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“I believe in the possible. I believe small though we are, insignificant we may be, we
can reach a full understanding of the Universe. You were right, when you said you felt
small looking up at all that out there. We are very, very small, but we are profoundly

capable of very, very big things.”

“Hawking”, BBC film (2004).
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Abstract

The size of galaxy redshift surveys has constantly increased over the latest years in terms
of solid angle and redshift coverage; therefore, the future large-volume galaxy surveys
(e.g. SKA, Euclid) will allow us to measure galaxy clustering on scales comparable
with the Hubble radius. For such large scales and at high redshifts, general relativistic
effects alter the observed galaxy number overdensity through projection onto our past
lightcone. They consist mainly in redshift space distortions and gravitational lensing
convergence; however, further corrections may now be measured and should be taken
into account, including Doppler, standard and integrated Sachs-Wolfe effect, and time
delay contributions. These corrections lead to new terms in wide-angle two-point cor-
relation functions, going beyond the plane-parallel and Newtonian approach.
The aim of this thesis is to investigate and compute the full general relativistic ex-
pression for the angular correlation functions, including all redshift-space distortions,
wide-angle, lensing and gravitational potential effects on linear scales. In particular,
this angular power spectrum is written in order to generalise the 2-FAST algorithm
recently developed in literature, which circumvents the direct integration of highly os-
cillating spherical Bessel functions. The Limber’s approximation is also applied for
large multipole moments ` in order to give a simplified expression of the angular power
spectrum, more suitable for further numerical integration.
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Chapter 1

Introduction

1.1 The standard ΛCDM model

The development of general relativity in the last century by Einstein provided a com-
plelling theory of the Universe [1]. This powerful theory is assumed to be the correct
theory of gravity on cosmological scales by the standard model of Big Bang cosmology,
socalled because it provides the simplest concordance with the following properties,
both theoretical and observational (see Fig.1.2 and 1.3):

• the expansion exhibited by the Hubble diagram;

• light elements abundances, in accord with the Big Bang nucleosynthesis;

• the blackbody radiation left from the first 400000 years, that is the Cosmic Mi-
crowave Background radiation (CMB) (see Fig.1.1);

• the large scale structure of galaxies distribution.

The most reliable model is called ΛCDM because it provides:

• a cosmological constant Λ, which has the modern meaning of quantum vacuum
energy, and in this cosmological model is associated with the dark energy in order
to explain the accelerated expansion of the Universe;

• Cold Dark Matter (CDM), which is a form of non-baryonic matter necessary to
take into account the gravitational effects observated in large scale structures (e.g.
galaxies rotation curves, gravitational lensing of light by galaxy clusters).

Then, ΛCDM assumes: the cosmological principle, which provides that on sufficiently
large scales the Universe looks homogeneous (invariant under translations) and isotropic
(invariant under rotations); a “flat” spatial geometry, and an expanding spacetime
(these concepts will be further explained in the following sections). In this chapter
we are going to start with the basic assumption of the ΛCDM as valid, because it is
consistent with the latest experimental observations (e.g. Planck [2]), thus allowing
to reliably constrain cosmological parameters. Then we will explore the homogeneous
background Universe, focusing on the background Friedmann-Robertson-Walker metric
and the concept of expansion of the spacetime. After, the inhomogeneous Universe will
be presented, because at smaller scales galaxies appear distributed in a pattern that
is not homogeneous any more (see Fig.1.13); we are going to see how matter density
fluctuations generated in the early Universe were “frozen” at the time of decoupling,
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Figure 1.1: The anisotropies of the Cosmic Microwave Background (CMB) as observed by

ESA’s Planck. The CMB is a snapshot of the oldest light in our Universe, imprinted on the

sky when the Universe was just 380 000 years old. It shows tiny temperature fluctuations

that correspond to regions of slightly different densities, representing the seeds of all future

structure: the stars and galaxies of today. Copyright: ESA and the Planck Collaboration [3].

when CMB was produced and photons began to propagate freely; so CMB anisotropies
are a sort of “photograph” of that primordial epoch, and in principle they allow us to
gain information about the early phases of the Universe, and to study the pattern of
the galaxies distribution itself. The evolution of the inhomogeneities is studied with
the perturbed Einstein equations, which involve both geometry (through the metric)
and matter density (through the stress-energy tensor). For small fluctuations the linear
perturbation theory can be used and will be presented. Through Einstein equation them-
selves, metric perturbations are connected to the matter density fluctuations, which are
involved in the statistical analysis.

First of all, we are going to summarize the stages in the evolution of the Universe, as
predicted by the ΛCDM model.

Figure 1.2: A brief history of the Universe,

where any epoch can be characterized by

the time since the Big Bang (bottom scale)

or by the temperature (top scale). Image

from Ref.[1].
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Figure 1.3: The evolution of the Universe according the standard ΛCDM cosmological model.

Image Credit: Adaptation of original NASA WMAP Science Team image [4].

1.1.1 A brief history of the Universe

About 13,8 billion years ago the Universe was in a hot, dense and nearly uniform state.
With the Big Bang, the expansion began. The early Universe was composed of a
mixture of photons and matter, tightly coupled together as a plasma, which evolution
is approximately pictured in Fig.1.3.

1) At very early time (∼ 10−32 s) the mechanism of exponential expansion given by
the cosmic inflation established the initial conditions: homogeneity, isotropy, and
flatness [5, 6]. This epoch was dominated by radiation, and baryonic matter con-
sisted in free electrons and atomic nuclei with photons bouncing between them,
forming the primordial plasma. Further, the microscopic quantum fluctuations
were amplified to density perturbations, propagating through the plasma colli-
sionally as a sound wave; this produced under- and overdensities in the plasma,
with simultaneous density changes in both matter and radiation. CDM was not
involved in these pressure-induced oscillation, but acted gravitationally, thus en-
hancing or negating the acoustic pattern for photons and baryons [7]. This phe-
nomenon is known as Baryon Acoustic Oscillations (BAO).

2) A bit less than 400000 years after the Big Bang, expansion let the Universe be-
come cool enough (∼ 3000 K) to allow protons capturing electrons, and thus
forming neutral hydrogens atoms, and soon after helium (recombination). At
that time, photons didn’t interact any more with charged particles since they had
been bounded in neutral atoms; therefore, photons began to propagate freely,
being decoupled from matter. Perturbations then didn’t propagate as acoustic
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waves any more, but the pattern that existed at that time became “frozen”. [8]
It was the origin of the CMB, that fills the Universe still at present time and that
has been detected with a redshift z ∼ 1100. Measures have been performed by
COBE, WMAP and Planck (see Fig. 1.4 for a comparison [9], and the following
subsection).

3) The period after recombination is known also as the ”Dark Ages”, because then
the Universe was largely neutral and therefore unobservable throughout most of
the electromagnetic spectrum. During this epoch, cold dark matter began to
collapse gravitationally in overdense regions; then, the gravitational collapse of
baryonic matter into these CDM halos occurred, and the era of the ”Cosmic
Dawn” began with the formation of the first radiation sources, such as stars; then
the radiation produced by these objects reionized the intergalactic medium.

4) Due to gravity, cosmic structures growed and merged, forming a large cosmic web
of dark matter density. The abundance of luminous galaxies traced the statistics
of the underlying matter density. The largest bound objects that can be observed
are clusters or superclusters of galaxies and, despite this arrangement, the BAO
correlation length is retained as “frozen” when the CMB was born.

5) The Universe continuously expands. The negative pressure associated with the
cosmological constant, which is related to the dark energy in the ΛCDM model,
becomes more and more relevant with respect to the opposing gratitational forces,
so the expansion of the Universe becomes accelerated [4].

1.1.2 ΛCDM consistency

In this subsection we are going to show why the ΛCDM model is consistent with ex-
perimental observations and data, and can for this reason be assumed in this thesis
work. Many experiments have been performed over the last decades with the aim of
measuring and studying the CMB spectrum, through which cosmological parameters
can be constrained [9]. The first one was the Cosmic Background Explorer (COBE),
launched by NASA in 1989, which discovered that averaging the CMB spectrum across
the whole sky, it was substantially that of a black body at a temperature of 2,73 K, even
though it showed very small fluctuations of the order of 10−5. Later in 2001 NASA’s
second generation space mission, the Wilkinson Microwave Anisotropy Probe (WMAP)
was launched in order to study in a more detailed way these tiny fluctuations, imprinted
when photons and matter decoupled (as seen before). WMAP’s results helped to deter-
mine the proportions of the fundamental constituents of the Universe and to establish
the standard model of cosmology prevalent today. The last experiment is ESA’s Planck,
launched in 2009, with a wider frequency range in more bands and a higher sensitivity
than WMAP, as shown in Fig.1.4 which reports the difference between WMAP and
Planck. Planck is a space-based observatory observing the Universe at wavelengths be-
tween 0.3 mm and 11.1 mm (corresponding to frequencies between 27 GHz and 1 THz),
broadly covering the far-infrared, microwave, and high frequency radio domains. The
results that we are going to report are from one of the latest articles of Planck collabo-
ration [2], without discussing in details the methods of analysis but only explaining the
cosmological parameters constrained and the final results; more details can be found
in all the articles of the Planck collaboration. The ΛCDM model is assumed, with
purely adiabatic scalar primordial perturbations with a power-law spectrum. Three
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Figure 1.4: This image shows the Cosmic Microwave Background as seen by ESA’s Planck

satellite (upper right half) and by its predecessor, NASA’s Wilkinson Microwave Anisotropy

Probe (lower left half). With greater resolution and sensitivity over nine frequency channels,

Planck has delivered the most precise image so far of the Cosmic Microwave Background. The

Planck image is based on data collected over the first 15.5 months of the mission; the WMAP

image is based on nine years of data. Copyright: ESA and the Planck Collaboration; NASA

/ WMAP Science Team [10].

5



neutrinos species are assumed, approximated as two massless states and a single mas-
sive neutrino of mass 1mν = 0.06 eV. Then the following features are set: flat priors on
the baryon density ωb = Ωbh

2, cold dark matter density ωc = Ωch
2, an approximation

to the observed angular size of the sound horizon at recombination θMC (as reported
below), the reionization optical depth τ , the initial super-horizon amplitude of curva-
ture perturbations As at 2k = 0.05Mpc−1, and the primordial spectral index ns (see
Ref.[2, 12, 13]). We report here an interesting plot of the constraints on parameters of
the ΛCDM model (Fig.1.5), and a table of its main parameters as extrapolated by the
various Planck analyses (Fig.1.6). But first we want to recap their meaning [13]:

• ωb = Ωbh
2 is the baryon density today;

• ωc = Ωch
2 is the cold dark matter density today;

• 100θMC is a 100 × approximation of the sound horizon at recombination to the
observed angular size r∗/DA (used in CosmoMC, see Ref.[14, 15]);

• is Thomson scattering optical depth due to reionization;

• is the log power of the primordial curvature perturbations (k0 = 0.05Mpc−1);

• nS is the scalar spectrum power-law index (k0 = 0.05Mpc−1);

• H0 is the current expansion rate in km s−1 Mpc−1;

• ΩΛ is the dark energy density divided by the critical density today;

• Ωm is the matter density (including massive neutrinos) today divided by the
critical density;

• ‘Age’ is the age of the Universe today (in Gyr);

• σ8 measures the amplitude of the (linear) power spectrum on the scale of 8
h−1Mpc;

• zre is the redshift at which the Universe is half reionized.

What we can see in general in Fig.1.5 [2] is that likelihoods all overlap in a consistent
region of parameter space. A likelihood function3 is a measure of the plausibility of a
parameter value of a model describing a given data set. Planck results consist indeed
in these likelihoods for both polarization (E) and temperature (T) of CMB, and their
combination EE, TE, TT can be seen right in Fig.1.5.
By focusing on two crucial parameters as H0 and Ωm, Fig.1.7 shows a very tight con-
strain on H0 with the full Planck CMB power spectrum data and a ΛCDM model [2].
Further, the base-ΛCDM model assumes that the spatial hypersurfaces are flat; this
prediction can be tested to high accuracy by the combination of CMB and BAO data

11 eV = 1.9 · 10−19 Joule.
21 Mpc = 106 pc, where pc stand for parsec. 1 parsec is defined as the distance at which 1

Astronomical Unit subtends an angle of 1 second of arc (1/3600 of a degree). 1 pc = 3.26 light year =
31× 1012 km [11].

3Given a data set of N independent measured values xi, f a probability density function and θ the
value of the parameter on which f depends, the expression L (x1, x2, ...xN ; θ) =

∏N
i=1 f(xi; θ) is the

likelihood function and represents the probability density to obtain a certain value θ of the parameter,
given the experimental data set. The most consistent value of the theoretical model is assumed to be
the one that maximizes the likelihood function [16].
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Figure 1.5: Constraints on parameters of the base-ΛCDM model from the separate from the

separate Planck EE, TE and TT high-` spectra combined with low-` polarization (lowE) and,

in the case of EE, also with BAO, compared to the joint result using Planck TT,TE,EE+lowE.

Parameters on the bottom axis are Planck’s sampled MCMC parameters with flat priors, and

parameters on the left axis are derived parameters (with H0 in kms−1Mpc−1). Contours

contain 68% and 95% of the probability [2].

Figure 1.6: Parameter 68% intervals for the base-ΛCDM model from Planck CMB power

spectra, in combination with CMB lensing reconstruction and BAO. The top group of six

rows are the base parameters, which are sampled in the MCMC analysis with flat TT priors.

The bottom group lists derived parameters [2].
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Figure 1.7: Inverse distance-ladder constraints on the Hubble parameter H0 and Ωm in the

base-ΛCDM model, compared to the result from the full Planck CMB power spectrum data.

BAO constrains the ratio of the sound horizon at the epoch of baryon drag and the distances;

the sound horizon depends on the baryon density, which is constrained by the conservative

prior of Ωbh
2 = 0.0222± 0.0005. Adding Planck CMB lensing constrains the matter density,

or adding a conservative Planck CMB “BAO” measurement (100θMC = 1.0409±0.0006) gives

a tight constraint on H0, comparable to that from the full CMB data set [2].

(the CMB alone suffers from a geometric degeneracy, which is weakly broken with the
addition of CMB lensing). Such a result can be seen in Fig. 1.8, where ΩK ≡ 1−Ωm−ΩΛ

is the curvature density [1]; this plot shows a very consistent constrain with a flat Uni-
verse [2].
Finally, we want to report an important test on the equation of state, assuming that
dark energy is responsible of the accelerated expansion of the Universe. If the dark
energy (DE) is a generic dynamical fluid, its equation of state parameter w ≡ p/ρ
(where p and ρ are the spatially-averaged background DE pressure and density) will
be in general a function of time. In order to test it, the following equation of state is
adopted: w(a) = w0 + (1− a)wa, with w0 and wa assumed to be constants, and ΛCDM
predicts w0 = −1 and wa = 0. Without going into details of the analysis that has been
done, marginalized contours of the posterior distributions for w0 and wa are shown in
Fig.1.9. A wide volume of dynamical dark-energy parameter space would be allowed
using only Planck data, but most of it corresponds to phantom models with very high
values of H0, which are inconsistent with the late-time evolution constrained by SNe
and BAO data. The tightest constraints are found for the data combination Planck
TT,TE,EE+lowE+lensing+BAO+SNe; the difference in 4χ2 between the best-fit DE
and ΛCDM models for this data combination is only ∆χ2 = −1.4. Numerical results
for cosmological parameters constrained from this analysis are reported in Fig.1.10.[2]
In conclusion, assuming the ΛCDM model, cosmological parameters are proved to be
tightly constrained by the various Planck analyses with a sufficient confidence level. For

4Given a data set ofN measures, if oi is the experimental value of a quantity and ei is the expectation
value, then χ2 ≡

∑N
i=1

oi−ei
ei

.
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Figure 1.8: Constraints on a non-flat universe as a minimal extension to the base-ΛCDM

model. Points show samples from the Planck TT,TE,EE+lowE chains coloured by the value

of the Hubble parameter and with transparency proportional to the sample weight. Dashed

lines show the corresponding 68% and 95% confidence contours that close away from the

flat model (vertical line), while dotted lines are the equivalent contours from the alternative

CamSpec likelihood. The solid dashed line shows the constraint from adding Planck lensing,

which pulls the result back towards consistency with flat (within 2 σ). The filled contour shows

the result of also adding BAO data, which makes the full joint constraint very consistent with

a flat Universe [2].

Figure 1.9: Marginalized posterior distributions of the (w0, wa) parameters for var-

ious data combinations. The tightest constraints come from the combination Planck

TT,TE,EE+lowE+lensing+SNe+BAO and are compatible with ΛCDM. Using Planck

TT,TE,EE+lowE+lensing alone is considerably less constraining and allows for an area in

parameter space that corresponds to large values of the Hubble constant [12]. The dashed

lines indicate the point corresponding to the ΛCDM model [2].
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Figure 1.10: Marginalized values and 68% confidence limits for cosmological parameters

obtained by combining Planck TT,TE,EE+lowE+lensing with other data sets, assuming the

(w0, wa) parameterization of an equation of state given by w(a) = w0 + (1− a)wa. The ∆χ2

values for best fits are computed with respect to the ΛCDM best fits computed from the

corresponding data set combination [2].

this reason we can assume ΛCDM in this thesis work.

Notation and conventions

Natural units will be used, in which the speed of light and Planck’s constant are set
equal to one: c = h̄ = 1. Therefore, lenght and time have the same units. The metric
signature is (−,+,+,+), so that ds2 = −dt2 + dx2 in Minkowski. The Greek indices
µ, ν, ... run from 0 to 3. whole the Latin indices i, k, ... stands for spatial indices. Bold
font denotes spatial three-vectors (e.g. x). Einstein summation convention will be used.

1.2 The homogeneous Universe

If we look further and further to our Universe, we can notice that on sufficiently large
scales the clumpy distribution of galaxies becomes more and more isotropic (see Fig.
1.13), that means indipendent from the direction, according to the cosmological prin-
ciple: the Universe should appear isotropic to any inertial observer; therefore, if it is
isotropic in any point of spacetime, it will also be homogeneous, that means indepen-
dent of position. For these reasons, for sufficiently large scales (> 600 Mpc), we can
approximate the Universe as perfectly homogeneous and isotropic. Before talking about
geometry, we want to recall some basic concepts about the expansion.

1.2.1 Expansion

Experimental evidence like the Hubble diagram tells us that the Universe is expanding,
therefore in the past the distance between two cosmological objects was smaller than it
is at present time. This fact is mathematically described by the scale factor a, whose
present value is a0 ≡ 1; it relates the physical, proper distance between two points of
spacetime with their comoving distance that remains unchanged with the expansion:

d(t) = a(t)d0 , (1.1)

where d(t) is the proper distance at time t, and d0 is the distance at reference time t0.
If we imagine a grid that expands, the points on that grid mantain their coordinates,
thus their comoving distance doesn’t change, while the proper distance is affected by
the expansion and therefore evolve with time proportionally to the scale factor. The
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Figure 1.11: If we imagine to

set a grid in space, the co-

moving distance between two

points on it remains constant

with the expansion of the Uni-

verse, while the physical dis-

tance changes and gets larger

with time, proportionally to

the scale factor [1].

way in which the scale factors change with time is quantified by the Hubble rate:

H(t) ≡ ȧ

a
, (1.2)

where · = d/dt.[1] According to the final Planck 2018 results, the value for the Hubble
rate today is H0 = (67.66± 0.42) (km/s)/Mpc [2].
Further, general relativity provides the connection between this evolution and the energy
density in the Universe; it is given by the first Friedmann equation:

H2(t) =
8πG

3

[
ρ(t) +

ρc − ρ0

a2(t)

]
, (1.3)

where the subscript 0 stand for the value of the quantity today, ρ(t) is the energy
density, and G is the universal gravitational constant. The critical density is defined as

ρc ≡
3H2

0

8πG
. (1.4)

1.2.2 Friedmann-Lemâıtre-Robertson-Walker metric

The features of homogeneity and isotropy of the background spacetime can be repre-
sented by a specific kind of metric tensor, which is a fundamental tool used in general
relativity incorporating the geometric nature of gravity. In a four dimensions spacetime,
the invariant line element is:

ds2 = gµνdx
µdxν , (1.5)

where the first coordinate is time-like (dx0 = dt), and the last three are spatial. The
metric gµν is symmetric, so in principle has four diagonal and six off-diagonal compo-
nents. It provides the connection between the values of the coordinates and the more
physical measure of the invariant interval ds2 [1]. But what is the metric describing
an expanding Universe? As we could see in Fig.1.11, when two grid points move away
from each other, the distance between them is proportional to the scale factor a(t).
If the comoving distance today is x0, the physical distance between the two points at
some earlier time t was a(t)x0. Therefore, in a flat Universe, the metric then is similar
to Minkowski (diagonal), except for the fact that each distance must be multiplied by
the scale factor [1]. This suggests that, for an expanding flat Universe, the metric in
comoving coordinates xµ = (t, x, y, z) is:

ds2 = −dt2 + a2(t)δijdx
idxj = −dt2 + a2(t)

(
dx2 + dy2 + dz2

)
. (1.6)

However, it will be more convenient to use the conformal time τ , defined as

dτ =
dt

a(t)
, (1.7)
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in a way that the background FRW metric can be written as

ds2 = a2(t)
(
−dτ 2 + δijdx

idxj
)

= a2(t)
(
−dτ 2 + dx2 + dy2 + dz2

)
. (1.8)

Moreover, using conformal time, the derivative with respect to it is defined as ′ =
d/dτ = ad/dt = a ·, so the Hubble rate becomes

H(t) ≡ a′

a
=
aȧ

a
= ȧ = aH(t) . (1.9)

This quantity will be largely used in the next chapters. The aim of this section was
only to introduce the FRW metric describing geometrically a homogeneous and isotropic
background Universe.

1.3 The inhomogeneous Universe

1.3.1 Cosmological perturbations theory

In order to understand how primordially-generated fluctuations in matter and radiation
grew into galaxies and clusters of galaxies due to self-gravity, it is necessary to deal with
inhomogeneities. As long as perturbations remain relatively small, we can treat them
in perturbation theory, and the growth of the fluctuations can be solved linearly. The
aim of the cosmological perturbation theory is to relate the physics of the early universe
(e.g. inflation) to CMB anisotropy and large-scale structure, and to provide the ini-
tial conditions for numerical simulations of structure formation. In the early universe,
gravitational perturbations were inflated to wavelengths beyond the horizon at the end
of the inflationary epoch; then, for each given length scale, they re-enter the horizon
at a later time when the horizon has grown to the size of the fluctuations (e.g. see
Ref.[17]). Newtonian gravity can be used on small scales, well inside the Hubble radius,
and for non relativistic matter (e.g. cold dark matter and baryons after decoupling).
However, for scales of order O(1/H2) and larger than that (super-horizon, before the
horizon crossing time) and for relativistic fluids (like photons and neutrinos) relativistic
effects arise, so a full general relativistic treatment is required.

The goal of the theory of spacetime perturbations is to find approximate solutions
of some field equations (Einstein equations), that means findind small deviations from
a known exact background solution, that in our case is FRW metric. However, in gen-
eral relativity, we have to perturb not only fields in a given geometry (e.g. Tµν , Gµν),
but geometry itself (gµν) [18]. Then the socalled gauge problem arise, since the concept
itself of cosmological perturbation in general relativity presents ambiguity.

1.3.2 The gauge problem

In the perturbation theory of general relativity we must consider the perturbed space-
time M close to a simple and symmetric background spacetime that we already know
(see Fig. 1.12) [19]. Then, we consider a physical quantity represented by the generic
tensor T (e.g. gµν , Tµν), and we define:

• T0 : the value of the tensor in the unperturbed background spacetime M0;

• T : the value of the tensor in the physical perturbed spacetime M ;

12



Figure 1.12: On the left side, the back-

ground spacetime M0; on the right side,

the perturbed spcetime M .

• ∆T = T − T0: the perturbation of the tensor.

If we want to compare two tensors in differential geometry, we have to consider them
at the same point in spacetime. But T and T0 are defined in two different spacetimes,
that entails an intrinsic problem in defining the perturbation itself. In order to fix
it, we have to establish a one-to-one corrispondence (a map, a diffeomorfism) between
the points in the background spacetime M0 and the points in the physical perturbed
spacetime M : this is called a gauge choice. A change of this map corresponds to a
gauge transformation, and in principle we can choose it in an arbitrary way, so that the
value of the perturbation of the tensor is arbitrary too at any given spacetime point
unless it is gauge invariant. This is the kernel of the gauge problem [18].

1.3.3 General definition of a gauge transformation

We now want to practically build a gauge transformation φλ, with λ a real parameter.
We consider a family of spacetimesMλ, each one identified by the value of the parameter;
if λ = 0 we recover the background M0. Want we want to do is the establish a family
of one-to-one maps from M0 to M , for each value of λ. Therefore we have to:

• fix a coordinate system xµ in M0;

• take a vector ξµ(x);

• introduce the parameter λ is a way that: ξµ = dxµ/dλ.

A one-to-one correspondence φλ carries the coordinates xµ over Mλ, defining a gauge
choice. A change in this correspondence, keeping the background coordinates fixed, is
a gauge transformation [18].
Now, we want first to consider a point P with coordinates xµ(P ) in M0, and its cor-
rispondent point O = φλ(P ) in Mλ. We can also think O as the point of Mλ corre-
sponding to a different point Q in the background using a different gauge ψλ: then
O = ψλ(Q) = φλ(P ). Therefore, the gauge transformation can actually be seen as a
one-to-one correspondence between different points in the background; it can be built
going from P in M0 to O in Mλ through φλ, and then “going back” from O to Q
through ψ−1

λ , in a way that Q = Φλ(P ) = ψ−1
λ

(
φλ(P )

)
. Then we have the coordinates

of Q that can be written as xµ(Q) = Φλ

(
xµ(P )

)
. In linear theory, the action of Φλ

can be represented with that of a one parameter group of transformations, associated
with the vector ξµ defined before. Therefore, for a very small value of λ, the gauge
transformation can be written as

xµ(Q) = xµ(P ) + λξµ
(
x(P )

)
, (1.10)
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which is known as the “active” approach where we are not changing coordinates. How-
ever, a “passive” approach is also possible reading (1.10) as a passive coordinate trans-
formation. Isolating xµ and doing an expansion at first order in λ, we get:

xµ(P ) = xµ(Q)− λξµ
(
x(P )

)
' xµ(Q)− λξµ

(
x(Q)

)
+O(ξ2) . (1.11)

Therefore we can introduce a new coordinate system yµ in a way that:

yµ(Q) ≡ xµ(Q)− λξµ
(
x(Q)

)
. (1.12)

For λ = 1 an ordinary coordinate transformation is found. Given these definitions, how
do objects as scalars, vectors and tensors transform?

1.3.4 Explicit transformation laws

We want now to build the explicit expressions of the gauge transformations for a generic
scalar, vector and tensor. In order to do that, we start with a vector and then we
will generalize the results. Consider a vectorial field Z with components Zµ in the
coordinate system xµ fixed. The components of the new tensor Z̃µ

(
xµ(P )

)
corresponds

to the components Z ′µ that the old tensor Z assumes in the new coordinates, using the
“passive” approach for a gauge transformation. Then:

Z̃µ(x(P )) ≡ Z ′µ
(
y(Q)

)
=
∂yµ

∂xν

∣∣∣∣
x(Q)

Zν
(
x(Q)

)
. (1.13)

We are defining a sort of “dragging law” of the tensor from the point Q to the point P .
Using the fact that

yµ = xµ − λξµ =⇒ ∂yµ

∂xν
= δµν − λ

∂ξµ

∂xν
,

we have

Z̃µ
(
x(P )

)
= Zµ

(
x(Q)

)
− λ∂ξ

µ

∂xν
Zν
(
x(Q)

)
. (1.14)

Doing an expansion xµ(Q) = xµ(P ) + λξµ(x(P )) at first order in λ, we get:

Z̃µ
(
x(P )

)
' Zµ

(
x(P )

)
+
∂Zµ

∂xν
(
λξν
(
x(P )

))
− λ∂ξ

µ

∂xν
Zν
(
x(P )

)
+O(ξ2)

' Zµ
(
x(P )

)
+ λLξZµ

(
x(P )

)
, (1.15)

where LξZµ is the Lie derivative of the vector Zµ, defined as

LξZµ =
∂Zµ

∂xν
ξν − ∂ξµ

∂xν
Zν . (1.16)

If λ = 1, the socalled “Lie dragging” can be defined, that tells us how the vector
transforms under a gauge transformation:

Z̃µ = Zµ + LξZµ , (1.17)

and Z̃ is called the pull-back of Z.
This result can be generalized to a generic tensor T of arbitrary rank, for which a generic
gauge tranformation is defined as:

T̃ = T + LξT . (1.18)
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Lie dragging of a tensor perturbation

Since our final goal is dealing with cosmological perturbations, we are interested in how
a perturbation of a generic tensor transforms under a generic gauge transformation.
We preliminary define the tensor T for the first gauge choice, and the tensor T̃ for the
second different gauge choice. Then in principle two perturbations can be defined:

• ∆T = T − T0 in the first gauge

• ∆T̃ = T̃ − T0 in the second gauge

where T0 is the tensor in the background. Then

• T = T0 + ∆T in the first gauge

• T̃ = T0 + ∆T̃ in the second gauge

Using both the latest definitions and (1.18), we find that:

T̃ = T + LξT = T0 + ∆T + LξT = T0 + ∆T̃ =⇒ ∆T̃ = ∆T + LξT .

At first order in perturbations, since LξT is already at first order, we can write T0 instead
of T , getting the generic gauge transformation for the perturbation of an arbitrary tensor
at first order:

∆T̃ = ∆T + LξT0 . (1.19)

Lie derivatives

We summarize here the explicit expressions of the Lie derivatives of the three objects
we work with. Knowing that ξµ = dxµ/dλ, and that ; is the symbol for the covariant
derivative while , stands for partial derivative (which here coindice), we can write the
following expressions.

• scalar S:

LξS = S;µξ
µ =

∂S

∂xµ
ξµ ; (1.20)

• vector V :

LξVµ = Vµ;λξ
λ + ξλ;µVλ ≡ Vµ,λξ

λ + ξλ,µVλ (1.21)

LξV µ = V µ
;λξ

λ − ξµ;λV
λ ≡ V µ

,λξ
λ − ξµ,λV

λ ; (1.22)

• tensor T :

LξTµν = Tµν;λξ
λ + ξλ;µTλν + ξλ;νTµλ ≡ Tµν,λξ

λ + ξλ,µTλν + ξλ,νTµλ . (1.23)

In the specific case in which the tensor is the metric gµν , the previous expression can be
lightened due to its properties of symmetry and torsionless (gµν,λ = 0). Then we have:

Lξgµν =
(
ξλgλν

)
;µ

+
(
ξλgλµ

)
;ν

= ξν;µ + ξµ;ν . (1.24)
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1.3.5 Perturbed flat FRW Universe

If we want to perturb Einstein equaions, we fist have to consider the perturbation
of the background Friedmann-Robertson-Walker metric (1.6). Calling r the order of
perturbation (r = 1 means linear), the components of the perturbed spatially flat FRW
metric are:

g00 = −a2(τ)

[
1 + 2

+∞∑
r=1

1

r!
A(r)

]
, (1.25)

g0i = gi0 = a2(τ)
+∞∑
r=1

1

r!
B

(r)
i , (1.26)

gij = a2(τ)

{[
1− 2

+∞∑
r=1

1

r!
D(r)

]
δij +

+∞∑
r=1

1

r!
E

(r)
ij

}
, (1.27)

where E
i(r)
i = 0, τ is the conformal time, A(r) = A(r)(x, τ) are called the lapse functions,

and B
(r)
i (x, τ) are called the shift functions.

Scalar, vector and tensor components

It is often used a decomposition on perturbations into the so-called scalar, vecor and
tensor parts.

• The scalar (or longitudinal) components are relatex to scalar potentials, like D(r)

and A(r).

