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Introduction

In this thesis we are going to present the Kuramoto model. The Kuramoto
model is a mathematical model, formulated by Yoshiki Kuramoto, that de-
scribes the phenomenon of collective synchronization. This phenomenon
consists of a large population of coupled limit-cycle oscillators which spon-
taneously locks to a common frequency, even though the natural frequencies
of the individual oscillators are different.

The phenomenon of synchronization, in general speaking, is one of the most
captivating cooperative phenomena in nature: it manifests itself in a wide
variety of fields and everyday experiencies. A paradigmatic example is the
synchronous flashing of fireflies. In some South Asia forests, at night, there
are a lot of fireflies. Initially they flash incoherently, but shortly after the
whole swarm starts flashing in unison. Another simple example, where syn-
chronization is a fundamental point, is the concert: each member of the
orchestra plays a sequence of notes that, properly combined, provoke a deep
feeling in our senses. The effect can be astonishing or a fiasco simply depend-
ing on the exact moment when the sound was emitted. In physics, biology
and engineering there are also many examples: arrays of lasers, microwave
oscillators, superconducting Josephson junctions, crickets that chirp in uni-
son, pancreatic beta-cells and pacemakers heart cells, epileptic seizures in
the brain and many more. All of these examples have one thing in com-
mon: each of the individual oscillator units has its own preferred frequency
with which oscillate. No single oscillator is “in charge” directing the rest
of population. It is the collective behaviour and interaction among the pop-
ulation that leads to the emergence of collective oscillations that synchronize.

Since synchronization is everywhere it has attracted the interest of many
scientists for centuries who wanted to understand its relevance: for example,
in the case of the fireflies, synchronous flashing may facilitate the courtship
between males and females, but, in other cases the role of synchronization
is still under discussion. In this dissertation we analyze the phenomenon of
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synchronization in the case of coupled oscillators.

This work is organized as follows:

• Chapter 1: In the first chapter we first introduce the Kuramoto model
and its equations in general form. We introduce also the complex or-
der parameter which is a fundamental quantity that allows us to write
the model as a mean field model and it describes the synchronization
behavior of the oscillators. Then we study the solutions of equations
for a large number of oscillators and we pay particular attention on the
incoherent solution r = 0, that is when the oscillators are not synchro-
nized. We finding out than as the coupling strength between oscillators
increases, the oscillators begin to synchronize and we find the threshold
value of coupling strength at which this phase transition occurs. Then
we discuss the stability property of the incoherent solution and finally
we show some theoretical results through numerical simulations. This
chapter is based on an article written by Strogatz [1].

• Chapter 2: In the second chapter we treat the Kuramoto model in
the presence of noise. We introduce the governing equations and the
Fokker-Planck equation. Then, we study the stability property of the
incoherent solution and we find the threshold value of coupling strength
at which phase transition occurs when there is noise. Finally, we discuss
the differences between the two models and we show them through
numerical simulations.
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Chapter 1

Kuramoto model

1.1 Background

In this first section of the first chapter of the thesis we are going to find
out when the phenomenon of collective synchronization, described by the
Kuramoto model, was first observed. Then we will get to know the first sci-
entists who analyzed this phenomenon, their influence and the contribution
they made to the model formulated by Kuramoto a few years later.

The first recorded observation of synchronous behavior was made by Chris-
tiaan Huygens in the 17th century: he was sick in bed and he had, on the
wall in front of him, two pendulum clocks hanging from a common support.
He made the pendulums swing at differing paces and he observed that, half
an hour later,

they always returned to synchronism and kept it constantly
afterwards, as long as I let them go.

As he wrote in a letter to his father on 25 February 1665. So the pendulum
clocks always swung together and never varied. According to Huygens, this
happened due to a sort of sympathy [2].

The phenomenon of collective synchronization in populations of coupled os-
cillators was studied, for the first time ever, by the American mathematician
Norbert Wiener. He discovered it was a common phenomenon in the natural
world and he also hypothesized that it was involved in the generation of al-
pha rhythms in the brain. But Wiener’s approach, based on Fourier integrals,
was wrong. A major breakthrough was made, in 1967, by the biologist Win-
free. He formulated the problem in terms of a huge population of interacting
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limit-cycle oscillators assuming the coupling weak and the oscillators nearly
identical. Then Winfree supposed also that each oscillator was coupled to the
collective rhythm generated by the whole population. This simplification is
the basic concept of the mean-field approximation that will be a key point in
our treatment of the Kuramoto model. The governing equations of Winfree
model are the following:

θ̇i = ωi +

(
N∑

j=1

X(θj)

)
Z(θi), i = 1, . . . , N,

where θi represents the phase of oscillator i and ωi its natural frequency.
Each oscillator j exerts a phase-dependent influence X(θj) on all the others;
the corrisponding response of oscillator i depends on its phase θi, through
the sensitivity function Z(θi). Winfree found out that when the spread of
natural frequencies is large compared to the coupling, the system behaves
incoherently and each oscillator runs at its natural frequency. Instead, when
the spread decreased, the incoherence persists until a certain threshold is
crossed, then a macroscopic fraction of oscillators suddenly synchronize to
a common frequency. So Winfree realized that synchronization can be un-
derstood as a “threshold process” but the model he proposed was hard to
solve. The first one who formulated a mathematically tractable model about
this phenomenon was Kuramoto in 1975. His model, known as Kuramoto
model (sometime called KM), is a simplification of Winfree’s model and is
based on phase oscillators running at arbitrary intrinsic frequencies and cou-
pled through their sine of their phase differences. This model can be used to
study many synchronization patterns and it can be applied in many different
contexts and these are the reasons why KM is so important.

1.2 Governing equations of the model

In this section we are going to introduce the Kuramoto model. Before ana-
lyzing the governing equations of the model, we have to explain some notions
about oscillator’s theory that will be fundamental for our treatment.

In order to describe the state of an oscillator at some instant we have to
introduce two variables: the position (specified by an angle) and the velocity.
These two variables give rise to the phase space.

Definition 1.1 (Phase space). A phase space is a space in which all possible
“states” of a dynamical system (here a system of oscillators) are represented,
with each possible state corresponding to one unique point in the phase space.
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To describe the motion of an oscillator, then, we can talk about its motion in
phase space. The oscillators studied in this thesis move in phase space in a
special way: when left to themselves, they eventually revisit the same points
over and over. So the steady-state evolution of an oscillator corresponds to
some closed curve in phase space. This closed curve is called a limit cycle.

Definition 1.2 (Limit cycle). A limit cycle is a closed trajectory in phase
space having the property that at least one other trajectory spirals into it
either as time approaches infinity or as time approaches negative infinity. In
other words, the limit cycle is an isolated trajectory (isolated in the sense
that neighboring trajectories are not closed)

Definition 1.3. The phase θ of an oscillator is defined so that it grows
uniformly in time and gains 2π radians for each trip around the limit cycle.
Each point on the cycle corresponds to a certain value of the phase.

Observation 1.1. We can note that the phase is defined to grow uniformly
in time, while the system may not evolve uniformly along the limit cycle (it
may go faster in phase space in some places on the cycle than others).

Definition 1.4. The natural frequency ω of an oscillator is a quantity that
characterizes how quickly the oscillator travels around its limit cycle in the
absence of outside influences.

At this stage, we can give the following definition:

Definition 1.5 (Kuramoto model). The Kuramoto model consists of a pop-
ulation of N coupled limit-cycle oscillators, having phases θi and natural fre-
quencies ωi, whose dynamics is governed by phase equations of the following
universal form:

θ̇i = ωi +
N∑

j=1

Γij(θj − θi), i = 1, . . . , N, (1.1)

where Γij are interaction functions.

This phase model is a simplification of the formulation made by Winfree but
these equations are still far too difficult to analyze because the interaction
functions Γij could have many Fourier harmonics and the connection topology
is unspecified. In order to avoid this problem, we consider the mean-field case
because it is the most tractable.
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Definition 1.6 (Mean-field theory). In physics and probability theory, the
mean-field theory studies the behavior of high-dimensional random stochastic
models by studying a simpler model that approximates the original by aver-
aging over degrees of freedom. So the overall effects of all system elements
on a single element are approximated to a single average effect, thus with
mean-field theory we reduce any many-body problem into an effective one-
body problem.

To transform the original model (1.1) into a mean-field model we use a sine
function to couple the oscillators. Therefore, we consider equally weighted,
all-to-all, purely sinusoidal coupling:

Γij(θj − θi) =
K

N
sin(θj − θi), i, j = 1, . . . , N, (1.2)

where K ≥ 0 is a constant sizing the coupling strength between oscillators
and the factor 1

N
ensures that the model has a non-trivial limiting behavior

as N → ∞.

Observation 1.2. If K = 0 we obtain a simple set of “phases”, θi = θi(t),
i = 1, . . . , N , which evolves as

θi(t) = ωit+ θi(0).

Hence, when there is no coupling between the oscillators each oscillator ro-
tates at its own frequency and has its own phase. Thus, the phases and the
frequencies of the oscillators are incoherent.

With the choice (1.2), the system of equations (1.1) become:

θ̇i = ωi +
K

N

N∑

j=1

sin(θj − θi), i = 1, . . . , N. (1.3)

The natural frequencies ωi are distributed according to some probability den-
sity g(ω). In order to simplify the analysis, we assume that g(ω) is unimodal
and symmetric about its mean frequency Ω. We give the following definitions:

Definition 1.7. A unimodal probability distribution is a probability distribu-
tion which has a single peak. Unimodality means that a single value in the
distribution occurs more frequently than any other value. The peak represents
the most common value, also known as the mode.

Definition 1.8. The probability density g(ω) is called “symmetric” about its
mean frequency Ω if g(Ω + ω) = g(Ω− ω) for all ω.
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Definition 1.9. In a symmetric unimodal distribution, mean, median, and
mode all occur at the peak.

Example. The most common example of unimodal and symmetric distribu-
tion is the Normal distribution.

Thanks to these properties of g(ω), we can set the mean frequency Ω = 0 by
applying the transformation θi → θi + Ωt for all i, which physically means
moving into a rotating frame at frequency Ω. In this way, the governing
equations (1.3) are invariant and the mean of g(ω) is shifted to zero so the
natural frequencies have zero mean. So henceforth, g(ω) = g(−ω) for all
the ω and the ωi represent deviations from the mean frequency Ω. We also
suppose that g(ω) is nowhere increasing on [0,∞), i.e., g(ω) ≥ g(v) whenever
ω ≤ v.

We want to write Eq. (1.3) in a more convenient form to visualize the dynam-
ics of the phases. To this end, we introduce the complex order parameter.

