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1
I N T R O D U C T I O N

Traditionally, statistical mechanics is the branch of physics that applies
probability theory to the study of the thermodynamic behavior of sys-
tems composed of a large number of particles. In particular, it relates
the microscopic properties of atoms and molecules to the macroscopic
properties of materials.

However, statistical physics has also proven to be a fruitful frame-
work to describe phenomena outside the realm of traditional physics.
In an analogue way to Particle physics, the interactions of individuals
as elementary units in social structures give rise to collective phenom-
ena that can be studied by statistics ([1], [2]). In fact, human societies
are characterized by a variety of global regularities [3].

In recent years, the idea of studying society within a framework
of statistical physics has transformed to a concrete research effort,
involving an increasing number of physicists. At the basis of this
change is the availability of large databases and the appearance of
new social phenomena that can be studied sistematically, because
they are mostly related to the Internet [1].

In this work, we benefit from the large availability of records of
terrorist attacks to introduce a systematic approach to the study of
terrorism. Our objective is to point out regular patterns observed in
insurgent activity. The dynamics of terrorist organizations is not ut-
terly unpredictable.

Despite the large number of variables in their complex ecology,
some basic mechanisms can be identified for the formation of insur-
gent aggregates [4], [5]. A model is proposed to relate to the macro-
scopical distribution of terrorist attacks.

Further investigation may eventually lead to a consistent theory
for the dynamics of terrorism and support advancement in counter-
terrorism strategies.
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2
T H E S I Z E O F WA R S

2.1 richardson’s statistics of deadly quarrels

The English physicist and mathematician Lewis Fry Richardson was
a pioneer in studying social phenomena - e.g. violent conflicts - with
the methodology and the systematicity typically used in natural sci-
ences. In one of his paper dated 1948 - Variation of the Frequency of
Fatal Quarrels With Magnitude [6] - he has showed that the size dis-
tribution of casualties in the wars recorded between 1816 and 1945

follows approximately a power-law distribution, with scaling expo-
nent α ≈ 1.50. In other words, there is no characteristic dimension for
the number of victims of a war.

Further investigation by the Swedish physicist and researcher in
International conflict, Lars-Erik Cederman, extended these findings
to more recent interstate wars (1820-1997), confirming [7] the power-
law distributions of war casualties, with scaling exponent α = 1.41.

We can replicate these results by analysing data from The Corre-
lates of War Project Database (see Sec. 2.6). Fig. 1 shows the distri-
bution of interstate war casualties recorded between 1820 and 2003,
including more recent Invasions of Iraq and Afghanistan. Instead of
relying on direct frequency counts, our calculations center on the cu-
mulative relative frequencies N(S > s) of war sizes: where S is the num-
ber of dead caused by a war (or war size, or severity of a war). This
is used to calculate the probability P(S > s) that a war has higher
severity than s. Consequently, whereas for small conflicts the likeli-
hood of more severe conflicts occurring is close to one, this probabil-
ity approaches zero for very large events - because larger conflicts are
unlikely to happen.

In formal terms, it can be argued that the cumulative probability
scales as a power law:

P(S > s) = Cs−α+1 (1)

where C and α are positive numbers.
Our fit of empirical data from wars between 1820 and 2003 (see Sec.

2.6) returns the value α = 1.41 for the scaling exponent, which is in
good agreement with the results from literature ([6], [7]).

2.2 analysis of data

For a comprehensive description of how the power law model has
been fit to data, see Appendix A. Data analysis is performed by

3



4 the size of wars

Figure 1: Cumulative frequency distribution of the severity of Interstate
wars between 1820 and 2003. The scaling parameter of the power
law model is α = 1.41.

means of Excel, R and C++ programming languages. In particular, the
fit of power law is performed using poweRlaw library for R, which
uses a maximum likelihood estimate for the scaling parameter and
a Kolmogorov-Smirnov statistics algorithm for the p-value (see Ap-
pendix A for more information). In the text, graphs of the Cumula-
tive Frequency Distribution (CDF) are represented: so that the scaling
parameter α is not the actual value of the slope - this being α− 1.

p-values and other parameters of the power-law fit model are re-
ported in tables or throughout the text.

2.3 global terrorism : towards a new type of conflict

The concepts and empirical data introduced so far pose two impor-
tant questions: the statistics of conflicts makes some regularities man-
ifest, which are similar in some aspects to those scientists use to study
in other natural or human phenomena as diverse as earthquakes, bi-
ological extinctions, epidemics, fires, traffic jams, city growth, market
and business performances, and, indeed wars [8]. On the other hand
it is possible, and indeed necessary, to come up with a model which
explains the underlying mechanism generating those regularities.

