

Abstract
This thesis presents a new integer linear programming (ILP) model for the air traffic flow
management (ATFM) problem. The model objective is to minimize the cost of flight delays.
This issue is of primary concern in the air traffic system. The introduction provides some
insight on ATFM. The problem is then addressed through a combination of flow management
actions, including ground-holding, airborne-holding and distribution by levels of air traffic.
Exploiting the fact that actual airspace sectors observed capacities are often higher than the
nominal capacities, two types of flights separation constraints are proposed in order to increase
the use of airspace without compromising safety requirements. Furthermore, in order to avoid
complex trajectories, an additional class of constraints is discussed. Two classes of valid
inequalities are also presented with the purpose of strengthening the underlying relaxation.
The thesis subsequently reports computational experiments on small instances. The model
with separation constraints is then compared to the model where no separation constraints
are imposed and nominal capacities restriction are maintained. These comparisons show that
the model can improve the solution for small instances. Improvements are correlated to low
nominal capacities and high maximum flight level variation. Finally, implementation details
are provided.

ii

The EUROCONTROL airspace management planning chart [22]

iii

iv

Contents

Abstract . i
List of acronyms . ix

1 Introduction 1
1.1 Motivations . 1
1.2 Content and contributions . 4

2 The ATFM problem 7
2.1 The ATFM . 7
2.2 The problem . 8

3 Framework and main tools 13
3.1 Integer linear programming . 14

3.1.1 The Cutting Planes Method 18
3.1.2 The Branch & Bound Method 20
3.1.3 The Branch & Cut Method 22

3.2 Software framework and tools . 23
3.2.1 LP software development . 23
3.2.2 IBM ILOG CPLEX Optimization Studio 26
3.2.3 Python . 26

4 State of the art 29
4.1 Relevant ILP models for ATFM . 30

v

4.2 The Bertsimas & Stock Patterson 1998 model 32

5 A model for ATFM with separation constraints 37
5.1 Key ideas . 37
5.2 An insight into the ATFM problem 40

5.2.1 Sectors . 40
5.2.2 Capacity . 41
5.2.3 Flight levels . 41
5.2.4 Separation . 42
5.2.5 Time . 42
5.2.6 Delay . 43

5.3 Problem data . 45
5.4 Decision variables . 47
5.5 The model . 49
5.6 The objective function . 50
5.7 Model constraints . 51

5.7.1 Capacity constraints . 51
5.7.2 Relations among variables . 52
5.7.3 Space-time connectivity constraints 53
5.7.4 Separation constraints . 54
5.7.5 Variables shape and domains 60

5.8 Simple trajectories . 60
5.9 Two classes of valid inequalities . 62
5.10 Size of the formulation . 66

6 Model implementation 71
6.1 Data file format description . 72
6.2 Code description . 74

7 Computational results 77
7.1 Results on “super hexagon” instance 78

vi

7.2 Results on “euro” instance . 81
7.3 Results on “rectangle” instance . 84
7.4 Results on “donut” instance . 86
7.5 Discussion . 87

8 Conclusions 91

Appendix 95
data_super_hexagon_15_NO_SEP.txt . 95
ATFMP.py . 99

References 111

vii

data_super_hexagon_15_NO_SEP.txt
ATFMP.py

viii

List of acronyms

ANSP Air Navigation Service Providers

ATAG Air Transport Action Gruop

ATC Air Traffic Controllers

ATFCM Air Traffic Flow and Capacity Management

ATFM Air Traffic Flow Management

ATM Air Traffic Management

ATS Air Traffic Services

DDR Demand Data Repository

FIR Flight Information Region

IATA International Air Transport Association

ICAO International Civil Aviation Organization

ILP Integer Linear Programming

LP Linear Programming

MILP Mixed Integer Linear Programming

NMOC Network Manager Operations Center

SM Simplex Method

TBO Traffic Based Operations

ix

x

Chapter 1

Introduction

In this introductory chapter we expose the main motivations of our work, providing
the reader with some general background on the present state of the European air
traffic. Afterwards, a summary of the thesis content, highlighting major contribu-
tions, is given.

