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Introduction

The term cancer refers to a group of diseases which can affect almost any tissue and
organ and are characterised by the uncontrolled growth of abnormal cells, whose cell
cycle is much faster than the one of a healthy cell. The carcinogenesis, i.e. the production
of a cancer, is due to mutations that occur physiologically during the DNA replication
process. Such mutations are usually repaired by some enzymes; however, their functions
can be inhibited for genetical reasons or affected by some environmental factor, such as
exposition to X rays, pollution and some chemical substances. In this case, it may happen
that the cell does not repair mutations and the accumulation of a certain amount of them
can bring the healthy cell to be a cancer cell.

From a mathematical point of view, many aspects can be studied. For instance,
one can model how cancer developes, how a treatment can affect its evolution or how
angiogenesis vascularises it. In this thesis, we focus on tumour initial developement,
modelling the oncogenesis through a system of ordinary differential equations (ODEs),
taking into account the possibility that a mutation occurs and the competition among
healthy cells and cancer cells for the available resource, such as physical space to develop,
nutrients and oxygen. The model is later analysed: it is done analitically when we are
differentiating between healthy cells and cancer ones; otherwise, if we want to consider n
different genotypes, the study is numerical.

The thesis is structured as following: Chapter 1 contains a short review of classical
models of mathematical biology, namely Malthusian and logistic models and a competition
model, all based on ODEs. In Chapter 2, starting from this last model, we model the
cancer evolution adding the possibility of mutation and, then, the so-obtained model is
non-dimensionalised to make this analysis simpler. Chapter 3 contains the analysis of
the model for two different populations of cells, namely healthy and cancer cells; the
number of fixed points is studied depending on the values of the physical parameters of
the model and some sufficient and sometimes also necessary conditions for their stability
are obtained; all these conditions are interpreted biologically. Finally, in Chapter 4 the
outcomes of some numerical simulations are presented and compared, in the case of a
big variety of different genotypes; some biological interpretation is given to the numerical
results.

v





Chapter 1

Background on population dynamics
models

The mathematical models constructed to study population dynamics are
called population models. If a population model takes into account competition
factors among populations, it is called competition model. Both kinds of model
let us understand better the quantitative or, at least, qualitative consequences
of complex interactions among the populations and the environment. In this
chapter, we will present some classical population and competition models.

1.1 Malthusian growth

The first and the simplest population model is the Malthusian growth model. It was
proposed by the British economist Thomas Robert Malthus (1766 - 1834) in An essay on
the principle of population, published in 1798. Malthus thought that a population grows
exponentially with a constant rate. To model this situation, it is assumed that the rate of
increase of the population is proportional to the size of the population. Denoting by P (t)
the size of the population at time t and by a the population growth rate, the differential
equation which describes the model is

dP (t)

dt
= aP (t) . (1.1)

Consequently, if the inital condition is P (0) = P0, the evolution of the size of the popu-
lation is described by the function

P (t) = P0e
at .

However, this model is as simple as unrealistic. In the very short term, it gives a good
prediction, but in the long term the approximation is not accurate at all. For this reason,
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2 Chapter 1. Background on population dynamics models

it is necessary to improve it.

1.2 Logistic growth model

The logistic growth model represents a refinement of the Malthusian one. It takes into
account the limited carrying capacity of the environment where the population lives, due,
for instance, to the limited resources. The simplest form of this model, presented in [7] is

dP (t)

dt
= aP (t)

(
1− P (t)

K

)
, (1.2)

where parameters a and K denote, respectively, the growth rate and the carrying capacity
of the environment. We can notice that, if P (t) < K, then Ṗ (t) > 0, that is the population
increases; conversely, if P (t) > K, then Ṗ (t) < 0, that is the population decreases.
Otherwise, if P (t) = K, then Ṗ (t) = 0, which means that P (t) = K is an equilibrium
state of (1.2), as is P (t) = 0.

Apart from this remark, we see that the differential equation (1.2) is separable. Hence,
it is possible to integrate it, obtaining the solution

P (t) =
KP0

P0 + (K − P0)e−rt
t→∞−−−→ K ,

if P (0) = P0.

1.3 Competition model

Until now we have considered models describing the growth of a single population.
However, in a real-life context, populations interact among them and compete for re-
sources, e.g. food or territory. Let us suppose that there are two populations of sizes,
respectively, A(t) and C(t). In the absence of the other population, each of these governed
by a logistic growth. If there are individuals of the second population, the death rate of
the first population is proportional to both A(t) and C(t) and vice versa. For this reason,
the model, proposed, for instance, in [7] can be written as following:

dA

dt
= pA

(
1− A

K0

− b01C

K0

)
,

dC

dt
= rC

(
1− C

K1

− b10A

K1

)
,

(1.3)

where p, r, b01, b10, K0, K1 are all positive constants. In particular, p and r are the
growth rates, K0 and K1 are the carrying capacities and b01 and b10 measure the compet-
itive effects.
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In order to simplify the analysis of the model, let us non-dimensionalize it by setting

x =
A

K0

, y =
C

K1

, τ = pt , ρ =
r

p
, a01 = b01

K1

K0

, a10 = b10
K0

K1

.

Then, the system becomes

dx

dτ
= ẋ = x(1− x− a01y) ,

dy

dτ
= ẏ = ρy(1− y − a10x) .

(1.4)

The steady states of the system (1.4) are the solutions of ẋ = ẏ = 0. Namely, they
are:

• P00 = (0, 0), which occurs when both populations do not exist;

• P10 = (1, 0), when only the population A exists;

• P01 = (0, 1), when only the population C exists;

• P∗ = (x∗, y∗) =
(

1−a01
1−a01a10 ,

1−a10
1−a01a10

)
, when the populations coexist.

Since both variables represent population sizes, the last steady state exists if and only if
1 − a01a10 6= 0 and x∗, y∗ ≥ 0. Hence, it existes if and only if either 1 − a01, 1 − a10 and
1− a01a10 are positive at the same time or they are negative at the same time.

Model analysis

We can study the stability of the steady states by linearizing the system near the four
steady states and applying the following theorem, presented, for instance, in [10]:

Theorem 1.3.1 (Grobman-Hartman). Let F ∈ C∞(Rn,Rn) be a vector field. Let us
consider the dynamical system associated to the equation

ẋ = F (x) .

Let x∗ be an hyperbolic fixed point, i.e. F (x∗) = 0 and J(x∗) has no eigenvalue with
real part equal to zero, where J(x∗) is the Jacobian matrix of F in x∗. Then, the local
phase portrait near x∗ is topologically equivalent to the phase portrait of the linearization,
that is there exists a neighborhood N of x∗ and a homeomorphism h : N → Rn such that
h(x∗) = 0 and such that in the neighbourhood N the flow of ẋ = F (x) is topologically
conjugate by the continuous map y = h(x) to the flow of its linearization ẏ = J(x∗)y.
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In particular, it means that, if (x∗, y∗) is a fixed point of the dynamical system

ẋ = P (x, y) ,

ẏ = Q(x, y) ,

then:

• if (x∗, y∗) is a saddle point for the linearized system, then it is a local saddle point
of the system;

• if (x∗, y∗) is a stable/unstable node for the linearized system, then it is a local
stable/unstable node of the system;

• if (x∗, y∗) is a stable/unstable focus for the linearized system, then it is a local
stable/unstable focus of the system.

The Jacobian matrix associated to the system (1.4) is

J(x, y) =

(
∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

)
=

(
1− 2x− a01y −a01x
−ρa10y ρ(1− 2y − a10x)

)
.

Let us now evaluate at in the four steady states to analyze their stability.

(i) Trivial steady state P00.

The Jacobian matrix in the steady state P00 is

J(0, 0) = J00 =

(
1 0
0 ρ

)
.

Its eigenvalues are evidently λ1 = 1 and λ2 = ρ, which are both positive. Therefore,
the fixed point P00 is always a repulsore node and, hence, unstable.

(ii) One population steady states P10 and P01.