In this paragraph we introduce and analyze empirical data concern-
ing terrorist events recorded from early Eighties to present. We want
to show that the number of casualties follows a power-law distribu-
tion also in this case. Furthermore, the abundance of detailed data
about thousands of individual events from tens of countries all over
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the world - with diverse social and economic background - let us
observe a good variety of interesting patterns.

We are use to believe that 9/11 facts have fundamentally changed
the nature of warfare. However, the discussion about the emergence
of a new type of war had interested academics even before. Analystis
such as Mary Kaldor, Thomas Hammes and William S. Lind were
among the first to discern new wars emerging. They contributed to
create the concept of fourth-generation warfare for the purpose of an
argument for the changing of the face of war. A framework was cre-
ated for understanding modern warfare, in which four generations
are accounted for [9].

Whereas first-generation warfare was fought with mass manpower,
the invention of machine guns changed the way of conducing battles.
Still, the second-generation warfare is inspired to a culture of order,
where plans and orders are carefully executed. World War II intro-
duces an element of stealth and surprise to bypass enemy’s defence:
it is third-generation warfare and it is commonly known as blitzkrieg.

Fourth-generation warefare marks the end of the monopoly of the
state on war. It is the case of insurgency, involving politics, combat-
ants and civilians. This definition covers numerous well-known cases
including conflicts in Iraq, Afghanistan, Israel-Palestine, terrorist or-
ganizations such as Al-Qaeda, the civil war in Syria or the Egyptian
crisis. It includes elements of terrorism, insurgency or guerrilla tac-
tics, decentralization, trans-national perspective, psychological influ-
ence and propaganda, especially through media manipulation and
a spread out network of communication. These elements are impor-
tant when it comes to recognize the patterns in empirical data and to
formulate a theoretical model that explains them.

Fig. 2 shows our empirical findings for event sizes. In particular,
we have collected terrorist attacks in the period from 1968 to 2009

(RDWTI RAND Database, see Sec. 2.6) and show their cumulative
distribution function with respect to their severity (the number of
casualties, which - in this case - is the sum of deaths and injuries).

The regular scaling in the upper tail of the distribution demon-
strates the existence of a global pattern in the frequency statistics
which involves events orders of magnitudes larger than average at-
tacks: thus, very severe events must not be thought as anomalies pro-
duced by accidental circumstances. Furthermore, it has to be noticed
that the scaling behavior exists, although significant changes have oc-
curred in politics, geography and technology during recent decades.
We can make a point that scaling behavior is a universal property of
terrorism.

Nonetheless, scaling properties (i.e. the scaling parameter) may still
be affected by environmental features. Specifically, we will examine
how geographical distribution, industrial development and access to
different weapons, produce variations in these properties.
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(a) Casualties for global terrorism (b) Casualties for terrorism in G7 and
non-G7 countries

Figure 2: Cumulative frequency distribution of the severity of terrorist
attacks occurring globally, and then separating G7-countries
(Canada, France, Germany, Italy, Japan, Uk, Usa) and non-G7 coun-
tries. Scaling exponents for differently industrialized countries: all
countries (2.49), G7 countries (1.70), non-G7 countries (2.55)

In the first place, we use the method of maximum likelihood (see
Appendix for more detailed discussion on the methodology) to esti-
mate the scaling parameter α of the power-law model from data. We
obtain α = 2.49 which is in good agreement with values published by
Clauset et al. [5].

We decompose this distribution, by separating events occurring in
the G7 countries (Canada, France, Germany, Italy, Japan, Uk, Usa)
from the rest of the world (non-G7 countries). See Fig. 2-b. Scaling
parameters are αG7 = 1.70 and αrest = 2.55 respectively.

Figure 3: Scaling parameters for several countries. Two clusters emerge cor-
responding to values for G7 (α = 1.70) and non-G7 (α = 2.55)
countries.
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Research by Clauset, Young and Gleditsch reaches a similar re-
sult [5]. They consider the 30 nations belonging to the Organization
for Economic Co-operation and Development (OECD). According to
their study, 11% of the considered events took place in OECD coun-
tries. The remaining 89% occured throughout the rest of the world.
However, the events inside OECD are mostly distributed in eight
countries: Turkey, France, Spain, Germany, Usa, Greece, Italy and
Uk (all of them are G7 countries with the exception of Turkey and
Greece). Furthermore, 89.2% of the most severe events took place in
these eight nations. In other words, terrorist attacks are slightly less
likely to occurr in OECD area, but they tend to be more severe then
in non-industrialized countries. Industrialization seems to have an
impact on the frequency distribution of the events. But availability
of certain technology itself, i.e. access to a certain kind of weapons,
does not explain it all. Other political or social factors may be at the
basis of the mechanisms producing different scaling parameters for
different contexts.

