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Abstract

This study focuses on developing a didactic Maglev System designed to facilitate controlled

laboratory experiments. The system aims to be user-friendly, reliable, and cost-effective. Our

main objective was to identify hardware and software criticalities associated with its implemen-

tation. Various tests were conducted to assess the system’s robustness during disassembly and

reassembly operations and the reliability of individual components. Additionally, we evalu-

ated the implementability of the controllers employed within the system. The results of our

investigations revealed the need for improvements in certain hardware components and the as-

sociated libraries. These findings have proven instrumental in enhancing the performance of

the Maglev System. In conclusion, this thesis significantly supports future development teams

working on this project. The insights gained from this study will serve as a solid foundation

for refining the system’s components and libraries, ultimately ensuring increased reliability and

user-friendliness of the Maglev System.
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Chapter 1

Introduction

This thesis aims to explain the work made in months, including both experiments on a MagLev

system and the study of some important concepts. The first chapters briefly introduce some

topics essential to fully understanding why some experiments were taken. On the other hand, the

rest of the chapters present all the studiesmade on aspects essential to reaching the predetermined

goal.

1.1 Background

Magnetic levitation is a sophisticated technology employed in various fields. Presently, its

applications span across transportation systems, wind turbines, civil engineering projects, and

even toys.

The viability of these applications became apparent after 1842 when Samuel Earnshaw’s

theorem definitively established that achieving stable levitation using solely static paramag-

netic fields was unattainable. Forces acting upon a paramagnetic object, under the influence

of gravitational, electrostatic, and static magnetic fields in any combination, disrupt the

object’s stability along at least one axis. This necessitates the counterbalancing of all potential

disturbances.

For instance, a magnetic levitation system employing two simple dipole magnets repelling each

other is inherently precarious. This is due to the risk of the upper magnet shifting sideways or

tipping over, as no magnet configuration can provide the necessary stability.
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1.2 About the hardware

TheMagLev system used in this thesis consists of a PCB to which a Teensey 4.1 microcontroller

is connected. On top of the board are four magnets and four solenoids. With this configuration,

theMagLev is operational, but a plexiglass frame has beenmounted, as seen from the images 1.1.

This is a useful protection to prevent impacts between unstable magnets and the more sensitive

parts of the project.[1]

The magnet is a fundamental part of the hardware, as explained in section 5.2; it plays a central

role in the study. It is composed of four parts:

• Two cylindrical magnets with a diameter of 24 mm and a height of 1 mm.

• One cylindrical magnet with a diameter of 38 mm and a height of 4 mm.

• One cylindrical iron plate with a diameter of 40 mm and a height of 1 mm.

. The one described here and used in the project is only the second version of the maglev. A

detailed explanation of the first one can be found in Morselli [2].

(a) With the magnet (b) Front view

Figure 1.1: Pictures of the MagLev
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Chapter 2

Meaningful concepts

2.1 Data analysis

John W. Tukey defined data analysis in 1961 as: ”Procedures for analysing data, techniques for

interpreting the results of such procedures, ways of planning the gathering of data to make its

analysis easier, more precise or more accurate, and all the machinery and results of (mathemat-

ical) statistics which apply to analysing data.” [3]

So, we can define data analysis as extracting raw data and transforming it into information that

helps users make decisions, answer questions, test hypotheses, and disprove theories.

Data analysis involves inspecting, cleaning, transforming, and modelling data to discover valu-

able information, draw conclusions, and support decision-making.

While data analysis lays the foundation for understanding various aspects of our society, data

plots or visualisations bridge raw data and actionable insights. Data plots transform complex

numerical information into graphical representations that are easier to comprehend and inter-

pret. Some commonly used types of data plots in media analysis include line charts, bar graphs,

scatter plots, heat maps, and word clouds. [4]

• Line charts:

A line chart, also known as a line graph, is a type of data visualisation that uses a series

of data points connected by straight lines to show the trend or change in a set of data over

time or across a continuous variable. They are particularly useful for displaying data that

has a sequential or chronological order, as they highlight how values change and fluctuate

over a specific period.[5]

Line charts are well-suited for visualising trends, patterns, and changes over time, making

them useful for analysing data such as stock prices, temperature variations, sales perfor-

mance, etc. They can also display multiple lines on the chart to compare trends between

data sets or variables. 2.1
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Line charts are particularly effective in showcasing:

– Trends: line charts can reveal upward or downward trends, oscillations, or patterns

in data over a specific time frame.

– Seasonal variations: They can show recurring patterns or cycles in data that occur

at regular intervals.

– Comparisons: multiple lines on the same chart can be used to compare the trends of

different variables or data sets.

– Outliers: anomalies or outliers in the data can be easily spotted as deviations from

the general trend.

Line charts are valuable tools for visualising and understanding how data changes and

evolves over continuous intervals or periods.

Figure 2.1: Example of line charts data plot

• Bar graphs:

A bar graph, also known as a bar chart, is a type of data visualisation that uses rectangular

bars to represent and compare different categories or groups of data. Each bar’s length

is proportional to the value it represents, allowing viewers to compare quantities across

categories easily. Bar graphs are effective for displaying categorical data and showing

variations, trends, and comparisons between different groups, so they are commonly

used to display discrete and categorical data, such as comparing sales figures for different

months, populations of various cities, or student performance in different subjects. [6]

They make it easy to identify trends, make comparisons, and visualise patterns in the

data. 2.2

• Scatter plots:

A scatter plot is a type of data visualisation used to display the relationship between two

numerical variables. It’s a graphical representation of each data point as a dot or marker
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Figure 2.2: Example of bar graphs data plot

on the plot. The position of each dot on the plot corresponds to the values of the two

variables being plotted. The horizontal axis typically represents one variable, while the

vertical axis represents the other variable. [7]

Scatter plots are particularly useful when you want to observe patterns or trends in data

points and identify any potential correlations between the two variables. They can provide

insights into whether there’s a linear or non-linear relationship between the variables, the

concentration of data points around certain values, and the overall distribution of the data,

so they help researchers and analysts quickly grasp the nature of the data and any potential

patterns or outliers.