Definition 1.10 (Complex order parameter). The complex order parameter
is the macroscopic quantity

reiψ =
1

N

N∑

j=1

eiθj , (1.4)

which is an “object” that can be seen as the collective rhythm produced by
the entire population of oscillators. It represents the centroid of the phases.
The radius r(t), with 0 ≤ r(t) ≤ 1, measures the coherence of the oscillator
population and ψ(t) the average phase of all oscillators.

Figure 1.1: Geometric interpretation of order parameter.
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The complex order parameter can be represented in this way, as we can see
in the figure 1.1: the phases θj are plotted on the unit circle in the complex
plane, their centroid is given by the complex number reiψ, shown as an ar-
row. There are two relevant situations, as we can see in the figure 1.2 taken
from [3] : the case in which r ≈ 1 that means that all the oscillators move
in a single tight clump so the population acts like a giant single oscillator
and the opposite case, where r ≈ 0, that means the individual oscillators are
scattered around the circle, so they run independently, incoherently, and no
macroscopic rhythm is produced.

Figure 1.2

After we introduced the order parameter, the system of equations (1.3) can
be rewritten in this way: we multiply both sides of (1.4) by e−iθi ,

reiψe−iθi =
1

N

N∑

j=1

eiθje−iθi ,

for the law of exponents,

rei(ψ−θi) =
1

N

N∑

j=1

ei(θj−θi). (1.5)

Applying Euler’s Formula, eix = cos(x) + i sin(x), we obtain

r
(
cos(ψ − θi) + i sin(ψ − θi)

)
=

1

N

N∑

j=1

(
cos(θj − θi) + i sin(θj − θi)

)
.

Then, equating imaginary parts and simplifying i on both sides, we have

r sin(ψ − θi) =
1

N

N∑

j=1

sin(θj − θi).
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So the governing equations (1.3) become

θ̇i = ωi +Kr sin(ψ − θi), i = 1, . . . , N.

Definition 1.11. The governing equations of the Kuramoto model as a mean
field model are

θ̇i = ωi +Kr sin(ψ − θi), i = 1, . . . , N. (1.6)

Observation 1.3. The system of equations (1.6) describes the system as a
mean field model: each oscillator appears to run independently from all the
others but obviously they are interacting, in fact each oscillator is coupled
to the common average phase ψ(t) with coupling strength given by Kr. The
phase θi is pulled toward the mean phase ψ and not toward the phase of any
individual oscillator as at the beginning.

Observation 1.4. There is a proportionality between the effective strength
of the coupling and the coherence r: if the population of oscillators becomes
more coherent, the radius r grows (it is getting closer and closer to 1) and so
Kr increases. When the effective coupling boosts, more oscillators join the
synchronized group. This link between K and r is very clear in the figure 1.5
in the last section of the chapter.

1.3 Analysis of the solutions for a large num-

ber of oscillators

In this section we analyze the long-term behavior of the solutions in the limit
N → ∞. We focus the study on the research of steady solutions.

Definition 1.12. In a steady solution the radius r(t) is constant (so all the
oscillators are independent) and ψ(t) rotates uniformly at the mean frequency
Ω.

Choosing the origin of the rotating frame correctly, we can set ψ ≡ 0 without
loss of generality. Considering this assumption, we have

θ̇i = ωi +Kr sin(ψ − θi)

= ωi +Kr sin(−θi)
= ωi −Kr sin(θi),

(1.7)

for i = 1, . . . , N .
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After writing governing equations into a new form, we consider the self-
consistency condition: we want to solve for the resulting motions of all the
oscillators which depend on r as a parameter but these motions in turn imply
values for r and ψ which must be consistent with the original values that had
been assumed.

Proposition 1.1. The solutions of (1.7) show that there are two types of
long-term behavior, depending on the size of |ωi| relative to Kr:

• if |ωi| ≤ Kr there are two stationary points: one of these is a stable
fixed point defined implicitly by

ωi = Kr sin(θi),

where |θi| ≤ π
2
.

• if |ωi| > Kr, the oscillators will rotate, since |θ̇i| ≠ 0.

Definition 1.13 (Locked oscillators). The oscillators characterized by |ωi| ≤
Kr are called “locked” because they are phase-locked at frequency Ω in the
original frame.

Definition 1.14 (Drifting oscillators). The oscillators characterized by |ωi| >
Kr are called “drifting” exactly because they run around the circle in a
nonuniform manner, accelerating near some phases and hesitating at oth-
ers.

Therefore, the population can be divided into two groups: locked and drifting
oscillators, the first one correspond to the center of g(ω) and the second
one to the tails. The existence of the drifting oscillators would seem to
contradict that r and ψ are constant because of the buzz around the circle
so it’s weird that the centroid of the population remain constant but we
can avoid this problem by demanding that the drifting oscillators form a
stationary distribution on the circle. In this way the centroid remains fixed
although the individual oscillators continue to move.

Definition 1.15. The stationary density of drifting oscillators is

ρ(θ, ω) =
C

|ω −Kr sin(θ)| . (1.8)

This density has the following properties:
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• is inversely proportional to the speed at θ, as expected: oscillators pile
up at slow places and thin out at fast places on the circle.

• the normalization constant C is

C =

√
ω2 − (Kr)2

2π
,

determined by
∫ π
−π
ρ(θ, ω)dθ = 1 for each ω.

After these considerations, we can give the following definition:

Definition 1.16 (Self-consistency condition). The self-consistency condition
of the complex order parameter is

⟨eiθ⟩ = ⟨eiθ⟩lock + ⟨eiθ⟩drift
where ⟨eiθ⟩ = reiψ (so the angular brackets denote population averages).

Since ψ = 0, the self-consistency equation will reduce to

r = ⟨eiθ⟩lock + ⟨eiθ⟩drift,
because ⟨eiθ⟩ = reiψ = r. The first term on the right hand side can be
rewritten in this way, using Euler’s Formula and linearity property of mean,

⟨eiθ⟩lock = ⟨cos θ + i sin θ⟩lock = ⟨cos θ⟩lock + i⟨sin θ⟩lock. (1.9)

As regards the imaginary part of (1.9), we show the following Proposition:

Proposition 1.2. We have ⟨sin θ⟩lock = 0.

Proof. As we stated at the beginning, g(ω) = g(−ω), thus the distribution
of locked phases is symmetric about θ = 0. Therefore, we have

⟨sin θ⟩lock =
∫ Kr

−Kr

sin θ(ω)g(ω)dω

=

∫ 0

−Kr

sin θ(ω)g(ω)dω +

∫ Kr

0

sin θ(ω)g(ω)dω

= −
∫ 0

Kr

sin θ(−ω)g(−ω)dω +

∫ Kr

0

sin θ(ω)g(ω)dω

= −
∫ 0

Kr

sin θ(−ω)g(ω)dω +

∫ Kr

0

sin θ(ω)g(ω)dω

=

∫ 0

Kr

sin θ(ω)g(ω)dω +

∫ Kr

0

sin θ(ω)g(ω)dω

= −
∫ Kr

0

sin θ(ω)g(ω)dω +

∫ Kr

0

sin θ(ω)g(ω)dω

= 0
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However, as regards the real part of (1.9), we have the following result:

Proposition 1.3. We have

⟨cos θ⟩lock = Kr

∫ π
2

−π
2

cos2 θg(Kr sin θ)dθ.

Proof. We have

⟨cos θ⟩lock =
∫ Kr

−Kr

cos θ(ω)g(ω)dω.

If we apply the variable change ω = Kr sin θ we obtain,

⟨cos θ⟩lock =
∫ π

2

−π
2

cos θg(Kr sin θ))d(Kr sin θ)

=

∫ π
2

−π
2

cos θg(Kr sin θ))Kr cos θdθ

= Kr

∫ π
2

−π
2

cos2 θg(Kr sin θ)dθ.

Therefore, Eq. (1.9) becomes

⟨eiθ⟩lock = Kr

∫ π
2

−π
2

cos2 θg(Kr sin θ)dθ.

Now we consider the drifting oscillators and we prove the following result:

Proposition 1.4. The drifting oscillators don’t contribute to the order pa-
rameter, that is

⟨eiθ⟩drift = 0.

Proof. We have

⟨eiθ⟩drift =
∫ π

−π

∫

|ω|>Kr

eiθρ(θ, ω)g(ω)dωdθ

and we have to prove that this integral vanishes. We proceed in this way.

⟨eiθ⟩drift =
∫ π

−π

∫ −Kr

−∞

eiθρ(θ, ω)g(ω)dωdθ

+

∫ π

−π

∫ ∞

Kr

eiθρ(θ, ω)g(ω)dωdθ.

(1.10)
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Making the variable change ω → −ω to the first term of (1.10) gives

⟨eiθ⟩drift = −
∫ π

−π

∫ Kr

∞

eiθρ(θ,−ω)g(−ω)dωdθ

+

∫ π

−π

∫ ∞

Kr

eiθρ(θ, ω)g(ω)dωdθ.

(1.11)

Making a further change of variable θ → θ + π to the first integral of (1.11)
and noting the periodicity of the first term, gives

⟨eiθ⟩drift = −
∫ π

−π

∫ Kr

∞

ei(θ+π)ρ(θ + π,−ω)g(−ω)dωdθ

+

∫ π

−π

∫ ∞

Kr

eiθρ(θ, ω)g(ω)dωdθ.

(1.12)

Now we change the order of the ω integration and we can note that eiπ =
cos π + i sin π = −1, so we get

⟨eiθ⟩drift = −
∫ π

−π

∫ ∞

Kr

eiθρ(θ + π,−ω)g(−ω)dωdθ

+

∫ π

−π

∫ ∞

Kr

eiθρ(θ, ω)g(ω)dωdθ.

(1.13)

From our initial assumption on the distribution, g(ω) = g(−ω), and, from
equation (1.8), it seen that ρ(θ + π,−ω) = ρ(θ, ω). Therefore,

⟨eiθ⟩drift = 0,

consequently the drifting oscillators don’t contribute to the order parameter.

Thus, the self-consistency condition reduces to

r = Kr

∫ π
2

−π
2

cos2 θg(Kr sin θ)dθ. (1.14)

This equation has always the trivial solution, r = 0, for any value of the
coupling constant K. For r = 0 we can note, from (1.8), that ρ(θ, ω) = 1

2π

for all values of θ and ω, meaning that there is an equal probability of finding
an oscillator’s phase anywhere on the circle.

Definition 1.17 (Incoherent solution). The solution r = 0 is called incoher-
ent solution because the oscillators run incoherently.
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Definition 1.18 (Incoherent state). The state ρ(θ, ω) = 1
2π

is called inco-
herent state.