Figure 4: Cumulative frequency distribution of the severity of terrorist at-
tacks in Iraq. Scaling parameter of the power-law model α = 2.23

Johnson proposes that power-law scaling is not only a universal fea-
ture of global terrorism: the same behavior appears when considering
conflicts in single nations [10]. We partition data by the geographical
location and estimate the scaling parameter for each nation consid-
ered (see Fig. 3). Although the scaling parameters may vary from one
country to the other, due to the peculiarities of the individual con-
flict that we have introduced before, we can distinguish two clusters
around α = 1.7 and α = 2.5, which are the values for G7 countries
terrorism and for non-G7 countries terrorism.

Fig. 4 shows the distribution of fatalities in terrorist attacks carried
out in Iraq. The power-law model that fit data scales with parame-
ter α = 2.23. The same statistics continue to hold when considering
restricted geographical areas of Iraq, suggesting that the severity of
attacks carried out by a single terrorist group may also be distributed
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(a) Attacks in Mosul area (b) Attacks in Karbala area

(c) Attacks in Balad area (d) Attacks in Fallujah area

Figure 5: Cumulative frequency distribution of the severity of terrorist at-
tacks in some areas of Iraq (period 2003-2004). Attacks carried out
locally - likely by a single terrorist group - follow approximately
the same statistics of global terrorism.

as a power law. Fig. 5 shows the distributions for particular areas of
Iraq: Mosul, Karbala, Balad, Fallujah.

2.4 power-law model fit

In the following table a list of the parameters of the power-law model
fit for various data sets. Ntail is the number of events in the tail of the
power law distribution; α is the scaling parameter; xmin is the lower
bound of the distribution; p-value is calculated with KS statistics (see
Appendix A).



2.5 online ecology of insurgent aggregates 9

Figure Data set Ntail α xmin p-value

Fig. 1 Interstate wars 95 1.41 1000 0.73

Fig. 2-a Global terrorism 743 2.49 48 0.89

Fig. 2-b G7 countries terrorism 605 1.70 1 0.13

Fig. 2-b non-G7 countries terrorism 682 2.55 50 0.42

Fig. 4 Iraq terrorism 20020 2.23 2 0.11

Fig. 5-a Mosul area terrorism 135 2.07 1 0.13

Fig. 5-b Karbala area terrorism 25 1.85 7 0.12

Fig. 5-c Balad area terrorism 48 2.06 1 0.43

Fig. 5-d Fallujah area terrorism 40 2.57 5 0.83

2.5 online ecology of insurgent aggregates

Studying the internal dynamics of terrorist organizations is crucial to
build up a model which can explain not only the universal pattern,
but that also allows to understand the peculiarities of the conflicts.
However, this cannot be done with real-world terrorist organizations
operating on the field, due to a lack of empirical data. One particular
case that can certainly be studied and analyzed in detail is that of
online aggregates. Increased connectivity provided by the Internet
facilitates the formation of real-world groups and the spread of pieces
of propaganda that may inspire radicalized individuals to carry out
violent attacks. This is the case of recent events in Europe directed
by ISIS, but is also the case of less violent insurgent activities such as
mass protests.

Johnson et al. have identified online aggregates supporting ISIS-related
activity and, for comparison, online civil protestors across multiple
countries (in particular Brazil) [4]. They have collected data to create a
picture of how these aggregates develop online. In particular, pro-ISIS
propaganda develop through self-organized online aggregates, which
consist of groups of followers in online communities (e.g. on Face-
book, Twitter, VKontakte or similar social networks). These groups
are characterized by a strong social heterogeneity and no hierarchical
structure. The lack of group leaders suggests that aggregation dynam-
ics may be driven by self-organization. Online environment is also
populated by predatory entities (i.e. police, hackers, social network
moderators) seeking to shut down such aggregates activity. Hence,
once the group is identified (this is usually done by manually analiz-
ing the content related to terrorist propaganda), one can analyze how
the number of followers varies throughout its lifecycle.

According to Johnson et al. research, the distribution of pro-ISIS
aggregates of size s follows a power law s−α with exponent α = 2.33.
Moreover, the frequency of severe attacks perpetrated by ISIS also
follows the characteristic power law distribution with α = 2.44.
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Online support is likely a condition for real-world action, and in-
deed proliferation of supporting aggregates can be an indicator of
the conditions becoming favorable for an attack or a protest to take
place. It has been observed that periods of relatively slow change,
during which aggregates appear and disapper sporadically, are inter-
rupted by an abrupt divergence in the rate at which new aggregates
are formed. Such peak coincides with unexpected onset of real-world
events (see for example Kobane, September 18, 2014 and Brazil mass
protests June 11, 2013). This suggests that automated control of online
activity of such aggregates can warn about the oncoming escalation
and draw attention to the suspect activity.