Their characteristics make scatter plots commonly used in statistics, economics, social

sciences, and natural sciences. 2.3

Figure 2.3: Example of scatter data plot

• Heat maps:

A heat map is a graphical representation of data where individual values within a matrix

are represented as colours. Heat maps are particularly useful for visually summarising
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complex data sets and patterns, especially when dealing with large amounts of numerical

or categorical data. They often highlight relationships, trends, and variations in data

across two dimensions. [8]

Heat maps are commonly used in various fields for different purposes:

– Data Analysis: heat maps can reveal patterns, clusters, and correlations in large data

sets, aiding in data exploration and analysis.

– Genomics and Biology:in genetics, heat maps are used to visualize gene expression

levels across different conditions or samples.

– Finance: heat maps can show changes in stock prices over time or correlations be-

tween different financial instruments.

– Weather and climate data: they can visualize temperature variations across geo-

graphic regions and time periods.

– Web analytics: heat maps are used to visualize user interactions on websites, indi-

cating where users click or spend the most time.

– Social sciences: heat maps can display geographic distributions of certain phenom-

ena, such as population density or disease outbreaks.

Creating a heat map involves converting data values into colors, allowing viewers to

quickly identify trends and relationships. 2.4

Heat maps provide an intuitive and efficient way to communicate complex information

and identify insights within a data set.

Figure 2.4: Example of heat map data plot
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• Word clouds:

A word cloud, also known as a tag cloud or wordle, is a graphical representation of text

data where the size of each word is proportional to its frequency or importance within

the given text. Word clouds are often used to visually summarise and display the most

common words in a body of text, making it easy to identify key themes, topics, or trends.

[9]

Word clouds are commonly used for:

– Text analysis: they provide a quick overview of the most prevalent terms in a large

body of text, aiding in text analysis and summarization.

– Content visualization: word clouds can visually represent the content of articles,

documents, speeches, and social media posts.

– Topic identification: by highlighting frequently occurring words, word clouds help

identify the main topics or themes present in a collection of text.

– Keyword analysis: in SEO (Search Engine Optimization) and digital marketing,

word clouds can show important keywords in a website’s content.

– Data exploration: word clouds can offer initial insights into unstructured text data

before more in-depth analysis is performed.

While word clouds are visually appealing and offer a quick glimpse of text data, they

have limitations. They don’t provide context or semantic relationships between words;

commonwords like articles and prepositions can dominate the visualisation. Despite these

limitations, word clouds are useful for getting a sense of the most prominent words in a

body of text. 2.5

Figure 2.5: Example of word cloud data plot
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2.2 Discrete-time linear state-space model

A discrete-time state-space model Σ (also known as a state-space representation or a state-

variable model) is a mathematical framework used to describe a dynamic system over discrete

time, so where t ∈ Z, and two equations describe it [10]:

Σ :

⎧⎨⎩x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.1)

The first equation is a first-order difference equation, and it is called state-equation; the second

one is a static equation, and it is called output equation. Here:

• x is the state variable: x(t) ∈ X = Rn (X is the state space)

• y is the output variable: y(t) ∈ Y = Rp (Y is the output space)

• u is the input variable: u(t) ∈ U = Rm (U is the input space)

• A ∈ Rn×n is the state matrix

• B ∈ Rn×m is the input matrix

• C ∈ Rp×n is the output matrix

• D ∈ Rp×m is feedforward term

This generic system can be represented for short as Σ = (A,B,C,D), and it is called a linear

time-invariant proper state model. The corresponding block diagram is 2.6 for this kind of

model.

In the picture, two main parts can be easily distinguished: the one on the right corresponds to

Figure 2.6: Example of a block diagram for a discrete-time state-space model
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the state equation [ 2.7], and the one on the left represents the output equation [ 2.8]. Besides the

blocks representing the four matrices, there is a fifth one: the ”one-step delay”. The function’s

output represented here is the input taken one step before, so x(t+ 1) becomes x(t). [11]

Figure 2.7: Example of a state equation’s block diagram for a discrete-time state-space model

Figure 2.8: Example of an output equation’s block diagram for a discrete-time state-space model

It is clear that the solution for any allowed t is recursive: for example, to know the state x

at t = 10 or the output y at t = 9, we have to know x(9) and u(9); but to know x(9) we need

x(8) and so on. Generally speaking, knowing the initial state x(0) = x0 ∈ X and u(t)∀t ∈ Z,
we can calculate the solution:

⎧⎨⎩x(t) = F tx0 +
∑︁t−1

k=0 F
t−1−kGu(k)

y(t) = HF tx0 +
∑︁t−1

k=0HF t−1−kGu(k) +Du(t)
(2.2)

Both equations have two components: one depends on the initial state and one on the input. So,

F tx0 is the unforced state evolution [xl(t)],
∑︁t−1

k=0 F
t−1−kGu(k) is the forced state evolution

[xf (t)], HF tx0 is the unforced output evolution [yl(t)] and
∑︁t−1

k=0HF t−1−kGu(k) + Du(t) is

the forced output evolution [yf (t)].

