of points
composing the damages and the principal component analysis of the di�erences on those same
points.

The necessity of those intermediary steps is discussed in the following sections, starting from
the reason behind the initial partitioning.

2.1.1 Motivation and objective of the partitioning

While it is possible to build a local approximation of even complex shapes, if the graph of
a function is used to parametrize it (as in both the article and our case) the surface structure
must be simple enough. Horizontal folds or (almost) vertical parts of the meshes make the mesh
impossible to be modeled with this kind of approximant as shown in Fig:2.1.

Working with smaller windows is useful to simplify the geometry of the portion involved and
to decrease computational cost of many operation.

For the same reason each patch should be oriented to reduce the presence of steep inclines
as much as possible.

An example could be the di�culty of parameterizing a folded surface compared to the same
task performed on the separated layers. This is exactly what happens on the edges of the blade's
faces. Such portions should be divided and a local approximation build, after applying proper
rotations.

The problem then is to decide how the partitioning should be performed to simplify the
structure as much as possible and to minimize the problems associated with the parametrization.

The procedure have to also be automatized, so this choice have to be independent of the
small variations that appear in the scans and in this regard adaptable once set for a class of
objects. This issue is not discussed further in the article, the solution proposed can be found in
the next chapter.

Once the partitioning has been performed, and the patches are oriented in a proper way, the
authors use spline functions to build a parametric approximation of them.



2.2 Splines functions and approximation 15

2.2 Splines functions and approximation

Given an interval [a, b] ⊂ R close and limited and given a = x1 ≤ x2 ≤ · · · ≤ xn = b a
spline of degree m is a Cm−1([a, b]) that, in each [xi, xi+1] ∀i ∈ {0, 1, . . . , n − 1} is a m degree
polynomial. The xi points are called knots.

A B-spline function, or basis spline, is a spline with minimal support with respect to his
degree and the domain partitioning. To allow a B-spline to be de�ned also on the edges of a
interval, the knots are usually padded by repeating the extremes a and b a number of time equal
to the degree desired.

With an interval de�ned as above, B-splines are recursively de�ned as

Bi,0(t) =

{
1 xi 6 t 6 xi+1

0 otherwise

}
, 1 6 i 6 n

Bi,j(t) = t−xi
xi+j−xiBi,j−1 +

xi+j+i−t
xi+j+1−xi+1

Bi+1,j−1,
1 6 j 6 m,

1 6 i 6 n+m− j.

(2.1)

where Bi,j(t) is the B-spline centered in xi of degree j and t is a point of the domain.
We de�ne spline functions of d degree as linear combinations of d degree B-splines, and can

be seen as

s(t) =
n∑
i=1

Bi,d(t)ci ∀t ∈ [a, b] (2.2)

where ci are called control points, whose scalar values are associated with each of the B-splines.
They can be seen as the amount of "pulling" or "pushing" performed on each knot, with s being
the resulting curve.

Since splines are polynomials piecewise, in virtue of the following theorem any continuous
function can be uniformly approximated by them.

Theorem 2.1 (Weierstrass approximation theorem). Suppose f is a continous real-valued func-

tion de�ned on the real interval [a, b] . For every ε > 0, a polynomial p exist such that, for all t
in [a, b], we have | f(t)− p(t) |< ε.

To improve the accuracy of a polynomial approximant is necessary to increase its degrees.
With splines the degree can be kept �xed changing instead the number of control points (and
knots). This is particularly useful for interpolation purposes, where increasing the degree of
polynomials, even piecewise, can produce oscillating results as shown with the Runge function
example.

Going from two to three dimension, B-splines are de�ned as the tensor product between
two-dimension ones. This means that, given a domain [a, b]x[c, d] ⊂ R2, a 3D B-spline on the
(i, j) knot of the grid produced by crossing a knot vector {x0, . . . , xnx} ⊂ [a, b] over another knot
vector {y0, . . . , yny} ⊂ [c, d], of degree dx along the �rst axis and dy along the second, is de�ned
as

B2
(i,dx),(j,dy)

(u, v) = Bi,dx(u)Bj,dy(v)

Their linear combination is then in the form

sc(u, v) =

nx∑
i=1

ny∑
j=1

Bi,dx(u)Bj,dy(v)ci,j ∀t ∈ [a, b] (2.3)

where the control points are still associated to the various B-splines.
The parameters necessary to de�ne a function like sc(u, v) are then the number and position

of the knots, the degrees of the splines along each axis and the values of the control points.



16 State of the art

Figure 2.2: From left to right: 2D B-spline basis for 2nd degree splines, 3D B-spline basis with
bi-variate 2nd degree splines and example of spline surface.

Increasing the number of control points, and of the respective B-splines, increase the degree
of freedom of the spline function, allowing a potential better �t when the spline is used as an
approximating function.

Once the knots are placed and the degrees are set, is possible to �nd the values of the control
points to approximate a set of points by minimizing the energy functional

E(c) =
N∑
k=1

(

nx∑
i=1

ny∑
j=1

Bi,dx(uk)Bj,dy(vk)cij − zk)2 (2.4)

with Pk = (uk, vk, zk) measured points on the surface. Minimizing the square values of the
di�erence is a natural way to obtain a good approximation, and while not the only method
possible, is certainly the most widespread.

Is also possible to build the B-spline basis on knots that are not equispaced, to increase the
accuracy in certain part of the domain. In our implementation the position of the knots was
determined in the same way as for the value of the control points.

Splines are not the only possible choice as an approximating functions, even polynomials can
be used for the same purpose.

2.2.1 Alternative approximating functions: polynomials

A simpler alternative to spline approximants are polynomials. Our datasets are composed
of surfaces in a 3D space so is natural to work with bivariate polynomial. From now on by
polynomials of m by n degrees, or mxn for short, we mean

p(x, y) =

m∑
i=0

n∑
j=0

cij x
iyj (x, y) ∈ R2, cij ∈ R (2.5)

where the constants cij unequivocally de�ne it. To approximate a set of N points with a poly-
nomial one possible solution is minimizing the energy functional

E(c) =
N∑
k=0

(
m∑
i=0

n∑
j=0

cij x
i
ky
j
k − zk)

2 (2.6)

over c = (c00, . . . , cmn).
In both (2.6) and (2.4) the most natural way to compute the values of the parameters is the

least square method.



2.3 Least square approximation 17

2.3 Least square approximation

Suppose f : Rd −→ R is an unknown function and that we are given a set of measurements
(xi, zi) = ((x1, . . . , xd)i, zi) for i = 1, . . . , N , where zi = f(xi) + εi with εi measurement error.
We want to build an approximating function s ∈ S where S is the subspace spanned by the
functions B1, . . . , Bk (with k � N). We can then express s in function of a parameter vector
c = (c1, . . . , ck) ∈ Rk as

s = sc =

k∑
j=1

Bjcj . (2.7)

To de�ne c with the linear least square method we choose the values that minimize the energy
functional

E(c) =
1

2

N∑
i=1

(sc(xi)− zi)2 =
1

2

N∑
i=1

(
k∑
j=1

Bj(xi)− zi)2 (2.8)

that is equivalent to �nd the solution for

argmin
c∈Rd

‖Bc− b‖2 (2.9)

where Bij = Bj(xi) and bi = zi.
Sometimes can be useful to add some regularizing components to avoid excessive oscillation

in the resulting approximating function, or to just get a smoother solution. One way to do this
is by using a penalized version of linear least square approximation.

2.3.1 Penalized splines

To obtain a smoother spline approximant is possible to add a weight term to (2.4) to control
a speci�c feature of the resulting function. Ss a penalty term we could for example take the thin
plate spline energy as in [6]:

J(c) =

∫ b1

a1

∫ b2

a2

s2xx(u, v) + 2sxy(u, v) + syy(u, v)2 dvdu (2.10)

where s = sc. This can be expressed, once the (2.3) is substituted, as

nx∑
i=1

ny∑
j=1

nx∑
r=1

ny∑
s=1

Eijrscijcrs

where
Eijrs = Aijrs + 2Bijrs + Cijrs ,

Aijrs =
∫ b1
a1
B′′i,dx(u)B′′r,dx(u) du

∫ b2
a2
Bj,dy(v)Bs,dy(v) dv ,

Bijrs =
∫ b1
a1
B′i,dx(u)B′r,dx(u) du

∫ b2
a2
B′j,dy(v)B′s,dy(v) dv ,

Cijrs =
∫ b1
a1
Bi,dx(u)Br,dx(u) du

∫ b2
a2
B′′j,dy(v)B′′s,dy(v) dv .

How such weight can be included during the research of the control points is discussed in the
next subsection, along with the importance of the correct choice of λ.



18 State of the art

2.3.2 Penalized least square approximation

Least square �tting is useful for its simplicity and for the noise �ltering property [4], coming
from the disparity between number of data and parameters. To get a smoother result, to further
reduce the noise or to control particular features to s, a penalty term J(c) can be added to (2.8)
before minimizing the result.

Many smoothing terms can be expressed as J(c) = cTEc where E is a symmetric non-negative
matrix in Rk×k. This result is a new energy functional in the form

Eλ(c) =
1

2

N∑
i=1

(
k∑
j=1

Bj(xi)− zi)2 +
1

2
λcTEc (2.11)

where λ ≥ 0 is the weight applied to the penalty(or smoothing) term.
This allow the following:

De�nition 2.2. The penalized least squares �t of the function f based on data (xi, zi) for
i = 1, . . . , N is the function sc(λ) where c(λ) minimize Eλ(c).

Under the minimal hypothesis that B has full rank the following holds

Theorem 2.3. For any λ ≥ 0 there exist a unique vector c(λ) minimizing the functional Eλ(c)
in (2.11). In particular, c(λ) is the unique solution of the system

(BTB + λE)c = BT b . (2.12)

Proof. Setting the gradient of Eλ(c) equal to zero gives (2.12) and the condition on B ensure
that G = BTB is symmetric, positive de�nite and non singular. Given that E is symmetric and
non-negative by de�nition we get that BTB + λE is also symmetric and non-negative de�ned,
so the solution exist and is unique.

Let's now consider the mean square error of the �t

T(x,z)(λ) =
1

N

N∑
i=1

[sc(λ)(xi)− zi]2

and see how the value of λ in�uence it. In case of data not a�ected by noise, with εi = 0 ∀i holds

Theorem 2.4. The function T(x,z)(λ) is monotone increasing λ ≥ 0 with Ṫ(x,z)(0) = 0 and

limλ−→inf Ṫ(x,z)(0) = 0.

This means that in absence of noise the smoothing of the approximant can only maintain or
worsen the error level. However the data available are almost never noiseless. In the simplest
case possible, where εi are normally distributed with mean 0 and variance σ2, we have

Tε,(x,z)(λ) = T(x,z)(λ) + 2εTA(λ)T (A(λ)c− b) + εTA(λ)TA(λ)ε

where A(λ) = B(G+ nλE)−1BT , whose mean value is

εTε,(x,z) = T(x,z)(λ) +
σ2A2(λ)

n
. (2.13)

The behavior of this new energy function is described by the following



2.3 Least square approximation 19

Figure 2.3: A surface example with one damage as the indent in the center and localized noise

to simulate corrosion. The base structure is the one of −x
2

10
+
y2

10
polynomial.

(a)

(b)

(c)

(d)

Figure 2.4: The upper row shows the spline approximations of Fig:2.3 without penalty (2.4a) and
with λ = 10 (2.4c). The penalized case does not model the damage, the regular one partially �ts
the indent. In the lower row the di�erence between approximation and data for the two cases.
The penalized case 2.4d, being less �exible, has higher error on the border and slightly higher
di�erences in the impact.



20 State of the art

Theorem 2.5. The function εTε,(x,z) has value εTε,(x,z)(0) = T(x,z)(0) + kσ2

n and asymptotically

approach the value T(x,z)(inf) + kσ2

n as λ −→ inf. It's derivative is negative for λ = 0 and

εTε,(x,z)(λ)− εTε,(x,z)(0) ≥ σ2

n
(t(λ)− t(0)) (2.14)

where t(λ) = trace(A2).

This shows that in presence of noise λ = 0 is not the optimum and a higher value can lead
to better results. Unfortunately the only way to determine a good choice of λ is by testing it on
multiple values, requiring a trial-and-error strategy.

2.4 Strategy to detect the location of damages

In article [2] the location of the damages is found using the computed parametric approxi-
mation of the patches and with a spline reference model of the same portions analyzed. The two
functions are compared by computing the absolute value of the di�erences between corresponding
control points.

The di�erences are evaluated only on the control points, the original points of the mesh are
not considered anymore. It's then clear the necessity of a number of control points su�cient
to ensure that every damage is not only modeled, but also has enough of them to be properly
analyzed. The exact amount of points depend on the size of relevant damages: the smaller the
minimum acceptable damage, the more control points are required.

Working only with the control points fasten this part of the analysis but the computational
price is paid searching the approximant. An high enough number of control points would make
the combined cost of �nding the approximant and performing the damage analysis higher than
using the initial point directly.

The di�erence values are all non-zeros because of small error of measurement, alignment or
approximation. To remove this noise the di�erences must be �ltered with a minimum threshold
level to remove this kind of noise.

The choice of this threshold is particularly important: too small and undamaged parts will
be identi�ed as damaged by the algorithm spoiling the quality of the following analysis, too high
and small damages will be ignored or will have too little points to be properly analyzed.

The list of di�erences between control points is divided between the ones with a variation
too small, that get rounded down to zero, and the ones with the relevant di�erence. The latter
are the only one that will be considered in the following parts.

Once separated, by some proximity or connectivity criteria, the points forming the damages
need to be studied separately for each distinct cluster to determine their type and importance.

2.5 Damage classi�cation

To determine what type of damage is being analyzed various parameters can be checked.
The easiest and most natural features to be extracted are:

• damage area,

• maximum distance between two point of one cluster, as an indicator of how "long" one
damage is,

• depth as the maximum value for the di�erences.



2.6 Principal component analysis 21

Figure 2.5: Example of di�erence between data and model, on the left un�ltered on the right
cropped.

This is not enough to distinguish the causes of the damage, but already gives an idea on how big
(and then dangerous) one imperfection is.

The next step is to perform an indirect form of measurement by using the principal component
analysis. Using the �ltered di�erences as inputs it is possible to extract an indication of the shape
of the indent through the normalized vector of the principal component values.

To better understand how PCA can help detecting the shape of a cluster of points it's
continuous and discrete formulations are presented.

2.6 Principal component analysis

Suppose that x is a (vertical) vector of p random variables and the structure of variance and
covariance is of interest. The covariance matrix is de�ned as

Σ = E[(x− µ)(x− µ)t] (2.15)

where µ is the mean value vector of the p variables and E is the expected value operator. The
variance V ar(x) of the variables is the diagonal of Σ matrix, to obtain the variance of xi we can
then compute V ar(xi) = etiΣei with ei ∈ Rp equal to zero on every entry except for the i-th
where is equal to one. Using Σ and the variance is possible to compute the correlation matrix,
which component de�nition is

corri,j(x) =
Σi,j(x)

V ari(x) ∗ V arj(x)
∀1 ≤ i, j ≤ p. (2.16)

Unless in some simple cases, looking at the covariance matrix usually is not really helpful to
understand the variables dynamic. Another method to obtain better information is necessary.

Principal component analysis (PCA) is a statistical method that returns linearly uncorrelated
variables from potentially correlated ones by using orthogonal transformations. The new variables
are called principal components (PC), are orthogonal to each other and, in decreasing order for
the highest variance along the direction orthogonal to the previous. A detailed description of
the following part can be found in [5].



22 State of the art

Figure 2.6: Examples of damages shown in [2], on the top-left impact damage, on the top-right
crack damage and corrosion on the bottom, with respective normalized PCA values.

To do that we seek for a linear transformation l1(x) = αt1x, where α1 = [α1,1, . . . , α1,p] ∈ Rp,
such that the variance V ar(αt1x) = αt1Σα1 is maximized. Then for α2 uncorrelated with the
previous α1 with the same property of maximum variance. We repeat the process choosing new
αi uncorrelated from all the previous, until αp included. To avoid in�nite results for the αi
values the condition αtiαi = 1 is imposed.

To maximize V ar(αt1x) subject to αt1α1 = 1 we can use the Lagrange multipliers maximizing

αt1Σα1 − λ(αt1α1 − 1) (2.17)

where λ is a Lagrange multiplier. Di�erentiating with respect to α1 and looking for the zero in
the derivative gives

(Σ− λIp)α1 = 0

where Ip is the (pxp) identity matrix. This imply that λ is an eigenvalue of Σ corresponding
to the eigenvector α1. To decide which couple of eighnvector and eigenvalue to choose we must
remember that we were maximizing

αt1Σα1 = αt1λα1 = λ

so we need the maximum eigenvalue of Σ, and the corresponding eigenvector is α1. The second
PC, which maximize V ar(αt2x) is subject to αt2α2 = 1 and uncorrelated to α1 that means that

0 = αt2Σα1 = α2λα1 = λα2α1 = 0

thus one of the following must hold:

αt1Σα2 = 0 αt1α2 = 0. (2.18)

Choosing the second one and using the Lagrange multipliers we obtain

αt2Σα2 − λ(αt2α2)− φαt1α2 (2.19)



2.6 Principal component analysis 23

Figure 2.7: Examples of use of PCA to determine the axis of a point cloud representing an
ellipsoid.

if we di�erentiate with respect to α2 looking for the maximum, and multiply on the left for αt1
what we want to solve is

αt1Σα2 − λ(αt1α2)− φ(αt1α1) = 0

but the �rst two terms are equal to zero because of (2.18) so φ must be zero. Then, removing
the third term from (2.19), we obtain the same as (2.17) but for α2 that, combined with (2.18),
implies that α2 is the eigenvector relative to the second bigger eigenvalue of Σ, and orthogonal
to α1. The procedure is similar for the following PC.

This can be done by computing the SVD decomposition of the covariance matrix: the PC
values λi here then the diagonal entries of the S matrix and the PC directions are the column of
V.

However the data available are not continuous variables but a discrete set of points, requiring
then a di�erent de�nition of the variance matrix.

2.6.1 Sample Principal Component Analysis

Suppose that we have n indipendent observation on the p-elements of the random vector x,
denoted as x1, . . . ,xn. Let's de�ne zi,1 = at1x and choose the vector a1 to maximize the sample
variance

Σn =
1

n− 1

n∑
i=1

(zi,1 − z1)(zi,1 − z1)t (2.20)

where z1 =
1

n

∑n
i=1 xi,1 is the sample mean value and xi,1 the �rst element of the i-th sample

vector.
The result obtained in the previous section still hold for the sample formulation.
Principal component analysis can still be performed by �nding eigenvectors and eigenvalues

of the covariance (or correlation) matrix of the set of data. To do that the singular value
decomposition can be used.

To prove that is useful to remember that the covariance matrix is symmetric positive semi-



24 State of the art

de�nite. In fact

ytΣny = y

(
1

n− 1

∑n
i=1(zi,1 − z1)(zi,1 − z1)t

)
y =

=
1

n− 1

∑n
i=1 y

t(zi,1 − z1)(zi,1 − z1)ty =

=
1

n− 1

∑n
i=1((zi,1 − z1)ty)t((zi,1 − z1)ty) =

=
1

n− 1

∑n
i=1((zi,1 − z1)ty)2 ≥ 0 ∀y ∈ Rp

(2.21)

and

Σt
n = (

1

n− 1

∑n
i=1(zi,1 − z1)(zi,1 − z1)t)t

=
1

n− 1

∑n
i=1((zi,1 − z1)(zi,1 − z1)t)t = Σn.

(2.22)

The spectral theorem then state that the matrix is diagonalizable using the eigenvectors as
an orthonormal base i.e. Σn = QΛQt with QQt = QtQ the identity matrix and Λ diagonal
matrix with the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0 as its diagonal entries d11 ≥ d22 ≥ ... ≥ dpp.

Computing the singular value decomposition will return Σn = UΛV t = QΛQt then U = V =
Q and Λ = S. The diagonal entries of S are then the eigenvalues of Σn and the rows of V t of
the columns of U are the corresponding eigenvectors. The PCA results can then be extracted
from the singular value decomposition of the covariance matrix.

2.7 PCA applications: shape analysis and orientation

The principal components directions are an alternative reference system which has the prop-
erty of having the greatest variance along the �rst axis, the second greatest (orthogonal to the
�rst) on the second and so on. In this new coordinate system the variables are distinguished
based on variance and this, for example, helps to view the data from a better angle.

To classify one �nding as impact damage the �rst two components, representing length and
width of the cluster of points, should be similar to select the ones round enough. The third
component, alias the depth, should be smaller but still way bigger than what instead happens
on the corroded locations, where the damage is lager and shallower.

The relative size of the damages dimensions guarantee that the depth is always the smaller
of the three dimension for every imperfection, corrosion included1.

These qualitative consideration must be quanti�ed and adapted depending on the problem
at hand, to consider the shape and size of the damage to be found.

The third PC value also gives us an indication of the relative magnitude of the depth compared
to length and width. As shown in [12] some indicators can be easily extracted from the PC values

Linearity : Lλ = λ1−λ2
λ1

Planarity : Pλ = λ2−λ3
λ1

Sfericity : Sλ = λ3
λ1

Change of curvature : Cλ = λ3
λ1+λ2+λ3

(2.23)

and the general shape of the object can be recovered from them.
This obviously does not mean that the results of PCA are meaningful on any set of data:

outliers and more complex shapes can spoil the quality of the results as shown in Fig:2.8. Selecting
only the point belonging to the damages will be necessary to perform a correct analysis.

1A third kind of damage they consider are cracks or �ssures, in this case the second components is expected
to be sensibly smaller than the �rst one.



2.7 PCA applications: shape analysis and orientation 25

Figure 2.8: Example of use of PCA and its limitations, the set of data must be chosen correctly
to get useful results. Damages must be delimited correctly to distinguish them between each
other and to exclude undamaged portion of the surface.





Chapter 3

Proposed solution

The process described in the previous chapter, while suitable for wind turbines, could not be
applied directly to jet engine blades because of two main issues.

First of all the damage considered in the article are way bigger than the one on jet engine
blades. Even more so compared to the precision level attainable with the scanners because the
margin of error is way smaller than what appear to be in the article. This does not only means
that all the thresholds values must be kept extremely low, but also that the smaller variation in
them can make a considerable number of damages appear (or disappear).

In addition the article method would require a parametric approximation capable of modeling
the damages. The construction of such an approximating surface would be computationally
expensive and di�cult, requiring a number of control points close to the number of original
points in the mesh. This fact would nullify the computational advantage of working with control
points only, as building an adequate approximation would be too computationally expensive.

The second, and bigger problem is the lack of a usable reference model. Even if scans of
newly produced blades are available, the small di�erences caused by consumption, manufacturing
process and scanning conditions are bigger than the searched damages.

Furthermore the wide range of possible deformations makes the prospect of adapting the
shape of the blade to a reference model impractical. Edges and corners, the natural reference
points of the mostly �at blades, could be missing small pieces, or the scan itself could be inaccu-
rate because of their thinness, making them unreliable in this sense. This makes the identi�cation
of such anomalies complicate and make their correction even harder.

So, while de�nitely not impossible to build a reference model and de�ning a procedure to
adjust each blade to it, such a solution was discarded in favor of what appeared to be a more
promising one.

To overcome this obstacle the solution found is to build an approximation of the surface,
but an extremely simpli�ed and smooth one. This smooth function will then be used as a local
reference model and compared directly with the original points instead of the control points.

The small size of the damages is actually helpful in this, making them easily ignored in favor
of the rest of the patch. Building an arti�cial comparison model for each window solves the
problem of the bends, because the resulting arti�cial model is independent from the original
structure.

The price to pay is the cost of actually �nding a new approximant for each distinct portion
of every distinct blade and working with all the points of the mesh.

In fact this process is actually fast considering that the requirement of a smooth approx-
imation instead of an extremely accurate one require a low level of �exibility. An extremely
low number of parameters are necessary compared to what would be needed to get an accurate
approximation of the surface as in [2].

27



28 Proposed solution

The use of small patches also keep the number of points used at one time extremely low,
resulting in a reasonably fast process, as will be shown in the following chapters.

This is obviously far from being a solution to the problem. In addition to the parameters
discussed earlier the typology of approximant and the way the portioning is done in�uence heavily
the quality of the results.

The simpler and smoother the approximant, the more it can be used as a reference, but then
the portion of surface involved must have a simple geometry too. This point must be considered
in presence of fast variation of the curvature, steep vertical portion of the windows, and folds in
general.

3.1 Strategy for surface partitioning

Knowing the shape dependency of the partitioning strategy the approach to the various part
must be di�erent depending on how such portion is structured. We can di�erentiate �ve main
structures in the blades:

• airfoil: the large, almost �at central part;

• edges: the lateral borders of the blade, where the surface fold on itself;

• corners: on the top left and right, here the surface is extremely thin and potentially
chipped;

• top: the top horizontal edge.

• fillet: the part joining base and blade, important for structural integrity, presenting a far
greater curvature than the airfoil part.

Those parts must be divided from each other, and further separated in pieces small enough to
be easy to work with.

To do this at �rst a rough partitioning is applied to the mesh dividing it into quadrilateral
windows and then those parts are further re�ned. The dimension of such windows must be
selected to retain enough points to allow an approximation capable of avoiding the damages, and
small enough to avoid excessive change in shape and curvature.

The �rst subdivision is made through a grid, as in the �gure above, starting from six points
provided by the user. Four of them are chosen so that the blade over the �llet is fully included,
the last two are the lower corners necessary to include the �llet. A lax bounding box would not
cause signi�cant problem to the algorithm provided that the �rst and last column of each row
fully include the edges and corners.

Given the curvature of the blades, dividing the mesh in this simple way do not gives patches
of the same size or even with the same height-width ratio. The procedure is not sensitive to small
variation in this sense. The focal point is to separate di�erent features (i.e. airfoil and edges)
and keep the windows dimension close to a certain size. A greater uniformity in the patches form
could help but is far from necessary.

Once those separations are done the boxes containing di�erent parts of the blade can be
distinguished based on their position in the grid. The corners are in the topmost left and right
boxes, the edges in the �rst and last column, the top edge is in the topmost row, the �llet in the
two lowest rows and the airfoil �ll all the others.

The sub-meshes extracted are then further re�ned depending on the features contained.



3.1 Strategy for surface partitioning 29

(a)

(b)

(c)

(d)

Figure 3.1: On the left the grid used for the �rst subdivision step, on the right three di�erent
kind of results: edge (3.1b), airfoil (3.1c) and corner (3.1d) examples. The blue points in 3.1a
are the one necessary to build it, the black dots represent a subset of matrix points. The grid
contains the mesh but does not require the inclusion to be extremely tight. The two lower rows of
the grid contain the �llet, the remaining are divided between airfoil, edges (�rst and last column)
and top (upper row).



30 Proposed solution

Figure 3.2: On the top left one portion of airfoil obtained with the grid windowing, on the top
right the two components distinguished by color. On the lower row the approximation (grid) of
a simpli�ed model of the airfoil (green ponts) in the original vertical position and once rotated
using the PCA directions.

3.1.1 Airfoil partitioning

Each windowed part of the airfoil contain both sides of the surface that have to be separated
to allow the parametrization. By using the libraries trimesh [15] and networkx [16] it's possible
to build a connectivity graph of the mesh which links together adjacent faces, allowing the
distinction of the two sides from each other.

The last step is to translate the mesh to have it centered in the origin and rotate it to help
the construction of the approximation.

Those transformations are easy to perform on the airfoil. For each sub-mesh the mean value
of its points is found and is subtracted to each of them to center the mesh.

The matrix used to orientate the mesh horizontally is obtained through the PCA. The PCA
of the covariance matrix Σn of these translated points is computed through its singular value
decomposition Σn = USV t where the PC direction are the rows of the matrix U t = [di, d2, d3]

t.
The �rst two components represent the two direction of higher variance, and being the surface

almost �at the resulting mesh is almost parallel to the xy plane. The �at structure of the
airfoil guarantees that no further adjustment are required. The result can also be used as a



3.1 Strategy for surface partitioning 31

parameterization of the points mapping their (x, y) coordinates into their z ones.
The rotation matrix and the center are stored to reconstruct the damages position at the end

of the detection process.

3.1.2 Edges partitioning

The edges portions of the mesh are far more delicate because the structure of the edges makes
them di�cult to approximate with the graph of a function. The two sides of the blade must be
separated as for the airfoil but there is also the part that connect them to be considered.

Dividing one side from the other can not be simply done with some kind of connectivity based
procedure, given the single piece of mesh involved. There is also no clear distinction between the
�at sides and the curved edge except for this qualitative distinction.

Anyway the fundamental issue is that the patches extracted must have a structure simple
enough to modeled with splines or polynomials to be properly analyzed.

As a consequence separating the mesh in just two parts would not be enough. At least one of
the two sub-meshes would include a portion of the curved edge orthogonal to the �at side part,
making it extremely hard to properly model. In fact, once oriented, the thin edge strip would
result (almost) vertical and being small in comparison to the whole patch would not in�uence
the approximation su�ciently to be correctly �tted.

A minimum of three sub-meshes are necessary: two for the sides, they will be called borders
to distinguish them from the regular airfoil, and at least one for the edge.

Is also important to notice that if the edge portion is too large its structure will became too
complex because of the parallel border strips attached. In addition the method used to divide
them have to be robust against the deformation that are occasionally present on the edges.

De�ning the correct portions to be carved is the hardest part of the partitioning process.
Two methods are here exposed to solve this problem. Their results will be shown in the next
chapters.

First edge re�ning method

The simplest algorithm proposed is based on the triangular faces normal. Chosen a direction
orthogonal to one border side as reference the scalar product of it with all the faces normal of
the patch is evaluated. If the result is close to 1 is on the same side, if close to −1 on the other,
the middle ground is the curved junction part on the actual edge.

The right reference direction and what close means are the parameter of this method and
determine where the border parts ends and the curved edge start.

The direction was selected as the mean values of the face normals of a group roughly in
the center of one of the �at sides. This group was determined as the neighborhood of faces
surrounding the triangle whose barycenter was the closest to the mean of mesh points.

Deciding the minimum (and maximum) values of the scalar product is hard to determine at
prior.

The more of the bent part is left on the �atter portion, the hardest it is to model it with
a smooth and simple approximant. Even more �exible modeling function would have problem
because of the small area on the twisted portion in comparison to the whole piece.

Being otherwise too "strict" is also problematic because the remaining curved part would have
two almost parallel strips on the sides. Those parts make a parameterization impossible if left
on top of each other (see Fig:2.3). If otherwise rotated to avoid the overlapping the sides would
became almost vertical, increasing the di�culty of building a good approximating function, as
shown in Fig:2.4a.



32 Proposed solution

Figure 3.3: On the upper row the spline approximation (grid) on a fold similar to the edges
(green) with di�erent orientation. On the middle row the spline approximation perdormed on
half the fold as it is (left) and with the rotation obtained with th PCA directions (right). The
di�erences of the corresponding approximation error are displayed in the last row and show how
such a solution is not su�cient.



3.1 Strategy for surface partitioning 33

Figure 3.4: On the left one portion of the edge obtained with the rough windowing, on the right
the two sides in blue and red and the curved edge in green.

Is also possible to leave large portion of the �at sides attached to the edges if the starting
reference normal is chosen poorly, or if the surface presents a higher curvature than usual.

Once a good choice of the parameter is found and the three components are build they still
have to be oriented in a proper way. The two border parts are treated like in the airfoil case:
translated using the center of the mesh and rotated with the matrix of the principal components
directions.

The third part require some extra attention. The rotation and translation are both performed
but the result could have a much steeper side than the other. This happens because the rotation
based on the PCA is in�uenced by the sizes of the lateral strips, that are usually di�erent. When
one is larger than the other that side will be oriented more horizontally given the increased
variance.

To better orientate the edge portion a second rotation determined with a brute force method
is applied. Working with the points projected along the edge length, their second and third
components after the PCA based orientation, rotations with di�erent angles (between [−π

6 ,
π
6 ])

are applied. A parabola approximant is built for each rotation result and the one which allow
the lower error is selected and applied to the original data.

This extra step resulted in a stark reduction of the approximation error. Given the small num-
ber of points involved and the simplicity of the approximating function, with only 3 parameters,
the time consumption is also conveniently small.

The rotation matrix is then multiplied for the PC direction one and stored in its place to
allow for the �nal reconstruction of the damages positions.

Second edge re�ning method

This procedure is more adaptive than the previous one and based on the edge detection
algorithm presented in [13]. To start the mesh is roughly divided in two parts based on the faces
normal.

For each piece a smaller subset of triangular faces (called building set for convenience) is
selected, in the same way as for the �rst method. The faces' centers of this set are used to build



34 Proposed solution

Figure 3.5: On the left one portion of the edge obtained with the rough windowing, on the right
the two sides in blue and green, the two portions of the actual edge in red and yellow.

an approximation with a bi-variate low degree polynomial.
This approximant does not take into account any of the other parts of the portion, and is

computationally cheap to perform given the low number of parameters involved and the small
set of data used.

The faces of the mesh whose centers are within a certain distance from the approximant
become the new building set. The process is then repeated ten times (or until the set start
shrinking) to build a collection of faces of the mesh that can be easily �t with a simple approxi-
mant, and then should allow a good �t with the spline approximation.

The remaining faces are divided by connectivity and the groups with a small number of
points are added to the previous list. This is both to avoid getting a shredded remaining mesh
and because the damages in the middle of the �at part are usually separated by the algorithm
because they do not �t with the approximation.

The same then apply for the selected faces, in this case only to remove disconnected pieces
that could spoil the construction of the spline approximant. The two separated portions are
saved as borders and kept separated from the airfoil for reasons that will be cleared in the next
chapters.

The faces discarded from the two starting sub-mesh are then joined back together in what is
basically the actual curved edge. This residual part is bigger compared to what the �rst method
produced, an ulterior division in two pieces is necessary to simplify its structure.

Using the same approach with two distinct building sets, selected close to the two borders,
two patches are identi�ed. The biggest one is saved as �rst edge portion while the residual,
if there is one, as the second one. Trying the construction of a patch on both sides helps in
obtaining a bigger patch, useful to reduce the e�ect of impacts on the approximation, and makes
the process less sensitive to the selection of the initial building set.

This method is slower than the �rst one, but the results are less sensitive to the choice of the
reference normal and the patches extracted are inherently easier to approximate, improving the
accuracy of the algorithm on the edges.

Each of the sub-meshes obtained is then aligned as with the airfoil and the last two are given



3.1 Strategy for surface partitioning 35

the extra adjustment with the parabola approximant as in the �rst method. The transformation
matrices and centers are stored to recover the original position at the end.

3.1.3 Top part

The topmost strip of the grid contains the superior edge of the blade. While the edge was not
relevant for the application the transition zone between airfoil and top edge must be analyzed,
and require extra care to extract patches regular enough to be approximated correctly.

The same procedure as for the edges is applied. The actual summit is not analyzed further
while the two �at parts are stored as "top", separately from borders and airfoil.

3.1.4 Corners partitioning

The rapid change in curvature between airfoil and edges of the blade makes the construction
of an accurate approximation di�cult. In addition to that on the corners the thinness of the
blade makes the scanning procedure less reliable, with a result lacking the same smoothness
found in the other parts of the mesh.

As shown in the picture in Fig:3.6 the mesh on the edges is jagged and irregular because of
measurement errors. The information coming from faces normal become then mostly meaningless
and the distinction between the top and side portion of it is made even harder.

The thinness of the corners is also related to a higher chance of bigger deformations and
damages caused by chipped o� pieces.