Whereas an algorithm able to predict and thwart the outburst of
terrorist attacks supported by online activity may not be here yet,
one can benefit from the study of online aggregates dynamics.

2.6 data sources for war and terrorism events

In section 2.1, data from The Correlates Of War Project were used,
restricting to interstate wars. In section 2.3, data from RDWTI RAND
Database of Worldwide Terrorism Incidents have been used. In par-
ticular, data about terrorism in Iraq have been drawn from the Iraq
Body Count Project.

Further information about databases can be found on the respective
web pages:

http://www.correlatesofwar.org

http://www.rand.org/nsrd/projects/terrorism-incidents.html

https://www.iraqbodycount.org

http://www.correlatesofwar.org
http://www.rand.org/nsrd/projects/terrorism-incidents.html
https://www.iraqbodycount.org
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A T H E O R E T I C A L M O D E L

As discussed in Chapter 2 the analysis of empirical data suggests that
- also for terrorist attacks - the distribution of the number of deaths or
casualties follows a power law. Further investigation shows that the
frequency and severity of events within individual conflicts exhibits
the same power law statistics - although these vary depending on
the characteristics of the specific conflict, indicating similarities in the
underlying dynamic of the conflicts.

However, the question about which mechanism generates these be-
haviour still lacks a well-supported explanation. An accurate answer
to this question - supported by a scientific and systematic approach to
the subject, and in coordination with traditional studies - may shed
a light on the internal dynamics of terrorist organizations and con-
tribute to the development of novel policies and strategies for counter-
terrorism.

Two explanations have been proposed for the origin of the observed
pattern in the frequency of severe terrorist events: particularly, a com-
petitive model by Clauset, Young and Gleditsch [5], and an adversar-
ial aggregates model by Johnson et al. [4].

3.1 a competitive model

The model proposed by Clauset, Young and Gleditsch as an explana-
tion to the origin of the scale invariance for terrorism, is based on a
stochastic competitive process between state and non-state actors [5].
It is a variation of the model described by Reed and Hughes [11] and
applied to a wide rage of phenomena from biology to economics to
internet ecology: the basic idea is that if a process that grows expo-
nentially is killed randomly, the distribution of the killed state follows
a power law (in one or both tails).

For the purpose of our discussion, consider a terrorist who is plan-
ning an attack. The severity of an attack is given by two main contri-
butions: 1) We make the idealization that the potential severity of an
attack grows exponentially with time: in other words, attacks which
require more amount of planning can potentially produce more casu-
alties. The potential severity of an event is thus expressed as p(t) ∝ ekt,
with k > 0.

2) On the other hand, the severity of a real event decades expo-
nentially with time. Indeed, as time passes, there is less chance that
the planning process succeedes, as the actors may be incarcerated or

11



12 a theoretical model

killed by police or spontaneously abandon their plan. Thus, severity
can also be expressed as x ∝ e−λt, with λ > 0.

One can easily derive the distribution of the real event severities
p(x):

p(x) = p(t)
dt
dx

∝ x−α, where α = (1 + k/λ). (2)

The two exponents of this model, k and λ, can be adjusted as param-
eters depending on the nature of the competitive process: e.g. they
can be interpreted as the capabilities of state actors (i.e. police) and
non-state actors (i.e. terrorist) of succeeding in their own tasks, respec-
tively. In the likely hypotesis that both actors develop roughly equal
capabilities (with state having maybe a slight advantage), the ratio
k/λ ≥ 1, giving the exponent α ≥ 2, in agreement with empirical
data.

Irrespective of the actual value of the resulting exponent - which
primarily depends on the features of the individual conflict that can-
not be included explicitely in the equations, this model makes at least
two good points: a simple and stochastic competitive process can ex-
plain the power law behaviour based on a few assumption which,
despite the idealization, fit welll with the current understanding of
terrorism; on the other hand, it produces a scaling exponent which
varies depending on the model parameters: this may be necessary to
explain the different scaling behaviours in empirical data for different
industrialization level of the country or different use of weapon.

Still, further investigation about internal dynamics of the terror-
ist organization and about they ways of interaction with other state
actors is needed in order to understand the nature of the model ad-
justable parameters.