As regards the steady state P10 = (1, 0), the Jacobian matrix evalutated in this
point is

J(1, 0) = J10 =

(
−1 −a01
0 ρ(1− a10)

)
,

whose eigenvalues are are λ1 = −1 < 0 and λ2 = ρ(1− a10). Then, since ρ > 0, the
stability of P10 depends only on the value of a10:
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• if a10 ∈ [0, 1[, the eigenvalues have opposite signs and, hence, P10 is a saddle
point, which is unstable;

• if a10 ∈]1,+∞, both eigenvalues are negative and, hence, P10 is an attractive
node, which is stable.

In an analogous way, it can be observed that the stability of P01 depends only on
the value of a01. In particular:

• if a01 ∈ [0, 1[, the eigenvalues have opposite signs and, hence, P01 is a saddle
point, which is unstable;

• if a01 ∈]1,+∞, both eigenvalues are negative and, hence, P01 is an attractive
node, which is stable.

(iii) Coexistence steady state P∗.

For the last steady state P∗, the Jacobian matrix is

J

(
1− a01

1− a01a10
,

1− a01
1− a01a10

)
= J∗ =

1

1− a01a10

(
−1 + a01 −a01(1− a01)

−ρa10(1− a10) ρ(−1 + a10)

)
.

To study the stability of the steady state, we compute the trace and the determinant
of J∗, obtaining:

tr(J∗) =
−(1− a01)− ρ(1− a10)

1− a01a10
, det(J∗) =

ρ(1− a01)(1− a10)
1− a01a10

.

Let us observe that neither a01 < 1 < a10 nor a10 < 1 < a01 is possible, as otherwise
P∗ would not belong to the first quadrant. Hence, there are only two cases to
considerate:

• if a01, a10 < 1, then det(J∗) > 0 and tr(J∗) < 0, which means that both
eigenvalues of J∗ are real and negative. In other words, P∗ is an attractive
node and it is stable;

• if a01, a10 > 1, then det(J∗) < 0, which means that the eigenvalues of J∗ are
real and have opposite signs. In other words, P∗ is a saddle point and it is
unstable.
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Cases of dynamics

First of all, let us notice that the nullclines of the system are the straight lines described
by

x = 0 , y = 0 , x+ a01y = 1 , a10x+ y = 1 .

At this point, each possible case can be studied. As obtained before, P0 = (0, 0) is always
an unstable equilibrium, independently of the value of the parameters.

1. a01 , a10 < 1

Figure 1.1: Phase plane of the system (1.4) for a01, a10 < 0 [2].

As we can see in the figure, both P01 and P10 are saddle points, whilst P∗ is an
attractive node. Therefore, P∗ is stable, although P0, P01 and P10 are unstable.
Since it is evident that P∗ is a global attractor, it means that, in the long term, the
two populations tend to coexist in a stable way.

2. a01 , a10 > 1

Figure 1.2: Phase plane of the system (1.4) for a01, a10 > 0 [2].
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In this case, both P01 and P10 are attractive nodes, whereas P0 is a repulsor node
and P∗ is a saddle point. Therefore, P0 and P∗ are unstable, although P01 and P10

are stable. It is evident in the figure that just one population survive in the long
term and it depends on the initial condition.

3. a01 < 1 , a10 > 1

Figure 1.3: Phase plane of the system (1.4) for a01 < 0 , a10 < 0 [2].

For these values of the parameters, there is no possibility of coexistence of the two
populations. P10 is an attractive node, although P0 is a repulsive node and P01 is a
saddle point. In this case, it is evident that P10 is a global attractor, therefore the
population x survives, while the population y extincts.

4. a01 > 1 , a10 < 1

Figure 1.4: Phase plane of the system (1.4) for a01 > 0 , a10 < 0 [2].

In this case, there is no possibility of coexistence of the two populations. P01 is an
attractive node, although P0 is a repulsive node and P10 is a saddle point. In this
case, it is evident that P01 is a global attractor, therefore the population y survives,
while the population x extincts.
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5. a01 = a10 = 1

In this case, the differential system is

dx

dτ
= x(1− x− y) ,

dy

dτ
= ρy(1− x− y) .

and the nullclines are

x = 0 , y = 0 , x+ y = 1 .

All the points of the last nullclines, which divides the positive quadrant in two
region, are fixed points. Let us study their stability through the sign of partial
derivatives in the two regions.

Let (x1, y1) be a point of the positive quadrant such that x1 + y1 < 1. Then:

dx

dτ
|(x1,y1) = x1(1− x1 − y1) = x1(1− (x1 + y1)) > 0 ,

dy

dτ
|(x1,y1) = ρy1(1− x1 − y1) = ρy1(1− (x1 + y1)) > 0 .

Although, if (x2, y2) is a point of the positive quadrant such that x2 + y2 > 1, then:

dx

dτ
|(x2,y2) = x2(1− x2 − y2) = x2(1− (x2 + y2)) < 0 ,

dy

dτ
|(x1,y1) = ρy2(1− x2 − y2) = ρy2(1− (x2 + y2)) < 0 .

Due to the positivity of ẋ and ẏ, trajectories of the bounded regionR1 = {(x, y) |x > 0 , y > 0 , x+ y < 1}
have positive slopes; whereas, trajectories of the regionR2 = {(x, y) |x > 0 , y > 0 , x+ y > 1}
have negative slopes, since ẋ, ẏ < 0. It means that each positive point of the null-
cline

L2 = {(x, y) |x+ y = 1}

is an attractive point; as a consequence, the nullcline is an attractive line.
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Figure 1.5: Phase plane of the system (1.4) for a01 = a10 = 1 [2].





Chapter 2

Model

In this chapter, a new model for cancer evolution is developed. After the
construction of the model, it will be non-dimensionalized in order to obtain a
more compact expression of the model and to make it easier to study.

2.1 Construction of the model

Let us assume that there are n cancer cell genotypes. We will denote the size of the
population of cells with the i-th genotype at time t by Ci(t) and the size of the normal
cells population at the same time by C0(t). The phenomena that the model must consider
are the following:

• cells reproduce and die;

• there are limited resources, hence the growth cannot be unlimited;

• there is a competitive interaction among cells with different genotypes for the limited
resources;

• in the process of mitosis, with some probability pij, a cell of type i can produce a
mutant daughter cell of type j, that goes to the j-th population.

The models presented in Chapter 1 are not sufficient to describe such a system. How-
ever, they can be used as a basis in order to build a more appropriate model. Considering
the competition model (1.3), one can observe that there is one factor missing: namely, the
model disregards a possibility of mutation. To understand the behaviour of the model,
let us write it for n = 1 (that is for a system “healthy cells-cancer cells”) as following:

11



12 Chapter 2. Model

Ċ0(t) =r0C0

(
1− C0 + b01C1

K0

)
,

Ċ1(t) =r1C0

(
1− b10C0 + C1

K1

)
.

(2.1)

By multiplying the numerator and the denominator of the fractions involving Ki (i = 0, 1)
for suitable constants, one can homogenize the values of these parameters, obtaining an
unique carrying capacity K of the system. This lead to get the following system of ODEs:

Ċ0(t) =r0C0

(
1− b̄00C0 + b̄01C1

K

)
,

Ċ1(t) =r1C0

(
1− b̄10C0 + b̄11C1

K

)
.

For simplicity of notation, let us rename the parameters b̄ij as bij. In this way, we can
generalize the model to n tumoral genotypes as:

Ċi(t) = riCi

(
1− 1

K

n∑
j=0

bijCj

)
. (2.2)

In these equations, r = (ri)
n
i=0 represents the vector of the growth rates and the elements

of matrix B = (bij)
n
i,j=0 represent the competitive abilities of the genotypes.

In order to introduce a possibility of mutation into the model, it is necessary to
separate the birth term and the death one: in fact, mutations can appear only when cells
reproduce, thus in the birth term.
In the simplest case of a single population we have

population size growth = birth term - death term.

In formulas, if C is the size of the population, this leads to the following ODE:

Ċ = aC

(
1− hC

K

)
︸ ︷︷ ︸

birth

− dC
(

1 + g
C

K

)
︸ ︷︷ ︸

death

, (2.3)

where the new parameters a and d are respectively the birth and death rate, while h and
g are to fine-tune the effects of the lack of resources on the births and deaths (usually,
such effects on the birth term is very small, i.e. h ≈ 0).