The irregularities reduce the usefulness of the approximant as reference model as the corner
edge is much more narrow than in the other portions of the edges, and not as straight. The con-
struction of a straightforward approximant or simply orienting it a much more di�cult prospect.
The �at parts at the sides were stored with the top patches.

Because of these reasons the algorithm discussed in this work was not applied to the corners.
A solution to the edge analysis problem will be proposed in the �nal chapter along with other
ideas on how to further improve and modify the algorithm.

3.1.5 Fillet partitioning

The �rst step to divide the �llet is to separate the points belonging to the horizontal base
from the points belonging to the junction (and the blade itself). To do that the normals are
once again used: all the triangles with a normal (almost) parallel to the vector orthogonal to the
lowest horizontal line of the grid belong to the base, the remaining to the �llet.

The �llet portion can then be partitioned in the same way as the rest of the blade: for every
horizontal strip the �rst and last cell of the grid are to be treated as edges and the other as the
airfoil.

The main di�erence between the �llet and the other parts is the higher curvature of the
surface. This doesn't have any e�ect on the separation of the two sides for the airfoil cells, but
makes the separation of the edges much more sensitive to the initial choice of reference normal
or building set as shown in Fig:3.8c.

The �rst method for the edges re�nement is not e�ective and only the second showed ac-
ceptable results, even if the junction part at the base is often divided in a less regular way
than expected. As an example, Fig:3.8d shows how the red patch is not divided with a straight
line from the blue border piece. This level of irregularities did not caused di�culties for the
approximation, while the situation in Fig:3.8c proved to be much harder to �t correctly.



36 Proposed solution

Figure 3.6: The edge of a corner portion (extracted with the �rst method) represented as a
surface, made of the triangular faces of the mesh.

3.2 Approximating function choice

To build an arti�cial model of the surface windows the family of functions used must be
capable of giving an accurate approximation of the cloud of points but smooth enough to avoid
�tting the impacts. It should also be identi�able in reasonably low times to guarantee a good
usability.

Polynomyals and splines functions have been used for this purpose because of their �exibility
and thanks to the availability of libraries to e�ciently work with them, like splipy [17].

The �exibility of a polynomial approximant can be tuned changing the degree along each axis.
Keeping the degree low the result will be smoother, less adaptable and so ignore the irregularities
more easily. The low number of parameters to be found will also fasten the computations required
for its evaluation and initial identi�cation. Increasing the degrees reduces the approximation error
and improve the �tting but might over�t and also model the damages.

As an example, the patches on the airfoil can be modeled correctly with �ve by �ve degrees
polynomials, that need only 15 parameters per window to be de�ned. On the other hand working
with the edges showed that the more complex geometries require higher degrees to keep the
residual error low enough to perform further analysis, increasing however the risk of �tting the
damages in the model.

Spline approximants, as described in (2.3), allow a greater adaptability as the number of
control points grow. The structure of the splines is also di�erent from the one of the polynomials.

Polynomials are global approximants, in the sense that each parameter that de�nes them
in�uence every point in the domain, with the exception of the axis at best. Splines are instead a
linear combination of B-spline functions, each of which has support in only a small portion of the
domain. This implies that modifying the value of a control point will cause local modi�cation
of the spline, leaving the portion outside of the respective B-spline function domain unaltered.
This allow a better approximation of the mesh, especially on the edges where sharp turn and
steep inclines are present, but increase substantially the risk of modeling the damages. To lessen



3.2 Approximating function choice 37

Figure 3.7: Fillet portion of the mesh, after the removal of the base.

(a) Detail of the �llet edge. (b) Detail of �llet airfoil.

(c) Example of bad partitioning.
(d) Example of correct partitioning.

Figure 3.8: In Fig:3.8c and Fig:3.8d the border points are represented in green and blue while
red and yellow are the �rst and second portion of the edge. The irregular structure of the edge
portion in Fig:3.8c is caused by the incorrect selection of the initial building set.



38 Proposed solution

this problem a smoothing parameter can be added to the formulation as described in (2.3.1).
The cost of evaluating a spline function also is higher than the one for polynomials because

of the underlying cost of evaluating separately the basis functions on each input point. This
limitation depends on the library used and not on the splines directly but it is important to
remember it when comparing the time results in the next chapter.

Must be also remembered that spline functions have a domain de�ned from their knot position
instead of the data. To uniform the process the domain was kept at [0, 1]2 ⊂ R2 for every patch
and a transformation applied to the input points to move the corner of the window to the corner
of the unit square.

Once build, the approximant was evaluated on the xy coordinate of the input points and
those values used to compute the di�erences necessary to locate the damages.

3.3 Strategy for identifying potential location of the damages

The identi�cation of the damage locations and the portions of the patches involved require
the comparison between data and the arti�cial model that is the approximation. The absolute
values of the di�erences between the points in the portion being analyzed and the corresponding
points on the parametric approximant are the instrument necessary to do it.

Selecting the correct points for each damage is fundamental to perform a correct study on
their shapes, highlighting the importance of the approximating model to obtain meaningful values
for the di�erences

A critical part for the di�erence evaluation are steep slopes. Even if the distance between
model and data is small, de�ned as minimum distance between a point of the mesh and the points
of the approximant, the di�erence between their third components can be higher. Controlling
this aspect should be done in the partitioning part of the algorithm by dividing and re-orienting
zones with a steep incline.

The evaluated di�erences have to be �ltered with a minimum threshold, chosen so that the
unavoidable measurement noise and the blemishes too little to be relevant can be ignored. Every
value under the threshold is rounded to zero. This parameter will be called �rst parameter or
�rst threshold in the results chapters.

After the �ltering is performed the points with positive di�erence values are selected and
must be separated between the di�ernt damages.

To distinguish di�erent locations the solution found was to build a sub-mesh with only the
triangular faces marked by the high di�erence and build a connectivity graph of them. Using
the connectivity graph is then easy to distinguish separated cluster of points, in the same way
as with the two sides of the airfoil for the portioning.

To avoid taking too few points to perform meaningful further analysis the location considered
are enlarged by two layer of neighbor triangles or, in case of single points, by �ve layers of
neighbors. This a�ect the size of the marked zones, but the �lter always remove some points at
the base of the damages so this steps mainly compensate that as saw in �gure 2.5.

Each cluster of points is then analyzed independently.

3.4 Damage classi�cation

Once each zone is isolated, they are translated so that their center is in the origin of the axis.
At this point PCA can be performed on the covariance matrix of the points in it, but with the
di�erences evaluated previously in place of the z values. This is necessary to reduce the e�ect of
the surface curvature in the analysis.



3.5 Components analyzed 39

What must be measured is the entity of the deformation, the divergence from the pristine
form, and not the shape of the points itself, that is dependent on the surface. It is intuitive how
a scratch on a plane and the same scratch on a curved surface are di�erent, the same holds for
impacts. Using the di�erences enable us to ignore the shape of the mesh to a certain degree and
work only with the variation induced from the damage.

The relative sizes of the impacts in this application guarantee that the third component, the
smallest one, is always the depth, because length and width are always bigger. The location
marked are analyzed to determine their real dimensions. To do this the cluster of point is re-
oriented by using the principal component direction as in the portioning part, then length, width
and depth can be measured along the axis as the maximum di�erences along the new axes.

The principal components values are then normalized and the location classi�ed based on
the results. Normalizing the values is done to work with the relative magnitude of the PC values
instead of their values. The structure of the impacts usually present values with the same order
of magnitude of 10−1 for the �rst and second normalized PC values while the third was roughly
10−4.

The normalization is necessary because the variance along the PC directions can change
substantially depending on the number of points in the damage area and their position, making
a direct comparison di�cult. In addition this solution is similar to what proposed in 2.23, in
fact the normalized third PC value, the sphericity and total curvature parameter were usually
extremely similar, making the use of all of them only redundant.

Using the correlation matrix instead of the covariance one is another way to reduce the e�ect
of the variance. However the result obtained from the correlation matrix, while having the same
directions, were not helpful to understand the damages shapes. The PC values were in fact
almost identical between each other, making their comparison useless, because the division with
the variance and no recognizable pattern was found.

This di�erence is much bigger than the actual di�erence between depth and let's say width,
which is usually of only one or two orders of magnitude. The reason behind it is that the points
are not analyzed directly, instead the covariance matrix is used. The de�nition of the covariance
includes the multiplication of the (normalized) data with themselves, e�ectively resulting in rising
to the square all the values. The square roots of the PC values show the correct ratio.

To select the impacts from all the damages the �rst two components are initially compared,
�ltering out the cases where the second is much smaller compared to the �rst. By imposing a
minimum to the third components the resulting one are then con�rmed or discarded. Depth
and width are also checked to �lter out damages too shallow or thin, but can only be used as
auxiliary parameters given the variety of shapes the impacts appear into.

It is also possible to evaluate a reasonable approximation of area and volume of the damages
by building the convex hull of the xy coordinates and the whole coordinates (with di�erences on
the third coordinate) respectively.

3.5 Components analyzed

As already stated, the aim of this work is to de�ne a procedure to locate and measure
the FODs on inner components of jet engines, in addition the algorithm developed should be
applicable to di�erent typologies of blades. The performance of the method is going to be shown
in the next two chapter on two distinct cases, focusing on di�erent aspects of the algorithm.

In chapter four scans of newly manufactured blisks are analyzed looking for manufacturing
defects, testing the capability of the algorithm to detect any kind of damage. In chapter �ve
instead the algorithm is applied to scans of worn compressor engine blades to determine also the
e�cacy of the classi�cation part of the method.



40 Proposed solution

Figure 3.9: On the left a photo of a blisk, where blades and disk are one single piece, on the
right an example of separate blades mounted to the disk.

A blisk , or bladed disk, is a single component of turboengines comprehensive of both rotor
disk and blades [18]. The analysis is still going to be performed for a single blade at time. The
scans structure is not much di�erent from what shown for single blades beforehand and the shape
is also similar, requiring only a slight adjustment of the initial partitioning grid.

The main reason to show this speci�c application is the complete lack of corrosion on the
pieces, because the scans are done right after the production as a mean to check the quality of
the objects. The control is performed visually in this case too at the moment. The condition of
the objects removes the necessity of a �nal distinction of the results based on the source. The
imperfections to be found are also bigger and fewer in number compared to the one on used
blades.

The second set of results will involve blade scans from high pressure compressor jet engines,
measured after their use. Those components show a mixture of corrosion and impacts, in addition
to the deformations discussed beforehand. This will test the robustness of the method to bends
and local deformations, and the performance of the method in distinguishing FODs and corrosion.

In both cases the results are distinguished based on the portion involved: airfoil, borders,
edges, and for the blades also topmost strip. The extremely low number of damages on the �llet
does not allow for the result to be compared meaningfully to the other portions and have been
omitted.

The division of the results helps in determining which characteristics of the surface are more
important for the correct functioning of the algorithm. The portions where further research is
required and the reason of such limitations will also be discussed.

3.6 Result structure

The tests performed aim to show the e�ect of three main parameters on the analysis:

• �exibility of the approximating function,

• threshold for the di�erence �ltering,

• threshold for the third value of the normalized PC values.



3.6 Result structure 41

The results of the algorithm set with combinations of those parameters will show their in�u-
ence on the process and indicate the strategy do follow to select the optimal ones.

While the three elements a�ect di�erent parts of the method it is not possible to analyze them
separately. The only way to analyze their e�ects is to compare the number of missed damages,
false positives and correct �ndings. Speci�cally the following quantity will be used:

Completeness = TP
TP+FN

Correctness = TP
TP+FP

(3.1)

where TP represent the number of true damages to be found, FN the number of damages not
detected and FP is the number of location marked incorrectly as damages. Completeness then
represent the percentage of the total damages detected and correctness the percentage of the
results pointing to an existing damage.

The true positives were de�ned as the one marked as damages through visual analysis per-
formed independently from this work.

3.6.1 Approximant parameters choice

As stated beforehand, two family of functions are used as approximants: polynomials and
splines. In the case of polynomials modifying their degree along each axis changes their degrees
of freedom. For splines the degrees was �xed at two1 and the number of control points was
modi�ed to change the �exibility of the approximating functions.

The position of the control points was determined using the same method as their values with
2.4 but with the input points x and y components of the points as zk. This way the distribution
of control point is similar to the distribution of points of the mesh.

This resulted in almost uniformly equispaced control points in the majority of cases, but
(marginally) improved the results in patches such the edges. On those the mesh points are
almost equispaced on the surface while are not uniform in the reference system used, being it a
projection on the plane formed by the �rst two PC directions.

In the tests the values [3x3, 5x5, 10x10, 20x20] were used for both families of functions, to
allow for a comparison. To simplify the notation a spline function with a grid of nxn control
points will be referred to as a nxn spline, as polynomials of degrees nxn will simply be called
nxn polynomials.

It has to be noticed that while the parameters of splines are the control points, so a nxn
spline has 3n2 parameters to be de�ned i.e. the coordinates of all the control points, a nxn
polynomial has n(n+1)

2 parameters. As a consequence splines always have more parameters and
higher �exibility than polynomials but it also means a higher computational cost.

Increasing the parameters number will increase the model adaptability and decreasing the
error, but also increasing the risk of �tting the damages and making their detection harder or
impossible. An optimal value is then one such that allow with enough accuracy to model only
the structure of the mesh and nothing else.

The quality of the �t then can not only be measured by the residual error

res =

N∑
i=0

(f(xi, yi)− zi)2

1Further test has been performed with higher degrees but did not show any signi�cant di�erence in the results.



42 Proposed solution

or the root mean square error

RMSE =

√∑N
i=0(f(xi, yi)− zi)2

N

between data (xi, yi, zi), for i = 1, . . . , N with N number of points, and f being the model, but
as the residual on only the undamaged parts.

This can not be done prior to the detection of the damages obviously, the quality of the
approximation has to be checked together with the quality of the analysis.

3.6.2 Thresholds choice

The di�erence values between the approximation and the original data must be �ltered to
remove noise and as much corrosion damage as possible. The minimum value chosen for this
selection will be referred to as �rst parameter or �rst threshold from now on.

The �rst parameter considered will vary between [0.003, 0.005, 0.010, 0.020] and were deter-
mined heuristically as a good choice for the application. Those are dependent on the size of the
damages to be found and the noise level.

Low values for the �rst parameter mean analyzing bigger portions of the mesh allowing for
the detection of small imperfection. Higher values will instead exclude the smaller di�erences
analyzing only the bigger variations.

The optimum value for this parameter should remove only the approximation error and keep
only the damages. The minimum depth of a relevant impact damage is 0.02 mm, using lower
values guarantees that the slopes of the impacts do not get excludes from the analysis.

This parameter also in�uences the computational time because it changes the number of
points to be analyzed. The smaller the parameter, the more points to be checked, the slower
the process. This e�ect is usually minor compared to the cost of building and evaluating the
approximating functions.

The choice of the minimum value of the third value of the normalized PC values determines
the shape, the roundness, of the damages marked as impacts. Its value will be referred to as
second parameter or second threshold.

The heuristically determined thresholds used in the tests varies between [0.0001, 0.0002,
0.0005, 0.0010]. Lower values for the second parameter allow shallower damages to be accepted,
higher values consider only the imperfection with rounder and deeper shapes.

The second parameter does not a�ect the speed of the algorithm, but is the main criteria to
distinguish between corrosion and actual impacts.

3.6.3 Displayed results

The parts of blades tested are analyzed separately, depending on their structure: airfoil,
edges, borders top. The results are displayed separately for splines and polynomials, in addition
to a table comparing their residual error and RMSE.

Comparing the results between di�erent portions of the blades gives information on the
behavior of the algorithm in presence of di�erent surface shapes. Making a comparison between
splines and polynomials �ndings is instead useful to understand which kind of approximation
works better on each part.

The details of the analysis are shown with four graphs and a table, as in Fig:4.2 and table
4.2.

The graphs show completeness, correctness and computational time for each combination of
the �rst and second parameters and RMSE for the single patches checked. In every graph the



3.6 Result structure 43

Parameters combinations

Second parameter First parameter
0.003 0.005 0.010 0.020

0.0001 0 4 8 12
0.0002 1 5 9 13
0.0005 2 6 10 14
0.0010 3 7 11 15

Table 3.1: Table explaining the parameters combinations displayed in the results graphs. As an
example, the values in the sixth position is the result for a �rst threshold value of 0.005 and a
second threshold of 0.0005.

approximants are distinguished with di�erent colors based on their degrees or number of control
points, as described in the legend.

The �rst three graphs of each �gure are divided by vertical lines to ease the distinction
between the parameter used. Each interval of four points, starting from zero, present the results
for a single value of the �rst parameter while the second iterate between its four values. Table
3.1 display the parameters combinations related to each position on the axis.

When no damages where found the correctness value was marked as Nan, and the corre-
sponding point in the correctness graph is omitted.

The RMSE graph is instead indexed by the number of patches analyzed. To understand what
part of the mesh they refer to is necessary to understand how the sub mesh obtained from the
partitioning are ordered.

The patches of the airfoil are extracted by the partitioning process one row at a time, starting
from the bottom. Each row is then divided in cells and the cells are re�ned (in at least two parts)
from the left to the right with respect to Fig:3.1a. The �rst patch is then the one on the lower
left corner, increasing the index moves to the right until the end of the row then restart on the
left of the superior row.

Border and edge patches are partitioned from the bottom to the top but the left and right
edges are treated separately and then joined. The �rst half of the patches are then the one from
the left edge and the second half come from the right one, in both cases going from the lower to
the upper cells.

The tables display numerically the best and worst results obtained for each approximant
tested, sorting for decreasing order of importance completeness, correctness and computational
time. When all is written it means no signi�cant variation in the results changing that parameter.





Chapter 4

Application of the detection algorithm

to blisk analysis

The algorithm proposed is designed for the detection of small impacts on blades that have al-
ready �own. A second natural application of the same procedure is to check newly manufactured
components to detect imperfection caused by the production process.

This chapter shows the result in the latter case, analyzing newly manufactured blisks blades
looking for any kind of imperfection involved.

Blisks, term obtained by the union of BLade and dISK, are engine components where blades
and rotor disks built in a single piece. Blisk blades have di�erent mechanical properties and
associated costs compared to single blades, refer for example to [18] for additional detail on the
advantages and drawbacks involved.

In particular their maintenance cost is usually more expensive than with single blades, being
them the union of multiple part. Extensive and accurate quality controls are then necessary for
the newly manufactured blisk to guarantee the maximum integrity of the object.

The application of the proposed method to detect surface damages on the blade parts of
the blisk can help in this sense. The same data structure and similar shape of both blades and
damages allow the algorithm to work on both with basically no modi�cation on the procedure.

About the structure of the blades tested the main di�erences between regular blades and
blisk's blades are in their superior parts. In blisk's blades the upper part has a di�erent lateral
inclination compared to the lower one. The blade requires a di�erent structure for the partitioning
grid, but once the six corner points are de�ned they can be used for all the blades on the blisk.
This uniformity depends on the lack of any deformation on the structure of newly produced
components and constitute an advantage compared to the application presented in the next
chapter.

As the �gure Fig:4.1 shows, the superior portion has an extra curve absent in the lower one.
This add complexity to the surface structure in the top portion.

There is also a di�erence in the damages structure, apart from the lack of corrosion. While
in the FOD detection we look only for indentation on the surface, on the newly built blisks
extruding parts are also searched. The way damages are found, through the di�erence between
approximation and original data, can easily ignore the direction of anomalies by just using the
absolute values of such di�erences.

Di�erentiating bulging parts from indents is in fact slightly harder and requires taking into
consideration the orientation of the mesh given by the normals of the mesh faces. Comparing the
normals orientation and the di�erences signs is necessary because the approximating function is
usually oscillating between both sides of the mesh.

It must be noted that the number of damages on the newly produced pieces is low, in

45



46 Application of the detection algorithm to blisk analysis

Figure 4.1: On the left the analyzed part of the blisk blade, on the superior portion of it is visible
the extra curve. On the right the grid for the �rst step or the windowing.

Airfoil approximation error

Polynomials 3x3 5x5 10x10 20x20
res 0.8661 0.2943 0.1948 0.1226
RMSE 2.9280e-6 9.9512e-7 6.5873e-7 4.1453e-7

ctrl pts 3x3 5x5 10x10 20x20
res 2.1134 0.4643 0.2095 0.1191
RMSE 7.1450e-6 1.5697e-6 7.0853e-7 4.0282e-7

Table 4.1: Residual error and root mean square error for polynomial and splines approximating
functions.

particular no imperfections were found in the top portion or on the �llet for the blades tested,
so only airfoil and edges will be discussed in this chapter.

The same set of parameters will be used and displayed in all the following analysis to allow
for a better comparison of the results. A description on their formulation is provided in section
3.6.

4.1 Airfoil

The airfoil represents the biggest and �attest part of the blade. This �atness makes orienting
the surface extremely easy and using the PC direction to do it is e�ective.

This happens because the variance is mainly spread in two directions, basically the same
ones that we would obtain approximating the surface with a plane. The preparation for the
construction of the approximant is then straightforward, without the problems related to vertical
parts in the mesh.

In this �rst analysis polynomial and spline results are discussed separately for more clarity.



4.1 Airfoil 47

Airfoil, Polynomials

(a) (b)

(c) (d)

Figure 4.2: In �gures 4.2a 4.2b 4.2c completeness, correctness and computational time for poly-
nomial analysis for the sets of parameters tested. The vertical lines divide the graphs in intervals
[a,b) based on di�erent values of the �rst parameter. Figure 4.2d the RMSE is shown for each
patch analyzed. The legend displays the degrees of the polynomials used.

degrees 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.010 0.020 0.010 0.020 0.010 0.020 0.003 0.020
PC value 0.0010 0.0001 0.0010 0.0010 0.0005 0.0005 0.0010 0.0001
time 2.19 0.98 1.88 1.73 6.80 6.83 34.73 34.51
compl 100% 50% 100% 50% 100% 50% 100% 0%
corr 100% 100% 100% 100% 100% 100% 66% Nan

Table 4.2: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



48 Application of the detection algorithm to blisk analysis

Polynomial results. In Fig: 4.2d the RMSE is shown for each sub-mesh in the airfoil and the
error values highlight how some patches are harder to model. The �rst and last groups of meshes
of the sequence are respectively the one on the lower and higher part of the blades. Those parts
are characterized by a higher curvature of the surface. The upper part present a curve as shown
in Fig: 4.1, the lower strip is close to the curved �llet and start changing shape accordingly.

The 3x3 polynomial presents a consistent increase in the RMSE there, the values were reduced
increasing the degrees of the approximants. Two other groups of meshes, roughly around the
60th and 160th, show higher errors even increasing the degrees.

The reason for the reduction of the error is the increase in �exibility of the approximant that
became capable of �tting the more complex geometry of those patches. For the curved ones this
is particularly visible since the error reduces signi�cantly between the 3x3 and 5x5 setup.

The meshes where instead the error does not decrease are the one where damages are lo-
cated. The presence of the damage means greater di�erences between model and data even if
higher degrees of the polynomials partially reduce it. However it is better to use a low degree
approximant in order to be able to detect all damages.

In Fig: 4.2a the damages are found for each choice of the polynomial degree for at least some
of the values of the parameters.

The 3x3 polynomials show a good performance in terms of completeness and the correctness is
usually good. The computational time required changes visibly depending on the �rst parameter
instead.

This happens because the approximation is su�cient to capture the general shape of the mesh
but it is still inaccurate and the initial �rst parameter value is too low to properly remove the
approximation error. This lead to a high number of mesh points marked as potential damages
and analyzed only to be discarded later. Then, it can be seen how the increasing in this threshold
level lowers the computational cost, without a�ecting completeness and correctness.

The best results are obtained with 5x5 polynomials, in both time cost and correctness. The
approximation error lowers considerably with respect to the 3x3 case, mainly in the �rst and last
patches. Looking at table 4.1, it can be seen how the residual error is roughly one third than
for the 3x3 polynomial. The lack of changes in computational time hint that the approximation
error (outside the damages) is lower than the lowest �rst parameter.

Increasing the degree to 10x10 lower further the residual error and RMSE but almost quadru-
ples the computational time. This is caused by the increase in cost to de�ne the bigger pool of
parameters of the polynomial, going from 15 to 55. The improvement in general accuracy is also
only a �fth of the gain obtained going from 3x3 to 5x5. This means a lowering cost-e�cacy ratio
and an increased risk of over�tting.

The worst results in completeness and correctness are obtained with 20x20 degrees. In addi-
tion the computational time is almost eighteen times the one for 5x5. The lowered accuracy of the
detection is due to both over�tting of the big damages and small oscillation in the approximating
function.

The correctness graph in Fig: 4.2b, when looked on the single intervals, display increases in
the values.

The e�ect of the second parameter is what causes this behaviour. By restricting the re-
quirements for an imperfection to be classi�ed as damage, false positives are reduced. 1This is
strongly related to the shape and dimension of the damages deemed relevant.

This shows that 5x5 degree for polynomials, low values for the �rst parameter and high values
for the second one form the best settings to analyze this part of the surface. This can easily

1In fact many extra �ndings where simply double or triple marking on parts of the same damage because of
its position across multiple patches.



4.2 Edges 49

be explained with the combination of a simple structure, resembling a saddle point, and the
necessity to leave as little leeway as possible to the approximant to avoid modeling the damages.

Splines results. The results obtained from the splines are similar to the ones from polynomials
in terms of completeness, while correctness is generally lower. Here too low values of the �rst
parameter give the highest number of correct �ndings in general.

Fig:4.3d shows higher approximation errors on the lower and higher portions of the grid,
where the surface has extra curves, compared to the middle one like with polynomials, but with
higher error in general. This is especially evident for 3x3 splines, and increases in the number of
control points, even only to 5x5, lower the RMSE sensibly in those parts. The same smaller but
stable spikes are present on the meshes with the damages.

The time graph 4.3c shows a huge increase in the computational cost necessary to perform
the analysis compared to the polynomial one. The time required is, at minimum, seven times
higher than with the slowest polynomial. Here too the �rst parameter distinctly in�uences the
time cost for the 3x3 spline.

Those observations combined suggest that 3x3 spline approximant is insu�cient to properly
approximate the surfaces analyzed. The reasons are the same as with polynomials, only slightly
more evident. Is also easy to see that a grid of 5x5 control points gives the best results in terms
of time, completeness and correctness, as the corresponding polynomial.

Increasing the �exibility of the approximant with 10x10 control points decreases the approx-
imation error but does not improve the performance of the algorithm, instead slows it down and
makes it more sensitive to the second parameter choice.

Raising the number of control points to 20x20 makes the approximating function less useful
as reference model, causing more false positives to appear.

We can conclude that a low number of control points is the best choice for the approximating
splines, allowing the �tting of the simple structure of the airfoil without modeling the damages.
Modifying the values for the thresholds can improve the results, like with the 3x3 case, but can't
do much if the arti�cial model is also �tting the damages or oscillating like for the 20x20 splines.

Splines and polynomials do not show substantial di�erences when used with the correct set
of parameters. This suggest that, at least on the airfoil, polynomials are the best solution given
the lower computational time needed.

4.2 Edges

While the choice of how to partition and orientate the patches on the airfoil is straightforward,
the same can not be said of the edges.

Deciding where the edge ends and the airfoil starts is debatable since the mesh we work with
come from a physical object and not from some purely virtual model. Small variations caused
by measurement and manufacturing process are unavoidable and make any a priori decision on
its position unreliable.

However a correct di�erentiation between the two parts is extremely important to simplify as
much as possible the structure of the patches. This step guarantee that the approximation can
be performed with as few degrees of freedom as possible, reducing the risk of �tting the damages.

The two methods proposed to partition the edges deal with the problem in two di�erent
ways. The �rst and more straightforward one uses the orientation of the triangular faces with
respect to a reference direction to select the two airfoil sides. The second method expands from
a starting set on each side until the approximation does not work anymore and then repeats for
the remaining parts.



50 Application of the detection algorithm to blisk analysis

Airfoil, Spline

(a) (b)

(c) (d)

Figure 4.3: In �gures 4.3a 4.3b 4.3c completeness, correctness and computational time for splines
analysis for the sets of parameters tested. The vertical lines divide di�erent values of the �rst
parameter. Figure 4.3d the RMSE is shown for each patch analyzed. The legend displays the
number of control points used.

ctrl pt 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.005 0.010 0.005 0.010 0.003 0.020 0.005 0.020
PC value 0.0001 0.0001 0.0002 0.0002 0.0010 0.0001 0.0005 0.0005
time 91.47 82.20 78.33 76.92 97.18 99.75 223.72 229.01
compl 100% 50% 100% 50% 100% 0% 100% 0%
corr 100% 50% 100% 100% 100% nan 50% Nan

Table 4.3: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



4.2 Edges 51

Border approximation error, �rst method

Polynomials 3x3 5x5 10x10 20x20
res 0.4612 0.1405 0.0468 0.0168
RMSE 1.1393e-5 3.4721e-6 1.1562e-6 4.1577e-7

ctrl pts 3x3 5x5 10x10 20x20
res 1.2508 0.2514 0.0719 0.0260
RMSE 3.0895e-5 6.2103e-6 1.7760e-6 6.4266e-7

Table 4.4: Residual error and root mean square error for polynomial and splines approximating
functions.

To distinguish the airfoil parts close to the edge from the regular airfoil they are called border
pieces and they will be considered separately. The reason is the di�erent shape of the surface
near the edge, that require a higher adaptability of the approximating function to be properly
modeled.

The remaining part will be called edge and studied separately because of its shape resembling
a cylindrical paraboloid instead of the almost �at airfoil.

The same kind of analysis performed for the airfoil is shown for the patches resulting from
the two methods, for both borders and edges. The damages to be detected were on the dividing
line, making their position detectable in both border's and edge's patches.

4.2.1 First partitioning method

The following results were obtained using the �rst method described in section 3.1.2 with a
tolerance of 0.95 to distinguish borders and edges. This means that once a reference direction
v = (v1, v2, v3) of unit length is selected all the triangular faces of the mesh with a unit normal
n = (n1, n2, n3) such that

v · n = (v1 ∗ n1 + v2 ∗ n2 + v3 ∗ n3) ≥ 0.95

belong to the one of the sides of the border, if v ·n ≤ 0.95 then is part of the second. The values
in the interval (−0.95, 0.95) are assigned to the edge. This value was heuristically determined,
and performed correctly in the majority of cases.

The resulting border pieces are then composed of triangular faces almost parallel to each
other, this means achieving a certain �atness.

It is easy to imagine how a bad choice of the reference direction might negatively a�ect the
subdivision of the mesh. To determine a good one we started from the point that was the closest
to the mean value of the mesh vertexes. The mean value of the triangular face normals in a
small neighborhood surrounding the point is then used as reference.

The superior parts of the blisk blades, where there is an additional curvature on the surface,
interfered with the partitioning.

Requiring only the selection of the reference direction and the computation of the scalar
product on each patch this method is fast, taking only 3 seconds.

Border

In tables 4.5 and 4.6 and in Fig:4.4,4.5 the results of the algorithm on the border obtained
with the �rst method are displayed.



52 Application of the detection algorithm to blisk analysis

Border, Polynomials, �rst method

(a) (b)

(c)
(d)

Figure 4.4: In �gures 4.4a 4.4b 4.4c completeness, correctness and computational time for poly-
nomial analysis for the sets of parameters tested. The vertical lines divide the graphs in intervals
[a,b) based on di�erent values of the �rst parameter. Figure 4.4d the RMSE is shown for each
patch analyzed. The legend displays the degrees of the polynomials used.

degrees 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.010 0.003 0.010 0.020 0.005 0.003 all all
PC value 0.0005 0.0005 all all all 0.0002 all all
time 0.67 4.95 0.32 0.28 1.02 1.14 5.32 5.45
compl 100% 0% 100% 0% 50% 0% 0% 0%
corr 100% 0% 100% Nan 100% 0% Nan Nan

Table 4.5: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



4.2 Edges 53

Border, Spline, First method

(a) (b)

(c)
(d)

Figure 4.5: In �gures 4.5a 4.5b 4.5c completeness, correctness and computational time for splines
analysis for the sets of parameters tested. The vertical lines divide di�erent values of the �rst
parameter. Figure 4.5d the RMSE is shown for each patch analyzed. The legend displays the
number of control point used.

ctrl pt 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.005 0.003 0.010 0.003 all all all all
PC value 0.0005 0.0005 0.0005 0.0010 all all all all
time 27.32 26.80 17.31 21.63 19.75 18.65 32.19 32.82
compl 100% 0% 100% 0% 0% 0% 0% 0%
corr 100% 0% 100% 0% Nan 0 Nan Nan

Table 4.6: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



54 Application of the detection algorithm to blisk analysis

Edge approximation error, �rst method

Polynomials 3x3 5x5 10x10 20x20
res 1.5455 1.3567 1.2589 1.2182
RMSE 6.7811e-5 5.9527e-5 5.5235e-5 5.3449e-5

ctrl pts 3x3 5x5 10x10 20x20
res 1.8966 1.4389 1.4974 1.4921
RMSE 8.3213e-5 6.3134e-5 6.5699e-5 6.5469e-5

Table 4.7: Residual error and root mean square error for polynomial and splines approximating
functions.

Looking at �gures 4.4d and 4.5d and comparing them to 4.2d and 4.3d we can see how the
RMSE is higher on the border. In particular one value stand out from the other, corresponding
to patch close to one of the corners.

The table 4.4 also shows a higher residual errors with respect to table 4.1, once considered
that the number of patches in the border is less than a quarter of the one in the airfoil.

The values of both completeness and correctness are generally lower than the one obtained
for the airfoil. The �rst parameter associated with the best results is 0.010, while for the airfoil
lower values it performed better.

The number of patches involved is roughly a quarter of the one for the airfoil and the time
necessary to perform the analysis is generally proportional to that. One exception is the 5x5
case, for both polynomials and splines, where the time necessary shows variations depending on
the �rst parameter while it was more stable on the airfoil. The 3x3 approximant computational
time is also higher than a quarter of the corresponding values for the airfoil.

The reason behind the di�erent error levels is the lack of accuracy of the approximation
concentrated near the edges, where the damages are also located. The fast change in curvature
is not properly modeled by the approximation increasing the error locally.

Good results are obtained mainly with higher �rst threshold values to compensate for it.
The 5x5 approximants show the best results, but the only sets of parameters that gives optimal
results for both splines and polynomials are the one where the �rst threshold is set at 0.01.

The error levels also a�ect the computation time increasing substantially the area to be
analyzed. Raising the �rst parameter reduces the time for both 3x3 and 5x5 cases, even halving
it for the 3x3 polynomials.

The analysis time for 10x10 and 20x20 approximants are mostly una�ected by the �rst
parameter. This means that the error levels are already small enough to be �ltered with the
lowest �rst threshold. On the other hand polynomials of 10x10 degrees o�ers mediocre results
at best in term of �ndings, and the correspondent splines can not detect any damage correctly.

Further increases of the approximation �exibility result in the modeling of the damages. In
fact no imperfection are located using 20x20 polynomials and only false positives are returned
from 20x20 splines.

The result shows that even on the border 5x5 degrees polynomials in those parts are the best
choice, requiring however a more restrictive �ltering on the di�erences between model and data.
The same applies to splines where 5x5 grids of control points allow accurate �ndings, with the
same condition on the �rst parameter, but requiring more than 20 times the computational time
of the respective polynomial.

Edge In tables 4.8 and 4.9 and in Fig:4.6 4.7 we can see the results of the algorithm on the edges
portions obtained with the �rst partitioning method with polynomials and splines respectively.