3.2 the assumptions of johnson’s model

The mechanism proposed by Johnson et al. is a self-organized crit-
ical model of the internal dynamics of a terrorist organization [4].
It adapts particularly well to the dynamics of the online aggregates
we have introduced in section 2.5. A process of aggregation and dis-
integration of terrorist cells produces a dynamic equilibrium that is
characterized by a power-law distribution in the sizes of cells (and,
by assumption of the severity of their attacks). The scaling exponent
can be calculated exactly and is found to be α = 5/2.

The model is based on four assumptions about the interaction be-
tween terrorist cells that compose a modern terrorist organization. It
makes no other assumption about the relationship with other cells or
antagonists, or with respect to the specific features of the conflict, or
the type (strategy and weapons used) and the site of the attack.

Despite the simplicity and generalization of the assumptions - which
consequently poses limits to a detailed analysis of the internal dy-
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namics of the organization (that lack, however, a systematic study of
empirical data), they permit us to solve the model mathematically.

In addition to explain the value of the scaling exponent, the model
let us make qualitative considerations about the phenomenology of
the conflict, and the basic underlying mechanism.

The assumptions of the model are:

• The total number N of radicalized individuals is N >> 1 and
constant in time. These individuals can form cells of size k =

1, 2, 3, 4... Let nk denote the number of cells of size k.

• Terrorist cells undergo a process of aggregation (or coalescence),
in which two cells merge to form a larger cell: the probability
for unit of time that two cells of sizes i and j merge to form a
cell of size i + j is proportional to their sizes: vcoal(ij)

• Terrorist cells fall apart due to a process of disintegration (or
fragmentation), in which a cell splits into single individuals: the
probability of this occurring is proportional to its size: v f ragk
(This dependence can be generalized with no consequences on
the result).

• Cells can produce an attack with probability independent of
their dimension or their age or the number of attacks already
launched; however, if the attack is produced, its severity v(k) is
directly proportional to the cell’s size: v(k) ∝ k.

This mechanism can be summed up by the equation:

∂nk(t)
∂t

=
1
2

vcoal

N2

∞

∑
i,j=1

ijninj−
vcoalknk(t)

N2

∞

∑
j=1

knj(t)−
v f ragknk(t)

N
(3)

where i + j = k.
The first term represents an increase in the number nk as a result

of the merging of two aggregates of sizes i and j into a single cell
of size k = i + j. The second term describes the decrease in nk due
to the merging of a cell of size k with another aggregate. Finally, the
last term represents a decrease in nk due to the fragmentation of an
aggregate of size k.

3.3 a generalization of the model

We can operate a slight generalization of this model, as indicated by
Clauset and Wiegel [12], to make the assumptions less strict and to
extend the specific model to a family of such models. In particular,
we let the probability of two cells merging depend on their sizes, i
and j, in the form C0(ij)a - where the parameters are C > 0 and a ≥ 0.
Furthermore we loosen the restrictions on the explicit form of the



14 a theoretical model

probability for a cell to be shut down, which is now just b(k) instead
of the direct proportionality.

The equation of the generalized model is:

∂nk(t)
∂t

=
1
2

C0

∞

∑
i,j=1

ia janinj − C0kank

∞

∑
j=1

janj − b(k)nk (4)

where i + j = k.
Notice that the second summation in the right hand includes the

term with j = k. To be precise, the number of combinations between
some cell of size k and some of size j is nknl for k 6= l and 1

2 nk(nk − 1)
for k = l. However, in the limit that N � 1, we shall find that also
nk � 1. In this case we can make the approximation 1

2 nk(nk − 1) ∼=
1
2 n2

k . Moreover, each combination of two cells of the same size k leads
to the decrease of nk by two: the loss term is then proportional to n2

k .

3.4 analytical solution of the model

We analyse the model in the steady-state behavior. That is, we operate
the limit limt→∞ nk(t) and denote as n∗k the new variable in the steady-
state limit. Eq. 4 simplifies to:

1
2

C0 ∑
i,j

ia jan∗i n∗j δi+j,k = C0kan∗k ∑
j

jan∗j + b(k)nk. (5)

for k = 2, 3, 4...
Notice that we don’t consider the equation for ∂n1/∂t.