Since we know that the population growth follows the logistic growth, rearranging the
terms of (2.3) one must find the logistic law
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Ċ = rC

(
1− C

K

)
, (2.4)

where r is the growth rate and K the carrying capacity of the system. In order to have
the same ODE, the conditions r = a−d and r = ah+dg must hold. Since d represents the
inverse of the average life span, then, if r is known, a can be simply computed. Likewise,
g can be calculated if we neglect h, since, as said before, its value is usually very small.

Going back to the principal model (2.2), following the same procedure, we can separate
the birth term and the death term, which are the following:

birth term for the i-th population = aiCi

1− hi

n∑
k=0

bikCk

K

 , (2.5)

death term for the i-th population = −diCi

1− gi

n∑
j=0

bikCk

K

 , (2.6)

where ai and di denote the birth and death rates of the cells of genotype i and hi and gi
are the fine-tuning parameters. These parameters are related to ri as following:

ri = ai − di ; aihi + digi = ri .

It is possible now to modify the birth term (2.5) introducing the possibility of mutation,
as suggested in [4], obtaining, for the i-th genotype,

n∑
j=0

pjiajCj

1− hj

n∑
k=0

bjkCk

K


 (2.7)

where pij denote the probability that a cell of genotype i produces a cell of genotype j.
By the combination of (2.7) and (2.6), we get the following form of the system of

ODEs that we were looking for:

Ċi =
n∑

j=0

pjiajCj

1− hj

n∑
k=0

bjkCk

K


− diCi

1 + gi

n∑
k=0

bikCk

K

 . (2.8)

Remark 2.1.1. All the physical parameters of the model are positive real numbers, except
the elements of matrix P , which can be zeros.
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2.2 Non-dimensionalization of the model

In order to reduce the number of parameters of the model, we non-dimensionalize the
system of ODEs (2.8). For n = 1, the system is

Ċ0 =p00a0C0

(
1− h0

b00C0 + b01C1

K

)
+ p10a1C1

(
1− h1

b10C0 + b11C1

K

)
+

− d0C0

(
1 + g0

b00C0 + b01C1

K

)
,

Ċ1 =p01a0C0

(
1− h0

b00C0 + b01C1

K

)
+ p11a1C1

(
1− h1

b10C0 + b11C1

K

)
+

− d1C1

(
1 + g1

b10C0 + b11C1

K

)
.

Rearranging its terms, one can obtain:

dC0

dt
= (p00a0 − d0)C0 − (p00a0h0 + d0g0)C0

b00C0 + b01C1

K
+ p10a1C1

(
1− h1

b10C0 + b11C1

K

)
,

dC1

dt
= (p11a1 − d1)C1 − (p11a1h1 + d1g1)C1

b10C0 + b11C1

K
+ p01a0C0

(
1− h0

b00C0 + b01C1

K

)
.

Let us denote

xi =
bii
K
Ci , τ = (p00a0h0 + d0g0)t . (2.9)

Then, the system becomes:

dx0
dτ

=x0 + p10
a1
σ0
e01x1 − x0 (x0 + f01x1)− p10

a1h1
σ0

e01x1 (f10x0 + x1) ,

dx1
dτ

=p01
a0
σ0
e10x0 +

l1
σ0
x1 −

σ1
σ0
x1 (f10x0 + x1)− p01

a0h0
σ0

e10x0 (x0 + f01x1) ,

where new parameters are

li = piiai − di , σi = piiaihi + digi , eij =
bii
bjj

, fij =
bij
bjj

. (2.10)

Generalizing this process to n cancer genotypes, by the change of variables and pa-
rameters given by (2.9) and (2.10), we get the non-dimensionalized system of ODEs
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dxi
dτ

= xi

(
li
σ0
− σi
σ0

(
k=n∑
k=0

fikxk

))
+

j=n∑
j=0
j 6=i

pji
aj
σ0
eijxj

(
1− hj

(
xj +

k=n∑
k=0

fjkxk

))
, (2.11)

for i = 0, . . . , n.

Remark 2.2.1. Let us notice that σ0 is always a positive quantity, since d0, g0 > 0.

It is possible to write the system in an easier way, observing that it is possible to
separate the linear and the non-linear parts as following:

dxi
dτ

=
1

σ0

(
n∑

j=0

uijxj −
n∑

j=0

vij

n∑
k=0

xjfjkxk

)
, i = 0, . . . , n , (2.12)

where the new parameters are

uij =

{
lj if j = i ,

ajpjieij if j 6= i ,
(2.13)

and

vij =

{
σj if j = i ,

ajhjpjieij if j 6= i .
(2.14)





Chapter 3

Analysis of model properties: case of
a planar system

In this chapter, the non-dimensional model is studied for n = 1, that is
for two genotypes, one normal and one tumoural. First of all, the nullclines
are analyzed in order to establish the number of non-negative fixed points of
the model and their location. Then, some sufficient (and, in some cases, also
necessary) conditions for the stability of these points are stated. Lastly, a
biological interpretation of the analytical results is provided.

From now on, we introduce a reasonable hypothesis on the system in order to pre-
serve the positivity of the model: namely, we suppose that hi = 0 for all i = 0, . . . , n.
Mathematically, this condition is necessary to preserve the positive-invariance of the first
quadrant, otherwise the model would not be realistic. Biologically, this means that com-
petion influences the death but not the proliferation. In terms of equation, the system
(2.12) can be re-written as following:

dxi
dτ

=
1

σ0

(
n∑

j=0

uijxj − digi
n∑

j=0

xifijxj

)
, i = 0, . . . , n , (3.1)

3.1 Equilibrium states

For simplicity, we start with n = 1, that is with two genotypes, normal and malignant.
Writing (3.1) for this case, one obtains

ẋ0 =
1

σ0
(u00x0 + u01x1 − d0g0f00x20 − d0g0f01x0x1) ,

ẋ1 =
1

σ0
(u10x0 + u11x1 − d1g1f10x0x1 − d1g1f11x21) .

17
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To simplify the notation, we set

x = x0 , y = x1

and

A = u00 = l0 , B = u01 = a1p10
b00
b11

, C = u10 = a0p01
b11
b00

, D = u11 = l1 ,

α = d0g0f00 = d0g0 , β = d0g0f01 = d0g0
b01
b11

,

γ = d1g1f10 = d1g1
b10
b00

, δ = d1g1f11 = d1g1 .

By these notation, the system can be written as following:

ẋ =
1

σ0
(Ax+By − αx2 − βxy) ,

ẏ =
1

σ0
(Cx+Dy − γxy − δy2) .

(3.2)

Equilibria of the model satisfy to the system of algebraic equations

Ax+By − αx2 − βxy = 0 ,

Cx+Dy − γxy − δy2 = 0 .
(3.3)

Then, in this case, the equilibrium states are represented by the intersections of two conic
curves defined by (3.3), which could degenerate in a couple of straight lines, depending
on the value of the parameters of the algebraic system. Let us start with some trivial
observations expressed in the following lemmas.

Lemma 3.1.1. The origin P0 = (0, 0) is always a fixed point.

Proof. The origin always belongs to both curves because the equations which define them
have constant terms equal to 0. Hence, they cross in the origin, which means that the
origin is a steady state.

This fact is biologically meaningful, because it means that cells cannot appear out of
nowhere.

Lemma 3.1.2. The dynamical system in analysis can have from one to four fixed points.

Proof. By the previous lemma, we have that there is always a fixed point, namely the
origin. Moreover, the steady states are exactly the solutions of (3.3), which is equivalent
to a fourth-degree equation; therefore, they can be at most four.
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Another limit to the number of fixed point is given by the positivity condition: the
variables x and y represent sizes of populations and, hence, they cannot assume negative
values: this means that the interesting intersections are the ones which are in the first
quadrant, i.e. the ones which have both coordinates non-negative.