• The vector parts are those related to transverse (divergence-free or solenoidal)
vector fields. For example:

B
(r)
i = ∂iB

(r)
?︸ ︷︷ ︸

scalar

+B
(r)⊥
i︸ ︷︷ ︸

vector

, (1.28)

where B
(r)⊥
i is a solenoidal vector, thus ∂iB

(r)⊥
i = 0.

• The tensor parts are related to transverse traceless tensors. They appear for
example in the decomposition of the traceless part of the spatial metric:

Eij = ∆ijE
(r)
?︸ ︷︷ ︸

scalar

+ ∂iE
(r)
j + ∂jE

(r)
i︸ ︷︷ ︸

vector

+E
(r)⊥
ij︸ ︷︷ ︸

tensor

, (1.29)

where ∂iE
⊥
ij = 0 and

∆ij = ∂i∂j −
1

3
∇2δij . (1.30)

Perfect fluid

In perturbing Einstein equation Gµν = 8πGµν , we also have to deal with the stress-
energy tensor and its components. For a perfect fluid

Tµν = ρuµuν + phµν , (1.31)

where:
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• ρ is the energy density, that can be written as

ρ = ρ0 +
+∞∑
r=1

1

r!
δρ(r) ; (1.32)

• p = p(ρ, S) is the isotropic pressure (S here is entropy), for which the perturbation
is given by

δp =
∂p

∂ρ

∣∣∣∣
S︸ ︷︷ ︸

c2s

δρ

︸ ︷︷ ︸
adiabatic part

+
∂p

∂S

∣∣∣∣
ρ

δS︸ ︷︷ ︸
non adiabatic part

. (1.33)

So δp = c2
sδρ + δpnon adiabatic, where cs is the adiabatic speed of sound of pertur-

bations;

• uµ is the four-velocity of a fluid element, that can be written as

uµ =
1

a

[
δµ0 +

+∞∑
r=1

1

r!
vµ(r)

]
, (1.34)

where the first addend corresponds to the background four-velocity in FRW, co-
moving with the cosmic expansion (Hubble flow), while the second addend rep-
resents the pecurial velocity of the fluid element. Moreover, the normalization
uµu

µ = −1 sussists, and allows to connect v0
(r) to the lapse perturbation A(r); in

particular, at first order v0
(1) = −A(1). Finally, for the spatial component vi of the

peculiar velocity the usual decomposition can be done:

wi = ∂iv? + vi⊥ with ∂iv⊥i = 0 ; (1.35)

• hµν = gµν + uµuν . It can be easily proved that hµνu
ν = 0, so hµν is a projector on

hypersurfaces which are orthogonal to the four-velocity uµ.

First order gauge transformations

As we saw in the previous subsections, gauge transformations are determined by the
vector ξµ. Its time and spatial parts can be written as

ξ0 = α , (1.36)

ξi = ∂iβ + di , (1.37)

where α and β are scalars, and di is a vector with the property ∂id
i = 0. Starting from

these definitions, and using (1.19) with the metric perturbations in a way that:

δg̃µν = δgµν + Lξḡµν , (1.38)

where ḡµν is the backgroud FRW metric, the following gauge transformations at first
order can be calculated (we are omitting the label (1)):

Ã = A+ α′ +
a′

a
α , (1.39)

B̃i = Bi − α,i + β′,i + d′i , (1.40)

D̃ = D − 1

3
∇2β − a′

a
α , (1.41)

Ẽij = Eij + 2∆ijβ + di,j + dj,i , (1.42)
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where ′ = d/dτ . Using (1.20), we have for the density perturbation

δρ̃ = δρ+ Lξρ0 = δρ+ ρ′0α , (1.43)

while, using (1.21), we have for the four-velocity

δũµ = δuµ + Lξuµ0 , (1.44)

where uµ0 = δµ0 /a(τ) is the background value in FRW (comoving). Then:

ṽ0 = v0 − a′

a
α− α′ , (1.45)

ṽi = vi − β ′ ,i − di ′ . (1.46)

Important gauge in cosmology

Fixing a gauge means choosing a specific form for ξµ, and so for the perturbations which
depend on it. Here we present the main gauge used in cosmology.

Poisson (conformal-Newtonian)

The Poisson gauge, also known as conformal Newtonian or longitudinal, consists in
setting:

B? = 0 ,

E? = 0 ,

Ei
⊥ = 0 . (1.47)

It is also known as orthogonal - zero shear gauge, since this particular quantity σ =
−B? + E ′?/2 called shear is zero in this gauge.

Synchronous

The synchronous is one of the most used gauge in cosmology, and consists in setting:

B? = 0 ,

Bi
⊥ = 0 ,

A = 0 . (1.48)

It is also labeled as time-orthogonal because the first two conditions imply g0i = 0.
Through this gauge choice we can define the proper time T of observers with fixed spatial

coordinates; in the hypothesis of c = 1, if A = 0, we have that dT =
(
a2(τ)dτ 2

)1/2
so

dT = a(τ)dτ = dt with t cosmic time in FRW. In this way all the observers with the same
spatial coordinates (who “lie” on the same hypersurface) are synchronised. However,
there is a residual degree of freedom because a function for the spatial coordinates has
not been fixed.

Comoving

The comoving gauge is socalled because the peculiar velocity of the fluid element is
zero:

vi = 0 =⇒ v? = vi⊥ = 0 , (1.49)

that means that it is comoving with the cosmic expansion.
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Synchronous-Comoving

If we fix both the last two gauges with all the conditions listed above (1.48) and (1.49):

A = 0

Bi = 0

vi = 0 , (1.50)

we obtain the synchronous− comoving gauge. (1.50) implies that

v? +B? = 0 , (1.51)

which is a condition of orthogonality of the hypersurfaces at constant τ . In order to
prove that, we introduce the four-vector Nµ = (1 − A,−Bi)/a, unitary time-like and
orthogonal to space-like hypersurfaces at constant τ . If we make Nµ and uµ covariant:

Nµ = −a
(
1 + A, 0

)
,

uµ = a
[
−(1 + A), vi +Bi

]
.

We can notice that in the synchronous-comoving gauge they coincide, so the four-
velocity is orthogonal to τ = constant hypersurfaces. This gauge is what we will use in
the analysis of the following chapters, because it allows us to synchronize observers on
the same spacelike hypersurface, and to make them comoving with the cosmic expansion.
It is actually possible right because we are adopting the ΛCDM model and its features.

Uniform energy density

The uniform energy density gauge consists in fixing:

δρ = 0 . (1.52)

Then

δρ̃ = δρ+ ρ′0α = 0 =⇒ α = −δρ
ρ′0

. (1.53)

At constant τ , we are selecting spatial hypersurfaces at constant ρ.

Gauge invariant scalars

Two gauge invariant and linearly indipendent scalar quantities can be built from the
metric pertubations:

2Ψ = 2A+ 2B′? + 2
a′

a
B? − E ′′? −

a′

a
E ′? , (1.54)

2Φ = −2D − 1

3
∇2χ? + 2

a′

a
B? −

a′

a
E ′? . (1.55)

These quantities are the Bardeen potentials [20]. In Poisson (or zero shear) gauge they
reduce to Ψ = A and Φ = −D.
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1.3.6 Metric and the matter density perturbation

We have dealt with the metric perturbations, which have a purely geometric nature.
However, through perturbed Einstein equations, they can be connected with the mat-
ter density perturbation δρ. We are not going to report all the perturbed Einstein
equations, but we will take only the results we need from the straightforward article by
Ma and Bertschinger [17]. First of all, we can start from this expression of the spatial
perturbation:

δgij(τ,x) = 2D(τ,x)δij + 2

(
∂i∂j −

1

3
∇2δij

)
E(τ,x) , (1.56)

where the perturbed FRW metric used in the previous sections has been conformally
transformed and replaced with gµν/a

2 in order to get rid of the factor a2; what conformal
transformations are and why they are possible will be explained in Chapter 2. Since in
Chapter 3 we are going to use the Fourier transform of δm, it is convenient to shift to
the Fourier space where the metric perturbation becomes

δgij(τ,k) = 2D(τ,k)δij − 2

(
kikj −

1

3
k2δij

)
E(τ,k) . (1.57)

However, what we will discuss now is based on the results explained by Ma and
Bertschinger in [17], therefore we have to compare for a moment our and their no-
tation. They use such a metric perturbation in Fourier space:

δgij(τ,k) =
kikj
k2

h(τ,k) + 6

(
kikj
k2
− 1

3
δij

)
η(τ,k) . (1.58)

These perturbations h and η can be related to our D and E by comparing (1.57) and
(1.58):

D(τ,k) =
h(τ,k)

6
, (1.59)

E(τ,k) = −h(τ,k) + 6η(τ,k)

2k2
. (1.60)

If we consider the energy-momentum conservation equation T µν;µ = 0 and take the
µ = 0 part, we get the the continuity equation for the matter energy density. If we
perturb it, we get in the synchronous gauge for non relativistic matter:

δ′m(τ,k) = −1

2
h′(τ,k) . (1.61)

We can now consider the linearized Einstein equations in Fourier space, and take the 0i
part (Eqs.(21b) and (22) in Ref.[17]); something peculiar happens in the synchronous-
comoving gauge:

k2η′(τ,k) = 4πiGa2kjδT 0
j ∝ u = 0 , (1.62)

since the peculiar velocity u of comoving observers is zero in this gauge, as we also said
in the previous chapter. Therefore we can get an expression of E ′(τ,k), starting from
(1.60) and then using (1.61) to substitute h′ with δ′m:

E ′(τ,k) = −h
′(τ,k)

2k2
=
δ′m(τ,k)

k2
. (1.63)
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Furthermore, we can relate δ′m with δm through the linearized Boltzman equation for
cold dark matter density perturbation, knowing that η′ = 0:

δ′m(τ,k) = −ikv(τ,k) = −ik · ifaH
k

δm(τ,k) = aHfδm(τ,k) , (1.64)

with v(τ,k) as the velocity field of matter in linear theory. The parameter f is the
dimensionless linear growth rate and is defined as

f ≡ d lnD1

d ln a
, (1.65)

where D1 is the growing mode of δm in a way that

δm(x, z) = δ(x, 0)
D1(z)

D(0)
. (1.66)

We can now substitute (1.64) into (1.63) and get

E ′(τ,k) =
aHf

k2
δm(τ,k) =

H

1 + z

f

k2
δm(τ,k) . (1.67)

We can do more by considering the Fourier transform expression of δm, in a way that
δm(x, z) =

∫
d3k/(2π)3 eik·xδm(k, z), and by noticing that applying the operator ∇2 on

both sides of this expression, we get ∇2δm(x, z) = −k2δm(x, z). Therefore in Fourier
space the action of the operator arises to be ∇−2 = −1/k2 and, substituting it into
(1.67), we find this final expression:

E ′ = − H

1 + z
f∇−2δm . (1.68)

From this result, the second and the third derivative of E can be obtained: 5

E ′′ = − H2

(1 + z)2

(
3

2
Ωm − f

)
∇−2δm , (1.69)

E ′′′ = −3
H3

(1 + z)3
Ωm

(
f − 1

)
∇−2δm . (1.70)

We still have to explicit the dependence of the parameter φ = D− 1
3
∇2E on the matter

density contrast δm; this can be done with the 00 part of the linearized Einstein equation
((21a) in [17]), knowing that φ(τ,k) = −η(τ,k):

φ = − 1

2k2

(
aHh′ + 8πGa2δT 0

0

)
= − 1

2k2

[
aH(−2δ′m) + 8πGa2ρ̄mδm

]
=

1

k2

[
a2H2fδm + 4πGa2 3H2

8πG
Ωmδm

]
=

1

k2
a2H2

(
f +

3

2
Ωm

)
δm .

At last we can state that:

φ = − H2

(1 + z)2

(
f +

3

2
Ωm

)
∇−2δm . (1.71)

Finally we have the useful expressions of E ′, E ′′, E ′′′ and φ, which will appear in the
galaxy overdensity in terms of the matter density contrast. We are going to use them

5From the time evolution of the linear density contrast and the definition of Ωm.
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Figure 1.13: 3D map of galaxy positions from the 2dF galaxy redshift survey. Note that

redshift 0.15 is at a comoving distance of 600 Mpc. Image credit: 2dF [22].

in calculations in Chapter 3.

An excursus on metric and matter perturbations has been done, in order to intro-
duce the tools necessary to face with calculations in Chapter 2, where we will entirely
compute the galaxy overdensity ∆g, and in Chapter 3 with the angular power spectrum.
What we are still missing is the concept of galaxy clustering, which is the technique
studied and adopted in this thesis.

1.3.7 Galaxy clustering

Galaxies are not randomly distributed but they tend to crowd together in clusters and
even superclusters due to gravity; they surround large areas with very few galaxies,
the socalled voids, in a way that on the largest scales the distribution is similar to
soap bubbles, far from the homogeneous and isotropic Universe that we assume in the
cosmological principle. However, if we smooth the pattern on large scales (∼ 100Mpc),
it starts to look much more homogeneous (Fig.1.13). An interesting challenge is to
understand what is the largest structure in the universe, or in other words at what
scale do galaxies or clusters appear to be randomly distributed. We know that the
pattern in which galaxies are distributed today derives from the initial distribution of
matter in the early Universe; therefore the knowledge of the large-scale distribution and
clustering of galaxies today is a key mean to test cosmological theories.
Galaxy clustering is related to the 3D distribution of galaxies at present time, measured
from the angular positions of galaxies in the sky and the redshifts of the galaxies. It
allows the direct measurement of the cosmic expansion [H(z)] through baryon acoustic
oscillations (BAO), the growth history of cosmic large scale structure [f(z)], and the
redshift-space distortions (RSD) on large scales [21]. Clustering is understood and
measured in terms of statistics, in particular of correlation functions.
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Figure 1.14: The two-point correlation

function describes the excess probability,

compared with a random distribution of

galaxies, of finding a galaxy in an element

of volume dV2 at distance r12 away from

a galaxy in dV1 [23].

1.3.8 Correlation function and power spectrum

The fields of fluctuation, which in our case will be the galaxy number density pertur-
bations, need proper statistical tools to be analysed with a clustering technique: they
are the N-point correlation functions and their Fourier transforms, as power spectra,
bispectra, etc... However, in our analysis we will focus only on the two-point correlation
function and the corrispondent power spectrum P (k) (even though the final point of
our analysis will be actually the angular power spectrum C` that will be introduced in
Chapter 3).
Consider any random field δ(x) with zero mean 〈δ(x)〉, just like the density fluctua-
tions we work with. The probability of realising some field configuration is a functional
P [δ(x)] of the density fluctuation. Correlators of fields are expectation values of prod-
ucts of fields at different spatial points. The spatial two-point correlation function or
autocorrelation is defined as the excess probability, compared with that expected for a
random distribution, of finding a pair of galaxies at a separation r12 (see Fig.1.14):

dP = n̄2
g

(
1 + ξ(r12)

)
dV1dV2 , (1.72)

where n̄g is the mean galaxy number density, and the two-point correlation function
is the mean value of the product of the two fluctuations evaluated at different spatial
points x and x+ r12, respectively at time t and t′:

ξ(x) ≡ 〈δ(x, t)δ(x+ r12, t
′)〉 . (1.73)

At this point we can expand the fluctuation in Fourier space:

δ(x, t) =
1

(2π)3

∫
d3keik·xδ(k, t) , (1.74)

and define the power spectrum P (k) of δ as:

〈δ(k, t)δ(k′, t′)〉 ≡ (2π)3P (k)δ3
D(k + k′) . (1.75)

Here the angular brackets denote an average over the whole distribution, and δ3
D( ) is

the Dirac delta function which constrains k′ = −k. The power spectrum represents the
“spread”, or the variance, of the distribution: if there are many under- and overdense
regions, it will be large, otherwise if the distribution is smooth it will be small [1]. It
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Figure 1.15: On large scales, the variance ∆2 ≡ k3P (k)/2π2 is smaller than unity, so the distribution

is smooth. The solid line is the theoretical prediction from a model in which the universe contains

dark matter, a cosmological constant, with perturbations generated by inflation. The dashed line is

a theory with only baryons and no dark matter. Data come from the PSCz survey (Saunders et ai,

2000) as analyzed by Hamilton and Tegmark (2001) [1].

can be easily proven that the power spectrum is the Fourier transform of the two-point
correlation function:

ξ(x) ≡ 〈δ(x, t)δ(x+ r12, t
′)〉 = 〈 1

(2π)6

∫
d3keik·x

∫
d3k′eik

′·(x+r12)δ(k, t)δ(k′, t′)〉

=
1

(2π)6

∫
d3keik·x

∫
d3k′eik

′·(x+r12)(2π)3P (k)δ3
D(k + k′)

=
1

(2π)3

∫
d3ke−ik·r12P (k) . (1.76)

The shape and amplitude of the power spectrum of density fluctuations contain infor-
mation about both the amount and nature of matter in the universe (see Fig.1.15).
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Chapter 2

Galaxy overdensity:
a general relativistic expression

One of the key tools to study the large scale structure of the Universe and costrain the
cosmological model are galaxy redshift surveys, which are sets of source positions along
with the measured redshifts [24] (e.g. in Fig.2.1). The size of galaxy catalogues has
constantly increased over the last fourty years, both in terms of solid angle and redshift
coverage, and sampling rates. The latest generation of surveys will allow us to measure
galaxy clustering on more and more larger scales, comparable with the Hubble radius
[26] (see Fig.2.2 and 2.3). Galaxies that we observe are located at a time coordinate in
which their world line intersects our past light cone. By detecting photons that travel
from their source position in our past light cone towards us, we can infer the comoving
location of a galaxy from two basic observables:

• the direction of the photon n̂, which is a unit vector that points to the apparent
position of the galaxy in the sky. Indeed, in absence of distortions the trajectory
of the photon is a straight line that starts from the galaxy that emitted it and
ends at the observer’s position on Earth;

• the measured redshift of the galaxy. It can be easily related to the distance of the
object from the Earth using Hubble’s law; therefore, combining the redshift with
the angular position, a 3D map of the galaxy distribution over a section of the
sky can be constructed.

The three dimensional maps that can be built from the previous information are based
on the assumption of an unperturbed Friedmann-Robertson-Walker universe with a
fixed set of cosmological parameters. However, these redshift space maps gives a dis-
torted picture due to the presence of inhomogeneities in real spacetime. Indeed, the
presence of such perturbations superimposed to a FRW background deflects the null
geodesics of the photons emitted by galaxies. Therefore, the observable quantities for a
galaxy that differ in the two cases of an unperturbed and perturbed universe are: the
redshift, the angular position on the sky and the flux in any given waveband. These
are relativistic effects which arise on cosmological scales because we make our observa-
tions in our past light cone, and consist mainly in the socalled redshift space distortions
and gravitational lensing convergence. Anyway several additional corrections, which
are tipically suppressed on small scales, might be detected in nowadays surveys even
on distances comparable with the Hubble radius. At linear order, these corrections
include Doppler, standard and integrated Sachs-Wolfe terms, and (Shapiro) time delay
contributions. A reliable model of large scale clustering should include all the previous
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Figure 2.1:
The SDSS’s

map of the

Universe. Each

dot is a galaxy;

the colour is

the g-r colour

of that galaxy.

Image credit:

M. Blanton and

SDSS [25].

Figure 2.2: Comparison

between galaxy redshift

surveys: squares rep-

resent predominantly

magnitude-limited sur-

veys; circles represent

surveys involving colour

cuts for photometric red-

shift selection; triangles

represent highly targeted

surveys. Filled symbols

show completed surveys.

Surveys are colour coded

according to selection

wavelength. The dotted

lines correspond to sur-

veys of 1000, 104, 1055

and 106 galaxies. Image

credit: Ivan K. Baldry,

Liverpool JMU [27].
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Figure 2.3: Comparison of the sky coverage of the most recent surveys: BOSS, EUCLID and

SKA, where “sqd” stands for square degrees. Image credit: Roy Maartens and SKA.

modifications. For this reason, a full explicit expression of the galaxy overdensity ∆g

will be calculated in this chapter, including all the general relativistic contributions at
first order in perturbation theory; this expression will be given in terms of the metric
perturbations, the redshift distortions and the bias parameters. We will see that ∆g

includes three main addends: a local term (relative to the source), a weak lensing and
a time delay contribution.
We must highlight that the relation between the galaxy number density fluctuation and
the underlying matter fluctuation δm is non trivial on cosmological scales, because the
luminous matter does non exactly corresponds to the dark matter: there is a local bias
we must take account of, and that must be defined properly. In order to do that, we
need to choose an appropriate frame where the baryon velocity perturbation vanishes;
in this way the baryon rest frame coincides with the CDM rest frame, and in ΛCDM the
synchronous-comoving gauge defines such a frame up to the second order [28]. In this
gauge, galaxy and matter overdensities are gauge invariant ant their relation becomes
linear; therefore we will do our calculations and considerations under this peculiar gauge
choice.

2.1 Perturbation of the photon geodesics

2.1.1 The metric

Assuming a flat Friedmann-Robertson-Walker background, we consider linear pertur-
bations in the synchronous-comoving gauge for the reason just mentioned in the intro-
duction of this chapter. Synchronous means that the proper time of all the observers
coincides with the comoving time, so they actually lie in costant time hypersurfaces
which are equivalent to constant age hypersurfaces. Comoving means that their pe-
culiar velocities with respect to the background are set to zero, so they are moving
together with the background expansion; moreover, constant time hypersurfaces are
orthogonal to the four-velocity of the cosmic fluid. Therefore, the perturbed metric we
obtain is

ds2 = a2(τ){−dτ 2 + [(1 + 2D)δij + 2Eij]dx
idxj} , (2.1)

where τ is the conformal time, D is a scalar perturbation of the spatial diagonal part
of the metric, and Eij is a traceless (Ei

i = 0) and transverse (∂iEij = 0) spatial pertur-
bation; it includes in principle pure scalar, vectorial and tensorial components, but we

27



Figure 2.4: Position of a pair

of galaxies on the past lightcone,

which differs from its projection on

the spatial hypersurface for a wide

angle θ [29].

consider only the scalar one E which is related to Eij via the operator ∆ij, so that:

Eij = ∆ijE =

(
∂i∂j −

1

3
∇2δij

)
E . (2.2)

We can do this because in first-order perturbation theory the scalar, vector, and tensor
parts do not couple to each other, but evolve independently. This is the reason why
we can treat them separately, studying the scalar perturbations as if the vector and
tensor ones were absent. The total evolution of the full perturbation is just a linear su-
perposition of the independent evolution of the scalar, vector, and tensor components.
However, we will focus only on the scalar perturbations because they couple to density
and pressure perturbations and exhibit gravitational instability: overdense regions grow
more overdense, thus they are responsible for the formation of structure in the universe
from small initial perturbations [19].
After defining the perturbed metric gµν in Eq.(2.1), we perform the conformal transfor-
mation ĝµν = gµν/a

2 in order to get rid of the factor a2 and simplify calculations that
will follow. We are able to do that due to an important fact: null curves or light-like
geodesics, along which photons propagate in the expanding Universe, are invariant un-
der conformal transformations [30]. This means that, if xµ(λ) is a curve that is null
with respect to gµν , it will also be null with respect to ĝµν . This property can be eas-
ily demonstrated, starting from the definition of a null curve: it is a geodesic whose
tangent vector is a light-like vector everywhere along it, that means

gµν
dxµ

dλ

dxν

dλ
= 0 . (2.3)

Switching to the conformally related metric:

ĝµν
dxµ

dλ

dxν

dλ
=

1

a2
gµν

dxµ

dλ

dxν

dλ
= 0 . (2.4)

Therefore, it is clear that null geodesics defined by the metric gµν remain so also if they
are defined by the conformally related metric ĝµν . As a consequence, it can be said that
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conformal transformations leave light cones invariant. For this reason, studying the
photon geodesics in conformal coordinates xµ(χ) is equivalent to studying those in the
“old” coordinates xµ(λ) defined by gµν ; however, the affine parameter λ is transformed
to another affine parameter χ, in a way that

dλ/dχ ∝ a2 . (2.5)

From this moment we will work with the conformally transformed metric

ĝµν =
gµν
a2(τ)

. (2.6)

All the coordinates we will use (spatial and temporal), momenta and frequencies are
from now on the conformal ones.

2.1.2 The photon geodesic

The motion of a photon in the observed frame is characterized by two observable quan-
tities:

• the direction ñ of motion measured by the observer on Earth, which is related to
the apparent position of the source (a galaxy in our case);

• the observed redshift z̃.

First of all we can assigne a position x̃ to the galaxy (our source), so that

x̃ = χ̃n̂ , (2.7)

where x̃ is the observed position of the galaxy, n̂ is the observed direction of the photon,
and χ̃ is the comoving distance from the observer of events located along the geodesic
in the unperturbed spacetime, and moreover defines the observed-redshift relation χ̃(z).
The null geodesic from a galaxy observed to us can be described in terms of the following
conformal spacetime coordinates:

x̄µ(χ) = (τ0 − χ, n̂χ) , (2.8)

where τ0 is the present day value (at observation) of the conformal time. In the unper-
turbed universe Eq.(2.8) is a straight line. We deduce that:

dx̄µ

dχ
= (−1, n̂) . (2.9)

At this point, as it can be seen in Fig.2.5, we want to define a map from the real space
to the redshift one, in a way that:

xµ = x̄µ + ∆xµ(n̂, z̃) , (2.10)

where xµ is the actual comoving position located at distance χ along the direction
ni = xi/χ and x̄µ is the apparent position. Writing that χe = χ̃ + δχ, where the
subscript e stands for “evaluated at emission” (at the source) and χ̃ and is the observed
comoving distance, and then perturbing xµ around x̄µ, we obtain at linear order:

xµ(χe) = x̄µ(χe) + δxµ(χe)

= x̄µ(χ̃) +
dx̄µ

dχ̃
δχ+ δxµ(χ̃) . (2.11)
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Figure 2.5: Representation of the perturbed

photon geodesics, where the observer is located

at the bottom and sees the photon arriving at

the direction n̂. The solid line is the actual

geodesic from the source (indicated by the star)

to the observer, while the dashed line is the ap-

parent unperturbed geodesic (a straight path)

which is inferred from the observed direction n̂

and which traces back to an apparent source

position (the circle) that is different from the

real one [31].

Comparing expressions (2.10) and (2.11), we deduce that:

∆x0(χ̃) =
dx̄0

dχ̃︸︷︷︸
−1

δχ+ δx0(χ̃) = −δχ+ δx0(χ̃) , (2.12)

∆xi(χ̃) =
dx̄i

dχ̃︸︷︷︸
n̂i

δχ+ δx0(χ̃) = n̂iδχ+ δxi(χ̃) . (2.13)

It can be noticed that the first addend of (2.13) corresponds to the change in the affine
parameter, while the second addend comes from the perturbation of the photon path
[26].
The aim of this subsection is to compute the explicit expression of all the terms in
(2.12) and (2.13), and in order to that we need to see how metric perturbations alter
null geodesic. We consider a photon emitted at a certain galaxy position xE, which
arrives at the observer position x̃o = (0, 0, 0) from a direction n̂ with a redshift z̃
measured at x̃o and given by

1 + z̃ =
(uµp

µ)|e
(uµpµ)|o

. (2.14)

In this formula uµ is the covariant four-velocity of the matter fluid (we are modelling
the matter content of the Universe as a collissionless fluid), pµ is the photon four-
momentum, the subscript e stands for “evaluated at the source”, and the subscript o
stands for “evaluated at the observer”. The expressions for δxµ and δχ can be derived
by perturbing the photon geodesic around the FRW solution. From (2.11) we deduce
that

xµ(χ) = x̄µ(χ) + δxµ(χ) , (2.15)

and we can write that
dxµ

dχ
= (−1 + δν, n̂+ δe) , (2.16)

where the corrections are defined as:

• the fractional frequency perturbation δν ≡ dδx0/dχ;
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• the fractional perturbation to the photon momentum δei ≡ dδxi/dχ.

Then we consider the unperturbed geodesic equation

d2xµ

dχ2
= −Γ̂µνρ

dxν

dχ

dxρ

dχ
, (2.17)

that describes the motion of a free particle which is subjected only to the gravitational
interaction, and thus to the effect of only the geometry of spacetime. Γ̂µνρ are the
Christoffel symbols computed from the metric ĝµν (2.6) conformally transformed, that
are defined as

Γ̂µνρ =
1

2
ĝµσ
(
∂ν ĝρσ + ∂ρĝνσ − ∂σĝνρ

)
. (2.18)

In the background, the Christoffel symbols Γ̂µνρ computed from ĝµν that we are going to
use are different from Γµνρ computed from the metric gµν (2.1). Indeed, for the metric
gµν the non null Christoffel symbols are

Γ0
00 =

a′

a
, Γi0j =

a′

a
δij , Γ0

00 =
a′

a
δij , (2.19)

while for the metric ĝµν we can easily see that all Christoffel symbols Γ̂µνρ are null, since
the scale factor a(τ) disappear with the conformal transformation; this fact simplifies
further calculations.
We can now perturb the geodesic equation at the first order:

d2δxµ

dχ2
= −δΓ̂µνρ

dxν

dχ

dxρ

dχ
− 2Γ̂µνρ

dδxν

dχ

dxρ

dχ
, (2.20)

and we can notice that the second addend in the rhs is zero due to what we have just
said above. We need to know the perturbed Christoffel symbols δΓµνρ in order to explicit
the time and spatial components of (2.20). They can be computed as:

δΓ̂µνρ =
1

2

[
δĝµσ

(
∂ν ¯̂gρσ + ∂ρ ¯̂gνσ − ∂σ ¯̂gνρ

)
+ ¯̂gµσ

(
∂νδĝρσ + ∂ρδĝνσ − ∂σδĝνρ

)]
, (2.21)

where ¯̂gµν is the background metric, the inverse background metric is given by ¯̂gµν =
diag(−1, δij), and its first order perturbations δĝµν is given by

δĝµν = −¯̂gµρ ¯̂gνσδĝρσ . (2.22)

The only non-zero perturbed Chrystoffel symbols are12

δΓ̂0
ij = D′δij + E ′ij , (2.23)

δΓ̂i0j = D′δij + Ei
j
′ , (2.24)

δΓ̂ijk = ∂jD δik + ∂jE
i
k + ∂kD δij + ∂kE

i
j − ∂iD δjk − ∂iEjk . (2.25)

We are now able to compute the perturbed geodesic equations.

• µ = 0 :
dδν

dχ
= −

(
D′ + E‖

′) ; (2.26)

10 indicates the time componet, while i, j, k = 1, 2, 3 stands for the spatial components.
2Prime ′ represents the derivative with respect to τ .
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• µ = i :

dδei

dχ
= −2

d

dχ

(
Dn̂i + Ei

jn̂
j
)

+ ∂iD + ∂iEjkn̂
jn̂k (2.27)

= −2
d

dχ

(
Dn̂i + Ei

jn̂
j
)

+ ∂iD + ∂iE‖ −
2

χ

(
Ei
kn̂

k − E‖n̂i
)
. (2.28)

Calculations, which can be found in details in appendix A, are done using (2.20), the
fact that

d

dχ
= ∂‖ − ∂τ , (2.29)

and all the definitions of the projections along and perpendicular to the line of sight
of the derivative operators, vectors, and tensors which can also be found in appendix
A. We can obtain the perturbations to the photon momentum by integrating these
expressions along the line of sight, and in order to do this we have to fix the conditions
at the observer’s position χ = 0. The reference frame of the observer is built with an
orthonormal tetrad eaµ, which is a local basis for the tangent space in spacetime. In
this way, by defining pµ as the observed photon momentum and p = pip

i its spatial
modulus, we can compute components of the observed photon direction as

n̂a =
eaµp

µ

p
. (2.30)

Using the orthonormality condition

ĝµνeaµe
b
ν = ηab , (2.31)

we can first get the components of the tetrad. We find that3:

e0
µ = (−1, 0, 0, 0) , (2.32)

eiµ = (0, (1 +Do)δ
i
j + Ei

oj) . (2.33)

At this point the photon momentum perturbations can be obtained by perturbing the
orthonormality conditions (2.31). We start with(

¯̂gµν + δĝµν
)(
eaµ + δeaµ

)(
ebν + δebν

)
= ηab , (2.34)

and we take the 00 equation:(
¯̂g00 + δĝ00

)(
e0

0 + δe0
0

)2
+
(
gij(0) + δgij

)(
e0
i + δe0

i

)(
e0
j + δe0

j

)
= η00 = −1 .