A way to solve Eq. 5 is by using the generating functions:

f (z) =
∞

∑
k=1

kan∗k zk; g(z) =
∞

∑
k=2

b(k)n∗k zk, (b(1) = 0). (6)

We multiply both sides of Eq. 5 by zk and sum over k from 2 to ∞
and obtain:

1
2

C0 f (z) f (z) = C0 f (1)[ f (z)− n∗1z] + g(z) (7)

Eq. 7 can be solved easily for fixed z andN → ∞. Assuming that
the frequencies n∗k are proportional to N, we just need to determine
the leading orders of the various terms. Hence, eq. 7 can be replaced
by the new equation:

1
2

f 2(z)− f (1) f (z) + f (1)n∗1z = 0 (8)

which has the solution

f (z) = f (1)−
√

f 2(1)− 2 f (1)n∗1z. (9)
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We calculate f (1) for z = 1: f (1) = 2n∗1 . Thus:

f (z) = 2n∗1 [1−
√

1− z]. (10)

Based on the definition of f (z) given in Eq. 6, the term kan∗k can be
found as the coefficient of zk in the power series expansion of Eq. 10:

f (z) = 2n∗1

(
1
2

z +
1
8

z2 +
3
48

z3 + ...
)

(11)

For generic k, we use Cauchy’s theorem, which gives the contour
integral:

kan∗k = i
n∗1
π

∮
C

z−k−1
√

1− zdz (12)

where the contour C encircles the complex z-plane for 1 ≤ z < ∞.
If we choose z to be approximately 1, we can make the following
substitution:

z = 1 + χ, z−k−1 ∼= e−(k+1)χ. (13)

It yelds:

kan∗k ∼=
2
π

n∗1
∫ ∞

0

√
χe−(k+1)dχ =

1√
π

n∗1(k + 1)−3/2 (14)

Hence, the number n∗k of cells consisting of k � 1 individuals, in
the steady-state, is given by the power law:

n∗k ∼=
1√
π

n∗1k−a−3/2 (15)

Because of the assumption that the severity of a terrorist attack is
proportional to the size of the attacking cell, the probability pk that
an attack will produce k casualties is:

pk ∝ k−α (16)

for k� 1, where the scaling exponent α is:

α = a + 3/2. (17)

In order to recover the results of Johnson’s model, we set the pa-
rameter a = 1 as in the assumptions. It yelds the prediction α = 5/2,
in agreement with predictions from empirical data.

3.5 on the size of the largest cell

In addition to the prediction of the scaling parameter α = 5/2, this
model makes another important prediction: the form of the function
describing the fragmentation probability b(k) determines how cells
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grow: in particular, it determines the largest possible size k0 for a cell
and whether it is possible that all terrorists merge in a single group
of size N or not.

To show this relationship between b(k) and k0, let us consider the
steady-equation for n∗1 that we haven’t taken into account yet.

From previous assumptions:

k0

∑
k=2

kb(k)n∗k = C0n∗1
∞

∑
l=1

lan∗l . (18)

With the same formalism used before, one finds that right side
equals C0n∗1 f (1) and that f (1) = 2n∗1 . Thus:

k0

∑
k=2

kb(k)n∗k = 2C0(n∗1)
2. (19)

For the case a = 1, we can write:

N =
∞

∑
k=1

kn∗k = f (1). (20)

Hence N = f (1) = 2n∗1 . One finds that

n∗1 =
1
2

N. (21)

Eq. 19 can be rewritten in the form

k0

∑
k=2

kb(k)n∗k =
1
2

C0N2. (22)

For explicit calculations, let b(k) have the rather general form

b(k) = B0kb (23)

where b is some number near the unity, 1/2 < b < 3/2.
Using the result of Eq. 15 we obtain (in the asymptotic limit when

k� 1):

k0

∑
k=2

kb(k)n∗k ∼=
B0N
2
√

π

k0

∑
k=2

kb−3/2. (24)

The series on the right-hand can be approximated by an integral:

k0

∑
k=2

kb−3/2 ∼=
∫ k0

2
kb−3/2dk ∼=

(
1

b− 1/2

)
kb−1/2

0 . (25)

With these results, Eq. 22 can now be written as:

B0N
2
√

π

(
1

b− 1/2

)
kb−1/2

0 =
1
2

C0N, (26)
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which gives us an expression for the largest size possible, k0:

k0 =

[
C0

B0

(
b− 1

2

)√
πN

]1/(b−1/2)

. (27)

In our case, we made the assumption that the probability of frag-
mentation is directly proportional to the size of the cell, hence b = 1
and b(k) = B0k. Then:

k0 =

[
C0

B0

√
π

2
N
]2

. (28)

3.6 numerical simulation

Figure 6:
Output of the numerical simulation: the number of cells of size k

scales as a power law with scaling exponent α ∼ 2.5. The black line,
with slope α = 2.5 is a guide for the eye, not a fit.

We shall now run a numerical simulation which reproduces the
mechanism described in Johnson’s model (section 3.2). The simula-
tion is coded in C++ and is based on the Johnson’s et al. reference.

Let us have a pool of N aggregates, each denoted by a label i, j, k, ...,
and let their size be denoted by si, sj, sk, .... Initially, each aggregate is
composed by just one individual such that the sum of their sizes
equals N. This is the number of terrorists which will be dynami-
cally distributed among aggregates as a result of the coalescence-
fragmentation process. At each istant in time, a particular aggregate is
selected randomly from the pool, but with a probability proportional
to its size, and it is decided whether it will undergo coalescence or
fragmentation process.