However Eq. (1.14) also has a second branch of solutions, corresponding to
0 < r ≤ 1, that describes the partially synchronized phase, satisfying

1 = K

∫ π
2

−π
2

cos2 θg(Kr sin θ)dθ. (1.15)

This branch bifurcates continuously from r = 0 at the value K = Kc. This
value represents the point at which the phase transition occurs: for K < Kc

the oscillators run incoherently (because r = 0), from K = Kc the oscillators
begin to synchronize.

Now, we can prove the following key result:

Theorem 1.1. The threshold value at which the second branch of solutions
bifurcates from the first is

Kc =
2

πg(0)
.

Proof. Letting r → 0+ in (1.15) we have

1 = K

∫ π
2

−π
2

cos2 θg(0)dθ.

For the double-angle formula of cosine we have

cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1.

Substituting cos2 θ = cos 2θ+1
2

into the integral we obtain

1 = K

∫ π
2

−π
2

cos 2θ + 1

2
g(0)dθ

1 =
Kg(0)

2

∫ π
2

−π
2

(
cos 2θ + 1

)
dθ

1 =
Kg(0)

2

[
sin 2θ

2
+ θ

]π
2

−π
2

1 =
Kg(0)

2
π.
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Observation 1.5. We can note that the threshold value depends only on
which distribution g we are considering.

It is interesting at this stage to see how the growth of r, at the critical point,
scales with increasing K. We show the following Theorem:

Theorem 1.2. Near onset, the amplitude of the bifurcating branch obeys the
square-root scaling law:

r ≈
√

16

πK3
c

√
µ

−g′′(0) ,

where

µ =
K −Kc

Kc

is the normalized distance above threshold.

Proof. To prove this result we can Taylor expand g in (1.15) around r = 0.
We have,

1 = K

∫ π
2

−π
2

[
g(0) + g′(0)Kr sin(θ) +

g′′(0)

2
K2r2 sin2(θ)

]
cos2 θdθ +O(r3).

Assuming that g(ω) has a maximum value at ω = 0, we have g′(0) = 0.
Integrating, we find

1 = K
[
g(0)

π

2
+

1

16
πK2r2g′′(0)

]
+O(r3) =

K

Kc

+
1

16
πK3r2g′′(0) +O(r3).

Thus, we obtain

r ≈ 4

K2
c

√
−K −Kc

πg′′(0)
. (1.16)

We can rewritten (1.16) in the following form

r ≈
√

16

πK3
c

√
µ

−g′′(0) ,

to point out µ = K−Kc

Kc
.

Observation 1.6. We can see that the bifurcation is supercritical if g′′(0) < 0
and it is subcritical if g′′(0) > 0.
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Example (Lorentzian density). If we consider the special case of a Lorentzian
density

g(ω) =
γ

π(γ2 + ω2)
,

where γ is the distribution width, we can obtain an explicit value for r. Sub-
stituting the density into Eq. (1.15) we have

1 =
Kγ

π

∫ π
2

−π
2

1

γ2 +K2r2 sin2(θ)
cos2(θ)dθ. (1.17)

Integrating Eq. (1.17), we obtain

1 =
γ −

√
K2r2 + γ2

Kr2
. (1.18)

For the Lorentzian density, Kc =
2

πg(0)
= 2γ. If we solve Eq. (1.18) for r we

find

r =

√
1− Kc

K

for all K ≥ Kc.

The figure below illustrates the bifurcation diagram for the Kuramoto model.

Figure 1.3: Theoretical curve: for K < Kc we have r = 0 that means that the oscillators
run independently, at K = Kc the phase transition occurs and the oscillators begin to
synchronize.
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1.4 Continuum limit

In this section we want to focus on the problem of the stability of the steady
solutions. Kuramoto’s original construction of incoherent and partially syn-
chronized phases concerns purely stationary states. Moreover, he did not
establish any of their stability properties. The linear stability theory of in-
coherence was published by Strogatz. To study the stability it is better to
work with the probability density ρ(θ, t, ω). So, at this point, we assume an
infinite continuum of oscillators spread over the unit circle for each natural
frequency ω. We introduce the density function ρ(θ, t, ω), where ρ(θ, t, ω)dθ
represents the part of the oscillators with natural frequency ω whose phase
lies between θ and θ + dθ at the time t.

Observation 1.7. We can see that ρ is non-negative, 2π-periodic in θ, i.e
ρ(θ + 2π, t, ω) = ρ(θ, t, ω), and satisfies the normalization

∫ 2π

0

ρ(θ, t, ω)dθ = 1

for all t and ω.

At this point, we introduce these definitions:

Definition 1.19. The density satisfies the “continuity equation”

∂ρ

∂t
= − ∂

∂θ
(ρv) (1.19)

that expresses the conservation of oscillators of frequency ω and describes the
evolution of ρ over the time.

Definition 1.20. The velocity v(θ, t, ω) in eq. (1.19) is the instantaneous
velocity of an oscillator at position θ and its expression, obtaining from (1.6),
is the following,

v(θ, t, ω) = ω +Kr sin(ψ − θ). (1.20)

Since we are considering an infinite continuum of oscillators we have to re-
define the complex order parameter (1.4) in a new way.

Definition 1.21. The complex order parameter in case of infinite oscillators
is

reiψ =

∫ 2π

0

∫ ∞

−∞

eiθρ(θ, t, ω)g(ω)dωdθ. (1.21)

Observation 1.8. Eq. (1.21) is obtained by applying the law of large num-
bers to (1.4).
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At this point we are ready to enounce the following Theorem:

Theorem 1.3 (Continuum limit). The continuum limit of the Kuramoto
model is the nonlinear partial integro-differential equation

∂ρ

∂t
= − ∂

∂θ

[
ρ

(
ω +K

∫ 2π

0

∫ ∞

−∞

sin(θ′ − θ)ρ(θ′, t, ω′)g(ω′)dω′dθ′
)]
. (1.22)

Proof. We know that the instantaneous velocity of an oscillator is given by

v(θ, t, ω) = ω +Kr sin(ψ − θ)

= ω +Kr(sinψ cos θ − cosψ sin θ).
(1.23)

Substituting Eq. (1.23) into Eq. (1.19), we find

∂ρ

∂t
= − ∂

∂θ

[
ρ[ω +Kr(sinψ cos θ − cosψ sin θ)]

]
. (1.24)

Now, we consider the complex order parameter

reiψ =

∫ 2π

0

∫ ∞

−∞

eiθ
′

ρ(θ′, t, ω′)g(ω′)dω′dθ′,

that can be rewritten in this way, using Euler’s Formula,

r(cosψ + i sinψ) =

∫ 2π

0

∫ ∞

−∞

(cos θ′ + i sin θ′)ρ(θ′, t, ω′)g(ω′)dω′dθ′.

Then, we have

r cosψ =

∫ 2π

0

∫ ∞

−∞

cos θ′ρ(θ′, t, ω′)g(ω′)dω′dθ′, (1.25)

r sinψ =

∫ 2π

0

∫ ∞

−∞

sin θ′ρ(θ′, t, ω′)g(ω′)dω′dθ′. (1.26)

We substitute Eq. (1.25) and Eq. (1.26) into Eq. (1.24). We obtain

∂ρ

∂t
= − ∂

∂θ

[
ρ

(
ω +K cos θ

∫ 2π

0

∫ ∞

−∞

sin θ′ρ(θ′, t, ω′)g(ω′)dω′dθ′

−K sin θ

∫ 2π

0

∫ ∞

−∞

cos θ′ρ(θ′, t, ω′)g(ω′)dω′dθ′
)]
,

which is equivalent to

∂ρ

∂t
= − ∂

∂θ

[
ρ

(
ω +K

∫ 2π

0

∫ ∞

−∞

sin(θ′ − θ)ρ(θ′, t, ω′)g(ω′)dω′dθ′
)]
.
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Observation 1.9. We can note that the stationary states of (1.22) are ex-
actly the steady solutions found before. In fact, if we set ∂ρ

∂t
= 0, we find

ρv = C(ω), where C(ω) is a ω-dependent constant. If C(ω) ̸= 0 we obtain
the stationary density (1.8) for the drifting oscillators. If C(ω) = 0, we find
that ρ is a delta function in θ, based at the locked phase.

Definition 1.22. In mathematical physics, the Dirac delta distribution is
a generalized function or distribution over the real numbers, whose value is
zero everywhere except at zero, and whose integral over the entire real line is
equal to one.

It is convenient to consider as the stationary state the incoherent state,
ρ0(θ, ω) ≡ 1

2π
.

1.4.1 Stability of the incoherent state

Now, let’s deal with the linearity stability problem of the incoherent state.
In order to solve the stability issue, we define

ρ(θ, t, ω) =
1

2π
+ ϵη(θ, t, ω), (1.27)

where ϵ ≪ 1 and η is the perturbation which has zero mean. We write η as
a Fourier series in θ:

η(θ, t, ω) = c(t, ω)eiθ + c∗(t, ω)e−iθ + η⊥(θ, t, ω).

In this equation c = c1 is the first Fourier coefficient, c∗ = c∗1 is its complex
conjugate and η⊥ contains all the higher harmonics of η. Since η is real we
have c−1 = c∗1. We write the perturbation in this form because the linearized
amplitude equation for the first harmonic, c(t, ω), is the only with nontrivial
dynamics [4]. The reason is the sinusoidal coupling of the Kuramoto model
as we prove in the following Proposition.

Proposition 1.5. The expression for r depends only on the first harmonic.

Proof. We substitute (1.27) into (1.21) obtaining

reiψ =

∫ 2π

0

∫ ∞

−∞

eiθ
[
1

2π
+ ϵη

]
g(ω)dωdθ, (1.28)

which can be simplified by noting that the term eiθ

2π
will integrate to zero

under the θ integral. Thus, we have

reiψ = ϵ

∫ 2π

0

∫ ∞

−∞

eiθη(θ, t, ω)g(ω)dωdθ.
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Now we define r = r1ϵ, obtaining

r1e
iψ =

∫ 2π

0

∫ ∞

−∞

eiθη(θ, t, ω)g(ω)dωdθ.

At this point, we substitute the Fourier series,

r1e
iψ =

∫ 2π

0

∫ ∞

−∞

eiθ
( ∞∑

n=−∞

cn(t, ω)e
inθ

)
g(ω)dωdθ

=

∫ ∞

−∞

∞∑

n=−∞

cn(t, ω)

(∫ 2π

0

ei(n+1)θdθ

)
g(ω)dω

=

∫ ∞

−∞

∞∑

n=−∞

cn(t, ω)2πδn,−1g(ω)dω

= 2π

∫ ∞

−∞

c−1(t, ω)g(ω)dω

= 2π

∫ ∞

−∞

c∗(t, ω)g(ω)dω.

From this equation we find out that we can solve for r(t) if we know only the
first harmonic of η.