4.2 Edges 55

Edge, Polynomials, First method

(a) (b)

(c)
(d)

Figure 4.6: In �gures 4.6a 4.6b 4.6c completeness, correctness and computational time for poly-
nomial analysis for the sets of parameters tested. The vertical lines divide the graphs in intervals
[a,b) based on di�erent values of the �rst parameter. Figure 4.6d the RMSE is shown for each
patch analyzed. The legend displays the degrees of the polynomials used.

degrees 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.005 0.003 0.005 0.003 0.005 0.020 0.003 0.010
PC value 0.0010 all all 0.0001 0.0010 all 0.0010 all
time 8.84 5.09 1.40 2.92 1.63 0.84 4.94 3.58
compl 50% 0% 100% 50% 100% 0% 100% 0%
corr 33% 0% 40% 11% 25% 0% 6% 0%

Table 4.8: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



56 Application of the detection algorithm to blisk analysis

Edge, Splines, First method

(a) (b)

(c) (d)

Figure 4.7: In �gures 4.7a 4.7b 4.7c completeness, correctness and computational time for splines
analysis for the sets of parameters tested. The vertical lines divide di�erent values of the �rst
parameter. Figure 4.7d the RMSE is shown for each patch analyzed. The legend displays the
number of control point used.

ctrl pt 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.005 0.003 0.003 0.005 0.005 0.003 0.003 0.010
PC value 0.0010 0.0010 0.0010 0.0001 0.0010 0.0001 0.0010 all
time 15.25 15.42 14.65 12.88 12.13 13.42 18.59 18.65
compl 100% 0% 100% 50% 100% 50% 50% 0%
corr 25% 0% 33% 5% 16% 5% 7% 0%

Table 4.9: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



4.2 Edges 57

In 4.6d and 4.7d is visible another increase in the RMSE compared to the values obtained
on the edges. Both �gures show high peaks for three meshes, two of them maintained at the
increase of the approximation �exibility. The spline error is especially irregular for 3x3 and 4x4
splines, and generally higher.

The completeness graphs 4.6a and 4.7a show how 3x3 polynomials and 20x20 splines are not
capable to detect all the damages while the other approximants succeed for at least one value of
the �rst parameter. The generally low values of the correctness in �gures 4.6b 4.7b imply a high
number of false positives. In particular the oscillations of the correctness should be noticed for
splines in each interval.

The time graphs 4.6 4.7c display a cost that is not half of the border one, even with half the
number of patches. In addition the values decrease noticeably for all the approximants with the
increase of the �rst parameter. The 3x3 polynomial in particular has a cost comparable to the
20x20 one.

The highest peaks in the error graphs corresponds to the cells in the partitioning grid con-
taining the extra curve present in the topmost part of the blades. The partitioning method here
does not work correctly, and the patches extracted are too large and irregular. The corresponding
edge patch is not simple enough to be modeled with the graph of a function as proven by the
fact that increasing the number of variables of the approximating functions does not lower the
error in any meaningful way.

In addition to that some portions of those same edges presented a lowered smoothness and
missing pieces from the measuring process, increasing the di�culty of building an approximation
even more. As a result, a high number of false positives are marked on those zones, lowering the
correctness of the results as a whole.

The damages to be found however are on the lower parts of the edges, on patch 16, the
analysis performed still hold values even with the biased correctness parameter.

The result for polynomials are similar to what has been seen previously, with 5x5 being the
safest option for the degrees while 10x10 are almost as good but losing in terms of complete-
ness. The lowest degrees are not enough to properly model the surface as we the error and low
completeness demonstrate. The 20x20 polynomials are too �exible and almost �t the damages,
detecting them only with the stricter parameters. The computational times also follow what was
previously observed, is even more evident the e�ect of a bad approximation on the cost for the
3x3 polynomials but other values resent from it too.

Splines instead show comparable completeness values for 10x10 and 5x5 control points set-
tings, with also similar amount of correctness and computational times. Splines with 3x3 control
points are not good enough to �t the curved surface and are not reliable in their detection while
20x20 partially �t the damages too and can locate them only with the stricter �rst parameter.

On the edges is also more evident the e�ect of the second parameter involved in the analysis,
through the oscillation in the correctness. The reason for it is the shape of the surface on the
edge of the mesh.

If the set of points analyzed is on a twisted surface its curvature is a�ected by the curvature
of the surface itself. This means that even undamaged parts present a depth that is not related
to an indent and is instead coming from the surrounding surface. Consequently performing the
PCA of such point would result in a biased third component.

The e�ect of the curvature of the surface on the PCA is reduced by using the di�erences
between arti�cial model and data as third components instead of the points directly. This
operation lowers the impact of the surface bends but a curved portion is still more sensitive to
small variations than in the "�atter" parts.

A higher value of this parameter is hence necessary on the edges to reduce the number of
false positives.



58 Application of the detection algorithm to blisk analysis

Border approximation error, Second method

Polynomials 3x3 5x5 10x10 20x20
res 0.6266 0.2278 0.0657 0.0263
RMSE 1.2923e-5 4.6999e-6 1.3565e-6 5.4407e-7

ctrl pts 3x3 5x5 10x10 20x20
res 2.1134 0.4643 0.2095 0.1191
RMSE 7.1450e-6 1.5697e-6 7.0853e-7 4.0282e-7

Table 4.10: Residual error and root mean square error for polynomial and splines approximating
functions.

The results with the �rst partitioning method are satisfactory when low degrees polynomials
and splines with a relative low number of control points are used. Polynomials are around ten
times faster than splines while maintaining the same level of approximation error, completeness
and correctness.

The method however is sensitive to high curvature orthogonal to the edges. On those parts
the e�cacy of the analysis is strongly reduced.

4.2.2 Second partitioning method

The second partitioning method for the edges attempt to separate the meshes into pieces
with a structure simple enough to be easily approximated with polynomials or splines.

To do that the starting portion of the surface is divided into 4 parts: the two sides that form
what we call border and two others that cover the actual edge.

Those portions are built starting from an initial set of mesh points, starting from the same one
in the two borders obtained from the �rst method. From those points a polynomial approximation
is built and the mesh points with a small enough approximation error are identi�ed as new
starting set. The process is repeated 10 times or until the building set start shrinking.

The resulting border patches are generally smaller because the part where the surface starts
bending is left on the edges. The same process is applied to the remaining portion to obtain
more manageable portions, step necessary to compensate the parallel strips on the sides of the
edge.

This process takes about 6 seconds on one blisk blade, so is about two times slower than the
�rst method.

Once again borders and edges will be studied separately in order to better compare them to
the results from the �rst method.

Border In tables 4.11 and 4.12 and in �gures 4.8 and 4.9 are displayed the results of the
algorithm on the borders parts obtained with the second method.

Looking at �gures 4.8d do4.9d and comparing them to 4.4d 4.5d the RMSE values appear
similar for both methods. The tables show how the residual errors are also similar.

The results in term of completeness do not di�er much except that the best threshold for the
di�erences are lower and improves the results with 10x10 approximants. An interesting anomaly
regard the computational time is the 5x5 polynomial that for the �rst time decrease signi�cantly
changing the �rst parameter from 0.03 to 0.05. In addition to this, it is not capable to detect all
the damages without extra �ndings added to the mix.

The completeness graphs 4.8b 4.9b show more elements and higher values compared to the
�rst method, in particular there are optimal results for 10x10 polynomials absent for the �rst
method.



4.2 Edges 59

Border, Polynomials, Second method

(a) (b)

(c)
(d)

Figure 4.8: In �gures 4.8a 4.8b 4.8c completeness, correctness and computational time for poly-
nomial analysis for the sets of parameters tested. The vertical lines divide the graphs in intervals
[a,b) based on di�erent values of the �rst parameter. Figure 4.8d the RMSE is shown for each
patch analyzed. The legend displays the degrees of the polynomials used.

degrees 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.005 0.003 0.005 0.020 0.005 0.010 all all
PC value 0.0005 0.0001 0.0005 0.0001 0.0001 0.0001 all all
time 6.56 7.98 1.16 0.30 1.30 1.14 6.38 6.57
compl 100% 0% 100% 0% 100% 0% 0% 0%
corr 28% 0% 40% Nan 100% Nan Nan Nan

Table 4.11: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



60 Application of the detection algorithm to blisk analysis

Border, Spline, Second method

(a) (b)

(c) (d)

Figure 4.9: In �gures 4.9a 4.9b 4.9c completeness, correctness and computational time for splines
analysis for the sets of parameters tested. The vertical lines divide di�erent values of the �rst
parameter. Figure 4.9d the RMSE is shown for each patch analyzed. The legend displays the
number of control point used.

ctrl pt 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.003 0.003 0.005 0.020 0.003 0.005 all all
PC value 0.0005 0.0010 0.0010 0.0002 0.0002 0.0001 all all
time 26.40 26.38 26.64 16.87 20.89 19.44 35.82 36.57
compl 50% 0% 100% 0% 100% 0% 0% 0%
corr 33% 0% 40% Nan 40% Nan Nan % Nan

Table 4.12: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



4.2 Edges 61

Edge approximation error, second method

Polynomials 3x3 5x5 10x10 20x20
res 0.7843 0.6096 0.4762 1.0710
RMSE 4.1525e-5 3.2277e-5 2.5212e-5 5.6704e-5

ctrl pts 3x3 5x5 10x10 20x20
res 1.0696 0.6847 0.5977 0.4984
RMSE 5.6633e-5 3.6251e-5 3.1646e-5 2.6389e-5

Table 4.13: Residual error and root mean square error for polynomial and splines approximating
functions.

The computational time for the 3x3 polynomial is even higher than the one for the 20x20
polynomials with 0.003 as �rst threshold. The 5x5 approximants also decrease their computa-
tional times increasing the �rst parameter.

Polynomials of degrees 10x10 detect the damages with low di�erence �lter values and also
high levels of correctness earning the position as best choice for polynomial degree, even if only
for two parameter settings. The speed is also analog to the 5x5 polynomials ones, with optimal
settings.

Increasing the degrees further causes the �tting of the damages, that consequently can not
be found.

The spline results are similar to the polynomial one in the sense that 10x10 control points show
the best results. The splines with 5x5 control points also get to the same levels of completeness
and correctness but with a higher computational time.

The results show how the 3x3 approximants are not �exible enough to �t the sub-meshes.
This means that structure of the border patches obtained with the second edge partitioning
method are more complex compared to the ones from the previous method.

This is the natural consequence of the methods used to build those patches. While the �rst
method selects based on the �atness, the second one evaluate the proximity to a properly selected
polynomial allowing a structure more complex in the patches.

While this fact forces the use of more �exible functions to get optimal results, in the modeling
the error committed in the approximation does not increase substantially. This allows a full
detection with both splines and polynomials, with only a small increase in the number of false
positives.

Edges Tables 4.14 and 4.15 and �gures 4.10 4.11 display the results obtained on the edge
patches extracted with the second partitioning method. Regarding the patches number is worth
to remember that the meshes involved are two times the number compared to the �rst partitioning
method ones, because each cell of the grid produce up to two edge pieces instead of one.

Looking at the RMSE in 4.10d 4.11d and comparing it to 4.6d 4.7d is visible how the number
of meshes where the approximation is extremely inaccurate decrease. The portion of the mesh
that gives bigger problem is the same for both the methods.

Comparing the tables 4.14 4.15 and 4.8 and 4.9 a greater accuracy is shown. The edge patches
are then easier to model compared to the one in the �rst method.

The completeness graph for the polynomials in Fig:4.10a shows how the 10x10 degrees give the
best results. Higher and lower degrees detect only half the damages at best, with the exception
of 3x3 polynomials that can �nd all the damages with two set of parameters.

The correctness in Fig:4.10b displays how the combination of settings that detect all the
damages also returns a similar amount of false positives. Those erroneous detections are usually



62 Application of the detection algorithm to blisk analysis

Edge, Polynomials, Second method

(a) (b)

(c) (d)

Figure 4.10: In �gures 4.10a 4.10b 4.10c completeness, correctness and computational time for
polynomial analysis for the sets of parameters tested. The vertical line divide the graphs in
intervals [a,b) based on di�erent values of the �rst parameter. Figure 4.10d the RMSE is shown
for each patch analyzed. The legend displays the degrees of the polynomials used.

degrees 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.003 0.005 0.010 0.020 0.005 0.010 0.003 0.020
PC value 0.0002 all all all all all all all
time 2.97 2.02 0.72 0.49 1.41 0.92 3.12 3.40
compl 100% 0% 50% 0% 100% 0% 50% 0%
corr 50% 0% 100% 0% 40% 0% 100% 0%

Table 4.14: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



4.2 Edges 63

Edge, Spline, Second method

(a) (b)

(c) (d)

Figure 4.11: In �gures 4.11a 4.11b 4.11c completeness, correctness and computational time for
splines analysis for the sets of parameters tested. The vertical lines divide di�erent values of the
�rst parameter. Figure 4.11d the RMSE is shown for each patch analyzed. The legend displays
the number of control point used.

ctrl pt 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.005 0.003 0.003 0.020 0.010 0.020 0.003 0.005
PC value 0.0010 0.0001 0.0005 all all all 0.0010 all
time 21.10 24.79 20.73 17.07 18.16 17.75 23.51 23.66
compl 50% 0% 50% 0% 50% 0% 50% 0%
corr 33% 0% 33% 0% 16% 0% 12% 0%

Table 4.15: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



64 Application of the detection algorithm to blisk analysis

located on the patches where the RMSE is sensibly higher than the average, as for the �rst
method, but they are fewer in number.

The �gure 4.10c highlight a sensible decrease in the general analysis time compared to what
obtained in the �rst method (4.6c).

Splines completeness results ?? are inferior to all the previous one, with only half of the
damages identi�ed at best. The correctness 4.11b is also low, meaning a high number of false
positives.

The cause for the bad results of 3x5 and 5x5 approximants is again the complexity of the
surface. The consequent errors cause an increase of the computational time and the number of
false positives.

What is especially interesting of these results is the grater di�erences between polynomial
and spline approximants in completeness and correctness.

The main distinction between edge patches for the two methods are their size: the meshes
of the second method are roughly half the size of the one from the �rst. This reduction of data
point available reduces the computational time but also increases the relative importance of the
damaged zones during the construction of the approximant.

This fact is especially important for the splines functions where each control point in�uence
the function only in a limited portion of the domain. The reason is the B-spline function it is
related to, function with limited support by de�nition.

The second division of the edges allow then a more accurate approximation but reduces the
robustness of the splines analysis.

4.3 Summary

The results obtained show that the method used is e�ective in detecting anomalies on the
blisk blades. The amount of correct �ndings depends on the portion analyzed. While the
imperfections are always detected the number of false positives varies depending on the accuracy
of the approximant and the thresholds used to �lter the di�erences and the normalized third PC
value.

For the airfoil and the borders the algorithm shows accurate results with polynomials of
degrees 5x5 or even 3x3 and the same holds for the number of control points for splines. An
extreme low number of false positive and reasonably low computational time makes this algorithm
appealing for the application purpose.

Edges are more delicate and require higher degrees and of control points to be analyzed
properly. The accuracy is generally lower and a higher number of false positives are detected,
concentrated in the part of the blades with a higher amount of twists. A �ner partitioning or
an increase in the �exibility of the approximant can reduce that, but with the associated risk of
over�tting as the 20x20 approximants and the splines for the second methods showed.

The �rst method for edge partitioning, while faster, gives the worst results, and need to be
tuned manually to avoid errors. The second one instead is slightly slower, but handles the more
complex parts better even if not perfectly. In the next chapter only the second method will be
used because of the increase in unpredictability, caused by the corrosion and wearing of the used
blades, makes the �rst method unreliable.

The last important remark to be done is regarding the position of the damages. Since they
are located both on the edges and the border patches in some occasion only one of the parts
detected the damages. Considering the results of edges and borders together would show higher
values for the completeness.



Chapter 5

Application of the algorithm to the

analysis of worn blades

In this chapter are displayed the results of the algorithm on fourth stage high pressure com-
pressor blades of jet engines. The main di�erence between this chapter and the previous oneis
the level of wear the components were subjected to. Blisks blades were scanned right after the
production and before being used to check for manufacturing defect. The scans examined in this
chapter were performed on component that had already �ew and were discarded at the end of
their life-cycle.

In addition to FODs those blades show corrosion and small deformations related to the
wearing. The deformations, while small, make the scans too di�erent between each other to use
a common reference model for all of them.

The erosion is usually concentrated on the superior part of the blade and the edges, and
cause the surface to be coarser. The exterior of the object gains an orange skin look, with both
depressed and protruding parts. Those e�ects reduce the smoothness of the surface and makes
the detection of FODs harder, even visually.

The robustness of the method for this kind of additional complications will be tested and the
e�cacy of the parameters chosen to select the relevant damages will be discussed.

The construction of the grid used for the �rst part of the partitioning present the main
di�erence from the point of view of the algorithm application. While structure and position
of each blisk blade was exactly the same, used blades require an initial control to check if the
partitioning grid is correctly positioned.

The base is in the same position for all of them but the superior part might be slightly bent
and the edges might fall out of their proper grid's cell. Before applying the algorithm is therefore
necessary to visually check the positioning of the blade and eventually adjust the corner points
of the grid.

To better compare the results the di�erent parts of the surface are also shown separately.
This will allow a comparison with the not-corroded case and between the distinct portions of the
blades. Both polynomials and splines functions will be used to perform the approximation. The
sets of parameters for the approximating functions, the thresholds for the algorithm and the way
the result are shown are the same used previously as described in 3.6.

While not fundamental for the algorithm, it is useful to know the di�erence in dimension
between the blades studied in this chapter and the one in the previous. The scans analyzed in
this chapter come from bigger blades and the total number of mesh points is about six times
higher than in blisk's case. The number of patches involved is roughly double than for the
blisks, and each patch is about twice the width and height. An increase in the residual error and
computational time is then to be expected.

65



66 Application of the algorithm to the analysis of worn blades

(a)

(b)

(c)

Figure 5.1: On the left (5.1a) the 3D model of a fourth stage engine compressor blade, on the
upper right (5.1b) a picture of di�erent blades models. On the lower right (5.1c) the superior
part of the blade, impact and corrosion are visible.



5.1 Airfoil 67

Airfoil approximation error

Polynomials 3x3 5x5 10x10 20x20
res 0.8021 0.6304 0.4953 321.95
RMSE 6.1381e-7 4.8243e-7 3.7906e-7 2.4636e-4

ctrl pts 3x3 5x5 10x10 20x20
res 1.4346 0.6843 0.5209 0.3035
RMSE 1.0978e-6 5.2368e-7 3.9866e-7 2.3232e-7

Table 5.1: Residual error and root mean square error for polynomial and splines approximating
functions.

5.1 Airfoil

As for the blisk's case, the airfoil is the easiest part to partition and orientate. Lacking the
extra curve on the higher portion present in blisk's blades its shape is even more regular. The
curvature changes smoothly and regularly from one edge to the other. The surface is essentially
straight in the vertical direction.

The resulting patches are also simple in structure, resembling a saddle point with very slow
growth. The approximation is expected to require low degrees of freedom to �t it.

Comparing tables 4.1 and 5.1 show that the RMSE is lower on the compressor blades com-
pared to the blisk's one. Even the residual error is lower, despite the higher number of points
involved.

This is true except for 20x20 polynomials whose error is greater of several order of magni-
tude. For this reason its RMSE results are not shown in Fig:5.2d, their presence would cause
visualization problems for the values of other polynomials.

The computational time in Fig: 5.2c 5.3c lowers with the increase of the �rst parameter,
except for 10x10 and 5x5 splines where is almost constant. The time cost is roughly doubled
between 3x3 and 5x5 approximants, and tripled again from 5x5 to 10x10. The main di�erences
with the blisk's case is that the values for the 3x3 approximant are always lower than the 5x5
ones and that the values are generally higher.

The time graphs do not show the values for the 20x20 approximants because of the di�erence
in magnitude would result poorly graphically. Logarithmic axis ratios would have shown their
values acceptably but also made the comparison with others graphs harder and was then avoided.
The computational time necessary for those polynomials was 250 seconds while splines required
1500 seconds.

Figures 5.2d and 5.3d show how the RMSE is higher on the last patches, the one on the
superior part, where the corrosion is higher. The increase of the �exibility of the approximant
reduces the error, but the gain is quite limited except from 3x3 to 5x5 splines. A periodic
oscillation in the error values is also visible for groups of roughly 20 patches.

The completeness graphs in Fig: 5.2a and 5.3a show lower values overall if compared to 4.2a
and 4.3a, especially for higher values of the �rst parameter. The correctness values in 5.2b 5.3b
are also lower than the blisk's ones.

Increasing the second parameter reduce the number of �ndings but increase the correctness.
This e�ect is more evident here than it was for the blisk's case.

The reason behind the lower approximation error is mainly the simpler geometric structure
of the surface, due to the lack of extra curves. The presence of corrosion increases the error in
the patches a�ected but the change is not high enough to spoil further analysis.

The periodic oscillation in the error depends on the position of the patch. Because of the
curve of the blade, and the way the grid divides it, the patches on one side are bigger to the one



68 Application of the algorithm to the analysis of worn blades

Airfoil, Polynomials

(a) (b)

(c)
(d)

Figure 5.2: In �gures 5.2a 5.2b 5.2c completeness, correctness and computational time for poly-
nomial analysis for the sets of parameters tested. The vertical lines divide the graphs in intervals
[a,b) based on di�erent values of the �rst parameter. Figure 5.2d the RMSE is shown for each
patch analyzed. The legend displays the degrees of the polynomials used.

degrees 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.005 0.020 0.003 0.020 0.003 0.020 0.003 0.020
PC value 0.0002 all 0.0002 all 0.0002 all 0.0002 0.0010
time 8.28 2.52 9.93 6.40 29.38 26.35 270.41 280.91
compl 94% 11% 100% 11% 100% 5% 47% 11%
corr 48% 66% 43% 66% 41% 100% 1% <1%

Table 5.2: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



5.1 Airfoil 69

Airfoil Spline

(a) (b)

(c) (d)

Figure 5.3: In �gures 5.3a 5.3b 5.3c completeness, correctness and computational time for splines
analysis for the sets of parameters tested. The vertical lines divide di�erent values of the �rst
parameter. Figure 4.5d the RMSE is shown for each patch analyzed. The legend displays the
number of control point used.

ctrl pt 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.003 0.020 0.003 0.020 0.003 0.020 0.003 0.020
PC value 0.0002 all 0.0002 all 0.0002 all 0.0002 all
time 90.07 57.81 102.96 98.95 359.74 356.49 1521 1529
compl 100% 11% 100% 11% 100% 5% 94% 0%
corr 44% 66% 45% 66% 38% 100% 28% Nan

Table 5.3: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



70 Application of the algorithm to the analysis of worn blades

in the other. The bigger patches are slightly harder to model but the error increase does not
a�ect the analysis in a remarkable way.

E�ects of the �rst threshold on the computational time are more apparent here because the
higher amount of irregularities caused by corrosion.

Increasing the �rst parameter �lters sizable amounts of points even for high degree polynomi-
als because the number of irregularities (i.e. FODs and corrosion) is higher than the approximant
�tting capability. This behavior is exactly the desired one: a good general �t and little modeling
of the imperfections.

Splines are more �exible because of their structure and only the 3x3 one shows clear variations
in time cost. Combined with the higher RMSE is reasonable to suppose that the number of
control points is too low, or the bare minimum necessary, to model the surface.

Increasing the �rst parameter lower the completeness of all approximants for even small
variations. This happens because the size of the damages to be found is small enough to be
erroneously �ltered out.

The second parameter variations have a more evident e�ect here compared to the blisks
because there are many more imperfections to be discarded based on their shape. Corrosion
can still be marked as damage if deep enough and can be distinguished only using the second
parameter. Increasing its value is hence an e�ective way to increase the correctness however less
damages are found decreasing the completeness. The damages lost this way are the "�atter"
one, the most similar to corrosion.

The behavior the 20x20 polynomial is explainable with a wrong approximation. The ap-
proximating polynomials oscillate to try and �t all the small bumps on the surface resulting
in a problem similar to the Runge phenomenon. While about half of the damages are usually
identi�ed the number of false positives is more than a hundred times the true positives.

Summarizing, the use of 3x3 or 5x5 approximants with the lowest parameters gives the
best results for completeness and computational time. Those results are generally worse than
what obtained on the pristine blisk's blades. Increasing the second threshold trade part of the
completeness for a higher correctness.

5.2 Edges

The same consideration exposed in 4.2 still stand for blades: dividing correctly airfoil and
edges is di�cult and corrosion makes the di�erence even fuzzier. A simple method like the �rst
one is not �exible enough to react to the alteration that might incur, the second method showed
more promising results.

The patches of mesh adjacent to the edges were treated separately (as "border") from the
airfoil because of the di�erent structure. The junction part between the two sides of the airfoil
is referred as edge.

The two lateral edges are inclined di�erently with respect to the partitioning grid direction
and the sub meshes extracted have di�erent shapes. In particular the border patches have
di�erent sizes between the two edges and even between the ones in the same grid cell.

The damages on these portions of the blades are usually located on the edge or in their
proximity. This makes the border part closer to the edges focal for the analysis, increasing the
importance of a correct partitioning.

The damages searched on the blisk's edges were big enough to appear on both edge and border
so that both parts allowed their detection. In the compressor blade's case the damages are instead
smaller and in general can not be detected in both parts. For this reason the additional table 5.10
will show the combined results obtained from edges and borders, using the sets of parameters
that allowed the best results on each.



5.2 Edges 71

Border approximation error, Second method

Polynomials 3x3 5x5 10x10 20x20
res 1.1503 0.4720 0.1812 30.3524
RMSE 7.0399e-6 2.8890e-6 1.1090e-6 5.3449e-5

ctrl pts 3x3 5x5 10x10 20x20
res 1.8648 0.8287 0.2476 0.0952
RMSE 1.1412e-6 5.0717e-6 1.5153e-6 5.8315e-7

Table 5.4: Residual error and root mean square error for polynomial and splines approximating
functions.

5.2.1 Border

Looking at table 5.4 and comparing it to the one for the airfoil 5.1 is evident an higher error
of approximation. Even if the number of patches is about one �fth of the airfoil the residual
error is higher and the RMSE is also doubled. Those values are instead comparable with the
results for the blisk's borders.

The 20x20 polynomials show an error several orders of magnitude higher than the other
polynomials, or splines, like it did for the airfoil. For graphical reasons it is not shown in Fig:5.4d,
as explained in the previous section. That same �gure and Fig:5.5d shows how increasing the
degree or number of control points reduce the RMSE. The spline graph also shows a di�erence
between the �rst and second half of the values for the 3x3 spline. The two groups correspond to
the border patches of the left and right edges respectively.

The time graphs Fig:5.4c and 5.5c display an increase of the cost along with the increase of the
number of approximant parameters. The 3x3 and 5x5 models present a decrease in computational
time with the increase of the �rst parameter.

The completeness graphs 5.4a and 5.5a show a drastic increase in the number of missed
�ndings, with polynomials at ∼ 40% and splines at ∼ 60%. The correctness graphs additionally
show how the number of false positives is up to four time the number of correct ones. This is a
poor result compared to the airfoil or blisks in general.

The reason for the decrease in computational time with the increase of the �rst parameter has
been explained multiple times, this low completeness results are new. The main reason behind
them is the location of those damages. Most of them are in fact in the zones between edges and
borders, and are then left on only one of the two parts by the partitioning. So, many damages
are then absent or only partially present on the border, as will happen with the edges.

Even if the damage is present on the border pieces its position makes it hard to be detected.
The part of the border closest to edge is the most di�cult to model correctly because of its small
relative size and rapid change in curvature. Damages on this part of the mesh will be harder to
distinguish from the approximation error.

In addition their small size implies that an increase of the �rst parameter can easily �lter them
out, as shown with the airfoil. The value of the second threshold plays therefore an important
role in excluding the false positives.

The use of 5x5 or 10x10 splines with low values for the �rst and second parameters is what
appear to be the best strategy to maximize the number of �ndings. Increasing the second
threshold is once again a way to trade completeness for a lower number of false positives.



72 Application of the algorithm to the analysis of worn blades

Border, Polynomials, second method

(a) (b)

(c)
(d)

Figure 5.4: In �gures 5.4a 5.4b 5.4c completeness, correctness and computational time for poly-
nomial analysis for the sets of parameters tested. The vertical lines divide the graphs in intervals
[a,b) based on di�erent values of the �rst parameter. Figure 5.4d the RMSE is shown for each
patch analyzed. The legend displays the degrees of the polynomials used.

degrees 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.005 0.020 0.005 0.020 0.003 0.020 0.003 0.010
PC value 0.0005 all 0.0002 all 0.0002 all 0.0002 all
time 15.72 0.39 5.07 0.88 4.32 3.44 30.50 25.16
compl 30% 0% 38% 0 % 38% 0% 23% 0%
corr 100% Nan 83% Na 50% Nan 1% Nan

Table 5.5: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



5.2 Edges 73

Border, Spline, Second method

(a) (b)

(c) (d)

Figure 5.5: In �gures 5.5a 5.5b 5.5c completeness, correctness and computational time for splines
analysis for the sets of parameters tested. The vertical lines divide di�erent values of the �rst
parameter. Figure 5.5d the RMSE is shown for each patch analyzed. The legend displays the
number of control point used.

ctrl pt 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.005 0.020 0.003 0.020 0.003 0.020 0.003 0.020
PC value 0.0005 all 0.0002 all 0.0002 all 0.0002 all
time 20.91 8.86 29.63 10.81 32.51 29.24 119.43 119.27
compl 38% 7% 53% 0% 46% 0% 30% 0%
corr 83% 100% 28% Nan 27% Nan 33% Nan

Table 5.6: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



74 Application of the algorithm to the analysis of worn blades

Edge approximation error, Second method

Polynomials 3x3 5x5 10x10 20x20
res 1.0428 0.6505 0.4592 0.3399
RMSE 1.1607e-5 7.2409e-6 5.1117e-6 3.7838e-6

ctrl pts 3x3 5x5 10x10 20x20
res 1.2369 0.7484 0.6050 0.2714
RMSE 1.3767e-5 8.3308e-6 6.7347-6 3.0208e-6

Table 5.7: Residual error and root mean square error for polynomial and splines approximating
functions.

5.2.2 Edge

The RMSE values in table 5.7 are about double the border ones and one order of magnitude
higher than the airfoil's. The residual error is also much higher if the di�erence in the number of
points involved is considered. The RMSE graphs shows once again how the increase in �exibility
of the approximating function reduce the error.

The computational time behave as usual, with the only di�erence that all the approximants
reduce their time cost increasing the �rst parameter. The cost associated with the 3x3 polynomial
is especially high, being comparable to the slowest 20x20 one.

The completeness and correctness graphs display results similar to the borders one except
for the number of parameters of the best approximant. The highest percentage of detection is at
38% for polynomial and 61% for splines, both obtained with 20x20 approximants. Correctness
is also low compared to the airfoil and the blisk edges, being instead more similar to the border
results.

The structure of the edges is harder to model correctly and require more �exibility from the
parameterization as the results for the 20x20 functions show. The patches used for blades are
roughly double the size of the blisk's ones and this helps in keeping the approximant smoother,
but require more �exibility compared to the previous chapter case. The 3x3 and 5x5 approxi-
mants are then clearly insu�cient and this is shown by the fact that even when the high com-
pleteness is achieved the correctness is abysmal.

Splines with 20x20 control points with low values of the two thresholds seems to be the best
solution to detect as many damages as possible, even if the computational time cost is relatively
high.

Looking now at table 5.10 it can be see that even when merging the results for borders and
edges, and choosing the best parameters, not all the damages are correctly detected. By using
di�erent numbers of parameters for the approximants (best column) the polynomials show the
best results at 69% completeness and 52% correctness, splines obtain slightly lower results.

The increase in completeness for the combined �ndings demonstrate how some damages
were detected only by one of the between edges and borders. A more accurate control of the
missed damages showed how the meshes they are in are divided incorrectly by the partitioning
algorithm. The returned meshes where fragmented, and made the constructed approximants
resulted inaccurate, highlighting the importance a correct partitioning process.

5.3 Top part

The upper row of the partitioning grid covers the topmost part of the blade where the two
sides of the airfoil get connected by a thin horizontal strip, orthogonal to both of them.



5.3 Top part 75

Edge, Polynomials, Second method

(a) (b)

(c) (d)

Figure 5.6: In �gures 5.6a 5.6b 5.6c completeness, correctness and computational time for poly-
nomial analysis for the sets of parameters tested. The vertical lines divide the graphs in intervals
[a,b) based on di�erent values of the �rst parameter. Figure 5.6d the RMSE is shown for each
patch analyzed. The legend displays the degrees of the polynomials used.

degrees 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.020 0.003 0.020 0.003 0.010 0.003 0.005 0.003
PC value 0.0005 0.0010 0.0010 0.0010 0.0001 0.0001 0.0002 0.0010
time 1.10 18.97 0.73 14.08 2.39 9.63 12.61 19.31
compl 23% 0% 15% 11% 30% 7% 38% 7%
corr 100% 0% 100% 66% 80% 6% 45% 11%

Table 5.8: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



76 Application of the algorithm to the analysis of worn blades

Edge, Spline, Second method

(a) (b)

(c) (d)

Figure 5.7: In �gures 5.7a 5.7b 5.7c completeness, correctness and computational time for splines
analysis for the sets of parameters tested. The vertical lines divide di�erent values of the �rst
parameter. Figure 5.7d the RMSE is shown for each patch analyzed. The legend displays the
number of control point used.

ctrl pt 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.003 0.020 0.003 0.020 0.003 0.020 0.003 0.020
PC value 0.0002 0.0001 0.0002 all 0.0002 all 0.0002 all
time 28.27 2.52 25.28 5.81 23.52 11.51 47.21 44.25
compl 61% 15% 53% 7% 53% 7% 61% 0%
corr 8% 13% 6% 33% 8% 100% 29% Nan

Table 5.9: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



5.4 Summary 77

Border and edge combined results

Polynomials 3x3 5x5 10x10 20x20 best
Completeness 53 46 61 61 69
Correctness 100 75 53 3 52

ctrl pts 3x3 5x5 10x10 20x20 best
Completeness 38 38 46 53 61
Correctness 33 20 27 2 27

Table 5.10: Completeness and correctness with borders and edges result combined. Polynomials
and splines results with the best setting for each part and �xed number of approximation pa-
rameters. The last column shows the best results with polynomials and splines using di�erent
degrees/number of control points.

This thin portion of the mesh is not analyzed because of low interest for the application.
What is instead important to analyze is the airfoil part close to this edge and the junction part
between sides and horizontal strip. Being both on the upper part and close to an edge the top
part is subject to high amount of corrosion and deformations, especially near the corners.

The same considerations made for the edges are still valid for the top too, with the exception
that the actual edge is here discarded. What is being analyzed are the equivalent of borders for
the edges, and the results show this similarity.

Table 5.11 shows how the RMSE is comparable to the one obtained on the borders, and
Fig:5.8d 5.9d further con�rm it. The residual values are also approximately proportional to the
number of patches. As for airfoil and borders the 20x20 polynomial has error values too high to
be properly displayed.

The time graphs Fig:5.8c and 5.9c show the same structure as the ones for the borders with
slightly lower values and decreasing costs for the 10x10 approximant.

The completeness graphs show the �rst important di�erence. While borders detected at best
half of the relevant damages, on the top portion all the damages can be found with the right set
of parameters. On the other hand the correctness values for those same parameters are lower
than twenty, meaning a high number of false positives.

As for the borders 5x5 and 10x10 approximants gives the best results, with similar compu-
tational costs.

Those results are caused by the same problems described for the borders. The di�erence
in completeness depends on the position of the damages. The FODs are not concentrated in
proximity of the edges but spread more uniformly on the patches.

The critical part close to the top horizontal strip is still approximated less accurately than the
remaining portion, but fewer damages are there, making it less critical. The higher complexity
of the patches shapes requires higher �exibility from the model to �t correctly and the presence
of corrosion decrease the correctness.