By substituting the expressions of eaµ and dropping the terms of orders higher than the
first one, we get

δe0
0 = δν0 = 0 . (2.35)

Then, by perturbing the other condition:(
eji + δeji

)(
eij + δeij

)
= 1 ,

and neglecting higher order terms as before, we get

δei0 = −
(
Don̂

i + Ei
ojn̂

j
)
. (2.36)

3The notation “o” stands for the quantity evaluated at the observer’s position.
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Detailed calculations can be found in appendix A. We are now ready to integrate (2.26)
along the line of sight:∫ χ

0

[
dδei

dχ
+ 2

d

dχ

(
Dn̂i +Ei

jn̂
j
)]
dχ′ =

∫ χ

0

[
∂iD + ∂iE‖ −

2

χ

(
Ei
kn̂

k −E‖n̂i
)]
dχ′ (2.37)

δei(χ)− δei(0) + 2
(
Dn̂i + Ei

jn̂
j
)
χ
− 2
(
Dn̂i + Ei

jn̂
j
)
o

=

∫ χ

0

[
∂iD + ∂iE‖ −

2

χ

(
Ei
kn̂

k − E‖n̂i
)]
dχ′

δei(χ) = −2
(
Dn̂i + Ei

jn̂
j
)
χ

+
(
Dn̂i + Ei

jn̂
j
)
o

+

∫ χ

0

[
∂iD + ∂iE‖ −

2

χ

(
Ei
kn̂

k − E‖n̂i
)]
dχ′ . (2.38)

Since δei = dδxi/dχ, δxi can be obtained by integrating over the line of sight from 0
and χ̃. The double integral can be simplified with a trick (see Fig.10.5 in [1]) which
reduces it to a single integral of the quantity inside multiplied by χ̃− χ:

δxi =

∫ χ̃

0

δeidχ = χ̃
(
Dn̂i + Ei

jn̂
j
)
o

+

∫ χ̃

0

[
−2
(
Dn̂i + Ei

jn̂
j
)

+
(
χ̃− χ

)(
∂iD + ∂iE‖ −

2

χ

(
Ei
kn̂

k − E‖n̂i
))]

dχ . (2.39)

At this point (2.27) can be integrated too:∫ χ̃

0

dδν

dχ
dχ = −

∫ χ̃

0

(
D′ + E‖

′)dχ =⇒ δν(χ̃) = −
∫ χ̃

0

(
D′ + E‖

′) . (2.40)

Since δν = dδx0/dχ, by integrating over the line of sight as before we get:

δx0 =

∫ χ̃

0

δν dχ = −
∫ χ̃

0

dχ
(
χ̃− χ

)(
D′ + E‖

′) . (2.41)

The physical interpretation of the frequency shift δν embodies the Doppler, Sachs-Wolfe
and integrated Sachs-Wolfe effects.

2.1.3 Redshift

Now an important physical quantity will be introduced, because it is the key observable
quantity we work with, and that will be related to the affine parameter at emission: we
are talking about the redshift z(χ). We consider a photon emitted from a galaxy (the
source), which is moving in direction n̂ (hence it is seen under the direction −n̂ from
the observer). Given n̂µ = a−2(−1 + δn̂0, n̂ + δn̂) = a−2(−1 + δν, n̂ + δn̂), and the
comoving observer’s four-velocity uµ = (a, 0, 0, 0) in the synchronous-comoving gauge,
the redshift along the perturbed photon geodesic is given by:

1 + z(χ) =
(uµn̂

µ)e
(uµn̂µ)o

, (2.42)
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where “e” stands for “evaluated at the emission (source) position” and “o” for “evalu-
ated at the observer’s position”. Setting ao = 1, and

δz(χ̃) ≡ −δν(χ̃) =

∫ χ̃

0

dχ
(
D′ + E‖

′) , (2.43)

as the redshift perturbation, we compute that:

1 + z(χ) =

(
−1 + δν(χ)

)
a−1(x0(χ))

−1
=

1 + δz(χ)

a(x0(χ))
, (2.44)

where x0(χ) = τ is the conformal time. For a given source observed at redshift z̃, Eq.
(2.44) is an implicit relation for the affine parameter χe at emission:

1 + z(χe) = 1 + z̃ , (2.45)

which gives a definition of the space-time location of the source

xµsource = xµ(χe) . (2.46)

The redshift z̄(χe) that would have been observed for the same source without any
perturbations along the line of sight is given by

1 + z̄(χe) =
1

a(x0(χe))
. (2.47)

Therefore at χ = χe we get

1 + z̃ =
(
1 + z̄

)(
1 + δz(χe)

)
. (2.48)

At zero order we have χe = χ̃ and z(χ) = z̄(χ), but at first order we can make an
expansion around χe = χ̃+ δχ. First af all we can notice that, from expressions (2.10)
and (2.11), we have:

xµ(χe) = x̄µ(χ̃) + ∆xµ(χ̃) . (2.49)

Then, we can perform the expansion of a(x0(χe)):

a(x0(χe)) = a(x̄0(χ̃) + ∆x0(χ̃))

= a(x̄0(χ̃)) +
da(x̄0)

dx0
∆x0(χ̃)

= a(x̄0(χ̃))

[
1 +

1

a(x̄0)

da(x̄0)

dx0︸ ︷︷ ︸
a′(x̄0)

a(x̄0)
=H(x̄0)=aH(x̄0)

∆x0(χ̃)

]

= a(x̄0(χ̃))

[
1 + aH(x̄0)∆x0(χ̃)

]
. (2.50)

Now the expression (2.12) for ∆x0 can be inserted, getting to:

a(x0(χ̃)) = a(x̄0(χ̃))
{

1 + aH(x̄0)
[
−δχ+ δx0(χ̃)

]}
. (2.51)

At first order in the perturbations, its reciprocal is

1

a(x0(χ̃))
=

1

a(x̄0(χ̃))

{
1− aH(x̄0)

[
−δχ+ δx0(χ̃)

]}
. (2.52)
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Therefore the expression (2.48) becomes:

1 + z̃ =
(
1 + z̃

){
1−

(
aH
)
z̃

[
δx0(χ̃)− δχ

]
+ δz(χ̃)

}
. (2.53)

We can now give the connection between the affine parameter and the observed redshift
by solving (2.53) for δχ:

δx0 − δχ =
δz(
aH
)
z̃

=
1 + z̃

H(z̃)
δz =⇒ δχ = δx0 − 1 + z̃

H(z̃)
δz . (2.54)

Finally, projections along and perpendicular to the line of sight can be computed start-
ing from the expression (2.13) of ∆xi, and using the definitions for the projections that
can be found in appendix A:

∆x‖ = ∆xi n̂i = δχ+ δxi(χ̃) n̂i = δx0 − 1 + z̃

H(z̃)
δz + δx‖ , (2.55)

∆xi⊥ = (δij − n̂in̂j)∆xi = n̂iδχ+ δxi − n̂in̂jn̂iδχ− n̂in̂jδxj = δxi − n̂iδx‖ . (2.56)

More explicit expressions of these displacements will be computed later, but we can
give here a useful expression of δz using the fact that Eij = ∂i∂jE − 1

3
∇2δijE, that

d/dχ+ ′ = ∂‖, and the definition of E‖ which can be found in appendix A.

δz =

∫ χ̃

0

dχ
(
D′ + n̂in̂jE ′ij

)
=

∫ χ̃

0

dχ
(
D′ + ∂2

‖E
′ − 1

3
∇2E ′

)
=

∫ χ̃

0

dχ

[
D′ − 1

3
∇2E ′ +

(
d

dχ
+

d

dτ

)
∂‖E

′
]

=
[
∂‖E

′]χ̃
0

+

∫ χ̃

0

dχ

[
D′ − 1

3
∇2E ′ +

(
d

dχ
+

d

dτ

)
E ′′
]

=
[
∂‖E

′ + E ′′
]χ̃

0
+

∫ χ̃

0

dχ

(
D′ − 1

3
∇2E ′ + E ′′′

)
.

Then we can see that
δz =

[
∂‖E

′ + E ′′
]s
o

+ δzISW , (2.57)

where “o” stands for “evaluated at the observer’s position”, “s” stands for “evaluated
at the source position”, and

δzISW =

∫ χ̃

0

dχ

(
D′ − 1

3
∇2E ′ + E ′′′

)
(2.58)

corresponds to the integrated Sachs-Wolfe contribution in the synchronous-comoving
gauge. This claim can be easily explained if we take the general expression for the ISW
term

δzISW =

∫ χ̃

0

dχ
(
Φ + Ψ

)′
, (2.59)

where Φ and Ψ are the gauge invariant Bardeen potentials [20, 31]. They are special
combinations of metric perturbations that do not transform under a change of coor-
dinates, therefore it’s useful to express physical quantities in terms of them in order
to avoid gauge problems. Starting from the metric ĝµν , in the synchronous comoving
gauge we are adopting, they assume the form [19]:

Ψ = E ′′ , (2.60)

Φ = D − 1

3
∇2E . (2.61)
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Therefore the expression (2.58) is immediately obtained by taking the derivative with
respect to τ of the sum of the two previous potentials, and then of course by integrating
it along the line of sight.

2.2 Perturbation of the galaxy number density

After perturbing photon trajectories, we are ready to study how the observed galaxy
number density is measured and to compute its perturbation. The starting point the
number of galaxies N within a volume Ṽ , which can be defined starting from the true
spatial position x given in terms of the observed coordinates x̃ and the galaxy number
density ng(x

µ):

N =

∫
Ṽ

√
−g(xα)ng(x

α)εµνρσu
µ(xα)

∂xν

∂x̃1

∂xρ

∂x̃2

∂xσ

∂x̃3
d3x̃ , (2.62)

where uµ = (1/a, 0, 0, 0) is the observer’s four-velocity in the synchronous-comoving
gauge, and the quantity inside the integral is the number density we want to perturb.
Therefore:

N =

∫
Ṽ

√
−g(xα)ng(x

α)
1

a(x0)
εijk

∂xi

∂x̃1

∂xj

∂x̃2

∂xk

∂x̃3
d3x̃ =

∫
Ṽ

√
−g(xα)ng(x

α)
1

a(x0)

∣∣∣∣∂xi∂x̃j

∣∣∣∣d3x̃ .

(2.63)
Here below we compute the perturbations for these three terms:√
−g(x), ng,

∣∣∣ ∂xi∂x̃j

∣∣∣.
2.2.1 Metric determinant g and Jacobian

Given the unperturbed square root of the metric determinant
√
−ḡ = a4, we can write

that: √
−g =

√
−ḡ + δ

√
−g . (2.64)

Knowing that g = exp(Tr(ln(gµν))), it’s easy to compute δ
√
−g = 1

2

√
−ḡ g gµνδgµν ,

thus:

√
−g = a4 +

1

2

√
−g gµνδgµν = a4

[
1 +

1

2
gµνδgµν

]
= a4

[
1 +

1

2
δgµµ

]
. (2.65)

The expansion of the Jacobian at the first order in the displacement ∆x is:∣∣∣∣∂xi∂x̃j

∣∣∣∣ =

∣∣∣∣δij +
∂∆xi

∂x̃j

∣∣∣∣ = 1 +
∂∆xi

∂x̃i
. (2.66)

2.2.2 Comoving galaxy number density

We can now consider the comoving galaxy number density a3ng and start to perturb it:

a3(x0)ng(x
0,x) = a3(x0)n̄g(x

0)
[
1 + δg(x, x

0)
]
, (2.67)

where δg is the galaxy number density perturbation and x0 is the conformal time,
connected to the redshift through (2.47). Now we want to make an expansion around
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x̄0 at the first order as already done in section 2.1.3, by expanding all the terms inside
the expression (2.67):

a3(x0) = a3(x̄0 + ∆x0) = a3(x̄0) +
da3(x̄0)

dx0
∆x0 , (2.68)

n̄g(x
0) = n̄g(x̄

0 + ∆x0) = n̄g(x̄
0) +

dn̄g(x̄0)

dx0
∆x0 . (2.69)

Therefore at first order in perturbations we find:

a3(x0)ng(x
0,x) =

[
a3(x̄0) +

da3(x̄0)

dx0
∆x0

][
n̄g(x̄

0) +
dn̄g(x̄0)

dx0
∆x0

][
1 + δg(x, x

0)
]

=

[
a3(x̄0)n̄g(x̄

0) + a3(x̄0)
dn̄g(x̄0)

dx0
∆x0 + n̄g(x̄

0)
da3(x̄0)

dx0
∆x0

][
1 + δg(x, x

0)
]

= a3(x̄0)n̄g(x̄
0)

[
1 +

1

n̄g

dn̄g(x̄0)

dx0︸ ︷︷ ︸
d ln n̄g(x̄0)

dx0

∆x0 +
1

a3(x̄0)

da3(x̄0)

dx0︸ ︷︷ ︸
d ln a3(x̄0)

dx0

∆x0

][
1 + δg(x, x

0)
]

= a3(x̄0)n̄g(x̄
0)

[
1 +

d ln
(
a3n̄g(x

0)
)

dx0
∆x0

][
1 + δg(x, x

0)
]

= a3(x̄0)n̄g(x̄
0)
[
1 + δg(x, x

0)
]

+
d
(
a3n̄g(x̄

0)
)

dx0
∆x0 . (2.70)

At this point we can write this expression in terms of the observed redshift z̃, reminding
that:

• ∆x0 = δx0 − δχ = 1+z̃
H(z̃)

δz from (2.12) and (2.54);

• d
dx0 = −H(z̃) d

dz
|z=z̃ from (2.47).

By doing these substitutions we have4:

a3(z)ng(x, z̄) = a3(z̃)n̄g(z̃)
[
1 + δg(x̃)

]
−H(z̃)

d
(
a3n̄g

)
dz

∣∣∣∣
z=z̃

1 + z̃

H(z̃)
δz

= a3(z̃)n̄g(z̃)
[
1 + δg(x̃)

]
−
(
1 + z̃

)d(a3n̄g
)

dz

∣∣∣∣
z=z̃

δz . (2.71)

The comoving galaxy number density gives N when integrated over the volume Ṽ∫
Ṽ

a3(z̃)ñg(x̃, z̃)d3x̃ = N . (2.72)

Therefore we can compare the quantity inside the integral of (2.63) with the final
expression of a3n̄g (2.71), with the insertion of the perturbed expressions of

√
−ĝ and

of the Jacobian:

a3(z̃)ñg(x̃, z̃) =
√
−g(x, z̄)ng(x, z̄)

1

a(z̄)

∣∣∣∣∂xi∂x̃j

∣∣∣∣ = a4(z̄)

(
1+

1

2
δgµµ

)
ng(x, z̄)

1

a(z̄)

(
1+

∂∆xi

∂x̃i

)
.

(2.73)

4Note that the distinction between δg(x̃) and x is second order.
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We can now insert the expansions (2.68) of a3(z̄) and (2.69) ng(z̄) with the previous
substitutions related to z̃:

a3(z̃)ñg(x̃, z̃) =

(
1 +

1

2
δgµµ

)[
a3(z̃)− (1 + z̃)

da3

dz

∣∣∣
z̃
δz

]
×
[
n̄g(z̃)− (1 + z̃)

dn̄g
dz

∣∣∣
z̃
δz

][
1 + δg(x̃)

](
1 +

∂∆xi

∂x̃i

)
= a3(z̃)n̄g(z̃)

[
1− 1

n̄g(z̃)

dn̄g
dz

∣∣∣∣
z̃︸ ︷︷ ︸

d ln(n̄g(z))

dz

∣∣
z̃

(1 + z̃)δz − 1

a3(z̃)

da3

dz

∣∣∣∣
z̃︸ ︷︷ ︸

d ln(a3(z))
dz

∣∣
z̃

(1 + z̃)δz

]

×
(

1 +
1

2
δgµµ

)(
1 + δg(x̃)

)(
1 +

∂∆xi

∂x̃i

)
︸ ︷︷ ︸

'1+δg(x̃)+ ∂∆xi

∂x̃i
+ 1

2
δgµµ

,

where we discarded high order terms as usual. In the end we find:

ñg(x̃, z̃)

n̄g(z̃)
=

(
1− d ln(a3n̄g)

dz

∣∣∣∣
z̃

(1 + z̃)δz

)(
1 + δg(x̃) +

∂∆xi

∂x̃i
+

1

2
δgµµ

)
= 1 + δg(x̃) +

∂∆xi

∂x̃i
+

1

2
δgµµ −

d ln(a3n̄g)

dz

∣∣∣∣
z̃

(1 + z̃)︸ ︷︷ ︸
1

a(z̃)

δz . (2.74)

At this point we can remind that 1 + z̃ = 1/a(z̃), therefore d/dz = −a2 d/da, thus:

ñg(x̃, z̃)

n̄g(z̃)
= 1 + δg(x̃) +

∂∆xi

∂x̃i
+

1

2
δĝµµ − a(z̃)

d ln(a3n̄g)

dz

∣∣∣∣
z̃

δz

= 1 + δg(x̃) +
∂∆xi

∂x̃i
+

1

2
δĝµµ −

d ln(a3n̄g)

d ln a

∣∣∣∣
z̃

δz . (2.75)

We can now define the quantity

be ≡
d ln(a3n̄g)

d ln a

∣∣∣∣
z̃

= −(1 + z̃)
d ln(a3n̄g)

dz

∣∣∣∣
z̃

. (2.76)

Further, starting from the metric (2.1) we can find that

1

2
δgµµ =

1

2
(2D × 3) = 3D . (2.77)

Then it can be computed that

∂∆xi

∂x̃i
= ∂‖∆x‖ + 2

∆x‖
χ̃
− 2κ̂ , (2.78)

where κ̂ is the coordinate convergence, which is related to the effect of lensing (distor-
tions on the directions which are perpendicular to the line of sight) and is here defined
as

κ̂ = −1

2
∂⊥i∆x

i
⊥ . (2.79)

The expression (2.78) is obtained by using the property (A.14) which can be found in
appendix A and that leads to

∂∆xi

∂x̃i
= ∂‖∆x‖ + ∂⊥i∆x

i
⊥ + ∆x‖∂in̂

i ,
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where the third terms gives ∆x‖ · 2
χ̃

according to the property (A.6) of appendix A.

We are now ready to return to the expression (2.74) of the ratio between ñg(x̃, z̃) and
ñg(z̃):

ñg(x̃, z̃)

n̄g(z̃)
= 1 + 3D + δg + beδz + ∂‖∆x‖ + 2

∆x‖
χ̃
− 2κ̂ . (2.80)

2.2.3 Explicit expression of ñg(x̃, z̃)/ñg(z̃)

∂‖∆x‖

The expression (2.80) can be further explicited. We start with the computation of
∂‖∆x‖, for which we need to derive the following expression:

∆x‖ = −
∫ χ̃

0

dχ
(
D + E‖

)
− 1 + z̃

H(z̃)

∫ χ̃

0

dχ
(
D′ + E ′‖

)
︸ ︷︷ ︸

δz

. (2.81)

Reminding that at the first order ∂‖ = ∂/∂χ̃, we can calculate:

∂‖∆x‖ = −
(
D + E‖

)∣∣
χ̃
− ∂

∂χ̃

(
1 + z̃

H(z̃)

)∣∣∣∣
χ=χ̃

δz − 1 + z̃

H(z̃)

(
D′ + E ′‖

)∣∣
χ̃
. (2.82)

It’s easy to see that:

z̃(χe) =
1

a(x̃0(χe))
− 1 =⇒ dz̃

dχ

∣∣∣∣
χ̃

= − da

dx̃0︸︷︷︸
a′

dx̃0

dχ̃︸︷︷︸
−1

1

a2(x̃0(χe))

∣∣∣∣
χ̃

=
a′

a2

∣∣∣∣
z̃

= H(z̃) .

Besides we can notice that ∂/∂χ̃ = (dz̃/dχ̃)∂/∂z̃ = H(z̃)∂/∂z̃. Therefore:

∂‖∆x‖ = −
(
D + E‖

)∣∣
χ̃
− δzH(z̃)

d

dz

(
1 + z̃

H(z̃)

)
− 1 + z̃

H(z̃)

(
D′ + E ′‖

)∣∣
χ̃
. (2.83)

Another useful expression is:

∂‖∆x‖ = −
(
D + E‖

)∣∣
χ̃
−
[
1− 1 + z̃

H(z̃)

dH(z̃)

dz̃

]
δz − 1 + z̃

H(z̃)

(
D′ + E ′‖

)∣∣
χ̃
, (2.84)

where a total derivative has been used to substitute the term in d/dz̃. This expression
will be inserted in the final form of ñg(x̃, z̃)/ñg(z̃).

Convergence κ̂

We go on with the explicit derivation of κ̂, starting from the expression:

∆xi⊥ = χ̃
(
Ei
jn̂

j −E‖n̂i
)
o

+

∫ χ̃

0

dχ

[
−2

χ̃

χ

(
Ei
jn̂

j −E‖n̂i
)

+
(
χ̃−χ

)
∂i⊥
(
D+E‖

)]
. (2.85)

The computation of κ̂ can now be performed [31]:

κ̂ = −1

2
∂⊥i∆x

i =−1

2
∂⊥i

[
χ̃
(
Ei
jn̂

j − E‖n̂i
)
o

]
︸ ︷︷ ︸

(1)

+∂⊥i

∫ χ̃

0

dχ
χ̃

χ

(
Ei
jn̂

j − E‖n̂i
)

︸ ︷︷ ︸
(2)

−1

2
∇2
⊥

∫ χ̃

0

dχ
χ̃

χ

(
χ̃− χ

)(
D + E‖

)
︸ ︷︷ ︸

(3)

, (2.86)
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where in the term (3) the extra factor χ̃/χ comes from the fact that ∂i⊥ has been
moved outside the integral, so it acts at radius χ̃ rather than χ; the subscript o stands
for “evaluated at the observer’s position”. These terms will be further explicited one
by one. In the third one (3) we can notice that D + E‖ = D − 1

3
∇2E + ∂2

‖E, since

Eij = (∂i∂j − 1
3
∇2δij). In the second (2):

n̂jEi
j − n̂iE‖ = n̂j

(
∂j∂

i − 1
3
δij∇2

)
E − n̂i

(
∂2
‖ −

1
3
∇2
)
E =

(
∂‖∂

i − ∂‖n̂i∂‖
)
E = ∂‖∂

i
⊥E =

∂i⊥∂‖E − 1
χ
∂i⊥E (see the commutation properties in appendix A).

Therefore the second and the third terms can be written as:

(2) + (3) = ∂⊥i

∫ χ̃

0

dχ
χ̃

χ

(
∂i⊥∂‖E −

1

χ
∂i⊥E

)
− 1

2
∇2
⊥

∫ χ̃

0

dχ
χ̃

χ

(
χ̃− χ

)(
D − 1

3
∇2E + ∂2

‖E

)
= ∇2

⊥

∫ χ̃

0

dχ

[
χ̃2

χ2
∂‖E −

χ̃2

χ3
E − 1

2

χ̃

χ

(
χ̃− χ

)(
D − 1

3
∇2E + ∂2

‖E + E ′′ − E ′′
)]

= −1

2

∫ χ̃

0

dχ
χ

χ̃

(
χ̃− χ

)
∇2
⊥

(
D − 1

3
∇2E + E ′′

)
︸ ︷︷ ︸

κ

+
1

2
∇2
⊥

∫ χ̃

0

dχ

[(
χ̃− χ̃2

χ

)(
∂2
‖E − E ′′ + 2

χ̃2

χ2
∂‖E − 2

χ̃2

χ3
E

)]
.

Here we defined

κ = −1

2

∫ χ̃

0

dχ
χ

χ̃

(
χ̃− χ

)
∇2
⊥

(
D − 1

3
∇2E + E ′′

)
. (2.87)

Then, by using the fact that ′ = ∂‖ − d/dχ, we can compute that: ∂2
‖E − E ′′ =

∂2
‖E−(E ′)′ = ∂2

‖E−(∂‖E−dE/dχ)′ = ∂2
‖E−∂2

‖E+d(∂‖E)/dχ+d(∂‖E)/dχ−d2E/dχ2 =

d(2∂‖E − dE/dχ)/dχ. If we do these substitutions:

(2) + (3) = κ+
1

2
∇2
⊥

∫ χ̃

0

dχ

[(
χ̃− χ̃2

χ

)
d

dχ

(
2∂‖E −

d

dχ
E

)
+ 2

χ̃2

χ2
∂‖E − 2

χ̃2

χ3
E

)]
= κ+

1

2
∇2
⊥

∫ χ̃

0

dχ

{(
χ̃2

χ
− χ̃

)
d2E

dχ2
+

d

dχ

[(
χ̃− χ̃2

χ

)
2∂‖E

]
− d

dχ

(
χ̃− χ̃2

χ

)
︸ ︷︷ ︸

− χ̃2

χ2

·2∂‖E + 2
χ̃2

χ2
∂‖E − 2

χ̃2

χ3
E

)}
.

It can be easily noticed that there is a divergence for χ = 0, but this unconvenient can
be skipped by evaluating the integral from ε to χ̃, with ε very small but positive, thus
cancelling divergences. This is possible because we are looking to regions well outside
the horizon, so we don’t care about small scales.

(2) + (3) = κ+∇2
⊥

{(
χ̃− χ̃2

χ

)
∂‖E

}∣∣∣∣χ̃
ε

+
1

2
∇2
⊥

∫ χ̃

ε

dχ

[(
χ̃2

χ
− χ̃

)
d2E

dχ2
− 2

χ̃2

χ3
E

]
.

Since we are considering small ε > 0, we can do an expansion of ∂‖E at the first order
in ε:

∂‖E(ε) = n̂i∂iE(0) + n̂i∂i
d
dχ

∣∣
ε
E(0)ε = n̂i∂iE(0) + n̂in̂j∂i∂jE(0)ε− n̂i∂iE ′(0)ε+O(ε2).
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We can substitute this expression in the term in braces {}:

{(
χ̃− χ̃2

χ

)
∂‖E

}∣∣∣∣χ̃
ε

= −
(
χ̃− χ̃2

ε

)(
n̂i∂iE(0) + n̂in̂j∂i∂jE(0)ε− n̂i∂iE ′(0)ε

)
= −

(
χ̃− χ̃2

ε

)
n̂i∂iE(0)−

(
χ̃n̂in̂j∂i∂jE(0)ε− χ̃2n̂in̂j∂i∂jE(0)− χ̃n̂i∂iE ′(0)ε

+ χ̃2n̂i∂iE
′(0)
)
−→ −

(
χ̃− χ̃2

ε

)
n̂i∂iE(0) + χ̃2n̂in̂j∂i∂jE(0)− χ̃2n̂i∂iE

′(0)

for ε→ 0 .

We want to know how the operator ∇2
⊥ acts. First of all, if we consider a fixed measured

distance χ̃, we are considering points of emission as on a sphere around us; therefore we
can assert that ∇2

⊥ = 1
χ̃2∇2

Ω, where ∇2
Ω acts only on the angular coordinates θ, φ and is

defined as

∇2
Ω =

1

sin2θ

∂2

∂φ2
+

1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
. (2.88)

If we remember the expression of the operator L2 (with L as the angular momentum)
in terms of the spherical coordinates, we can recognize that ∇2

Ω|`m〉 ∝ −L|`m〉 =
−`(` + 1)|`m〉. For this reason, when we have dipoles (` = 1) the operator ∇2

⊥ pulls
down a factor −2/χ̃2, while when we have quadrupoles (` = 2) it pulls down a factor
−6/χ̃2. Therefore for (2) + (3) we find:

(2) + (3) = κ+

(
2

χ̃
− 2

ε

)
n̂i∂iE(0)− 6n̂in̂j∂i∂jE(0) + 2n̂i∂iE

′(0)

+
1

2
∇2
⊥

∫ χ̃

ε

dχ

[(
χ̃2

χ
− χ̃

)
d2E

dχ2
− 2

χ̃2

χ3
E

]
.

We can now treat the last term with two integrations by part:

∫ χ̃

ε

dχ

[(
χ̃2

χ
− χ̃

)
d2E

dχ2
− 2

χ̃2

χ3
E

]
=

[(
χ̃2

χ
− χ̃

)
dE

dχ

]∣∣∣∣χ̃
ε

−
∫ χ̃

ε

dχ

[
− χ̃

2

χ2

dE

dχ

]
−
∫ χ̃

ε

dχ

(
2
χ̃2

χ3
E

)
= −

(
χ̃2

ε
− χ̃

)
dE

dχ
(ε) +

χ̃2

χ2
E

∣∣∣∣χ̃
ε

+

∫ χ̃

ε

dχ

(
2
χ̃2

χ3
E

)
−
∫ χ̃

ε

dχ

(
2
χ̃2

χ3
E

)
= −

(
χ̃2

ε
− χ̃

)
dE

dχ
(ε) + E(χ̃)− χ̃2

ε2
E(ε) .

By inserting this expression in the previous one we find:

(2) + (3) = κ+

(
2

χ̃
− 2

ε

)
n̂i∂iE(0)− 6n̂in̂j∂i∂jE(0) + 2n̂i∂iE

′(0)

+
1

2
∇2
⊥

[
−
(
χ̃2

ε
− χ̃

)
dE

dχ
(ε)− χ̃2

ε2
E(ε)

]
+

1

2
∇2
⊥E(χ̃) .
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Another expansion for small ε around the observer’s position can be done for the quan-
tity in square brackets [ ]:

−
(
χ̃2

ε
− χ̃

)
dE

dχ
(ε)− χ̃2

ε2
E(ε) =

= −
(
χ̃2

ε
− χ̃

)[
dE

dχ
(0) + ε

d2E

dχ2
(0)

]
− χ̃2

ε2

[
E(0) + ε

dE

dχ
(0) + ε2

d2E

dχ2
(0)

]
= −

(
χ̃2

ε
− χ̃

)[
n̂i∂iE(0)− E ′(0) + εn̂in̂j∂i∂jE(0)− 2εn̂i∂iE

′(0) + εE ′′(0)
]

− χ̃2

ε2

[
E(0) + εn̂i∂iE(0)− εE ′(0) +

1

2
ε2n̂in̂j∂i∂jE(0)− ε2n̂i∂iE ′(0)− 1

2
ε2E ′′(0)

]
.

Again the operator∇2
⊥ pulls down a factor−2/χ̃2 for dipoles and−6/χ̃2 for quadrupoles.

At this point, by doing all the calculations, we find that the terms with ε in the denom-
inator cancels out, the terms in ε and ε2 goes to zero since we take the limit for small
ε, and the other terms gather in the following way:

1

2
∇2
⊥

[
−
(
χ̃2

ε
− χ̃

)
dE

dχ
(ε)− χ̃2

ε2
E(ε)

]
= κ+

1

2
∇2
⊥E(χ̃) +

1

χ̃
n̂i∂iE(0)

− 3

2
n̂in̂j∂i∂jE(0)− n̂i∂iE ′(0) .

The term (1) in (2.86) is indipendent from χ̃ and gives

(1) =
3

2
n̂in̂j∂i∂jE(0) ,

which cancels with the third term in the previous expression. Therefore, by substituting
the final expressions of (1), (2), (3) into (2.86), we get this final expression of κ̂ :

κ̂ = κ+
1

2
∇2
⊥E(χ̃) +

1

χ̃
n̂i∂iE(0)− n̂i∂iE ′(0) . (2.89)

Final result for ñg(x̃, z̃)/ñg(z̃)

We are now ready to give a final explicit form of the ratio between ñg(x̃, z̃) and ñg(z̃),
by substituting all the terms we computed:

ñg(x̃, z̃)

n̄g(z̃)
= 1 + 3D + δg + beδz −

(
D + E‖

)∣∣
χ̃
−
[
1− 1 + z̃

H(z̃)

dH(z̃)

dz̃

]
δz − 1 + z̃

H(z̃)

(
D′ + E ′‖

)∣∣
χ̃

− 2

χ̃

{∫ χ̃

0

dχ
(
D + E‖

)
+

1 + z̃

H(z̃)
δz

}
− 2

{
κ+

1

2
∇2
⊥E(χ̃) +

1

χ̃
n̂i∂iE(0)− n̂i∂iE ′(0)

}
.