Remark 3.1.3. In order to find an upper bound on the number of non-negative equilibrium
points, one could use an algebraic criterion, called Descartes’ rule of signs, fully explained
in [3].

To start, it is possible to state the following result:

Lemma 3.1.4. Apart from the origin, the model (3.2) has no fixed point on the coordinate
axes.

Proof. Let us suppose, by contradiction, that the model admits a steady state on the y-
axis, which has the form (0, y∗), y∗ 6= 0. It means that (0, y∗) is a solution of the algebraic
system (3.3); hence, substituting x = 0 in (3.3), one obtains

y = 0 , y

(
1− δ

D
y

)
= 0 .

It implies that y∗ = 0, which is a contradiction.

Likewise, it can be proved that, (x∗, 0) cannot be a solution unless x∗ = 0.

To get the objective, first of all let us study the properties of the two curves.

First curve: Ax+By − αx2 − βxy = 0

It is convenient to isolate the variable y in it, obtaining

y = f(x) =
αx2 − Ax
B − βx

.

The first conic curve is exactly the graph of the function f .

It is convenient to study which kind of curve it is. It is evident that it has a vertical
asymptote described by the equation

x =
B

β
,

where B/β ≥ 0.
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(a)

(b)

(c)

Figure 3.1: The first hyperbola for: (a) Aβ−Bα > 0, (b) Aβ−Bα = 0, (c) Aβ−Bα < 0.
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Moreover, we can see if it has another asymptote, which, evidently, cannot be horit-
zontal. Then, if it exists, it must be oblique and its slope would be given by

m1 = lim
x→∞

f(x)

x
= lim

x→∞

αx2 − Ax
Bx− βx2

= −α
β
,

where m1 < 0. Since the previous limit is finite, the oblique asymptote exists and its
constant term is

q1 = lim
x→∞

(f(x)−m1x) = lim
x→∞

(
αx2 − Ax
B − βx

+
α

β
x

)
=
Aβ −Bα

β2
.

We have just proved the following

Lemma 3.1.5. The curve whose equation is Ax + By − αx2 − βxy = 0 is a hyperbola.
Its asymptotes are given by equations

x =
B

β
and y = −α

β
x+

Aβ −Bα
β2

.

The hyperbola degenerates into a couple of straight lines if and only if Aβ − Bα = 0; in
this case, the straight lines correspond to the asymptotes.

Depending on the sign of the constant term of the equation of the oblique asymptote,
the position of the two branches changes as it can be seen in the figures 1a-1c. Anyway,
it is possible to state the following result:

Lemma 3.1.6. One of the two branches of the hyperbola has no points in the first quad-
rant.

Proof. Let us distinguish three possible cases, that cover all the possibilities:

1. Aβ −Bα > 0 (Figure 1(a))

Let us compute the first derivative of f , which is

f ′(x) =
2Bαx− αβx2 − AB

(B − βx)2
.

The sign of f ′(x) depends only on the numerator of the fraction, whose terms can
be re-arranged in the following way:

2Bαx− αβx2 − AB = −α
β

(
x− B

β

)2

− B

β
(Aβ −Bα) < 0
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In other words, f is a decreasing function for all x 6= B/β. In particular, since
f(0) = 0 (because the origin belongs to the hyperbola), f(x) > 0 for x < 0 and
f(x) < 0 for 0 < x < B/β. It means that one of the two branches has no point in
the first quadrant.

2. Aβ −Bα = 0 (Figure 1(b))

The hyperbola degenerates to its asymptotes which cross in the point

(B/β,−Bα/β2).

Since one of these two straigth lines is vertical and the other one has negative slope
and pass through the origin (0, 0), a branch of the hyperbola lays entirely in the
fourth quadrant.

3. Aβ −Bα < 0 (Figure 1(c))

Since the origin belongs to the graph of f , the branch of the hyperbola which
contains it lays in the region delimited on the right by the vertical asymptote and
downwards by the oblique one. It means that the other branch lays in the opposite
region, which belongs entirely to the fourth quadrant.

Second curve: Cx+Dy − γxy − δy2 = 0

Likewise, it is convenient to isolate the variable x in the equation, obtaining

x = g(y) =
δy2 −Dy
C − γy

.

The second curve, then, is the graph of the function g. Repeating similar computations
to the previous section, it results that the two asymptotes are described respectively by
the equations

y =
C

γ
≥ 0 and x = − δ

γ
y +

Dγ − Cδ
γ2

.

and, as a consequence, the conic curve is a hyperbola. It degenerates into a couple of
straight lines if and only if Dγ−Cδ = 0; in this case, the straight lines correspond to the
asymptotes. Depending on the sign of the constant term of the equation of the oblique
asymptote, the position of the two branches changes as it can be seen in the figures 2a-2c.
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(a)

(b)

(c)

Figure 3.2: The second hyperbola for: (a) Dγ − Cδ > 0, (b) Dγ − Cδ = 0, (c)
Dγ − Cδ < 0.
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As for the first hyperbola, just a portion of one of the two branches of the hyperbola
belongs to the first quadrant. As a consequence of this fact, it is possible to state the
following result:

Lemma 3.1.7. The model (3.2) has either exactly one or exactly two non-negative steady
states.

Proof. As stated in a previous lemma, the origin is always a steady state. Then, we can
restrict to prove that there exists, at most, one steady state different from it. Let us
consider the following six cases, that cover all the possibilities:

1. Aβ −Bα > 0, Dγ − Cδ > 0

Figure 3.3(a): Intersections for Aβ −Bα > 0 and Dγ − Cδ > 0.

For all x ∈ ]B/β,+∞[ the function f is strictly decreasing, as proved before; f(x)→
+∞ as x → (B/β)+ and f(x) → −∞ as x → +∞ since the hyperbola tends to
the oblique asymptote, that has negative slope. The same holds for g: it is strictly
decreasing for all y ∈ ]C/γ,+∞[, g(y) → +∞ as y → (C/γ)+ and g(y) → −∞ as
y → +∞. It means that, in this case, there is exactly one intersection different from
the origin and, hence, there are exactly two non-negative steady states.
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2. Aβ −Bα > 0, Dγ − Cδ < 0

Figure 3.3(b): Intersections for Aβ −Bα > 0 and Dγ − Cδ < 0.

As in the previous case, for all x ∈]B/β,+∞[ the function f is strictly decreasing,
as proved earlier, f(x) → +∞ as x → (B/β)+ and f(x) → −∞ as x → +∞.
Regarding to the second hyperbola, let us remind that

g′(y) =
2Cδy − γδy2 − CD

(C − γy)2
.

Therfore, the sign of g′ depends only on the numerator, which is positive if and only
if y ∈ ]y1, y2[\ {C/γ}, where

y1,2 =
C

γ
±
√
Cδ(Cδ −Dγ)

γδ

exist because the discriminant is non-negative by hypothesis. In particular g is
strictly increasing for all y ∈ ]y1, C/γ[. Since g(y)→ +∞ as y → −∞ and g(y)→
+∞ as y → (C/γ)− and y1 is the unique stationary point in the interval ]−∞, C/γ[,
then it must be an absolute minimum point of this interval and, therefore, g(y1) <
g(0) = 0. Hence, independently of the sign of y1, there exists a left neighbourhood
I = [y∗, C/γ[ of C/γ , with max {0, y1} ≤ y∗ < C/γ and g(y∗) = 0, where the
function g is strictly increasing and, then, positive. It is simple to prove that either
y∗ = 0, if D ≤ 0, or y∗ = D/δ, if D > 0 (in other words, y∗ = max {0, D/δ}).
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Therefore, in this case there is exactly one non-negative steady state different from
the origin.

3. Aβ −Bα < 0, Dγ − Cδ > 0

Figure 3.3(c): Intersections for Aβ −Bα < 0 and Dγ − Cδ > 0.

Simmetrical of the previous case.

4. Aβ −Bα < 0, Dγ − Cδ < 0

Figure 3.3(d): Intersections for Aβ −Bα < 0 and Dγ − Cδ < 0.
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As seen in the previous two cases, the portion of hyperbolas in the first quadrant
are such that they can cross at most in one non-negative point different from the
origin.