Here too the choice of the second parameter determine the ratio between number of �ndings
and their correctness. The high number of false positives is due to the high amount of corrosion
damages present in this part, only a correct selection of the second threshold is able to �lter
most of them.

5.4 Summary

The results on worn blades show how the corrosion and deformations reduce the overall
accuracy of the algorithm compared to the ones on newly manufactured blisks. This was to



78 Application of the algorithm to the analysis of worn blades

Top part, Polynomials

(a) (b)

(c) (d)

Figure 5.8: In �gures 5.8a 5.8b 5.8c completeness, correctness and computational time for poly-
nomial analysis for the sets of parameters tested. The vertical lines divide the graphs in intervals
[a,b) based on di�erent values of the �rst parameter. Figure 5.8d the RMSE is shown for each
patch analyzed. The legend displays the degrees of the polynomials used.

degrees 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.003 0.020 0.003 0.020 0.005 0.020 0.010 0.003
PC value 0.0002 all 0.0005 all 0.0002 all 0.0010 all
time 10.27 0.66 7.92 0.90 3.27 2.15 19.36 19.60
compl 100% 33% 100% 33% 100% 0% 33% 0%
corr 10% 33% 60% 100% 15% Nan 1% Nan

Table 5.12: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



5.4 Summary 79

Top part, Spline

(a) (b)

(c) (d)

Figure 5.9: In �gures 5.9a 5.9b 5.9c completeness, correctness and computational time for splines
analysis for the sets of parameters tested. The vertical lines divide di�erent values of the �rst
parameter. Figure 5.9d the RMSE is shown for each patch analyzed. The legend displays the
number of control point used.

ctrl pt 3x3 5x5 10x10 20x20
Best Worst Best Worst Best Worst Best Worst

di� �lter 0.003 0.020 0.005 0.020 0.003 0.020 0.005 0.020
PC value 0.0002 all 0.0002 all 0.0005 all 0.0002 all
time 12.31 5.24 13.64 8.82 34.28 28.67 121.57 120.29
compl 66% 0% 100% 33% 100% 25% 100% 0%
corr 16% Nan 10% 100% 33% 100% 20% Nan

Table 5.13: Summary of the best and worst results obtained from the tests on the set described
in 3.6.



80 Application of the algorithm to the analysis of worn blades

Top part approximation error

Polynomials 3x3 5x5 10x10 20x20
res 0.6411 0.4644 0.3522 62.5028
RMSE 6.7676e-6 4.9023e-6 3.7174e-6 6.5971e-4

ctrl pts 3x3 5x5 10x10 20x20
res 1.0795 0.5428 0.3913 0.2633
RMSE 1.1394e-5 5.7295e-6 4.1302e-6 2.7799e-6

Table 5.11: Residual error and root mean square error for polynomial and splines approximating
functions.

be expected given how the presence of corrosion makes the detection of the FODs harder even
visually, performed by human operators.

In particular on edges, borders and the topmost portion the method has di�culties in de-
tecting all the damages, especially the one located between edges and borders. Increasing the
degree of freedom of the approximant and using the more �exible splines proves to be the correct
approach to maximize the �ndings.

The airfoil part instead allow all the damages to be detected even with 3x3 and 5x5 degree
polynomials, making the process computationally cheap. All parts show how choosing the correct
values for the parameters is fundamental.

By changing the �rst parameter, even slightly, a substantial number of imperfections are
added or removed from the �ndings. This happens because the corrosion and the impacts often
have similar small depths, making the �ltering threshold a delicate parameter.

Even more sensitive is the second threshold, the minimum value for the normalized third
PC value. The completeness and correctness graphs show how increases in this parameter are
the simplest way to �lter out most of the false positives, at the cost of a lower number of true
positives. Keeping it low allow for more FODs to be detected, along with the corroded parts
with a more impact-like appearance.

One last remark deals with the patches dimension. Compared to the blisks, the sub-meshes
analyzed in the �fth chapter contained four times the number of points and area. This di�erence
seems to not a�ect the algorithm but is actually important. Tests performed on smaller patches
on engine blades resulted in poorer results because the distorting e�ect of corrosion on the surface
structure was not mediated by a higher amount of data. On blisks this was not visible because
of the lack of corrosion.

For similar reasons smaller patches increase the risk of over�tting the damages because the
points on the impacts increase in relative importance. Using bigger patches then helps in building
a smoother approximant but might require more �exible models. This "hidden" parameter must
be decided based on the surface complexity and the level of corrosion.



Chapter 6

Conclusions and improvement ideas

In this work the issue of foreign object damages detection on jet engine blades has been
addressed. The desired procedure should be as automatized as possible and adaptable to the
shapes of di�erent blade models.

As already stated impact damages present themselves in a variety of shapes and dimensions,
which makes it di�cult to de�ne general criteria for their identi�cation. The corrosion a�ecting
the worn objects reduces the smoothness of their surface and the distinction between impact and
erosion damages is required. Once again this di�erence is hard to de�ne quantitatively, and even
visually the distinction is not always clear.

The deformations caused by mechanical stress, impacts and use in general are bigger than the
minimum size of the searched damages. Adjustments on the scan to �t it to a reference model
are di�cult for the lack of reliable reference points on it, making the use of models impractical.

By looking at the results obtained it is possible to identify the improvable parts of the method
and the features that instead guarantee correct results.

6.1 Summary

The algorithm proposed works with small portions of the surface at a time, building a smooth
approximation and using it as an arti�cial reference model to detect the irregularities. The
potential impact locations are then analyzed using the PCA to determine their shapes and
classi�ed to distinguish between FODs and corrosion.

The local nature of the method allows the application of it to di�erent blades models, requiring
only the construction of a proper initial partitioning grid to divide the di�erent components, i.e.
airfoil, edges, top and �llet. 1

The method proposed has been tested on newly manufactured blisk blades to detect produc-
tion defects and on worn compressor blades to detect FOD.

6.1.1 Blisk summary

In the blisk case there was no corrosion and the use-induced deformations were absent,
reducing the overall complexity of the task to the only detection of imperfections. This analysis
highlighted the detection part of the algorithm, showing its performance in the identi�cation of
generic imperfections.

1Additional parts not included in this list could be added if necessary as long as the patches extracted have a
structure simple enough.

81



82 Conclusions and improvement ideas

The analysis on worn compressor blades instead shows the results for the intended application.
Corrosion and deformations are both present and a�ect the scan, reducing the FODs visibility
and requiring the classi�cation of the damages between impacts and erosion.

The main variables of the analysis consist in the choice of the approximating function, the
minimum threshold value for the di�erence between data and approximation (�rst parameter)
and the minimum value for the third component of the normalized principal components values
(second parameter).

The choice of the approximant �exibility is dependent on the patch structure analyzed, re-
quiring more �exible functions for meshes with a more complex geometry. The approximant
should be the one with the minimum degrees of freedom necessary to model the structure of the
patch, increasing the degrees reduces the approximation error but increase the risk of �tting the
damages spoiling the analysis.

The �rst parameter depends on the minimum depth of the damages to be found and the
error level of the approximation. The smaller the damage the lower the parameter, the higher
the mean di�erence the higher the parameter to �lter out the error.

The second parameter determines the shape of the damages identi�ed as FODs. The higher
its value, the more spherical looking are the damages marked as impacts.

By using the correct sets of approximating functions and �ltering parameters all the damages
where detected on the blisks and the majority was identi�ed on engine blades.

The results on the blisks shows how, in absence of corrosion, the detection procedure is
reliable. This holds especially on the airfoil, where all the damages are found for a wide range
of �ltering parameters and approximants.

The structure of borders and edges is more complex than the almost �at airfoil and requires
higher degrees of freedom for the approximant. The parameter choice is also a more sensitive
decision, as shown by the vastly di�erent values obtained for completeness and correctness. The
number of false positives is generally higher in those portions, especially on the edges.

The result's quality is mainly dependent from the approximating function and �rst parameter.
In particular low degrees polynomials and low values for the �rst parameter work for borders
and airfoil, while the edge requires higher degrees and values to model it correctly. The e�ect
of the second parameter are minor because there is no need to distinguish the type of damages
involved, every imperfection big enough have to be located.

6.1.2 Worn blades summary

The results of chapter �ve show how most of the damages are detected on worn out blades,
even if not as fully as for the blisks. The number of false positives is also generally higher as
some of the corrosion damages are extremely similar to the impact ones. Looking at the di�erent
parts of the blade similar behaviors are shown: on the airfoil the algorithm accuracy is higher,
followed by borders and top, on edges is the less precise.

The airfoil shows the best results in terms of FODs identi�cation, pointing out that the same
type of approximant used for blisk airfoils works for worn blades. The presence of corrosion
increase the number of false positive detected, as some of the deeper and rounder corroded parts
are identi�ed as impact damages.

The same happens on the top part, with a higher relative number of false positives.
Edges and borders are the real problematic portions. Here the completeness and correctness

values are lower compared to the blisk counterpart, mainly because the smaller damages are not
identi�ed on both parts. In fact the combined �ndings shown in table 5.10 display an increase in
the quality of the �ndings. As for the blisks the choice of the parameters can change substantially
the number of correct �ndings and false positives.



6.2 Outlook 83

The approximating function and �rst parameter choice follow the same general rules stated
before, with additional attention on the size of the minimal damage to be found and the level of
corrosion. As for the blisk, on the edges more �exible approximants and higher �rst parameter
values are needed.

On the used blades the e�ect of the second �ltering parameter is more evident and such
sensitivity is caused by the presence of corrosion. The two kind of damages in fact often show
similar depth values, and can not then be easily �ltered out with the �rst threshold, while the
shape of the damages is instead determined using the PCA. By adjusting the second parameter
value the correctness and completeness of the algorithm can be traded.

To detect more damages the second parameter must be keep low, but this way the number
of corrosion damages identi�ed as FODs also increase. Increasing the parameter reduces slightly
the number of impacts detected, the more shallow and "corrosion-like" ones, but also reduce
substantially the number of false positives (e.g see Fig: 5.3a 5.3a on the �rst column).

6.2 Outlook

The algorithm proposed, while giving good results on most of the surface, shows drops in
accuracy near speci�c parts, namely the edges. This behavior could be corrected perfecting
some parts of the method, mainly improving the partitioning and approximant construction
procedures.

Regarding this, some ideas are here proposed, based on the observation of the algorithm
results. The outlined directions for further research are the most likely to improve the method
without altering its basic structure.

6.2.1 Partitioning method

Airfoil and top parts exhibit accurate results, while the edges (and borders) are often too
inaccurate. The main problem with the edges is the partitioning: the structure of the extracted
patches is sometimes too irregular.

Finding a better partitioning method is certainly one of the improvable aspects of the method.
As the test results showed, the quality of the results improved drastically on those parts of
the edge where the extracted sub-meshes were more regular. Where the partitioning returned
fragmented, or oddly shaped meshes, it was more likely to miss damages and �nd more false
positives .

A good partitioning method should produce patches regular in size, shape and easily �tted
by the approximants. At the same time the portions should be kept wide enough to allow the
approximant to ignore the minor damages. The method should also be �exible enough to work
even with deformations and for di�erent shapes of the edges portions.

The second edge partitioning method is a step in the right direction but can certainly get
better. The iterative procedure used o�er a good degree of �exibility and reduce the sensitivity
to reference direction compared to the �rst one. However that same iterative nature makes the
process unpredictable, sometimes disconnected portions or oddly shaped patches were extracted.

The addition of some constraints to the updated building set could help in solving the prob-
lem, the experiments done did not produce substantial improvements without increasing exces-
sively the time needed. Further research is then required.

Another step that could be improved is the grid used for the partitioning. The method used
for the grid construction is extremely simple in order to be more easily adapted to di�erent blade
models but could be improved with relative simplicity. As an example, the extra curve on the



84 Conclusions and improvement ideas

Figure 6.1: On the left an arti�cial model of a surface with an impact in the center and some
slight corrosion. In the middle the (absolute value of) di�erences between data and a spline
approximant. On the right the di�erencies with a penalized spline approximant.

top of blisk blades makes that part more complex, a �ner partitioning with a tighter grid could
help in simplifying its structure.

6.2.2 Approximating function construction

The construction of the approximant and its choice is one part of the method that could be
re�ned. For the test results presented in the previous chapters the least square method was used
to determine the approximant parameters minimizing 2.4 or 2.6. This method, while fast and
generally e�ective, is not optimal.

The problem comes from the fact that the damaged parts are still considered in the cost
functions and in�uence the �nal result, causing the approximant to at least partially model them.
This makes, as an example, the di�erences between data and model inaccurate to determine the
depth of the damage, and reduces the accuracy of the PCA to determine the shape.

To solve this problem two solutions could be tried: changing the cost function or applying a
selection to the data points used.

Adding a penalty weight as explained in 2.3.1 is one possible solution to obtain a smoother
result. If the surface approximant is smooth enough the damages can not be �tted and the model
is useful for a comparison. The test performed in this direction showed how the damaged zones
got smoothed out but the error increased in the portions of the patch with steep inclinations.
As shown in �gure 6.1 the parts with higher gradient, the borders, are not �tted correctly and
the error value is similar to the di�erence on the damaged part. The penalized approximation
loses then most of its value as a reference model.

The tests with di�erent kind of penalty weights or smoothing factors did not improve this
behavior, especially on the most sensitive parts, like the edges and borders, where the surface
keeps changing inclination.

An additional experiment performed was to increase the weight of parts of the patches based
on the normal direction. By giving more importance to the triangles with surface normal that
made wider angles with the vertical direction, the critical part of the borders and the sides of
the edges were better �tted. The approximation on the remaining part of the surface however
worsened sensibly making this modi�cation harmful for the algorithm purpose.

A possible way to select a more meaningful set of data to build the approximation is to
perform the analysis iteratively. Removing or reducing the weight of the portions identi�ed
as damages the next approximation should skip them completely, allowing for the �tting of
only the undamaged parts (or with corrosion noise). The speed of the analysis, especially with



6.2 Outlook 85

Figure 6.2: Example of the result of the parabola-parametrization. On the left the �rst method,
on the right the more re�ned one. In blue the initial points(projected on the yz plan) in yellow
the rotated one, in red the best �tting parabola and in green the points in the new coordinates.

polynomials, guarantees that such a solution would not be extremely costly in computational
terms, but the e�ects of an initial detection of an incorrect big damage require further research.

A last modi�cation to the approximation de�nition method could be adapting the number of
approximant parameters patchwise by analyzing a scan of an undamaged blade partitioned with
the same grid. By analyzing the root mean square error on a pristine scan a more precise idea
of the approximant structure could be obtained, and also help in deciding if the size and shape
of the grid cells is correct or should be changed.

As of now the distinction is only based on the structure of the portions (airfoil,borders...)
and do not consider information on the size of the patch or more speci�c detail like the curve
on the upper part of the blisk blades. This approach was motivated by the desire of keeping
the algorithm simple and easily adaptable to di�erent blade models and still showed good re-
sults. However it could be interesting to see if such modi�cation would improve the method
performance.

Alternative parameterization

Another possible approach to reduce the problems related to edge portions is to use a dif-
ferent parameterization of their points. A transformation capable of �attening this part of the
surface would solve most of the issues related to its approximation. For this reason di�erent
parameterizations has been tested on the curved portion of the edge.

In this subsection the patches are supposed already oriented along the PC direction so that
the �rst coordinate moves along the length of the axis. Looking instead at Fig:6.2 the second
coordinates is represented on the horizontal axis, the third on the vertical one.

The �rst and probably more natural one is the parameterization with cylindrical coordinates

(x, y, z) −→ (x, arctan

(
z

y

)
,
√
y2 + z2) = (x, θ, ρ) (6.1)

which allowed a better approximation on the curved part of the edge but it worsened sensibly
closer to the borders. On those parts the points are in fact mapped in extremely steep surfaces,
nullifying any vantage obtained

A similar kind of re-parametrization for the edges was based on the idea of mapping the best
approximating parabola2 into an horizontal line, and moving along the nearby points.

2while considering only the (y, z) coordinates of the PCA-oriented points, namely projecting along the edge
length.



86 Conclusions and improvement ideas

The transformation for the parabola's points uses the length L(y) of the curve representing
it γ(y) = (y, ay2 + by + c) i.e.

L(y) =

∫ y

0
‖γ̇(t)‖dt =

∫ y

0

√
1 + 4a2t2 + 4abt+ b2dt

as new �rst coordinate, and zero as the second so (y, z) −→ (L(y), 0).
To de�ne the position of the points (y, z) close to the parabola the �rst method attempted

was to map them as (y, z) −→ (L(y), z − (ay2 + by + c)), using the vertical distance from the
reference parabola as new z value. Such a solution gets increasing oscillating results the further
the points are from the parabola vertex and this made the approximation process more complex.

A more re�ned solution would be to �nd the closer point (ỹ, z̃) in the parabola and transform
it as

(y, z) −→ (L(ỹ), dist((y, z), (ỹ, z̃)))

which keep the points in the new parameterization much �atterer.
Approximation on the newly parameterized set of points presented lower error, but those

transformations inevitably change the shapes and relative dimensions of the damages. Tests
performed on the re-parameterized patches showed sizable improvement in the approximation
error but the damage analysis results were less reliable because of the distortion induced.

Finding (ỹ, z̃) points requires the solution of a minimization problem. While curves di�erent
from the parabola could be used to do change the parameterization the di�culty involved grows
rapidly with the curve complexity.

Reverting the points back to their original positions maintaining the di�erences evaluated
with the approximation obtained on the transformed version could solve this problem. Further
research in this direction could reduce the sensitivity of the algorithm to the edge shape, allowing
simpler partitioning method to return manageable patches.

6.3 Conclusions

The algorithm presented uses simple mathematical and statistical tools to solve the detection
and classi�cation problem. The proposed method is adaptable to di�erent blade models given
its local nature and robust to deformation of the scanned object.

The analysis parameters are set once for each blade model and the operator only need to check
the inclusion of the blade in the partitioning grid, making the procedure highly automatized.
The partitioning of the blade and the separate analysis on the distinct parts makes it also highly
parallelizable.

Good results were obtained on blisk blades, where all the damages can be detected with
a small number of additional false positives. On worn compressor blades the FODs visually
detected are mostly identi�ed by the method proposed, with a higher number of false positives
included.

The edges are the most di�cult portion to analyze because of their shape, while airfoil
and borders allow a high percentage of damages to be identi�ed correctly. On those parts the
algorithm results can be considered reliable.

The computational time required to perform the procedure is kept low without a�ecting the
precision as the low degrees polynomial and splines with low number of control points show to
be the best choice for the approximating function. The partitioning of the surface is usually the
most time consuming part of the method.

The use of the algorithm as the only tool for FODs identi�cation is unadvised, the missed
damages on the edges and the corroded parts returned as false positives are still problematic.
Ideas on how to improve the procedure have been listed and might solve those issues.



6.3 Conclusions 87

As it is the algorithm could already be used as a support tool to ease the identi�cation of the
damages. The results obtained could be visually checked to remove the false positives, fastening
considerably the time necessary for the analysis.





Appendix A

Code

A.1 Main

The following functions are the one to be called to apply the algorithm to a speci�c (blisk)
blade with splines or polynomials approximants. In both cases the results are returned as csv

�les in a format usable by GOM [26].

A.1.1 blisk_main_spline

Spline approximant analysis for blisk blades.

1 import numpy as np
2 import s c ipy as sp
3 import tr imesh as tm
4 from analys is_spl ine_main import b l i s k_sp l i n e_det e c t i on
5 from analys is_spl ine_main import export_gom
6

7 pr in t ( ' I f the blade i s not in the same f o l d e r as the code i n s e r t the complete path
, o therwi se p r e s s ENTER. ' )

8 path=input ( ' Path? ' )
9 pr in t ( 'Type the f u l l name o f the b l i s k blade , . s t l inc luded . ' )

10 name=input ( 'Name? ' )
11

12 orig inal_mesh=tm . load_mesh ( path+name)
13 mesh=orig inal_mesh . copy ( )
14 damages , va lue s=b l i s k_sp l i n e_dete c t i on (mesh )
15 export_gom(damages , path , name)

A.1.2 blade_main_spline

Spline approximant analysis for worn blades.

1 import numpy as np
2 import s c ipy as sp
3 import tr imesh as tm
4 from analys is_spl ine_main import b lade_sp l ine_detect ion
5 from analys is_spl ine_main import export_gom
6

7 pr in t ( ' I f the blade i s not in the same f o l d e r as the code i n s e r t the complete path
, o therwi se p r e s s ENTER. ' )

8 path=input ( ' Path? ' )
9 pr in t ( 'Type the f u l l name o f the blade , . s t l inc luded . ' )

10 name=input ( 'Name? ' )

89



90 Code

11

12 orig inal_mesh=tm . load_mesh ( path+name)
13 mesh=orig inal_mesh . copy ( )
14 damages , va lue s=blade_sp l ine_detect ion (mesh )
15 export_gom(damages , path , name)

A.1.3 blisk_main_poly

Polynomial approximant analysis for blisk blades.

1 import numpy as np
2 import s c ipy as sp
3 import tr imesh as tm
4 from analysis_poly_main import b l i sk_polynomia l_detect ion
5 from analysis_poly_main import export_gom
6

7 pr in t ( ' I f the blade i s not in the same f o l d e r as the code i n s e r t the complete path
, o therw i se p r e s s ENTER. ' )

8 path=input ( ' Path? ' )
9 pr in t ( 'Type the f u l l name o f the b l i s k blade , . s t l inc luded . ' )

10 name=input ( 'Name? ' )
11

12 orig inal_mesh=tm . load_mesh ( path+name)
13 mesh=orig inal_mesh . copy ( )
14 damages , va lue s=bl i sk_polynomia l_detect ion (mesh )
15 export_gom(damages , path , name)

A.1.4 blade_main_poly

Polynomial approximant analysis for worn blades.

1 import numpy as np
2 import s c ipy as sp
3 import tr imesh as tm
4 from analysis_poly_main import blade_polynomial_detect ion
5 from analysis_poly_main import export_gom
6

7 pr in t ( ' I f the blade i s not in the same f o l d e r as the code i n s e r t the complete path
, o therw i se p r e s s ENTER. ' )

8 path=input ( ' Path? ' )
9 pr in t ( 'Type the f u l l name o f the blade , . s t l inc luded . ' )

10 name=input ( 'Name? ' )
11

12 orig inal_mesh=tm . load_mesh ( path+name)
13 mesh=orig inal_mesh . copy ( )
14 damages , va lue s=blade_polynomial_detect ion (mesh )
15 export_gom(damages , path , name)

A.2 Analysis

The following functions are necessary to perform the analysis of the surface. The scripts are
divided between polynomial and spline one for clarity.

A.2.1 analysis_spline_main

Summarizing function to apply the analysis with splines approximations on the patches ex-
tracted, based on the position on the blades. Blisk blades and worn blades are treated di�erently



A.2 Analysis 91

based on their shape.

1 import numpy as np
2 import s c ipy as sp
3 import tr imesh as tm
4 import csv
5 from part it ion_main import b l i s k_pa r t i t i o n i n g
6 from part it ion_main import b l ade_par t i t i on ing
7 from part it ion_main import a l l i gnment
8 from ana l y s i s_ sp l i n e s import BSpl ine_analys i s_short
9

10 #Main ana l y s i s f unc t i on
11 de f b lade_sp l ine_detect ion (mesh , pt=np . array ( [ [ x , x ] , [ x , x ] , [ x , x ] , [ x , x ] ] ) , s i z e =2. ,

ext ra =0.5 , degx =[5 , 5 , 5 , 5 , 10 , 10 , 10 , 10 ] , degy =[5 , 5 , 5 , 5 , 10 , 10 , 10 , 10 ] , t o l 1
= [ 0 . 0 0 2 , 0 . 0 0 5 , 0 . 0 0 5 , 0 . 0 0 5 , 0 . 0 1 , 0 . 0 0 5 , 0 . 0 1 , 0 . 0 0 5 ] , t o l 2
= [ 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 ] , edges=True ) :

12 # INPUT
13 # mesh : tr imesh object , the mesh to be analyzed
14 # pt : (4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id
15 # s i z e : f l o a t , the mazimum s i z e o f a patch
16 # extra : f l o a t , the amount o f over lapp ing f o r ad jacent patches
17 # degx : ( 8 , ) l i s t o f int , number o f c on t r o l po in t s a long the x ax i s f o r the

var i ous par t s o f the blade
18 # degy : ( 8 , ) l i s t o f int , number o f c on t r o l po in t s a long the y ax i s f o r the

var i ous par t s o f the blade
19 # to l 1 : ( 8 , ) l i s t o f f l o a t , f i r s t parameter f o r the va ious par t s o f the blade
20 # to l 2 : ( 8 , ) l i s t o f f l o a t , second parameter f o r the var i ous part o f the blade
21 # edges : bool , i f Fa l se does not d iv id e f u r t h e r the edges columns in the g r id
22 # OUTPUT
23 # damages : (n , 3 ) array , c en t e r o f the damages detec ted .
24 # values : (n , 3 ) l i s t , va lue s [0 ]= normal ized PC va lues f o r the damage , va lue s

[ 1 ]= [ length , width , depth ] , va lue s [2 ]= area
25 damages=[ ]
26 va lue s =[ ]
27 f l a t , top , bordo1 , bordo2 , edge1 , edge2 , edge11 , edge22 , tempo1 , tempo2 , tempo3=

b lade_par t i t i on ing (mesh , pt , s i z e , extra , edges )
28 i f l en ( f l a t ) >0:#ana l y s i s on the a i r f o i l
29 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( f l a t , parabo le=False )
30 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 0 ] , degy [ 0 ] , t o l 1 [ 0 ] , t o l 2 [ 0 ] )
31 damages . extend ( danni . t o l i s t ( ) )
32 va lue s . extend ( v a l o r i )
33 i f l en ( top ) >0:#ana l y s i s on the top part
34 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( top , parabo le=False )
35 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 1 ] , degy [ 1 ] , t o l 1 [ 1 ] , t o l 2 [ 1 ] )
36 damages . extend ( danni . t o l i s t ( ) )
37 va lue s . extend ( v a l o r i )
38 i f l en ( bordo1 ) >0:#ana l y s i s on the l e f t border
39 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( bordo1 , parabo le=False )
40 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 2 ] , degy [ 2 ] , t o l 1 [ 2 ] , t o l 2 [ 2 ] )
41 damages . extend ( danni . t o l i s t ( ) )
42 va lue s . extend ( v a l o r i )
43 i f l en ( bordo2 ) >0:#ana l y s i s on the r i g h t border
44 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( bordo2 , parabo le=False )
45 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 3 ] , degy [ 3 ] , t o l 1 [ 3 ] , t o l 2 [ 3 ] )
46 damages . extend ( danni . t o l i s t ( ) )
47 va lue s . extend ( v a l o r i )
48 i f l en ( edge1 ) >0:#ana l y s i s on the l e f t edge ( f i r s t p i e c e )



92 Code

49 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge1 , parabo le=True )
50 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 4 ] , degy [ 4 ] , t o l 1 [ 4 ] , t o l 2 [ 4 ] )
51 damages . extend ( danni . t o l i s t ( ) )
52 va lue s . extend ( v a l o r i )
53 i f l en ( edge2 ) >0:#ana l y s i s on the r i gh t edge ( f i r s t p i e c e )
54 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge2 , parabo le=True )
55 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 5 ] , degy [ 5 ] , t o l 1 [ 5 ] , t o l 2 [ 5 ] )
56 damages . extend ( danni . t o l i s t ( ) )
57 va lue s . extend ( v a l o r i )
58 i f l en ( edge11 ) >0:#ana l y s i s on the l e f t edge ( second p i e c e )
59 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge11 , parabo le=True )
60 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 6 ] , degy [ 6 ] , t o l 1 [ 6 ] , t o l 2 [ 6 ] )
61 damages . extend ( danni . t o l i s t ( ) )
62 va lue s . extend ( v a l o r i )
63 i f l en ( edge22 ) >0:#ana l y s i s on the r i g h t edge ( second p i e c e )
64 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge22 , parabo le=True )
65 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 7 ] , degy [ 7 ] , t o l 1 [ 7 ] , t o l 2 [ 7 ] )
66 damages . extend ( danni . t o l i s t ( ) )
67 va lue s . extend ( v a l o r i )
68 damages=np . array ( damages )
69 re turn damages , va lue s
70

71 #Main ana l y s i s f unc t i on
72 de f b l i sk_polynomia l_detect ion (mesh , pt=np . array ( [ [ x , x ] , [ x , x ] , [ x , x ] , [ x , x ] ] ) , pt1=

np . array ( [ [ x , x ] , [ x , x ] , [ x , x ] , [ x , x ] ] ) , pt2=np . array ( [ [ x , x ] , [ x , x ] , [ x , x ] , [ x , x ] ] ) ,
s i z e =2. , ext ra =0.5 , degx =[5 , 5 , 5 , 5 , 10 , 10 , 10 , 10 ] , degy =[5 , 5 , 5 , 5 , 10 , 10 , 10 , 10 ] ,
t o l 1 = [ 0 . 0 0 2 , 0 . 0 0 5 , 0 . 0 0 5 , 0 . 0 0 5 , 0 . 0 1 , 0 . 0 0 5 , 0 . 0 1 , 0 . 0 0 5 ] , t o l 2
= [ 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 ] , edges=True ) :

73 # INPUT
74 # mesh : tr imesh object , the mesh to be analyzed
75 # pt : (4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id
76 # pt1 : ( 4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id f o r the lower part
77 # pt2 : ( 4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id f o r the upper part
78 # s i z e : f l o a t , the mazimum s i z e o f a patch
79 # extra : f l o a t , the amount o f over lapp ing f o r ad jacent patches
80 # degx : ( 8 , ) l i s t o f int , degree s o f the polynomia ls a long the x ax i s f o r the

var i ous par t s o f the blade
81 # degy : ( 8 , ) l i s t o f int , degree s o f the polynomia ls a long the y ax i s f o r the

var i ous par t s o f the blade
82 # to l 1 : ( 8 , ) l i s t o f f l o a t , f i r s t parameter f o r the va ious par t s o f the blade
83 # to l 2 : ( 8 , ) l i s t o f f l o a t , second parameter f o r the var i ous part o f the blade
84 # edges : bool , i f Fa l se does not d iv id e f u r t h e r the edges columns in the g r id
85 # OUTPUT
86 # damages : (n , 3 ) array , c en t e r o f the damages detec ted .
87 # values : (n , 3 ) l i s t , va lue s [0 ]= normal ized PC va lues f o r the damage , va lue s

[ 1 ]= [ length , width , depth ] , va lue s [2 ]= area
88 damages=[ ]
89 va lue s =[ ]
90 f l a t , top , bordo1 , bordo2 , edge1 , edge2 , edge11 , edge22 , tempo1 , tempo2 , tempo3=

b l i s k_pa r t i t i o n i n g (mesh , pt , s i z e , extra , pt1 , pt2 , edges )
91 i f l en ( f l a t ) >0:#ana l y s i s on the a i r f o i l
92 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( f l a t , parabo le=False )
93 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 0 ] , degy [ 0 ] , t o l 1 [ 0 ] , t o l 2 [ 0 ] )
94 damages . extend ( danni . t o l i s t ( ) )
95 va lue s . extend ( v a l o r i )



A.2 Analysis 93

96 i f l en ( top ) >0:#ana l y s i s on the top part
97 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( top , parabo le=False )
98 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 1 ] , degy [ 1 ] , t o l 1 [ 1 ] , t o l 2 [ 1 ] )
99 damages . extend ( danni . t o l i s t ( ) )

100 va lue s . extend ( v a l o r i )
101 i f l en ( bordo1 ) >0:#ana l y s i s on the l e f t border
102 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( bordo1 , parabo le=False )
103 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 2 ] , degy [ 2 ] , t o l 1 [ 2 ] , t o l 2 [ 2 ] )
104 damages . extend ( danni . t o l i s t ( ) )
105 va lue s . extend ( v a l o r i )
106 i f l en ( bordo2 ) >0:#ana l y s i s on the r i g h t border
107 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( bordo2 , parabo le=False )
108 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 3 ] , degy [ 3 ] , t o l 1 [ 3 ] , t o l 2 [ 3 ] )
109 damages . extend ( danni . t o l i s t ( ) )
110 va lue s . extend ( v a l o r i )
111 i f l en ( edge1 ) >0:#ana l y s i s on the l e f t edge ( f i r s t p i e c e )
112 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge1 , parabo le=True )
113 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 4 ] , degy [ 4 ] , t o l 1 [ 4 ] , t o l 2 [ 4 ] )
114 damages . extend ( danni . t o l i s t ( ) )
115 va lue s . extend ( v a l o r i )
116 i f l en ( edge2 ) >0:#ana l y s i s on the r i gh t edge ( f i r s t p i e c e )
117 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge2 , parabo le=True )
118 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 5 ] , degy [ 5 ] , t o l 1 [ 5 ] , t o l 2 [ 5 ] )
119 damages . extend ( danni . t o l i s t ( ) )
120 va lue s . extend ( v a l o r i )
121 i f l en ( edge11 ) >0:#ana l y s i s on the l e f t edge ( second p i e c e )
122 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge11 , parabo le=True )
123 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 6 ] , degy [ 6 ] , t o l 1 [ 6 ] , t o l 2 [ 6 ] )
124 damages . extend ( danni . t o l i s t ( ) )
125 va lue s . extend ( v a l o r i )
126 i f l en ( edge22 ) >0:#ana l y s i s on the r i g h t edge ( second p i e c e )
127 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge22 , parabo le=True )
128 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 7 ] , degy [ 7 ] , t o l 1 [ 7 ] , t o l 2 [ 7 ] )
129 damages . extend ( danni . t o l i s t ( ) )
130 va lue s . extend ( v a l o r i )
131 damages=np . array ( damages )
132 re turn damages , va lue s
133

134

135 #Ut i l i t y func t i on to save the damages l o c a t i o n in a format importable by GOM
136 de f export_gom( found , path , name) :
137 # INPUT
138 # found : (n , 3 ) array , c oo rd ina t e s o f the damages l o c a t i o n s
139 # path : s t r i ng , d i r e c t o r y the f i l e should be saved in
140 # name : s t r i ng , blade name , . s t l inc luded
141 # OUTPUT
142 # a csv f i l e , named ' ' name ' ' _f ind ings . csv , with the damages l o ca t i on , r eadab le

by GOM
143 csv=open ( path+name[:−3]+ ' _f ind ings . csv ' , "w" )
144 f o r i in range ( l en ( found ) ) :
145 csv . wr i t e ( 'Found '+s t r ( i ) )
146 f o r j in found [ i ] :
147 number_int=s t r ( i n t ( j ) )



94 Code

148 number_dec = s t r ( abs ( j−i n t ( j ) ) ) [ 2 : ]
149 i f number_int==' 0 ' and j <0:
150 number_int='− '+number_int
151 csv . wr i t e ( ' '+number_int+' , '+number_dec )
152 csv . wr i t e ( ' \n ' )
153 csv . c l o s e ( )

A.2.2 analysis_spline

Subroutines necessary to build the spline approximation and perform the analysis.