Now we substitute (1.27) into (1.19) obtaining

∂c

∂t
= −iωc+ K

2

∫ ∞

−∞

c(t, ω′)g(ω′)dω′ ≡ Ac. (1.29)

Where A is a linear operator. To discuss the stability of steady solutions we
have to find the eigenvalues of A. The spectrum of A has continuous and
discrete parts.

Proposition 1.6. The discrete spectrum of A contains non-negative eigen-
values.

Proof. We can find the discrete spectrum of A in this way: let

c(t, ω) = b(ω)eλt, (1.30)

where λ is an eigenvalue. This eigenvalue governs the linear stability of the
system. To make the state stable, λ must be negative, since the exponential
will decay and when t→ ∞ =⇒ c(t, ω) → 0. Hence, the unstable case comes
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when λ is positive. Substituting (1.30) into (1.29) and simplifying eλt on
both sides yields

λb = −iwb+ K

2

∫ ∞

−∞

b(ω′)g(ω′)dω′. (1.31)

The second term on the right-hand side is a constant. Therefore, we can
write

B =
K

2

∫ ∞

−∞

b(ω′)g(ω′)dω′. (1.32)

If we solve (1.31) for b, we obtain

b(ω) =
B

λ+ iω
,

where we assume λ+ iω ̸= 0. Rewriting equation (1.31) using this expression
for b gives

λ
B

λ+ iω
= −iω B

λ+ iω
+
K

2

∫ ∞

−∞

B

λ+ iω′
g(ω′)dω′. (1.33)

This gives B = 0 or 1 = K/2
∫∞

−∞
g(ω′)
λ+iω′

dω′. However, B can not be zero
otherwise b(ω) = 0 and this implies that c(t, ω) = 0 for all ω. This is a
contradiction as c(t, ω) is an eigenfunction. Therefore, we only consider

1 =
K

2

∫ ∞

−∞

g(ω′)

λ+ iω′
dω′. (1.34)

At this point, we consider the hypothesis assumed at the beginning: g(ω) is
even, i.e., g(ω) = g(−ω), and is nowhere increasing on [0,∞), in the sense
that g(ω) ≥ g(v) whenever ω ≤ v. With these assumptions, Eq (1.34) has at
most one solution for λ and if it exists, it is real (Theorem 2 [5]). Therefore,
Eq. (1.34) can be rewritten as

1 =
K

2

∫ ∞

−∞

λ

λ2 + ω′2
g(ω′)dω′. (1.35)

Thus, since the right-hand side of (1.35) can not be negative, all the eigen-
values must satisfy the condition λ ≥ 0.

Proving this proposition we find out that there can never be any negative
eigenvalues and this is a fundamental discovery: the incoherent state of the
Kuramoto model can never be linearly stable but it can be either unstable
or neutrally stable (unstable if λ > 0, neutrally stable if λ = 0). So, the next
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step is finding the borderline coupling Kc between these two cases. To do
it, consider the limit λ → 0+ in (1.35): the term λ/(λ2 + ω2) becomes more
and more sharply peaked about ω = 0, but its integral over −∞ < ω < ∞
remains equal to π. Therefore, we have

λ/(λ2 + ω2) −→ πδ(ω).

Thus, the equation (1.35) tends to

1 =
1

2
Kcπg(0).

In this way we obtain the same value of the critical coupling Kc of Theorem
1.1.

Following are two explicit examples for the growth rate λ, if g(ω) is a suffi-
ciently simple density.

Example (Uniform density). If we consider the uniform density g(ω) = 1/2γ
with −γ ≤ ω ≤ γ we have

λ = γ cot

(
2γ

K

)
.

Example (Lorentzian density). If we consider the Lorentzian density g(ω) =
γ

π(γ2+ω2)
with −γ ≤ ω ≤ γ we have

λ =
1

2
K − γ.

This value for λ can be found in this way: substitute the Lorentzian distribu-
tion into Eq. (1.34),

1 =
K

2

∫ ∞

−∞

γ

π(γ2 + ω2)(λ+ iω)
dω =

Kγ

2πi

∫ ∞

−∞

1

(γ2 + ω2)(ω − iλ)
dω.

We solve the right-hand side of this equation with the calculus of residues:
the integrand has poles at iγ, −iγ and iλ with λ > 0. Because λ is positive we
close the integration path with half circle on the lower half plane. Calculating
the residue of the integrand in iλ and applying the method of residues, we
obtain

1 =
K

2(λ+ γ)
.

Now let’s discuss the continuous spectrum.
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Proposition 1.7. The continuous spectrum of A is pure imaginary, {iω :
ω ∈ support(g)}, and it corresponds to a continuous family of neutral modes.

Proof. For definition, the continuous part of the spectrum of A is defined as
the set of complex numbers such that the operator A− λI is not surjective.
So, we need to consider

−(λ+ iω)b(ω) +
K

2

∫ ∞

−∞

b(ω′)g(ω′)dω′ = f(ω), (1.36)

for fixed λ and for an arbitrary function f(ω). If Eq.(1.36) is solvable for
all b(ω) λ is not in the continuous spectrum. As we already noted, the in-
tegral does not depend on ω, it is a constant. Therefore we denote this
integral by B, as we did in the proof of Proposition 1.6. Thus, if λ+ iω = 0,
Eq. (1.36) is not solvable for all f(ω): it is solvable only for constant func-
tions. Consequently we can conclude that the continuous spectrum contains
{iω : ω ∈ support(g)}.

Now we demonstrate that nothing else is contained in the continuous spec-
trum. Let’s suppose that there is an eigenvalue λ in the continuous spectrum
but not in {iω : ω ∈ support(g)}. Since λ+ iω ̸= 0, we can solve Eq. (1.36)
for b(ω). We obtain

b(ω) =
B − f(ω)

λ+ iω
, (1.37)

where B = K
2

∫∞

−∞
b(ω′)g(ω′)dω′. Substituting (1.37) into the expression for

B we have

B =
K

2

∫ ∞

−∞

[
B − f(ω′)

λ+ iω′

]
g(ω′)dω′

=
BK

2

∫ ∞

−∞

[
g(ω′)

λ+ iω′

]
dω′ − K

2

∫ ∞

−∞

[
f(ω′)

λ+ iω′

]
g(ω′)dω′.

(1.38)

In this way, we obtain

B

(
1− K

2

∫ ∞

−∞

g(ω′)

λ+ iω′
dω′

)
= −K

2

∫ ∞

−∞

[
f(ω′)

λ+ iω′

]
g(ω′)dω′. (1.39)

We assume that λ is not in the discrete spectrum. Thus, from equation
(1.34) it follows that the coefficient of B is not zero. Therefore, Eq. (1.39) is
solvable for B. This implies that λ is not in the continuous spectrum. Thus,
we have showed that the continuous spectrum is {iω : ω ∈ support(g)}.
Observation 1.10. The proposition that we have just proved implies neutral
stability.
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Observation 1.11. We can imagine an initial perturbation η(θ, ω, t = 0)
supported on a sliver of exactly one frequency ω = ω0, so we disturb the part
of the oscillators which have intrinsic frequency ω0 and leave the rest alone
in their incoherent state. The corresponding amplitude c(0, ω) is zero for all
the oscillators which have frequencies ω ̸= ω0 because they are not disturb.
Instead, in the case of ω = ω0, we can set c(0, ω0) = 1 because the equation
(1.29) is linear. For this sliver perturbation, the integral in (1.29) vanishes
so the equation become

Ac = iω0c.

In this form we can note that c(0, ω) is an eigenfunction with pure imaginary
eigenvalue iω0.

Therefore, the linearization about the incoherent state of the Kuramoto
model has a purely imaginary continuous spectrum for K < Kc = 2

πg(0)

where the discrete spectrum is empty. When K increases, a real positive
eigenvalue λ appears from the continuous spectrum and moves into the right
half plane for K > Kc, as we can see in the figure below.

Figure 1.4: Spectrum of A that governs the linear stability of the incoherent state
ρ0 ≡ 1/2π. (a) For K > Kc the incoherent state is unstable, thanks to the discrete
eigenvalue λ > 0. This eigenvalue pops out of the continuous spectrum at K = Kc. (b)
For K ≤ Kc, the discrete spectrum is empty and the incoherent state is neutrally stable.

We have just proved the following Theorem:

Theorem 1.4. The incoherent state is neutrally stable for K < Kc and
unstable for K > Kc.
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What happens when K decreases through Kc? We can think that the eigen-
value λ should move toward the continuous spectrum, collide with it, then
pop out the back. But it do not, it just disappears! Another weird thing
is that the explicit formulas for λ simply predict, incorrectly, that λ goes
negative for K < Kc. Thanks to some simulations for K < Kc it seems to
show that r(t) decays exponentially and the decay rate is exactly the nega-
tive λ found using explicit formulas. We need to find an equation governing
the evolution of r(t). Putting together Eq. (1.27), the expression of η as a
Fourier series and Eq. (1.21) we have

r(t) = 2πϵ

∣∣∣∣
∫ ∞

−∞

c(t, ω)g(ω)dω

∣∣∣∣. (1.40)

Now, we introduce the notation

R(t) =

∫ ∞

−∞

c(t, ω)g(ω)dω (1.41)

and we solve the first-order linear ordinary differential equation (1.29) in
terms of R(t) and the initial condition c0(ω) ≡ c(0, ω). Inserting the result
for c(t, ω) into (1.41) gives the linear integral equation

R(t) = (ĉ0g)(t) +
K

2

∫ t

0

R(t− τ)ĝ(τ)dτ, (1.42)

where the hat denotes Fourier transform.

Definition 1.23. A function g belongs to L1(R,C) if
∫ ∞

−∞

|g(ω)|dω <∞.

Definition 1.24. Suppose g ∈ L1(R,C), its Fourier transform is the function
ĝ : R → C defined by

ĝ(t) =

∫ ∞

−∞

g(ω)e−iωtdω.

At this point, the next goal is solving (1.42). We can use Laplace transform
and then apply the inverse Laplace transform.

Definition 1.25. Let f(t) be a function of t specified for t > 0. Then the
Laplace transform of f(t) is defined by

f(s) =

∫ ∞

0

e−stf(t)dt,

where s is complex.
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We obtain

R(t) =
1

2πi

∫

Γ

(c0g)
∗(s)

1− 1
2
Kg∗(s)

estds, (1.43)

where the contour Γ is a vertical line to the right of any singularities of
the integrand, and the asterisk denotes an operation related to the Hilbert
transform:

f ∗(s) ≡
∫ ∞

−∞

f(ω)dω

s+ iω
.