But this expression is quite unpractical because we can’t clearly see the physical meaning
of all the terms. First of all it’s better to introduce the quantity

φ ≡ D − 1

3
∇2E , (2.90)

which removes the residual spatial gauge modes that emerge in the synchronous-comoving
gauge. Further, we can notice that it’s a physical significant parameter because it cor-
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responds to the Bardeen potential Φ (2.61) in the synchronous-comoving gauge. Then:

ñg(x̃, z̃)

n̄g(z̃)
= 1 + δg + beδz + 2φ+

2

3
∇2E −

(
∂2
‖E −

1

3
∇2E

)
−
[
1− 1 + z̃

H(z̃)

dH(z̃)

dz̃
+

2

χ̃

1 + z̃

H(z̃)

]
δz − 2

χ̃

∫ χ̃

0

dχ
(
D + E‖

)
− 1 + z̃

H(z̃)

(
D′ + E ′‖

)∣∣
χ̃
− 2κ− ∇2

⊥E︸ ︷︷ ︸
∇2E−∂2

‖E−
2
χ̃
∂‖E

− 2

χ̃
n̂i∂iE(0) + 2n̂i∂iE

′(0)

= 1 + δg + beδz + 2φ+
2

χ̃

[
∂‖E − ∂‖E(o)

]
−
[
1− 1 + z̃

H(z̃)

dH(z̃)

dz̃
+

2

χ̃

1 + z̃

H(z̃)

]
δz

− 2

χ̃

∫ χ̃

0

dχ
(
φ+ ∂2

‖E
)
− 1 + z̃

H(z̃)

(
D′ + E ′‖

)∣∣
χ̃
− 2k + 2∂‖E

′(0) .

We can now simplify the integral using again the fact that ∂‖ = d
dχ

+ ′:∫ χ̃

0

dχ

[
φ+

(
d

dχ
+

d

dτ

)
∂‖E

]
=
[
∂‖E

]χ̃
0

+

∫ χ̃

0

dχ

[
φ+

(
d

dχ
+

d

dτ

)
E ′
]

=
[
∂‖E + E ′

]χ̃
0

+

∫ χ̃

0

dχ
(
φ+ E ′′

)
= ∂‖E − ∂‖E(0) + E ′ − E ′(0) +

∫ χ̃

0

dχ
(
φ+ E ′′

)
.

Further, we can notice that D′+E ′‖ = D′+ ∂2
‖E
′− 1

3
∇2E ′ = ∂2

‖E
′+φ′. By substituting

all of these expressions we find that:

ñg(x̃, z̃)

n̄g(z̃)
= 1 + δg + beδz + 2φ−

[
1− 1 + z̃

H(z̃)

dH(z̃)

dz̃
+

2

χ̃

1 + z̃

H(z̃)

]
δz − 2

χ̃

[
E ′ − E ′(0)

]
− 2

χ̃

∫ χ̃

0

dχ
(
φ+ E ′′

)
− 1 + z̃

H(z̃)

(
∂2
‖E
′ + φ′

)
− 2k + 2∂‖E

′(0) . (2.91)

2.3 Observed galaxy density perturbation

In a galaxy survey we usually measure the galaxy number density ñg(x̃, z̃) at a certain
direction n̂ (which is linked to the observed position x̃ = χ̃n̂) and with a certain redshift
z̃, and then we refer it to the average number density n̄g(z̃) at a fixed observed redshift.
Then we define the observed galaxy density fluctuations as

δ̃g(x̃) =
ñg(x̃, z̃)− n̄g(z̃)

n̄g(z̃)
=
ñg(x̃, z̃)

n̄g(z̃)
− 1 . (2.92)

Therefore from (2.91) we deduce that:

δ̃g(x̃) = δg + beδz −
1 + z̃

H(z̃)
∂2
‖E
′ −
[
1− 1 + z̃

H(z̃)

dH(z̃)

dz̃
+

2

χ̃

1 + z̃

H(z̃)

]
δz + 2φ

− 2

χ̃

[
E ′ − E ′(o)

]
− 2

χ̃

∫ χ̃

0

dχ
(
φ+ E ′′

)
− 2κ− 1 + z̃

H(z̃)
φ′ + 2∂‖E

′(o) . (2.93)

If we look at this formula, we can see that there are many different contributions:
the first two terms are a gauge invariant expression of the intrinsic galaxy density
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perturbation, the third one is the standard redshift distortion, the terms in square
brackets and φ contain the volume distortion due to the redshift perturbation, the
terms with E ′ contain the volume distortion due to the metric perturbations, and finally
there are the contributions from the time delay, lensing convergence and Doppler effect.
However, a clearer description of the physical meaning of all these terms will be done a
the end of the chapter, after considering the issue of the magnification and galaxy bias.

2.4 Magnification bias

Until this moment only the intrinsic physical properties of the galaxies, such as their
redshift and their position, have been considered as contributions to δ̃g(x̃). However,
what we measure also depends on the apparent flux from the source, in a way that
the luminosity distance 5DL differs from the mean luminosity distance D̄L. But the
luminosity distance is related to the angular diameter 6DA [31]:

DL =
(
1 + z̃

)2
DA . (2.94)

Therefore the magnification parameter can be introduced as

M≡ D−2
A

D̄−2
A (z̃)

=
D−2
L

D̄−2
L (z̃)

, (2.95)

which corresponds to the solid angle or flux perturbation with respect to a source at
the same z̃ in an unperturbed universe. Since it has mean value 1, its perturbation can
be written as

δM≡M− 1 . (2.96)

At this point we can define the factor Q which expresses the connection between the
observed number density of galaxies and the magnification:

Q =
∂lnñg
∂lnM

∣∣∣∣
z̃

, (2.97)

in a way that the observed galaxy overdensity can be written as

δ̃g = δ̃no magnification
g +QδM , (2.98)

where δ̃no magnification
g is given by (2.93), and Q represents the magnification bias. Our

aim is now to find the dependence of δM on the metric perturbations, in order to give
an explicit expression of this contribution to δ̃g. First of all we must express the angular
diameter distance in terms of the geometrical quantities we know, so we consider:

- a reference frame generated by an orthonormal basis {n̂i, âi, b̂i}, where n̂i is the

direction of observation and âi, b̂i span the plane perpendicular to it;

- a unit purely spatial vector ˆ̀µ which points away from the observer in a way that
uµ ˆ̀µ = 0;

5DL can be defined as L/4πF , where L is the luminosity and F is the flux [1].
6DA = D/θ where D is the real spatial distance, while θ is the angular distance [32].
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- the spatial part of the tangent vector to the past light cone Lν = ∂xν/∂χ̃
∣∣
n̂

, which

is parallel to ˆ̀ν . Then, by defining uσ = (−a, 0, 0, 0) and uk = 0 for the comoving
observer’s four velocity, we can write that

ˆ̀µ =
Lν

Lσuσ
+ uν =

Lν

a(x0)L0
=

1

a(x0)

∂xν/∂χ̃

−∂x0/∂χ̃
. (2.99)

An expression for DA can be obtained from the area perpendicular to the line of sight
and spanned by âi and b̂i on the past light cone:

D2
A =

√
−g(xα)εµνρσu

µ ˆ̀ν ∂x
ρ

∂n̂i
∂xσ

∂n̂j
âib̂j . (2.100)

From (2.95) we deduce that:

M−1 =
D2
A

[ā(χ̃)]2χ̃2
=

1

[ā(χ̃)]2χ̃2

√
−g(xα)εµνρσu

µ ˆ̀ν dx
ρ

dx̃α
∂x̃α

∂n̂i︸︷︷︸
χ̃δαi

dxσ

dx̃β
∂x̃β

∂n̂j︸︷︷︸
χ̃δβj

âib̂j

=

√
−g(xα)

[ā(χ̃)]2
εµνρσu

µ ˆ̀ν ∂x
ρ

∂x̃i
∂xσ

∂x̃j
âib̂j . (2.101)

Using (2.99), collapsing the Levi-Civita symbol to three dimensions and considering

that {n̂i, âi, b̂i} is an orthonormal basis, we get:

M−1 =

√
−g(xσ)

−[ā(χ̃)a(x0)]2∂x0/∂χ̃
εαβγu

µ ˆ̀ν ∂x
α

∂x̃k
∂xβ

∂x̃i
∂xγ

∂x̃k
n̂kâib̂j =

√
−g(xσ)

−[ā(χ̃)a(x0)]2∂x0/∂χ̃

∣∣∣∣∂xi∂xj

∣∣∣∣ .
(2.102)

At this point we can introduce the first order expansions of the various factors. We
have already computed that: √

−g(xσ) = a4(1 + 3D) ,∣∣∣∣∂xi∂xj

∣∣∣∣ = 1 +
∂∆xi

∂x̃i
.

Then we can use the null condition:

LµLµ = 0

g00

(
L0
)2

+ gijL
iLj = 0

−
(
∂x0

∂χ̃

)2

+
[(

1 + 2D)δij + 2Eij

]∂xi
∂χ̃

∂xj

∂χ̃
= 0

−
(
∂x0

∂χ̃

)2

+
[
1 + 2D + 2E‖

](dx‖
dχ̃

)2

= 0 .

Therefore, at the first order:

−∂x
0

∂χ̃
=
(

1 +D + E‖

)dx‖
dχ̃

= 1 +D + E‖ + ∂‖∆x‖ . (2.103)
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All of these expressions can be put into (2.102):

M−1 =
a4(x0)

(
1 + 3D

)
ā2(χ̃)a2(x0)

(
1 +D + E‖ + ∂‖∆x‖

)(1 +
∂∆xi

∂x̃i

)
=

[
a(x0)

ā(χ̃)

]2(
1 + 3D

)(
1−D − E‖ − ∂‖∆x‖

)(
1 +

∂∆xi

∂x̃i

)
=

[
a(x0)

ā(χ̃)

]2(
1 + 2D − E‖ − ∂‖∆x‖

)(
1 + ∂‖∆x‖ +

2∆x‖
χ̃
− 2κ̂

)
=

[
a(x0)

ā(χ̃)

]2(
1 + 2D − E‖ +

2∆x‖
χ̃
− 2κ̂

)
.

It’s now easy to obtain the reciprocal of this quantity:

M =

[
ā(χ̃)

a(x0)

]2(
1− 2D + E‖ −

2∆x‖
χ̃

+ 2κ̂

)
. (2.104)

We can notice that

1 + z̃ = (1 + z̄)(1 + δz) → 1 + δz =
1 + z̃

1 + z̄
=
a(x0)

a(χ̃)
,

therefore: [
ā(χ̃)

a(x0)

]2

' 1− 2δz .

So at the first order we get:

M =
(
1−2δz

)(
1−2D+E‖−

2∆x‖
χ̃

+2κ̂

)
= 1−2D+E‖−

2∆x‖
χ̃

+2κ̂−2δz . (2.105)

In the end, since the perturbation of the magnification is δM =M− 1, we get for it:

δM = −2δz − 2D + E‖ −
2∆x‖
χ̃

+ 2k̂ . (2.106)

Many contributions can be recognized:

• −2δz − 2D is associated with the isotropic conversion from coordinate distances
to physical distances [31];

• E‖ is associated with the anisotropy of the coordinate system;

• −2∆x‖/χ̃ is associated to bringing the source closer to or farther from the observer
[31];

• 2κ̂ is the convergence term.
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We can now attempt to give a more explicit expression of δM by expanding the last
two terms using (2.81), (2.87) and (2.86).

δM = −2δz − 2D + E‖ +
2

χ̃

∫ χ̃

0

dχ
(
D + E‖

)
+

2

χ̃

1 + z̃

H(z̃)
δz

+ 2κ+ ∇2
⊥E︸ ︷︷ ︸

∇2E−∂2
‖E−

2
χ̃
∂‖E

+
2

χ̃
n̂i∂iE(0)︸ ︷︷ ︸
2
χ̃
∂‖E(0)

−2n̂i∂iE
′(0)︸ ︷︷ ︸

−2∂‖E′(0)

= −2D + E‖ +∇2E − ∂2
‖E −

2

χ̃

[
∂‖E − ∂‖E(0)

]
+ 2κ− 2∂‖E

′(0) +

[
−2 +

2

χ̃

1 + z̃

H(z̃)

]
δz +

2

χ̃

∫ χ̃

0

dχ
(
D + E‖

)
.

It can be noticed that, given φ = D − 1
3
∇2E, we can write the following equivalence:

D + E‖ = φ+ ∂2
‖E .

Indeed it is easy to see that D + E‖ = D + n̂in̂jEij = D + ∂2
‖E −

1
3
∇2E = φ+ ∂2

‖E.
Therefore the four terms at the beginning of the expression of δM can be written as:

−2D + E‖ +∇2E − ∂2
‖E = −3D +∇2E +D + E‖ − ∂2

‖E

= −3φ+ φ+ ∂2
‖E − ∂2

‖E = −2φ .

Moreover, the integral in δM can be treated as follows:∫ χ̃

0

dχ
(
D + E‖

)
=

∫ χ̃

0

dχ
(
φ+ ∂2

‖E
)

=

∫ χ̃

0

[
φ+ ∂‖

(
E ′ +

dE

dχ

)]
=

∫ χ̃

0

(
φ+ E ′′ +

dE ′

dχ
+
dE ′

dχ
+
d2E

dχ2

)
=

∫ χ̃

0

dχ
(
φ+ E ′′

)
+

∫ χ̃

0

dχ
d

dχ

(
2E ′ +

dE

dχ

)
=

∫ χ̃

0

dχ
(
φ+ E ′′

)
+

[
2E ′ +

dE

dχ

]χ̃
0

=

∫ χ̃

0

dχ
(
φ+ E ′′

)
+

[
2E ′ + ∂‖E − E ′

]χ̃
0

=

∫ χ̃

0

dχ
(
φ+ E ′′

)
+ E ′ + ∂‖E − E ′(0)− ∂‖E(0) .

Substituting al these expressions into δM, we ge the final expression for it:

δM =− 2φ− 2

χ̃
∂‖E +

2

χ̃
∂‖E(0) + 2κ− 2∂‖E

′(0) +

[
−2 +

2

χ̃

1 + z̃

H(z̃)

]
δz

+
2

χ̃

∫ χ̃

0

dχ
(
φ+ E ′′

)
+

2

χ̃

(
E ′ − E ′(0)

)
+

2

χ̃
∂‖E −

2

χ̃
∂‖E(0) .

At last we have:

δM = −2φ+ 2κ+

[
−2 +

2

χ̃

1 + z̃

H(z̃)

]
δz +

2

χ̃

(
E ′ − E ′(0)

)
− 2∂‖E

′(0) +
2

χ̃

∫ χ̃

0

dχ
(
φ+ E ′′

)
. (2.107)
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2.5 Galaxy bias

The aim of this subsection is to find a relation between the intrinsic galaxy overdensity
δg in the synchronous-comoving gauge and the matter and metric perturbations for
large scales, thus considering only the linear terms. Since we are dealing with large
scales, we must focus on the main features of such an environment for a given galaxy:

- its mean density;

- the evolutionary stage (proper time, the linear growth factor).

In order to represents these quantities, we can consider:

• a spatial volume V centered around the space-time point xµP on a constant age
hypersurface represented by tU = constant, where tU is the proper time of comov-
ing observers since the Big Bang. This volume is assumed to be large enough for
linear perturbation theory;

• the number of galaxies Ng within V , which depends on the mass M enclosed in
it and the age of the universe tU in that volume (that is kept fixed).

A general expression of Ng is

Ng = F
(
M, tU , x

µ
P

)
, (2.108)

with F as a generic function of the just mentioned variables. Now a coordinate system
(τ,x) is considered, together with linear perturbations of the quantities we deal with.
Given ρ̄m as the average physical matter density in the background and δρ as its linear
perturbation, the physical matter density ρ can be expressed as:

ρ = ρ̄m + δρ = ρ̄m

[
1 +

δρ

ρ̄m

]
= ρ̄m

[
1 + δ ln ρ

]
. (2.109)

Since ρm ∼ a−3, we can notice that:

d ln ρ̄m
dτ

=
d ln a−3

dτ
=

1

a−3
(−3a−4)

da

dτ︸︷︷︸
a′

= −3
a′

a
= −3aH . (2.110)

The mass M enclosed within V can then be written as:

M =

∫
V

ρ = ρ̄m(τ)
[
1 + δ ln ρ

]
V = ρ̄m(τ)

[
1 + δm − 3aHδτ ]V , (2.111)

where we split the perturbation in two contributions:

• δm is the matter density perturbation on a constant-coordinate-time hypersurface
τ = const.;

• −δτ is the time-coordinate displacement on a hypersurface at constant proper
time tU = const., in a way that:

a(τ)
[
τ − δτ(x)

]
= tU = constant . (2.112)

Therefore−3aH represents the shift from a constant-age hypersurface to a constant-
coordinate-time hypersurface.
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At this point, defining n̄g as the average physical galaxy number density on a constant-
coordinate-time hypersurface, we can do the same analysis for Ng:

Ng =

∫
V

ng = n̄g(τ)
[
1 + δ lnng

]
V = n̄g(τ)

[
1 + δg + bepaHδτ

]
V , (2.113)

where the two terms in the perturbations are:

• δg as the galaxy number density perturbation at τ = const.;

•
bep =

d ln n̄g
d ln a

, (2.114)

and the whole term bepaHδτ represents the galaxy density perturbation on a
constant age-hypersurface.

Expressions (2.108) and (2.113) can now be compared. We first make the following
definitions:

• the average of the function F on hypersurfaces at fixed tU

F̄ (M ; tU) ≡ 〈F (M ; tU ;xµP )〉tU ; (2.115)

• the bias

b ≡ ∂ ln F̄ (M ; tU)

∂ lnM

∣∣∣∣
ρ̄mV

=
∂F̄ (ρV V ; tU)

∂ ln ρV

∣∣∣∣
ρ̄m

, (2.116)

where ρV is the average matter density at tU = const. within the volume V ;

• the stochastic contribution to galaxy density

ε(xµ) ≡ F (M ; tU ;xµ)

F̄ (M ; tU)
− 1 . (2.117)

The comparison of the two expressions of Ng can now be made:

Ng = F (M ; tU ;xµP )

= F̄ (ρmV ; tU)
[
1 + b(δm − 3aHδτ) + ε

]
(2.118)

= n̄g
[
1 + δg + bepaHδτ

]
V .

In the background we found that, for δm → 0 and δτ → 0: n̄g(τ)V = F̄ (ρ̄mV ; aτ).
From (2.118) we deduce that the galaxy density perturbation is:

δg(x
µ) = b(τ)

[
δm(xµ)− 3aH(τ)δτ(xµ)

]
− bep(τ)aH(τ)δτ(xµ) + ε(xµ) . (2.119)

If we observe this expression, the following considerations can be done:

? on subhorizon scales (λ � aH) the term aHδτ is negligible with respect to δm,
so (2.119) becomes a linear relation

δg(x
µ) = bδm + ε ; (2.120)
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? in the synchronous-comoving gauge, with tU = aτ everywhere and δτ = 0, ex-
pression (2.119) becomes linear as just mentioned but for all scales; it is right
the case we dealt with in calculations in the previous sections. Inserting (2.120)
(with eventually ε set to zero) into (2.93), we obtain an expression of the observed
galaxy overdensites completely in terms of the metric and matter perturbations,
and of two peculiar parameters b and be;

? In this section we used the physical quantities, but it is better to deal with the
comoving ones because we are doing our analysis in the synchronous-comoving
gauge. Therefore, from now on we will consider the comoving galaxy number
density a3ng and a new parameter be instead of bep defined as

be ≡
d ln(a3n̄g)

d ln a
. (2.121)

2.5.1 Gauge invariance

The bias parameters b and be are gauge invariant. We could expect such a thing because
they are in principle observable:

- given a change δm in the average mass density within a certain volume V , b
represents how much the galaxy density changes as δg in response to δm;

- be tells us how much the average number density of galaxies changes with the age
of the universe.

The quantities we are using generally change with the coordinate time. In order to check
the gauge-invariance of the bias parameters, we study the effects of a time-coordinate
transformation from τ to τ̆ :

τ → τ̆ = τ + T , (2.122)

where in general T = T (τ,x). For a generic scalar function f there is no change under
this transformation; therefore, given the background value f̄ and the scalar perturbation
δf , f is given by both:

f = f̄(τ) + δf(τ,x) = f̄(τ̆) + δ̆f(τ̆ , x̆) . (2.123)

The explicit expression of the scalar perturbation in the new coordinates in terms of
the old ones is:

δ̆f = δf + f̄(τ)− f̄(τ + T ) = δf − df̄(τ)

dτ
T . (2.124)

This formula can ben applied to the perturbations of the matter density, of the redshift
and of the galaxy number density:

δ̆m = δm −
d ln ρm
dτ

T = δm + 3aHT , (2.125)

δ̆z = δz − d ln(1 + z̄)

dτ
T = δz + aHT , (2.126)

δ̆g = δg −
d ln(a3n̄g)

dτ
T = δg − beaHT , (2.127)

where in the first line we used (2.110), in the second line

d ln(1 + z̄)

dτ
=
d ln(a−1(x̄0(τ)))

dτ
= −1

a

da

dτ
= −a

′

a
= −aH ,
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and in the third line

d ln(a3n̄g)

dτ
=
d ln(a3n̄g)

d ln a

d ln a

dτ
=
d ln(a3n̄g)

d ln a

1

a

da

dτ
= be

a′

a
= beaH .

We can notice that the quantity δg + beδz which appears in (2.93) is gauge-invariant,
indipendent of any bias choice. Then, we can also perform the transformation of (2.119)
at fixed b and be (at first order):

δ̆g = b
[
δ̆m − 3aHδ̆τ

]
− beaHδ̆τ + ε (2.128)

= b
[
δm + 3aHT − 3aH(δτ + T )

]
− beaH(δτ + T ) + ε (2.129)

= δg − beaHT , (2.130)

where we used Eq.(2.119). We perfectly recovered the gauge transformed expression of
δg with fixed bias, and in this sense they must be gauge-invariant in order to assure
that δg itself is gauge-invariant.

2.6 Final expression of the observed galaxy over-

density

What we have done until this moment can now be summarized: we first have computed
the expression for the observed galaxy overdensity (2.93); then we have added the
contribution of the magnification bias QδM, thus calculating the explicit expression
of δM; at last we have introduced the concept of galaxy bias, and found that in the
synchronous-comoving gauge it becomes a linear relation. At this point we need to
gather all of these results in order to give a final expression ∆g for the observed galaxy
overdensity in terms of the metric perturbations and of the bias parameters. We will
do this in the synchronous-comoving gauge, exploiting some advantages that arise from
this choice. We can start by writing explicitly the sum of all the terms we have just
explained; therefore, the final observed galaxy overdensity ∆g will be written as

∆g = δ̃g +QδM . (2.131)

The first addend δ̃g corresponds to the expression (2.93), and within it the following
quantities must be explicited:

• the term δg is substituted with the linear bias relation for the synchronous-
comoving gauge

δg = bδm , (2.132)

as we saw in the previous section (but setting ε to zero);

• as regards φ, we will use this quantity in order to remove any residual spatial
gauge mode. But the important property we want to highlight here is linked to
its time derivative φ′, since it appears in the i0 Einstein’s equation:

φ′ = −4πGδT i0 ∝ ui = 0 , (2.133)

where δT i0 is the i0 component of the perturbed stress-energy tensor and ui is
the peculiar velocity of the observer, which is zero in the synchronous-comoving
gauge. Therefore, everytime we see a term with φ′ we can drop it;
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• δz is expressed through (2.57) which takes also account of the Integrated Sachs-
Wolfe effect. It is right in the ISW term that we can use the property of the
previous point, because we notice that in the synchronous-comoving gauge, since
φ′ = 0:

δzscISW =

∫ χ̃

0

dχ

(
D′ − 1

3
∇2E ′ + E ′′′

)
=

∫ χ̃

0

dχ
(
φ′ + E ′′′

)
=

∫ χ̃

0

dχE ′′′ ;

• the convergence κ is explicited with the expression (2.87), but here is used in
terms of 7φ.

The second addend is the magnification contribution, where Q is given by (2.97) and
δM is given by (2.107); also in this case δz and κ are explicited as just written above.
We are going to write the explicit expression of ∆g by writing all the previous terms
together, but dropping the unobservable constant contributions from the perturbations
evaluated at the observer’s position and exploiting φ′ = 0:

∆g = bδm + beδz −
1 + z̃

H(z̃)
∂2
‖E
′ −
[
1− 1 + z̃

H(z̃)

dH(z̃)

dz̃
+

2

χ̃

1 + z̃

H(z̃)

]
δz

+ 2φ− 2

χ̃
E ′ − 2

χ̃

∫ χ̃

0

dχ
(
φ+ E ′′

)
− 2κ

+Q
{
−2φ+ 2κ+

[
−2 +

2

χ̃

1 + z̃

H(z̃)

]
δz +

2

χ̃
E ′ +

2

χ̃

∫ χ̃

0

dχ
(
φ+ E ′′

)}
= bδm + be

{
∂‖E

′ + E ′′ +

∫ χ̃

0

dχE ′′′
}
− 1 + z̃

H(z̃)
∂2
‖E
′

−
[
1− 1 + z̃

H(z̃)

dH(z̃)

dz̃
+

2

χ̃

1 + z̃

H(z̃)

]{
∂‖E

′ + E ′′ +

∫ χ̃

0

dχE ′′′
}

+ 2φ− 2

χ̃
E ′

− 2

χ̃

∫ χ̃

0

dχ
(
φ+ E ′′

)
+∇2

⊥

∫ χ̃

0

dχ
χ̃

χ

(
χ̃− χ

)(
φ+ E ′′

)
−Q∇2

⊥

∫ χ̃

0

dχ
χ̃

χ

(
χ̃− χ

)(
φ+ E ′′

)
+Q

{
−2φ+

[
−2 +

2

χ̃

1 + z̃

H(z̃)

]{
∂‖E

′ + E ′′ +

∫ χ̃

0

dχE ′′′
}

+
2

χ̃
E ′ +

2

χ̃

∫ χ̃

0

dχ
(
φ+ E ′′

)}
.

These terms can be organised more conveniently by gathering all of these different
contributions into three bigger ones, in a way that:

∆g = ∆S + ∆K + ∆I , (2.134)

7However, the operator ∇2
⊥ is moved outside the integral thus having an extra factor χ̃2/χ2 inside.
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where the three terms result:

∆S = bδm +

[
be −

(
1 + 2Q

)
+

(1 + z̃)

H(z̃)

dH(z̃)

dz̃
− 2

χ̃

(
1−Q

)(1 + z̃)

H(z̃)

](
∂‖E

′ + E ′′
)

− 1 + z̃

H(z̃)
∂2
‖E
′ +

2

χ̃

(
1−Q

)(
χ̃φ− E ′

)
, (2.135)

∆K =
(
1−Q

)
∇2
⊥

∫ χ̃

0

dχ
χ̃

χ

(
χ̃− χ

)(
φ+ E ′′

)
, (2.136)

∆I = − 2

χ̃

(
1−Q

) ∫ χ̃

0

dχ
(
φ+ E ′′

)
+

[
be −

(
1 + 2Q

)
+

(1 + z̃)

H(z̃)

dH(z̃)

dz̃
− 2

χ̃

(
1−Q

)(1 + z̃)

H(z̃)

] ∫ χ̃

0

dχE ′′′ . (2.137)

• ∆S is a local term evaluated at the source which includes the galaxy density
perturbation, the redshift distortion and the volume distortion caused by the
redshift perturbation. It substantially contains the Newtonian local terms plus
some general relativity corrections.

• ∆K is the weak lensing convergence integral along the line of sight, and is the
same that arises in the Newtonian context.

• ∆I is a time delay integral along the line of sight, and is a pure GR correction.
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Chapter 3

Angular power spectrum

A full explicit expression of the galaxy number density perturbation ∆g (2.134), which
takes account of all the possible non negligible corrections at large scales, has been just
given in the previous chapter. But why do we need such a quantity?
Galaxies’ overdensities become part of statistical tools used by cosmologist to extract
information about the early phases of the universe (e.g. primordial non gaussianity), to
test cosmological models and general relativity itself, which effects becomes important
at large scales: we are talking about two-point statistics, that deals with correlation
functions and power spectra. These tools must reflect the underlying simmetries of the
large scale structure of the Universe, which is statistically homogeneous and isotropic
in standard cosmology. For example, for galaxy redshift surveys, the three dimensional
redshift-dependent Fourier power spectrum P (k, z) (which is the two-point correlation
function in Fourier space) is not well defined: it works for the flat-sky approximation,
instead with large scales there are problems. This quantity is not directly accessible,
because when we observe the large scale structure of the Universe we lose the full spatial
simmetry. Indeed, by making observations only within our past light cone, at each cos-
mological distance we observe the large-scale structure at a different time. Therefore,
the time evolution of large scale structure genuinely breaks the homogeneity along the
radial direction (the line of sight) [33]. We have no more a three dimensional spatial
simmetry, but we are left with a spherical simmetry on a two dimensional sky where
two angular cooordinates can now be used. In such an environment we must switch
from the power spectrum P (k, z) to a more suitable quantity for large scales: the an-
gular power spectrum C`, which is the two-point correlation function in the spherical
harmonic space. The aim of this chapter is to calculate the C` coefficients for the full
explicit expression of ∆g (2.134). In particular, the different contributions from ∆S,
∆K and ∆I will be computed, thus distinguishing various categories of coefficients rel-
ative to the local, the weak lensing and the time delay terms, but also to the mixed
ones where these contributions are combined together (in the product of the ∆s). The
starting point of all the calculations are the expressions (2.135), (2.136) and (2.137) of
the three contributions just mentioned. We can notice that, except for the first addend
in ∆S, the others don’t show the explicit dependence in the matter density perturba-
tion δm, which will be crucial to involve the definition of the power spectrum P (k) in
calculations. These other addends are basically made of big coefficients depending only
on the redshift z multiplied for expressions of φ, E ′ and its derivatives. Therefore the
results of subsection 1.3.6 in Chapter 1 will be used to connect the metric perturations
with the density ones. However, first of all we are going to give a brief overview on the
concept of spherical harmonic expansion of our observables.
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3.1 Spherical harmonic expansion

The observable we work with is the galaxy density perturbation ∆g = ∆g(n̂, z)
1. Since

we measure it on the two dimensional sky, the spherical simmetry allows us to make
an expansion of this quantity in spherical harmonics Y`m(z) with respect to its angular
position on the sky for every redshift z:

∆g(n̂, z) =
∑
`m

∆`m(z)Y`m(n̂) , (3.1)

where the coefficients ∆`m are given by

∆`m(z) = 〈`m|∆g〉 =

∫
dΩn〈`m|n̂〉〈n̂|∆g〉 =

∫
dΩn̂Y

∗
`m(n̂)∆g(n̂, z) . (3.2)

We can briefly prove that (3.2) is correct by substituting (3.1) in it:

∆`m(z) =

∫
dΩn̂Y

∗
`m(n̂)

∑
`′m′

∆`′m′(z)Y`′m′(n̂) .