1 import numpy as np
2 import s c ipy as sp
3 import time
4 import matp lo t l i b
5 import matp lo t l i b . pyplot as p l t
6 from mpl_toolk i ts . mplot3d import Axes3D
7 import networkx as nx
8 import tr imesh as tm
9 from sp l i py import BSpl ineBasis , Curve , Sur face

10 from u t i l i t i e s import sub_mesh
11 from u l i l i t i e s import est imate_matrix
12 from u t i l i t i e s import homograpy
13

14 #Ut i l i t y func t i on to eva luate the d e r i v a t i v e o f the B−s p l i n e s f unc t i on s
15 de f integranda (u , bas i , i , j , d e r i v ) :
16 #INPUT
17 # u : (2 , ) array , c oo rd ina t e s o f one po int in the un i t square where the

d e r i v a t i v e should be eva luated
18 # bas i : B−s p l i n e s ba s i s f unc t i on ob j e c t s
19 # i : int , knot index along the x ax i s
20 # j : int , knot index along the y ax i s
21 # der iv : int , order o f the d e r i v a t i v e to be evaluate , 0 i n d i c a t e s the o r i g i n a l

f unc t i on value
22 # OUTPUT
23 # f l o a t , d e r i v a t i v e va lue in the ( i , j ) knot eva luated on u
24 b=bas i . eva luate (u , de r i v )
25 re turn b [ 0 , i ]∗b [ 0 , j ]
26

27 #This func t i on determines the va lue s o f the c on t r o l po in t s nece s sa ry to d e f i n e the
s p l i n e approximant .

28 de f l ea s t_square_f i t_bas i c (mesh , bases , u , u s ab i l i , bord i=False , l =0) :
29 #Find the con t r o l po in t s that a l low f o r the best approximation o f the po in t s

g iven
30 #####Input
31 # x : (n , 3 ) array , the po in t s cons idered , in t h e i r p h i s i c a l c oo rd ina t e s
32 # bases : BSpi lneBas i s object , the ba s i s f un c t i on s f o r the s p l i n e s
33 # u : (2 , n) array , the po in t s cons idered , with the parametr ized (u , v )~=(x , y )

coo rd ina t e s in the un i t square .
34 # l : f l o a t , i f p o s i t i v e add the th in blade s p l i n e smoothing func ion with

weight l
35 #####Output
36 # Sur face object , with the con t r o l po in t s found and the ba s i s f un c t i on s g iven
37 ###Observation : the shape o f the c on t r o l po in t s array get i n t e r n a l l y ad justed

by su r f a c e from a [ nx∗ny , 3 ] to a [ ny , nx , 3 ] form i f not raw=True
38 x=mesh . t r i ang l e s_cen t e r [ u s a b i l i ]
39 pe s i=np . z e r o s ( l en ( u s a b i l i ) )
40 #th i s part app l i e s d i f f e r e n t weight to the po in t s based on the normal

d i r e c t i o n . The more a t r i a n gu l a r f a c e i s v e r t i c a l l y i n c l i n e d the h igher i t s
weight in the approximation .



A.2 Analysis 95

41 i f bord i :
42 #The r e f e r e n c e d i r e c t i o n i s chosen as the mean value o f a subset o f f a c e s

normals c l o s e to the cente r o f the mesh
43 cent ro=np .mean(x , ax i s=0)
44 #th i s i s the c en t r a l one , i t s neighborogh i s the subset
45 f a c c i a=np . argmin (np . l i n a l g . norm(mesh . t r i ang l e s_cente r−centro , ax i s=1) )
46 #Build the adjacency graph
47 graph = nx . Graph ( )#
48 graph . add_edges_from (mesh . face_adjacency )#
49 i n d i c i =[ ]
50 l l= l i s t ( graph . ne ighbors ( f a c c i a ) )
51 i n d i c i . extend ( l l )
52 indexes=np . s o r t (np . unique ( i n d i c i ) )
53 ###
54 #I f we want to use a l a r g e r number o f f a c e s to bu i ld the normal we have to

repeat t h i s part
55 f o r i in indexes :
56 l l= l i s t ( graph . ne ighbors ( i ) )
57 i n d i c i . extend ( l l )
58 i n d i c i=np . array ( i n d i c i )
59 i n d i c i=np . append ( i nd i c i , indexes )
60 indexes=np . s o r t (np . unique ( i n d i c i ) )
61 ###
62 #The r e f e r e n c e normal i s the mean value o f the s e l e c t e d f a c e s ones
63 normale=np .mean(mesh . face_normals [ indexes ] , ax i s=0)
64 #de f i n e the weights
65 f o r i in np . arange ( l en ( u s a b i l i ) ) :
66 s c a l a r e=np . dot ( normale , mesh . face_normals [ u s a b i l i [ i ] ] )
67 pe s i [ i ]=1+(1− s c a l a r e ) ∗500#th i s can be modi f i ed to change the weight

va lue s
68 #shows the weights va lue s
69 f i g 1 = p l t . g c f ( )
70 ax1 = f i g 1 . add_subplot (1 , 2 , 1 , p r o j e c t i o n=' 3d ' )
71 ax1 . s c a t t e r ( x [ : , 0 ] , x [ : , 1 ] , pes i , c='b ' )
72 #shows the patch shape
73 ax2 = f i g 1 . add_subplot (1 , 2 , 2 , p r o j e c t i o n=' 3d ' )
74 ax2 . s c a t t e r ( x [ : , 0 ] , x [ : , 1 ] , x [ : , 2 ] , c='b ' )
75 p l t . show ( block=False )
76 #eva lua t e s the 1D ba s i s over the data po in t s ( in [ 0 , 1 ] ^2 )
77 N_all1=np . array ( bases [ 0 ] ( u [ 0 ] ) )
78 N_all2=np . array ( bases [ 1 ] ( u [ 1 ] ) )
79 #bui ld the matrix with the 2D ba s i s va lue s
80 U=N_all1 [ 0 , : ]
81 V=N_all2 [ 0 , : ]
82 A=np . dot (U. reshape (−1 ,1) ,V. reshape (1 ,−1) ) . reshape (1 ,−1)#∗ pe s i [ 0 ]
83 f o r i in range (1 , l en ( N_all1 ) ) :
84 U=N_all1 [ i , : ]
85 V=N_all2 [ i , : ]
86 M=np . dot (U. reshape (−1 ,1) ,V. reshape (1 ,−1) ) . reshape (1 ,−1)#∗ pe s i [ i ]
87 A=np . vstack ( (A,M) )
88 pr in t ( ' cond . numb o f A=' ,np . l i n a l g . cond (A) )
89 A2=A. copy ( )
90 #th i s part adds a smoothing parameters o f weight l .
91 i f l >0:
92 X0=np . z e ro s ( ( l en (U) , l en (U) ) )
93 X1=X0 . copy ( )
94 X2=X0 . copy ( )
95 Y0=np . z e ro s ( ( l en (V) , l en (V) ) )
96 Y1=Y0 . copy ( )
97 Y2=Y0 . copy ( )



96 Code

98 pr in t ( bases [0]==bases [ 1 ] )
99 f o r i in np . arange ( l en (U) ) :

100 f o r r in np . arange ( l en (U) ) :
101 X0 [ i , r ]=sp . i n t e g r a t e . quad ( integranda , 0 , 1 , a rgs=(bases [ 0 ] , i , r , 0 ) ) [ 0 ]
102 X1 [ i , r ]=sp . i n t e g r a t e . quad ( integranda , 0 , 1 , a rgs=(bases [ 0 ] , i , r , 1 ) ) [ 0 ]
103 X2 [ i , r ]=sp . i n t e g r a t e . quad ( integranda , 0 , 1 , a rgs=(bases [ 0 ] , i , r , 2 ) ) [ 0 ]
104 f o r j in np . arange ( l en (V) ) :
105 f o r s in np . arange ( l en (V) ) :
106 Y0 [ j , s ]=sp . i n t e g r a t e . quad ( integranda , 0 , 1 , a rgs=(bases [ 1 ] , j , s , 0 ) ) [ 0 ]
107 Y1 [ j , s ]=sp . i n t e g r a t e . quad ( integranda , 0 , 1 , a rgs=(bases [ 1 ] , j , s , 1 ) ) [ 0 ]
108 Y2 [ j , s ]=sp . i n t e g r a t e . quad ( integranda , 0 , 1 , a rgs=(bases [ 1 ] , j , s , 2 ) ) [ 0 ]
109 M=np . z e r o s ( ( l en (U) ∗ l en (V) , l en (U) ∗ l en (V) ) )
110 k=0
111 f o r i in np . arange ( l en (U) ) :
112 f o r j in np . arange ( l en (V) ) :
113 a=np . dot (X2 [ i ] . reshape (−1 ,1) ,Y0 [ j ] . reshape (1 ,−1) ) . reshape (1 ,−1)
114 b=np . dot (X1 [ i ] . reshape (−1 ,1) ,Y1 [ j ] . reshape (1 ,−1) ) . reshape (1 ,−1)
115 c=np . dot (X0 [ i ] . reshape (−1 ,1) ,Y2 [ j ] . reshape (1 ,−1) ) . reshape (1 ,−1)
116 M[ k , : ]= a#+2∗b#+c
117 k+=1
118 #to add the smoothing f a c t o r i s nece s sa ry to s o l v e a s i s tem with h igher

cond i t i on ing number , t h i s shows i t and the e f f e c t o f the smoothing f a c t o r on
i t .

119 pr in t ( ' cond . numb o f A.T∗A=' ,np . l i n a l g . cond (np . dot (A.T,A) ) )
120 pr in t ( ' cond . numb o f A.T∗A+l ∗E=' ,np . l i n a l g . cond (np . dot (A.T,A)+l ∗M) )
121 cpxy ,_,_,_=np . l i n a l g . l s t s q (A, x [ : , : 2 ] )
122 cpz=np . l i n a l g . s o l v e (np . dot (A.T,A)+l ∗M, np . dot (A2 .T, x [ : , 2 ] . reshape (−1 ,1) ) ) .

reshape (1 ,−1)
123 c on t r o l p o i n t s=np . vstack ( ( cpxy .T, cpz ) ) .T
124 e l s e : #i f nece s sa ry adds the weights
125 i f bord i :
126 A2 = A ∗ np . sq r t ( p e s i [ : , np . newaxis ] )
127 x [ : , 2 ] = x [ : , 2 ] ∗ np . sq r t ( p e s i )
128 pr in t ( ' cond . numb o f weighted A=' ,np . l i n a l g . cond (A2) )
129 #otherwi se the con t r o l po in t s are eva luated us ing the l e a s t square method
130 cpxy ,_,_,_=np . l i n a l g . l s t s q (A, x [ : , : 2 ] )
131 cpz ,_,_,_=np . l i n a l g . l s t s q (A2 , x [ : , 2 ] )
132 c on t r o l p o i n t s=np . vstack ( ( cpxy .T, cpz ) ) .T
133 #pr in t ( c on t r o l p o i n t s )
134 #i f l en (U) != len (V) :
135 cp=[ ]
136 #the con t r o l po in t s have to be reshaped to be used by sp l i py
137 f o r i in range ( l en (V) ) :
138 cp . append ( c on t r o l p o i n t s [ np . arange ( i , l en ( c on t r o l p o i n t s ) , l en (V) ) ] )
139 c on t r o l p o i n t s=np . asar ray ( cp ) . t ranspose ( ( 1 , 0 , 2 ) )
140 re turn Sur face ( bases [ 0 ] , bases [ 1 ] , c on t ro lpo in t s , raw=True )
141 #return Sur face ( bases [ 0 ] , bases [ 1 ] , np . array ( c on t r o l p o i n t s ) )
142

143

144 #Poten t i a l damage de t e c t o r
145 de f parameters_centro ids1_short (model , scan , t o l ) :
146 # INPUT
147 # model : (n , 3 ) array , c oo rd ina t e s o f the po in t s o f the model with the same

parametr i za t i on o f the data po in t s .
148 # scan : Trimesh object , the su r f a c e ana l i z ed
149 # to l : co s tant value , th r e sho ld f o r d i f f e r e n c e s , c a l l e d f i r s t parameter or

f i r s t th r e sho ld in the t h e s i s
150 # v i s u a l : bool , i f True show graph ic r ap r e s en ta t i on o f va r i ous i t e rmed ia ry

r e s u l t s .
151 # OUTPUT



A.2 Analysis 97

152 # damaged_locations : l i s t o f tr imesh ob j ec t s , each one r ep r e s en t a dmaged
l o c a t i o n

153 # root_mean_diff : f l o a t , root mean square e r r o r between patch and model
154

155 d i f f=model [ : , 2 ] − scan . t r i ang l e s_cen t e r [ : , 2 ]
156 root_mean_diff=np . sq r t (sum( d i f f ∗∗2) / l en ( scan . f a c e s ) )
157

158 d i f f _ f i l t e r e d=np . z e ro s ( l en ( d i f f ) )
159 indexes =[ ]
160 ##th i s does not con s id e r the d i f f e r e n c e between ho l e s and pro t ru s i on .
161 f o r n in range ( l en ( d i f f ) ) :
162 i f abs ( d i f f [ n ] )>t o l :
163 indexes . append (n)
164 d i f f _ f i l t e r e d [ n]=np . s i gn ( d i f f [ n ] ) ∗( abs ( d i f f [ n ] )−t o l )#I 'm not sure the

s i gn i s nece s sa ry
165

166 i f indexes ==[] :
167 re turn indexes , root_mean_diff
168 d i f f_pt=scan . t r i ang l e s_cen t e r [ : , : 2 ] [ indexes ]
169 indexes=np . array ( indexes )
170

171 #we c r ea t e a l i s t o f po in t s with damages and a f i g u r e to show them
172 di f f_pt_value=np . vstack ( ( d i f f_pt .T, d i f f _ f i l t e r e d [ indexes ] ) ) .T
173

174 mesh1=scan . copy ( )
175 mesh1 . update_faces ( indexes )
176 graph = nx . Graph ( )
177 graph . add_nodes_from (np . arange ( l en ( scan . f a c e s ) ) )
178 graph . add_edges_from (mesh1 . face_adjacency )
179 groups = nx . connected_components ( graph )#
180 gruppi=np . array ( l i s t ( groups ) )
181 l =[ ]
182 s i n g o l e t t i =[ ]
183 u s a t i=0
184 n=0
185 whi le n<len ( gruppi ) and usat i<l en ( indexes ) :
186 i=gruppi [ n ]
187 n+=1
188 u s a t i+=len ( l i s t ( i ) )
189 i f l en ( i ) >1:
190 l . append ( indexes [ l i s t ( i ) ] )
191 e l s e :
192 s i n g o l e t t i . extend ( indexes [ l i s t ( i ) ] )
193 damaged_locations =[ ]
194 graph = nx . Graph ( )
195 graph . add_nodes_from (np . arange ( l en ( scan . f a c e s ) ) )
196 graph . add_edges_from ( scan . face_adjacency )
197 f o r j in l :
198 i n d i c i =[ ]
199 f o r i in j :
200 l l= l i s t ( graph [ i ] )
201 i n d i c i . extend ( l l )
202 j=np . array ( i n d i c i )
203 i n d i c i =[ ]
204 f o r i in j :
205 l l= l i s t ( graph [ i ] )
206 i n d i c i . extend ( l l )
207 i n d i c i=np . array ( i n d i c i )
208 j=np . unique ( i n d i c i )
209 new_mesh=sub_mesh ( scan , j )



98 Code

210 damaged_locations . append (new_mesh)
211 f o r j in s i n g o l e t t i :
212 j=graph . ne ighbors ( j )
213 i f l en ( j ) >0:
214 f o r k in range (5 ) :
215 i n d i c i =[ ]
216 f o r i in j :
217 l l= l i s t ( graph [ i ] )
218 i n d i c i . extend ( l l )
219 i n d i c i=np . array ( i n d i c i )
220 j=np . unique (np . append ( i nd i c i , j ) )
221 new_mesh=sub_mesh ( scan , j )
222 damaged_locations . append (new_mesh)
223

224 re turn damaged_locations , root_mean_diff
225

226 #PCA eva luato r
227 de f parameters_centro ids2_short (model , scan ) :
228 # INPUT
229 # model : (n , 3 ) array , c oo rd ina t e s o f the po in t s o f the model with the same

parametr i za t i on o f the data po in t s . Damage only .
230 # scan : Trimesh object , the su r f a c e ana l i z ed . Damage only .
231 # OUTPUT
232 # S : (3 , ) array , PC va lue s from the covar iance matrix on 3D po in t s
233 # V: (3 , 3 ) matrix , PC d i r e c t i o n s from the covar iance matrix on 3D po in t s
234

235 #re−eva luate the d i f f e r e n c e s
236 d i f f=model [ : , 2 ] − scan . t r i ang l e s_cen t e r [ : , 2 ]
237 #i f l e s s than 2 po int are pre sent on the damage no meaningful a n a l y s i s can be

performed . the proce s s i s then in t e r rup t ed and re tu rn s only z e ro s .
238 i f l en ( d i f f ) <2:
239 pr in t ( "The damage i s too smal l here " )
240 a=np . array ( [ 0 , 0 , 0 ] )
241 b=np . array ( [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] )
242 re turn a , b
243 #bui ld a new s e t o f po int with the same xy coo rd ina t e s and the d i f f e r e n c e s as

z va lue s
244 d i f f_pt=scan . t r i ang l e s_cen t e r [ : , : 2 ]
245 di f f_pt_value=np . vstack ( ( d i f f_pt .T, d i f f ) ) .T
246

247 #bui ld the covar iance matrix
248 mean=np .mean( dif f_pt_value , ax i s=0)
249 covar i ance=np . dot ( ( di f f_pt_value−mean) .T, di f f_pt_value−mean)
250 #Use the SVD decomposit ion to compute the PC va lues and vec t o r s
251 U, S ,V=np . l i n a l g . svd ( covar i ance )
252 #pr in t ( S1/np . l i n a l g . norm(S1 ) )
253 #Return the p r i n c i p a l va lue s and vec to r s f o r covar iance and c o r r e l a t i o n

matr ixes
254 re turn S , V
255

256 de f BSpl ines_analys i s_short ( d r i t t e , matr i c i , c en t r i , degreeu , degreev , ncpu , ncpv , t o l 1
=0.005 , t o l 2 =0.0001 , shape=10, tol_shape = [0 . 0 075 , 0 . 1 5 ] , border = [0 , 0 , 0 ] ) :

257 # INPUT
258 # d r i t t e : (n , ) array o f tr imesh ob j ec t s , each mesh i s cente red in the o r i g i n

and o r i en t ed as de s c r ibed in the t h e s i s .
259 # matr i c i : (n , ) array o f ( 3 , 3 ) matrixes , each one i s the r o t a t i on nece s sa ry to

r e v e r t the r e s p e c t i v e mesh to i t s o r i g i n a l o r i e n t a t i o n
260 # cen t r i : (n , ) array o f ( 3 , ) vector s , the t r a n s l a t i o n nece s sa ry to move the

r e s p e c t i v e mesh to i t s o r i g i n a l p o s i t i o n
261 # degreeu : int , degree o f the s p l i n e s a long the x ax i s



A.2 Analysis 99

262 # degreev : int , degree o f the s p l i n e s a long the y ax i s
263 # ncpu : int , number o f c on t r o l po in t s a long the x ax i s
264 # ncpv : int , number o f c on t r o l po in t s a long the y ax i s
265 # to l 1 : f l o a t , f i r s t th r e sho ld or parameter , as de s c r ibed in the t h e s i s
266 # to l 2 : f l o a t , second thre sho ld or parameter , as de s c r ibed in the t h e s i s
267 # shape : int , maximum lenght /width r a t i o
268 # tol_shape : ( 2 , ) l i s t , the minimum depth and minimum width o f an acceptab l e

damage
269 # border : ( 3 , ) array , the amount the co rne r s used f o r the homograpy should be

widened along the x , y and z d i r e c t i o n s .
270 # OUTPUT
271 # danni : (m, 3 ) array , c oo rd ina t e s o f the c en t e r s o f the damages detec ted
272 # er r o r : (n , 2 ) array , conta in s the RMSE and the number o f f a c e s f o r each patch
273 # va l o r i : (m, 3 ) array , v a l o r i [0 ]= normal ized PC va lues f o r the damages , v a l o r i

[ 1 ]= [ length , width , depth ] , v a l o r i [2 ]= area
274 s tart_ana lys i s_t ime = time . time ( )
275 numero=1
276 danni =[ ]
277 v a l o r i =[ ]
278 faces_number =[ ]
279 mean_error =[ ]
280 ####This part bu i ld the B−s p l i n e func t i on nece s sa ry to d e f i n e the approximant
281 p=degreeu+1
282 n=ncpu
283 #we de f i n e the knots a long x~u d i r e c t i o n
284 knot1 = [ 0 ] ∗ p + l i s t ( range (1 , n − p + 1) ) + [ n − p + 1 ] ∗ p
285 knot1=np . asar ray ( knot1 ) /knot1 [−1]
286 pr in t ( knot1 )
287 #and bu i ld the BSpline ba s i s over them
288 ba s i s 1 = BSpl ineBas i s (p , knot1 )
289 #again along y~v
290 p=degreev+1
291 n=ncpv
292 knot2 = [ 0 ] ∗ p + l i s t ( range (1 , n − p + 1) ) + [ n − p + 1 ] ∗ p
293 knot2=np . asar ray ( knot2 ) /knot2 [−1]
294 pr in t ( knot2 )
295 ba s i s 2 = BSpl ineBas i s (p , knot2 )
296 ###
297 #The a n a l i s i s i s performed on each patch s i n g u l a r l y
298 f o r m in d r i t t e :
299 matr ice=mat r i c i [ numero−1]
300 cent ro=c e n t r i [ numero−1]
301 faces_number . append ( l en (m. f a c e s ) )
302 pr in t ( "###############")
303 pr in t ( 'Mesh number %d ' %numero )
304 pr in t ( "###############")
305 pr in t ( "Centered in " , cent ro )
306 numero+=1
307 #################
308 #we d iv id e the coo rd ina t e s o f the po in t s to be t t e r use them
309 centers_xy=m. t r i ang l e s_cen t e r [ : , : 2 ]
310 centers_z=m. t r i ang l e s_cen t e r [ : , 2 ]
311 #We f ind the x and y va lue s o f the r e c t ang l e that cover the t r i a n g l e s

c en t e r s o f the mesh , the add i t i on are u s e f u l to be t t e r conta in the po in t s
312 s o t t o=min ( centers_xy [ : , 1 ] ) −0.1#lower po int along x
313 sopra=max( centers_xy [ : , 1 ] ) +0.1#higher po int along x
314 s i n i s t r a=min ( centers_xy [ : , 0 ] ) −0.1#lower po int along y
315 des t ra=max( centers_xy [ : , 0 ] ) +0.1#higher po int along y
316 s p i g o l i=np . array ( [ [ s i n i s t r a , s o t t o ] , [ s i n i s t r a , sopra ] , [ destra , sopra ] , [ destra

, s o t t o ] ] )#corners , c l o ckw i s e from the bottom l e f t one



100 Code

317 matr ice1=estimate_matrix (np . asar ray ( [ [ 0 , 0 ] , [ 0 , 1 ] , [ 1 , 1 ] , [ 1 , 0 ] ] ) , s p i g o l i )#
trans fo rmat ion from uni t square to r e c t ang l e

318 matr ice2=estimate_matrix ( s p i g o l i , np . asar ray ( [ [ 0 , 0 ] , [ 0 , 1 ] , [ 1 , 1 ] , [ 1 , 0 ] ] ) )#
trans fo rmat ion from r e c t ang l e to un i t square

319

320 #We apply an homograpy t rans fo rmat ion to br ing a l l the po in t s in the un i t
square ( with r e sp e c t to the x and y coord )

321 i n s i d e 1=homograpy ( matrice2 ,m. t r i ang l e s_cen t e r )
322 #we check i f some po int i s s t i l l out o f the un i t square . Those po in t s are

impos s ib l e to be modeled with the s p l i n e func t i on and w i l l be ignored . They
are u sua l l y non ex i s t an t and being them on the edges they are cons ide r ed in at
l e a s t another mesh .

323 f u o r i=0
324 u s a b i l i =[ ]
325 i n u t i l i z z a b i l i =[ ]
326 n=0
327 f o r i in i n s i d e 1 :
328 i f any ( i <0) or any ( i >1) :#cond i t i on to determine i f the po int i s

ou t s id e the un i t square
329 f u o r i+=1
330 i n u t i l i z z a b i l i . append (n)
331 e l s e :
332 u s a b i l i . append (n)
333 n+=1
334 i f f uo r i >0:
335 pr in t ( "Punti f u o r i da i CP %d" %f u o r i )
336

337 #Some ac t i on could be performed to inc lude these ex t e rna l point , at the
moment we j u s t en l a rge the s t a r t i n g zone with ' border ' . We now eva luate the
b sp l i n e on the transformed coo rd ina t e s and f i nd the con t r o l po in t s to d e f i n e
the s p l i n e approximant

338 s p l i n e=leas t_square_f i t_bas i c (m, [ bas i s1 , ba s i s 2 ] , i n s i d e 1 [ u s a b i l i ] . T, u s a b i l i
)#f i nd the con t r o l po in t s va lue s

339 punt i_sp l ine=sp l i n e ( i n s i d e 1 [ u s ab i l i , 0 ] , i n s i d e 1 [ u s ab i l i , 1 ] , t en so r=False )#
eva luate the s p l i n e func t i on on the re−parameter ized po in t s i n s i d e 1

340 i f e r r_v i sua l :
341 plot_3D_surface ( sp l i n e ,m. t r i ang l e s_cent e r , m. t r i ang l e s_cen t e r )
342 #sp l ine_po in t s are the same as punt i but with the o r i g i n a l (x , y ) coord
343 sp l ine_po in t s=np . vstack ( (m. t r i ang l e s_cen t e r [ u s ab i l i , : 2 ] . T, punti [ : , 2 ] ) ) .T
344 #we apply parameter_centroids1
345 l i s t a , medio=parameters_centro ids1_short ( sp l ine_points , sub_mesh (m, u s a b i l i ) ,

t o l 1 )
346 #we add the new root mean square e r r o r to the l i s t
347 mean_error . append (medio )
348 #i f the re are p o t e n t i a l damages they are analyzed s i n g u l a r l y
349 i f l en ( l i s t a ) >0:
350 pr in t ( "##" )
351 f o r i in l i s t a :
352 #we repeat the same proce s s but only with the po in t s o f one

damaged area
353 #square g ive us the coord in the un i t square , with the same

t ra s f o rmat i on as be f o r e
354 square=homograpy ( matrice2 , i . t r i ang l e s_cen t e r )
355 z_values=sp l i n e ( square [ : , 0 ] , square [ : , 1 ] , t en so r=False ) [ : , 2 ]
356 #We eva luate the BSpl ines on the po in t s in square
357 spl_pts=np . asar ray ( [ i . t r i ang l e s_cen t e r [ : , 0 ] , i . t r i ang l e s_cen t e r

[ : , 1 ] , z_values ] ) .T
358 #we apply parameters_centro ids2
359 S_cov , V_cov=parameters_centro ids2_short ( spl_pts , i )
360 #we normal ize the vec to r o f the PC va lues



A.2 Analysis 101

361 parametro=S_cov/np . l i n a l g . norm(S_cov )
362 #and f i nd the cente r o f the damage
363 mean=np .mean( i . t r i ang l e s_cente r , ax i s=0)
364 o r i g i n a l=np . dot ( matrice ,mean) [0 ]+ centro [ 0 ]
365 #pr in t some u s e f u l parameters
366 pr in t ( " " )
367 pr in t ( "Center o f the damage=" , o r i g i n a l )
368 pr in t ( "Un−normal ized parameter=" ,S_cov )
369 pr in t ( "Considered parameters= " , parametro )
370 pr in t ( " L in ea r i t y param=" , ( S_cov [0]−S_cov [ 1 ] ) /S_cov [ 0 ] )
371 pr in t ( " P lanar i ty param=" , ( S_cov [1]−S_cov [ 2 ] ) /S_cov [ 0 ] )
372 pr in t ( " S f e r i c i t y param=" ,S_cov [ 2 ] / S_cov [ 0 ] )
373 pr in t ( "Anisotropy=" , ( S_cov [0]−S_cov [ 2 ] ) /S_cov [ 0 ] )
374 pr in t ( "Eighenentropy=",−S_cov [ 0 ] ∗ np . l og (S_cov [ 0 ] )−S_cov [ 1 ] ∗ np . l og (

S_cov [ 1 ] )−S_cov [ 2 ] ∗ np . l og (S_cov [ 2 ] ) )
375 pr in t ( "Curvature change=" ,S_cov [ 2 ] / ( S_cov [0 ]+S_cov [1 ]+S_cov [ 2 ] ) )
376 c en t r i_ i=i . v e r t i c e s−np .mean( i . v e r t i c e s , ax i s=0)
377 r u o t a t i=np . asar ray (np . dot (V_cov , c en t r i_ i .T) )
378 #compute the damage dimensions
379 lunghezza=max( r u o t a t i [ 0 , : ] )−min( r u o t a t i [ 0 , : ] )#lenght
380 l a r ghezza=max( r u o t a t i [ 1 , : ] )−min( r u o t a t i [ 1 , : ] )#width
381 pro fond i ta=max( r u o t a t i [ 2 , : ] )−min( r u o t a t i [ 2 , : ] )#depth
382 pr in t ( 'Max d i s t an c e s=' , [ lunghezza , la rghezza , p ro f ond i ta ] )
383 #eva luate the area and volume o f the damage as the one o f the

convex hu l l conta in ing i t
384 r u o t a t i=ruo t a t i .T
385 hull2D=sp . s p a t i a l . ConvexHull ( r u o t a t i [ : , : 2 ] )#us ing only the f i r s t

two coo rd ina t e s we obta in the area
386 area=hull2D . volume
387 #pr in t ("Area o f the t r i a n g l e s in the convex hu l l =", hull2D . volume )
388 #hull3D=sp . s p a t i a l . ConvexHull ( r u o t a t i [ : , : ] )#us ing a l l the

coo rd ina t e s a l low the volume to be ext rac t ed
389 #pr in t ("Volume o f the 3D convex hu l l =", hull3D . volume )
390 #i f the 3 rd normal ized PC value i s h igher than t o l 2 and the depth

i s h igher than tol_shape [ 0 ] the an a l y s i s cont inues
391 i f parametro [2]>= to l 2 and pro fond i ta>tol_shape [ 0 ] :
392 #th i s second con t r o l compares f i r s t and second PC va lues to

f i l t e r out the long and th in ones . I t a l s o r equre s a minimum width o f the
damage .

393 i f l a rghezza >( lunghezza / shape ) and larghezza>=tol_shape [ 1 ] :
394 pr in t ( " I s acceptab l e " )
395 v a l o r i . append ( [ S_cov/np . l i n a l g . norm(S_cov ) , [ lunghezza ,

la rghezza , p ro f ond i ta ] , area ] )
396 danni . append ( o r i g i n a l )
397 e l s e :# i f i s too long and th in i s d i s ca rded
398 pr in t ( " I s too scratch− l i k e " )
399 #otherwi se i s a faux p o s i t i v e
400 e l s e :
401 pr in t ( " I s not acceptab l e " )
402 danni=np . asar ray ( danni )
403 e r r o r =[mean_error , faces_number ]
404 pr in t ( "Total root mean square e r r o r=" ,np . s q r t (np . dot (np . asar ray ( e r r o r [ 0 ] ) ∗∗2 ,

np . asar ray ( e r r o r [ 1 ] ) ) /sum( e r r o r [ 1 ] ) ) )
405 re turn danni , e r ror , v a l o r i

A.2.3 analysis_poly_main

Summarizing function to apply the analysis with polynomial approximations on the patches
extracted, based on the position on the blades. Blisk blades and worn blades are treated di�er-



102 Code

ently based on their shape.