1.1 Motivations

At the present state, the European air transportation industry is without doubt one of
the biggest drivers of economic growth in Europe. It has been estimated that in 2014
the aviation sector has supported more than 6.9 million jobs, of which 2.5 directly
provided, and it has contributed to e531 billion in Gross Domestic Product across
the European Union (EU28) [3]. During 2017, more than 890 million passengers
travelled by air in Europe with an increase of 12% compared to 2008. In Italy, the
number of passengers in 2006 was less than 100 million and it raised in 2016 by more
than 40% [10]. On average, compared to 2016, the number of controlled flights in
the EUROCONTROL area in 2017 increased by 4.3%. In the same year, on June
30th the peak traffic load in the EUROCONTROL area reached the highest level of
traffic on record, as 35 251 flights were served. The peak day was 23.8% higher than
average [23]. Globally, as showed by Figure 1.1 and Figure 1.2, the number of

1

2 1 Introduction

flights operated every year as well as the annual passenger growth rate have been
dramatically increasing. Due to this constantly growing travel demand combined
with the economic globalization, up to a two-fold increase in air traffic is projected
within the next 20 years [21]. The continuous growth of the air transportation sector
places an ever greater strain on the European aviation system’s infrastructure. Up
to now, more than e5 billion of direct additional costs have been generated every
year by the inefficiencies of the European Air Traffic Management (ATM) system
[23]. These extra costs are due to various types of delays: en route delays, route
extensions, airports delays, arrivals holding and taxi-out. Furthermore, 8.1 million

Figure 1.1: number of flights performed by the global airline industry from 2004
to 2018 (in millions) [37]

1 Introduction 3

tonnes of additional CO2 emission are produced every year and passenger flight delays
are estimated to be more than 100 million hours annually (800 million passengers
have suffered from 10 minutes delays on average) [23]. Air traffic flow management
(ATFM) plays a central role in reducing these costs. The purpose of ATFM is to
prevent demand-capacity imbalances by adjusting the flows of aircraft on a domestic
or international basis while maximizing the ATM system efficiency. In the next
section we give some details on how ATFM is structured and we then define the air
traffic flow management problem.

Figure 1.2: annual growth in global air traffic passenger demand from 2005 to 2018
[36]

4 1 Introduction

1.2 Content and contributions
Chapter 1: Introduction In the introduction some general background on the
present state of the European air traffic is first provided in order to motivate the
present work. A summary of the thesis contents and contribution is also given.

Chapter 2: The ATFM problem After the exposition of how air traffic manage-
ment network operations are normally conducted, the Air Traffic Flow Management
(ATFM) problem is presented within the Air Traffic Management (ATM) scope.

Chapter 3: Framework and main tools In this chapter the reader is first
provided with basic historical and theoretical notions on the linear programming
(LP) theory. Thereafter, an insight on the LP software development is given, along
with a concise description of the main computational tools used in this work.

Chapter 4: State of the art The development of integer linear programming
(ILP) models addressing the ATFM problem is presented. Some arguments on ILP
models suitability for the ATFM problem are made. A chronological list of the most
relevant ILP models in the Operations Research literature for ATFM is finally given.

Chapter 5: A model for ATFM with separation constraints In this core
chapter the object of the thesis is presented: a ILP 0 ´ 1 model for the air traffic
flow management problem with separation constraints. These constraints constitute
the main contribution of the dissertation. First, the key ideas of the dissertation are
illustrated. Next, a more detailed insight into the ATFM problem is provided. The
model is then described in detail. An additional class of constraints is discussed as
well as two classes of valid inequalities. These latter are original results too.

1 Introduction 5

Chapter 6: Model implementation In order to use and test the model a novel
program was implemented. In this chapter, details on the implementation of this
program are given. The data file form used is described as well as the structure of
the program implemented.