In the case of coalescence, another aggregate is picked randomly
but witch chance to be selected proportional to its size. This is pos-
sible, due to the fact that in the array of a constant number N of
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elements, an aggregate with size si occurs si times, so that it has pro-
portionally more chance to be picked. In fact, coalescence process
consists in updating the sizes of the both merged aggregates to the
total size of the two, and assigning them the same label, so that the
same aggregate appears more times in the array. On the other hand,
when the selected aggregate of size si is decided to undergo frag-
mentation, it is broken up into si aggregates of size equal to 1. The
program update the size of the si identic elements in the array to 1

and give them different labels to indicate that know terrorist belongs
to different cells (lone terrorists indeed).

This process is repeated for a number tmax of times. After the initial
2000 cycles, which account for the transient period before the system
enters the steady-state behavior, a counter annotates the number ns

of aggregates of size s = 1, 2, ..., N that have appeared at each step.
Fig. 6 shows the output of the simulation.

3.7 on the validity of the assumptions

Whether this model will prove useful or not in the long-term, it de-
pends on how accurate it is in internal dynamics of modern terrorist
organizations. There is a question about how strong is the depen-
dence of the prediction - the power-law distribution - on the partic-
ular assumptions of the model. Further research would show how
those assumptions can be relaxed or even eliminated while still pro-
ducing the scaling behavior. Efforts can be done toward describing a
more generalized and realistic mechanism.

First, we should ask how likely is that the probability of merging
two cells is proportional to the product of their size. We may argue
that a new individual can spontaneously decide to adhere to a group,
e.g. based on similarity of interests or political ideology. Indeed, the
model can be generalized by attaching to each group or individual
a vector defining their peculiar character. Coalescence-fragmentation
may then be depending on similarity of characters. At this time, how-
ever, we can simplify this mechanism by assuming that cells merge
in order to increase their power, primarily. Thus, increasing size.

In fact, the geography of terrorist organizations in our model may
be more variegated, if we allow interactions between cells and strate-
gies to survive the shut down to be more complex (as happens indeed
in online aggregates, ref. ).

The assumption that the severity of attacks is directly proportional
to the cell’s size is more difficult to validate experimentally. One may
think, in first approximation, that the capacity of launching a very
severe attack is roughly proportional to the quantity of resources that
the terrorist group disposes and to the capacity of coordinating the
planning and the logistics - which are likely proportional to the size
of the group itself.
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Otherwise, one may show that a similar law-like pattern in empir-
ical data holds when considering attacks carried by a single terrorist
organization. In other words, the frequency of attacks with size s per-
petrated by a specific group may scale as a power law with a roughly
similar scaling parameter. The product of the two power laws with
same exponents will yeld a power law pattern with same exponent
as predicted by the model. Emphasis would shift to the dynamics of
the attacked launched by a single group: Clauset’s toy model could
be helpful in this case.





4
C O N C L U S I O N S

Chapter 2 of this work showcases a series of regular patterns found in
empirical data for conflicts. Following the path traced by Richardson,
we use adequate statistical methods to find that the frequency dis-
tribution of fatal terrorist attacks scales as a power law, with scaling
parameter α = 2.49. Events of high severity, are not anomalies; they
are rather produced by the same mechanism behind small but fre-
quent attacks. Hence, large events occur with a probability orders of
magnitude higher than we would expect from a normal distribution.
Scaling behavior is not only a universal characteristic of global ter-
rorism. We have separated events per geographical location. National
conflicts show the same power law distribution. Different conflicts
exhibit different scaling parameters, but two clusters emerge corre-
sponding to terrorism in industrialized countries (i.e. G7 countries,
having α = 1.70) and in non-industrialized countries (i.e. non-G7

countries, having α = 2.55). This scaling parameter can be thought
as a "measure" of the type of conflict, thus reflecting the characteristics
of the underlying mechanism. Guerrilla conflicts have higher param-
eter, while more traditional warefare tends to have lower parameter.

The scaling behavior depends on the internal dynamics of the ter-
rorist organizations. Whereas it is generally difficult to model inter-
nal terrorist groups activity, due to lack of information and empirical
data, one case that can be studied in detail is the online ecology of in-
surgent aggregates. These are groups of radicalized individuals partic-
ipating in online communities supporting terrorist propaganda and
playing a role in real-world activities. Research conducted by Johnson
et al. on online pro-Isis aggregates shows that the number of aggre-
gates of size s scales as a power law s−α with α = 2.33.