1 import numpy as np
2 import s c ipy as sp
3 import tr imesh as tm
4 import csv
5 from part it ion_main import b l i s k_pa r t i t i o n i n g
6 from part it ion_main import a l l i gnment
7 from ana lys i s_po ly import polynomia l_analys i s_short
8

9

10 #Main ana l y s i s f unc t i on
11 de f b l i sk_polynomia l_detect ion (mesh , pt=np . array ( [ [ x , x ] , [ x , x ] , [ x , x ] , [ x , x ] ] ) , pt1=

np . array ( [ [ x , x ] , [ x , x ] , [ x , x ] , [ x , x ] ] ) , pt2=np . array ( [ [ x , x ] , [ x , x ] [ x , x ] , [ x , x ] ] ) ,
s i z e =2. , ext ra =0.5 , degx =[5 , 5 , 5 , 5 , 10 , 10 , 10 , 10 ] , degy =[5 , 5 , 5 , 5 , 10 , 10 , 10 , 10 ] ,
t o l 1 = [ 0 . 0 0 2 , 0 . 0 0 5 , 0 . 0 0 5 , 0 . 0 0 5 , 0 . 0 1 , 0 . 0 0 5 , 0 . 0 1 , 0 . 0 0 5 ] , t o l 2
= [ 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 ] , edges=True ) :

12 # INPUT
13 # mesh : tr imesh object , the mesh to be analyzed
14 # pt : (4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id
15 # pt1 : ( 4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id f o r the lower part
16 # pt2 : ( 4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id f o r the upper part
17 # s i z e : f l o a t , the mazimum s i z e o f a patch
18 # extra : f l o a t , the amount o f over lapp ing f o r ad jacent patches
19 # degx : ( 8 , ) l i s t o f int , degree s o f the polynomia ls a long the x ax i s f o r the

var i ous par t s o f the blade
20 # degy : ( 8 , ) l i s t o f int , degree s o f the polynomia ls a long the y ax i s f o r the

var i ous par t s o f the blade
21 # to l 1 : ( 8 , ) l i s t o f f l o a t , f i r s t parameter f o r the va ious par t s o f the blade
22 # to l 2 : ( 8 , ) l i s t o f f l o a t , second parameter f o r the var i ous part o f the blade
23 # edges : bool , i f Fa l se does not d iv id e f u r t h e r the edges columns in the g r id
24 # OUTPUT
25 # damages : (n , 3 ) array , c en t e r o f the damages detec ted .
26 # values : (n , 3 ) l i s t , va lue s [0 ]= normal ized PC va lues f o r the damage , va lue s

[ 1 ]= [ length , width , depth ] , va lue s [2 ]= area
27 damages=[ ]
28 va lue s =[ ]
29 f l a t , top , bordo1 , bordo2 , edge1 , edge2 , edge11 , edge22 , tempo1 , tempo2 , tempo3=

b l i s k_pa r t i t i o n i n g (mesh , pt , s i z e , extra , pt1 , pt2 , edges )
30 i f l en ( f l a t ) >0:#ana l y s i s on the a i r f o i l
31 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( f l a t , parabo le=False )
32 danni , e r ror , v a l o r i= polynomial_analys i s_short ( s t ra i ghtened , matrixes ,

c ente r s , degx [ 0 ] , degy [ 0 ] , t o l 1 [ 0 ] , t o l 2 [ 0 ] , shape=True )
33 damages . extend ( danni . t o l i s t ( ) )
34 va lue s . extend ( v a l o r i )
35 i f l en ( top ) >0:#ana l y s i s on the top part
36 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( top , parabo le=False )
37 danni , e r ror , v a l o r i= polynomial_analys i s_short ( s t ra i ghtened , matrixes ,

c ente r s , degx [ 1 ] , degy [ 1 ] , t o l 1 [ 1 ] , t o l 2 [ 1 ] , shape=True )
38 damages . extend ( danni . t o l i s t ( ) )
39 va lue s . extend ( v a l o r i )
40 i f l en ( bordo1 ) >0:#ana l y s i s on the l e f t border
41 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( bordo1 , parabo le=False )
42 danni , e r ror , v a l o r i= polynomial_analys i s_short ( s t ra i ghtened , matrixes ,

c ente r s , degx [ 2 ] , degy [ 2 ] , t o l 1 [ 2 ] , t o l 2 [ 2 ] , shape=True )
43 damages . extend ( danni . t o l i s t ( ) )
44 va lue s . extend ( v a l o r i )
45 i f l en ( bordo2 ) >0:#ana l y s i s on the r i g h t border
46 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( bordo2 , parabo le=False )
47 danni , e r ror , v a l o r i= polynomial_analys i s_short ( s t ra i ghtened , matrixes ,

c ente r s , degx [ 3 ] , degy [ 3 ] , t o l 1 [ 3 ] , t o l 2 [ 3 ] , shape=True )



A.2 Analysis 103

48 damages . extend ( danni . t o l i s t ( ) )
49 va lue s . extend ( v a l o r i )
50 i f l en ( edge1 ) >0:#ana l y s i s on the l e f t edge ( f i r s t p i e c e )
51 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge1 , parabo le=True )
52 danni , e r ror , v a l o r i= polynomial_analys i s_short ( s t ra i ghtened , matrixes ,

c ente r s , degx [ 4 ] , degy [ 4 ] , t o l 1 [ 4 ] , t o l 2 [ 4 ] , shape=True )
53 damages . extend ( danni . t o l i s t ( ) )
54 va lue s . extend ( v a l o r i )
55 i f l en ( edge2 ) >0:#ana l y s i s on the r i gh t edge ( f i r s t p i e c e )
56 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge2 , parabo le=True )
57 danni , e r ror , v a l o r i= polynomial_analys i s_short ( s t ra i ghtened , matrixes ,

c ente r s , degx [ 5 ] , degy [ 5 ] , t o l 1 [ 5 ] , t o l 2 [ 5 ] , shape=True )
58 damages . extend ( danni . t o l i s t ( ) )
59 va lue s . extend ( v a l o r i )
60 i f l en ( edge11 ) >0:#ana l y s i s on the l e f t edge ( second p i e c e )
61 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge11 , parabo le=True )
62 danni , e r ror , v a l o r i= polynomial_analys i s_short ( s t ra i ghtened , matrixes ,

c ente r s , degx [ 6 ] , degy [ 6 ] , t o l 1 [ 6 ] , t o l 2 [ 6 ] , shape=True )
63 damages . extend ( danni . t o l i s t ( ) )
64 va lue s . extend ( v a l o r i )
65 i f l en ( edge22 ) >0:#ana l y s i s on the r i g h t edge ( second p i e c e )
66 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge22 , parabo le=True )
67 danni , e r ror , v a l o r i= polynomial_analys i s_short ( s t ra i ghtened , matrixes ,

c ente r s , degx [ 7 ] , degy [ 7 ] , t o l 1 [ 7 ] , t o l 2 [ 7 ] , shape=True )
68 damages . extend ( danni . t o l i s t ( ) )
69 va lue s . extend ( v a l o r i )
70 damages=np . array ( damages )
71 re turn damages , va lue s
72

73 #Main ana l y s i s f unc t i on
74 de f blades_polynomial_detect ion (mesh , pt=np . array ( [ [ x , x ] , [ x , x ] [ x , x ] , [ x , x ] ] ) , s i z e

=5. , ext ra =2. , degx =[5 , 5 , 5 , 5 , 10 , 10 , 10 , 10 ] , degy =[5 , 5 , 5 , 5 , 10 , 10 , 10 , 10 ] , t o l 1
= [ 0 . 0 0 2 , 0 . 0 0 5 , 0 . 0 0 5 , 0 . 0 0 5 , 0 . 0 1 , 0 . 0 0 5 , 0 . 0 1 , 0 . 0 0 5 ] , t o l 2
= [ 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 , 0 . 0 001 ] , edges=True ) :

75 # INPUT
76 # mesh : tr imesh object , the mesh to be analyzed
77 # pt : (4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id
78 # s i z e : f l o a t , the mazimum s i z e o f a patch
79 # extra : f l o a t , the amount o f over lapp ing f o r ad jacent patches
80 # degx : ( 8 , ) l i s t o f int , number o f c on t r o l po in t s a long the x ax i s f o r the

var i ous par t s o f the blade
81 # degy : ( 8 , ) l i s t o f int , number o f c on t r o l po in t s a long the y ax i s f o r the

var i ous par t s o f the blade
82 # to l 1 : ( 8 , ) l i s t o f f l o a t , f i r s t parameter f o r the va ious par t s o f the blade
83 # to l 2 : ( 8 , ) l i s t o f f l o a t , second parameter f o r the var i ous part o f the blade
84 # edges : bool , i f Fa l se does not d iv id e f u r t h e r the edges columns in the g r id
85 # OUTPUT
86 # damages : (n , 3 ) array , c en t e r o f the damages detec ted .
87 # values : (n , 3 ) l i s t , va lue s [0 ]= normal ized PC va lues f o r the damage , va lue s

[ 1 ]= [ length , width , depth ] , va lue s [2 ]= area
88 damages=[ ]
89 va lue s =[ ]
90 f l a t , top , bordo1 , bordo2 , edge1 , edge2 , edge11 , edge22 , tempo1 , tempo2 , tempo3=

b lade_par t i t i on ing (mesh , pt , s i z e , extra , edges )
91 i f l en ( f l a t ) >0:#ana l y s i s on the a i r f o i l
92 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( f l a t , parabo le=False )
93 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 0 ] , degy [ 0 ] , t o l 1 [ 0 ] , t o l 2 [ 0 ] )
94 damages . extend ( danni . t o l i s t ( ) )
95 va lue s . extend ( v a l o r i )



104 Code

96 i f l en ( top ) >0:#ana l y s i s on the top part
97 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( top , parabo le=False )
98 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 1 ] , degy [ 1 ] , t o l 1 [ 1 ] , t o l 2 [ 1 ] )
99 damages . extend ( danni . t o l i s t ( ) )

100 va lue s . extend ( v a l o r i )
101 i f l en ( bordo1 ) >0:#ana l y s i s on the l e f t border
102 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( bordo1 , parabo le=False )
103 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 2 ] , degy [ 2 ] , t o l 1 [ 2 ] , t o l 2 [ 2 ] )
104 damages . extend ( danni . t o l i s t ( ) )
105 va lue s . extend ( v a l o r i )
106 i f l en ( bordo2 ) >0:#ana l y s i s on the r i g h t border
107 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( bordo2 , parabo le=False )
108 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 3 ] , degy [ 3 ] , t o l 1 [ 3 ] , t o l 2 [ 3 ] )
109 damages . extend ( danni . t o l i s t ( ) )
110 va lue s . extend ( v a l o r i )
111 i f l en ( edge1 ) >0:#ana l y s i s on the l e f t edge ( f i r s t p i e c e )
112 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge1 , parabo le=True )
113 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 4 ] , degy [ 4 ] , t o l 1 [ 4 ] , t o l 2 [ 4 ] )
114 damages . extend ( danni . t o l i s t ( ) )
115 va lue s . extend ( v a l o r i )
116 i f l en ( edge2 ) >0:#ana l y s i s on the r i gh t edge ( f i r s t p i e c e )
117 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge2 , parabo le=True )
118 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 5 ] , degy [ 5 ] , t o l 1 [ 5 ] , t o l 2 [ 5 ] )
119 damages . extend ( danni . t o l i s t ( ) )
120 va lue s . extend ( v a l o r i )
121 i f l en ( edge11 ) >0:#ana l y s i s on the l e f t edge ( second p i e c e )
122 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge11 , parabo le=True )
123 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 6 ] , degy [ 6 ] , t o l 1 [ 6 ] , t o l 2 [ 6 ] )
124 damages . extend ( danni . t o l i s t ( ) )
125 va lue s . extend ( v a l o r i )
126 i f l en ( edge22 ) >0:#ana l y s i s on the r i g h t edge ( second p i e c e )
127 s t ra i ghtened , matrixes , c en t e r s=a l l i gnment ( edge22 , parabo le=True )
128 danni , e r ror , v a l o r i= BSpl ines_analys i s_short ( s t ra ightened , matrixes ,

c ente r s , 2 , 2 , degx [ 7 ] , degy [ 7 ] , t o l 1 [ 7 ] , t o l 2 [ 7 ] )
129 damages . extend ( danni . t o l i s t ( ) )
130 va lue s . extend ( v a l o r i )
131 damages=np . array ( damages )
132 re turn damages , va lue s
133

134

135 #Ut i l i t y func t i on to save the damages l o c a t i o n in a format importable by GOM
136 de f export_gom( found , path , name) :
137 # INPUT
138 # found : (n , 3 ) array , c oo rd ina t e s o f the damages l o c a t i o n s
139 # path : s t r i ng , d i r e c t o r y the f i l e should be saved in
140 # name : s t r i ng , blade name , . s t l inc luded
141 # OUTPUT
142 # a csv f i l e , named ' ' name ' ' _f ind ings . csv , with the damages l o ca t i on , r eadab le

by GOM
143 csv=open ( path+name[:−3]+ ' _f ind ings . csv ' , "w" )
144 f o r i in range ( l en ( found ) ) :
145 csv . wr i t e ( 'Found '+s t r ( i ) )
146 f o r j in found [ i ] :
147 number_int=s t r ( i n t ( j ) )



A.2 Analysis 105

148 number_dec = s t r ( abs ( j−i n t ( j ) ) ) [ 2 : ]
149 i f number_int==' 0 ' and j <0:
150 number_int='− '+number_int
151 csv . wr i t e ( ' '+number_int+' , '+number_dec )
152 csv . wr i t e ( ' \n ' )
153 csv . c l o s e ( )

A.2.4 analysis_poly

Subroutines necessary to build the polynomial approximation and perform the analysis.

1 import numpy as np
2 import s c ipy as sp
3 import time
4 import matp lo t l i b
5 import matp lo t l i b . pyplot as p l t
6 from mpl_toolk i ts . mplot3d import Axes3D
7 import networkx as nx
8 import tr imesh as tm
9 from u t i l i t i e s import sub_mesh

10 from u t i l i t i e s import matricexy
11 from u t i l i t i e s import poly_value
12

13 #Poten t i a l damage de t e c t o r
14 de f parameters_centro ids1_short (model , scan , t o l ) :
15 # INPUT
16 # model : (n , 3 ) array , c oo rd ina t e s o f the po in t s o f the model with the same

parametr i za t i on o f the data po in t s .
17 # scan : Trimesh object , the su r f a c e ana l i z ed
18 # to l : co s tant value , th r e sho ld f o r d i f f e r e n c e s , c a l l e d f i r s t parameter or

f i r s t th r e sho ld in the t h e s i s
19 # v i s u a l : bool , i f True show graph ic r ap r e s en ta t i on o f va r i ous i t e rmed ia ry

r e s u l t s .
20 # OUTPUT
21 # damaged_locations : l i s t o f tr imesh ob j ec t s , each one r ep r e s en t a dmaged

l o c a t i o n
22 # root_mean_diff : f l o a t , root mean square e r r o r between patch and model
23

24 d i f f=model [ : , 2 ] − scan . t r i ang l e s_cen t e r [ : , 2 ]
25 root_mean_diff=np . sq r t (sum( d i f f ∗∗2) / l en ( scan . f a c e s ) )
26

27 d i f f _ f i l t e r e d=np . z e ro s ( l en ( d i f f ) )
28 indexes =[ ]
29 ##th i s does not con s id e r the d i f f e r e n c e between ho l e s and pro t ru s i on .
30 f o r n in range ( l en ( d i f f ) ) :
31 i f abs ( d i f f [ n ] )>t o l :
32 indexes . append (n)
33 d i f f _ f i l t e r e d [ n]=np . s i gn ( d i f f [ n ] ) ∗( abs ( d i f f [ n ] )−t o l )#I 'm not sure the

s i gn i s nece s sa ry
34

35 i f indexes ==[] :
36 re turn indexes , root_mean_diff
37 d i f f_pt=scan . t r i ang l e s_cen t e r [ : , : 2 ] [ indexes ]
38 indexes=np . array ( indexes )
39

40 #we c r ea t e a l i s t o f po in t s with damages and a f i g u r e to show them
41 di f f_pt_value=np . vstack ( ( d i f f_pt .T, d i f f _ f i l t e r e d [ indexes ] ) ) .T
42

43 mesh1=scan . copy ( )
44 mesh1 . update_faces ( indexes )



106 Code

45 graph = nx . Graph ( )
46 graph . add_nodes_from (np . arange ( l en ( scan . f a c e s ) ) )
47 graph . add_edges_from (mesh1 . face_adjacency )
48 groups = nx . connected_components ( graph )#
49 gruppi=np . array ( l i s t ( groups ) )
50 l =[ ]
51 s i n g o l e t t i =[ ]
52 u s a t i=0
53 n=0
54 whi le n<len ( gruppi ) and usat i<l en ( indexes ) :
55 i=gruppi [ n ]
56 n+=1
57 u s a t i+=len ( l i s t ( i ) )
58 i f l en ( i ) >1:
59 l . append ( indexes [ l i s t ( i ) ] )
60 e l s e :
61 s i n g o l e t t i . extend ( indexes [ l i s t ( i ) ] )
62 damaged_locations =[ ]
63 graph = nx . Graph ( )
64 graph . add_nodes_from (np . arange ( l en ( scan . f a c e s ) ) )
65 graph . add_edges_from ( scan . face_adjacency )
66 f o r j in l :
67 i n d i c i =[ ]
68 f o r i in j :
69 l l= l i s t ( graph [ i ] )
70 i n d i c i . extend ( l l )
71 j=np . array ( i n d i c i )
72 i n d i c i =[ ]
73 f o r i in j :
74 l l= l i s t ( graph [ i ] )
75 i n d i c i . extend ( l l )
76 i n d i c i=np . array ( i n d i c i )
77 j=np . unique ( i n d i c i )
78 new_mesh=sub_mesh ( scan , j )
79 damaged_locations . append (new_mesh)
80 f o r j in s i n g o l e t t i :
81 j=graph . ne ighbors ( j )
82 i f l en ( j ) >0:
83 f o r k in range (5 ) :
84 i n d i c i =[ ]
85 f o r i in j :
86 l l= l i s t ( graph [ i ] )
87 i n d i c i . extend ( l l )
88 i n d i c i=np . array ( i n d i c i )
89 j=np . unique (np . append ( i nd i c i , j ) )
90 new_mesh=sub_mesh ( scan , j )
91 damaged_locations . append (new_mesh)
92

93 re turn damaged_locations , root_mean_diff
94

95 #PCA eva luato r
96 de f parameters_centro ids2_short (model , scan ) :
97 # INPUT
98 # model : (n , 3 ) array , c oo rd ina t e s o f the po in t s o f the model with the same

parametr i za t i on o f the data po in t s . Damage only .
99 # scan : Trimesh object , the su r f a c e ana l i z ed . Damage only .

100 # OUTPUT
101 # S : (3 , ) array , PC va lue s from the covar iance matrix on 3D po in t s
102 # V: (3 , 3 ) matrix , PC d i r e c t i o n s from the covar iance matrix on 3D po in t s
103



A.2 Analysis 107

104 #re−eva luate the d i f f e r e n c e s
105 d i f f=model [ : , 2 ] − scan . t r i ang l e s_cen t e r [ : , 2 ]
106 #i f l e s s than 2 po int are pre sent on the damage no meaningful a n a l y s i s can be

performed . the proce s s i s then in t e r rup t ed and re tu rn s only z e ro s .
107 i f l en ( d i f f ) <2:
108 pr in t ( "The damage i s too smal l here " )
109 a=np . array ( [ 0 , 0 , 0 ] )
110 b=np . array ( [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] , [ 0 , 0 , 0 ] )
111 re turn a , b
112 #bui ld a new s e t o f po int with the same xy coo rd ina t e s and the d i f f e r e n c e s as

z va lue s
113 d i f f_pt=scan . t r i ang l e s_cen t e r [ : , : 2 ]
114 di f f_pt_value=np . vstack ( ( d i f f_pt .T, d i f f ) ) .T
115

116 #bui ld the covar iance matrix
117 mean=np .mean( dif f_pt_value , ax i s=0)
118 covar iance=np . dot ( ( di f f_pt_value−mean) .T, di f f_pt_value−mean)
119 #Use the SVD decomposit ion to compute the PC va lues and vec to r s
120 U, S ,V=np . l i n a l g . svd ( covar iance )
121 #pr in t ( S1/np . l i n a l g . norm(S1 ) )
122 #Return the p r i n c i p a l va lue s and vec to r s f o r covar iance and c o r r e l a t i o n

matr ixes
123 re turn S , V
124

125 #Patchwise polynomial a n a l y s i s
126 de f polynomia l_analys i s_short ( d r i t t e , matr i c i , c en t r i , degx , degy , t o l 1 =0.005 , t o l 2

=0.0001 , shape=True ) :
127 # INPUT
128 # d r i t t e : (n , ) array o f tr imesh ob j ec t s , each mesh i s cente red in the o r i g i n and

o r i en t ed as de s c r ibed in the t h e s i s .
129 # matr i c i : (n , ) array o f ( 3 , 3 ) matrixes , each one i s the r o t a t i on nece s sa ry to

r e v e r t the r e s p e c t i v e mesh to i t s o r i g i n a l o r i e n t a t i o n
130 # cen t r i : (n , ) array o f ( 3 , ) vector s , the t r a n s l a t i o n nece s sa ry to move the

r e s p e c t i v e mesh to i t s o r i g i n a l p o s i t i o n
131 # degx : int , degree o f the po l inomia l a long the x ax i s
132 # degy : int , degree o f the po l inomia l a long the y ax i s
133 # to l 1 : f l o a t , f i r s t th r e sho ld or parameter , as de s c r ibed in the t h e s i s
134 # to l 2 : f l o a t , second thre sho ld or parameter , as de s c r ibed in the t h e s i s
135 # shape : bool , i f True an add i t i ona l f i l t e r i s addet to the r e s u l t s
136 # OUTPUT
137 # danni : (m, 3 ) array , c oo rd ina t e s o f the c en t e r s o f the damages detec ted
138 # er r o r : (n , 2 ) array , conta in s the RMSE and the number o f f a c e s f o r each patch
139 # va l o r i : (m, 3 ) array , v a l o r i [0 ]= normal ized PC va lues f o r the damages , v a l o r i

[ 1 ]= [ length , width , depth ] , v a l o r i [2 ]= area
140 numero=1
141 danni =[ ]
142 v a l o r i =[ ]
143 faces_number =[ ]
144 mean_error =[ ]
145 f o r m in d r i t t e :
146 matr ice=mat r i c i [ numero−1]
147 cent ro=c e n t r i [ numero−1]
148 faces_number . append ( l en (m. f a c e s ) )
149 pr in t ( "###############")
150 pr in t ( 'Mesh number %d ' %numero )
151 pr in t ( "###############")
152 pr in t ( "Centered in " , cent ro )
153 numero+=1
154 #################



108 Code

155 #Build the matrix r equ i r ed to perform the l e a s t square approximation . Uses a 2
D polynomial o f degree degx∗degy .

156 #bui ld the matrix with [ 1 , x , x ^ 2 , . . . , x^degx , y∗1 , y∗x , . . . , y^degy∗x^degx ] as row
f o r each f a c e cente r in the mesh

157 A=matricexy (m. t r i ang l e s_cen t e r [ : , : 2 ] , degx , degy )
158 #Perform the l e a s t square approximation to determine the c o e f f i c i e n t o f the

polynomial
159 x=np . l i n a l g . l s t s q (A, np . asar ray (m. t r i ang l e s_cen t e r [ : , 2 ] ) . f l a t t e n ( ) )
160 #in s i d e i s a n array o f the z−va lue s o f the polynomial found on the

coo rd ina t e s o f the f a c e s c ent e r
161 i n s i d e=poly_value (m. t r i ang l e s_cen t e r [ : , : 2 ] , x [ 0 ] , degx , degy ,A)
162 #poly_points are the 3D ve r s i on o f i n s i d e , with x and y coo rd ina t e s too
163 poly_points=np . vstack ( (m. t r i ang l e s_cen t e r [ : , : 2 ] . T, i n s i d e ) ) .T
164 #we apply parameter_centroids1_short
165 l i s t a , medio=parameters_centro ids1_short ( poly_points ,m, t o l 1 )
166 #we add the new root mean square e r r o r to the l i s t
167 mean_error . append (medio )
168 #i f the re are damages to ana l i z e
169 damaged_zones=[ ]
170 #each sub−mesh ext rac t ed i s then analyzed independly to determine i t i s an

impact damage or not .
171 i f l en ( l i s t a ) >0:
172 f o r i in l i s t a :
173 #the same as poly_points but only f o r the f a c e s c en t e r s o f the damaged

l o c a t i o n
174 spl_pts=np . asar ray ( [ i . t r i ang l e s_cen t e r [ : , 0 ] , i . t r i ang l e s_cen t e r [ : , 1 ] ,

poly_value ( i . t r i ang l e s_cen t e r [ : , : 2 ] , x [ 0 ] , degx , degy ) ] ) .T
175 #we apply parameters_centro ids2_short
176 S_cov , V_cov=parameters_centro ids2_short ( spl_pts , i )
177 #we normal ize the vec to r o f the PC values , i t s the r e a l parameter to

i nd i c a t e i f an impe r f e c t i on i s a damage or not .
178 parametro=S_cov/np . l i n a l g . norm(S_cov )
179 # f ind the cente r o f the damage
180 mean=np .mean( i . t r i ang l e s_cente r , ax i s=0)
181 #and roto−t r a n s l a t e i t back to the o r i g i n a l p o s i t i o n
182 o r i g i n a l=np . dot ( matrice ,mean) [0 ]+ centro [ 0 ]
183 #pr in t some u s e f u l i n f o rmat i ons
184 pr in t ( " " )
185 pr in t ( "Center o f the damage=" , o r i g i n a l )
186 pr in t ( "Un−normal ized parameter=" ,S_cov )
187 pr in t ( "Considered parameters= " , parametro )
188 pr in t ( " L in ea r i t y param=" , ( S_cov [0]−S_cov [ 1 ] ) /S_cov [ 0 ] )
189 pr in t ( " P lanar i ty param=" , ( S_cov [1]−S_cov [ 2 ] ) /S_cov [ 0 ] )
190 pr in t ( " S f e r i c i t y param=" ,S_cov [ 2 ] / S_cov [ 0 ] )
191 pr in t ( "Anisotropy=" , ( S_cov [0]−S_cov [ 2 ] ) /S_cov [ 0 ] )
192 pr in t ( "Eighenentropy=",−S_cov [ 0 ] ∗ np . l og (S_cov [ 0 ] )−S_cov [ 1 ] ∗ np . l og (S_cov

[ 1 ] )−S_cov [ 2 ] ∗ np . l og (S_cov [ 2 ] ) )
193 pr in t ( "Curvature change=" ,S_cov [ 2 ] / ( S_cov [0 ]+S_cov [1 ]+S_cov [ 2 ] ) )
194 c en t r i_ i=i . v e r t i c e s−np .mean( i . v e r t i c e s , ax i s=0)
195 r u o t a t i=np . asar ray (np . dot (V_cov , c en t r i_ i .T) )
196 #compute the damage dimensions
197 lunghezza=max( r u o t a t i [ 0 , : ] )−min( r u o t a t i [ 0 , : ] )#lenght
198 l a r ghezza=max( r u o t a t i [ 1 , : ] )−min( r u o t a t i [ 1 , : ] )#width
199 pro fond i ta=max( r u o t a t i [ 2 , : ] )−min( r u o t a t i [ 2 , : ] )#depth
200 pr in t ( 'Max d i s t an c e s=' , [ lunghezza , la rghezza , p ro f ond i ta ] )
201 #eva luate the area and volume o f the damage as the one o f the convex hu l l

conta in ing i t
202 #ruo t a t i=ruo t a t i .T
203 #hull2D=sp . s p a t i a l . ConvexHull ( r u o t a t i [ : , : 2 ] )#us ing only the f i r s t two

coo rd ina t e s we obta in the area



A.3 Partition 109

204 #pr in t ("Area o f the t r i a n g l e s in the convex hu l l =", hull2D . volume )
205 #hull3D=sp . s p a t i a l . ConvexHull ( r u o t a t i [ : , : ] )#us ing a l l the coo rd ina t e s

a l low the volume to be ext rac t ed
206 #pr in t ("Volume o f the 3D convex hu l l =", hull3D . volume )
207 #t r an s l a t e and o r i e n t a t e the damage so that the incava t i on /bump i s as

v e r t i c a l as po s s i b l e , to determine i t s dimensions , then pr in ted
208 c en t r i_ i=i . t r i ang l e s_cen t e r
209 r u o t a t i=np . asar ray (np . dot (V_cov , c en t r i_ i .T) )
210 lunghezza=max( r u o t a t i [ 0 , : ] )−min( r u o t a t i [ 0 , : ] )#length
211 l a r ghezza=max( r u o t a t i [ 1 , : ] )−min( r u o t a t i [ 1 , : ] )#width
212 pro fond i ta=max( r u o t a t i [ 2 , : ] )−min( r u o t a t i [ 2 , : ] )#depth
213 pr in t ( ' l ength=' , lunghezza , ' width=' , la rghezza , ' depth=' , p ro f ond i ta )
214 r u o t a t i=ruo t a t i .T
215 hull2D=sp . s p a t i a l . ConvexHull ( r u o t a t i [ : , : 2 ] )#us ing only the f i r s t two

coo rd ina t e s we obta in the area
216 area=hull2D . volume
217 pr in t ( " " )
218 #i f the 3 rd normal ized PC value i s h igher than t o l 2 the l o c a t i o n i s an

impact damage
219 i f parametro [2]>= to l 2 :
220 i f shape :#i f shape==True the r a t i o between the f i r s and second dimension

i s a l s o cheched . I f the ' l ength ' i s more than 3 t imes the ' width ' i s too
scratch− l i k e and i s d i s ca rded . Working with parametro only g i v e s an i nd i c a t i o n
o f the damage s i z e , an add i t i o na l f i l t e r based on the r e a l dimentions can be

added .
221 i f parametro [1]>=( parametro [ 0 ] / 3 ) :#acceptab l e shape
222 pr in t ( "######################################Is acceptab l e

####################################")
223 pr in t ( " " )
224 v a l o r i . append ( [ S_cov/np . l i n a l g . norm(S_cov ) , [ lunghezza , la rghezza ,

p ro f ond i ta ] , area ] )
225 danni . append ( o r i g i n a l )
226

227 e l s e :
228 pr in t ( 'Too scratch− l i k e ' )#in t h i s case i s d i s ca rded
229 e l s e :
230 pr in t ( "######################################Is acceptab l e

####################################")
231 pr in t ( " " )
232 v a l o r i . append ( [ S_cov/np . l i n a l g . norm(S_cov ) , [ lunghezza , la rghezza ,

p ro f ond i ta ] , area ] )
233 danni . append ( o r i g i n a l )
234 #otherwi se i s a faux p o s i t i v e
235 e l s e :
236 pr in t ( " I s not acceptab l e " )
237 pr in t ( "##" )
238 danni=np . asar ray ( danni )
239 #i f e r r_v i sua l i s True i t shows a graph o f the root mean square e r r o r
240 e r r o r =[mean_error , faces_number ]
241 pr in t ( "Total root mean square e r r o r=" ,np . s q r t (np . dot (np . asar ray ( e r r o r [ 0 ] ) ∗∗2 ,np .

asar ray ( e r r o r [ 1 ] ) ) /sum( e r r o r [ 1 ] ) ) )
242 re turn danni , e r ror , v a l o r i

A.3 Partition

The following function are used to extract the patches to be analyzed from the scan surface.



110 Code

A.3.1 partition_main

Summary script to perform the partitioning of the surface.

1 import numpy as np
2 import s c ipy as sp
3 import time
4 import matp lo t l i b
5 import matp lo t l i b . pyplot as p l t
6 from mpl_toolk i ts . mplot3d import Axes3D
7

8 p l t . rcParams [ " f i g u r e . f i g s i z e " ] = [ 1 0 , 1 0 ]
9 import networkx as nx

10 import tr imesh as tm
11 from u t i l i t i e s import cut
12 from u t i l i t i e s import sub_mesh
13 from u t i l i t i e s import workbench
14 from part i t ion_gr id_cut import grid_maker
15 from part i t ion_gr id_cut import windowing
16 from par t i t i on_re f inement import border_extra
17

18 #This func t i on r e f i n e a l l the sub meshes ex t rac t ed from windowing . t h i s i s the
func t i on to be modi f i ed in case b lades with d i f f e r e n t shapes are t e s t ed . As an
example , i f the blade i s attached to a s t r u c tu r e a l s o on the top the main

mart should encompass a l l the c e l l s .
19 de f p a r t i t i o n i n g ( sub_grid , sub_vert ices , v i s u a l=False ) :
20 # INPUT
21 # sub_grid : 2D array o f tr imesh object , to understand i t s s t r u c tu r e see

windowing
22 # sub_vert i ce s : 2D array o f 2D points , the co rne r s o f the g r id c e l l s , f o r i t s

s t r u c tu r e see windowing
23 # v i s u a l : bool , i f True the middle s t ep s are shown , s lowing the proce s s

con s id e rab ly
24 # OUTPUT
25 # f l a t : l i s t , patches from the a i r f o i l
26 # top : l i s t , patches from the top row
27 # bordo1 : l i s t , patches from the l e f t edge border
28 # bordo2 : l i s t , patches from the r i gh t s i d e border
29 # edge1 : l i s t , f i r s t patches from the l e f t s i d e edge
30 # edge2 : l i s t , f i r s t patches from the r i g h t s i d e edge
31 # edge11 : l i s t , second patches from the l e f t s i d e edge
32 # edge22 : l i s t , second patches from the r i g h t s i d e edge
33 # tempo : f l o a t , t o t a l time nece s sa ry f o r t h i s f unc t i on ( seconds )
34 t5=time . time ( )
35 f l a t =[ ]
36 bordo1 =[ ]
37 bordo2 =[ ]
38 top =[ ]
39 edge1 =[ ]
40 edge11 =[ ]
41 edge2 =[ ]
42 edge22 =[ ]
43 #The s t a r t i n g po in t s f o r the edges , co rne r s and top p a r t i t i o n i n g are chosen to

be on a part as f a r away as p o s s i b l e from the edges .
44 #####MAIN PART
45 f o r i in range ( l en ( sub_grid )−1) :#analyze a l l the c e l l s exept f o r the upper row

. That part i s analyzed s epa r a t e l y because o f i t s f e a t u r e s
46 f o r j in range ( l en ( sub_grid [ i ] ) ) :
47 i f j==0:
48 #Meshes on the l e f t edge , border ext ra i s app l i ed
49 normal_pt=(sub_vert i ce s [ i , j ] [ 2 ]+ sub_vert i ce s [ i , j ] [ 3 ] ) /2



A.3 Partition 111

50 l a t i , bordo , edge=border_extra ( sub_grid [ i , j ] , normal_pt , t o l =0.01 ,
v i s u a l=v i s u a l )

51 f o r k in l a t i :
52 bordo1 . append (k )
53 f o r k in bordo :
54 edge1 . append (k )
55 f o r k in edge :
56 edge11 . append (k )
57

58 e l i f j==(l en ( sub_grid [ i ] )−1) :
59 #Meshes on the r i g h t edge , border ext ra i s app l i ed
60 normal_pt=(sub_vert i ce s [ i , j ] [ 0 ]+ sub_vert i ce s [ i , j ] [ 1 ] ) /2
61 l a t i , bordo , edge=border_extra ( sub_grid [ i , j ] , normal_pt , t o l =0.01 ,

v i s u a l=v i s u a l )
62 f o r k in l a t i :
63 bordo2 . append (k )
64 f o r k in bordo :
65 edge2 . append (k )
66 f o r k in edge :
67 edge22 . append (k )
68

69 e l s e :#A i r f o i l patches
70 #Those po r t i on s s i d e s are e a s i l y d i s t i n g u i s h ab l e with a

conne c t i v i t y graph
71 graph = nx . Graph ( )
72 graph . add_edges_from ( sub_grid [ i , j ] . face_adjacency )
73 groups = nx . connected_components ( graph )
74 l i s t a=l i s t ( groups )
75

76 i f l en ( l i s t a )==1:
77 pr in t ( 'EDGE sbag l a i t o ' )
78 pr in t ( 'Mesh coord in the g r id : ( ' , i , ' , ' , j , ' ) ' )
79

80 i f l en ( l i s t a ) >2:# i f some extra p i e c e i s inc luded , i t n o t i f i e s the
e r r o r

81 pr in t ( 'Mesh coord in the g r id : ( ' , i , ' , ' , j , ' ) ' )
82 pr in t ( ' Po s i t i on in the f l a t par t s : ' , l en ( f l a t ) )
83 pr in t ( ' Corr i sponding number o f po in t s : ' )
84 f o r k in l i s t a :
85 pr in t ( l en (k ) )
86 l a t o=l i s t ( k )
87 i f l en ( l a t o ) >10:
88 temp_mesh=sub_mesh ( sub_grid [ i , j ] , l a t o )
89 f l a t . append (temp_mesh)
90 l a t o1=l i s t ( l i s t a [ 0 ] )
91 temp_mesh=sub_mesh ( sub_grid [ i , j ] , l a t o1 )
92 f l a t . append (temp_mesh)
93 l a t o2=l i s t ( l i s t a [ 1 ] )
94 temp_mesh=sub_mesh ( sub_grid [ i , j ] , l a t o2 )
95 f l a t . append (temp_mesh)
96 ###END MAIN PART
97 ###TOP ROW
98 #The top s s t r i p i s more complex because o f the co rne r s and the f l a t edge on

top , i s cons ide r ed s epa r a t e l y .
99 f o r j in range ( l en ( sub_grid [−1]) ) :

100 i f j==0:
101 #Lef t corner , we ignore the edges , but the borders are saved as top
102 normal_pt=sub_vert i ce s [−1 , j ] [ 3 ]
103 l a t i , bordo , edge=border_extra ( sub_grid [−1 , j ] , normal_pt )
104 f o r k in l a t i :



112 Code

105 top . append (k )
106 e l i f j==(l en ( sub_grid [−1])−1) :
107 #Right corner , we i gnore the edges , but the borders are saved as top
108 normal_pt=sub_vert i ce s [−1 , j ] [ 0 ]
109 l a t i , bordo , edge=border_extra ( sub_grid [−1 , j ] , normal_pt )
110 f o r k in l a t i :
111 top . append (k )
112 e l s e :
113 #Port ion on the top co rne r s exc luded
114 normal_pt=(sub_vert i ce s [−1 , j ] [ 0 ]+ sub_vert i ce s [−1 , j ] [ 3 ] ) /2
115 l a t i , bordo , edge=border_extra ( sub_grid [−1 , j ] , normal_pt , t o l =0.005)
116

117 i f l en ( l a t i ) >2:
118 pr in t ( 'Mesh coord in the g r id : ( ' , i , ' , ' , j , ' ) ' )
119 pr in t ( ' Po s i t i on in the f l a t par t s : ' , l en ( f l a t ) )
120 pr in t ( ' Corr i sponding number o f po in t s : ' )
121 f o r k in l a t i :
122 pr in t ( l en (k . f a c e s ) )
123 f o r k in l a t i :
124 top . append (k )
125 t6=time . time ( )
126 tempo=(t6−t5 )
127 pr in t ( 'Time nece s sa ry to d iv id e the two s i d e s and the edges from each other=' ,

tempo )
128 re turn f l a t , top , bordo1 , bordo2 , edge1 , edge2 , edge11 , edge22 , tempo
129