9



2.3 PD Controller

A controller, in the context of control systems engineering, is a device or a program that reg-

ulates the behaviour of a system or process. Its primary function is to manage the output of a

system to bring it closer to a desired or specified setpoint. Controllers achieve this by continu-

ously measuring the current state or output of the system (referred to as the ”process variable”),

comparing it to the desired setpoint, and then generating control signals or commands to adjust

the system’s input or parameters.[12]

The block diagram representation for a generic controller is in figure 2.9. In the example, it

Figure 2.9: Example of a block diagram for a generic controller C

was chosen to use discrete time: r(k), e(k), d(k) and y(k) are the input signal, the error, the

disturbances signal and the output signal, respectively. We notice that it is a closed-loop sys-

tem, so the output is analysed constantly to provide the error e(k) = r(k)− y(k). Once e(k) is

calculated, the controller C(z) and the process P (z) modify the error to obtain a first outcome.

Then, this intermediate result is summed to the disturbances d(k), which represents a generic

perturbation in the environment (e.g. strong wind, rain), to obtain the output.

In particular, C(z) can be a PD controller: the proportional-derivative controller, also called a

proportional plus derivative controller, is a control system component. It produces an output

based on the error signal and its derivative, so this controller effectively combines the effects of

proportional and derivative control actions. Utilising controllers in a control system is essential

for enhancing the system’s overall performance. Therefore, incorporating two distinct control

actions leads to a more accurate and refined system.

In the block diagram, we can substitute C(z) with a more accurate scheme 2.10. Here we can

clearly see the distinction between the proportional part and the derivative part: the former is

a controller whose output varies in proportion with the input, and the latter is a controller such

that the output is proportional to the rate with which the error signal changes with time. The

10



second block in the derivative part represents the discrete-time derivation:

D[e(k)] =
e(k)− e(k − 1)

Ts

(2.3)

where Ts is the sampling time in our system.

Mathematically, the signalm(k) is the sum of two components (for instance,mp(k) andmd(k)).

Figure 2.10: Example of a block diagram for a PD controller

By looking at the block diagram, we can deduce thatmp(k) = Kpe(k) andmd(k) = KdD[e(k)],

so we obtain equation 2.4.

m(k) = Kpe(k) +KdD[e(k)] (2.4)

where Kp is the proportional constant and Kd is the derivative constant.

2.4 Spectrum analysis

Spectrum analysis, also known as spectral analysis, is a technique used in various fields to

examine the frequency content of a signal.[13] It involves breaking down a complex signal into

its frequency components. This analysis is valuable in understanding the various frequencies

contributing to a signal’s overall behaviour. In fact, signals can be represented either in the time

domain (amplitude vs. time) or the frequency domain (amplitude vs. frequency). Spectrum

analysis transforms a signal from the time domain to the frequency domain.[14]

To understand better this important tool, a full example coded in MatLab is provided below

with its explanation. In this example, we want to filter an audio signal where someone speaks

with some noise in the background.

To perform a spectrum analysis, we need the frequency of the signal Fx and a vector x to store

11



the signal represented in the time domain. 2.4

1 %Audio file to filter
2 [x,Fx] = audioread('voice_with_noise.wav');
3 x_t = x(:,1)';
4

5 plot(x)
6 ylabel(”Amplitude”);
7 xlabel(”Time”);
8 title(”\textbf{Audio signal in the time domain}”, 'interpreter', 'latex');

Audioread returns an m-by-n matrix, where m is the number of audio samples read, and

n is the number of audio channels in the file [15], so here we analyse only the first of two

channels: x_t (we take the transpose for simpler calculations later on). With the function plot,

we can see how the signal is in the time domain. 2.11

Then, we need to define some important constants. 2.4

1 %Time constants
2 tStart = 0;
3 Tx = 1/Fx; %The period of the signal
4

5 % Elements of the vector x_t
6 N = numel(x_t);

Now, we can perform the spectrum analysis: the first step is to examine the frequency con-

tent of a signal. To do so, we use the Fourier Transform, a mathematical tool that decomposes

a signal into a sum of sinusoidal functions (sines and cosines) with different frequencies. In

MatLab, this transformation is performed by the function fft. 2.4

1 % Spectrum
2 X = fft(x_t)∗Tx.∗exp(−1j∗w∗tStart);
3 X_shifted = fftshift(X);

Where we define the angular frequencies w and w_shifted as in 2.4

1 w = 2∗pi/(N∗Tx)∗(0:N−1);
2 w_shifted = 2∗pi/(N∗Tx)∗(−N/2:1:(N/2−1));

We notice that once we get the frequency representation X of the signal and the angular

frequency w, we shift it: shifting is a useful convention that can facilitate the analysis and

understanding of signals in various contexts, especially when dealing with non-stationary

signals or examining specific frequency behaviours.

As we said before, in this specific example, we need to filter an audio signal 2.4. So, we now

apply a low-pass filter 3.4 where the cutoff frequency is determined after looking at the signal

12



Figure 2.11: Audio signal in the time domain

Figure 2.12: Audio signal in the frequency domain
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in the frequency domain. 2.12

1 %Filtering
2 cutoff_freq=2197.5;
3 R1 = double(abs(w_shifted) < cutoff_freq∗2∗pi);
4 % Y = X_shifted.∗R1;
5

6 y = 5∗ifft(fftshift(Y)/Tx.∗exp(1j∗w∗(tStart)));

Combining the spectrum analysis and a low-pass filter, we obtain the new signal y, repre-

sented in red in the figure below. 2.13

Figure 2.13: Comparison between filtered and non-filtered audio signal in the frequency domain
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Chapter 3

Filters

In control systems, filtering refers to modifying or attenuating certain signal frequencies while

allowing others to pass through. The purpose of filtering is to remove unwanted noise, interfer-

ence, or undesired components from a call or to shape the frequency response of a system.

Filters are commonly used in control systems to improve the performance and stability of a sys-

tem. Depending on the specific application, they can be implemented using various electronic

components or algorithms.