We have g∗(s) ≡
∫∞

−∞
g(ω)dω
s+iω

and from Eq. (1.34) we can see that this integral

is equal to 2
K

if s is in the discrete spectrum of A and substituting g∗(s) = 2
K

into (1.43) we see that the denominator in (1.43) vanishes. In the case
K < Kc, the discrete spectrum is empty, as we stated previously, so the
denominator never vanishes.

Example. If we consider the extremely special initial condition c0(ω) ≡ 1
and the Lorentzian distribution g(ω) = γ

π(γ2+ω2)
, we have ĝ(t) = e−|γt| and

the explicit solution of (1.43) is

R(t) = e(
1
2
K−γ)t, t ≥ 0.

From this solution we discover that R(t), and hence r(t), decays exponentially
if K < Kc = 2γ, even though the incoherent state is neutrally stable.

Example. In the case of the uniform density g(ω) = 1/2γ, with −γ ≤ ω ≤ γ,
we find

R(t) ∼
(−16γ

K2

)
sin γt

t ln2 t
as t→ ∞

for K < Kc, which is a much slower decay than the other one.

Observation 1.12. In the case K < Kc the asymptotic behavior of R(t)
depends on the support of g(ω). If g(ω) has a compact support, as the finite
interval [−γ, γ], we have that R(t) → 0 as t → ∞, but the decay is always
slower than exponential. On the other hand, if g(ω) is supported on the whole
real line, the asymptotic behavior of R(t) can be more particular: R(t) can
take any form with a correct choice of c0 but in the best-behaved case where
g(ω) and c0(ω) are entire functions, R(t) is a sum of decaying exponentials.
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1.5 Simulations

In this last section I show some theoretical results, proved in the previous
sections, through numerical simulations. I used Wolfram Mathematica to do
that.

To do the simulations I assumed that the natural frequencies are distributed
according to the Gaussian distribution with mean µ = 0 and deviation σ =
0.2. The density of the Gaussian distribution is

g(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 ,

with x ∈ R. I opted for this distribution because it satisfies all the proper-
ties that the density of the frequencies must have in the Kuramoto model:
the Gaussian density is unimodal, symmetric about its mean and nowhere
increasing on [0,∞] as we can see in the graph below.

I assumed also that the initial phases of oscillators are distributed accord-
ing to the same density. I considered N = 250 oscillators. In order to
solve the differential equations (1.3) of the Kuramoto model I used the com-
mand NDSolve from Mathematica and I considered different values of K
(K ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}) to visualize how the behavior of
the oscillators changes with the increase of K.
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We can note, in the figure 1.5 below, that for small values of the coupling
constant K, the oscillators, represented by black points on the unit circle,
are scattered around the circle. This means that they run incoherently, they
are not synchronize. In fact, the orange arrow, which represents the radius
r, is little. We have r ≈ 0, as we expected from the theory. As the value of
coupling strength increases the oscillators are getting closer and r ≈ 1. The
population acts like a giant single oscillator.

K  0 K  0.3 K  0.4

K  0.5 K  0.6 K  0.8

Figure 1.5: Oscillators’ plot on the unit circle for different values of K. For K = 0 we
have r ≈ 0 that means that the oscillators are not synchronized, for K = 0.4 we have
0 < r < 1 so the oscillators are partially synchronized, for K = 0.8 we have r ≈ 1 that
means that the oscillators are almost fully synchronized.

Then, I showed the phase transition of the Kuramoto model. For the Theo-
rem 1.1 the threshold value in the case of Gaussian distribution with mean
µ = 0 and deviation σ = 0.2 is

Kc =
2

πg(0)
= 0.319154.

We can note, in the figure below, that for the first values of K we have r ≈ 0,
then, near the critical point Kc, r begin to increase and getting closer and
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closer to 1. Therefore, at K ≈ Kc the phase transition occurs and the os-
cillators begin to synchronize. With greater values of number of oscillators
and tfinal the graphs are even better.

0.0 0.2 0.4 0.6 0.8 1.0
K0.0

0.2

0.4

0.6

0.8

1.0

R

Phase transition of the Kuramoto model

Figure 1.6: At K ≈ 0.3 the phase transition occurs, for K < Kc the oscillators run
incoherently, for K > Kc they start to synchronize.
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Chapter 2

Kuramoto model with adding
noise

In this chapter of the thesis, to get a more complete analysis of the Kuramoto
model, we consider the relevance of noise: noise, due a variety of reasons,
might affect the system of oscillators in equation (1.3). For instance the
behavior of an array of Josephson junctions could be greatly affected by
thermal noise so it is important to study how random noise can change the
synchronization behavior seen in the Kuramoto model. The model with the
presence of noise takes the name of Sakaguchi-Kuramoto model because was
Sakaguchi to extend the KM allowing rapid stochastic fluctuations in the
natural frequencies.

2.1 The Sakaguchi-Kuramoto model

The system of equations that describes the Sakaguchi-Kuramoto model is

dθi =

(
ωi +

K

N

N∑

j=1

sin(θj − θi)

)
dt+ σdWi, i = 1, . . . , N, (2.1)

where W denotes a Wiener process, also called Brownian motion.

The system (2.1) is a system of stochastic differential equations. For a rig-
orous introduction see [6]. For our purpose it suffices to say that the system
(2.1), for dt small, can be approximated by the following system of differential
equations:

Definition 2.1 (Sakaguchi model). The system of equations of the Sakaguchi-
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Kuramoto model that we are going to consider is

dθi =

(
ωi +

K

N

N∑

j=1

sin(θj − θi)

)
dt+

√
σ2dtXi, i = 1, . . . , N, (2.2)

where X1, . . . , XN are independent random variables distributed according to
the Standard Gaussian distribution, i.e. Xi ∼ N(0, 1) i = 1, . . . , N .

The oscillators’ distribution function ρ(θ, t, ω) satisfy the nonlinear Fokker-
Planck equation

∂ρ

∂t
=
σ2

2

∂2ρ

∂θ2
− ∂

∂θ
(ρv), (2.3)

where the parameter σ2

2
sizes the strength of noise and v(θ, t, ω), r(t) and

ψ(t) are given by (1.20) and (1.21).

Observation 2.1. The Sakaguchi’s Fokker-Planck equation tell us how the
oscillator density function ρ(θ, t, ω) evolves in time and we can note that it
reduces to the continuum limit of the Kuramoto model when σ = 0, so when
there is no noise.

2.1.1 Derivation of Fokker-Planck equation

Theorem 2.1. The Fokker-Planck equation for the Sakaguchi model is

∂ρ

∂t
=
σ2

2

∂2ρ

∂θ2
− ∂

∂θ
(ρv), (2.4)

where v(θ, t, ω), r(t) and ψ(t) are given by (1.20) and (1.21).

Proof. From (1.3) we know that

vi = ωi +
K

N

N∑

j=1

sin(θj − θi), (2.5)

which is the instantaneous angular velocity of oscillator i in the absence of
noise. Substituting (2.5) into (2.2) we obtain

dθi = vidt+
√
σ2dtXi, i = 1, . . . , N. (2.6)

We know that ∫
f(θ)ρ(θ, ω, t)dθ = ⟨f(θ)⟩ (2.7)
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and differentiating it, we obtain
∫
f(θ)

∂ρ

∂t
dθ =

〈
df(θ)

dt

〉
. (2.8)

Now, we expand df to the second order

df =
∂f

∂θ
dθ +

∂2f

∂θ2
(dθ)2

2
. (2.9)

Substituting (2.6) into (2.9) gives

df =
∂f

∂θ

(
vdt+

√
σ2dtX

)

+
∂2f

∂θ2

(
v2dt2 + σ2dtX2 + 2vdt

√
σ2dtX

)

2
.

(2.10)

We drop terms with factors of (dt)2 or smaller obtaining

df =
∂f

∂θ

(
vdt+

√
σ2dtX

)
+
∂2f

∂θ2
σ2dt

2
X2. (2.11)

At this point, we can note that
〈√

σ2dtX
〉
=
〈√

σ2dt
〉〈
X
〉
= 0, (2.12)

because the mean of the random variable X is 0 by definition. We can also
note that 〈

X2
〉
= 1 (2.13)

since the average of the square is equal to the variance when the mean is
zero. Now, we substitute (2.11) into (2.8) and we find

∫
f(θ)

∂ρ

∂t
dθ =

〈
df

dθ
v +

σ2

2

d2f

dθ2

〉
. (2.14)

Now we express the right-hand side of this equation as an integration over
phase space: ∫

f(θ)
∂ρ

∂t
dθ =

∫ (
df

dθ
v +

σ2

2

d2f

dθ2

)
ρdθ. (2.15)

We integrate the right-hand side by parts and we drop the surface terms
(since we have periodic boundaries). In this way we obtain

∫
f(θ)

∂ρ

∂t
dθ =

∫
f(θ)

(
− ∂ρ

∂θ
v +

σ2

2

∂2ρ

∂θ2

)
dθ. (2.16)

So, it must be that
∂ρ

∂t
=
σ2

2

∂2ρ

∂θ2
− ∂

∂θ
(ρv). (2.17)

Thus, we obtain the Fokker-Planck equation for the Kuramoto model.
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2.2 Stability of the incoherent state

In order to investigate the synchronization behavior of the Kuramoto model
with noise, we study the incoherent state ρ0(θ, ω) ≡ 1

2π
as we did in the first

chapter. We want to discover the stability properties of the inchoerent state.
Since the incoherent state, as we have seen, corresponds to a completely un-
synchronized state, if we find the situations in which this incoherent state
just becomes unstable, we have found the situations where phase synchro-
nization just starts to take place.

With this aim, we substitute the perturbed distribution (1.27) and the ex-
pression of η as a Fourier series into the Fokker-Planck equation (2.3) and
we find

∂c

∂t
= −

(
σ2

2
+ iω

)
c+

K

2

∫ ∞

−∞

c(t, ω′)g(ω′)dω′. (2.18)

The linear operator L describing the right hand side of (2.18) is given by

Lc = −
(
σ2

2
+ iω

)
c+

K

2

∫ ∞

−∞

c(t, ω′)g(ω′)dω′. (2.19)

This equation has both a discrete and continuous spectrum. To find them
we proceed in the same way we did in the case of no noise [4].

Proposition 2.1. The discrete spectrum in case of presence of noise is not
the same when there is no noise.