5. Aβ −Bα = 0

In this case, the first hyperbola degenerates into a couple of straigth lines. As
observed before, the oblique one has a negative slope and crosses the origin, hence it
lays in the second and in the fourth quadrant. As a consequence, just an intersection
of the second hyperbola with the vertical line of equation x = B/β can be a non-
negative fixed point. Let us study the number of intersections in the first quadrant;
first of all, the first coordinate of such a point B/β and its second coordinate must
satisfy the following equation, obtained by substituting B/β to x in the Cx+Dy−
γxy − δy2 = 0:

βδy2 + (Bγ −Dβ)y −BC = 0 .

The solutions of this equation are

y± =
Dβ −Bδ ±

√
(Bγ −Dβ)2 + 4BCβδ

2βδ
.

Both of them are real since the discriminant ∆ = (Bγ − Dβ)2 + 4BCβδ is non
negative thanks to the non-negativity of the parameters B,C, β, δ. It is evident
from the geometrical observations done in the previous cases that only y+ can be
positive. Hence, there is only one fixed point strictly in the first quadrant, which is
(B/β, y+).

6. Dγ − Cδ = 0

In this case, the second hyperbola degenerates into a couple of straigth lines. By
the same scheme of the previous point, we obtain that, if it does not coincide with
the origin, the second steady state is (x+, C/γ), where

x+ =
Cβ − Aγ +

√
(Cβ − Aγ)2 +BCαγ

2αγ
.
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3.2 Stability of P0

In order to study the stability of the origin, we can proceed by linearizing the system
(3.2) around it. The Jacobian matrix is

J(0, 0) = J0 =
1

σ0

(
A B
C D

)
, (3.4)

and its determinant and trace are, respectively

det(J0) =
1

σ2
0

(AD −BC) and tr(J0) =
1

σ0
(A+D) .

Another interesting quantity is

tr(J0)
2 − 4det(J0) =

1

σ2
0

[(A−D)2 + 4BC]

which is always non-negative. It means that, in any case, the eigenvalues of J0 are real
and, hence, (0, 0) is not a focus. Furthermore, as a consequence, no Hopf bifurcation is
possible in the origin. Then, there are only three possibilities:

• if AD −BC < 0, the origin is a saddle point, hence it is unstable;

• if AD−BC > 0 and (A+D) > 0, the origin is a repulsive node, hence it is unstable;

• if AD−BC > 0 and (A+D) < 0, the origin is an attractive node, hence it is stable.

3.3 Existence and location of the positive fixed point

Let us considerate some possible cases in order to study the existence and the location
of the possible positive steady state, that will be denoted by P∗ = (x∗, y∗).

1. Aβ −Bα = 0

As seen in Lemma 3.1.7, in this case

P∗ =

(
B

β
,
Dβ −Bδ +

√
(Bγ −Dβ)2 + 4BCβδ

2βδ

)
.

2. Dγ − Cδ = 0

As seen in Lemma 3.1.7, in this case

P∗ =

(
Cβ − Aγ +

√
(Cβ − Aγ)2 +BCαγ

2αγ
,
C

γ

)
.
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3. Aβ −Bα > 0, Dγ − Cδ > 0

In this case, P∗ always exists. The part of the first hyperbola in the first quadrant is
the graph of f for x ∈]B/β,A/α[. At the same way, the part of the second hyperbola
in the first quadrant is the graph of g for y ∈]C/γ,D/δ[. This means that

P∗ ∈ ]B/β,A/α[× ]C/γ,D/δ[ .

4. Aβ −Bα > 0, Dγ − Cδ < 0

In this case, P∗ always exists. Observing the interval of x and y where the graph of
f and g, respectively, are in the first quadrant, it results that:

• if D ≤ 0, P∗ ∈ ]B/β,A/α[× ]0, C/γ[;

• if D > 0, P∗ ∈ ]B/β,A/α[× ]D/δ, C/γ[.

5. Aβ −Bα < 0, Dγ − Cδ > 0

In this case, P∗ always exists. Simmetrically to the previous case,

• if A ≤ 0, P∗ ∈ ]0, B/β[× ]C/γ,D/δ[;

• if A > 0, P∗ ∈ ]A/α,B/β[× ]C/γ,D/δ[.

6. Aβ −Bα < 0, Dγ − Cδ < 0

This is the only case for which P∗ may both exist and not exist. If, by changing the
parameters of the system, P∗ appears, it means that a bifurcation occurs. A saddle-
node bifurcation is not possible because it would means that there is a third possible
steady state, in contraddiction with Lemma 3.1.7, and for the same reason neither
is a pitchfork bifurcation. Hence, the unique possibility is that the bifurcation is
transcritical. Therefore, P∗ is generated when the two hyperbolas are tangent in
the origin. This occurs when the raws of the matrix (3.4) are proportional, that is
there exists k such that

A = kC , B = kD .

It means that a transcritical bifurcation occurs when AD−BC = 0. The interesting
fact, at this point, is if P∗ exists when AD − BC < 0 or when AD − BC > 0. We
will study this problem in a further section.
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3.4 Global analysis

It would be interesting to make a global analysis of the system, in order to make some
previsions about the large-time behaviour of the system. To do it, let us remind a very
important theorem, presented, for instance, in [10].

Theorem 3.4.1 (Poincaré-Bendixson). Let D be a closed bounded region of the plane and

ẋ = P (x, y)

ẏ = Q(x, y)

be a dynamical system in which P and Q are continuously differentiable. If a trajectory of
the dynamical system is such that it remains in D for all t ≥ 0, then the trajectory must

1. be a closed orbit or

2. approach a closed orbit or

3. approach an equilibrium point as t→ +∞.

Let us notice now that the model (3.2) can be written in the form

ẋ =
1

σ0
((A− αx)x+ (B − βx)y) = P (x, y) ,

ẏ =
1

σ0
((C − γy)x+ (D − δy)y) = Q(x, y) .

(3.5)

Let us study the direction of the vector field (P,Q) in a point (x, y) of the first quadrant.
It is simple to observe that, if x > max {A/α,B/β}, then P (x, y) < 0; analogously, if y >
max {C/γ,D/δ}, then Q(x, y) < 0. Moreover, on the positive semi-axes, the vector field
points at the first quadrant. It means that the compact square S = [0,max {A/α,B/β}]×
[0,max {C/γ,D/δ}] is an attractive region, therefore it contains at least one stable limit
cycle or at least one stable fixed point. For this system, it is possible to exclude the
existence of a limit cycle in some cases due to the following result, proved, for instance,
in [10]:

Theorem 3.4.2 (Bendixson-Dulac). If there exists a C1 function ϕ(x, y) such that the
quantity div(ϕP, ϕQ) has the same sign almost everywhere in a simply connected region
of the plane, then the planar system

ẋ = P (x, y)

ẏ = Q(x, y)

has no non-constant periodic solutions lying entirely within the region. In particular, no
limit cycle is entirely contained within the region.
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Choosing ϕ(x, y) = σ0, one immediately obtains for the system (3.2)

div(ϕP, ϕQ) = A+D − (2α + γ)x− (β + 2δ)y ,

which is always negative if A + D < 0. Therefore, since S is a simply connected region,
according to Bendixson-Dulac theorem no limit cycle lays within it. It means that all
orbits tend to a stable fixed point. Recall that, for A+D < 0, the origin is stable if and
only if AD − BC > 0. Hence, for AD − BC < 0, P∗ must exist and be stable. This
means that the condition for the existence of P∗ in the sixth case of Section 3.3 is that
AD −BC < 0 holds.

3.5 Stability of P∗

Apart from the global analysis done before, it is possible to do a local analysis in
order to obtain more information about the stability of the positive fixed point P∗. The
linearized system around P∗ has Jacobian matrix

J(x∗, y∗) = J∗ =
1

σ0

(
A− 2αx∗ − βy∗ B − βx∗

C − γy∗ D − 2δy∗ − γx∗

)
. (3.6)

Let us remind that (x∗, y∗) are coordinates of the point P∗ and are solution of (3.2);
therefore,

A− αx∗ − βy∗ = −αx∗ −B
y∗
x∗

and D − δy∗ − γ = −δy∗ − C
x∗
y∗
.