There are several filters, such as the low-pass filter ( or LPF, which allows low-frequency sig-

nals to pass through while attenuating higher frequencies) or the high-pass filter (or HPF, which

allows high-frequency signals to pass through while attenuating lower frequencies).

One of the most famous and used filters is the Kalman filter: first developed by Rudolf E.

Kálmán and his colleagues in the early 1960s, a Kalman filter is an algorithm used in control

systems and signal processing to estimate the state of a dynamic system based on a series of

noisy measurements.[16]

Another important (and simpler) filter is the α - β filter since it is a form of the more generic

Kalman one.

3.1 The α - β filter

The α - β filter is a recursive digital filter used for signal processing and state estimation.

It represents the system using a state vector that contains the variables describing the system’s

state and presumes that a system is adequately approximated by a model having two internal

states, where the first state is obtained by integrating the value of the second state over time,

like, for example, the position x and the velocity v of an object (in fact v = δx
δt
). Then, the

system dynamics are described by a set of equations that relate the current state to the next

state. These equations can be linear or non-linear and generally depend on what system is under

15



study.

For example, imagine a car going at a constant speed v0 and a sensor registering its position

every ∆t = 1 sec starting from t0 = 0 sec.

Once the system dynamics are well known, the two major steps that constitute the filter come

in. Using the uniform rectilinear motion’s laws, some equations that satisfy the requirements

can be obtained to describe the system at the current time t plus 1:

⎧⎨⎩xt+1 = xt + v0 ·∆t

vt+1 = vt = v0

By analyzing the equations better, it is possible to see that the velocity can be viewed as the

small increment of the space gain every∆t, so hereinafter v0 will be called δx. These equations

together form the prediction step: here, the α - β filter predicts the system’s state at the next

time step based on the current state and the system dynamics. The resulting variables xt+1, vt+1

make up the predicted state, or more simply, the prediction.

Alongside the prediction, there is a measurement: as has been said before, a sensor tracks the

car’s position every ∆t seconds. However, sensors always have some noise that kicks in and

ruins the measurements: all the filters have to reduce the effect of this noise.

This goal is achieved in the α - β filter in the update step. First, the difference between the

measurements and the prediction is calculated:

residual = measurementt − predictiont

The residual is then used to find the estimated state, or more simply, the estimate:

estimatet = predictiont + α · residualt

The α parameter plays a crucial role here: it updates the state estimate based on the prediction.

The higher α is, the more the residual will be considered over the prediction. And since the

residual came from the measurements, α is the parameter that affects the choice between

following more of the measurements or following more of the predictions obtained from the

system dynamics. So, in practical uses, α will be high if the sensors’ errors are low.

Another important passage in the update step is to upgrade δx: every time a residual is

calculated, the filter can be thought to find a new value:

δx = δx+ β · residual
∆t

16



In this formula, β determines howmuch weight to give to the incomingmeasurement: the higher

β will be, the more the system will trust a different value of δx over the old value.

Therefore, there is a huge similarity between α and β; both parameters affect how much the

filter will consider the data from the measurements over the data obtained from how the system

is supposed to work, so they are typically adjusted experimentally.

In general, larger α and β gains tend to produce faster responses for tracking transient changes,

while smaller α and β gains reduce the noise level in the state estimates. If a good balance

between accurate tracking and noise reduction is found, and the algorithm is effective, filtered

estimates are more accurate than the direct measurements. This motivates calling the α - β

process a filter.

Below is the full example in steps, coded in MatLab:

• Definition of the data:

1 %Time
2 delta_t=1;
3 t=0:delta_t:20; %t = 0, 1, 2, ..., 20
4

5 samples=length(t); %number of samples
6

7 %Initial data
8 x_0 = 0; %initial position
9 v_0 = 30; %speed
10 dx=v_0;

• Initial vectors:

1 %Vector of the true position of the car
2 actual_position=zeros(1, samples);
3 for i=2:samples
4 actual_position(i)=actual_position(i−1)+dx∗delta_t;
5 end
6

7 %Vector of hypothetical measurements
8 measurement_error=60; %every measurement can be 60 m away from the true value
9 measurement=zeros(1, samples);
10 for i=2:samples
11 error=measurement_error−2∗measurement_error∗rand(1);
12 measurement(i)=actual_position(i−1)+dx∗delta_t+error;
13 end

• Filter:

1 %Filtering
2 alpha=3/10;
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3 beta=4/10;
4

5 prediction=zeros(1,samples);
6 estimate=zeros(1,samples);
7 x_est=x_0;
8 for i=1:samples
9 %prediction step
10 prediction(i)=x_est+dx∗delta_t;
11 dx=v_0;
12

13 %update step
14 residual=measurement(i)−prediction(i);
15 x_est=prediction(i)+alpha∗residual;
16 estimate(i)=x_est;
17 dx=dx+beta∗(residual/delta_t);
18 end

• Plotting:

1 %Plotting
2 hold on;
3 plot(t,measurement, LineStyle=”none”, Marker=”+”)
4 plot(t,estimate)
5 plot(t,actual_position, ':')
6 legend('Measurements, 'Filter', 'Actual position', Location='best');
7 hold off;

In this example, the supposed error of the sensor is very high: every second, the car advances

30 meters, but the measurements given can be 60 meters apart from the true value.

To overcome this problem, α and β are small. The resulting graph is 3.1.

The filtered plot follows the actual position pretty well and manages to ignore big errors in the

measurements.

What happens if α or β changes while the other remains the same?

If α changes, the resulting graph is 3.2.

The purple line shows the behaviour of the filter in this situation: since α is higher, the line

”jumps” from one measurement to another. In this example, this results in a more ”nervous”

filter that reacts quickly to a new value given by the sensor.