Proof. We look for separable solutions of (2.18) of the form

c(t, ω) = b(ω)eλt, (2.20)

where the eigenvalue λ will tell us the stability of c and therefore the stability
of r. If λ > 0 then c grows exponentially in time and consequently r grows
exponentially because in the Proposition 1.5 we have demonstrated that r
depends only on c. So λ > 0 means that the incoherent state is unstable. If
λ < 0, c decays, and r shrinks back down to zero, meaning the incoherent
state is stable. To solve for λ we use the eigenvalue equation

(L− λI)c = (L− λI)beλt = 0, (2.21)

where b is not allowed to be zero because otherwise c is zero and it is not
possible since L is an eigenfunction. Substitute (2.20) into (2.18) and dividing
through by eλt we obtain

λb = −
(
σ2

2
+ iω

)
b+

K

2

∫ ∞

−∞

b(ω′)g(ω′)dω′. (2.22)
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Since the integral in Eq. (2.22) is just some constant, we can call it

A =
K

2

∫ ∞

−∞

b(ω′)g(ω′)dω′, (2.23)

and then solve for b in Eq. (2.22) we find

b(ω) =
A

λ+ σ2

2
+ iω

. (2.24)

Then we substitute (2.24) into (2.23), obtaining

A =
K

2

∫ ∞

−∞

Ag(ω′)

λ+ σ2

2
+ iω′

dω′ (2.25)

We do not consider the solution A = 0 because it implies b = 0 and therefore
c = 0 which is not possible. Thus, we have

1 =
K

2

∫ ∞

−∞

g(ω′)

λ+ σ2

2
+ iω′

dω′. (2.26)

If we assume that g(ω) is even and it never increases on [0,∞), which is true
for the distributions that we are looking at, then, as we have already said,
there is at most one solution for λ, and if a solution exists, it is real. This
means we can multiply and divide the integrand in the Eq. (2.26) by the
complex conjugate of the denominator to get

1 =
K

2

∫ ∞

−∞

λ+ σ2

2
− iω′

(λ+ σ2

2
)2 + ω′2

g(ω′)dω′ (2.27)

and the imaginary part will integrate to zero because it is an odd function
of ω′. Therefore, we obtain

1 =
K

2

∫ ∞

−∞

λ+ σ2

2

(λ+ σ2

2
)2 + ω′2

g(ω′)dω′. (2.28)

Reached this point, we can note that any eigenvalue λ must satisfy the in-
equality

λ > −σ
2

2

so that the right side of Eq. (2.28) can be positive. Since σ2

2
> 0, λ can be

negative, therefore, we can conclude that the incoherent state can be stable
(instead in the case of no noise the incoherent state cannot be linearly stable,
only neutrally stable).
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Observation 2.2. Equation (2.28) is the one of the main results of this
chapter. It shows how the eigenvalue λ depends on the noise strength, the
coupling strength K and the frequency density g(ω).

At this point, we can show the following result:

Theorem 2.2. The critical coupling point at which stability of incoherent
state is lost and phase transition occurs is

K̂c = 2

[∫ ∞

−∞

σ2

2
σ4

4
+ ω′2

g(ω′)dω′

]−1

. (2.29)

Proof. Setting λ = 0 in Eq. (2.28).

For some special cases of the distribution of natural frequencies g(ω) the
eigenvalue λ can be found explicitly. Here are some examples.

Example (Identical oscillators). If we consider identical oscillators, g(ω) =
δ(ω), that it means that all the oscillators have the same natural frequency,
the equation (2.28) becomes

1 =
K

2

∫ ∞

−∞

λ+ σ2

2

(λ+ σ2

2
)2 + ω′2

δ(ω′)dω′

=
K

2

λ+ σ2

2(
λ+ σ2

2

)2

=
K

2
(
λ+ σ2

2

) .

Therefore,

λ =
K − σ2

2
.

And if we set λ = 0 we find
K̂c = σ2.

Example (Uniform density). If we consider the uniform density

g(ω) =

{
1
2γ

−γ ≤ ω ≤ γ

0 elsewhere

we find

λ = γ cot
2γ

K
− σ2

2
.
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By setting λ = 0 we obtain the critical coupling

K̂c =
2γ

arctan γ
σ2/2

.

Example (Lorentzian density). If we consider the Lorentzian density we find

λ =
K − σ2

2
− γ.

By setting λ = 0 we obtain the critical coupling

K̂c = σ2 + 2γ.

Now we finish the analysis of stability of incoherent state studying the con-
tinuous spectrum.

Proposition 2.2. The continuous spectrum of L is
{
− σ2

2
− iω : ω ∈ support(g)

}
.

Proof. For definition, the continuous spectrum of L is the set of complex
number λ such that the operator L− λI is not surjective. Therefore, we are
led to consider this equation

−
(
λ+

σ2

2
+ iw

)
b+

K

2

∫ ∞

−∞

b(ω)g(ω)dω = f(ω), (2.30)

for fixed λ and for an arbitrary function f(ω). In the case that Eq. (2.30)
can be solved for all b(ω) λ is not in the continuous spectrum. As we already
noted, the integral in (2.30) does not depend on ω. So we denote this integral
again by A. If λ + σ2

2
+ iω = 0 for some ω in the support of g then equa-

tion (2.30) is not solvable in general: it would be solvable only for constant
functions. Thus we can conclude that the continuous spectrum contains

{
− σ2

2
− iω : ω ∈ support(g)

}
.

Now we prove that this is the entire continuous spectrum. We suppose that
there is an eigenvalue λ that is not in the discrete spectrum and λ ̸= −σ2

2
−iω.

Since λ+ σ2

2
+ iω ̸= 0, we can solve Eq. (2.30) for b(ω). We obtain

b(ω) =
A− f(ω)

λ+ σ2

2
+ iω

. (2.31)
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Substituting (2.31) into the integral A we have

A =
K

2

∫ ∞

−∞

[
A− f(ω′)

λ+ σ2

2
+ iω′

]
g(ω′)dω′

=
AK

2

∫ ∞

−∞

[
g(ω′)

λ+ σ2

2
+ iω′

]
dω′ − K

2

∫ ∞

−∞

[
f(ω′)

λ+ σ2

2
+ iω′

]
g(ω′)dω′.

(2.32)

In this way, we obtain

A

(
1− K

2

∫ ∞

−∞

g(ω′)

λ+ σ2

2
+ iω′

dω′

)
= −K

2

∫ ∞

−∞

[
f(ω′)

λ+ σ2

2
+ iω′

]
g(ω′)dω′.

(2.33)
We have assumed that λ is not in the discrete spectrum. Thus, from equation
(2.26) it follows that the coefficient of A is not zero. Therefore, Eq. (2.33) is
solvable for A. This implies that λ is not in the continuous spectrum. Thus,
we have showed that the continuous spectrum is

{
− σ2

2
− iω : ω ∈ support(g)

}
.

Observation 2.3. When σ2

2
> 0 the continuous spectrum lies in the left-

half plane. Instead, in the case σ2

2
= 0 the continuous spectrum lies on the

imaginary axis.

In the figure 2.1 is represented the discrete and the continuous spectrum
for a frequency density g(ω) with support [−γ, γ]. The figure shows that
for σ2

2
> 0, the continuous spectrum is a vertical line segment in the left

half-plane, irrespective of the value of K. Thus, the modes corresponding
to the continuous spectrum never cause instability. In contrast, the discrete
spectrum depends strongly on K. When K > K̂c (Fig. la) the fundamental
mode is unstable because λ > 0. As K decreases, the eigenvalue moves to
the left and consequently the fundamental mode becomes neutrally stable
because λ = 0 (Fig. lb) and then linearly stable because λ < 0 (Fig. lc).
Finally, in Fig. ld, the discrete spectrum is absorbed by the continuous
spectrum and disappears.
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Figure 2.1: Representation of discrete and continuous spectrum when there is noise for

different values of K. In the figure D = σ
2

2
.

2.3 Simulations

In this last section of the chapter, as I did in the first chapter, I show some
theoretical results, proved in the previous pages of the chapter, through nu-
merical simulations on Mathematica. In this simulation I consider the pres-
ence of noise.

The assumptions are the same of the other simulation, so the natural frequen-
cies of the oscillators are distributed according to the Gaussian distribution
with mean µ = 0 and deviation σ = 0.2. The initial phases of oscillators
are distributed according to the same distribution and I considered N = 250
oscillators. I take into account the same hypothesis to compare the results
with and without noise. In the simulation with noise I consider larger values
of K because, we can note, from the figures in this section, that in the case
of noise to reach a similar value of r of the case with no noise, we need a
larger value of coupling strength. In fact, in the figure 2.3, we can observe
that for K = 0.8 the oscillators are not as synchronized as they were in case
there was no noise.
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K  0 K  0.2 K  0.4

K  0.5 K  0.7 K  0.8

K  0.9 K  1.1 K  1.2

Figure 2.2: Oscillators’ plot on the unit circle for different values of K with presence of
noise. For K ∈ {0, 0.2, 0.4} we have r ≈ 0 that means that the oscillators are completely
unsynchronized. For K = 0.7 we have 0 < r < 1 that means that the oscillators are
partially synchronized in fact the points on the unit circle are getting closer. For K = 1.2
we have r ≈ 1 that means that the oscillators are almost fully synchronized, the oscillators
act like a single huge oscillator.
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K  0.8

(a) Without noise

K  0.8

(b) With noise

Figure 2.3: Representation of oscillators on the unit circle for K = 0.8 without noise,
fig.a, and with noise, fig.b. For the same value of coupling constant the synchronization
behavior of oscillators is different: the oscillators are more synchronized when there is no
noise.

Finally, I showed the phase transition of the Sakaguchi-Kuramoto model. I
considered as value of the noise strength

σ2

2
= 0.05,

where the σ that appears in the formula is not the deviation of the Gaussian
distribution but is the constant that appears in Eq. (2.2). For the Theorem
2.2 the threshold value in the case of Gaussian distribution with mean µ = 0
and deviation 0.2 is

K̂c = 2

[∫ ∞

−∞

σ2

2
σ4

4
+ ω′2

g(ω′)dω′

]−1

= 0.385422.

In the case of no noise we had Kc = 0.319154, therefore we can immediately
observe that the phase transition, when there is noise, takes place after, i.e.
for a larger value of K. Then we can note, in the figure 2.4, that for the
first values of K we have r ≈ 0, then, near the critical point K̂c, r begins
to increase and getting closer to 1. Therefore, at K ≈ Kc the phase tran-
sition occurs and the oscillators begin to synchronize. Also in this figure, it
is visible the difference between the two cases: for K = 0.8 the value of r
is smaller than the corresponding value of r when there is no noise. In the
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case of noise, we can also note, that for K = 1.2 we have a value of r which
is smaller than the value of r for K = 0.8 in case of absence of noise. With
greater values of number of oscillators and tfinal the graphs are even better
and more similar to the theoretical graph, figure 1.3.