This allows us to re-write J∗ as following:

J(x∗, y∗) = J∗ =
1

σ0

(
−αx∗ −By∗/x∗ B − βx∗

C − γy∗ −δy∗ − Cx∗/y∗

)
. (3.7)

Then, the trace of J∗ is

tr(J∗) =
1

σ0

(
−αx∗ −B

y∗
x∗
− δy∗ − C

x∗
y∗

)
and its determinant is
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det(J∗) =
1

σ2
0

[
(αδ − βγ)x∗y∗ +Bδ

y2∗
x∗

+ Cα
x2∗
y∗

+Bγy∗ + Cβx∗

]
=

1

σ2
0

[
(αδ − βγ)x∗y∗ +B

δy2∗ + γx∗y∗
x∗

+ C
αx2∗ + βx∗y∗

y∗

]
=

1

σ2
0

[
(αδ − βγ)x∗y∗ +B

Cx∗ +Dy∗
x∗

+ C
Ax∗ +By∗

y∗

]
=

1

σ2
0

1

x∗y∗
[
(αδ − βγ)x2∗y

2
∗ + ACx2∗ + 2BCx∗y∗ +BDy2∗

]
.

At this point, it is possible to state the following

Lemma 3.5.1. No Hopf bifurcation is possible at P∗.

Proof. Let us remind that a Hopf bifurcation occurs around at a fixed point when the
trace of the Jacobian matrix is zero and its determinant is positive. In this case, tr(J∗) is
always non-zero; in particular, it is always negative. In fact

1

σ0
> 0 and − αx∗ −B

y∗
x∗
− δy∗ − C

x∗
y∗

< 0

always because B,C ≥ 0 and αx∗, δy∗ > 0.

Therefore, reminding that no Hopf bifurcation is possible at (0, 0), one can deduce the
following

Corollary 3.5.2. The model (3.2) admits no Hopf bifurcation.

Since tr(J∗) is always negative, P∗ can be stable: in particular, a sufficient (but not
necessary) condition for its stability is that αδ − βγ > 0, which makes the determinant
positive. Depending on the values of the parameters, in this case, P∗ can be a stable node
or a stable focus.

3.6 Biological interpretation

Let us compute the relevant parameters we have found so far as a function of the
physical parameters:

Aβ −Bα =
d0g0
b11

(a0p00b01 − a1p10b00 − d0b01) ;

Dγ − Cδ =
d1g1
b00

(a1p11b10 − a0p01b11 − d1b10) ;
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AD −BC = (a0p00 − d0)(a1p11 − d1)− a0a1p01p10 ;

A+D = a0p00 + a1p11 − (d0 + d1) ;

αδ − βγ =
d0d1g0g1
b00b11

(b00b11 − b01b10) .

When we talk about pure growth rate, we refer to the growth rate of the cells with
the i-th genotype proceeding from cells with the same genotype. At the same way, the
expression net growth rate of the i-th genotype refers to the quantity li = aipii − di.

About the stability of P0

We have seen that P0 is unstable if and only if

• A+D > 0 or

• AD −BC < 0.

Re-writing it in terms of the physical parameters, the first condition is equivalent to

a0p00 + a1p11 − (d0 + d1) > 0 ,

that is a0p00 + a1p11 > d0 + d1: biologically, it can be interpretated as the fact that, the
new cells produced by the proliferation of cells with the same genotype are more that the
cells that die. This is exactly what one could expect from a system of this kind, since it is
exactly a generalization of a competition model where the populations grow in a logistic
way.

With regard to the second condition, we see that it is equivalent to (a0p00−d0)(a1p11−
d1)−a0a1p01p10 < 0, that is the product of the net growth rates is smaller than the product
of the mutation rates a0p01 and a1p10. Even if this result is not exactly a generalization
of the result we obtain for the competition model (1.4), we notice that it is meaningful,
because it means that cells do not disappear if mutation probabilities are big enough.

About the nonexistence of limit cycles

We have seen that a sufficient condition for the nonexistence of limit cycles is that
A + D < 0. In terms of physical parameters, it means that l0 + l1 < 0, that is that the
sum of the net growth rates is negative, then either one of them is negative or both. It
means that there are more cells of genotype i that are dying than that are produced by
cells with the same genotype, at least for one value of i.
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About the existence of P∗

Regarding the existence of the positive steady state, we have proved that it always
exists except when Aβ − Bα < 0, Dγ − Cδ < 0 and AD − BC > 0 at the same time.
Equivalently,

1. (a0p00 − d0)b01 < a1p10b00 ;

2. (a1p11 − d1)b10 < a0p01b11 ;

3. (a0p00 − d0)(a1p11 − d1) > a0a1p01p10 .

At this point, for the first time the effects of competition appear, in particular in the first
two conditions. We can see that competition factors fine-tune the relation between the
net growth rate of the genotype i and the mutation rate of the other genotype j to the
genotype i, for i, j = 0, 1.

About the stability of P∗

We have found two sufficient condition for the stability of P∗

• αδ − βγ > 0 or

• AD −BC < 0 and A+D < 0.

We have already analyzed the second condition talking about the stability of P0,
therefore let us focus on the first one. In terms of the physical parameters, the condition
is equivalent to b00b11−b01b10 > 0, that is detB > 0. Biologically, it means that the system
achieves an equilibrium if the competition effects among cells with the same genotype are
bigger than the ones between the two genotypes.



Chapter 4

Numerical simulations

In this chapter, some numerical simulations are performed for several val-
ues of physical parameters. Moreover, some statistical parameters are com-
puted and compared. A biological interpretation of the simulations is provided.

In order to explore the behaviour of the system for n > 1, we run numerical simulations.
In order to do it, we have written a Matlab code to solve the given system of ODEs. In
the code, presented in Appendix A, an explicit Runge-Kutta method of order 2 is used.
This method is classical and its derivation can be found in [8].

4.1 First simulation

In the first simulation, the parameters have the following characteristics:

• the time is measured in days;

• the carrying capacity is K = 100000 cells;

• the non-dimensional competition factors bij depend only on i and decrease linearly
from 2 to 1, that is

bij = 2− i

n
, i, j = 0, . . . , n ; (4.1)

• the mutation probability matrix P is tridiagonal: for i = 2, . . . , n− 1,

pij =


0.8 , if j = i ,

0.1 , if j = i− 1, i+ 1 ,

0 , otherwise;
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for i = 0,

pij =


0.9 , if j = 0 ,

0.1 , if j = 1 ,

0 , otherwise;

for i = n,

pij =


0.9 , if j = n ,

0.1 , if j = n− 1 ,

0 , otherwise;

In fact, one can think that the indeces i and j represent not specifical genotypes, but the
numbers of mutations that they have respect to healthy cells. This choice of matrix P
reflects a scenario where it is possible that, during every cell cycle, the replication can
produce at most one mutation, which can make the genotype more or less different from
the healthy genotype different.

The used initial conditions are

Ci(0) =


K − 1 , if j = 0 ,

1 , if j = 1 ,

0 , otherwise.

It means that we are supposing that, at the beginning, there are only healthy cells, except
one mutated cell with the first genotype.

To run the first simulations, we have used:

• growth rates ai are equal for all genotypes and equal to 2;

• death rates di are equal for all genotypes and equal to 0.2;

• hi = 0 for all i = 0, . . . , n and, as a consequence, gi = (ai − di)/di = 9 for all
i = 0, . . . , n.

Next up, the graphical results of some simulation are shown.
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Figure 4.1: Simulation for n = 6.

Figure 4.2: Simulation for n = 50.

Figure 4.3: Simulation for n = 400.
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As one can see, the dynamics in all cases is the same: independently of the number of
possible genotypes, the number of healthy cells decreases and the formation of a travelling
wave takes place, until arriving to the n-th genotype; at this point, it seems that the
system is getting closer and closer to a steady state, since, apparently, there are no
relevant changes in the number of cells for each genotype. The accumulation of cells close
to the last genotype can be considered a numerical artefact, due to considering a small
number of possible genotypes. In fact, in a cell there are so many possible mutations
which can occur that it is impossible to arrive to a “last” genotype in a lifetime.