Chapter 7: Computational results Some results obtained applying the model
on small instances are reported. Comparisons are made with the primitive original
model and a preliminary discussion is conducted.

Chapter 8 : In this last chapter final conclusions are drawn. Possible improve-
ments and future developments of the model are discussed.

Appendix In the appendix is reported the code of the Python program written to
implement the model along with an example of an input data file.

6 1 Introduction

Chapter 2

The ATFM problem

“Air traffic management (ATM) considers the trajectory of a manned or
unmanned vehicle during all phases of flight and manages the interaction
of that trajectory with other trajectories or hazards to achieve the opti-
mum system outcome, with minimal deviation from the user-requested
flight trajectory, whenever possible.” (ICAO Doc. 9854, §1.9.2)

In this chapter we present the problem addressed in our thesis: the air traffic flow
management (ATFM) problem.

2.1 The ATFM

ATFM is “a service established with the objective of contributing to a safe, orderly
and expeditious flow of air traffic by ensuring that ATC capacity is utilized to the
maximum extent possible, and that the traffic volume is compatible with the ca-
pacities declared by the appropriate air trafffic services (ATS) authority” [24]. Its
objective is therefore to optimize the air traffic flow according to air traffic control
capacity, enabling airlines to operate safe and efficient flights. Air traffic manage-
ment network operations are based on the ATFM. The Network Manager Operations

7

8 2 The ATFM problem

Centre (NMOC) permanently monitors the balance between the airspace capacity
and the traffic load. Air traffic controllers (ATC) control at operational level the air
traffic in real time, [19].

ATFCM activities can be divided into 4 phases:

Strategic phase This phase takes place from months until one week before the
actual day of operations. The NMOC supports the air navigation service
providers (ANSPs) to evaluate what capacity they will need to provide in each
air traffic control centre. A routing scheme is set up.

Pre-tactical phase The phase takes place from one to six days before the actual
day of operations. The NMOC guides the definition of a daily plan. It then
transmits to ATC and aircraft operators the agreed agenda for the actual day
of operations. We are interested in this second phase.

Tactical phase The phase takes place on the day of operations. The NMOC mon-
itors and updates the scheduled plan according to the current situation and
the real time air traffic. When aircraft are affected by a regulation, the centre
offers alternative solutions to minimize delays.

Operational phase The phase takes place during operations. It mainly involves
ATC and aircraft operators, which operate in real time to guarantee to each
aircraft safe and efficient flight conditions (e.g. collision avoidance). All the
above phases aim at ensuring that the operational phase can be properly carried
out.

2.2 The problem

As stated by the quotation at the beginning of this section, the ATM manages tra-
jectories and the relations between them. The purpose of ATM is to achieve “the

2 The ATFM problem 9

optimum system outcome, with minimal deviation from the user-requested flight tra-
jectory”. The flight’s trajectory gives the information of the departure and arrival
airports for that flight, the sequence of airspace sectors crossed by the flight dur-
ing the journey, along with the time of departure, arrival and sector entrance. It is
worth pointing out that by the term trajectory we do not simply mean a 3D space
trajectory, but a 4D space-time trajectory. In this sense a trajectory carries the in-
formation of where a flight is and when it arrives there. According to this meaning,
one of the main goal of ATM is then to avoid delays, which can be seen as deviations
from the time component of the requested trajectory. Naturally, the fundamental
time deviations are those from the scheduled departure and arrival, since they are
the ones implying the main delay costs. In other words, as far as delays costs are
concerned, it is not important whether or not there is a delay in the other interme-
diate stages between take off and landing, but only if the flight departs or arrives
on time. Hence the delay costs are mainly related to ground delays at departure
and airborne delays at arrival. The second type of delay is normally more expensive,
since it implies extra fuel consumption.