 Kc

Kc

Figure 2.4: At K ≈ 0.4 the phase transition occurs, for K < K̂c the oscillators run
incoherently, for K > K̂c they start to synchronize. For K = 0.8 we have r ≈ 0.8, instead
for the same value of K, in the case of no noise we had r ≈ 0.9. In the figure it is marked
also the threshold value in absence of noise (in orange).
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Conclusions

The phenomenon of synchronization is a common event in everyday life and
it is important to know how it works, how the various entities synchronize
if originally they run independently. In this thesis we have studied the Ku-
ramoto model which deals with the synchronization of a population of cou-
pled limit-cycle oscillators. First we have analyzed the simple case without
noise. We have transformed the original governing equations according to
the mean-field theory, in order to make the treatment less difficult. Then, we
have introduced the complex order parameter which is a macroscopic quan-
tity which describes the synchronization behavior of the oscillators and it
allows to represent the oscillators on the unit circle in the complex plane. It
is useful to be able to represent the oscillators in order to visualize better
their behavior. Analyzing the equations of the model and the solutions, we
have found out that the synchronization between oscillators depends, above
all, on the coupling strength constant K, that appears in the equations. As
the coupling constant increases, the phenomenon of synchronization starts
to come out, as we can see in the numerical simulations, and finally the os-
cillators run like a single oscillator. We have found the critical point of K
at which the oscillators begin to synchronize that is the point at which the
phase transition occurs. In fact if the value of K is very small, K ≈ 0, the
oscillators are not synchronized and they run independently, instead when
the value of K exceeds the threshold value Kc the synchronization starts.
The value of the coupling strength affects the value of the complex order
parameter: the case r ≈ 0 means that the oscillators are completely inco-
herent, instead the opposite case r ≈ 1 tell us that they are synchronized.
Finding the threshold value of K we have discovered that it depends only on
the distribution of the natural frequencies that we have taken into account.
Then we have studied the stability properties of the incoherent solution r = 0
finding out that is neutrally stable for K ≤ Kc and unstable for K > Kc.
Finally we have considered the Kuramoto model with the presence of noise.
There are some differences from the previous model. First of all the critical
value depends also, as can be expected, on the strength of noise, then the
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stability properties of the incoherent solution are not the same: for K < K̂c

the incoherent solution can be also linearly stable. Finally, through the sim-
ulations, we have found out that if we consider the two models with the same
assumptions (the natural frequencies are distributed according to the same
probability distribution, the number of oscillators is the same and so on), if
the coupling strength is the same the oscillators with noise are less synchro-
nized than the noiseless one. When there is noise, the oscillators require a
larger value of K to have the same behavior of the oscillators in case of no
noise.

48



Appendix A

Mathematica codes

Here there is my Mathematica code that describes the Kuramoto model when
there is no noise.

1 tfinal = 4000;

2

3 n = 250;

4

5 \[omega ]= RandomVariate[NormalDistribution [0, 0.2], n];

6

7 kc = 2/(\[ Pi] PDF[NormalDistribution [0, 0.2], 0])

8

9 \[Theta ]0 = Mod[RandomVariate[NormalDistribution [0, 0.2], n],

10 2 \[Pi]];

11

12 (* Differential equations of the Kuramoto model *)

13

14 kuramotoODE0 = Table [\[ Theta][i]’[t] == \[ Omega ][[i]]

15 +(0/n)Sum[Sin [\[ Theta][j][t]-\[ Theta][i][t]],

16 {j, 1, n}], {i, 1, n}];

17 kuramotoODE1 = Table [\[ Theta][i]’[t] == \[ Omega ][[i]]

18 +(0.1/n)Sum[Sin [\[ Theta][j][t]-\[ Theta][i][t]],

19 {j, 1, n}], {i, 1, n}];

20 kuramotoODE2 = Table [\[ Theta][i]’[t] == \[ Omega ][[i]]

21 +(0.2/n)Sum[Sin [\[ Theta][j][t]-\[ Theta][i][t]],

22 {j, 1, n}] , {i, 1, n}]

23 kuramotoODE3 = Table [\[ Theta][i]’[t] == \[ Omega ][[i]]

24 +(0.3/n)Sum[Sin [\[ Theta][j][t]-\[ Theta][i][t]],

25 {j, 1, n}] , {i, 1, n}]

26 kuramotoODE4 = Table [\[ Theta][i]’[t] == \[ Omega ][[i]]

27 +(0.4/n)Sum[Sin [\[ Theta][j][t]-\[ Theta][i][t]],

28 {j, 1, n}] , {i, 1, n}];

29 kuramotoODE5 = Table [\[ Theta][i]’[t] == \[ Omega ][[i]]

30 +(0.5/n)Sum[Sin [\[ Theta][j][t]-\[ Theta][i][t]],
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31 {j, 1, n}] , {i, 1, n}];

32 kuramotoODE6 = Table [\[ Theta][i]’[t] == \[ Omega ][[i]]

33 +(0.6/n)Sum[Sin [\[ Theta][j][t]-\[ Theta][i][t]],

34 {j, 1, n}] , {i, 1, n}];

35 kuramotoODE7 = Table [\[ Theta][i]’[t] == \[ Omega ][[i]]

36 +(0.7/n)Sum[Sin [\[ Theta][j][t]-\[ Theta][i][t]],

37 {j, 1, n}] , {i, 1, n}];

38 kuramotoODE8 = Table [\[ Theta][i]’[t] == \[ Omega ][[i]]

39 +(0.8/n)Sum[Sin [\[ Theta][j][t]-\[ Theta][i][t]],

40 {j, 1, n}] , {i, 1, n}];

41

42 (* Initial conditions *)

43

44 initialConditions = Table [\[ Theta ][i][0] == \[Theta ]0[[i]],

45 {i, 1, n}];

46

47 (* Solutions *)

48

49 sol0 = NDSolve [{ kuramotoODE0 , initialConditions},

50 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

51 sol1 = NDSolve [{ kuramotoODE1 , initialConditions},

52 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

53 sol2 = NDSolve [{ kuramotoODE2 , initialConditions},

54 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

55 sol3 = NDSolve [{ kuramotoODE3 , initialConditions},

56 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

57 sol4 = NDSolve [{ kuramotoODE4 , initialConditions},

58 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

59 sol5 = NDSolve [{ kuramotoODE5 , initialConditions},

60 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

61 sol6 = NDSolve [{ kuramotoODE6 , initialConditions},

62 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

63 sol7 = NDSolve [{ kuramotoODE7 , initialConditions},

64 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

65 sol8 = NDSolve [{ kuramotoODE8 , initialConditions},

66 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

67

68

69

70 (* Order parameter *)

71

72 R[t_] := Abs[1/n Sum[Exp[I \[Theta ][i][t] ], {i, 1, n}]];

73 R0 = R[tfinal] /. sol0 [[1]];

74 R1 = R[tfinal] /. sol1 [[1]];

75 R2 = R[tfinal] /. sol2 [[1]];

76 R3 = R[tfinal] /. sol3 [[1]];

77 R4 = R[tfinal] /. sol4 [[1]];

78 R5 = R[tfinal] /. sol5 [[1]];

79 R6 = R[tfinal] /. sol6 [[1]];
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80 R7 = R[tfinal] /. sol7 [[1]];

81 R8 = R[tfinal] /. sol8 [[1]];

82

83

84

85 (* Lists of solutions *)

86

87 l0 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol0 [[1]];

88 l1 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol1 [[1]];

89 l2 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol2 [[1]];

90 l3 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol3 [[1]];

91 l4 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol4 [[1]];

92 l5 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol5 [[1]];

93 l6 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol6 [[1]];

94 l7 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol7 [[1]];

95 l8 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol8 [[1]];

96

97 (* Centroids of phases *)

98

99 p0 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l0}];

100 p1 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l1}];

101 p2 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l2}];

102 p3 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l3}];

103 p4 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l4}];

104 p5 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l5}];

105 p6 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l6}];

106 p7 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l7}];

107 p8 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l8}];

108

109 (* Plot phase transition *)

110

111 ListPlot [{{0,R0}, {0.1,R1}, {0.2,R2}, {0.3,R3}, {0.4,R4},

112 {0.5,R5}, {0.6,R6}, {0.7,R7}, {0.8,R8}},

113 AxesLabel -> {"K", "R"},

114 PlotRange -> {{0, 1}, {0, 1}}, Joined -> True ,

115 PlotLabel -> "Phase transition of the Kuramoto model"

]

116

117

118 (*Plot unit circle *)

119

120 Graphics [{ Circle[], PointSize [0.03] ,

121 Point[Table [{Cos[phase], Sin[phase]}, {phase , l0}]],

122 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p0}]},

123 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

124 ImageSize -> Small , PlotLabel -> K == 0]

125

126
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127 Graphics [{ Circle[], PointSize [0.03] ,

128 Point[Table [{Cos[phase], Sin[phase]}, {phase , l1}]],

129 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p1}]},

130 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

131 ImageSize -> Small , PlotLabel -> K == 0.1]

132

133 Graphics [{ Circle[], PointSize [0.03] ,

134 Point[Table [{Cos[phase], Sin[phase]}, {phase , l2}]],

135 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p2}]},

136 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

137 ImageSize -> Small , PlotLabel -> K == 0.2]

138

139 Graphics [{ Circle[], PointSize [0.03] ,

140 Point[Table [{Cos[phase], Sin[phase]}, {phase , l3}]],

141 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p3}]},

142 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

143 ImageSize -> Small , PlotLabel -> K == 0.3]

144

145 Graphics [{ Circle[], PointSize [0.03] ,

146 Point[Table [{Cos[phase], Sin[phase]}, {phase , l4}]],

147 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p4}]},

148 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

149 ImageSize -> Small , PlotLabel -> K == 0.4]

150

151 Graphics [{ Circle[], PointSize [0.03] ,

152 Point[Table [{Cos[phase], Sin[phase]}, {phase , l5}]],

153 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p5}]},

154 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

155 ImageSize -> Small , PlotLabel -> K == 0.5]

156

157 Graphics [{ Circle[], PointSize [0.03] ,

158 Point[Table [{Cos[phase], Sin[phase]}, {phase , l6}]],

159 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p6}]},

160 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

161 ImageSize -> Small , PlotLabel -> K == 0.6]

162

163 Graphics [{ Circle[], PointSize [0.03] ,

164 Point[Table [{Cos[phase], Sin[phase]}, {phase , l7}]],

165 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p7}]},

166 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

167 ImageSize -> Small , PlotLabel -> K == 0.7]

168
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169 Graphics [{ Circle[], PointSize [0.03] ,

170 Point[Table [{Cos[phase], Sin[phase]}, {phase , l8}]],

171 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p8}]},

172 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

173 ImageSize -> Small , PlotLabel -> K == 0.8]

Here, there is the Mathematica code that describes the Sakaguchi-Kuramoto
model. I call β the term σ2 of the noise strength to not confuse it with the
deviation of the Gaussian distribution.