130 de f b l ade_par t i t i on ing (mesh , pt , s i z e =5. , ext ra =1. , edges=True ) :
131 # INPUT
132 # mesh : tr imesh object , the whole blade scan
133 # pt : (4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id
134 # s i z e : f l o a t , maximum dimansion f o r a c e l l , mm,
135 # extra : f l o a t , expansion o f the c e l l s to a l low over lapp ing
136 # edges : bool , i f Fa l se does not d iv id e f u r t h e r the edges columns in the g r id
137 # OUTPUT
138 # f l a t : l i s t , patches from the a i r f o i l
139 # top : l i s t , patches from the top row
140 # bordo1 : l i s t , patches from the l e f t edge border
141 # bordo2 : l i s t , patches from the r i gh t s i d e border
142 # edge1 : l i s t , f i r s t patches from the l e f t s i d e edge
143 # edge2 : l i s t , f i r s t patches from the r i g h t s i d e edge
144 # edge11 : l i s t , second patches from the l e f t s i d e edge
145 # edge22 : l i s t , second patches from the r i g h t s i d e edge
146 # tempo1 : f l o a t , time nece s sa ry to remove the base
147 # tempo2 : f l o a t , time nece s sa ry to cut along the g r id
148 # tempo3 : f l o a t , time nece s sa ry to r e f i n e the c e l l s .
149 t3=time . time ( )
150 lab_rat=cut (mesh , pt )
151 t4=time . time ( )
152 pr in t ( 'Mesh imported and s e l e c t i o n o f the blade por t i on completed in ' , t4−t3 ,

' seconds . ' )
153 sub_grid , sub_vert ices , tempo2=windowing ( lab_rat , gr id , ext ra )
154

155 p l t . p l o t ( g r id [ : , : , 0 ] , g r i d [ : , : , 1 ] , c=' r ' )
156 f o r i in g r id :
157 p l t . p l o t ( i [ : , 0 ] , i [ : , 1 ] , c=' r ' )
158 mesh_pt=mesh . t r i ang l e s_cen t e r
159 p l t . s c a t t e r (mesh_pt [ range (0 , l en (mesh_pt ) ,100) , 0 ] , mesh_pt [ range (0 , l en (mesh_pt )

,100) , 2 ] , c=' c ' , marker=' . ' , s=1)
160 p l t . t i t l e ( 'How the por t i on ing i s done ' )
161 p l t . show ( )



A.3 Partition 113

162

163 pr in t ( ' Grid p a r t i t i o n i n g completed in ' , tempo2 , ' seconds . ' )
164 f l a t , top , bordo1 , bordo2 , edge1 , edge2 , edge11 , edge22 , tempo3=pa r t i t i o n i n g ( sub_grid ,

sub_vert i ce s )
165 pr in t ( 'Mesh r e f i n i n g completed in ' , tempo3 , ' seconds . ' )
166 re turn f l a t , top , bordo1 , bordo2 , edge1 , edge2 , edge11 , edge22 , ( t4−t3 ) , tempo2 , tempo3
167

168 de f b l i s k_pa r t i t i o n i n g (mesh , pt=np . array ( [ [ x , x ] , [ x , x ] , [ x , x ] , [ x , x ] ] ) ,
169 s i z e =2. , ext ra =0.5 , pt1=np . array ( [ [ x , x ] , [ x , x ] , [ x , x ] , [ x , x ] ] ) ,
170 pt2=np . array ( [ [ x , x ] , [ x , x ] , [ x , x ] , [ x , x ] ] ) , edges=True ) :
171 # INPUT
172 # mesh : tr imesh object , the whole blade scan
173 # pt : (4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id
174 # pt1 : ( 4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id f o r the lower part
175 # pt2 : ( 4 , 2 ) array , co rne r s o f the p a r t i t i o n i n g g r id f o r the upper part
176 # s i z e : f l o a t , maximum dimansion f o r a c e l l , mm
177 # extra : f l o a t , expansion o f the c e l l s to a l low over lapping , mm
178 # edges : bool , i f Fa l se does not d iv id e f u r t h e r the edges columns in the g r id
179 # OUTPUT
180 # f l a t : l i s t , patches from the a i r f o i l
181 # top : l i s t , patches from the top row
182 # bordo1 : l i s t , patches from the l e f t edge border
183 # bordo2 : l i s t , patches from the r i g h t s i d e border
184 # edge1 : l i s t , f i r s t patches from the l e f t s i d e edge
185 # edge2 : l i s t , f i r s t patches from the r i g h t s i d e edge
186 # edge11 : l i s t , second patches from the l e f t s i d e edge
187 # edge22 : l i s t , second patches from the r i g h t s i d e edge
188 # tempo1 : f l o a t , time nece s sa ry to remove the base
189 # tempo2 : f l o a t , time nece s sa ry to cut along the g r id
190 # tempo3 : f l o a t , time nece s sa ry to r e f i n e the c e l l s .
191 t3=time . time ( )
192 #extra_border=np . array ( [ [− extra ,− ext ra ] , [− extra , ext ra ] , [ extra , ext ra ] , [ extra ,−

ext ra ] ] )
193 lab_rat=cut (mesh , pt )#+extra_border )
194 gr id1=grid_maker ( pt1 , s i z e , edges )
195

196 p l t . p l o t ( g r id1 [ : , : , 0 ] , g r id1 [ : , : , 1 ] , c=' r ' )
197 f o r i in g r id1 :
198 p l t . p l o t ( i [ : , 0 ] , i [ : , 1 ] , c=' r ' )
199

200 gr id1=gr id1 [ : −1 ]
201 gr id2=grid_maker ( pt2 , s i z e , edges , forced_width=gr id1 . shape [1 ]−2)
202

203 p l t . p l o t ( g r id2 [ : , : , 0 ] , g r id2 [ : , : , 1 ] , c=' r ' )
204 f o r i in g r id2 :
205 p l t . p l o t ( i [ : , 0 ] , i [ : , 1 ] , c=' r ' )
206

207 g r id=np . vstack ( ( gr id1 , g r id2 ) )
208 t4=time . time ( )
209 pr in t ( 'Mesh imported and s e l e c t i o n o f the blade por t i on completed in ' , t4−t3 ,

' seconds . ' )
210 sub_grid , sub_vert ices , tempo2=windowing ( lab_rat , gr id , ext ra )
211

212

213 mesh_pt=mesh . t r i ang l e s_cen t e r
214 p l t . s c a t t e r (mesh_pt [ range (0 , l en (mesh_pt ) ,100) , 0 ] , mesh_pt [ range (0 , l en (mesh_pt )

,100) , 2 ] , c=' c ' , marker=' . ' , s=1)
215 p l t . t i t l e ( 'How the po r t i on ing i s done ' )
216 p l t . show ( )
217



114 Code

218 pr in t ( ' Grid p a r t i t i o n i n g completed in ' , tempo2 , ' seconds . ' )
219 f l a t , top , bordo1 , bordo2 , edge1 , edge2 , edge11 , edge22 , tempo3=pa r t i t i o n i n g ( sub_grid ,

sub_vert i ce s )
220 pr in t ( 'Mesh r e f i n i n g completed in ' , tempo3 , ' seconds . ' )
221 re turn f l a t , top , bordo1 , bordo2 , edge1 , edge2 , edge11 , edge22 , ( t4−t3 ) , tempo2 , tempo3
222

223 de f a l l i gnment (meshes , parabo le=False ) :
224 # INPUT
225 # meshes : l i s t o f tr imesh ob j ec t s , the meshes to be re−o r i en t ed
226 # parabo le : bool , i f t rue a second ro t a t i on i s app l i ed to the (y , z ) coord
227 # OUTPUT
228 # st ra i gh t ened : l i s t o f tr imesh ob j ec t s , the re−o r i en t ed meshes
229 # matr i c i : l i s t o f ( 3 , 3 ) matrixes , the r o t a t i on matr ixes nece s sa ry to put the

mesh in i t s o r i g i n a l p o s i t i o n
230 # cen t e r s : l i s t o f ( 3 , ) array , the prev ious c en t e r s o f the meshes
231 s t r a i gh t ened =[ ]
232 matr ixes =[ ]
233 c en t e r s =[ ]
234 i f parabo le :
235 f o r i in meshes :
236 #the mesh i s a l l i g n e d with the PC d i r e c t i o n and t r an s l a t ed so that i t s

c en te r i s on the o r i g i n
237 r o t a t i on0 , center0 , new_coord0=workbench ( i )
238 mm=tm . base . Trimesh ( new_coord0 , i . f a c e s )
239 #a tab l e to compare the e r r o r s ( and the parameters used to eva luate i t

) i s i n i t i a l i z e d
240 e r r=np . vstack ( ( np . l i n s p a c e (−np . p i /6 ,np . p i /6 ,20) , np . z e r o s ( ( 4 , 20 ) ) ) )
241 punti=mm. v e r t i c e s
242 n=0
243 #For the ang l e s chosen (20 equispaced between [−30 ,30 ] ) the mesh i s

ro ta ted around the x ax i s . the e r r o r obta ined with a parabola approximant o f
the po int p ro j e c t ed along the x ax i s i s evaluated , and used to determine the
best ang le f o r the adjustment .

244 f o r theta in np . l i n s p a c e (−np . p i /6 ,np . p i /6 ,20) :
245 #ro ta t i on matrix
246 M=np . array ( [ [ np . cos ( theta ) ,−np . s i n ( theta ) ] , [ np . s i n ( theta ) , np . cos (

theta ) ] ] )
247 #rotated po in t s
248 pt=np . array (np . dot (M, punti [ : , 1 : ] . T) .T)
249 #matrix to eva luate the parabola va lue s
250 A=np . vstack ( ( np . ones ( ( 1 , l en ( punti ) ) ) , pt [ : , 0 ] . T, pt [ : , 0 ] ∗ ∗ 2 ) ) .T
251 #best parabola approximation and r e l a t i v e e r r o r
252 parametri , e ,_,_=np . l i n a l g . l s t s q (A, pt [ : , 1 ] )
253 e r r [ 1 , n]=e
254 a=parametr i [ 2 ]
255 e r r [ 2 , n]=a
256 b=parametr i [ 1 ]
257 e r r [ 3 , n]=b
258 c=parametr i [ 0 ]
259 e r r [ 4 , n]=c
260 n+=1
261 #f ind the ang le with minimal e r r o r
262 i n d i c e=np . argmin ( e r r [ 1 , : ] )
263 theta=e r r [ 0 , i n d i c e ]
264 a=e r r [ 2 , i n d i c e ]
265 b=e r r [ 3 , i n d i c e ]
266 c=e r r [ 4 , i n d i c e ]
267 #apply the r o t a t i on
268 M=np . array ( [ [ np . cos ( theta ) ,−np . s i n ( theta ) ] , [ np . s i n ( theta ) , np . cos ( theta

) ] ] )



A.3 Partition 115

269 pt=np . array (np . dot (M, punti [ : , 1 : ] . T) .T)
270 punti=np . vstack ( ( punti [ : , 0 ] , pt .T) ) .T
271 mm=tm . base . Trimesh ( punti ,mm. f a c e s )
272 ##################
273 s t r a i gh t ened . append (mm)
274 #save teh product o f the o r i g i n a l r o t a t i on and the second one .
275 matr ixes . append ( [ np . dot (np . l i n a l g . inv ( r o t a t i on0 ) ,np . vstack ( ( [ 1 , 0 , 0 ] , np

. hstack ( ( [ [ 0 ] , [ 0 ] ] ,M) ) ) ) ) ] )
276 c en t e r s . append ( cente r0 )
277 e l s e :
278 f o r i in meshes :#the same without the second ro t a t i on
279 r o t a t i on0 , center0 , new_coord0=workbench ( i )
280 mm=tm . base . Trimesh ( new_coord0 , i . f a c e s )
281 s t r a i gh t ened . append (mm)
282 matr ixes . append ( [ np . l i n a l g . inv ( r o t a t i on0 ) ] )
283 c en t e r s . append ( cente r0 )
284 re turn s t ra ightened , matrixes , c en t e r s

A.3.2 partition_re�nement

Functions used to divide the window extracted through the grid and re-orientate the patches
obtained.

1 import numpy as np
2 import s c ipy as sp
3 import time
4 import matp lo t l i b
5 import matp lo t l i b . pyplot as p l t
6 from mpl_toolk i ts . mplot3d import Axes3D
7 import networkx as nx
8 import tr imesh as tm
9 from u t i l i t i e s import sub_mesh

10 from u t i l i t i e s import matricexy
11 from u t i l i t i e s import poly_value
12

13 #The f o l l ow i ng func t i on s are nece s sa ry to apply the second pa r t i t i o n i n g method
d i s cu s s ed in the t h e s i s .

14 #patch_re f ine r i s the func t i on used to separa t e the border po r t i on s from the edge
ones

15 de f patch_re f ine r (mesh , f a c e_ l i s t , s c a l a r e , to l , degree=5, v i s u a l=False ) :
16 # INPUT
17 # mesh : tr imesh object , mesh in one o f the edge , corner or top c e l l s
18 # fa c e_ l i s t : (n , ) array , indexes o f the f a c e s on one s i d e o f the mesh
19 # sc a l a r e : (n , ) array , s c a l a r product va lue s o f the mesh f a c e normals with a

r e f e r e n c e d i r e c t i o n
20 # to l : f l o a t , maximum d i s t ance between data and approximant to be added to the

bu i l d i ng s e t
21 # degree : int , degree o f the polynomial approximant
22 # v i s u a l : bool , i f True add i t i o na l f i g u r e s are shown
23 # OUTPUT
24 # fa c e_ l i s t 1 : (m, ) array , indexes o f the f a c e s in the border p i e c e .
25

26 #The f i r s t th ing to do i s to s e l e c t the f i r s t bu i l d i ng s e t . We s e l e c t the 20%
of the f a c e s with normal more pa r a l l e d to the r e f e r e c e d i r e c t i o n e . g . the one
with h igher s c a l a r product .

27 nuc leo =[ ]
28 #th i s i s the value o f the 75% higher s c a l r product va lue
29 va l o r e=np . s o r t ( s c a l a r e [ f a c e_ l i s t ] ) [ i n t ( l en ( f a c e_ l i s t ) ∗0 .75 ) ]
30 nuc leo =[ ]
31 f o r i in range ( l en ( f a c e_ l i s t ) ) :



116 Code

32 i f s c a l a r e [ f a c e_ l i s t [ i ] ] > va l o r e :
33 nuc leo . append ( i )
34 nuc leo=np . array ( nuc leo )
35 a=f a c e_ l i s t [ nuc leo ]#bu i l d i ng s e t
36 v e r t i c i=mesh . t r i ang l e s_cen t e r [ a ]#those are the c en t e r s o f the s e l e c t e d f a c e s .

To s imp l i f y the approximant con s t ruc t i on the mesh i s then o r i en t ed us ing the
PCA r e s u l t s over the s e l e c t e d points , as in ' workbench '

37 #f ind the mean point , or c ent e r o f mass
38 cente r=np .mean( v e r t i c i , a x i s=0)
39 #t r an s l a t e the po in t s
40 t r an s l a t ed=v e r t i c i−cente r
41 #bui ld the covar iance matrix
42 covariance_matrix=np . dot ( t r an s l a t ed .T, t r an s l a t ed )
43 #f ind the e i ghenvec to r s
44 U, s ,V=np . l i n a l g . svd ( covariance_matrix )
45 v1=V[ 0 ]
46 v2=V[ 1 ]
47 #v3=V[ 2 ] #ju s t to be sure we f i nd the l a s t vec to r with a c r o s s product to

avoid s i gn s problems
48 plane_normal=np . c r o s s ( v1 , v2 )
49 #and bu i ld the r o t a t i on matrix
50 r o t a t i on=np . asanyarray ( [ v1 , v2 , plane_normal ] )
51 r o t a t i on=np . matrix ( r o t a t i on )
52 #we de f i n e the new coo rd ina t e s
53 t r an s l a t ed=mesh . t r i ang l e s_cen t e r [ f a c e_ l i s t ]− cente r
54 pt=np . asar ray (np . dot ( ro ta t i on , t r an s l a t ed .T) .T)
55 #the border d e f i n i t i o n proce s s i s repeated up to 10 t imes
56 f o r n in range (10) :
57 ###the mesh i s o r i en t ed to be t t e r approximate the bu i l d i ng s e t
58 a=f a c e_ l i s t [ nuc leo ]
59 v e r t i c i=mesh . t r i ang l e s_cen t e r [ a ]
60 #we f i nd the mean point , or c en te r o f mass
61 cente r=np .mean( v e r t i c i , a x i s=0)
62 #and t r a n s l a t e the po in t s
63 t r an s l a t ed=v e r t i c i−cente r
64 #we bu i ld the covar iance matrix
65 covariance_matrix=np . dot ( t r an s l a t ed .T, t r an s l a t ed )
66 #we f i nd the e i ghenvec to r s
67 U, s ,V=np . l i n a l g . svd ( covariance_matrix )
68 v1=V[ 0 ]
69 v2=V[ 1 ]
70 #v3=V[ 2 ] #ju s t to be sure we f i nd the l a s t vec to r with a c r o s s product to

avoid s i gn s problems
71 plane_normal=np . c r o s s ( v1 , v2 )
72 #and bu i ld the r o t a t i on matrix
73 r o t a t i on=np . asanyarray ( [ v1 , v2 , plane_normal ] )
74 r o t a t i on=np . matrix ( r o t a t i on )
75 #we de f i n e the new coo rd ina t e s
76 t r an s l a t ed=mesh . t r i ang l e s_cen t e r [ f a c e_ l i s t ]− cente r
77 pt=np . asar ray (np . dot ( ro ta t i on , t r an s l a t ed .T) .T)
78 ###
79 #a polynomial approximant i s b u i l t from the ( s u r p r i s e s u r p r i s e ) bu i l d i ng

s e t and used to d e f i n e the next one
80 A=matricexy ( pt [ nucleo , : 2 ] , degree , degree )
81 #Perform the l e a s t square approximation to determine the c o e f f i c i e n t o f

the polynomial
82 x=np . l i n a l g . l s t s q (A, np . asar ray ( pt [ nucleo , 2 ] ) . f l a t t e n ( ) )
83 #approx i s a c o l l e c t i o n o f the va lue s o f the polynomial found on the

coo rd ina t e s o f the f a c e s c ent e r
84 approx=poly_value ( pt [ : , : 2 ] , x [ 0 ] , degree , degree )



A.3 Partition 117

85 #the d i f f e r e n c e s between data and approximant are computed
86 d i f f=np . abso lu t e ( pt [ : , 2 ] − approx )
87 #avanzi=np . s e t d i f f 1 d (np . arange ( l en ( f a c e_ l i s t ) ) . astype ( i n t ) , nuc leo )
88 #the po in t s with in ' t o l ' d i s t anc e became the new po t e n t i a l bu i l d i ng s e t
89 nucleo_1=[ ]
90 f o r i in np . arange ( l en ( d i f f ) ) :#. astype ( i n t ) :
91 i f d i f f [ i ]< t o l :
92 nucleo_1 . append ( i )
93 #avanzi_1=np . s e t d i f f 1 d (np . arange ( l en ( f a c e_ l i s t ) ) . astype ( i n t ) , nucleo_1 )
94 #i f the new s e t i s sma l l e r i n t e r r up t and use the prev ious one
95 i f l en ( nucleo_1 )<=(l en ( nuc leo ) ) and n>0:
96 break
97 nuc leo=np . array ( nucleo_1 ) . astype ( i n t )
98 ###
99 f a c e_ l i s t 1=f a c e_ l i s t [ nuc leo ]

100 avanzi=np . s e t d i f f 1 d ( f a c e_ l i s t , f a c e_ l i s t 1 )
101 #the f a c e s not in the border are then d iv ided by conne c t i v i t y and attached to

i t i f smal l enough . This i s done to avoid s epa ra t ing the damages f ron the
patch .

102 mesh1=mesh . copy ( )
103 mesh1 . update_faces ( avanzi )
104 graph = nx . Graph ( )
105 graph . add_edges_from (mesh1 . face_adjacency )
106 groups = nx . connected_components ( graph )
107 l i s t a=l i s t ( groups )
108 avanzi1=np . array ( [ ] )
109 f o r l in l i s t a :
110 l a t o1=l i s t ( l )
111 #I f i t does not have at l e a s t ten t r i a n g l e s i s too smal l to be ana l i z ed

c o r r e c t l y
112 i f l en ( l a t o1 ) <100:
113 f a c e_ l i s t 1=np . append ( f a c e_ l i s t 1 , avanzi [ l a t o1 ] )
114 e l s e :
115 avanzi1=np . append ( avanzi1 , avanzi [ l a t o1 ] )
116 avanzi1=avanzi1 . astype ( i n t )
117 #the border i s a l s o cheched f o r c onne c t i v i t y i s s u e s : smal l d i s connected p i e c e s

are ignored
118 mesh1=mesh . copy ( )
119 mesh1 . update_faces ( f a c e_ l i s t 1 )
120 graph = nx . Graph ( )
121 graph . add_edges_from (mesh1 . face_adjacency )
122 groups = nx . connected_components ( graph )
123 l i s t a=l i s t ( groups )
124 f a c e_ l i s t 2=np . array ( [ ] )
125 f o r l in l i s t a :
126 l a t o1=l i s t ( l )
127 #I f i t does not have at l e a s t 50 t r i a n g l e s i s too smal l to be i n t e r e s t i n g
128 i f l en ( l a t o1 ) >50:
129 f a c e_ l i s t 2=np . append ( f a c e_ l i s t 2 , f a c e_ l i s t 1 [ l a t o1 ] )
130 f a c e_ l i s t 1=f a c e_ l i s t 2 . astype ( i n t )
131 re turn f a c e_ l i s t 1
132

133 #This func t i on ex t r a c t the patches from the edge c e l l s us ing the second method
de s c t ibed in the t h e s i s

134 de f border_extra (mesh , pt , t o l =0.005 , v i s u a l=False ) :
135 # INPUT
136 # mesh : tr imesh object , mesh in one o f the edge , corner or top c e l l s
137 # pt : ( 2 , ) array , po int used to determine the r e f e r e n c e d i r e c t i o n
138 # to l : f l o a t , maximum d i s t ance between data and approximant to be added to the

bu i l d i ng s e t ( f o r borders )



118 Code

139 # v i s u a l : bool , i f True add i t i ona l f i g u r e s are shown
140 # OUTPUT
141 # l a t i : l i s t , mesh o f the border par t s
142 # bordi : l i s t , f i r s t mesh o f the edge par t s
143 # sp i g o l o : l i s t , second mesh o f the edge par t s
144

145 #We chose the t r i a n gu l a r f a c e c l o s e s t to pt as our r e f e r e n c e
146 f a c c i a=np . argmin (np . l i n a l g . norm(mesh . t r i ang l e s_cen t e r [ : , 0 : 3 : 2 ] − pt , ax i s=1) )
147 #We cons id e r a wider zone to get a be t t e r r e s u l t . This p i e c e o f code f i nd a l l

the ne ighbor f a c e s ad jacent to the s e l e c t e d one
148 ###
149 graph = nx . Graph ( )#
150 graph . add_edges_from (mesh . face_adjacency )#
151 i n d i c i =[ ]
152 l= l i s t ( graph . ne ighbors ( f a c c i a ) )
153 i n d i c i . extend ( l )
154 indexes=np . s o r t (np . unique ( i n d i c i ) )
155 ###
156 #I f we want to use a l a r g e r number o f f a c e s to bu i ld the normal we have to

repeat t h i s part
157 f o r i in indexes :
158 l= l i s t ( graph . ne ighbors ( i ) )
159 i n d i c i . extend ( l )
160 i n d i c i=np . array ( i n d i c i )
161 i n d i c i=np . append ( i nd i c i , indexes )
162 indexes=np . s o r t (np . unique ( i n d i c i ) )
163 ###
164 #The r e f e r e n c e normal w i l l be the mean value o f the one o f the s e l e c t e d f a c e s
165 normale=np .mean(mesh . face_normals [ indexes ] , ax i s=0)
166 #And we normal ize i t .
167 normale=normale/np . l i n a l g . norm( normale )
168 #We compute the s c a l a r product between each f a c e normal and ' normale '
169 s c a l a r e=np . dot (mesh . face_normals , normale )
170 l a t i =[ ]
171 bord i =[ ]
172 s p i g o l o =[ ]
173 f a c e_ l i s t 1 =[ ]
174 f a c e_ l i s t 2 =[ ]
175 #the mesh i s roughly d iv ided in two over lapp ing par t s that must complete ly

conta in the two border p i e c e s . The va lue s o f ' s c a l a r e ' are used to s e l e c t the
f a c e s .

176 va lo r e1=np . s o r t ( s c a l a r e ) [ i n t ( l en ( s c a l a r e ) /3) ] #the 70% of f a c e s with the
h igher s c a l a r va lue s are in the f i r s t part

177 va lo r e2=np . s o r t ( s c a l a r e ) [ 2∗ i n t ( l en ( s c a l a r e ) /3) ] #the 70% of f a c e s with the
lower s c a l a r va lue s are in the second part

178 f o r i in range ( l en (mesh . f a c e s ) ) :
179 #I f the s c a l a r product i s h igher than va lo r e1 the f a c e i s on the f i r s t

s i d e .
180 i f s c a l a r e [ i ]>=va lo r e1 :
181 f a c e_ l i s t 1 . append ( i )
182 #I f the s c a l a r product i s lower than va lo r e2 the f a c e i s on the second

s i d e .
183 e l i f s c a l a r e [ i ]<=va lo r e2 :
184 f a c e_ l i s t 2 . append ( i )
185 f a c e_ l i s t 1=np . array ( f a c e_ l i s t 1 )
186 f a c e_ l i s t 2=np . array ( f a c e_ l i s t 2 )
187 #using patch_re f ine r the border p i e c e s are s e l e c t e d
188 degree=4
189 f a c e_ l i s t 1=patch_re f ine r (mesh , f a c e_ l i s t 1 , s c a l a r e , to l , degree , v i s u a l )
190 #the remaining f a c e s are added to the edge



A.3 Partition 119

191 f a c e_ l i s t 3=np . s e t d i f f 1 d (np . arange ( l en (mesh . f a c e s ) ) , f a c e_ l i s t 1 )
192 #using patch_re f ine r the border p i e c e s are s e l e c t e d
193 f a c e_ l i s t 2=patch_re f ine r (mesh , f a c e_ l i s t 2 ,− s c a l a r e , to l , degree , v i s u a l )
194 #the remaining f a c e s are added to the edge
195 f a c e_ l i s t 3=np . s e t d i f f 1 d ( f a c e_ l i s t 3 , f a c e_ l i s t 2 )
196 i f l en ( f a c e_ l i s t 3 ) <20:#i f the remaining par t s are too smal l thay can be

d i scardeda and no edges are produced
197 pr in t ( 'No edges ' )
198 re turn l a t i , bordi , s p i g o l o
199 #graph o f the whole mesh
200 graph_tot = nx . Graph ( )
201 graph_tot . add_edges_from (mesh . face_adjacency )
202 #conne c t i v i t y graph o f the edge part
203 mesh3=mesh . copy ( )
204 mesh3 . update_faces ( f a c e_ l i s t 3 )
205 graph3 = nx . Graph ( )
206 graph3 . add_edges_from (mesh3 . face_adjacency )
207 groups3 = nx . connected_components ( graph3 )
208 l i s t a 3=l i s t ( groups3 )
209 #i f smal l p i e c e s are l e f t on the edge part they are attached to the c l o s e s t

border p i e c e . To dec ide which one i s c l o s e r the ne ighbors are found and
compared wih the borders f a c e s .

210 avanzi =[ ]
211 quant i=0
212 f o r element in l i s t a 3 :
213 element=l i s t ( element )
214 v i c i n i =[ ]
215 i f l en ( element ) <200:
216 f o r i in element :
217 l= l i s t ( graph_tot [ f a c e_ l i s t 3 [ i ] ] )
218 l=np . s e t d i f f 1 d ( l , f a c e_ l i s t 3 )
219 i f l en ( l ) >0:
220 v i c i n i . extend ( l )
221 i f l en (np . i n t e r s e c t 1d ( f a c e_ l i s t 1 , v i c i n i ) ) >0:
222 f a c e_ l i s t 1=np . append ( f a c e_ l i s t 1 , f a c e_ l i s t 3 [ element ] )
223 e l s e :
224 i f l en (np . i n t e r s e c t 1d ( f a c e_ l i s t 2 , v i c i n i ) ) >0:
225 f a c e_ l i s t 2=np . append ( f a c e_ l i s t 2 , f a c e_ l i s t 3 [ element ] )
226 e l s e :
227 quant i+=1
228 avanzi . extend ( f a c e_ l i s t 3 [ element ] )
229 f a c e_ l i s t 3=np . array ( avanzi )
230 #I f the remaining por t i on o f the mesh i s b ig enough another patch i s c r ea ted .

two attempt are made , from two d i f f e r e n t s t a r t i n g po in t s . the b i g g e s t one i s
kept , the remaining f a c e s are marked as ' edge2 '

231 i f l en ( f a c e_ l i s t 3 ) >20:
232 degree=10
233 t o l =0.005
234 edge1=patch_re f ine r (mesh , f a c e_ l i s t 3 , s c a l a r e , to l , degree , v i s u a l )
235 edge2=patch_re f ine r (mesh , f a c e_ l i s t 3 ,− s c a l a r e , to l , degree , v i s u a l )
236 i f l en ( edge1 )>=len ( edge2 ) :
237 edge2=np . s e t d i f f 1 d ( f a c e_ l i s t 3 , edge1 )
238 e l s e :
239 edge1=edge2
240 edge2=np . s e t d i f f 1 d ( f a c e_ l i s t 3 , edge1 )
241 #once again the d i s carded part o f the mesh i s checked to remove smal l

d i s connected p i e c e s
242 mesh2=mesh . copy ( )
243 mesh2 . update_faces ( edge2 )
244 graphe2 = nx . Graph ( )



120 Code

245 graphe2 . add_edges_from (mesh2 . face_adjacency )
246 groupse2 = nx . connected_components ( graphe2 )
247 l i s t a e 2=l i s t ( groupse2 )
248 avanzi =[ ]
249 quant i=0
250 f o r element in l i s t a e 2 :
251 element=l i s t ( element )
252 v i c i n i =[ ]
253 i f l en ( element ) <200:
254 f o r i in element :
255 l= l i s t ( graph_tot [ edge2 [ i ] ] )
256 l=np . s e t d i f f 1 d ( l , edge2 )
257 i f l en ( l ) >0:
258 v i c i n i . extend ( l )
259 i f l en (np . i n t e r s e c t 1d ( f a c e_ l i s t 1 , v i c i n i ) ) >0:
260 f a c e_ l i s t 1=np . append ( f a c e_ l i s t 1 , edge2 [ element ] )
261 e l s e :
262 i f l en (np . i n t e r s e c t 1d ( f a c e_ l i s t 1 , v i c i n i ) ) >0:
263 f a c e_ l i s t 2=np . append ( f a c e_ l i s t 2 , edge2 [ element ] )
264 e l s e :
265 edge1=np . append ( edge1 , edge2 [ element ] )
266 e l s e :
267 quant i+=1
268 avanzi . extend ( edge2 [ element ] )
269 i f l en ( edge1 ) >0:
270 bord i . append ( sub_mesh (mesh , edge1 ) )
271 #i f something i s s t i l l remaining i s saved as a second edge p i e c e in

s p i g o l o
272 i f l en ( avanzi ) >0:
273 s p i g o l o . append ( sub_mesh (mesh , avanzi ) )
274 #the borders are added to l a t i
275 l a t i . append ( sub_mesh (mesh , f a c e_ l i s t 1 ) )
276 l a t i . append ( sub_mesh (mesh , f a c e_ l i s t 2 ) )
277

278 i f v i s u a l :
279 f i g = p l t . f i g u r e ( )#shows the po in t s on the edge por t i on
280 ax = f i g . add_subplot (111 , p r o j e c t i o n=' 3d ' )
281 ax . s c a t t e r (mesh . t r i ang l e s_cen t e r [ f a c e_ l i s t 1 , 0 ] , mesh . t r i ang l e s_cen t e r [

f a c e_ l i s t 1 , 1 ] , mesh . t r i ang l e s_cen t e r [ f a c e_ l i s t 1 , 2 ] , c='b ' , l a b e l=' border1 ' )
282 ax . s c a t t e r (mesh . t r i ang l e s_cen t e r [ f a c e_ l i s t 2 , 0 ] , mesh . t r i ang l e s_cen t e r [

f a c e_ l i s t 2 , 1 ] , mesh . t r i ang l e s_cen t e r [ f a c e_ l i s t 2 , 2 ] , c=' g ' , l a b e l=' border2 ' )
283 ax . s c a t t e r (mesh . t r i ang l e s_cen t e r [ f a c e_ l i s t 3 , 0 ] , mesh . t r i ang l e s_cen t e r [

f a c e_ l i s t 3 , 1 ] , mesh . t r i ang l e s_cen t e r [ f a c e_ l i s t 3 , 2 ] , c=' y ' , l a b e l=' a l l edge ' )
284 p l t . l egend ( )
285 p l t . show ( )
286 i f l en ( f a c e_ l i s t 3 ) >20:
287 f i g = p l t . f i g u r e ( )#shows the edge p a r t i t i o n i n g in d e t a i l
288 ax = f i g . add_subplot (111 , p r o j e c t i o n=' 3d ' )
289 avanzi3=edge1
290 avanzi4=avanzi
291 ax . s c a t t e r (mesh . t r i ang l e s_cen t e r [ avanzi3 , 0 ] , mesh . t r i ang l e s_cen t e r [

avanzi3 , 1 ] , mesh . t r i ang l e s_cen t e r [ avanzi3 , 2 ] , c='y ' , alpha =0.2 , l a b e l=' f i r s t edge
' )

292 ax . s c a t t e r (mesh . t r i ang l e s_cen t e r [ avanzi4 , 0 ] , mesh . t r i ang l e s_cen t e r [
avanzi4 , 1 ] , mesh . t r i ang l e s_cen t e r [ avanzi4 , 2 ] , c=' r ' , alpha =0.2 , l a b e l=' second
edge ' )

293 p l t . l egend ( )
294 p l t . show ( )
295 re turn l a t i , bordi , s p i g o l o



A.3 Partition 121

A.3.3 partition_grid_cut

Functions used apply the windowing to the grid cells.

1 import numpy as np
2 import s c ipy as sp
3 import time
4 import tr imesh as tm
5 from u t i l i t i e s import est imate_matrix
6 from u t i l i t i e s import homograpy
7 from u t i l i t i e s import raw_cut
8 from u t i l i t i e s import cut
9 from u t i l i t i e s import sub_mesh

10

11 #u t i l i t y func t i on to bu i ld the p a r t i t i o n i n g g r id
12 de f grid_maker ( pt , s i z e , edges=True , forced_height=0, forced_width=0) :
13 # INPUT
14 # pt : (4 , 2 ) array , the corner po in t s o f the g r id in c l o ckw i s e order , s t a r t i n g

from the lower l e f t corner
15 # s i z e : f l o a t , maximum he ight or width o f a s i n g l e c e l l
16 # edges : bool , i f True v e r t i c a l l y d i v i d e s the f i r s t and l a s t colums an

u l t e r i o r time to obta in a more accurate d i v i s i o n o f the edges .
17 # forced_height : int , number o f ho r i z on t a l l i n e s imposed
18 # OUTPUT
19 # gr id : ( a , b , 2 ) array , where a i s the number o f ho r i z on t a l l i n e s o f the gr id ,

b the number o f v e r t i c a l l i n e s . Contains the (x , z ) coo rd ina t e s o f the knot
po in t s in the g r id .