This gives an identity due to the property∫
dΩn̂Y

∗
`m(n̂)Y`′m′(n̂) = δ``′δmm′ , (3.3)

which kills the summation and gives ∆`m(z), identical to the left hand side. Since
our observables are based on the measure of the redshift z, there will be some errors
connected to such a measure which must be taken into account; but, most importantly,
we have to filter our observables within the angular coverage of the survey, while in
principle we are integrating over all scales in the previous definitions. For these reasons
∆g(n̂, z) must be averaged over a window function W (z) normalised to one. If we want
to express it in comoving distance space, we can write that W (χ) = W (z)aH(z) since
from (2.54) we can deduce that χ(z) =

∫ z
0
dz′/aH(z′). Then the normalisation of W is:∫ ∞

0

dχW (χ) =

∫ ∞
0

dχaH(z)W (z) =

∫ ∞
0

dzW (z) = 1 . (3.4)

We can now express ∆g(n̂, z) averaged over W

∆g(n̂) =

∫ ∞
0

dχW (χ)∆g(n̂, z) , (3.5)

in a way that the quantity ∆g(n̂) is defined and will be used from now on in calculations.
By putting it into (3.2) we get the expression

∆`m =

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)∆g(n̂, z) (3.6)

for the coefficients of the expansions we will work with. Since ∆g(n̂, z) will be computed
in the momentum space, we write down here the plane wave expansion in spherical
harmonics

eik·x = 4π
∑
`m

i`j`(kx)Y ∗`m(k̂)Y`m(x̂) , (3.7)

1From now on z will be used instead of z̃ to simplify the notation.
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where j` are the spherical Bessel function, that will be largely used later. The quantities
we have just presented are used to compute the explicit expression of the angular power
spectrum C`, which is a set of coefficients in the expansion of the two-point correlation
function in spherical harmonics:

ξ(n̂1, n̂2, z1, z2) = 〈∆g(n̂1, z1)∆g(n̂2, z2)〉 =
∑
`m

C`(z1, z2)Y`m(n̂1)Y ∗`m(n̂2) . (3.8)

However, this definition is not straightforward to use practically, so these C` coeffi-
cients are better computed with another definition. If uncorrelated ∆`m coefficients
and isotropy are assumed, in the observed sky we have that:

δ``′δmm′C` = 〈∆∗`m∆`′m′〉 , (3.9)

where the C` are specified by the cosmological theory and the symbol 〈 〉 means av-
eraging over many sky realizations of the field ∆g. However, one actually observes a

unique sky realization, and an estimator Ĉ` of the angular power spectrum can thus be
constructed by averaging over m the value of |∆`m|2:

Ĉ` =
1

2`+ 1

m∑
m=−`

|∆`m|2 . (3.10)

It’s trivial to show that this estimator Ĉ` coincides in our case with C` which appear in
(3.9):

Ĉ` =
1

2`+ 1

m∑
m=−`

∆∗`m∆`m =
1

2`+ 1

m∑
m=−`

C` =
1

2`+ 1
(2`+ 1)C` = C` . (3.11)

Therefore, it is sufficient to find ∆`m and its complex coniugate and then multiply them
in order to compute C`; of course, it must be considered that there will be a large
number of ∆`m coefficients according to the GR effect we are considering, and for each
one there will be various addends, so the calculation in not so straightforward. These
C` can then be compared with their measured values in galaxy surveys, and can so be
used to make the tests nominated in the introduction. In performing calculations, some
particular integrals where the power spectrum P (k) and a product of spherical Bessel
functions will arise. They will be also defined in a more complex way, but the basic
expression we are going to find is

w`,`′(χ, χ
′) ≡ 2

π

∫ ∞
0

dk k2P (k)j`(kχ)j`′(kχ
′) , (3.12)

where χ and χ′ are the comoving distances at two different epochs. These integrals are
hard to compute, because spherical Bessel functions have a highly oscillatory behaviour
when integrating in the k → ∞ limit; nevertheless numerical methods can be used to
give an estimation of them. However, in this discussion we are going to just explicit
w``′ whenever we recognize such an integral, and we are going to define other similar
integrals in order to express the C` coefficients in terms of a sum over them.

3.2 Explicit expression of ∆g
`m

As we have already seen in the previous chapter, the full expression of the galaxy density
perturbation ∆g is made of three addends ∆S, ∆K and ∆I . The aim of this section is
to compute the coefficients ∆g

`m (3.2) that appear in the expansion (3.1) with all of the
previous contributions; they will be needed in the C` calculations of the next section.
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3.2.1 The local term ∆S
`m

In this subsection the coefficient ∆S
`m will be calculated starting from the expression

(2.135) of ∆S:

∆S = bδm +

[
be −

(
1 + 2Q(z)

)
+

(1 + z)

H(z)

dH(z)

dz
− 2

χ

(
1−Q(z)

)(1 + z)

H(z)

](
∂‖E

′ + E ′′
)

− 1 + z

H(z)
∂2
‖E
′ +

2

χ

(
1−Q(z)

)(
χφ− E ′

)
.

It can be rewritten subtituting the expressions of E ′, E ′′ and φ as functions of δm (see
the subsection 1.3.6 in Chapter 1):

∆S = bδm

+

[
be −

(
1 + 2Q(z)

)
+

(1 + z)

H(z)

dH(z)

dz
− 2

χ

(
1−Q(z)

)(1 + z)

H(z)

](
−H(z)

1 + z
f(z)

)
∂‖∇−2δm

+

[
be −

(
1 + 2Q(z)

)
+

(1 + z)

H(z)

dH(z)

dz
− 2

χ

(
1−Q(z)

)(1 + z)

H(z)

]
×
[
− H2(z)

(1 + z)2

(
3

2
Ωm − f(z)

)]
∇−2δm

− 1 + z

H(z)

(
−H(z)

1 + z
f(z)

)
∂2
‖∇−2δm

+ 2
(
1−Q(z)

)[
− H2(z)

(1 + z2)

(
f(z) +

3

2
Ωm

)]
∇−2δm

− 2

χ

(
1−Q(z)

)(
−H(z)

1 + z
f(z)

)
∇−2δm .

We find such an expression

∆S = bδm − A(z)H(z)f(z)∂‖∇−2δm + f(z)∂2
‖∇−2δm − A(z)H2(z)

(
3

2
Ωm − f(z)

)
∇−2δm

− 2
(
1−Q(z)

)
H2(z)

(
3

2
Ωm + f(z)

)
∇−2δm +

2

χ

(
1−Q(z)

)
H(z)f(z)∇−2δm ,

(3.13)

where we have defined:

A(z) = be −
(
1 + 2Q(z)

)
+

(1 + z)

H(z)

dH(z)

dz
− 2

χ

(
1−Q(z)

)(1 + z)

H(z)
, (3.14)

H(z) =
H(z)

1 + z
. (3.15)
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Expression (3.13) can be simplified by introducing parameters α(z), β(z) and γ(z)
defined in Eq.(20), (21) and (22) in Ref.[29]:

α(z) = −χ(z)
H(z)

(1 + z)

[
be(z)− 1− 2Q(z) +

3

2
Ωm(z)− 2

χ(z)

[
1−Q(z)

](1 + z)

H(z)

]
,

(3.16)

β(z) =
f(z)

b(z)
, (3.17)

γ(z) =
H(z)

(1 + z)

{
H(z)

(1 + z)

[
β(z)− 3

2

Ωm(z)

b(z)

]
be(z) +

3

2

H(z)

(1 + z)
β(z)

[
Ωm(z)− 2

]
− 3

2

H(z)

(1 + z)

Ωm(z)

b(z)

[
1− 4Q(z) +

3

2
Ωm(z)

]
+

3

χ(z)

[
1−Q(z)

]Ωm(z)

b(z)

}
. (3.18)

α(z) is a generalization of the Newtonian expression, β(z) has the same form as in the
Newtonian analysis and γ(z) is a new term arising from general relativistic corrections
[29]. An important equivalence will be used in order to connect the big expressions of
z which appear in Eq.(3.13) to α, β and γ:

(1 + z)

H(z)

dH(z)

dz
=

3

2
Ωm . (3.19)

It is easy to prove it starting from the Friedmann equation for a flat background:

H2 =
8

3
πG
(
ρ̄m + ρΛ

)
, (3.20)

where ρ̄m is the mean matter density, for which ρ̄m = ρ̄m 0(1 + z)3, and ρΛ is the
energy density associated with the cosmological constant, and is constant itself (we
are neglecting the other contributions to ρ, e.g. barions, radiation,...) If we take the
derivative with respect to z:

2H
dH

dz
=

8

3
πG

dρ̄m
dz

, (3.21)

we need to compute the derivative of the matter density: dρ̄m/dz = ρ̄m03(1+z)2 = 3aρ̄m.
At this point we can insert what we have just found into the previous equation:

dH

dz
=

8πG

6H

dρ̄m
dz

=
8πG

6H
3aρ̄m . (3.22)

Therefore2:

(1 + z)

H(z)

dH(z)

dz
=

1

aH(z)

8πG

6H
3aρ̄m =

8πGρ̄m
3H2︸ ︷︷ ︸
ρ̄m
ρc

=Ωm

3

2
=

3

2
Ωm .

This relation is important because it allows us to use it in the definition of A(z) (3.14),
and therefore, gathering the similar terms in the expression (3.13), we can write them
in terms of α, β and γ. The following equivalences are found:

• −A(z)H2(z)

(
3

2
Ωm − f

)
− 2
(
1−Q(z)

)
H2(z)

(
3

2
Ωm + f

)
+

2

χ

(
1−Q(z)

)
H(z)f

= b(z)γ(z) ; (3.23)

• −A(z)H(z)f =
1

χ
b(z)α(z)β(z) . (3.24)

2ρc = 3H2/8πG
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Expression (3.13) can thus be written as

∆S = bδm +
3∑
i=1

Fi

(
χ,

∂

∂χ
,
∂2

∂χ2

)
∇−2δm , (3.25)

where:

F1 =
1

χ
b(z)α(z)β(z)∂‖ ; (3.26)

F2 = f(z)∂2
‖ ; (3.27)

F3 = b(z)γ(z) . (3.28)

We are now ready to compute ∆S
`m with the formula 3(3.6):

∆S
`m =

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)∆S(n̂, z)

=

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)

[
bδm +

3∑
i=1

Fi∇−2δm

]
= ∆S

`m 1 + ∆S
`m 2 ,

where

∆S
`m 1 =

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)bδm (3.29)

∆S
`m 2 =

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)
3∑
i=1

Fi∇−2δm . (3.30)

These two terms need to be explicited in order to compute CS
` in the end.

First addend of ∆S
`m

In this subsection we are going to focus on the first addend ∆S
`m 1 . First of all, we

want to write bδm in the Fourier space:

bδm(n̂, z) =

∫
d3k

(2π)3
eik·nb(z)δm(k̂, z) . (3.31)

Since eik·n = 4π
∑

`m i
`j`(kχ)Y ∗`m(k̂)Y`m(n̂) from (3.7), by substituting it on the previ-

ous expression we find

bδm(n̂, z) =

∫
d3k

(2π)3
4π
∑
`m

i`j`(kχ)Y ∗`m(k̂)Y`m(n̂)b(z)δm(k̂, z) . (3.32)

Now (3.32) can be inserted in (3.29):

∆S
`m 1 =

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)

∫
d3k

(2π)3
4π
∑
`′m′

i`
′
j`′(kχ)Y ∗`′m′(k̂)Y`′m′(n̂)b(z)δm(k̂, z) .

Using
∫
dΩn̂Y

∗
`m(n̂)Y`′m′(n̂) = δ``′δmm′ (property (3.3)) we kill the summation, having

at last:

∆S
`m 1 =

∫ ∞
0

dχW (χ)

∫
d3k

2π2
i`j`(kχ)Y ∗`m(k̂)b(z)δm(k̂, z) . (3.33)

3We will omit the arguments of Fi to simplify the notation
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Second addend of ∆S
`m

We can now pass on the second addend ∆S
`m 2 . The first step is to write

∑
i Fi∇−2δm

in Fourier space. Operators Fi acts on ∇−2δm and are composed of coefficients which
depend only by z multiplied for derivatives with respect to χ. Indeed, ∂‖ and ∂2

‖ appear,
but in this context they are basically derivatives along the line of sight, therefore they
can be replaced with ∂/∂χ and ∂2/∂χ2. These derivatives will act on ∇−2δm, and in
particular on the spherical Bessel functions j`(kχ) which depend on χ. For these reasons
we can Fourier transform only ∇−2δm. If we define ϕ(n̂, z) = ∇−2δm(n̂, z), we can write
the Fourier transform as:

ϕ(n̂, z) =

∫
d3k

(2π)3
eik·nϕ(k̂, z)

=

∫
d3k

(2π)3
4π
∑
`m

i`j`(kχ)Y ∗`m(k̂)Y`m(n̂)ϕ(k̂, z)

=

∫
d3k

(2π)3
4π
∑
`m

i`j`(kχ)Y ∗`m(k̂)Y`m(n̂)∇−2δm(k̂, z) . (3.34)

Now (3.34) can be inserted in (3.30):

∆S
`m 2 =

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)

×
5∑

a=1

Fa

∫
d3k

(2π)3
4π
∑
`′m′

i`
′
j`′(kχ)Y ∗`′m′(k̂)Y`′m′(n̂)∇−2δm(k̂, z)

=

∫ ∞
0

dχW (χ)

∫
d3k

2π2
i`

3∑
a=1

Faj`(kχ)Y ∗`m(k̂)∇−2δm(k̂, z) . (3.35)

It can be noticed that ∆S
`m 2 is made of three addends, which must be calculated

separately.

F1 term

We call ∆S
`m 2 I the term in F1 and the first addend of ∆S

`m 2 :

∆S
`m 2 I =

∫ ∞
0

dχW (χ)

∫
d3k

2π2
i`F1j`(kχ)Y ∗`m(k̂)∇−2δm(k̂, z)

=

∫ ∞
0

dχW (χ)

∫
d3k

2π2
i`

1

χ
b(z)α(z)β(z)∂‖j`(kχ)Y ∗`m(k̂)∇−2δm(k̂, z) . (3.36)

Now we can notice that:

• ∇−2 acts on δm(k̂, z) in Fourier space by pulling down a factor −1/k2;

• ∂‖ can be replaced by ∂/∂χ, which acts on the spherical Bessel function j`(kχ).
A recurrence relation can be used to calculate such a derivative:

d

dx
j`(x) =

`

2`+ 1
j`−1(x)− `+ 1

2`+ 1
j`+1(x) . (3.37)

Therefore in our case we find:

∂

∂χ
j`(kχ) = k

[
`

2`+ 1
j`−1(kχ)− `+ 1

2`+ 1
j`+1(kχ)

]
. (3.38)
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Further, we can lighten the notation by calling:

f−1 =
`

2`+ 1
, f1 = − `+ 1

2`+ 1
. (3.39)

So, using the property (3.38) with definition (3.39), this final expression for the F1 term
turns out:

∆S
`m 2 I =

∫ ∞
0

dχW (χ)

∫
d3k

2π2k

[
− 1

χ
b(z)α(z)β(z)i`

][
f−1j`−1(kχ) + f1j`+1(kχ)

]
× Y ∗`m(k̂)δm(k̂, z)

=

∫ ∞
0

dχW (χ)

[
− 1

χ
b(z)α(z)β(z)i`

] ∫
d3k

2π2k

[
f−1j`−1(kχ) + f1j`+1(kχ)

]
× Y ∗`m(k̂)δm(k̂, z) , (3.40)

where the terms which don’t depend on k has been pulled out of the integral in k in
the second line.

F2 term

The term ∆S
`m 2 II in F3 presents a second derivative ∂2

‖ , which here corresponds to

∂2/∂χ2 and acts always on j`(kχ). Such a derivative can be computed using another
recurrence relation:

d2

dx2
j`(x) = f−2j`−2(x) + f0j`(x) + f2j`+2(x) , (3.41)

where

f−2 =
`(`− 1)

(2`− 1)(2`+ 1)
, f0 = − 2`2 + 2`− 1

(2`− 1)(2`+ 3)
, f2 =

(`+ 1)(`+ 2)

(2`+ 1)(2`+ 3)
.

(3.42)
In our case we have:

∂2

∂χ2
j`(kχ) = k2

[
f−2j`−2(kχ) + f0j`(kχ) + f2j`+2(kχ)

]
. (3.43)

The term in F3 can be written explicitely:

∆S
`m 2 III =

∫ ∞
0

dχW (χ)

∫
d3k

2π2
i`F2j`(kχ)Y ∗`m(k̂)∇−2δm(k̂, z)

=

∫ ∞
0

dχW (χ)

∫
d3k

2π2
i`f(z)

∂2

∂χ2
j`(kχ)Y ∗`m(k̂)∇−2δm(k̂, z)

=

∫ ∞
0

dχW (χ)

∫
d3k

2π2
i`
[
−f(z)

][
f−2j`−2(kχ) + f0j`(kχ) + f2j`+2(kχ)

]
× Y ∗`m(k̂)δm(k̂, z) . (3.44)
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F3 term

The term ∆S
`m 2 III in F4 is simple to handle in a few steps:

∆S
`m 2 IV =

∫ ∞
0

dχW (χ)

∫
d3k

2π2
i`F3j`(kχ)Y ∗`m(k̂)∇−2δm(k̂, z)

=

∫ ∞
0

dχW (χ)

∫
d3k

2π2
i`b(z)γ(z)j`(kχ)Y ∗`m(k̂)∇−2δm(k̂, z)

=

∫ ∞
0

dχW (χ)
[
−b(z)γ(z)

]
i`
∫

d3k

2π2k2
j`(kχ)Y ∗`m(k̂)δm(k̂, z) . (3.45)

Final expression for the second addend of ∆S
`m

A final expression for ∆S
`m 2 , which is the second addend of ∆S

`m, can now be given by
summing over all the three contributions just calculated:

∆S
`m 2 = ∆S

`m 2 I + ∆S
`m 2 II + ∆S

`m 2 III

=

∫ ∞
0

dχW (χ)i`
{
− 1

χ
b(z)α(z)β(z)

∫
1

2π2

d3k

k

[
f−1j`−1(kχ) + f1j`+1(kχ)

]
− f(z)

∫
d3k

2π2

[
f−2j`−2(kχ) + f0j`(kχ) + f2j`+2(kχ)

]
− b(z)γ(z)

∫
1

2π2

d3k

k2
j`(kχ) . (3.46)

Finally, the full expression for the ∆S
`m is given by the sum of (3.33) and (3.46):

∆S
`m =

∫ ∞
0

dχW (χ)

∫
d3k

2π2
i`j`(kχ)Y ∗`m(k̂)b(z)δm(k̂, z)

−
∫ ∞

0

dχW (χ)i`
{
b(z)γ(z)

∫
1

2π2

d3k

k2
j`(kχ)

+
1

χ
b(z)α(z)β(z)

∫
1

2π2

d3k

k

[
f−1j`−1(kχ) + f1j`+1(kχ)

]
+ f(z)

∫
d3k

2π2

[
f−2j`−2(kχ) + f0j`(kχ) + f2j`+2(kχ)

]}
Y ∗`m(k̂)δm(k̂, z) .

(3.47)

3.2.2 The weak lensing term ∆K
`m

In this subsection the coefficient ∆K
`m will be computed starting from the expression

(2.136). However, we will use χ as the observed distance and χ̃ as integration variable:

∆K =
[
1−Q(z)

]
∇2
⊥

∫ χ

0

dχ̃
χ

χ̃

(
χ− χ̃

)(
φ+ E ′′

)
.

Knowing that the expressions of E ′′ and φ as function of δm are [Eq.(1.69) and (1.71)]:

E ′′ = − H2(z)

(1 + z)2

[
3

2
Ωm(z)− f(z)

]
∇−2δm ,

φ = − H2(z)

(1 + z)2

[
3

2
Ωm(z) + f(z)

]
∇−2δm ,
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we find that

∆K = −
[
1−Q(z)

]
∇2
⊥

∫ χ

0

dχ̃
χ

χ̃

(
χ− χ̃

) H2(z̃)

(1 + z̃)2

[
3

2
Ωm(z̃) + f(z̃) +

3

2
Ωm(z̃)− f(z̃)

]
×∇−2δm( ˜̂n, z̃)

= −
[
1−Q(z)

]
∇2
⊥

∫ χ

0

dχ̃
χ

χ̃

(
χ− χ̃

)
3Ωm(z̃)H2(z̃)∇−2δm( ˜̂n, z̃) . (3.48)

Now, using Eq.(3.6) combined with the Fourier transform (3.34) of ∇−2δm(n̂, z), and
using the following properties by order:

∇2
⊥Y`m =

1

χ2
∇2

ΩY`m = −`(`+ 1)

χ2
Y`m , (3.49)∫

dΩn̂Y
∗
`m(n̂)Y`′m′(n̂) = δ``′δmm′ , (3.50)

we can find the ∆K
`m coefficient with the following steps:

∆K
`m =

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)∆K(n̂, z)

= −
∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)
[
1−Q(z)

]
∇2
⊥

∫ χ

0

dχ̃
χ

χ̃

(
χ− χ̃

)
3Ωm(z̃)H2(z̃)

×∇−2δm( ˜̂n, z̃)

= −
∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)
[
1−Q(z)

]
∇2
⊥

∫ χ

0

dχ̃
χ

χ̃

(
χ− χ̃

)
3Ωm(z̃)H2(z̃)

×
∫

d3k

(2π)3
4π
∑
`′m′

i`
′
j`′(kχ̃)Y ∗`′m′(k̂)Y`′m′(n̂)

(
− 1

k2

)
δm(k̂, z̃)

=

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)
[
1−Q(z)

] 1

χ2

∫ χ

0

dχ̃
χ

χ̃

(
χ− χ̃

)
3Ωm(z̃)H2(z̃)

×
∫

d3k

2π2k2

∑
`′m′

i`
′
j`′(kχ̃)Y ∗`′m′(k̂) ∇2

ΩY`′m′(n̂)︸ ︷︷ ︸
−`′(`′+1)Y`′m′ (n̂)

δm(k̂, z̃)

= −`(`+ 1)

∫ ∞
0

dχW (χ)
[
1−Q(z)

] ∫ χ

0

dχ̃

(
χ− χ̃

)
χχ̃

3Ωm(z̃)H2(z̃)

×
∫

d3k

2π2k2
i`j`(kχ̃)Y ∗`m(k̂)δm(k̂, z̃) . (3.51)

3.2.3 The time delay term ∆I
`m

The coefficient ∆I
`m will be now computed starting from the expression (2.137):

∆I = − 2

χ

[
1−Q(z)

] ∫ χ

0

dχ̃
(
φ+ E ′′

)
+

[
be −

(
1 + 2Q(z)

)
+

(1 + z̃)

H(z̃)

dH(z̃)

dz̃
− 2

χ̃

(
1−Q(z)

)(1 + z̃)

H(z̃)

] ∫ χ

0

dχ̃E ′′′ .

(3.52)
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Expressions (1.71), (1.69) and (1.70) can be introduced, and A(z) can be written in
place of the expression multiplying the integral in E ′′′, according to definition (3.14):

∆I =− 2

χ

[
1−Q(z)

]
×
∫ χ

0

dχ̃

[
− H2(z̃)

(1 + z̃)2

(
3

2
Ωm(z̃) + f(z̃)

)
− H2(z̃)

(1 + z̃)2

(
3

2
Ωm(z̃)− f(z̃)

)]
∇−2δm

+ A(z)

∫ χ

0

dχ̃

[
−3

H3(z̃)

(1 + z̃)3
Ωm(z̃)

(
f(z̃)− 1

)]
∇−2δm . (3.53)

Since A(z) = −b(z)α(z)β(z)/χf(z)H(z) = −α(z)/χH(z), we have:

∆I =
2

χ

[
1−Q(z)

] ∫ χ

0

dχ̃ 3Ωm(z̃)H2(z̃)∇−2δm

+
1

χ

α(z)

H(z)

∫ χ

0

dχ̃ 3Ωm(z̃)H3(z̃)
(
f(z̃)− 1

)
∇−2δm . (3.54)

Now, proceeding in the same way of the other terms, we compute:

∆I
`m =

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)∆I(n̂, z)

=

∫
dΩn̂Y

∗
`m(n̂)

∫ ∞
0

dχW (χ)

×
{
− 2

χ

[
1−Q(z)

] ∫ χ

0

dχ̃ 3Ωm(z̃)H2(z̃)

∫
d3k

2π2k2

∑
`′m′

i`
′
j`′(kχ̃)Y ∗`′m′(k̂)Y`′m′(n̂)δm(k̂, z̃)

− 1

χ

α(z)

H(z)

∫ χ

0

dχ̃ 3Ωm(z̃)H3(z̃)
[
f(z̃)− 1

] ∫ d3k

2π2k2

∑
`′m′

i`
′
j`′(kχ̃)Y ∗`′m′(k̂)Y`′m′(n̂)δm(k̂, z̃)

}
=

∫ ∞
0

dχW (χ)

{
− 2

χ

[
1−Q(z)

] ∫ χ

0

dχ̃ 3Ωm(z̃)H2(z̃)

∫
d3k

2π2k2
i`j`(kχ̃)Y ∗`m(k̂)δm(k̂, z̃)

− 1

χ

α(z)

H(z)

∫ χ

0

dχ̃ 3Ωm(z̃)H3(z̃)
[
f(z̃)− 1

] ∫ d3k

2π2k2
i`j`(kχ̃)Y ∗`m(k̂)δm(k̂, z̃)

}
. (3.55)

3.3 Angular power spectrum C`

Once that the three contributions of ∆g
`m have been computed, the expression of the

angular power spectrum C` can be found. Indeed, using (3.9):

δ``′δmm′C` = 〈∆∗`m∆`′m′〉
= 〈
(
∆S∗
`m + ∆K∗

`m + ∆I∗
`m

)(
∆S
`′m′ + ∆K

`′m′ + ∆I
`′m′

)
〉

= ∆S∗
`m∆S

`′m′︸ ︷︷ ︸
CS`

+ ∆S∗
`m∆K

`′m′︸ ︷︷ ︸
(a)

+ ∆S∗
`m∆I

`′m′︸ ︷︷ ︸
(b)

+ ∆K∗
`m∆K

`′m′︸ ︷︷ ︸
CK`

+ ∆K∗
`m∆S

`′m′︸ ︷︷ ︸
(c)

+ ∆K∗
`m∆I

`′m′︸ ︷︷ ︸
(d)

+ ∆I∗
`m∆I

`′m′︸ ︷︷ ︸
CK`

+ ∆I∗
`m∆S

`′m′︸ ︷︷ ︸
(e)

+ ∆I∗
`m∆K

`′m′︸ ︷︷ ︸
(f)

. (3.56)

It can be noticed that 9 terms arise in the full expression of C`:
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- ∆S∗
`m∆S

`′m′ , ∆K∗
`m∆K

`′m′ and ∆I∗
`m∆I

`′m′ , which are the unmixed local, weak lensing
and time delay contributions;

- the mixed terms [from (a) to (f)] in which the local, lensing and time delay
contributions in the galaxy density perturbation are related through their mixed
product. In the following subsections all these terms will be computed, in or-
der to give a full final explicit expression of the C` coefficients. However, new
mathematical definitions are needed.

3.4 New integral definitions

In C` calculations many different integrals will appear, which contain the product of
the power spectrum P (k), spherical Bessel functions for different `, and various power
of k, all integrated in the Fourier space. First of all, we start with the definition used
also in [33] and already named at the beginning of the chapter:

w`,`′(χ1, χ2) ≡ 2

π

∫ ∞
0

dk k2P (k)j`(kχ1)j`′(kχ2) , (3.57)

where we used the notation χ1,2 in order to avoid any confusion later. However, since
in this analysis where all the contributions to the angular power spectrum will be
considered, also integrals with different powers of k will arise, we need a generalization
of the previous definition. We define:

wν`,`′(χ1, χ2) ≡ 2

π

∫
dk k2P (k)

kν
j`(kχ1)j`′(kχ2) . (3.58)

But we can do more, since also particular sums of these integrals will appear. Therefore
the following definitions will be introduced, which are a generalization of those which
appear in [33] [from (G5) to (G8)], with f−2, f0, f2 previously defined in (3.42):

wν`,00(χ1, χ2) ≡ wν`,`(χ1, χ2) ; (3.59)

wν`,02(χ1, χ2) ≡
(
f−2 f0 f2

)wν`,`−2(χ1, χ2)
wν`,`(χ1, χ2)
wν`,`+2(χ1, χ2)

 ; (3.60)

wν`,20(χ1, χ2) ≡
(
f−2 f0 f2

)wν`−2,`(χ1, χ2)
wν`,`(χ1, χ2)
wν`+2,`(χ1, χ2)

 ; (3.61)

wν`,22(χ1, χ2) ≡
(
f−2 f0 f2

)wν`−2,`−2(χ1, χ2) wν`−2,`(χ1, χ2) wν`−2,`+2(χ1, χ2)
wν`,`−2(χ1, χ2) wν`,`(χ1, χ2) wν`,`+2(χ1, χ2)
wν`+2,`−2(χ1, χ2) wν`+2,`(χ, χ

′) wν`+2,`+2(χ1, χ2)

f−2

f0

f2

 .

(3.62)
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Further, these new definitions will be used:

wν`,01(χ1, χ2) ≡
(
f−1 f1

)(wν`,`−1(χ1, χ2)
wν`,`+1(χ1, χ2)

)
; (3.63)

wν`,10(χ1, χ2) ≡
(
f−1 f1

)(wν`−1,`(χ1, χ2)
wν`+1,`(χ1, χ2)

)
; (3.64)

wν`,11(χ1, χ2) ≡
(
f−1 f1

)(wν`−1,`−1(χ1, χ2) wν`−1,`+1(χ1, χ2)
wν`+1,`−1(χ1, χ2) wν`+1,`+1(χ1, χ2)

)(
f−1

f1

)
; (3.65)

wν`,12(χ1, χ2) ≡
(
f−1 f1

)(wν`−1,`−2(χ1, χ2) wν`−1,`(χ1, χ2) wν`−1,`+2(χ1, χ2)
wν`+1,`−2(χ1, χ2) wν`+1,`(χ1, χ2) wν`+1,`+2(χ1, χ2)

)f−2

f0

f2

 ;

(3.66)

wν`,21(χ1, χ2) ≡
(
f−2 f0 f2

)wν`−2,`−1(χ1, χ2) wν`−2,`+1(χ1, χ2)
wν`,`−1(χ1, χ2) wν`,`+1(χ1, χ2)
wν`+2,`−1(χ1, χ2) wν`+2,`+1(χ1, χ2)

(f−1

f1

)
. (3.67)

3.5 CS
` coefficient for the local term

After finding the explicit expression of ∆S
`m = ∆S

`m 1 + ∆S
`m 2 as sum of (3.33) and

(3.46), we are ready to calculate the CS
` coefficient for the local term of the galaxy

density perturbation.

δ``′δmm′CS
` = 〈∆S∗

`m∆S
`′m′〉 = 〈

(
∆S∗
`m 1 + ∆S∗

`m 2
)(

∆S
`′m′ 1 + ∆S

`′m′ 2
)
〉

= ∆S∗
`m 1 ∆S

`′m′ 1︸ ︷︷ ︸
(i)

+ ∆S∗
`m 1 ∆S

`′m′ 2︸ ︷︷ ︸
(ii)

+ ∆S∗
`m 2 ∆S

`′m′ 1︸ ︷︷ ︸
(iii)

+ ∆S∗
`m 2 ∆S

`′m′ 2︸ ︷︷ ︸
(iv)

. (3.68)

We can notice that there is a sum of four terms, called for simplicity (i), (ii), (iii), (iv),
and we are going to compute all of them by order.
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Term (i)

(i) = ∆S∗
`m 1 ∆S

`′m′ 1

=

∫ ∞
0

dχ1W (χ1)

∫
d3k

2π2
(−i)`j`(kχ1)Y`m(k̂)b(z1)δ∗m(k̂, z1)

×
∫ ∞

0

dχ2W (χ2)

∫
d3k′

2π2
i`

′
j`′(k

′χ2)Y ∗`′m′(k̂′)b(z2)δm(k̂′, z2)

=

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

∫
d3k

2π2
(−i)`j`(kχ1)Y`m(k̂)b(z1)

×
∫
d3k′

2π2
i`

′
j`′(k

′χ2)Y ∗`′m′(k̂′)b(z2) δ∗m(k̂, z1)δm(k̂′, z2)︸ ︷︷ ︸
(2π)3P (k′)δ(3)(k′−k)

=

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)
2

π

∫
dk k2(−i)`i`′j`(kχ1)j`′(kχ2)

×
∫
dΩk̂Y`m(k̂)Y ∗`′m′(k̂′)︸ ︷︷ ︸

δ``′δmm′

b(z1)b(z2)P (k)

=

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)
2

π

∫
dk k2j`(kχ1)j`(kχ2)P (k)︸ ︷︷ ︸

w0
`,00(χ1,χ2)

b(z1)b(z2) ,

where we introduced w0
`,00(χ1, χ2) according to definition (3.59). In the end, for the first

addend of the CS
` local coefficient we find:

(i) = ∆S∗
`m 1 ∆S

`′m′ 1 =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)b1b2w
0
`,00(χ1, χ2) , (3.69)

where for simplicity b1 = b(z1) and b2 = b(z2).