On the other hand, if β changes, the resulting graph is 3.3.

The purple line shows once again the behaviour of the filter: with a higher β, it seems that the

filter takes the same attitude as before, reacting quickly to every new measurement.

The difference between the two situations can be found by implementing the filter in other
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Figure 3.1: Filtered data with α=0.3 and β=0.3

Figure 3.2: Different results, changing α
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examples. In fact, a higher α makes sure that the filter takes into consideration most of the

measurements over the prediction: here, the nature of the values gives the effect explained

before; in other examples, this behaviour may not be true. On the other hand, a higher β will

always lead to a ”nervous” filter instead of a ”smoother” one.

Generally, the α - β filter is more straightforward to implement than the Kalman filter, making

it a good choice when dealing with systems where it’s challenging to create a linearised state

transition model or when the noise is not Gaussian.

However, the α - β filter may not perform as well as the Kalman filter in highly non-linear

systems or complex noise characteristics. In such cases, the Kalman filter is often preferred.

Figure 3.3: Different results, changing β

3.2 Bayesian Filter

A Bayesian filter is a broad category of statistical filters that use Bayesian probability theory to

estimate the state of a system. It encompasses various algorithms, including the Kalman filter,

Particle filter, and more. [17]

In Bayesian filtering, the goal is to estimate the probability distribution of a system’s state based

on a series of measurements and observations. It leverages Bayes’ theorem, which describes

updating probabilities based on new evidence.

In all real situations, there is an initial belief about the system’s state before any measurements
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are taken, called prior probability (or simply prior). It represents what we know or assume about

the state.

The ”new evidence” given during the filtering process are the measurements taken from some

sensors, but, as said before, sensors always have some disturbance. So, it is more accurate to

talk about the probability of obtaining a particular measurement or observing the data, given the

state. This uncertainty is tracked in the likelihood function (or likelihood).

The last important probabilistic concept needed in Bayesian filters is posterior probability ( or

posterior): the updated belief about the system’s state after incorporating the measurement. It’s

calculated using Bayes’ theorem, combining the prior and likelihood.

To filter the data collected from the sensor, the Bayesian filters exploit the idea of two major

steps, like the α - β filter does: prediction and update. There are, however, key differences.

As said before, the former is based on Bayesian probability theory (particularly Bayes’ theorem).

At the same time, the latter uses parameters (alpha, beta, and gamma) to adjust the influence of

the prediction and the measurement.

Besides the differences in the mathematical framework, these two filters are different in three

other principles:

• Handling nonlinearity and non-Gaussian distributions: Bayesian filters can handle non-

linearity and non-Gaussian distributions thanks to techniques like linearisation or Monte

Carlo sampling, while α - β filter is primarily designed for linear systems with Gaussian

noise. It may not perform well when the system dynamics or measurement noise deviates

significantly from linearity and Gaussian distribution.

• Parameters and tuning: the parameters in a Bayesian filter, such as the process noise

models, are often derived from the specific characteristics of the system and the sensors.

The tuning process can be pretty involved. Instead, the α - β filter relies on setting the

parameters (alpha, beta, and gamma) to control the influence of the prediction and mea-

surement. The choice of these parameters is somewhat heuristic and may require some

trial and error.

• Applications: Bayesian filters are widely used in various fields, including robotics,

aerospace, finance, computer vision, and more. They are particularly valuable in sce-

narios with nonlinearity and uncertainty. At the same time, the G-H filter is historically

associated with aerospace applications, particularly in navigation and tracking systems,

and it was developed to address specific challenges in those domains.

Overall, the Bayesian approach is advantageous when dealing with uncertain or noisy mea-

surements, as it provides a framework for incorporating these uncertainties into the estimation
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process. It’s also more flexible than specific filters like the Kalman filter because it can han-

dle nonlinear and non-Gaussian problems, which may be more challenging for traditional filters.

3.3 Low-pass filter

A low-pass filter is an electronic circuit or signal processing algorithm that allows low-frequency

signals to pass through while attenuating (reducing) the strength of high-frequency signals. In

simpler terms, it allows ”low” frequencies to go through while blocking or reducing ”high” fre-

quencies. In the frequency domain, an ideal low-pass filter has a characteristic cutoff frequency

fc, which is the point at which the filter sets to zero higher frequencies. Below this cutoff fre-

quency, the filter allows signals to pass with no reduction in amplitude.

In a real low-pass filter, we can instead distinguish three different areas based on the frequency

f: 3.4

• If f ∈ [0, fc], we are in the passband area, or rather the range in which the filter allows all

the frequencies

• If f ∈]fc, fs], we are in the transition area, where the frequencies are progressively at-
tenuated until completely filtered out. This area does not exist in an ideal filter, and it is

due to a combination of physical factors, limitations of real electronic components, and

non-idealities of the components used in the circuit

• If f ∈]fs,+∞[ we are in the stopband area, where the frequencies have no amplitude at

all

Figure 3.4: Ideal low-pass filters versus practical filters [18]
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Low-pass filters find applications in various fields, including electronics, telecommunications,

audio processing, and control systems. They are used to remove high-frequency noise from a

signal, extract the low-frequency components of a signal, or prepare a signal for further process-

ing.

For example, in audio systems, a low-pass filter can remove unwanted high-frequency noise

from an audio signal, resulting in cleaner sound. In communication systems, low-pass filters

limit the bandwidth of a signal, ensuring that only the desired range of frequencies is transmit-

ted or received.