1 tfinal = 4000;

2

3 dt = 1;

4

5 \[Beta] = 0.1;

6

7 n = 250;

8

9 \[Omega] = RandomVariate[NormalDistribution [0, 0.2], n];

10

11 kc = 2( Integrate [(\[ Beta ]/2) PDF[NormalDistribution [0, 0.2],x

]/((\[ Beta ]^2/4) + x^2), {x, -Infinity , +Infinity }])^(-1)

12

13 \[Theta ]0 = Mod[RandomVariate[NormalDistribution [0, 0.2], n],

2\[Pi]];

14

15 X = RandomVariate[NormalDistribution [0, 1], n];

16

17 (* Differential equations of the Sakaguchi -Kuramoto model*)

18 kuramotoODE0 = Table [\[ Theta][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[dt

])X[[i]]+\[ Omega ][[i]]+(0/n)Sum[Sin [\[ Theta[j][t]-\[ Theta

][i][t]],{j, 1, n}],{i, 1, n}];

19 kuramotoODE1 = Table [\[ Theta][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[dt

])X[[i]]+\[ Omega ][[i]]+(0.1/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];

20 kuramotoODE2 = Table [\[ Theta][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[dt

])X[[i]]+\[ Omega ][[i]]+(0.2/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];

21 kuramotoODE3 = Table [\[ Theta][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[dt

])X[[i]]+\[ Omega ][[i]]+(0.3/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];

22 kuramotoODE4 = Table [\[ Theta][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[dt

])X[[i]]+\[ Omega ][[i]]+(0.4/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];

23 kuramotoODE5 = Table [\[ Theta][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[dt

])X[[i]]+\[ Omega ][[i]]+(0.5/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];
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24 kuramotoODE6 = Table [\[ Theta][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[dt

])X[[i]]+\[ Omega ][[i]]+(0.6/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];

25 kuramotoODE7 = Table [\[ Theta][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[dt

])X[[i]]+\[ Omega ][[i]]+(0.7/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];

26 kuramotoODE8 = Table [\[ Theta][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[dt

])X[[i]]+\[ Omega ][[i]]+(0.8/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];

27 kuramotoODE9 = Table [\[ Theta][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[dt

])X[[i]]+\[ Omega ][[i]]+(0.9/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];

28 kuramotoODE10 = Table [\[ Theta ][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[

dt])X[[i]]+\[ Omega ][[i]]+(1/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];

29 kuramotoODE11 = Table [\[ Theta ][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[

dt])X[[i]]+\[ Omega ][[i]]+(1.1/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}],{i, 1, n}];

30 kuramotoODE12 = Table [\[ Theta ][i]’[t]== Sqrt [\[ Beta ]](1/ Sqrt[

dt])X[[i]]+\[ Omega ][[i]]+(1.2/n)Sum[Sin [\[ Theta][j][t]-\[

Theta ][i][t]],{j, 1, n}},{i, 1, n}];

31

32

33 (* Initial conditions *)

34 initialConditions = Table [\[ Theta ][i][0] == \[Theta ]0[[i]], {

i, 1, n}];

35

36 (* Solutions *)

37 sol0 = NDSolve [{ kuramotoODE0 , initialConditions},

38 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

39 sol1 = NDSolve [{ kuramotoODE1 , initialConditions},

40 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

41 sol2 = NDSolve [{ kuramotoODE2 , initialConditions},

42 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

43 sol3 = NDSolve [{ kuramotoODE3 , initialConditions},

44 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

45 sol4 = NDSolve [{ kuramotoODE4 , initialConditions},

46 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

47 sol5 = NDSolve [{ kuramotoODE5 , initialConditions},

48 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

49 sol6 = NDSolve [{ kuramotoODE6 , initialConditions},

50 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

51 sol7 = NDSolve [{ kuramotoODE7 , initialConditions},

52 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

53 sol8 = NDSolve [{ kuramotoODE8 , initialConditions},

54 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

55 sol9 = NDSolve [{ kuramotoODE9 , initialConditions},

56 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

57 sol10 = NDSolve [{ kuramotoODE10 , initialConditions},
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58 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

59 sol11 = NDSolve [{ kuramotoODE11 , initialConditions},

60 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

61 sol12 = NDSolve [{ kuramotoODE12 , initialConditions},

62 Table [\[ Theta ][i], {i, 1, n}], {t, 0, tfinal }];

63 (* Order parameter *)

64 R[t_] := Abs[1/n Sum[Exp[I \[Theta ][i][t] ], {i, 1, n}]];

65 R0 = R[tfinal] /. sol0 [[1]];

66 R1 = R[tfinal] /. sol1 [[1]];

67 R2 = R[tfinal] /. sol2 [[1]];

68 R3 = R[tfinal] /. sol3 [[1]];

69 R4 = R[tfinal] /. sol4 [[1]];

70 R5 = R[tfinal] /. sol5 [[1]];

71 R6 = R[tfinal] /. sol6 [[1]];

72 R7 = R[tfinal] /. sol7 [[1]];

73 R8 = R[tfinal] /. sol8 [[1]];

74 R9 = R[tfinal] /. sol9 [[1]];

75 R10 = R[tfinal] /. sol10 [[1]];

76 R11 = R[tfinal] /. sol11 [[1]];

77 R12 = R[tfinal] /. sol12 [[1]];

78

79 (* Lists of solutions *)

80 l0 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol0 [[1]];

81 l1 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol1 [[1]];

82 l2 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol2 [[1]];

83 l3 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol3 [[1]];

84 l4 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol4 [[1]];

85 l5 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol5 [[1]];

86 l6 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol6 [[1]];

87 l7 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol7 [[1]];

88 l8 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol8 [[1]];

89 l9 = Table [\[ Theta ][i][ tfinal], {i, 1, n}] /. sol9 [[1]];

90 l10 = Table [\[ Theta][i][ tfinal], {i, 1, n}] /. sol10 [[1]];

91 l11 = Table [\[ Theta][i][ tfinal], {i, 1, n}] /. sol11 [[1]];

92 l12 = Table [\[ Theta][i][ tfinal], {i, 1, n}] /. sol12 [[1]];

93

94 (* Centroids of phases *)

95 p0 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l0}];

96 p1 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l1}];

97 p2 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l2}];

98 p3 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l3}];

99 p4 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l4}];

100 p5 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l5}];

101 p6 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l6}];

102 p7 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l7}];

103 p8 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l8}];

104 p9 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l9}];

105 p10 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l10}];

106 p11 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l11}];
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107 p12 = Mean@Table [{Cos[phase], Sin[phase]}, {phase , l12}];

108

109 (* Plot phase transition *)

110 ListPlot [{{0, R0}, {0.1, R1}, {0.2, R2}, {0.3, R3}, {0.4, R4

}, {0.5,

111 R5}, {0.6, R6}, {0.7, R7}, {0.8, R8}, {0.9, R9}, {1, R10},

{1.1,

112 R11}, {1.2, R12}}, AxesLabel -> {"K", "R"},

113 PlotRange -> {{0, 1.3}, {0, 1}}, Joined -> True ,

114 PlotLabel -> "Phase transition of the Sakaguchi -Kuramoto

model"]

115

116 (*Plot unit circle *)

117 Graphics [{ Circle[], PointSize [0.03] ,

118 Point[Table [{Cos[phase], Sin[phase]}, {phase , l0}]],

119 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p0}]},

120 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

121 ImageSize -> Small , PlotLabel -> K == 0]

122 Graphics [{ Circle[], PointSize [0.03] ,

123 Point[Table [{Cos[phase], Sin[phase]}, {phase , l1}]],

124 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p1}]},

125 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

126 ImageSize -> Small , PlotLabel -> K == 0.1]

127 Graphics [{ Circle[], PointSize [0.03] ,

128 Point[Table [{Cos[phase], Sin[phase]}, {phase , l2}]],

129 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p2}]},

130 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

131 ImageSize -> Small , PlotLabel -> K == 0.2]

132 Graphics [{ Circle[], PointSize [0.03] ,

133 Point[Table [{Cos[phase], Sin[phase]}, {phase , l3}]],

134 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p3}]},

135 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

136 ImageSize -> Small , PlotLabel -> K == 0.3]

137 Graphics [{ Circle[], PointSize [0.03] ,

138 Point[Table [{Cos[phase], Sin[phase]}, {phase , l4}]],

139 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p4}]},

140 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

141 ImageSize -> Small , PlotLabel -> K == 0.4]

142 Graphics [{ Circle[], PointSize [0.03] ,

143 Point[Table [{Cos[phase], Sin[phase]}, {phase , l5}]],

144 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p5}]},

145 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

146 ImageSize -> Small , PlotLabel -> K == 0.5]
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147 Graphics [{ Circle[], PointSize [0.03] ,

148 Point[Table [{Cos[phase], Sin[phase]}, {phase , l6}]],

149 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p6}]},

150 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

151 ImageSize -> Small , PlotLabel -> K == 0.6]

152 Graphics [{ Circle[], PointSize [0.03] ,

153 Point[Table [{Cos[phase], Sin[phase]}, {phase , l7}]],

154 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p7}]},

155 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

156 ImageSize -> Small , PlotLabel -> K == 0.7]

157 Graphics [{ Circle[], PointSize [0.03] ,

158 Point[Table [{Cos[phase], Sin[phase]}, {phase , l8}]],

159 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p8}]},

160 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

161 ImageSize -> Small , PlotLabel -> K == 0.8]

162 Graphics [{ Circle[], PointSize [0.03] ,

163 Point[Table [{Cos[phase], Sin[phase]}, {phase , l9}]],

164 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p9}]},

165 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

166 ImageSize -> Small , PlotLabel -> K == 0.9]

167 Graphics [{ Circle[], PointSize [0.03] ,

168 Point[Table [{Cos[phase], Sin[phase]}, {phase , l10}]],

169 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p10}]},

170 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

171 ImageSize -> Small , PlotLabel -> K == 1]

172 Graphics [{ Circle[], PointSize [0.03] ,

173 Point[Table [{Cos[phase], Sin[phase]}, {phase , l11}]],

174 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p11}]},

175 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

176 ImageSize -> Small , PlotLabel -> K == 1.1]

177 Graphics [{ Circle[], PointSize [0.03] ,

178 Point[Table [{Cos[phase], Sin[phase]}, {phase , l12}]],

179 Thickness [0.01] , Orange , Arrowheads [0.07] , Arrow [{{0, 0},

p12}]},

180 AspectRatio -> 1, PlotRange -> {{-1.1, 1.1}, {-1.1, 1.1}},

181 ImageSize -> Small , PlotLabel -> K == 1.2]
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