Chapter 3 introduces a model of the internal dynamics for terror-
ist organizations, which particularly fits the dynamics of online ag-
gregates. It is based on a process of coalescence and fragmentation,
where radicalized individuals or groups merge to create larger aggre-
gates and are randomly shut down proportionally to their size. Solv-
ing the master equation for this mechanism in the steady state yelds
a power law distribution in the number of cells with size s. Based
on the assumptions of Johnson’s model, the scaling parameter of this
distribution is 5/2, in agreement with experimental data.

Ultimately, we have depicted a framework in which terrorism may
be studied sistematically and predictions about the dynamics of in-
surgent organizations can be done based on empirical data. It also
poses the basis for a more consistent modelization of terrorism.
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A
F I T T I N G P O W E R L AW T O E M P I R I C A L D ATA

Here we shortly describe the method, proposed by Clauset et al. [8],
that we use to validate the power law distribution of empirical data
and to estimate the scaling exponent and other parameters.

A first simplistic approach to determine whether a set of recorded
data follows a power law distribution would be to construct a his-
togram representing the frequency of the measured quantity x, and
plot it on doubly logarithmic axes. Doing so, one obtains a distribu-
tion that approximately follows a straight line, whose absolute slope
gives the value of the scaling parameter α. Indeed:

ln p(x) = α ln x + const. (29)

Slope is typically estimated by performing least-squares linear re-
gression on the modified data. Unfortunately, this method introduces
systematic errors. The extimation of the scaling parameter is not trusty
and we are not guaranteed that data really follow a power law.

A generally accurate method for estimating the parameters of a
power law distribution follows. Furthermore, a way of testing the
power-law hypotesis is discussed.

a.1 extimating the scaling parameter

Let x represent the quantity we are interested in. A power-law distri-
bution is represented by the probability density p(x) such that:

p(x)dx = Pr(x ≤ X < x + dx) = Cx−αdx (30)

where X is the observed value (in a continuous distribution) and C
a normalization constant. As the equation 30 diverges as x → 0 there
must be some lower-bound xmin to the power-law behaviour.

Provided that α > 1, the normalization condition yelds:

p(x) =
α− 1
xmin

(
x

xmin

)−α

. (31)

The value of α for the power-law model that best fits our data max-
imizes the likelihood probability function:

p(x|α) =
n

∏
i=1

α− 1
xmin

(
xi

xmin

)−α

(32)

or its logarithm L:

L = ln p(x|α) = ln
n

∏
i=1

α− 1
xmin

(
xi

xmin

)−α

. (33)
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where xi, with i = 1, 2, 3..., n, are the observed values of x such
that xi ≥ xmin. Setting ∂L/∂α = 0 and solving for α we obtain the
maximum likelihood estimate (MLE) for the scaling parameter:

α = 1 + n
[ n

∑
i=1

ln
xi

xmin

]−1

. (34)

a.2 estimating xmin

In order to extimate the value of the scaling parameter α, one should
determine the lower bound xmin of the distribution. Athough this
can be done by visually analyzing the points of the database, a more
objective approach is desirable.

The method that we introduce here - but that is not the only - is
based on the idea that the chosen xmin makes the measured data and
the best-fit power law model as similar as possible above xmin. The
Kolmogorov-Smirnov statistics, or KS statistics, is used to quantify
the distance between two probability distributions:

D = max
x≥xmin

|S(x) − P(x) | . (35)

Here S(x) is the cumulative distribution function of the data with
x ≥ xmin, and P(x) is the CDF of the power-law model that best fits
data for x ≥ xmin. Hence, the best estimate of xmin minimizes the
distance D.

a.3 testing the power-law hypotesis

The methods for estimating the scaling parameter and the lower bound
does not determine whether the power law is actually a good model
for empirical data. Indeed, regardless of the true distribution from
which data are drawn, one can always fit a power law.

An approach to the question is to perform a goodness-of-fit test, re-
turning a p-value that quantifies how plausible is the hypotesis of
a power-law model. The basic idea is to use Kolmogorov-Smirnov
statistics to compute either the distance of the distribution of empiri-
cal data from the hypothesized model, and the distance of synthetic
data sets drawn from the same model. The p-value is defined to be the
fraction of synthetic data sets whose distance from the hypothesized
model is larger than the distance of empirical data.

If p is close to 1, then the difference between empirical data and the
model can be attributed to statistical fluctuations; otherwise, if p is
small, the model is not a good fit to the data. Clauset et al. quantify
a treshold for p to rule out the power-law hypothesis: if p ≤ 0.1 the
model agrees poorly with data and the hypothesis can be rejected.
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