There are different low-pass filters, including passive filters (built with passive electronic com-

ponents like resistors, capacitors, and inductors) and active filters (which use active components

like operational amplifiers). The specific design and characteristics of a low-pass filter depend

on the application and the desired frequency response.
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Chapter 4

Initial work

This chapter aims to illustrate the work done in the first part of the thesis: the filtering of data

from the central sensor of the MagLev PCB, described in detail in Efficient use of the 2nd gen-

eration 3D Hall sensors [19], and the study made on the noise detected.

4.1 Filtering the data

In developing a system like the one studied here, studying this topic is essential; in fact, every

sensor used in various areas of everyday life or otherwise is affected by noise of a different

nature. Therefore, a necessary step for the correct implementation of any device is described

below, implemented here in Matlab.

The data comes from experiments conducted on a MagLev device in Norway and includes mea-

surements of the magnetic field on the three axes x, y, and z performed by moving the magnet

randomly. As seen from the image in 4.1, noise significantly alters the measurements. To re-

duce the disturbance, it was chosen to apply a low-pass filter 3.3, implemented very similarly

to the example with the audio file in paragraph 2.4. The whole code can be found below.

The result of this process in 4.2 shows an initial outcome of signal filtering, identified more

precisely in 4.3.

The next objective in the filtering phase was to eliminate the noise from the derivative of the

original signal. In fact, differentiation always amplifies existing disturbances 4.4 as seen thanks

to MatLab code. However, it is not sufficient to differentiate the already filtered signal, as the

result is not satisfactory or meaningful for any considerations about the system under analysis.

[20] One considered procedure was total variation regularisation, a technique that computes the

derivative directly from noisy data used in signal and image processing to reduce noise and en-

hance edges or features in the data.[21]

However, an important goal to satisfy was to have iterative and cheap methods to do what is
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Figure 4.1: Initial data

Figure 4.2: Comparison between filtered and non-filtered data
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Figure 4.3: Filtered data

described above. The total variation regularisation was not a good method in that sense. Hence,

the α - β filter and a simple Bayesian filter were tried, but no relevant results were reached.

1 % Loading data
2 load(”sensor_data_movement.mat”)
3

4 % Extracting data (first values are all 0, so they have to be removed)
5 t = DATA(2:end,1);
6 bx = DATA(2:end,2);
7 by = DATA(2:end,3);
8 bz = DATA(2:end,4);
9

10 % Convert time to seconds and start from t = 0
11 t = (t − t(1))/1000;
12

13 % Plotting time series
14 figure(1);
15 clf;
16 xlabel('Time');
17 ylabel('Measurement');
18 hold on; grid on;
19

20 plot(t,bx,'b','linewidth',2,'displayname','bx')
21 plot(t,by,'r','linewidth',2,'displayname','by')
22 plot(t,bz,'g','linewidth',2,'displayname','bz')
23

24 xlim([t(1), t(end)])
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Figure 4.4: Numerical derivative of the data

25 legend('location','best')
26

27 %Noise attenuation−−−−−−−−−−−
28 x_t = bx(:,1)';
29 y_t = by(:,1)';
30 z_t = bz(:,1)';
31

32 % time constants
33 tStart = 0;
34 Tx = t(2,1) − t(1,1); %period
35

36 % number of values in vector x_t
37 N = numel(x_t);
38

39 % Angular frequency
40 w = 2∗pi/(N∗Tx)∗(0:N−1);
41 w_shifted = 2∗pi/(N∗Tx)∗(−N/2:1:(N/2−1));
42

43 freq = w_shifted/(2∗pi);
44

45 % spectrum
46 X_bx = fft(x_t)∗Tx.∗exp(−1j∗w∗tStart);
47 X_shifted_bx = fftshift(X_bx);
48

49 X_by = fft(y_t)∗Tx.∗exp(−1j∗w∗tStart);
50 X_shifted_by = fftshift(X_by);
51
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52 X_bz = fft(z_t)∗Tx.∗exp(−1j∗w∗tStart);
53 X_shifted_bz = fftshift(X_bz);
54

55 %Filtering
56

57 %cutoff frequency: the higher it is, the more precise the attenuation
58 %will be. If it is too high most of the noise will not be cancelled.
59 sub_freq=25∗2∗pi;
60 R1 = double(abs(w_shifted) < sub_freq);
61

62 %Fourier
63 Y_bx = X_shifted_bx.∗R1;
64 Y_by = X_shifted_by.∗R1;
65 Y_bz = X_shifted_bz.∗R1;
66

67 y_bx = ifft(fftshift(Y_bx)/Tx.∗exp(1j∗w∗(tStart)));
68 y_by = ifft(fftshift(Y_by)/Tx.∗exp(1j∗w∗(tStart)));
69 y_bz = ifft(fftshift(Y_bz)/Tx.∗exp(1j∗w∗(tStart)));
70

71 E = rmse (y_by, by, ”all”);
72

73 % Results plot (filtered and initial data)
74 figure(3);
75 clf;
76 xlabel('Time');
77 ylabel('Measurement');
78 hold on; grid on;
79

80 plot(t,bx, 'Color', 'c')
81 plot(t,y_bx);
82

83 plot(t,by)
84 plot(t,y_by);
85

86 plot(t,bz)
87 plot(t,y_bz);
88

89 legend({'Original b_x','Filtered b_x', 'Original b_y','Filtered b_y', ...
90 'Original b_z','Filtered b_z'},'Location', 'Best','Fontsize',11);
91 hold off;
92

93 % Results plot (only filtered data)
94 figure(4);
95 clf;
96 xlabel('Time');
97 ylabel('Measurement');
98 hold on; grid on;
99

100 plot(t,y_bx);
101

102 plot(t,y_by);
103

104 plot(t,y_bz);
105

106 legend({'Filtered b_x', 'Filtered b_y', ...
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107 'Filtered b_z'},'Location', 'Best','Fontsize',11);
108 hold off;

1 % Plotting numerical derivative
2 figure(2);
3 clf; grid on; hold on;
4 plot(t(2:end),diff(bx)./diff(t),'b','linewidth',2)
5 xlabel('Time');
6 ylabel('derivative of bx');

4.2 Data noise

Another important aspect analysed from the data is their noise. After putting themagnet as in pic-

ture 1.1a, this analysis was performedwith the code below, where the function create_gauss(x)

is self-created and returns a Gaussian fitted curve, the two vectors that identify the points that

form the Gaussian, and its mean. The result of the noise analysis are in figures 4.5, 4.6, 4.7 for

x, y and z respectively. An observation that can be made is about the shape of the noise: trying

to fit the points with a Gaussian is a correct choice. In fact, the noise is normally distributed and

fits very well with the ideal curve.