4.2 Second simulation

Let us keep the same values for all the parameters, except for B and ai. Just for a
computational reason, we set ai = 10. Moreover, we set bij = 1 for all i, j = 0, . . . , n, that
is all the genotypes compete equally for the resources. By this choice of the competition
matrix, we obtain the following result:

Figure 4.4: Second simulation for n = 50.

As we can see, in this case, the system tends to an equilibrium where all the genotypes
are represented by the same number of cells. One could expect this behaviour since
proliferation and death rates are equal for all the genotypes, P is symmetrical and they
compete on equal terms for the resources.

4.3 Third simulation

Let us change again B, keeping ai = 10 for all i = 0, . . . , n. We set

bij = 1 +
i

n
for all i, j = 0, . . . , n ;
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that is the competition factors increase linearly from 1 to 2 as i increases. By this choice
of the competition matrix, we obtain the following result:

Figure 4.5: Third simulation for n = 50.

As the plot shows, in this case, the healthy genotype is predominant and the more
mutated a genotype is, fewer are the cells having that genotype.

4.4 Fourth simulation

Going back to the competition matrix defined by (4.1), it is possible now to run a more
realistic simulation: in fact, biologists observed that cancer cells proliferate faster than
healthy cells and the proliferation rate depends, above all, on the degree of differentiation.
For exemple, to suppose that

ai = 4− 2e−i and di = 0.2− 0.1e−i . (4.2)

For this values of ai and di, we obtain that

gi =
ai − di
di

= 19 .
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In this case, using the same initial condition as before, the numerical simulations produce
the following results:

Figure 4.6: Fourth simulation for n = 200.

As we can see, in this case a travelling wave is forming again but it travels faster than
in the previous case, when the proliferation and death rates were constant. One could
expect this behaviour, since these parameters now are increasing as i increases.

4.5 Fifth simulation

Just to verify that the model is valid, we can run a last simulation, where we are
assuming that:

• growth rates ai are equal for all genotypes and equal to 1;

• death rates di are equal for all genotypes and equal to 1.5;

• hi = 0 for all i = 0, . . . , n and, as a consequence, gi = (ai − di)/di = −0.25 for all
i = 0, . . . , n;

• B is defined as in (4.1).
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One can expect that, in this case, at least for some initial condition, the solution tends to
zero as time grows. This is exactly what happens, for instance, for the following initial
condition:

Ci(0) =


K/2 , if j = 0 ,

1 , if j = 1 ,

0 , otherwise.

Figure 4.7: Fifth simulation for n = 30.

4.6 Comparison

Let us compare now some statistical parameters in all the mentioned cases, that is:

• the total number of cells T (t) =
n∑

i=0

Ci(t);

• the weighted total number of cells W (t) =
n∑

i=0

bi0Ci(t);

• the mean genotype M(t) =
n∑

i=0

iCi(t)/
n∑

i=0

Ci(t);

• the variance of the genotype V (t) =
n∑

i=0

i2Ci(t)/
n∑

i=0

Ci(t)−M(t)2.

It is done, in this case, for n = 50.
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(a)

(b)

(c)

(d)

Figure 4.8: Statistical parameters for n = 50, physical parameters as in Section 4.1.
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(a)

(b)

(c)

(d)

Figure 4.9: Statistical parameters for n = 50, physical parameters as in Section 4.2.
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(a)

(b)

(c)

(d)

Figure 4.10: Statistical parameters for n = 50, physical parameters as in Section 4.3.
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(a)

(b)

(c)

(d)

Figure 4.11: Statistical parameters for n = 50, physical parameters as in Section 4.4.
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(a)

(b)

(c)

(d)

Figure 4.12: Statistical parameters for n = 50, physical parameters as in Section 4.5.
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As we can see, in the first and in the fourth cases (Figures 4.8-4.11) the system has
similar behaviours: the only difference is that in the fourth case the system gets the
equilibrium faster, that is equivalent to the fact that the travelling wave travels faster.
Anyway, in both cases the mean genotype grows and gets closer to the last genotype. The
variance, instead, grows until reaching a maximum for a certain time t∗, which represents
the instant where there is a big variety of cells in the environment, and then it decreases
until getting a value close to 0.

In the fifth case (Figure 4.12) it is evident that the total number of cells T (t) tends
to 0 as t→∞, that is all genotypes are disappearing. Instead, the value of the variance
increases and we guess that it is because, from a certain time on, all genotypes disappear
uniformely.

Comparing then the first simulation with the second and the third ones (Figures 4.8-
4.9-4.10), we can observe that a change in the values of the competition factors bij change
qualitatively the behaviour of the system:

• if the competition factors are equal, the system tend to an homogenuous distribution
of genotypes, at least when proliferation and death rates are the same for all the
genotypes;

• although, depending on the relation among these factors, the system tends to the
predominance of a certain genotype, which seems to be the genotype j with the
smallest value of bij, in the case of bij independent of i.

Moreover, as we can observe, in all the cases, either W (t) → 0 or W (t) → K as
t→ K, which is exactly what occurs in a classical competition model.





Conclusions

In this thesis, we have studied the dynamics of a discrete finite genotype space model
of cancer competitive evolution. The model allows us to predict the qualitative behaviour
of a system consisting on a variety of genotypes co-existing in the same environment. We
have assumed that:

• there are n + 1 possible genotypes, from 0 to n, where the index 0 is associated to
the normal genotype;

• for all genotypes, the growth rates follow the logistic growth;

• the genotypes compete among them for limited resources (food, oxygen, ...);

• random mutations can occur during cell replication process.

Denoting the number of cells with the i-th genotype at time t ∈ [0,∞[ by Ci(t),
starting from the well-known competition model (1.3), we have obtained the following
system of ordinary differential equations that model the biological system:

Ċi =
n∑

j=0

pjiajCj

1− hj

n∑
k=0

bjkCk

K


− diCi

1 + gi

n∑
k=0

bikCk

K

 ,

for i = 0, . . . , n. In the previous equation, ai represents the proliferation rate of i-th
genotype, di its death rate, pij the probability that a cell with genotype i produces a
daugther cell with genotype j, bij the competition factor between the genotypes i and
j and hi and gi fine-tune the effects of competition respectively on proliferation and on
death. All the parameters are positive, except pij which can be zero if i 6= j.

In order to study the model analitically and to run simulations, we have assumed that
hi = 0 for all i, because it garantees that the positivity of the model is preserved: it
means that, if an orbit starts from a point (Ci(0))i with Ci(0) > 0 for all i = 0, . . . , n,
then Ci(t) > 0 for all t > 0 and for all i = 0, . . . , n.

The analytical study of the model for n = 1, that is for just two population (healthy
cells and cancer cells), shows that there are at most two possible non-negative fixed

49



50 Conclusions

points for the model: one of them is the origin P0 and the other one P∗ is strictly positive.
Depending on the value of the parameters, the second fixed point exists or it does not.
Since all the orbits, from a certain time on, are trapped in a compact region of the first
quadrant, due to Poincaré-Bendixson theorem, they can tend to one of the two equilibria
or to a limit cycle, if it exists (we have not been able to exclude its existence in all cases).
A biological interpretation of the system have led us to the conclusion that the new model
represents actually a generalization of the competition model (1.3) taken as starting point.

After running simulations for n > 1 we can conclude that, in the general case:

• performing reasonable changes in the values of the proliferation and death rates
does not affect the evolution of the system qualitatively: in any case, we assist to
the formation of a travelling wave, whose speed is affected by the aforesaid rates;

• if the proliferation rates are smaller than the death ones, the total population tends
to zero as t→∞;

• changing the values of bij, the dynamics is affected in different ways: if the com-
petition matrix is constant, the final distribution of the genotypes is homogenous;
otherwise, some genotypes are more predominant than other ones;

• for all simulations where the system tends to a positive fixed point, whatever the val-
ues of the different parameters are, the total weighted population tends to carrying
capacity K.