Term (ii)

(ii) = ∆S∗
`m 1 ∆S

`′m′ 2

=

∫ ∞
0

dχ1W (χ1)

∫
d3k

2π2
(−i)`j`(kχ1)Y`m(k̂)b(z1)δ∗m(k̂, z1)

×
∫ ∞

0

dχ2W (χ2)i`
′
{
−b(z2)γ(z2)

∫
1

2π2

d3k′

k′2
j`′(k

′χ2)

− 1

χ2

b(z2)α(z2)β(z2)

∫
1

2π2
· d

3k′

k′

[
f ′−1j`′−1(k′χ2) + f ′1j`′+1(k′χ2)

]
− f(z2)

∫
d3k′

2π2

[
f ′−2j`′−2(k′χ2) + f ′0j`′(k

′χ2) + f ′2j`′+2(k′χ2)

]}
Y ∗`′m′(k̂′)δm(k̂′, z2) .

Here f ′0,±1,±2 = f0,±1,±2(`′) and f(z2) = b(z2)β(z2) according to definition (3.17). Using
again the fact that

δ∗m(k̂, z1)δm(k̂′, z2) = (2π)3P (k′)δ(3)(k′ − k) , (3.70)∫
d3k =

∫
dk k2

∫
dΩk̂ , (3.71)∫

dΩn̂Y`m(k̂)Y ∗`′m′(k̂′) = δ``′δmm′ , (3.72)
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we find:

(ii) = ∆S∗
`m 1 ∆S

`′m′ 2

=

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

{
−b(z1)b(z2)γ(z2)

2

π

∫
dkj`(kχ1)j`(kχ2)P (k)︸ ︷︷ ︸

w2
`,00(χ1,χ2)

− 1

χ2

b(z1)b(z2)α(z2)β(z2)
2

π

∫
dk kj`(kχ1)

[
f−1j`−1(kχ2) + f1j`+1(kχ2)

]
P (k)︸ ︷︷ ︸

w1
`,01(χ1,χ2)

− b(z1)b(z2)β(z2)
2

π

∫
dk k2j`(kχ)

[
f−2j`′−2(kχ2) + f0j`(kχ2) + f2j`+2(kχ2)

]
P (k)︸ ︷︷ ︸

w0
`,02(χ1,χ2)

}
,

where we recognized particular integrals defined in the previous section. Therefore for
the second addend of the local CS

` coefficient we get:

(ii) = ∆S∗
`m 1 ∆S

`′m′ 2 = −
∫ ∞

0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

× b1b2

[
γ2 w

2
`,00(χ1, χ2) +

1

χ2

α2β2 w
1
`,01(χ1, χ2) + β2 w

0
`,02(χ1, χ2)

]
, (3.73)

where for simplicity the quantities denoted with the subscripts 1, 2 are computed in
z1,2.

Term (iii)

(iii) = ∆S∗
`m 2 ∆S

`′m′ 1

=

∫ ∞
0

dχ1W (χ1)i`
{
−b(z1)γ(z1)

∫
1

2π2

d3k

k2
j`(kχ1)

− 1

χ1

b(z1)α(z1)β(z1)

∫
1

2π2

d3k

k

[
f−1j`−1(kχ1) + f1j`+1(kχ1)

]
− f(z1)

∫
d3k

2π2

[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

]}
Y ∗`m(k̂)δm(k̂, z1)

×
∫ ∞

0

dχ2W (χ2)

∫
d3k′

2π2
i`

′
j`′(k

′χ2)Y ∗`′m′(k̂′)b(z2)δm(k̂′, z2)

=

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

{
−b(z1)b(z2)γ(z1)

2

π

∫
dkj`(kχ1)j`(kχ2)P (k)︸ ︷︷ ︸

w2
`,00(χ1,χ2)

− 1

χ1

b(z1)b(z2)α(z1)β(z1)
2

π

∫
dk k

[
f−1j`−1(kχ1) + f1j`+1(kχ)

]
j`(kχ2)P (k)︸ ︷︷ ︸

w1
`,10(χ1,χ2)

− b(z1)β(z1)b(z2)
2

π

∫
dk k2

[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

]
j`(kχ2)P (k)︸ ︷︷ ︸

w0
`,20(χ1,χ2)

}
.
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Therefore in the end we have for the third addend of the local CS
` coefficient:

(iii) = ∆S∗
`m 2 ∆S

`′m′ 1 = −
∫ ∞

0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

× b1b2

[
γ1w

2
`,00(χ1, χ2) +

1

χ1

α1β1w
1
`,10(χ1, χ2) + β1w

0
`,20(χ1, χ2)

]
, (3.74)

where the quantities denoted with the subscripts 1, 2 still design that they are valuated
at z1,2.

Term (iv)

(iv) = ∆S∗
`m 2 ∆S

`′m′ 2

=

∫ ∞
0

dχ1W (χ1)i`
{
−b(z1)γ(z1)

∫
1

2π2

d3k

k2
j`(kχ1)

− 1

χ1

b(z1)α(z1)β(z1)

∫
1

2π2

d3k

k

[
f−1j`−1(kχ1) + f1j`+1(kχ1)

]
− f(z1)

∫
d3k

2π2

[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

]}
Y`m(k̂)δ∗m(k̂, z1)

×
∫ ∞

0

dχ2W (χ2)i`
′
{
−b(z2)γ(z2)

∫
1

2π2

d3k′

k′2
j`′(k

′χ2)

− 1

χ2

b(z2)α(z2)β(z2)

∫
1

2π2
· d

3k′

k′

[
f ′−1j`′−1(k′χ2) + f ′1j`′+1(k′χ2)

]
− f(z2)

∫
d3k′

2π2

[
f ′−2j`′−2(k′χ2) + f ′0j`′(k

′χ2) + f ′2j`′+2(k′χ2)

]}
Y ∗`′m′(k̂′)δm(k̂′, z2) .
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All the calculations, using always the same properties of the previous paragraphs, give:

(iv) =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) ×{
b(z1)b(z2)γ(z1)γ(z2)

2

π

∫
dk

k2
j`(kχ1)j`(kχ2)P (k)︸ ︷︷ ︸
w4
`,00(χ1,χ2)

+
1

χ2

b(z1)b(z2)α(z2)β(z2)γ(z1)
2

π

∫
dk

k
j`(kχ1)

[
f−1j`−1(kχ2) + f1j`+1(kχ2)

]
P (k)︸ ︷︷ ︸

w3
`,01(χ1,χ2)

+ b(z1)γ(z1)b(z2)β(z2)
2

π

∫
dkj`(kχ1)

[
f−2j`−2(kχ2) + f0j`(kχ2) + f2j`+2(kχ2)

]
P (k)︸ ︷︷ ︸

w2
`,02(χ1,χ2)

+
1

χ1

b(z1)b(z2)α(z1)β(z1)γ(z2)
2

π

∫
dk

k

[
f−1j`−1(kχ1) + f1j`+1(kχ1)

]
j`(kχ2)P (k)︸ ︷︷ ︸

w3
`,10(χ1,χ2)

+
1

χ1χ2

b(z1)b(z2)α(z1)α(z2)β(z1)β(z2)

× 2

π

∫
dk

[
f−1j`−1(kχ1) + f1j`+1(kχ1)

][
f−1j`−1(kχ2) + f1j`+1(kχ2)

]
P (k)︸ ︷︷ ︸

w2
`,11(χ1,χ2)

+
1

χ
b(z1)α(z)β(z1)b(z2)β(z2)

× 2

π

∫
dk k

[
f−1j`−1(kχ1) + f1j`+1(kχ1)

][
f−2j`−2(kχ2) + f0j`(kχ2) + f2j`+2(kχ2)

]
P (k)︸ ︷︷ ︸

w1
`,12(χ1,χ2)

+ b(z2)γ(z2)b(z1)β(z1)
2

π

∫
dk

[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

]
j`(kχ2)P (k)︸ ︷︷ ︸

w2
`,20(χ1,χ2)

+
1

χ2

b(z2)α(z2)β(z2)b(z1)β(z1)

× 2

π

∫
dk k

[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

][
f−1j`−1(kχ2) + f1j`+1(kχ2)

]
P (k)︸ ︷︷ ︸

w1
`,21(χ1,χ2)

+ b(z1)β(z1)b(z2)β(z2)
2

π

∫
dk k2

[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

]
︸ ︷︷ ︸

×
[
f−2j`−2(kχ2) + f0j`(kχ2) + f2j`+2(kχ2)

]
P (k)︸ ︷︷ ︸

w0
`,22(χ1,χ2)

}
.
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Therefore, by designing with subscripts 1, 2 all the quantities computed in z1,2, we find
for the fourth addend of the local CS

` coefficient:

(iv) =∆S∗
`m 2 ∆S

`′m′ 2

=

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

× b1b2

{
γ1γ2w

4
`,00(χ1, χ2) +

1

χ1

α1β1γ2w
3
`,10(χ1, χ2) +

1

χ2

α2β2γ1w
3
`,01(χ1, χ2)

+ γ1β2w
2
`,02(χ1, χ2) + γ2β1w

2
`,20(χ1, χ2) +

1

χ1χ2

α1α2β1β2w
2
`,11(χ1, χ2)

+
1

χ1

α1β1β2w
1
`,12(χ1, χ2) +

1

χ2

α2β2β1w
1
`,21(χ1, χ2) + β1β2w

0
`,22(χ1, χ2)

}
,

(3.75)

where all the definitions of the integrals that has been replaced with the ”w” are those
from (3.58) to (3.67).

3.5.1 Final complete expression of CS
`

We are now ready to gather all the addends that we have computed in the previous
subsections. The final expression for the CS

` coefficient for the local term of the galaxy
density perturbation is given by the sum of the previous terms (i),(ii),(iii) and (iv):

CS
` =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)b1b2×{
w0
`,00(χ1, χ2)− β2w

0
`,02(χ1, χ2)− β1w

0
`,20(χ1, χ2) + β1β2w

0
`,22(χ1, χ2)

− 1

χ2

α2β2w
1
`,01(χ1, χ2)− 1

χ1

α1β1w
1
`,10(χ1, χ2) +

1

χ1

α1β1β2w
1
`,12(χ1, χ2)

+
1

χ2

α2β2β1w
1
`,21(χ1, χ2)−

[
γ1 + γ2

]
w2
`,00(χ1, χ2) + γ1β2w

2
`,02(χ1, χ2)

+ γ2β1w
2
`,20(χ1, χ2) +

1

χ1χ2

α1α2β1β2w
2
`,11(χ1, χ2) +

1

χ2

α2β2γw
3
`,01(χ1, χ2)

+
1

χ1

α1β1γ2w
3
`,10(χ1, χ2) + γ1γ2w

4
`,00(χ1, χ2)

}
. (3.76)
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3.6 CK
` coefficient for the lensing term

We are now ready to compute CK
` by inserting (3.51) into (3.9).

δ``′δmm′CK
` = 〈∆K∗

`m∆K
`′m′〉 =

[
`(`+ 1)

][
`′(`′ + 1)

] ∫ ∞
0

dχ1W (χ1)
[
1−Q(z1)

]
×
∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

∫
d3k

2π2k2
i`j`(kχ̃1)Y ∗`m(k̂)δm(k̂, z̃1)

×
∫ ∞

0

dχ2W (χ2)
[
1−Q(z2)

] ∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)

×
∫

d3k′

2π2k′2
i`

′
j`′(k

′χ̃2)Y ∗`′m′(k̂′)δm(k̂′, z̃2) . (3.77)

By using the same properties of the previous sections, as
∫
dΩn̂Y`m(k̂)Y ∗`′m′(k̂′) =

δ``′δmm′ and δ∗m(k̂, z1)δm(k̂′, z2) = (2π)3P (k′)δ(3)(k′ − k), we obtain:

CK
` = `2(`+ 1)2

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)
[
1−Q(z1)

][
1−Q(z2)

]
×
∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)

× 2

π

∫
dk

k2
j`(kχ̃1)j`(kχ̃2)P (k)︸ ︷︷ ︸
w4
`,00(χ̃1,χ̃2)

.

Therefore the final expression for the CK
` coefficient results:

CK
` = `2(`+ 1)2

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)
[
1−Q(z1)

][
1−Q(z2)

]
×
∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)w4
`,00(χ̃1, χ̃2) .

(3.78)

3.7 CI
` coefficient for the time delay term

The CI
` coefficient can now be obtained in the same way of the previous contributions:

δ``′δmm′CI
` = 〈∆I∗

`m∆I
`′m′〉 =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

×
{
− 2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

∫
d3k

2π2k2
i`j`(kχ̃1)Y ∗`m(k̂)δm(k̂, z̃1)

− 1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ d3k

2π2k2
i`j`(kχ̃1)Y ∗`m(k̂)δm(k̂, z̃1)

}
×
{
− 2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

∫
d3k′

2π2k′2
i`

′
j`′(k

′χ̃2)Y ∗`′m′(k̂′)δm(k̂′, z̃2)

− 1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

] ∫ d3k′

2π2k′2
i`

′
j`′(k

′χ̃2)Y ∗`′m′(k̂′)δm(k̂′, z̃2)

}
.
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Doing all the products and using all the properties mentioned in the previous sections,
the following expression is found:

CI
` =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

×
{

4

χ1χ2

[
1−Q(z1)

][
1−Q(z2)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

× 2

π

∫
dk

k2
j`(kχ̃1)j`(kχ̃2)P (k)︸ ︷︷ ︸
w4
`,00(χ̃1,χ̃2)

+
2

χ1χ2

[
1−Q(z1)

] α(z2)

H(z2)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃23 Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]
× 2

π

∫
dk

k2
j`(kχ̃1)j`(kχ̃2)P (k)︸ ︷︷ ︸
w4
`,00(χ̃1,χ̃2)

+
2

χ1χ2

[
1−Q(z2)

] α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

× 2

π

∫
dk

k2
j`(kχ̃1)j`(kχ̃2)P (k)︸ ︷︷ ︸
w4
`,00(χ̃1,χ̃2)

+
1

χ1χ2

α(z1)α(z2)

H(z1)H(z2)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]
× 2

π

∫
dk

k2
j`(kχ̃1)j`(kχ̃2)P (k)︸ ︷︷ ︸
w4
`,00(χ̃1,χ̃2)

}
.

Therefore the final expression of CI
` is:

CI
` =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)
1

χ1χ2

×
{

4
[
1−Q(z1)

][
1−Q(z2)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+ 2
[
1−Q(z1)

] α(z2)

H(z2)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃23 Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]
+ 2
[
1−Q(z2)

] α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+
α(z1)α(z2)

H(z1)H(z2)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]}
× w4

`,00(χ̃1, χ̃2) . (3.79)
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3.8 C` mixed terms

Besides the “pure” unmixed contributions that we have just computed, other terms are
needed in order to give the final total expression of C`: they are named from (a) to (f)
in the expression (3.98), and will be explicitely calculated in the following paragraphs.
However, a specification on the definition of the power spectrum is needed now, because
the density perturbations δ(k̂, z) that will appear are actually in the form (1.66), so the
power spectrum P (k) where the dependency on the redshift has been omitted results
to be actually:

P (k, z1, z2) = P (k)
D(z1)D(z2)

D2(0)
. (3.80)

Previously, none or both the D(z) factors were inside the integrals in χ̃, so we didn’t
need to specify such a definition. In the mixed terms, instead, some δ(k̂, z) will be inside
the integrals in χ̃ and others will not, so that when the power spectrum will arise, one
D(z) factor will be integrated and the other will not. In order to keep the notation
simple, we have not inserted before and we will not insert now the D(z) factors, but we
keep in mind that when we find mixed expressions as wν`,00(χ̃1, χ2), wν`,00(χ1, χ̃2) and so
on, we are omitting the Ds.

(a) ∆S∗
`m∆K

`′m′

∆S∗
`m∆K

`′m′ =
(
∆S∗
`m 1 + ∆S∗

`m 2
)
∆K
`′m′

=

{∫ ∞
0

dχ1W (χ1)

∫
d3k

2π2
(−i)`j`(kχ1)Y`m(k̂)b(z1)δ∗m(k̂, z1)

−
∫ ∞

0

dχ1W (χ1)(−i)`
{
b(z1)γ(z1)

∫
1

2π2

d3k

k2
j`(kχ1)

− 1

χ1

b(z1)α(z1)β(z1)

∫
1

2π2

d3k

k

[
f−1j`−1(kχ1) + f1j`+1(kχ1)

]
− b(z1)β(z1)

∫
d3k

2π2

[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

]}
Y`m(k̂)δ∗m(k̂, z1)

}

×

{
−`′(`′ + 1)

∫ ∞
0

dχ2W (χ2)
[
1−Q(z2)

] ∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)

×
∫

d3k′

2π2k′2
i`

′
j`′(k

′χ̃2)Y ∗`′m′(k̂′)δm(k̂′, z̃2)

}
. (3.81)
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Doing all the products and using the same properties and definitions of the previous
sections, we compute:

∆S∗
`m∆K

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) `(`+ 1)
[
1−Q(z2)

]
×
∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)

×

{
−b(z1)

2

π

∫
dkj`(kχ1)j`(kχ̃2)P (k)︸ ︷︷ ︸

w2
`,00(χ1,χ̃2)

+b(z1)γ(z1)
2

π

∫
dk

k2
j`(kχ1)j`(kχ̃2)P (k)︸ ︷︷ ︸
w4
`,00(χ1,χ̃2)

+
1

χ1

b(z1)α(z1)β(z1)
2

π

∫
dk

k

[
f−1j`−1(kχ1) + f1j`+1(kχ1)

]
j`(kχ̃2)P (k)︸ ︷︷ ︸

w3
`,10(χ1,χ̃2)

+ b(z1)β(z1)
2

π

∫
dk
[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

]
j`(kχ̃2)P (k)︸ ︷︷ ︸

w2
`,20(χ1,χ̃2)

}
.

(3.82)

The first mixed term (a) results:

∆S∗
`m∆K

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) `(`+ 1)
[
1−Q(z2)

]
×
∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)

×
{
−b1w

2
`,00(χ1, χ̃2) + b1γ1w

4
`,00(χ1, χ̃2) +

1

χ1

b1α1β1w
3
`,10(χ1, χ̃2)

+ b1β1w
2
`,20(χ1, χ̃2)

}
, (3.83)

where the quantities with subscript 1 are evaluated in z1.
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(b) ∆S∗
`m∆I

`′m′

∆S∗
`m∆I

`′m′ =
(
∆S∗
`m 1 + ∆S∗

`m 2
)
∆K
`′m′

=

{∫ ∞
0

dχ1W (χ1)

∫
d3k

2π2
(−i)`j`(kχ1)Y`m(k̂)b(z1)δ∗m(k̂, z1)

−
∫ ∞

0

dχ1W (χ1)(−i)`
{
b(z1)γ(z1)

∫
1

2π2

d3k

k2
j`(kχ1)

− 1

χ1

b(z1)α(z1)β(z1)

∫
1

2π2

d3k

k

[
f−1j`−1(kχ1) + f1j`+1(kχ1)

]
− b(z1)β(z1)

∫
d3k

2π2

[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

]}
Y`m(k̂)δ∗m(k̂, z1)

}

×
∫ ∞

0

dχ2W (χ2)

{
− 2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

×
∫

d3k′

2π2k′2
i`

′
j`′(k

′χ̃2)Y ∗`′m′(k̂′)δm(k̂′, z̃2)

− 1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

] ∫ d3k′

2π2k′2
i`

′
j`′(k

′χ̃2)Y ∗`′m′(k̂′)δm(k̂′, z̃2)

}
.

(3.84)

Then, doing all the products:

∆S∗
`m∆I

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

×

{
−b(z1)

2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)
2

π

∫
dkj`(kχ1)j`(kχ̃2)P (k)︸ ︷︷ ︸

w2
`,00(χ1,χ̃2)

− b(z1)
1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

] 2

π

∫
dkj`(kχ1)j`(kχ̃2)P (k)︸ ︷︷ ︸

w2
`,00(χ1,χ̃2)

+ b(z1)γ(z1)
2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)
2

π

∫
dk

k2
j`(kχ1)j`(kχ̃2)P (k)︸ ︷︷ ︸
w4
`,00(χ1,χ̃2)

+ b(z1)γ(z1)
1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

] 2

π

∫
dk

k2
j`(kχ1)j`(kχ̃2)P (k)︸ ︷︷ ︸
w4
`,00(χ1,χ̃2)

+
2

χ1χ2

b(z1)α(z1)β(z1)
[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

× 2

π

∫
dk

k

[
f−1j`−1(kχ1) + f1j`+1(kχ1)

]
j`(kχ̃2)P (k)︸ ︷︷ ︸

w3
`,10(χ1,χ̃2)
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+
1

χ1χ2

b(z1)α(z1)α(z2)β(z1)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]
× 2

π

∫
dk

k

[
f−1j`−1(kχ1) + f1j`+1(kχ1)

]
j`(kχ̃2)P (k)︸ ︷︷ ︸

w3
`,10(χ1,χ̃2)

+ b(z1)β(z1)
2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

× 2

π

∫
dk
[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

]
j`(kχ̃2)P (k)︸ ︷︷ ︸

w2
`,20(χ1,χ̃2)

+
1

χ2

b(z1)α(z2)β(z1)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]
× 2

π

∫
dk
[
f−2j`−2(kχ1) + f0j`(kχ1) + f2j`+2(kχ1)

]
j`(kχ̃2)P (k)︸ ︷︷ ︸

w2
`,20(χ1,χ̃2)

}
. (3.85)

The second mixed term results:

∆S∗
`m∆I

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) b1

{
2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+
1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]}
×
{
−w2

`,00(χ1, χ̃2) + γ1w
4
`,00(χ1, χ̃2) +

1

χ1

α1β1w
3
`,10(χ1, χ̃2) + β1w

2
`,20(χ1, χ̃2)

}
.

(3.86)

(c) ∆K∗
`m∆S

`′m′

∆K∗
`m∆S

`′m′ = ∆K∗
`m

(
∆S
`′m′ 1 + ∆S

`′m′ 2
)

=

{
−`(`+ 1)

∫ ∞
0

dχ1W (χ1)
[
1−Q(z1)

] ∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

×
∫

d3k

2π2k2
(−i)`j`(kχ̃1)Y`m(k̂)δ∗m(k̂, z̃1)

}

×

{∫ ∞
0

dχ2W (χ2)

∫
d3k′

2π2
i`

′
j`′(k

′χ2)Y ∗`′m′(k̂′)b(z2)δm(k̂′, z2)

−
∫ ∞

0

dχW (χ2)i`
′
{
b(z2)γ(z2)

∫
1

2π2

d3k′

k′2
j`′(k

′χ2)

+
1

χ2

b(z2)α(z2)β(z2)

∫
1

2π2

d3k′

k′

[
f ′−1j`′−1(k′χ2) + f ′1j`′+1(k′χ2)

]
+ f(z2)

∫
d3k′

2π2

[
f ′−2j`′−2(k′χ2) + f ′0j`′(k

′χ2) + f ′2j`′+2(k′χ2)
]}
Y ∗`′m′(k̂′)δm(k̂′, z2)

}
.

(3.87)
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Doing all the products we find:

∆K∗
`m∆S

`′m′ = −`(`+ 1)

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

×
[
1−Q(z1)

] ∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1){
b(z2)

2

π

∫
dkj`(kχ̃1)j`(kχ2)P (k)︸ ︷︷ ︸

w2
`,00(χ̃1,χ2)

− b(z2)γ(z2)
2

π

∫
dk

k2
j`(kχ̃1)j`(kχ2)P (k)︸ ︷︷ ︸
w4
`,00(χ̃1,χ2)

− 1

χ2

b(z2)α(z2)β(z2)
2

π

∫
dk

k
j`(kχ̃1)

[
f−1j`−1(kχ2) + f1j`+1(kχ2)

]
P (k)︸ ︷︷ ︸

w3
`,01(χ̃1,χ2)

− b(z2)β(z2)
2

π

∫
dkj`(kχ̃1)

[
f−2j`−2(kχ2) + f0j`(kχ2) + f2j`+2(kχ2)

]
P (k)︸ ︷︷ ︸

w2
`,02(χ̃1,χ2)

}
.

(3.88)

The third mixed term results

∆K∗
`m∆S

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

× `(`+ 1)b2

[
1−Q(z1)

] ∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

×
{
−w2

`,00(χ̃1, χ2) + γ2w
4
`,00(χ̃1, χ2) +

1

χ2

α2β2w
3
`,01(χ̃1, χ2) + β2w

2
`,02(χ̃1, χ2)

}
.

(3.89)

(d) ∆K∗
`m∆I

`′m′

∆K∗
`m∆I

`′m′ =

{
−`(`+ 1)

∫ ∞
0

dχ1W (χ1)
[
1−Q(z1)

] ∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

×
∫

d3k

2π2k2
(−i)`j`(kχ̃1)Y`m(k̂)δ∗m(k̂, z̃1)

}

×

{∫ ∞
0

dχ2W (χ2)

{
− 2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

×
∫

d3k′

2π2k′2
i`

′
j`′(k

′χ̃2)Y ∗`′m′(k̂′)δm(k̂′, z̃2)

− 1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

] ∫ d3k′

2π2k′2
i`

′
j`′(k

′χ̃2)Y ∗`′m′(k̂′)δm(k̂′, z̃2)

}}
.

(3.90)
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With some calculations we find:

∆K∗
`m∆I

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) `(`+ 1)
[
1−Q(z1)

]
×
∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

{
2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+
1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]} 2

π

∫
dk

k2
j`(kχ̃1)j`(kχ̃2)P (k)︸ ︷︷ ︸
w4
`,00(χ̃1,χ̃2)

.

(3.91)

Therefore the fourth mixed term is:

∆K∗
`m∆I

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) `(`+ 1)
[
1−Q(z1)

]
×
∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

{
2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+
1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]}
w4
`,00(χ̃1, χ̃2) . (3.92)

(e) ∆I∗
`m∆S

`′m′

∆I∗
`m∆S

`′m′ = ∆I∗
`m

(
∆S
`′m′ 1 + ∆S

`′m′ 2
)

=

{∫ ∞
0

dχ1W (χ1)

{
− 2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

×
∫

d3k

2π2k2
i`j`(kχ̃1)Y`m(k̂)δ∗m(k̂, z̃1)

− 1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ d3k

2π2k2
i`j`(kχ̃1)Y`m(k̂)δm(k̂, z̃1)

}}

×

{∫ ∞
0

dχ2W (χ2)

∫
d3k′

2π2
i`

′
j`′(k

′χ2)Y ∗`′m′(k̂′)b(z2)δm(k̂′, z2)

−
∫ ∞

0

dχW (χ2)i`
′
{
b(z2)γ(z2)

∫
1

2π2

d3k′

k′2
j`′(k

′χ2)

+
1

χ2

b(z2)α(z2)β(z2)

∫
1

2π2

d3k′

k′

[
f ′−1j`′−1(k′χ2) + f ′1j`′+1(k′χ2)

]
+ f(z2)

∫
d3k′

2π2

[
f ′−2j`′−2(k′χ2) + f ′0j`′(k

′χ2) + f ′2j`′+2(k′χ2)
]}
Y ∗`′m′(k̂′)δm(k̂′, z2)

}
.

(3.93)
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All the calculations give:

∆I∗
`m∆S

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

{
2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

+
1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

]}
×
{
−b(z2)

2

π

∫
dkj`(kχ̃1)j`(kχ2)P (k)︸ ︷︷ ︸

w2
`,00(χ̃1,χ2)

+b(z2)γ(z2)
2

π

∫
dk

k2
j`(kχ̃1)j`(kχ2)P (k)︸ ︷︷ ︸
w4
`,00(χ̃1,χ2)

+
1

χ2

b(z2)α(z2)β(z2)
2

π

∫
dk

k
j`(kχ̃1)

[
f−1j`−1(kχ2) + f1j`+1(kχ2)

]
P (k)︸ ︷︷ ︸

w3
`,01(χ̃1,χ2)

+ b(z2)β(z2)
2

π

∫
dkj`(kχ̃1)

[
f−2j`−2(kχ2) + f0j`(kχ2) + f2j`+2(kχ2)

]
P (k)︸ ︷︷ ︸

w2
`,02(χ̃1,χ2)

}
. (3.94)

Thus the fifth mixed term is:

∆I∗
`m∆S

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

{
2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

+
1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

]}
b2

×
{
−w2

`,00(χ̃1, χ2) + γ2w
4
`,00(χ̃1, χ2) +

1

χ2

α2β2w
3
`,01(χ̃1, χ2) + β2w

2
`,02(χ̃1, χ2)

}
.