1 [g1, un1, how1, m1] = create_gauss(x1);
2 [g2, un2, how2, m2] = create_gauss(x2);
3 [g3, un3, how3, m3] = create_gauss(x3);
4

5 figure(2)
6 hold on;
7 scatter(un1, how1)
8 plot(g1)
9 xlabel(”x data centered around the mean”)
10 ylabel(”occurence”)
11

12 figure(3)
13 hold on;
14 scatter(un2, how2)
15 plot(g2)
16 xlabel(”y data centered around the mean”)
17 ylabel(”occurence”)
18

19 figure(4)
20 hold on;
21 scatter(un3, how3)
22 plot(g3)
23 xlabel(”z data centered around the mean”)
24 ylabel(”occurence”)

1 function [gauss, temp, how_many_times, mean] = create_gauss(x)
2 mean = sum(x)/length(x);
3 x_minus_mean=x−ones(length(x),1)∗mean;
4 temp = unique(x_minus_mean);
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5 temp = sort(temp);
6

7 how_many_times=zeros(1,length(temp));
8 %see how many times a value appears
9 for i=1:length(temp)
10 how_many_times(i)=sum(x_minus_mean==temp(i));
11 end
12 gauss=fit(temp, how_many_times', 'gauss2');
13 end

Figure 4.5: Noise of the x-data

It is immediately clear from the images that the noise is extremely quantised: in general,

in this case (which happens also when we let the MagLev run without any magnet on it), it

means it has been sampled with too low a resolution, using too few quantisation levels to

represent it. This can lead to a significant loss of information in the signal and can compromise

spectral analysis. Spectral analysis involves observing the different frequency components

present in a signal. If the signal contains very small frequencies or fine details, low resolution

in representing the noise can cause these components to go unnoticed or be misinterpreted.

For instance, if we have a signal with a low-frequency component and a high-frequency com-

ponent very close to each other and the noise is too heavily quantised, it might be impossible

to distinguish between these two components in the frequency domain. This can lead to a

distorted or inaccurate spectral representation. Furthermore, low-resolution noise can lead

to ”aliasing” in the frequency domain. This occurs when high-frequency components are

mistakenly interpreted as low-frequency due to poor spectral resolution.

31



Figure 4.6: Noise of the y-data

Figure 4.7: Noise of the z-data
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Chapter 5

Controlling the magnet

5.1 Experiments on the physical system

After analyzing the results from the previous chapter, it was chosen to conduct some exper-

iments on a MagLev system very similar to the one described in paragraph 1.2. The main

objective of this choice is to compare the results of the simulations we have with the results

provided by the physical system. Thanks to the pre-existing Arduino code and the Matlab

code below, it was possible to examine the system’s stability for various parameters (Kp,

Kd). As evident from the Matlab code itself, it was constructed to perform multiple actions:

firstly, only a specific range of data is considered for analysis, ensuring that any fluctuations

in the magnetic field detected during the positioning and removal phases of the magnet would

not affect subsequent studies. Additionally, using the code in paragraph 4.2, examining the

noise in the measurements was deemed useful. Finally, whenever Kp and Kd rendered the

system stable, the data was saved in a designated folder in a dedicated file, allowing for future

examination with other programs or other purposes. The obtained results can be seen in the

following images from the perspective of studying the noise. Generally, a Gaussian trend is

confirmed, but with some differences from the first study in paragraph 4.2. For the z-axis, the

noise remains very similar to the previous one 5.4, with few differences when changing the

parameters (Kp, Kd); for the y and x axes, on the other hand, completely different behaviour

is observed: for high Kp, a double Gaussian is obtained 5.2 5.3, while for low Kp, one of the

two branches ”zeros out” 5.5 5.6. This thesis will not discuss the reasons behind this behaviour

since it could happen for many reasons, and it needs a thorough study. For example, the two

peaks may correspond to amplitude in oscillation. A good hypothesis is that the A/D converter

introduces this kind of noise. If true, this could be reduced by substituting the current A/D with

a new one with better performance.
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1 %Considering only a certain range
2 x1 = DATA(500:(end−300),1);
3 x2 = DATA(500:(end−300),2);
4 x3 = DATA(500:(end−300),3);
5 output1 = DATA(500:(end−300),4);
6 output2 = DATA(500:(end−300),5);
7

8 %Analyze noise and plot
9 [g1, un1, how1, m1] = create_gauss(x1);
10 [g2, un2, how2, m2] = create_gauss(x2);
11 [g3, un3, how3, m3] = create_gauss(x3);
12

13 figure(2)
14 hold on;
15 scatter(un1, how1)
16 plot(g1)
17 xlabel(”x data centered around the mean”)
18 ylabel(”occurence”)
19

20 figure(3)
21 hold on;
22 scatter(un2, how2)
23 plot(g2)
24 xlabel(”y data centered around the mean”)
25 ylabel(”occurence”)
26

27 figure(4)
28 hold on;
29 scatter(un3, how3)
30 plot(g3)
31 xlabel(”z data centered around the mean”)
32 ylabel(”occurence”)
33

34 %Saving the data
35 filename = ”Collected data_with fix/Kp=425; Kd=4.75.xlsx”; %Example of a file where we save the data
36 A = table(x1, x2, x3, output1, output2);
37 writetable(A, filename, 'WriteVariableNames', false, 'WriteRowNames', false);

As for the simple representation of the unstable and stable regions, they can be distinguished

in the following images. Here the blue points (circles in 5.7a and crosses in 5.7b) represent the

stable pairs (Kp,Kd), while the red ones are the unstable points. All the points in the graphs are

experiments, except the red empty circles in 5.7a, which are inserted here for clarity.