Therefore, we have observed that, for real life situations with a predominance of
healthy cells at the beginning, it is possible to model different scenarios where cancer
is preponderant or not (just changing the competition matrix B). However, some im-
provements can be done to simulate some situation that are more realistic. For example:

• the parameters hi can be considered strictly positive. This would mean that the
competion has effects on the proliferation as well. Anyway, these parameters should
be very small in order to preserve the positivity of the model at least in a compact
region of the positive region of the phase space;

• one can suppose that cells can mutate into any other genotype, not just into the
previous and the next ones. For example, it can be done supposing that healthy
cells have low probability of mutating into cancer cells and cancer cells have a higher
probability to produce other types of cancer cells;

• to implement random mutations, instead of using a deterministic model, one could
use a stochastic model, as proposed, for instance, in [1]. However, this model would
be harder to simulate and would give probably the same results: in fact, we are
working with a huge number of cells and, hence, averaging over a probabilistic
model would have the same outcomes as our deterministic model;
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• since a same genotype can have different phenotypical expressions, there are so
many phenotypes that this spectrum can be considered continuous. This leads
to a continuous formulation of the model (2.8), using integro-partial differential
equations, analyzed, for instance, in [5] and [6]. The outcomes of these works can
be read as generalizations of our model, and, vice-versa, our model can be seen as
a discretization of the continuous ones.





Appendix A

The code

In this appendix, the code used to simulate numerically the model is presented.

A.1 Implementing the vector field

First of all, we need to define the vector field of the dynamical system described by
(2.8).

f unc t i on f=v e c f i e l d ( x )

%INPUT: an n+1 dimens iona l vec to r x .
%OUTPUT: the vec to r f i e l d eva luated at t .

%I t i s nece s sa ry to d e f i n e the parameters o f the system as g l o b a l
%in order to in t roduce them in a f o l l o w i n g s c r i p t .

g l o b a l a
g l o b a l P
g l o b a l d
g l o b a l g
g l o b a l B
g l o b a l k

n=length ( x)−1;

%The vec to r f i e l d i s c a l c u l a t e d .
f=ze ro s (n+1 ,1) ;
f o r i =0:n

t =0;
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m=0;
f o r l =0:n

t=t+B( i +1, l +1)∗x ( l +1);
m=m+P( l +1, i +1)∗a ( l +1)∗x ( l +1);

end
t=(t∗g ( i +1)/k + 1)∗d( i +1)∗x ( i +1);
f ( i +1)=m−t ;

end

A.2 Implementing the Runge-Kutta method

The explicit Runge-Kutta method used to run numerical simulations has order 2.

f unc t i on Y=RK2( t f i n , y0 ,N)
%INPUT: f i n a l time tg in
% i n i t i a l c ond i t i on y0
% number o f i t e r a t i o n s N

n=length ( y0)−1;

h=t f i n /N; %time step

%The matrix o f the numerica l s o l u t i o n i s computed
Y=ze ro s (n+1,N+1);
Y( : ,1 )= y0 ;
x=y0 ;
f o r j =1:N

k1=v e c f i e l d ( x ) ;
k2=v e c f i e l d ( x+h/2∗k1 ) ;
x=x+h∗k2 ;
Y( : , j+1)=x ;

end

A.3 The script

In this last script, after the inizialization of the parameters, the numerical solution
is computed and plotted and so are the statistical parameters (total population, total
weighted population, mean genotype and variance of the genotype).

n=50; %number o f mutated genotypes
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t f i n =150; %f i n a l time
N=t f i n ∗10 ; %number o f i t e r a t i o n s

%The parameters are s e t as g l o b a l
g l o b a l a
g l o b a l P
g l o b a l d
g l o b a l g
g l o b a l B
g l o b a l k

%car ry ing capac i ty
k=100000;

%mutation p r o b a b i l i t y matrix
P=ze ro s (n+1,n+1);
P(1 , 1 )=0 .9 ;
P(1 , 2 )=0 .1 ;
P(n+1,n )=0 .1 ;
P(n+1,n+1)=0.9;
f o r i =2:n

f o r j =1:(n+1)
i f j==i−1

P( i , j )=0 .1 ;
e l s e i f j==i+1

P( i , j )=0 .1 ;
e l s e i f j==i

P( i , j )=0 .8 ;
end

end
end

%p r o l i f e r a t i o n r a t e s
a=2∗ones (n+1 ,1) ; %a constant
% f o r i =1:(n+1) %a exponent i a l
% a ( i )=4−2∗exp(−n+1);
% end

%death r a t e s
d=0.2∗ ones (n+1 ,1) ; %d constant
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% f o r i =1:(n+1) %d exponent i a l
% d( i )=0.2−0.1∗ exp(−n+1);
% end

%compet i t ion e f f e c t s on death
g=ze ro s (n+1 ,1) ;
f o r i =1:(n+1)

g ( i )=a ( i )/d( i ) − 1 ;
end

%compet i t ion parameters
B=ones (n+1,n+1);
f o r i =1:(n+1)

f o r j =1:(n+1)
B( i , j )=2−(1/n )∗ ( i −1);

end
end

%i n i t i a l c ond i t i on
c0=ze ro s (n+1 ,1) ;
c0 (1)=k−1;
c0 (2)=1;

%The numerica l s o l u t i o n i s computed
Y=RK2( t f i n , c0 ,N) ;

%Plot o f the numerica l s o l u t i o n
Z=Y( : , 1 : 1 0 :N+1);
f i g u r e
w a t e r f a l l (Z)

%Computation o f the s t a t i s t i c a l parameters
time =0: t f i n ;
to t=ze ro s ( t f i n +1 ,1) ;
tot w=ze ro s ( t f i n +1 ,1) ;
mean=ze ro s ( t f i n +1 ,1) ;
va r i ance=ze ro s ( t f i n +1 ,1) ;
f o r i =1: t f i n +1

tot ( i )=sum(Z ( : , i ) ) ;
tot w ( i )=B( : , 1 ) ’ ∗Z ( : , i ) ;



mean( i )=(0:n)∗Z ( : , i )/ to t ( i ) ;
va r i ance ( i )=((0 : n ) . ˆ 2 )∗Z ( : , i )/ to t ( i ) − mean( i ) ˆ 2 ;

end
f i g u r e
p l o t ( time , to t )

t i t l e ( ’ Total number o f c e l l s ’ )

f i g u r e
p l o t ( time , tot w )

t i t l e ( ’ Weighted t o t a l number o f c e l l s ’ )

f i g u r e
p l o t ( time , mean)

t i t l e ( ’Mean genotype ’ )

f i g u r e
p l o t ( time , var i ance )

t i t l e ( ’ Variance o f genotype ’ )
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[2] A. C. Buira, S. Gómez, Mathematical modelling viral and cancer evolution, Bachelor
Thesis, 2017.

[3] D. R. Curtiss, Recent extensions of Descartes’ rule of signs, Annals of Mathematics,
Vol. 19, No. 4, 1918, pp. 251–278.

[4] A. Korobeinikov, K. E. Starkov, P. A. Valle, Modeling cancer evolution: evolution-
ary escape under immune system control, IOP Conf. Series: Journal of Physics, Vol.
811, 2017.

[5] D. Masip, A. Korobeinikov, A continuous phenotype space model of cancer evolution,
IOP Conf. Series: Journal of Physics, Vol. 811, 2017.

[6] D. Moreno, Mathematical modelling cancer evolution, Bachelor Thesis, 2018.

[7] J. D. Murray, Mathematical Biology, Third edition, Springer, 2001.

[8] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Springer, 2000.

[9] R. Ruddon, Cancer biology, Oxford University Press, 2007.

[10] S. H. Strogatz, Nonlinear dynamics and chaos, First edition, Perseus Books Pub-
lishing, 1994.

59





Acknowledgements

First of all, I am grateful to my supervisor, prof. Andrei Korobeinikov, for all the help
he has provided me during the last year and for all the lessons he taught me. I am also
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