20 i f fo rced_height==0:
21 a l t e z z a=in t (max(np . l i n a l g . norm( pt [0]− pt [ 1 ] ) , np . l i n a l g . norm( pt [2]− pt [ 3 ] ) ) /

s i z e )
22 e l s e :
23 a l t e z z a=in t ( forced_height )
24 i f forced_width==0:
25 l a r ghezza=in t (max(np . l i n a l g . norm( pt [1]− pt [ 2 ] ) , np . l i n a l g . norm( pt [3]− pt [ 0 ] ) )

/ s i z e )
26 e l s e :
27 l a r ghezza=forced_width
28 x_norm=np . l i n s p a c e (0 , 1 , l a rghezza )
29 i f edges :
30 x_norm=np . append ( [ 0 , x_norm [ 1 ] / 2 ] , x_norm [ 1 : ] )
31 x_norm=np . append (x_norm[ : −1 ] , [ ( 1+x_norm[−2]) / 2 , 1 . ] )
32 z_norm=np . l i n s p a c e (0 , 1 , a l t e z z a )
33 g r id =[ ]
34 homograpy_matrix=estimate_matrix (np . asar ray ( [ [ 0 , 0 ] , [ 0 , 1 ] , [ 1 , 1 ] , [ 1 , 0 ] ] ) , pt )
35 g r id =[ ]
36 f o r z in z_norm :
37 row=[ ]
38 f o r x in x_norm :
39 row . append ( [ x , z ] )
40 grid_row=homograpy ( homograpy_matrix , row )
41 g r id . append ( grid_row )
42 g r id=np . array ( g r id )
43 re turn g r id
44

45 #Function to apply the f i r s t part o f the p a r t i t i o n i n g to mesh . Using the g r id as a
r e f e r e n c e the mesh i s d iv ided in to c e l l s . Those c e l l s w i l l be f u r t h e r r e f i n e d
with f o l l ow i ng func t i on s .

46

47 de f windowing (mesh , gr id , ext ra ) :
48 # INPUT
49 # mesh : tr imesh object , the mesh to be d iv ided



122 Code

50 # gr id : ( a l t e z za , la rghezza , 2 ) array , (x , z ) knots o f the g r id d i sposed so that
[0 ,0]−> lower l e f t corner , [0,−1]−> lower r i gh t corner , [−1,0]−>upper l e f t
corner , [−1,−1]−> upper r i g h t corner .

51 # extra : f l o a t , amount each c e l l should be en larged in each d i r e c t i o n to a l low
over lapp ing

52 # OUTPUT
53 # sub_grid : ( a l t e z za , l a rghezza ) array , conta in s the ext rac t ed sub−meshes

d i sposed with the same orde r s as t h e i r g r id po s i t i o n
54 # sub_vert i ce s : ( a l t e z za , la rghezza , 2 ) array , the same as g r id
55 # tempo : f l o a t , time co s t o f the func t i on ( seconds )
56 #i n i t i a l i z e s t a r t i n g time
57 t3=time . time ( )
58 #the expansion on the c e l l s borders
59 extra_border=np . array ( [ [− extra ,− ext ra ] , [− extra , ext ra ] , [ extra , ext ra ] , [ extra ,−

ext ra ] ] )
60 #fo r each c e l l row the corre spond ing s t r i p i s ex t rac t ed . Bui ld ing the s t r i p s

f i r s t and the c e l l l a t e r i s much f a s t e r than going f o r the c e l l s d i r e c t l y
because i t does not check a l l the mesh po in t s every time .

61 s t r i p s =[ ]
62 f a c e l i s t=l i s t ( range ( l en (mesh . f a c e s ) ) )
63 f o r h in range ( l en ( g r id )−1) :
64 #the lower cu t t i ng l i n e i s dec ided
65 plane_or ig in=np . array ( [ g r i d [ h ,−1 ,0]+ extra , 0 , g r i d [ h,−1 ,1]− ext ra ] )
66 second_pt=np . array ( [ g r i d [ h ,0 ,0 ]− extra , 0 , g r i d [ h ,0 ,1 ]− ext ra ] )
67 d i r e c t i o n=np . array ( second_pt−plane_or ig in )
68 plane_normal=np . array (np . array ( [ d i r e c t i o n [2 ] ,0 , − d i r e c t i o n [ 0 ] ] ) )
69 plane_normal=plane_normal/np . l i n a l g . norm( plane_normal )
70 #and the f a c e s abowe i t are s e l e c t e d . Those are a l s o the only f a c e s

f u r t h e r analyzed , the une below the cu t t i ng l i n e are d c e r t a i n l y below the
upper cu t t i ng l i n e s too .

71 f a c e l i s t=raw_cut (mesh , f a c e l i s t , plane_normal , p lane_or ig in )
72 #the upper cu t t i ng l i n e i s s e l e c t e d
73 plane_or ig in=np . array ( [ g r i d [ h+1 ,0 ,0]− extra , 0 , g r i d [ h+1 ,0 ,1]+ extra ] )
74 second_pt=np . array ( [ g r i d [ h+1,−1,0]+ extra , 0 , g r i d [ h+1,−1,1]+ extra ] )
75 d i r e c t i o n=np . array ( second_pt−plane_or ig in )
76 plane_normal=np . array (np . array ( [ d i r e c t i o n [2 ] ,0 , − d i r e c t i o n [ 0 ] ] ) )
77 plane_normal=plane_normal/np . l i n a l g . norm( plane_normal )
78 #and the f a c e s below i t are s e l e c t e d
79 f a c e l i s t_ s t r i p=raw_cut (mesh , f a c e l i s t , plane_normal , p lane_or ig in )
80 #the s t r i p i s ex t rac t ed and added to the l i s t
81 mesh_strip=sub_mesh (mesh , f a c e l i s t_ s t r i p )
82 s t r i p s . append ( mesh_strip )
83 #pr in t the time nece s sa ry f o r t h i s middle s tep
84 t4=time . time ( )
85 #pr in t ( 'Time nece s sa ry to cut the s t r i p s : ' , ( t4−t3 ) )
86 sub_grid =[ ]
87 sub_vert i ce s =[ ]
88 f o r h in range ( l en ( g r id )−1) :
89 #pr in t ( ' s t r i p ' , ( h+1) )
90 row=[ ]
91 row_coord=[ ]
92 s t r i p=s t r i p s [ h ]
93 l a r ghezza=len ( g r id [ 0 ] )−1
94 f o r l in range ( l a rghezza ) :
95 #s e l e c t the co rne r s o f the c e l l to be cut
96 sub_pts=np . array ( [ g r i d [ h , l ] , g r i d [ h+1, l ] , g r i d [ h+1, l +1] , g r i d [ h , l +1 ] ] )
97 i f l ==1:#the second column should not expand to the l e f t to avoid

i n c l ud ing the edges
98 sub_pts=sub_pts+np . array ( [ [0 , − ext ra ] , [ 0 , ext ra ] , [ extra , ext ra ] , [

extra ,− ext ra ] ] )



A.3 Partition 123

99 e l i f l==(larghezza −2) :#the second to l a s t column should not expand to
the r i g h t to avoid i n c l ud ing the edges

100 sub_pts=sub_pts+np . array ( [ [− extra ,− ext ra ] , [− extra , ext ra ] , [ 0 , ext ra
] , [ 0 , − ext ra ] ] )

101 e l i f l ==0:#the l e f t edge should be l e s s expanded on the r i gh t to keep
the borders smal l

102 sub_pts=sub_pts+np . array ( [ [− extra ,− ext ra ] , [− extra , ext ra ] , [ ext ra /2 ,
ext ra ] , [ ext ra /2,− ext ra ] ] )

103 e l i f l==(larghezza −1) :#the r i g h t edge should be l e s s expanded on the
l e f t to keep the borders smal l

104 sub_pts=sub_pts+np . array ( [ [− ext ra /2,− ext ra ] , [− ext ra /2 , ext ra ] , [
extra , ext ra ] , [ extra ,− ext ra ] ] )

105 e l s e :#a l l the other c e l l an be expanded without i s s u e s
106 sub_pts=sub_pts+extra_border
107 #the co rne r s and the sub− mesh are added to the l i s t s r ep r e s en t i ng

that row
108 row_coord . append ( sub_pts )
109 window=cut ( s t r i p , sub_pts )
110 row . append (window)
111 #the l i s t s are attached to keep the data s t r u c tu r e s im i l a r to the g r id
112 row=np . array ( row )
113 row_coord=np . array ( row_coord )
114 sub_grid . append ( row )
115 sub_vert i ce s . append ( row_coord )
116 sub_grid=np . array ( sub_grid )
117 sub_vert i ce s=np . array ( sub_vert i ce s )
118 t4=time . time ( )
119 tempo=(t4−t3 )
120 #pr in t ( 'Time nece s sa ry to make the cuts a long the xz plane : ' , tempo )
121 re turn sub_grid , sub_vert ices , tempo

A.3.4 utilities

Utilities functions, mainly necessary to import the data and build sub-meshes.

1 import numpy as np
2 import s c ipy as sp
3 import matp lo t l i b
4 import matp lo t l i b . pyplot as p l t
5 from mpl_toolk i ts . mplot3d import Axes3D
6 import networkx as nx
7 import tr imesh as tm
8

9 #This func t i on bu i ld the matrix used in the aproximation , each row i s [ 1 , x , x
^ 2 , . . . , x^degx , y∗1 , y∗x , . . . , y^degy∗x^degx ]

10 #fo r each (x , y ) coord ina te g iven as input ( ( n , 2 ) l i s t o f some kind ) . degx i s the
maximium degree o f x , degy the maximum

11 #degree o f y .
12 #Returns a (n , ( degx+1)∗( degy+1) ) matrix ob j e c t (n=number o f po in t s g iven ) .
13 de f matricexy (xy , degx , degy ) :
14 #INPUT
15 # xy : (n , 2 ) array , x and y coo rd ina t e s o f po in t s to be approximated
16 # degx : int , degree o f the polynomial a long the x ax i s
17 # degy : int , degree o f the polynomial a long the y ax i s
18 #OUTPUT
19 # A: (n , number o f monomial ) matrix , i−th row i s [ 1 , x , x ^ 2 , . . . , x^degx , y∗1 , y∗x

, . . . , y^degy∗x^degx ] f o r (x , y )=xy [ i ]
20 x=np . asar ray ( xy [ : , 0 ] )
21 y=np . asar ray ( xy [ : , 1 ] )
22 A=np . z e ro s ( ( l en (x ) , ( degx+1)∗( degy+1) ) )



124 Code

23 f o r ey in range ( degy+1) :
24 f o r ex in range ( degx+1) :
25 A[ : , ey ∗( degx+1)+ex ]=np . mult ip ly (x∗∗ex , y∗∗ ey )
26 re turn A
27

28 #This func t i on eva luate a polynomial o f degree degx in x and degy in y with
parameters p c on s i s t e n t with matricexy

29 #func t i on over the coo rd ina t e s g iven in a (n , 2 ) l i s t or array . r e tu rn s a l i s t (n
, 1 ) with such va lue s .

30 de f poly_value (xy , p , degx , degy ,A=[ ] ) :
31 #INPUT
32 # xy : (n , 2 ) array , x and y coo rd ina t e s o f po in t s to be approximated
33 # p : array o f f l o a t s with the polynomial parameters va lue s r e l a t i v e to [ 1 , x , x

^ 2 , . . . , x^degx , y∗1 , y∗x , . . . , y^degy∗x^degx ]
34 # degx : int , degree o f the polynomial a long the x ax i s
35 # degy : int , degree o f the polynomial a long the y ax i s
36 # A: (n , number o f monomial ) matrix , i−th row i s [ 1 , x , x ^ 2 , . . . , x^degx , y∗1 , y∗x

, . . . , y^degy∗x^degx ] f o r (x , y )=xy [ i ]
37 #OUTPUT
38 #z_value : (n , ) array , polynomial with parameters p eva luated va lue s over the

xy co r r d i n a t e s
39 x=np . asar ray ( xy [ : , 0 ] )
40 y=np . asar ray ( xy [ : , 1 ] )
41 #i f A i s not g iven eva lua t e s i t
42 i f A==[] :
43 A=np . z e ro s ( ( l en (x ) , ( degx+1)∗( degy+1) ) )
44 f o r ey in range ( degy+1) :
45 f o r ex in range ( degx+1) :
46 A[ : , ey ∗( degx+1)+ex ]=np . mult ip ly (x∗∗ex , y∗∗ ey )
47 z_value=np . dot (p ,A.T)
48 re turn z_value
49

50 #Function used to es t imate the homographyc t rans fo rmat ion matrix nece s sa ry to map
s r c ( source ) in to dst ( d e s t i n a t i on ) po in t s . Wil l be used to map the mesh po in t s
i n to the un i t square to ease the s p l i n e con s t ru c t i on .

51 de f est imate_matrix ( src , dst ) :
52 """Estimate the t rans fo rmat ion from a s e t o f cor re spond ing po in t s .
53 You can determine the over−, we l l− and under−determined parameters
54 with the t o t a l l e a s t−squares method .
55 Number o f source and de s t i n a t i on coo rd ina t e s must match .
56 The trans fo rmat ion i s de f in ed as : :
57 X = ( a0∗x + a1∗y + a2 ) / ( c0∗x + c1∗y + 1)
58 Y = (b0∗x + b1∗y + b2 ) / ( c0∗x + c1∗y + 1)
59 These equat ions can be transformed to the f o l l ow i n g form : :
60 0 = a0∗x + a1∗y + a2 − c0∗x∗X − c1∗y∗X − X
61 0 = b0∗x + b1∗y + b2 − c0∗x∗Y − c1∗y∗Y − Y
62 which e x i s t f o r each s e t o f cor re spond ing points , so we have a s e t o f
63 N ∗ 2 equat ions . The c o e f f i c i e n t s appear l i n e a r l y so we can wr i t e
64 A x = 0 , where : :
65 A = [ [ x y 1 0 0 0 −x∗X −y∗X −X]
66 [ 0 0 0 x y 1 −x∗Y −y∗Y −Y ] . . . ]
67 x .T = [ a0 a1 a2 b0 b1 b2 c0 c1 c3 ]
68 In case o f t o t a l l e a s t−squares the s o l u t i o n o f t h i s homogeneous system
69 o f equat ions i s the r i g h t s i n gu l a r vec to r o f A which corresponds to the
70 sma l l e s t s i n gu l a r va lue normed by the c o e f f i c i e n t c3 .
71 In case o f the a f f i n e t rans fo rmat ion the c o e f f i c i e n t s c0 and c1 are 0 .
72 Thus the system o f equat ions i s : :
73 A = [ [ x y 1 0 0 0 −X]
74 [ 0 0 0 x y 1 −Y ] . . . ]
75 x .T = [ a0 a1 a2 b0 b1 b2 c3 ]



A.3 Partition 125

76 Parameters
77 −−−−−−−−−−
78 s r c : (N, 2) array
79 Source coo rd ina t e s .
80 dst : (N, 2) array
81 Dest inat i on coo rd ina t e s .
82 Returns
83 −−−−−−−
84 − V[−1 , :−1]/V[−1 ,−1] : ( 8 , 1 ) array
85 Parameters o f the t rans formant ion
86 """
87 xs = s r c [ : , 0 ]
88 ys = s r c [ : , 1 ]
89 xd = dst [ : , 0 ]
90 yd = dst [ : , 1 ]
91 rows = s r c . shape [ 0 ]
92

93 # params : a0 , a1 , a2 , b0 , b1 , b2 , c0 , c1
94 A = np . z e ro s ( ( rows ∗ 2 , 9) )
95 A[ : rows , 0 ] = xs
96 A[ : rows , 1 ] = ys
97 A[ : rows , 2 ] = 1
98 A[ : rows , 6 ] = − xd ∗ xs
99 A[ : rows , 7 ] = − xd ∗ ys

100 A[ rows : , 3 ] = xs
101 A[ rows : , 4 ] = ys
102 A[ rows : , 5 ] = 1
103 A[ rows : , 6 ] = − yd ∗ xs
104 A[ rows : , 7 ] = − yd ∗ ys
105 A[ : rows , 8 ] = xd
106 A[ rows : , 8 ] = yd
107

108 ## Se l e c t r e l e van t columns , depending on params
109 #A = A[ : , l i s t ( s e l f . _coe f f s ) + [ 8 ] ]
110 _, _, V = np . l i n a l g . svd (A)
111

112 H = np . z e ro s ( ( 3 , 3) )
113 # so l u t i o n i s r i g h t s i n gu l a r vec to r that corresponds to sma l l e s t
114 # s ingu l a r va lue
115 H. f l a t [ : −1 ] = − V[−1 , :−1] / V[−1 , −1]
116 H[2 , 2 ] = 1
117 re turn − V[−1 , :−1]/V[−1 ,−1]
118

119 #Ut i l i t y func t i on to apply the homograpy to a s e t o f po in t s
120 de f homograpy (v , po in t s ) :
121 #INPUT
122 # v : ( 8 , ) array , t rans fo rmat ion parameters
123 # po in t s : (n , 2 ) array , s t a r t i n g po in t s
124 #OUTPUT
125 # np . vstack ( [X,Y] ) .T: (n , 2 ) array , transformed po in t s .
126 po in t s=np . asar ray ( po in t s )
127 [ a0 , a1 , a2 , b0 , b1 , b2 , c0 , c1 ] =v
128 x=po in t s [ : , 0 ]
129 y=po in t s [ : , 1 ]
130 X = np . asar ray ( ( a0∗x + a1∗y + a2 ) / ( c0∗x + c1∗y + 1) )
131 Y = np . asar ray ( ( b0∗x + b1∗y + b2 ) / ( c0∗x + c1∗y + 1) )
132 re turn np . vstack ( [X,Y] ) .T
133

134 #This func t i on f i nd the f a c e s o f the mesh with at l e a s t one ver tex over the plane
s e l c t ed , with r e sp e c t to the plane normal . To do t h i s a l l the po in t s are



126 Code

t r an s l a t ed to a new system o f coo rd ina t e s cente red in plane_orig in , with a
s imple sub s t r a c t i on . Then the p in t s are p ro j e c t ed ( as ve c t o r s ) aga in s t the
plane normal . I f at l e a s t one o f the v e r t i c e s o f a f a c e g i v e s a p o s i t i v e
r e s u l t the f a c e i s added to f a c e s_ l i s t . The parameter f a c e s l i s t g i v e s the l i s t
o f f a c e s o f the mesh that must be cons idered , t h i s i s u s e f u l in p a r t i c u l a r

when we want to do more than one cut . I f we want to cut a por t i on o f the mesh
we apply t h i s func t i on f o r each edge o f the pa r t i t i on , with f a c e s l i s t equal to
the r e s u l t o f the prev ious cut . This way we scrape o f f a por t i on o f the mesh

each time , the proce s s get obv ious ly f a s t e r each time .
135 de f raw_cut (mesh , f a c e s l i s t , d i r e c t i on , p lane_or ig in ) :
136 #INPUT
137 # mesh : tr imesh ob j e c t
138 # f a c e l i s t : array or l i s t ob ject , conta in s the f a c e s indexes to be checked
139 # d i r e c t i o n : ( 3 , ) array , d i r e c t i o n normal to the cu t t i ng plane
140 # plane_or ig in : ( 3 , ) array , po int on the plane .
141 #OUTPUT
142 # f a c e s_ l i s t : l i s t ob j e c t conta in ing the indexes o f the mesh f a c e s above the

plane ( i n t e r s e c t e d f a c e l i s t )
143

144 #conf i rms that the type o f the data i s array , mesh must be a tr imesh f i l e and
f a c e s l i s t a l i s t or array

145 plane_normal=np . asanyarray ( d i r e c t i o n )
146 plane_or ig in=np . asanyarray ( p lane_or ig in )
147 #pick the v e r t i c e s o f the de s i r ed f a c e s
148 f a c e_ve r t i c e s=mesh . f a c e s [ f a c e s l i s t ]
149 #compute the p r o j e c t i o n aga in s t the plane normal=d i r e c t i o n
150 dots = np . dot ( plane_normal , (mesh . v e r t i c e s − plane_or ig in ) .T) [ f a c e_ve r t i c e s ]
151 f a c e s_ l i s t =[ ]
152 f o r i i in range ( l en ( f a c e s l i s t ) ) :
153 #i f the p r o j e c t i o n on the normal vec to r i s p o s i t i v e the po int i s on the

r i gh t s i d e o f the plane
154 #rep l a c i n g any with a l l g i v e s t r i a n g l e s that are complete ly over the plane
155 #I t could be nece s sa ry to s ub s t i t u t e 0 with some constant to avoid

numerica l e r r o r
156 i f any ( dots [ i i , : ] >= 0) :
157 f a c e s_ l i s t . append ( f a c e s l i s t [ i i ] )
158 re turn f a c e s_ l i s t
159

160 #This func t i on app l i e s raw cut along the edges o f a q u a r d i l a t e r a l de f ined by i t s
v e r t i c e s , d i sposed c l o ckw i s e from the lower− l e f t one . I f only a por t i on o f the
f a c e s are o f i n t e r e s t that in fo rmat ion can be given by f a c e l i s t . Returns the

por t i on cut as a tr imesh ob j e c t .
161 de f cut (mesh , pt , f a c e l i s t = [ ] ) :
162 #mesh = tr imesh object , the mesh we are going to window
163 #pt =(4 ,2) array , (x , z ) coord o f the co rne r s o f the quadrangle , c l o ckw i s e

from the one in the lower l e f t
164 # f a c e s_ l i s t : l i s t ob j e c t conta in ing the indexes o f the mesh f a c e s above the

plane ( i n t e r s e c t e d f a c e l i s t )
165 #OUTPUT
166 #f a c e l i s t= array , opt iona l , l i s t o f s t a r t i n g f a c e s to con s id e r . Defau l t= a l l .
167

168 #con t r o l to check i f a l l the f a c e s should be used
169 i f l en ( f a c e l i s t )==0:
170 f a c e l i s t=l i s t ( range ( l en (mesh . f a c e s ) ) )
171 #once f o r each s i d e raw cut i s app l i ed
172 f o r i in range (4 ) :
173 #the plane i s s e l e c t e d from the corner po in t s o f the q u ad r i l a t e r a l c e l l
174 plane_or ig in=np . asanyarray ( [ pt [ i , 0 ] , 0 , pt [ i , 1 ] ] )
175 #I f we are working with the f o r th po int we need to go use the f i r s t to

make i t work



A.3 Partition 127

176 i f i ==3:
177 second_pt=np . asanyarray ( [ pt [ 0 , 0 ] , 0 , pt [ 0 , 1 ] ] )
178 e l s e :
179 second_pt=np . asanyarray ( [ pt [ i +1 ,0 ] ,0 , pt [ i +1 ,1 ] ] )
180 #the d i r e c t i o n i s eva luated to be orthogona l to the plane and po in t ing to

the i n s i d e o f the c e l l
181 d i r e c t i o n=np . array ( second_pt−plane_or ig in )
182 plane_normal=np . array (np . array ( [ d i r e c t i o n [2 ] ,0 , − d i r e c t i o n [ 0 ] ] ) )
183 plane_normal=plane_normal/np . l i n a l g . norm( plane_normal )
184 f a c e l i s t=raw_cut (mesh , f a c e l i s t , plane_normal , p lane_or ig in )
185 new_mesh=sub_mesh (mesh , f a c e l i s t )
186 re turn new_mesh
187

188 #This u t i l i t y func t i on i s used to ex t r a c t a sub−mesh . I t bu i l d s a d i c t i ona ry that
a s s o c i a t e the i n d i c e s o f the v e r t i c e s in the g iven mesh with the new i nd i c e s
they w i l l have in a new one with only the t r i a n g l e s in f a c e_ l i s t . I t a l s o
g i v e s a l i s t o f the new v e r t i c e s ordered with the new index ing . As input i t
r e qu i r e a s t a r t i n g mesh as a tr imesh object , and f a c e s_ l i s t as a l i s t or array
. The order o f the v e r t i c e s i s complete ly d i f f e r e n t from the o r i g i n a l one , I
have no idea why . The

189 de f from_vert ices_to_dict (mesh , f a c e s_ l i s t ) :
190 #INPUT
191 # mesh : tr imesh ob j e c t
192 # f a c e l i s t : array or l i s t ob ject , conta in s the f a c e s indexes o f the sub−mesh
193 #OUTPUT
194 #di c t i ona ry : d i c t object , a s s o c i a t e each f a c e ( from 0 to l en ( f a c e_ l i s t ) ) to the

c o r r e s p e c t i v e v e r t i c e s index in new_vert ices
195 #new_vert ices : (n , 3 ) l i s t o f the v e r t i c e s in the submesh .
196

197 #load the f a c e s as an array
198 f a c e s=mesh . f a c e s . view (np . ndarray )
199 count=3
200 #the f i r s t th ree v e r t i c e s ( the v e r t i c e s o f the f i r s t f a c e ) are i n s e r t e d

manually in both the l i s t and the d i c t i ona ry
201 new_vert ices=[mesh . v e r t i c e s [ f a c e s [ f a c e s_ l i s t [ 0 ] ] [ 0 ] ] ,
202 mesh . v e r t i c e s [ f a c e s [ f a c e s_ l i s t [ 0 ] ] [ 1 ] ] ,
203 mesh . v e r t i c e s [ f a c e s [ f a c e s_ l i s t [ 0 ] ] [ 2 ] ] ]
204 d i c t i ona ry={f a c e s [ f a c e s_ l i s t [ 0 ] ] [ 0 ] : 0 , f a c e s [ f a c e s_ l i s t [ 0 ] ] [ 1 ] : 1 , f a c e s [

f a c e s_ l i s t [ 0 ] ] [ 2 ] : 2 }
205 f o r i in range (1 , l en ( f a c e s_ l i s t ) ) :
206 f o r j in range (3 ) :
207 new_vertex=f a c e s [ f a c e s_ l i s t [ i ] ] [ j ]
208 i f new_vertex in d i c t i ona ry :
209 #i f the ver tex i s a l r eady in the d i c t i ona ry we pass to the next

one
210 cont inue
211 e l s e :
212 #otherwi se we add a new key ( and value ) and the new vertex to the

l i s t
213 d i c t i ona ry [ new_vertex ]=count
214 count+=1
215 new_vert ices . append ( l i s t (mesh . v e r t i c e s [ new_vertex ] ) )
216 re turn d i c t i onary , new_vert ices
217

218 #This func t i on bu i ld a new mesh o f a subset o f the mesh given as a input , with the
f a c e s pre sent in

219 #faces_sequence ( l i s t ) . The idea i s to s e l e c t only the v e r t i c e s be long ing at ( at
l e a s t ) one o f the f a c e s s e l e c t ed ,

220 #re−index ing them and to bu i ld a d i c t i ona ry to a s s o c i a t e the o ld indexes to the
new one . This i s h e l p f u l to change



128 Code

221 #the indexes o f the face s , and should be u s e f u l to r e v e r s e the proce s s i f
nece s sa ry

222 de f sub_mesh (mesh , faces_sequence ) :
223 #INPUT
224 # mesh : Trimesh ob j e c t
225 # faces_sequence : sequence o f f a c e i n d i c e s from mesh
226 #OUTPUT
227 # r e s u l t : Trimesh object , the por t i on o f the mesh
228

229 # check input type
230 faces_sequence = l i s t ( faces_sequence )
231

232 # work on a copy to avoid nuking the cache on the o r i g i n a l mesh
233 o r i g i n a l_ f a c e s = mesh . f a c e s . view (np . ndarray )
234

235 #bui ld the d i c t i ona ry and the updated v e r t i c e s l i s t
236 d i c t i onary , new_vert ices=from_vert ices_to_dict (mesh , faces_sequence )
237

238 #I n i t i a l i z e the updated f a c e s l i s t and i n s e r t the f i r s t one
239 f a c e s = [ [ d i c t i ona ry [ mesh . f a c e s [ faces_sequence [ 0 ] ] [ 0 ] ] ,
240 d i c t i ona ry [ mesh . f a c e s [ faces_sequence [ 0 ] ] [ 1 ] ] ,
241 d i c t i ona ry [ mesh . f a c e s [ faces_sequence [ 0 ] ] [ 2 ] ] ] ]
242 #Def ine the updated v e r t i c e s l i s t and normal ve to r s
243 v e r t i c e s = np . asanyarray ( new_vert ices )
244 normals = np . asanyarray (mesh . face_normals [ faces_sequence ] )
245

246 f o r faces_index in faces_sequence [ 1 : ] :
247 #fo r each f a c e on the l i s t
248 f ace s_current = o r i g i n a l_ f a c e s [ faces_index ]
249 #we update the indexes o f i t ' s v e r t i c e s
250 face_updated=[ d i c t i ona ry [ face s_current [ 0 ] ] , d i c t i ona ry [ face s_current [ 1 ] ] ,

d i c t i ona ry [ face s_current [ 2 ] ] ]
251 #And we append the r e s u l t to the update f a c e s l i s t
252 f a c e s . append ( face_updated )
253 #th i s command bu i ld the ne sub mesh
254 r e s u l t=tm . base . Trimesh ( v e r t i c e s , f a ce s , normals )
255 re turn r e s u l t
256

257 #This func t i on move the mesh po in t s g iven so that i t ' s new cente r o f mass became
the o r i g i n o f the axes . I t a l s o apply a r o t a t i on to a l l the po in t s to a l l i g n
the su r f a c e with the xy plane . The r o t a t i on matrix i s b u i l t up from the
p r i n c i p a l d i r e c t i o n obta ined from PCA of the covar iance matrix . As input
r e qu i r e a mesh ob j e c t and return the r o t a t i on and cente r ( to r e v e r s e the
proce s s i f needed ) and the new coo rd ina t e s new_coord0 .

258 de f workbench (mesh , l = [0 , 1 ] ) :
259 #INPUT
260 # mesh : tr imesh ob j e c t
261 # l : op t i ona l ( 2 , ) l i s t o f i n t e g e r s between [ 0 , 1 , 2 ] , they i nd i c a t e which PC

d i r e c t i o n should be used as f i r s t and second ax i s .
262 #OUTPUT
263 # ro ta t i on : ( 3 , 3 ) matrix , r o t a t i on matrix
264 # cente r : ( 3 , ) array , prev ious cente r o f the mesh mer t i c e s
265 # new_coord : (n , 3 ) array , roto−t r an s l a t ed v e r t i c e s coo rd ina t e s
266 #i n i t i a l i z e the po in t s we ' l l work with
267 v e r t i c i=np . matrix (mesh . v e r t i c e s )
268 #we f i nd the mean point , or c en te r o f mass
269 cente r=np . array (np .mean( v e r t i c i , a x i s=0) )
270 #and t r a n s l a t e the po in t s
271 t r an s l a t ed=( v e r t i c i−cente r )
272 #we bu i ld the covar iance matrix



A.3 Partition 129

273 covariance_matrix=np . dot ( t r an s l a t ed .T, t r an s l a t ed )
274 #we f i nd the e i ghenvec to r s
275 U, s ,V=np . l i n a l g . svd ( covariance_matrix )
276 v1=V[ l [ 0 ] ]
277 v2=V[ l [ 1 ] ]
278 #v3=V[ 2 ] #ju s t to be sure we f i nd the l a s t vec to r with a c r o s s product to

avoid s i gn s problems
279 plane_normal=np . c r o s s ( v1 , v2 )
280 #and bu i ld the r o t a t i on matrix
281 r o t a t i on=np . asanyarray ( [ v1 , v2 , plane_normal ] )
282 r o t a t i on=np . matrix ( r o t a t i on )
283 #we de f i n e the new coo rd ina t e s
284 new_coord=np . asar ray (np . dot ( ro ta t i on , t r an s l a t ed .T) .T)
285 #pr in t ( s )
286 re turn r o t a t i on , center , new_coord





Bibliography

[1] MTU Aero Engines: https://www.mtu.de/

[2] Damir Vu£ina, Milan �urkovi¢, Ton£i Novkovi¢ ; Classi�cation of 3D shape deviation using
feature recognition operating on parametrization control points, Computers in Industry 65
(2014) 1018-1031.

[3] https://en.wikipedia.org/wiki/STL_(file_format)

[4] A. Bjorck. Numerical Methods for Least Squares Problems. SIAM, 1996.

[5] I.T.Jolli�e,2002, Principal Component Analysis, Second Edition, Springer

[6] M. S. Floater, How to Approximate Scattered Data by Least Squares, SINTEF Report No.
STF42 A98013, Oslo, (1998).

[7] https://en.wikipedia.org/wiki/Wind_turbine_design

[8] http://www.offshorewindindustry.com/news/mhi-vestas-launched-worlds-powerful-wind

[9] M. von Golitschek and L. L. Schumaker, Data �tting by penalized least squares, in Algorithms

for Approximation II,J.C. Mason and M.G.Cox (eds.),Chapman & Hall(London),1990,210-
227.

[10] James W C, Gorton S H and Alby F, 2005, E�ects of Sand and Dust on Small Gas Turbine
Engines (NATO Research and Technology Organization)

[11] R Hussin et al, 2016, IOP Conf. Ser.: Mater. Sci. Eng. 152 012038

[12] R. Blomley, M. Weinmann a, J. Leitlo�, B. Jutzi Shape distribution features for point
cloud analysis- A geometric histogram approach on multiple scales. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3, 2014

[13] S. Fleishman, D. Cohen-Or, and C. T. Silva, Robust Moving Least-squares Fitting with
Sharp Features, in ACM transactions on graphics (TOG), 2005, pp.544-552.

[14] C. Mineo, S.G. Pierce, R. Summan, Novel algorithms for 3D surface point cloud boundary
detection and edge reconstruction, Journal of Computational Design and Engineering (2018)

[15] The MIT License (MIT), Copyright (c) 2015 Michael Dawson-Haggerty, Trimesh Python
library, https://github.com/mikedh/trimesh, license detail on https://github.com/

mikedh/trimesh/blob/master/LICENSE.md

[16] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, Exploring network structure, dynam-
ics, and function using NetworkX, in Proceedings of the 7th Python in Science Conference
(SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA
USA), pp. 11-15, 2008

131



132 Bibliography

[17] Splipy python libray, https://github.com/sintefmath/Splipy, license detail on https:

//github.com/sintefmath/Splipy/blob/master/COPYING

[18] B.V.R Ravi Kumar, A review on blisk tecnology,International Journal of Innovative Research
in Science, Engineering and Technology,Vol. 2, Issue 5, May 2013.

[19] Piegl, Les A., and Wayne Tiller; The NURBS book. Berlin: Springer, 1997.

[20] Yang Fengna, Pan Chengxiong, Zhang Dongfang, Tang Jian and Yan Jing,Stress distribution
and deformation analysis of gas turbine blades and disk with FEM method,Proceedings of the
ASME 2017 Power Conference Joint With ICOPE-17 POWER2017-ICOPE-17 June 26-30,
2017, Charlotte, North Carolina, USA

[21] Seyed Masoud Marandi, Khosrow Rahmani, Mehdi Tajdari, Foreign object damage on the
leading edge of compressor blades, transaction of Famena XXXVII-2 (2013)

[22] Tim J. Carter, Common failures in gas turbine blades, Engineering Failure Analysis 12,
237-247, 2005

[23] Xi Chen, Foreign object damage and fatigue cracking. PhD Thesis, Division of engineering
and applied science department of Harvard University, (2001).

[24] https://www.gom.com/industries/power-generationpropulsion.html

[25] https://www.olympus-ims.com/en/applications/rvi-passenger-jet-engine

[26] https://www.gom.com/



Acknowledgements

First of all I would like to thank MTU Aero Engines [1] for providing me with the
opportunity to work on this topic. It has been an extremely instructive experience,
that enriched me in many ways.

In particular, I want to thank my supervisors Dr. Giulia Antinori and Julian
von Lautz. They consistently allowed this paper to be my own work, but steered
me in the right direction whenever I needed it.

I also want to thank Prof. Fabio Marcuzzi and the mathematics department of
the university of Padua.

Finally, I must express my very profound gratitude to my family and to my
friends for providing me with unfailing support and continuous encouragement through-
out my years of study and through the process of researching and writing this thesis.

This accomplishment would not have been possible without them.
Thank you.