A problem addressed during the experimentation phase concerned the linearity of themodel used

to implement the Arduino code. As discovered, the input values did not behave completely lin-

early but were linear in segments. Specifically, this issue was encountered during a test of the

actual input values of the MagLev. It was, therefore, necessary to remap all the u values, which

transitioned from behaving as shown in 5.1a to behaving as in 5.1b. The behaviour of u was

unexpected and problematic, as the controller had been set up to respond to disturbances differ-

ently. As seen from the two graphs, the slopes of the linearised portions are different in the two
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Figure 5.1: changing of u
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Figure 5.2: x noise for Kp=700, Kd=8, centered around the mean
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Figure 5.3: y noise for Kp=700, Kd=8, centered around the mean

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

z data centered around the mean

0

5

10

15

20

25

30

35

40

o
c
c
u
re

n
c
e

fitted curve

Figure 5.4: z noise for Kp=700, Kd=8, centered around the mean
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Figure 5.5: x noise for Kp=475, Kd=2, centered around the mean

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y data centered around the mean

0

5

10

15

20

25

30

o
c
c
u
re

n
c
e

fitted curve

Figure 5.6: y noise for Kp=475, Kd=2, centered around the mean
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cases: this results in completely different gains for the controller, leading to a response that is

either too aggressive or too mild. This problem happened in the flat region, where a higher gain

is necessary for stability. Due to how we thought the system behaved, the one implemented was

the same as in the other regions.

Without the modification made later on, the instability zones took on a completely different

shape 5.7b, and the difference, as can be observed from Figure 5.7, was very significant.

In particular, two areas are noticeable where the MagLev tends to exhibit an entirely new be-

haviour: for low Kp and Kd values, after the code modification, stability is generally improved,

and an area that was previously inaccessible now allows the magnet to levitate. Conversely, a

large area is no longer stable for high Kp values.

This could be due to various factors. A significant increase in Kp can theoretically lead to a

larger overshoot, meaning the system may oscillate beyond the setpoint before stabilising. This

can result in amplified system noise and vibrations, interfering with the accuracy and reliability

of measurements and control and, therefore, causing instability[22]. Furthermore, if the system

has an actuator with physical limits (such as a motor with a limited speed range), a high Kp

can cause the controller to attempt to drive the actuator beyond its limits, resulting in saturation.

Generally, a high Kp can make the controller more sensitive to changes in process conditions,

which may require frequent gain adjustment to maintain the desired performance[23].
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Figure 5.7: Stability of the pairs (Kp, Kd)

5.2 Considerations on the results

Simultaneously with the work carried out in this thesis, a simulation in MatLab was developed

to replicate the theoretical behaviour of MagLev. Over the months during which data was
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collected, the simulator was refined by adding and tuning noise. This refinement was based

on the real data collected, ensuring the reliability of the results. The comparison between

simulation and real data is shown in the figure 5.8, where the data can be observed before

and after the fix. Surprisingly, the current simulation is more similar to the observed trend

before the fix; the simulation with noise returns us to the blue area as the stable one. The most

likely cause of this behaviour is probably attributed to the tuning of the noise: incorporating

an accurate representation of noise into a simulation is challenging, both due to the extensive

study required beforehand and the potential emergence of errors, such as the one that led to

the remapping of the u. In general, even with a tuned noise, it is still impossible to restrict

the stable area properly. As expected, the stable points are reduced every time some noise is

considered, but the real yellow area is still not found.

Another essential factor to consider is the magnet used for the experiments: its shape is a crucial

variable influencing the produced magnetic field. Initially, the magnet had been approximated

as a cylinder, but its current shape is different, as described in 1.2.

In general, there are still many factors that need to be explored. This thesis focuses only on the

practical part of the study, drawing some important conclusions summarised here.

The most significant aspect analysed certainly concerns noise: by considering 4.2 and 5.1, it is

evident that the measurements carry Gaussian noise, which changes its nature depending on the

magnet’s position and the parameters (Kp, Kd) used. As explained earlier, it is impossible to

avoid noise completely, but future studies can help reduce and understand it, making MagLev

much more stable. Regarding stability, during the experiments, an oscillatory component of

the levitating magnet was observed. This behaviour is natural and was compensated for certain

Kp and Kd values; for others, it prevailed, causing the magnet to fall. However, even among

various stability points, there are better and worse ones: generally, if the magnet could levitate

with low values of Kp and Kd, the oscillatory component was greatly reduced, while in other

cases (especially for high Kp), it was more pronounced.

Another critical observation is undoubtedly related to the rotational component of the magnet.

The magnet underwent small rotations around its vertical axis, which assumed a progressively

higher angle with increasing Kp. This behaviour was partly due to how the magnet was

positioned, but even after ensuring particular care in positioning; the problem was not entirely

resolved, a symptom of a different nature of the rotation that, however, there was no way to

investigate further.
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Figure 5.8: Comparison between simulation and actual data
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