(3.95)
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(f) ∆I∗
`m∆K

`′m′

∆I∗
`m∆K

`′m′ =

{∫ ∞
0

dχ1W (χ1)

{
− 2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

×
∫

d3k

2π2k2
i`j`(kχ̃1)Y`m(k̂)δ∗m(k̂, z̃1)

− 1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ d3k

2π2k2
i`j`(kχ̃1)Y`m(k̂)δm(k̂, z̃1)

}}

×

{
−`′(`′ + 1)

∫ ∞
0

dχ2W (χ2)
[
1−Q(z2)

] ∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)

×
∫

d3k′

2π2k′2
i`

′
j`′(k

′χ̃2)Y ∗`′m′(k̂′)δm(k̂′, z̃2)

}

=

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

{
2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

+
1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

]}
`(`+ 1)

×
[
1−Q(z2)

] ∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)
2

π

∫
dk

k2
j`(kχ̃1)j`(kχ̃2)P (k)︸ ︷︷ ︸
w4
`,00(χ̃1,χ̃2)

. (3.96)

Therefore the sixth mixed term results:

∆I∗
`m∆K

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

{
2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

+
1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

]}
`(`+ 1)

×
[
1−Q(z2)

] ∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2) w4
`,00(χ̃1, χ̃2) . (3.97)
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3.9 Total C`
The total C` coefficient consists in the sum of the three unmixed contributions (3.76),
(3.78), (3.79) and of the mixed terms (3.83), (3.86), (3.89), (3.92), (3.95), (3.97):

C` =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

{

b1b2

{
w0
`,00(χ1, χ2)− β2w0

`,02(χ1, χ2)− β1w0
`,20(χ1, χ2) + β1β2w

0
`,22(χ1, χ2)

− 1

χ2
α2β2w

1
`,01(χ1, χ2)− 1

χ1
α1β1w

1
`,10(χ1, χ2) +

1

χ1
α1β1β2w

1
`,12(χ1, χ2)

+
1

χ2
α2β2β1w

1
`,21(χ1, χ2)−

[
γ1 + γ2

]
w2
`,00(χ1, χ2) + γ1β2w

2
`,02(χ1, χ2)

+ γ2β1w
2
`,20(χ1, χ2) +

1

χ1χ2
α1α2β1β2w

2
`,11(χ1, χ2) +

1

χ2
α2β2γw

3
`,01(χ1, χ2)

+
1

χ1
α1β1γ2w

3
`,10(χ1, χ2) + γ1γ2w

4
`,00(χ1, χ2)

}
+

{
`2(`+ 1)2

[
1−Q(z1)

][
1−Q(z2)

]
×
∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)

+
1

χ1χ2

[
4
[
1−Q(z1)

][
1−Q(z2)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+ 2
[
1−Q(z1)

] α(z2)

H(z2)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃23 Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]
+ 2
[
1−Q(z2)

] α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+
α(z1)α(z2)

H(z1)H(z2)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]]
+ `(`+ 1)

[
1−Q(z1)

] ∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

×
[

2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2) +
1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]}]
+ `(`+ 1)

[
1−Q(z2)

] ∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2) w4
`,00(χ̃1, χ̃2)

×
[

2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1) +
1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

]]}
× w4

`,00(χ̃1, χ̃2)

+ `(`+ 1)
[
1−Q(z2)

]
b1

∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)

×
{
−w2

`,00(χ1, χ̃2) + γ1w
4
`,00(χ1, χ̃2) +

1

χ1
α1β1w

3
`,10(χ1, χ̃2) + β1w

2
`,20(χ1, χ̃2)

}
+ b1

{
2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2) +
1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]}
×
{
−w2

`,00(χ1, χ̃2) + γ1w
4
`,00(χ1, χ̃2) +

1

χ1
α1β1w

3
`,10(χ1, χ̃2) + β1w

2
`,20(χ1, χ̃2)

}
+ `(`+ 1)

[
1−Q(z1)

]
b2

∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

×
{
−w2

`,00(χ̃1, χ2) + γ2w
4
`,00(χ̃1, χ2) +

1

χ2
α2β2w

3
`,01(χ̃1, χ2) + β2w

2
`,02(χ̃1, χ2)

}
+ b2

{
2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1) +
1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

]}
×
{
−w2

`,00(χ̃1, χ2) + γ2w
4
`,00(χ̃1, χ2) +

1

χ2
α2β2w

3
`,01(χ̃1, χ2) + β2w

2
`,02(χ̃1, χ2)

}}
. (3.98)
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Chapter 4

Limber’s approximation

The exact expression of the angular power spectrum (3.98) is given in terms of sev-
eral integrals which must be evaluated numerically, but this task is often very difficult
and time consuming because at high multipoles ` and large arguments kχ the spher-
ical Bessel functions j`(kχ) rapidly oscillate; their highly oscillatory behaviour delays
the convergence of the numerical integration. For this reason the Limber approxima-
tion has been often used in recent papers (e.g. in Ref.[33]) as a tecnique to simplify
calculations. It is a powerful method to estimate the magnitude and understand the
analytic dependence of the projected power spectra. Its implementation requires two
basic assumptions:

- working with small angular separations or with large multipole moments `; we
will focus on the latest aspect.

- some of the functions which are integrated are more slowly varying than others;
in our case, we assume that the power spectrum P (k) which appears inside the
wν`,jj′ integrals varies more much more slowly than the spherical Bessel functions
j`(kχ).

In the Limber’s approximation, the spherical Bessel function is replaced by a delta
function:

j`(kχ) −→
√

π

2a
δD(a− kχ) , where a = `+

1

2
. (4.1)

This definition is taken from Ref.[34], which calls the parameter a as ν, as is usually done
in literature. Here we change this notation because ν has already been used in the wν`,jj
definitions, and this can bring misunderstandings in further calculations. Therefore, we
will use a as Limber parameter in order to avoid confusion. We will further demonstrate
that using (4.1) the integral w0

`,00, defined in (3.58) and (3.59), becomes

w0
`,00(χ1, χ2) ≈ δD(χ1 − χ2)

χ2
1

P

(
a

χ1

)
, (4.2)

and we will generalize this result to the case wν`,jj′ , with generic values of ν and j, j′. The
Dirac delta suggests that this tecnique reduces the number of integrals, thus making
calculations simpler. Before applying such an approximation to our results, we want
to ensure that it is consistent by looking at the work of Jeong et al. in Ref.[33]:
they compare the numerical estimation computed with the 2-FAST and CAMB [35]
algorithms with the results from the Limber’s approximation for different values of a
(which they call ν). Watching Fig.4.1, it can be seen that: in the case a = ` the largest
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Figure 4.1: Here the

lensing potential angular

power spectrum is plot-

ted [33]. In solid black is

the result from CAMB, in

dashed-dotted black the

Limber’s approximation

with a = ` (a = ν in [33]),

in dashed black with a =

` + 1/2, in dashed gray

with a =
√
`(`+ 1),

and in solid green the 2-

FAST method presented

in Ref.[33] .

deviation happens for small `, while with the more proper choice of a = ` + 0.5 [36]
the approximation works much better up to ` ' 10; a further improvement has been
given by choosing a =

√
`(`+ 1), but we will not use it because it would complicate

calculations too much. Fig.4.1 then shows that the Limber’s approximation reproduces
the exact calculation for large multipole moments ` > 100, while for larger angular scales
(smaller `) there is a deviation. Therefore, by assuming the previous two hypothesis,
we are able to apply the Limber’s approximation to all our wν`,jj′ definitions, in order
to give an easier expression of C`.

4.1 The case ` = `′, ν = 0

The first step is to demonstrate Eq.(4.2) using (4.1). It is useful to recap the definition
of wν`,` ≡ wν`,00 for ν = 0, to which the approximation is applied in Ref.[34] and [36], and
that is our starting point:

w0
`,00(χ1, χ2) ≡ w0

`,`(χ1, χ2) =
2

π

∫
dk k2P (k)j`(kχ1)j`(kχ2) .

First of all, we want to insert approximation (4.1) in the previous formula:

w0
`,`(χ1, χ2) ≈ 2

π

∫
dk k2P (k)

√
π

2a
δD(a− kχ1)

√
π

2a
δD(a− kχ2)

≈
∫
dk k2P (k)

1

a
δD(a− kχ1)δD(a− kχ2) . (4.3)

At this point, we want to write the Dirac delta functions in a different way using the
property:

δD[g(k)] =
∑
i

δD(k − ki)
|g′(ki)|

, (4.4)

where ki are the zeros of g(k). In our case g(k) = a − kχ, g′(k) = −χ and ki = a/χ,
therefore we find that

δD(a− kχ) =
δD

(
a− k

χ

)
χ

. (4.5)
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This result can be inserted in (4.3):

w0
`,`(χ1, χ2) ≈

∫
dkk2P (k)

1

a

δD

(
a− k

χ1

)
χ1

δD

(
a− k

χ2

)
χ2

≈ a2

χ2
1

1

a
P

(
a

χ1

)
1

χ1χ2

δD

(
a

χ1

− a

χ2

)
. (4.6)

We have almost proved (4.2); the last step is to write the Dirac delta function as
δD(χ1 − χ2), using the same property (4.4) mentioned before. Here we consider a
g(χ) = a(χ1 − χ2)/χ1χ2, with g′(χ) = −a/χ2

1, so the delta becomes

δD

(
a

χ1

− a

χ2

)
=
δD(χ1 − χ2)∣∣− a

χ2
1

∣∣ = χ2
1

δD(χ1 − χ2)

a
. (4.7)

Therefore, since the Dirac delta constrains χ1 = χ2, we find

w0
`,`(χ1, χ2) ≈ a

χ2
1

P

(
a

χ1

)
1

χ2
1

χ2
1

δD(χ1 − χ2)

a

≈ δD(χ1 − χ2)

χ2
1

P

(
a

χ1

)
, (4.8)

which is exactly the formula (4.2).

4.2 The case ` 6= `′, generic ν

Our aim is to generalize the formula (4.2) in the case when j 6= j′ and so ` 6= `′,
varying also the value of the index ν in order to find the approximated expressions
of the wν`,jj′(χ1, χ2) integrals that appear in the expression of C`. We have to use the
approximation (4.1) in the definition of wν`,`′(χ1, χ2), which represents the tipical addend
in wν`,jj′(χ1, χ2). Therefore, step by step, we find:

wν`,`′(χ1, χ2) =
2

π

∫
dk k2P (k)

kν
j`(kχ1)j`(kχ2)

≈ 2

π

∫
dk k2P (k)

kν

√
π

2a
δD(a− kχ1)

√
π

2a′
δD(a′ − kχ2) , (4.9)

where a = ` + 0.5 and a′ = `′ + 0.5. Now, using again the property (4.4) for the Dirac
delta functions, we find:

wν`,`′(χ1, χ2) ≈
∫
dk

k2

kν
P (k)

1√
aa′

δD

(
k − a

χ1

)
χ1

δD

(
k − a′

χ2

)
χ2

(4.10)

≈
(
a

χ1

)2(
χ1

a

)ν
P (k)

1√
aa′

1

χ1χ2

δD

(
a

χ1

− a′

χ2

)
. (4.11)

Using again (4.4) with g(χ1) = (a/χ1)− (a′/χ2) and g′(χ1) = −a/χ2
1, we have:

wν`,`′(χ1, χ2) ≈
(
a

χ1

)2(
χ1

a

)ν
P (k)

1√
aa′

1

χ2
1

χ2
1

a
δD(χ1 − χ2)

≈ δD(χ1 − χ2)

χ2−ν
1 aν

√
a

a′
P

(
a

χ1

)
. (4.12)
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Symmetrization

However, the generalization we have just found is not symmetric, since we “used” only
one Dirac delta function to replace the integral in k. Therefore, we want to write the
products of the two deltas in (4.10) as:

δD

(
k− a

χ1

)
δD

(
k− a′

χ2

)
=

1

2

[
δD

(
k− a

χ1

)
δD

(
k− a′

χ2

)
+ δD

(
k− a′

χ2

)
δD

(
k− a

χ1

)]
.

(4.13)
In this way (4.10) becomes

wν`,`′(χ1, χ2)

≈
∫
dk

k2

kν
P (k)

1√
aa′

1

χ1χ2

1

2

[
δD

(
k − a

χ1

)
δD

(
k − a′

χ2

)
+ δD

(
k − a′

χ2

)
δD

(
k − a

χ1

)]
≈ 1

2

(
a

χ1

)2−ν

P

(
a

χ1

)
1√
aa′

1

χ1χ2

δD

(
a

χ1

− a′

χ2

)
︸ ︷︷ ︸

χ2
1
a
δD(χ1−χ2)

+
1

2

(
a′

χ2

)2−ν

P

(
a′

χ2

)
1√
aa′

1

χ1χ2

δD

(
a′

χ2

− a

χ1︸ ︷︷ ︸
χ2

2
a
δD(χ2−χ1)

)
. (4.14)

Doing the calculations and with the constrain χ1 = χ2 we find the following symmetric
formula:

wν`,`′(χ1, χ2) ≈ 1

2

δD(χ1 − χ2)

χ2−ν
1 aν

√
a

a′
P

(
a

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 a′ ν

√
a′

a
P

(
a′

χ1

)
, (4.15)

where a = `+ 1/2 and a′ = `′ + 1/2.
This is the starting point to compute the Limber’s approximation of all the wν`,jj′ inte-
grals, in order to give that of the C` coefficients in the end.

4.3 Limber’s approximation of wν
`,jj′ integrals

wν
`,00(χ1, χ2)

wν`,00(χ1, χ2) = wν`,`(χ1, χ2)

=
1

2

δD(χ1 − χ2)

χ2−ν
1 aν

P

(
a

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 aν

P

(
a

χ1

)
=
δD(χ1 − χ2)

χ2−ν
1 aν

P

(
a

χ1

)
, (4.16)

with

a = `+
1

2
. (4.17)
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wν
`,02(χ1, χ2)

wν`,`−2(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 aν

√
a

a− 2
P

(
a

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 2)ν

√
a− 2

a
P

(
a− 2

χ1

)
;

(4.18)

wν`,`+2(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 aν

√
a

a+ 2
P

(
a

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 2)ν

√
a+ 2

a
P

(
a+ 2

χ1

)
;

(4.19)

wν`,02(χ1, χ2) = f−2w
ν
`,`−2(χ1, χ2) + f0w

ν
`,`(χ1, χ2) + f2w

ν
`,`+2(χ1, χ2)

=
1

2

δD(χ1 − χ2)

χ2−ν
1

√
a

aν

[
f−2√
a− 2

+
2f0√
a

+
f2√
a+ 2

]
P

(
a

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1

1√
a

[
f−2

√
a− 2

(a− 2)ν
P

(
a− 2

χ1

)
+ f2

√
a+ 2

(a+ 2)ν
P

(
a+ 2

χ1

)]
,

(4.20)

where the quantities a, f0,±2 have been defined in (4.17) and (3.42).

wν
`,20(χ1, χ2)

wν`−2,`(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 2)ν

√
a− 2

a
P

(
a− 2

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 aν

√
a

a− 2
P

(
a

χ1

)
;

(4.21)

wν`+2,`(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 2)ν

√
a+ 2

a
P

(
a+ 2

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 aν

√
a

a+ 2
P

(
a

χ1

)
;

(4.22)

wν`,20(χ1, χ2) = f−2w
ν
`−2,`(χ1, χ2) + f0w

ν
`,`(χ1, χ2) + f2w

ν
`+2,`(χ1, χ2)

=
1

2

δD(χ1 − χ2)

χ2−ν
1

√
a

aν

[
f−2√
a− 2

+
2f0√
a

+
f2√
a+ 2

]
P

(
a

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1

1√
a

[
f−2

√
a− 2

(a− 2)ν
P

(
a− 2

χ1

)
+ f2

√
a+ 2

(a+ 2)ν
P

(
a+ 2

χ1

)]
,

(4.23)

which results equal to (4.20), as we expected using a symmetric approach.
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wν
`,22(χ1, χ2)

wν`−2,`−2(χ1, χ2) =
δD(χ1 − χ2)

χ2−ν
1 (a− 2)ν

P

(
a− 2

χ1

)
; (4.24)

wν`+2,`+2(χ1, χ2) =
δD(χ1 − χ2)

χ2−ν
1 (a+ 2)ν

P

(
a+ 2

χ1

)
; (4.25)

wν`−2,`+2(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 2)ν

√
a− 2

a+ 2
P

(
a− 2

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 2)ν

√
a+ 2

a− 2
P

(
a+ 2

χ1

)
;

(4.26)

wν`+2,`−2(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 2)ν

√
a+ 2

a− 2
P

(
a+ 2

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 2)ν

√
a− 2

a+ 2
P

(
a− 2

χ1

)
.

(4.27)

Also here we can notice that (4.26) and (4.27) are equal. At this point we have all the
elements to compute:

wν`,22(χ1, χ2) = (f−2)2wν`−2,`−2(χ1, χ2) + f−2f0w
ν
`−2,`(χ1, χ2) + f−2f2w

ν
`−2,`+2(χ1, χ2)

+ f0f−2w
ν
`,`−2(χ1, χ2) + (f0)2wν`,`(χ1, χ2) + f0f2w

ν
`,`+2(χ1, χ2)

+ f2f−2w
ν
`+2,`−2(χ1, χ2) + f2f0w

ν
`+2,`(χ1, χ2) + (f2)2wν`+2,`+2(χ1, χ2) .

With some calculations we find the expression:

wν`,22(χ1, χ2) =
δD(χ1 − χ2)

χ2−ν
1

[
f−2√
a− 2

+
f0√
a

+
f2√
a+ 2

]
×
[
f−2

√
a− 2

(a− 2)ν
P

(
a− 2

χ1

)
+ f0

√
a

aν
P

(
a

χ1

)
+ f2

√
a+ 2

(a+ 2)ν
P

(
a+ 2

χ1

)]
.

(4.28)

wν
`,01(χ1, χ2)

wν`,`−1(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 aν

√
a

a− 1
P

(
a

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 1)ν

√
a− 1

a
P

(
a− 1

χ1

)
;

(4.29)

wν`,`+1(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 aν

√
a

a+ 1
P

(
a

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 1)ν

√
a+ 1

a
P

(
a+ 1

χ1

)
;

(4.30)

wν`,01(χ1, χ2) = f−1w
ν
`,`−1(χ1, χ2) + f1w

ν
`,`+1(χ1, χ2)

=
1

2

δD(χ1 − χ2)

χ2−ν
1

√
a

aν

[
f−1√
a− 1

+
f1√
a+ 1

]
P

(
a

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1

1√
a

[
f−1

√
a− 1

(a− 1)ν
P

(
a− 1

χ1

)
+ f1

√
a+ 1

(a+ 1)ν
P

(
a+ 1

χ1

)]
.

(4.31)
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wν
`,10(χ1, χ2)

wν`−1,`(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 1)ν

√
a− 1

a
P

(
a− 1

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 aν

√
a

a− 1
P

(
a

χ1

)
;

(4.32)

wν`+1,`(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 1)ν

√
a+ 1

a
P

(
a+ 1

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 aν

√
a

a+ 1
P

(
a

χ1

)
;

(4.33)

wν`,10(χ1, χ2) = f−1w
ν
`−1,`(χ1, χ2) + f1w

ν
`+1,`(χ1, χ2)

=
1

2

δD(χ1 − χ2)

χ2−ν
1

√
a

aν

[
f−1√
a− 1

+
f1√
a+ 1

]
P

(
a

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1

1√
a

[
f−1

√
a− 1

(a− 1)ν
P

(
a− 1

χ1

)
+ f1

√
a+ 1

(a+ 1)ν
P

(
a+ 1

χ1

)]
,

(4.34)

which is the same expression of (4.31).

wν
`,11(χ1, χ2)

wν`−1,`−1(χ1, χ2) =
δD(χ1 − χ2)

χ2−ν
1 (a− 1)ν

P

(
a− 1

χ1

)
; (4.35)

wν`+1,`+1(χ1, χ2) =
δD(χ1 − χ2)

χ2−ν
1 (a+ 1)ν

P

(
a+ 1

χ1

)
; (4.36)

wν`−1,`+1(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 1)ν

√
a− 1

a+ 1
P

(
a− 1

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 1)ν

√
a+ 1

a− 1
P

(
a+ 1

χ1

)
;

(4.37)

wν`+1,`−1(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 1)ν

√
a+ 1

a− 1
P

(
a+ 1

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 1)ν

√
a− 1

a+ 1
P

(
a− 1

χ1

)
.

(4.38)

Also here we can notice that (4.37) and (4.38) are equivalent. At this point we can
compute:

wν`,11(χ1, χ2) = (f−1)2wν`−1,`−1(χ1, χ2) + f−1f1w
ν
`−1,`+1(χ1, χ2)

+ f1f−1w
ν
`+1,`−1(χ1, χ2) + (f1)2wν`+1,`+1(χ1, χ2) .

With some calculations we find the expression:

wν`,11(χ1, χ2) =
δD(χ1 − χ2)

χ2−ν
1

[
f−1√
a− 1

+
f1√
a+ 1

]
×
[
f−1

√
a− 1

(a− 1)ν
P

(
a− 1

χ1

)
+ f1

√
a+ 1

(a+ 1)ν
P

(
a+ 1

χ1

)]
. (4.39)

91



wν
`,12(χ1, χ2)

wν`−2,`−1(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 2)ν

√
a− 2

a− 1
P

(
a− 2

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 1)ν

√
a− 1

a− 2
P

(
a− 1

χ1

)
;

(4.40)

wν`−2,`+1(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 2)ν

√
a− 2

a+ 1
P

(
a− 2

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 1)ν

√
a+ 1

a− 2
P

(
a+ 1

χ1

)
;

(4.41)

wν`+2,`−1(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 2)ν

√
a+ 2

a− 1
P

(
a+ 2

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 1)ν

√
a− 1

a+ 2
P

(
a− 1

χ1

)
;

(4.42)

wν`+2,`+1(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 2)ν

√
a+ 2

a+ 1
P

(
a+ 2

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 1)ν

√
a+ 1

a+ 2
P

(
a+ 1

χ1

)
;

(4.43)

wν`−1,`−2(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 1)ν

√
a− 1

a− 2
P

(
a− 1

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 2)ν

√
a− 2

a− 1
P

(
a− 2

χ1

)
;

(4.44)

wν`−1,`+2(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 1)ν

√
a− 1

a+ 2
P

(
a− 1

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 2)ν

√
a+ 2

a− 1
P

(
a+ 2

χ1

)
;

(4.45)

wν`+1,`−2(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 1)ν

√
a+ 1

a− 2
P

(
a+ 1

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a− 2)ν

√
a− 2

a+ 1
P

(
a− 2

χ1

)
;

(4.46)

wν`+1,`+2(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 1)ν

√
a+ 1

a+ 2
P

(
a+ 1

χ1

)
+

1

2

δD(χ1 − χ2)

χ2−ν
1 (a+ 2)ν

√
a+ 2

a+ 1
P

(
a+ 2

χ1

)
.

(4.47)

The simmetry of the various couples of formulas is evident also here. Putting all these
elements together, we can find:

wν`,12(χ1, χ2) = f−1f−2w
ν
`−1,`−2(χ1, χ2) + f−1f0w

ν
`−1,`(χ1, χ2) + f−1f2w

ν
`−1,`+2(χ1, χ2)

+ f1f−2w
ν
`+1,`−2(χ1, χ2) + f1f0w

ν
`+1,`(χ1, χ2) + f1f2w

ν
`+1,`+2(χ1, χ2) .

Doing all the calculations, we have:

wν`,12(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1

[
f−1√
a− 1

+
f1√
a+ 1

]
×
[
f−2

√
a− 2

(a− 2)ν
P

(
a− 2

χ1

)
+ f0

√
a

aν
P

(
a

χ1

)
+ f2

√
a+ 2

(a+ 2)ν
P

(
a+ 2

χ1

)]
+

1

2

δD(χ1 − χ2)

χ2−ν
1

[
f−2√
a− 2

+
f0√
a

+
f2√
a+ 2

]
×
[
f−1

√
a− 1

(a− 1)ν
P

(
a− 1

χ1

)
+ f1

√
a+ 1

(a+ 1)ν
P

(
a+ 1

χ1

)]
. (4.48)

92



wν
`,21(χ1, χ2)

We already have all the elements in order to compute the following expression:

wν`,21(χ1, χ2) = f−2f−1w
ν
`−2,`−1(χ1, χ2) + f−2f1w

ν
`−2,`+1(χ1, χ2) + f0f−1w

ν
`,`−1(χ1, χ2)

+ f0f1w
ν
`,`+1(χ1, χ2) + f2f−1w

ν
`+2,`−1(χ1, χ2) + f2f1w

ν
`+2,`+1(χ1, χ2) .

Doing all the calculations we find exactly the same expression of (4.48):

wν`,21(χ1, χ2) =
1

2

δD(χ1 − χ2)

χ2−ν
1

[
f−1√
a− 1

+
f1√
a+ 1

]
×
[
f−2

√
a− 2

(a− 2)ν
P

(
a− 2

χ1

)
+ f0

√
a

aν
P

(
a

χ1

)
+ f2

√
a+ 2

(a+ 2)ν
P

(
a+ 2

χ1

)]
+

1

2

δD(χ1 − χ2)

χ2−ν
1

[
f−2√
a− 2

+
f0√
a

+
f2√
a+ 2

]
×
[
f−1

√
a− 1

(a− 1)ν
P

(
a− 1

χ1

)
+ f1

√
a+ 1

(a+ 1)ν
P

(
a+ 1

χ1

)]
. (4.49)
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4.4 Approximated C` coefficients

We are now able to apply the Limber’s approximation to all the contributions of the C`
coefficients: the local, lensing and time delay terms, and the mixed terms.

4.4.1 Approximated local term CS
`

Substituting the approximated expressions of wν`,jj′ into (3.76), and leaving the depen-
dence in a = `+ 1/2, we find:

CS` = ∆S∗
`m∆S

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) b1b2 δD(χ1 − χ2)×{
1

χ2
1

[
P

(
a

χ1

)
− 1

2

(
β1 + β2

)√
a

(
f−2√
a− 2

+
2f0√
a

+
f2√
a+ 2

)
P

(
a

χ1

)
− 1

2

(
β1 + β2

) 1√
a

(
f−2

√
a− 2P

(
a− 2

χ1

)
+ f2

√
a+ 2P

(
a+ 2

χ1

))
+ β1β2

(
f−2√
a− 2

+
f0√
a

+
f2√
a+ 2

)
×
(
f−2

√
a− 2P

(
a− 2

χ1

)
+ f0

√
aP

(
a

χ1

)
+ f2

√
a+ 2P

(
a+ 2

χ1

))]
+

1

χ1

[
−1

2

(
α1β1

χ1
+
α2β2

χ2

)
1√
a

(
f−1√
a− 1

+
f1√
a+ 1

)
P

(
a

χ1

)
− 1

2

(
α1β1

χ1
+
α2β2

χ2

)
1√
a

(
f−1√
a− 1

P

(
a− 1

χ1

)
+

f1√
a+ 1

P

(
a+ 1

χ1

))
+

1

2

(
α1β1β2

χ1
+
α2β2β1

χ2

)(
f−1√
a− 1

P

(
a− 1

χ1

)
+

f1√
a+ 1

P

(
a+ 1

χ1

))
×
(

f−2√
a− 2

+
f0√
a

+
f2√
a+ 2

)
+

1

2

(
α1β1β2

χ1
+
α2β2β1

χ2

)(
f−1√
a− 1

+
f1√
a+ 1

)
×
(

f−2√
a− 2

P

(
a− 2

χ1

)
+

f0√
a
P

(
a

χ1

)
+

f2√
a+ 2

P

(
a+ 2

χ1

))]
+

[
−
(
γ1 + γ2

) 1

a2
P

(
a

χ1

)
+

1

2

(
γ1β2 + γ2β1

)√a
a2

(
f−2√
a− 2

+
2f0√
a

+
f2√
a+ 2

)
P

(
a

χ1

)
+

1

2

(
γ1β2 + γ2β1

) 1√
a

(
f−2

√
a− 2

(a− 2)2
P

(
a− 2

χ1

)
+ f2

√
a+ 2

(a+ 2)2
P

(
a+ 2

χ1

))
+
α1α2β1β2

χ1χ2

(
f−1

√
a− 1

(a− 2)2
P

(
a− 1

χ1

)
+ f1

√
a+ 1

(a+ 1)2
P

(
a+ 1

χ1

))
×
(

f−1√
a− 1

+
f1√
a+ 1

)]
+ χ1

[
1

2

(
α1β1γ2

χ1
+
α2β2γ1

χ2

)√
a

a3

(
f−1√
a− 1

+
f1√
a+ 1

)
P

(
a

χ1

)
+

1

2

(
α1β1γ2

χ1
+
α2β2γ1

χ2

)
1√
a

(
f−1

√
a− 1

(a− 1)3
P

(
a− 1

χ1

)
+ f1

√
a+ 1

(a+ 1)3
P

(
a+ 1

χ1

))]
+ χ2

1

γ1γ2

a4
P

(
a

χ1

)}
. (4.50)
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Expliciting the Dirac delta and the dependence on `, we find:

CS` = ∆S∗
`m∆S

`′m′ =

∫ ∞
0

dχ1W (χ1) b21

{
1

χ2
1

[
P

(
`+ 1

2

χ1

)

− β1

√
`+

1

2

(
f−2√
`− 3

2

+
2f0√
`+ 1

2

+
f2√
`+ 5

2

)
P

(
`+ 1

2

χ1

)

− β1
1√
`+ 1

2

(
f−2

√
`− 3

2
P

(
`− 3

2

χ1

)
+ f2

√
`+

5

2
P

(
`+ 5

2

χ1

))

+ β2
1

(
f−2√
`− 3

2

+
f0√
`+ 1

2

+
f2√
`+ 5

2

)

×

(
f−2

√
`− 3

2
P

(
`− 3

2

χ1

)
+ f0

√
`+

1

2
P

(
`+ 1

2

χ1

)
+ f2

√
`+

5

2
P

(
`+ 5

2

χ1

))]

− α1β1√
`+ 1

2

[(
f−1√
`− 1

2

+
f1√
`+ 3

2

)
P

(
`+ 1

2

χ1

)
+

f−1√
`− 1

2

P

(
`− 1

2

χ1

)
+

f1√
`+ 3

2

P

(
`+ 3

2

χ1

)]

+ α1β
2
1

[(
f−2√
`− 3

2

+
f0√
`+ 1

2

+
f2√
`+ 5

2

)(
f−1√
`− 1

2

P

(
`− 1

2

χ1

)
+

f1√
`+ 3

2

P

(
`+ 3

2

χ1

))

+

(
f−1√
`− 1

2

+
f1√
`+ 3

2

)(
f−2√
`− 3

2

P

(
`− 3

2

χ1

)
+

f0√
`+ 1

2

P

(
`+ 1

2

χ1

)
+

f2√
`+ 5

2

P

(
`+ 5

2

χ1

))]

− 2γ1(
`+ 1

2

)2P(`+ 1
2

χ1

)
+ γ1β1

√
`+ 1

2(
`+ 1

2

)2
(

f−2√
`− 3

2

+
2f0√
`+ 1

2

+
f2√
`+ 5

2

)
P

(
`+ 1

2

χ1

)

+
γ1β1√
`+ 1

2

(
f−2

√
`− 3

2(
`− 3

2

)2P(`− 3
2

χ1

)
+ f2

√
`+ 5

2(
`+ 5

2

)2P(`+ 5
2

χ1

))

+
α2

1β
2
1

χ2
1

(
f−1

√
`− 1

2(
`− 1

2

)2P(`− 1
2

χ1

)
+ f1

√
`+ 3

2(
`+ 3

2

)2P(`+ 3
2

χ1

))(
f−1√
`− 1

2

+
f1√
`+ 3

2

)

+ α1β1γ1

√
`+ 1

2(
`+ 1

2

)3
[(

f−1√
`− 1

2

+
f1√
`+ 3

2

)
P

(
`+ 1

2

χ1

)

+
1√
`+ 1

2

(
f−1

√
`− 1

2(
`− 1

2

)3P(`− 1
2

χ1

)
+ f1

√
`+ 3

2(
`+ 3

2

)3P(`+ 3
2

χ1

))]
+ χ2

1

γ2
1(

`+ 1
2

)4P(`+ 1
2

χ1

)}
.

(4.51)
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4.4.2 Approximated weak lensing term CK
`

Substituting the approximated expressions of wν`,jj′ into (3.78) as before, knowing that
a = `+ 1/2, we have:

CK
` = `2(`+ 1)2

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)
[
1−Q(z1)

][
1−Q(z2)

]
×
∫ χ1

0

dχ̃1
χ1 − χ̃1

χ1χ̃1

3Ωm(χ̃1)H2(z̃1)

∫ χ2

0

dχ̃2
χ2 − χ̃2

χ2χ̃2

3Ωm(χ̃2)H2(z̃2)

× χ̃1
2

a4
δD(χ̃1 − χ̃2)P

(
a

χ̃1

)
= `2(`+ 1)2

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)
[
1−Q(z1)

][
1−Q(z2)

]
×
∫ χ1

0

dχ̃1
(χ1 − χ̃1)2

(χ1χ̃1)2
9Ω2

m(χ̃1)H4(z̃1)
χ̃1

a4
P

(
a

χ̃1

)
. (4.52)

Writing explicitely the dependence in `, we find the following expression:

CK
` =

`2(`+ 1)2(
`+ 1

2

)2

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)
[
1−Q(z1)

][
1−Q(z2)

]
×
∫ χ1

0

dχ̃1
(χ1 − χ̃1)2

χ2
1

9Ω2
m(χ̃1)H4(z̃1)P

(
`+ 1

2

χ̃1

)
. (4.53)

4.4.3 Approximated time delay term CI
`

Expression (3.79) becomes:

CI
` =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)
1

χ1χ2

×
{

4
[
1−Q(z1)

][
1−Q(z2)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+ 2
[
1−Q(z1)

] α(z2)

H(z2)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

∫ χ2

0

dχ̃23 Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]
+ 2
[
1−Q(z2)

] α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+
α(z1)α(z2)

H(z1)H(z2)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]}
× χ̃1

2

a4
δD(χ̃1 − χ̃2)P

(
a

χ̃1

)
. (4.54)

Therefore, since a = `+ 1/2, due to the Dirac delta we find:

CI
` =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)
1

χ1χ2{
4
[
1−Q(z1)

][
1−Q(z2)

] ∫ χ1

0

dχ̃1 9Ω2
m(z̃1)H4(z̃1)

+ 2

[[
1−Q(z1)

] α(z2)

H(z2)
+
[
1−Q(z2)

] α(z1)

H(z1)

] ∫ χ1

0

dχ̃1 9Ω2
m(z̃1)H5(z̃1)

[
f(z̃1)− 1

]
+

α(z1)α(z2)

H(z1)H(z2)

∫ χ1

0

dχ̃1 9Ω2
m(z̃1)H6(z̃1)

[
f(z̃1)− 1

]2} χ̃1
2(

`+ 1
2

)4P

(
`+ 1

2

χ̃1

)
. (4.55)
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4.4.4 Approximated mixed terms

Always remembering that a = ` + 1/2, we find the approximated expressions of the
mixed terms in the following subsections.

(a) ∆S∗
`m∆K

`′m′

∆S∗
`m∆K

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

× `(`+ 1)
[
1−Q(z2)

] ∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)

×

{
− b1

a4
δD(χ1 − χ̃2)P

(
a

χ1

)
+
b1γ1χ

2
1

a4
δD(χ1 − χ̃2)P

(
a

χ1

)

+
b1α1β1

χ1

[
χ1

2
δD(χ1 − χ̃2)

√
a

a3

(
f−1√
a− 1

+
f1√
a+ 1

)
P

(
a

χ1

)

+
χ1

2
δD(χ1 − χ̃2)

1√
a

(
f−1

√
a− 1√

(a− 1)3
P

(
a− 1

χ1

)
+ f1

√
a+ 1

(a+ 1)3
P

(
a+ 1

χ1

))]

+ b1β1

[
1

2
δD(χ1 − χ̃2)

√
a

a2

(
f−2√
a− 2

+
2f0√
a

+
f2√
a+ 2

)
P

(
a

χ1

)

+
1

2
δD(χ1 − χ̃2)

1√
a

(
f−2

√
a− 2

(a− 2)2
P

(
a− 2

χ1

)
+ f2

√
a+ 2

(a+ 2)2
P

(
a+ 2

χ1

))]}
. (4.56)

Then:

∆S∗
`m∆K

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

× `(`+ 1)
[
1−Q(z2)

](χ2 − χ1

)
χ2χ1

3Ωm(z1)H2(z1)b1

×

{
− 1(

`+ 1
2

)4P

(
`+ 1

2

χ1

)
+

γ1χ
2
1(

`+ 1
2

)4P

(
`+ 1

2

χ1

)

+
α1β1

2

[√
a

a3

(
f−1√
a− 1

+
f1√
a+ 1

)
P

(
a

χ1

)

+
1√
`+ 1

2

(
f−1

√
`− 1

2√(
`− 1

2

)3
P

(
`− 1

2

χ1

)
+ f1

√
`+ 3

2

(`+ 3
2
)3
P

(
`+ 3

2

χ1

))]

+
β1

2

[ √
`+ 1

2(
`+ 1

2

)2

(
f−2√
`− 3

2

+
2f0√
`+ 1

2

+
f2√
`+ 5

2

)
P

(
`+ 1

2

χ1

)

+
1√
`+ 1

2

(
f−2

√
`− 3

2(
`− 3

2

)2P

(
`− 3

2

χ1

)
+ f2

√
`+ 5

2(
`+ 5

2

)2P

(
`+ 5

2

χ1

))]}
. (4.57)
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(b) ∆S∗
`m∆I

`′m′

∆S∗
`m∆I

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) b1

{
2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+
1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]}{
−δD(χ1 − χ̃2)

a2
P

(
a

χ1

)

+
γ1χ

2
1

a4
δD(χ1 − χ̃2)P

(
a

χ1

)
+
α1β1

χ1

[
χ1

2
δD(χ1 − χ̃2)

√
a

a3

(
f−1√
a− 1

+
f1

a+ 1

)
P

(
a

χ1

)

+
χ1

2
δD(χ1 − χ̃2)

1√
a

(
f−1

√
a− 1

(a− 1)3
P

(
a− 1

χ1

)
+ f1

√
a+ 1

(a+ 1)3
P

(
a+ 1

χ1

))]

+
β1

2

[
δD(χ1 − χ̃2)

√
a

a2

(
f2√
a− 2

+
2f0√
a

+
f2√
a+ 2

)
P

(
a

χ1

)

+ δD(χ1 − χ̃2)
1√
a

(
f−2

√
a− 2

(a− 2)2
P

(
a− 2

χ1

)
+ f2

√
a+ 2

(a+ 2)2
P

(
a+ 2

χ1

))]}
. (4.58)

Then:

∆S∗
`m∆I

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) b1

{
1

χ2

[
3Ωm(z1)H2(z1)

][
2
[
1−Q(z2)

]
+
α(z2)

H(z2)
H(z1)

[
f(z1)− 1

]}{
− 1(

`+ 1
2

)2P

(
`+ 1

2

χ1

)
+

γ1χ
2
1(

`+ 1
2

)4P

(
`+ 1

2

χ1

)

+
α1β1

2

[ √
`+ 1

2(
`+ 1

2

)3

(
f−1√
`− 1

2

+
f1√
`+ 3

2

)
P

(
`+ 1

2

χ1

)

+
1√
`+ 1

2

(
f−1

√
`− 1

2(
`− 1

2

)3P

(
`− 1

2

χ1

)
+ f1

√
`+ 3

2(
`+ 3

2

)3P

(
`+ 3

2

χ1

))]

+
β1

2

[ √
`+ 1

2(
`+ 1

2

)2

(
f2√
`− 3

2

+
2f0√
`+ 1

2

+
f2√
`+ 5

2

)
P

(
`+ 1

2

χ1

)

+
1√
`+ 1

2

(
f−2

√
`− 3

2(
`− 3

2

)2P

(
`− 3

2

χ1

)
+ f2

√
`+ 5

2(
`+ 5

2

)2P

(
`+ 5

2

χ1

))]}
. (4.59)
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(c) ∆K∗
`m∆S

`′m′

∆K∗
`m∆S

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

× `(`+ 1)b2

[
1−Q(z1)

] ∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

×

{
−δD(χ̃1 − χ2)

a2
P

(
a

χ̃1

)
+
γ2χ̃

2
1

a4
δD(χ̃1 − χ2)P

(
a

χ̃1

)

+
α2β2

χ2

[
χ̃1

2
δD(χ̃1 − χ2)

√
a

a3

(
f−1√
a− 1

+
f1

a+ 1

)
P

(
a

χ̃1

)

+
χ̃1

2
δD(χ̃1 − χ2)

1√
a

(
f−1

√
a− 1

(a− 1)3
P

(
a− 1

χ̃1

)
+ f1

√
a+ 1

(a+ 1)3
P

(
a+ 1

χ̃1

))]

+
β2

2

[
δD(χ̃1 − χ2)

√
a

a2

(
f2√
a− 2

+
2f0√
a

+
f2√
a+ 2

)
P

(
a

χ̃1

)

+ δD(χ̃1 − χ2)
1√
a

(
f−2

√
a− 2

(a− 2)2
P

(
a− 2

χ̃1

)
+ f2

√
a+ 2

(a+ 2)2
P

(
a+ 2

χ̃1

))]}
.

(4.60)

Then:

∆K∗
`m∆S

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)

× `(`+ 1)b2

[
1−Q(z1)

](χ1 − χ2

)
χ1χ2

3Ωm(z2)H2(z2)

×

{
− 1(

`+ 1
2

)2P

(
`+ 1

2

χ2

)
+

γ2χ
2
2(

`+ 1
2

)4P

(
`+ 1

2

χ2

)

+
α2β2

2

[ √
`+ 1

2(
`+ 1

2

)3

(
f−1√
`− 1

2

+
f1

`+ 3
2

)
P

(
`+ 1

2

χ2

)

+
1√
`+ 1

2

(
f−1

√
`− 1

2(
`− 1

2

)3P

(
`− 1

2

χ2

)
+ f1

√
`+ 3

2(
`+ 3

2

)3P

(
`+ 3

2

χ2

))]

+
β2

2

[ √
`+ 1

2(
`+ 1

2

)2

(
f2√
`− 3

2

+
2f0√
`+ 1

2

+
f2√
`+ 5

2

)
P

(
`+ 1

2

χ2

)

+
1√
`+ 1

2

(
f−2

√
`− 3

2(
`− 3

2

)2P

(
`− 3

2

χ2

)
+ f2

√
`+ 5

2(
`+ 5

2

)2P

(
`+ 5

2

χ2

))]}
. (4.61)
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(d) ∆K∗
`m∆I

`′m′

∆K∗
`m∆I

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) `(`+ 1)
[
1−Q(z1)

]
×
∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

{
2

χ2

[
1−Q(z2)

] ∫ χ2

0

dχ̃2 3Ωm(z̃2)H2(z̃2)

+
1

χ2

α(z2)

H(z2)

∫ χ2

0

dχ̃2 3Ωm(z̃2)H3(z̃2)
[
f(z̃2)− 1

]} χ̃2
1

a4
δD(χ̃1 − χ̃2)P

(
a

χ̃1

)
. (4.62)

Then:

∆K∗
`m∆I

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) `(`+ 1)
[
1−Q(z1)

]
×
∫ χ1

0

dχ̃1

(
χ1 − χ̃1

)
χ1χ̃1

3Ωm(z̃1)H2(z̃1)

{
1

χ2

3Ωm(z̃1)H2(z̃1)

[
2
[
1−Q(z2)

]
+
α(z2)

H(z2)
H(z̃1)

[
f(z̃1)− 1

]]} χ̃2
1(

`+ 1
2

)4P

(
`+ 1

2

χ̃1

)
. (4.63)

(e) ∆I∗
`m∆S

`′m′

∆I∗
`m∆S

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) b2

{
2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1)

+
1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

]}
×

{
−δD(χ̃1 − χ2)

a2
P

(
a

χ̃1

)
+
γ2χ̃

2
1

a4
δD(χ̃1 − χ2)P

(
a

χ̃1

)

+
α2β2

χ2

[
χ̃1

2
δD(χ̃1 − χ2)

√
a

a3

(
f−1√
a− 1

+
f1

a+ 1

)
P

(
a

χ̃1

)

+
χ̃1

2
δD(χ̃1 − χ2)

1√
a

(
f−1

√
a− 1

(a− 1)3
P

(
a− 1

χ̃1

)
+ f1

√
a+ 1

(a+ 1)3
P

(
a+ 1

χ̃1

))]

+
β2

2

[
δD(χ̃1 − χ2)

√
a

a2

(
f2√
a− 2

+
2f0√
a

+
f2√
a+ 2

)
P

(
a

χ̃1

)

+ δD(χ̃1 − χ2)
1√
a

(
f−2

√
a− 2

(a− 2)2
P

(
a− 2

χ̃1

)
+ f2

√
a+ 2

(a+ 2)2
P

(
a+ 2

χ̃1

))]}
.

(4.64)
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Then:

∆I∗
`m∆S

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2) b2

{
2

χ1

[
1−Q(z1)

]
3Ωm(z2)H2(z2)

+
1

χ1

α(z1)

H(z1)
3Ωm(z2)H3(z2)

[
f(z2)− 1

]}
×

{
− 1(

`+ 1
2

)2P

(
`+ 1

2

χ2

)
+

γ2χ
2
2(

`+ 1
2

)4P

(
`+ 1

2

χ2

)

+
α2β2

2

[ √
`+ 1

2(
`+ 1

2

)3

(
f−1√
`− 1

2

+
f1

`+ 3
2

)
P

(
`+ 1

2

χ2

)

+
1√
`+ 1

2

(
f−1

√
`− 1

2(
`− 1

2

)3P

(
`− 1

2

χ2

)
+ f1

√
`+ 3

2(
`+ 3

2

)3P

(
`+ 3

2

χ2

))]

+
β2

2

[ √
`+ 1

2(
`+ 1

2

)2

(
f2√
`− 3

2

+
2f0√
`+ 1

2

+
f2√
`+ 5

2

)
P

(
`+ 1

2

χ2

)

+
1√
`+ 1

2

(
f−2

√
`− 3

2(
`− 3

2

)2P

(
`− 3

2

χ2

)
+ f2

√
`+ 5

2(
`+ 5

2

)2P

(
`+ 5

2

χ2

))]}
. (4.65)

(f) ∆I∗
`m∆K

`′m′

∆I∗
`m∆K

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)`(`+ 1)
[
1−Q(z2)

]
×{

2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1) +
1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

]}
×
∫ χ2

0

dχ̃2

(
χ2 − χ̃2

)
χ2χ̃2

3Ωm(z̃2)H2(z̃2)
χ̃2

1

a4
δD(χ̃1 − χ̃2)P

(
a

χ̃1

)
. (4.66)

Then:

∆I∗
`m∆K

`′m′ =

∫ ∞
0

dχ1W (χ1)

∫ ∞
0

dχ2W (χ2)`(`+ 1)
[
1−Q(z2)

]
×{

2

χ1

[
1−Q(z1)

] ∫ χ1

0

dχ̃1 3Ωm(z̃1)H2(z̃1) +
1

χ1

α(z1)

H(z1)

∫ χ1

0

dχ̃1 3Ωm(z̃1)H3(z̃1)
[
f(z̃1)− 1

]}
×
(
χ2 − χ̃1

)
χ2χ̃1

3Ωm(z̃1)H2(z̃1)
χ̃2

1(
`+ 1

2

)4P

(
`+ 1

2

χ̃1

)
. (4.67)
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Chapter 5

Conclusion

5.1 Overview

In this thesis project a general relativistic approach to large scale galaxy clustering has
been studied. General relativity is necessary because for relativistic fluids and for scales
of order O(1/H) and larger relativistic effects arise and can’t be neglected. Galaxy clus-
tering is a statistical analysis of the distribution of galaxies at present time, measured
from the angular positions of galaxies in the sky and the redshifts of the galaxies.
We started from the basic assumption of the ΛCDM model, which is consistent with
the latest experimental observation (e.g. Planck), allowing to reliably constrain cosmo-
logical parameters.
After giving the necessary theoretical tools, we focused on our observational data: the
direction and the redshift of the photon from a certain galaxy. We perturbed photon
geodesics in order to take into account of the relativistic effects of distortion of the
trajectory. Then we computed the comoving galaxy number density as a function of
the observed position and redshift, and finally we found the expression for the observed
galaxy overdensity ∆g, considering also the effect of magnification. Our observable ∆g

has three main contributions: the local ∆S (evaluated at the source), the weak lensing
∆K and the time delay term ∆I .
Then we got into the statistical issue, using the two points correlation function with the
observables ∆g just computed. In particular, due to the spherical symmetry, the expan-
sion in the spherical harmonic space has been performed, thus shifting from the power
spectrum P (k) to the angular power spectrum C`. These coefficients are computed in
the redshift space for all the three contributions of local, weak lensing and time delay,
including also all the mixed terms deriving from the product of the two deltas. In order
to include all of these terms, new definitions for the angular correlation functions wν`,jj′
have been introduced, in order to generalise that reported in [33]. The final results
are very big and complex coefficients where integrals of the product of spherical Bessel
functions appear; their highly oscillatory nature represents a challenge in the direct
integration, since there are convergence problems for large multipoles ` and for large
arguments kχ.
A simplification that can be applied to the full analytic expression of the C` coefficients
is the Limber’s approximation, assuming large multipoles ` and that the power spectrum
P (k) varies much more slowly than the spherical Bessel functions in their product inside
the various integrals. This approximation allows to simplify the final results obtained
previously.
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5.2 Future perspectives

One possible operative approach is to compute the wν`,jj′ integrals (both approximated
or not) numerically with some algorithm that can circumvent the direct integration of
the highly oscillating spherical Bessel functions. Recently the 2-FAST algorithm has
been developed with that goal [33]; it employs the FFTLOG transformation of the
power spectrum to divide the computation of the integrals into: coefficients depending
on P (k), and integrations independent on P (k) of basis functions multiplied by spherical
Bessel functions. For these latter integrals analytical expressions are used, in terms of
particular functions for which recursion provides a fast and accurate evaluation.[33]
This algorithm has only been applied to the w0

`,jj′ integrals but not to the generalization
wν`,jj′ where an extra factor 1/kν is involved inside the integrals. A straightforward
challenge would be to apply the 2FAST algorithm to the generalization and results
reported in this thesis, in order to have plots that can show in a more explicit way
the behaviour of the various analytic expressions found, and in order to compare these
results, which include all the general relativistic effects, with those already presented in
literature. In general, besides the 2FAST algorithm and the others that have preceded
it, a numerical approach is needed. Due to the complexity of the computation, an
important issue would be also to evaluate the efficiency of the algorithm in terms of
computational cost.
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Appendix A

Mathematical tools

A.1 Useful definitions and properties

In our analysis we often prefer to work with projected quantities, in order to identify the
various contributes along and perpendicular with respect to the line of sight. Imagine
to consider a three dimensional cartesian reference frame in which:

- the z axis connects us (the observers) to the starting point of the photon we
detect, thus defining the so-called line of sight which is basically identified with
the direction n̂;

- the x-y plane is perpendicular to the line of sight and passes through the source
position.

Many quantities we work with, such as derivative operators, vectors and tensors, can
be defined and projected along or perpendicular to the line of sight. If we consider a
generic spatial vector Ai and a tensor Bij, the following projections can be defined:

A‖ ≡ n̂iA
i Ai⊥ ≡ Ai − A‖ ≡ (δij − n̂in̂j)Aj (A.1)

B‖ ≡ n̂in̂jB
ij B⊥ ≡ B −B‖ ≡ (δij − n̂in̂j)Bij (A.2)

The same can be done for the derivative operators:

∂i‖ ≡ n̂in̂j∂j (A.3)

∂‖ ≡ n̂i∂i (A.4)

∂i⊥ ≡ ∂i − ∂i‖ ≡ (δij − n̂in̂j)∂j (A.5)

At this point, many useful relations can be specified:

∂jn̂
i = χ̃−1

(
δij − n̂in̂j

)
(A.6)

Demonstration of (A.6): n̂ = χ̃−1x̃, so ∂jn̂
i = χ̃−1δij − χ̃−2∂jχ̃ x̃

i. In order to calculate

∂jχ̃ we can observe that: ∂χ̃
∂xj
· ∂xj
∂χ̃

= 1 → ∂jχ̃ · ñj = 1 ⇒ ∂jχ̃ = ñj since |ñ|2 = 1.

Therefore ∂jn̂
i = χ̃−1

(
δij − ∂jχ̃ ñi

)
= χ̃−1

(
δij − ñi ñj

)
.[

∂i, n̂j
]

= ∂in̂j = χ̃−1
(
δij − n̂in̂j

)
(A.7)

Demonstration of (A.7):
[
∂i, n̂j

]
= ∂in̂j−n̂j∂i = χ̃−1

(
δij−n̂in̂j

)
−n̂j∂in̂jn̂j = χ̃−1

((
δij−

n̂in̂j
)
− n̂j

(
δji − n̂in̂j

)
n̂j

)
= χ̃−1

(
δij − n̂in̂j − n̂in̂j + n̂in̂j

)
= χ̃−1

(
δij − n̂in̂j

)
= ∂in̂j.[

∂‖, n̂i
]

= 0 (A.8)
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Demonstration of (A.8):
[
∂‖, n̂i

]
=
[
n̂j∂j, n̂i

]
= n̂j

[
∂j, n̂i

]
+
[
n̂j, n̂i

]
∂j = n̂j

(
χ̃−1
(
δij −

n̂in̂j
))

+ 0 = χ̃−1
(
n̂i − n̂i

)
= 0 [

∂i, ∂‖
]

= χ̃−1∂⊥i (A.9)

Demonstration of (A.9):
[
∂i, ∂‖

]
=
[
∂i, n̂

j∂j
]

=
[
∂i, n̂

j
]
∂j +

[
∂i, ∂j

]
n̂j = χ̃−1

(
δji −

n̂in̂
j
)
∂j + 0 = χ̃−1

(
∂i − ∂‖i

)
= χ̃−1∂⊥i.[

∂‖, ∂‖j
]

=
[
∂‖i, ∂‖j

]
= 0 (A.10)

Demonstration of (A.10):
[
∂‖, ∂‖j

]
=
[
∂‖, n̂j∂‖

]
=
[
∂‖, n̂j

]
∂‖ +

[
∂‖, ∂‖

]
n̂j = 0 because

of (A.8).
[
∂‖i, ∂‖j

]
=
[
n̂i∂‖, n̂j∂‖

]
=
[
n̂i∂‖, n̂j

]
∂‖ +

[
n̂i∂‖, ∂‖

]
n̂j =

(
n̂i∂‖n̂j − n̂jn̂i∂‖

)
∂‖ +[

∂‖i, ∂‖
]
n̂j. The first term is zero due to (A.8): n̂i∂‖n̂j − n̂jn̂i∂‖ = n̂in̂j∂‖ − n̂in̂j∂‖ = 0.

The second term is also zero due to the first part of this demonstration. Therefore[
∂‖i, ∂‖j

]
= 0. [

∂⊥i, ∂‖
]

= χ̃−1∂⊥i (A.11)

Demonstration of (A.11):
[
∂⊥i, ∂‖

]
=
[
∂i− ∂‖i, ∂‖

]
=
[
∂i, ∂‖

]
−
[
∂‖i, ∂‖

]
= χ̃−1∂⊥i− 0 =

χ̃−1∂⊥i by using (A.9).
We can also project the Laplacian operator ∇2 = ∂i∂

i, thus defining:

∂2
‖ ≡ ∂‖i∂

i
‖ = ∂‖∂‖ (A.12)

∇2
⊥ ≡ ∂⊥i∂

i
⊥ = ∇2 − ∂2

‖ −
2

χ
∂‖ (A.13)

Demonstration of (A.1): ∇2
⊥ = ∂⊥i∂

i
⊥ =

(
∂i − n̂i∂‖

)(
∂i − n̂i∂‖

)
= ∂i∂

i − ∂in̂
i∂‖ −

n̂i∂‖∂
i + n̂i∂‖n̂

i∂‖ = ∇2− χ̃−1
(
δii − n̂in̂i

)
∂‖− ∂‖n̂i∂i + n̂in̂

i∂2
‖ = ∇2− χ̃−1(3− 1)∂‖− ∂2

‖ .

∂iA
i = ∂‖A‖ + ∂⊥iA

i
⊥ + A‖∂in̂

i (A.14)

∂‖n̂
i = n̂i∂⊥i = 0 (A.15)

A.2 Derivation of Eq. (2.26) and Eq. (2.27)

(2.26) : d2δx0

dχ2 = −δΓ̂0
νρ
dxν

dχ
dxρ

dχ
− 2Γ̂0

νρ
dδxν

dχ
dxρ

dχ

The second term is zero due to the fact that the unperturbed Christoffel symbols
of the conformally transformed metric we are using are zero. Therefore:
dδν
dχ

= −δΓ̂0
ij
dxi

dχ
dxj

dχ
= −

(
D′δij + E ′ij

)
n̂in̂j = −

(
D′ + E ′‖

)
.

(2.27) : d2δxi

dχ2 = −δΓ̂iνρ dx
ν

dχ
dxρ

dχ
− 2Γ̂iνρ

dδxν

dχ
dxρ

dχ

The second term is always zero, so:
dδei

dχ
= −2δΓ̂i0j

dx0

dχ
dxj

dχ
− δΓ̂ijk dx

j

dχ
dxk

dχ
= −2

(
D′δij + Ei

j
′)(−1)n̂j −

(
∂jD δik + ∂jE

i
k +

∂kD δij+∂kE
i
j−∂iD δjk−∂iEjk

)
n̂jn̂k =

1)︷ ︸︸ ︷
2D′n̂i + 2Ei

j
′n̂j︸ ︷︷ ︸

2)

1)︷ ︸︸ ︷
−∂‖Dn̂i−∂jEi

kn̂
jn̂k︸ ︷︷ ︸

2)

1)︷ ︸︸ ︷
−∂‖Dn̂i

−∂kEi
jn̂

jn̂k︸ ︷︷ ︸
2)

+∂iD + ∂iE‖.
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1) 2D′n̂i − 2∂‖Dn̂
i = −2 d

dχ

(
Dn̂i

)
because ∂‖ − ′ = d

dχ

2) 2Ei
j
′n̂j − ∂jE

i
kn̂

jn̂k − ∂kE
i
jn̂

jn̂k = 2Ei
j
′n̂j −

(
n̂j∂j + 2χ̃−2

)
Ei
kn̂

k −
(
n̂k∂k +

2χ̃−2
)
Ei
jn̂

j = 2Ei
j
′n̂j − 2∂‖E

i
jn̂

j − 2
χ̃

(
Ei
kn̂

k + Ei
jn̂

jn̂in̂
i
)

= 2
(
Ei
j
′ − ∂‖Ei

j

)
n̂j −

2
χ̃

(
Ei
kn̂

k + E‖n̂
i
)

= −2 d
dχ

(
Ei
jn̂

j
)
− 2

χ̃

(
Ei
kn̂

k + E‖n̂
i
)

Now the expressions 1 and 2 can be inserted in the computation of (2.27):
dδei

dχ
= −2 d

dχ

(
Dn̂i

)
− 2 d

dχ

(
Ei
jn̂

j
)
− 2

χ̃

(
Ei
kn̂

k +E‖n̂
i
)

+ ∂iD + ∂iE‖ = −2 d
dχ

(
Dn̂i +

Ei
jn̂

j
)

+ ∂iD + ∂iE‖ − 2
χ̃

(
Ei
kn̂

k + E‖n̂
i
)
.

A.3 Derivation of Eq. (2.35) and Eq. (2.36)

(2.35) :
(
¯̂g00 + δĝ00

)(
e0

0 + δe0
0

)2
+
(
¯̂gij + δĝij

)(
e0
i + δe0

i

)(
e0
j + δe0

j

)
= η00 = −1(

¯̂g00+δĝ00
)(

(e0
0)2+(δe0

0)2+2e0
0δe

0
0

)
+
(
¯̂gij+δĝij

)(
e0
i e

0
j+e

0
i δe

0
j+e

0
jδe

0
i +δe

0
i δe

0
j

)
= −1

By substituting e0
i , e

0
j = 0 and dropping the terms of order higher than the first,

we get:
(
e0

0

)2(¯̂g00 + δĝ00
)2

+ 2¯̂g00e0
0δe

0
0 = −1

−1 + 2δe0
0 = −1 =⇒ δe0

0 = 0

(2.36) :
(
eji + δeji

)(
eij + δeij

)
= 1

ejie
i
j + ejiδe

i
j + eijδe

j
i + δeijδe

j
i = 1

By substituting the expression of eij and dropping higher order terms, we get:(
(1+D)δji +Ej

i

)(
(1+D)δij +Ei

j

)
+
(
(1+D)δji +Ej

i

)
δeij +

(
(1+D)δij +Ei

j

)
δeji = 1

(1 +D)2δii + 2(1 +D)Ei
i + 2(1 +D)δeii = 1

2Dδii + 2Ei
i + 2(1 +D)δeii = 0

δeii = −Dδii+E
i
i

1+D
' (Dδii + Ei

i)(1−D) ' −(Dδii + Ei
i)

After projecting this expression along the line of sight we obtain: δeio = −(Don̂
i+

Ei
ojn̂

j)
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Appendix B

Sky maps

Modern astronomical surveys are the result of a process that has its roots in antiquity
and that it is worth to overview [37]. People have observed the sky for centuries, trying
to understand how the Universe around us works. The stars and planets were the first
to be noticed in the night sky to the naked eye, and from the most ancient times hu-
mans realised that certain celestial events repeated at regular intervals, thus marking
time and helping with agriculture. Following naked-eye observations, sky charts were
produced and became essential for navigation and trade; this feature of sky surveys still
survives today, as in the U.S. Naval Observatory1.
The earliest sky surveys were records of the positions and motions of stars and plan-
ets. Over 5,000 years ago, people produced these catalogues in Egypt, China, Central
America and Mesopotamia, recording what they saw on stone tablets or temple walls,
or building giant structures that aligned with specific astronomical events (as Stone-
henge). The first known star catalog contains 800 stars and was created in China in
about 350 B.C. by Shih Shen. Maps of the universe improved from 600 B.C. to 400
A.D., when Greek philosophers and astronomers began to develop theories about how
the Universe works: they were able to make predictions for the motion and the size of
the Sun, the Moon and the planets just with detailed observations of the sky and the
use of geometry. Further, the development of trigonometry allowed the calculation of
distances to planet and stars (Hipparchus). These ideas culminated in the Ptolemaic
system, by Ptolemy.

1https://www.usno.navy.mil/USNO

Figure B.1: An ancient Chinese star

chart from ca. 940 A.D. Copyright

c 1997, The British Library Board,

British Library, Or.8210/S.3226 [37].
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Figure B.2: The Rudol-

phine Tables (Tabulae

Rudolphinae), named after

Rudolf II, consist of a star

catalogue and planetary ta-

bles published by Johannes

Kepler in 1627, using

some observational data

collected by Tycho Brahe

(1546–1601). Although

it was not immediately

recognised, the positions

predicted in this work were

generally around thirty

times better than those of

previous and competing

tables.

Then, for more than 1,000 years astronomy had a deadlock. During this time, Islamic
and Hindi astronomers made a significant progress in understanding the sky, so the old
astronomical knowledge began to be rediscovered as the works of the ancient Greeks re-
turned through Arabic translations. Copernicus proposed his theory that provided the
Earth rotating on its axis and revolving around the Sun along with all the other planets.
Meanwhile, astronomical observatories were established in Europe, like the one located
on a Danish island (Uraniborg) where Tycho Brahe and Johannes Kepler compiled the
most accurate and complete astronomical observations to that time, cataloguing around
a thousand of stars. In Italy Galileo Galilei used his telescope for the first time, to see
astronomical objects that no one had ever seen before to the naked eye. Since Isaac
Newton formulated his theory of the universal gravitation in 1687, Kepler’s observations
and Newton’s laws have been the milestones of astronomy for nearly two hundred years.

In the late nineteenth century the invention of the camera and the spectrograph en-
abled to produce the first permanent records of the sky. Photographic plates could be
also exposed for long periods, allowing astronomers to see fainter objects at greater
distances. By the 1930’s, they understood that many of these new objects were actu-
ally other galaxies containing trillions of stars. At this point a new objective arised:
studying distant galaxies. In order to do that, more faint galaxies needed to be found,
so systematic photographic surveys of the sky began to be taken. A new telescope,
the Schmidt camera, was employed to photograph larger areas of the sky at once; it
was used at Palomar Observatory (California) in 1936 to search for supernovae. The
first complete unbiased survey was produced in 1949 (POSS-I). Over the decades pho-
tographic emulsions improved and a new survey of the northern sky was produced in
1980s (POSS-II).
With the development of computer and digital images, the plates from the photographic
surveys began to be scanned to create digital pictures that anyone can download. More-
over, the birth of astronomical observatories at other wavelengths (radio: FIRST; X-ray:
RASS; infrared: 2MASS) revealed completely new views of the sky. The introduction
of modern electronic detectors (like CCD) has brought a consistenly higher sensitivity
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Figure B.3: A map of the whole sky, based on

digitized photographic plates from the Palo-

mar and UK 48” Schmidt telescopes (Courtesy

USNO) [37].

with respect to that provided by photographic plates; then, astronomers can take digi-
tal pictures, process and store the data they collect thanks to fast computers and large
data storage systems. But what do they actually look for now?

The astronomical objects we can detect are not only galaxies, but also clusters of galax-
ies, streams and clumps of gas, and dark matter. Astronomers’ task is to know where
to find them, how they interact and their evolution over time. Therefore many modern
sky surveys have been produced in the last century in order to map the Universe over
larger areas, greater depths, and over an increasing range of wavelengths. Some of the
most recent surveys have been mentioned in this thesis.
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