One of the main issue that causes delays is the limited capacity of airports and
sectors. With the term capacity we mean the ability to provide Air navigation Ser-
vices with a certain volume of air traffic, maintaining a high level of safety and
allowing normal operational conditions, [20]. In particular, we define the sector ca-
pacity as “the maximum number of flight entries within one hour that can safely
be assigned to sector controllers”, [16]. In other words, sector capacity is the max-
imum number of flights that the sector controllers can process without exceeding a
maximum predefined amount of work. The same definition can be given for airports
capacity. Some capacity restrictions are then to be imposed in order to allow the
ATC to operate safely and efficiently. The capacity of a sector depends of course
on its dimensions and geometry, but it also depends on time (e.g. mutable weather
conditions). Capacity can then change dynamically in time. Capacity restrictions

10 2 The ATFM problem

are necessary for safety reasons but they are the principal cause of airspace conges-
tion and thus flight delays. Therefore, ATFM problem is to find trajectory deviations
that allow to reduce airspace congestion and hence delays. Let us now describe some
techniques to achieve this.

Two main strategies are typically used to avoid congestion. The first one is
known as rerouting. The idea of rerouting is to divert a flight on a different route
from the scheduled one, maintaining departure and arrival airports, in order to pos-
sibly improve the general state of the air traffic flow. For example, a flight that is
scheduled to cross a particularly congested airspace sector may be rerouted in or-
der not to occupy this sector, allowing other flights to cross the sector. The other
strategy is commonly known as ground holding. The idea of ground holding is to
anticipate the delay on the ground at the departure airport. For example, suppose a
flight is planned to take off at 8 am and to land at 9 am and suppose that congestion
is expected at the arrival airport at 9 am but not at 9:15 am. If the flight departs
at the scheduled time it will then have to hold airborne on the destination airport
for 15 minutes. If instead we have the flight take off at 8:15 am, it will arrive at
destination when there is no congestion. These two techniques can be both seen as
a deviation from the scheduled flight trajectory, a space deviation in the first case, a
time deviation in the second one. Other two common strategies are airborne holding
and speed control. Airborne holding consists in allowing a flight to hold on airborne
before landing at its arrival airport. This strategy is often used, though it implies
extra fuel consumption. It allows a flight to depart on time postponing a possible
delay due to congestion at the arrival airport, still allowing a punctual flight in case
the forecast congestion does not realize. Airborne holding can be seen as the coun-
terpart of ground holding: an optimal balance between these two strategies is a key
element in ATFM. For its part, speed control enable flights to change cruise speed
in order to reach a certain sector or the arrival airport before or after a forecast
congestion (e.g. if a flight is planned to take off at 8 a.m. and to land at 9 a.m.
when congestion is forecast, if at 9:10 a.m. no congestion is forecast, the aircraft can
extend the flight duration by speed control in order to arrive when no congestion is
expected).

2 The ATFM problem 11

Considering the above exposition, we can then state the Air Traffic Flow Man-
agement Problem as follows:

Given a set of flights with initial 4D trajectories, given the airspace con-
figuration and the capacity restrictions determine a set of modified tra-
jectories so that capacity restrictions are satisfied and system efficiency
is maximized (e.g. minimized delays).

The purpose of this thesis is to present a mathematical model to address the problem
just discussed. In the following chapter we describe the mathematical framework in
which the model has been developed: the integer linear programming. The main
theoretical and computational tools that we have used are exposed too.

12 2 The ATFM problem

Chapter 3

Framework and main tools

The model presented in this thesis, as well as the models proposed in Operations
Research literature that we will present in Chapter 4, belongs to the class of integer
linear programming (ILP) models, which is an important subclass of linear program-
ming (LP) models. Linear programming is a relatively recent branch of mathematical
optimization and “arguably one of the greatest success of computational mathemat-
ics in the twentieth century” [7]. It belongs to the applied mathematics field of
Operation Research. The objective of LP is to achieve the best outcome (such as
maximum profit or lowest cost) in a mathematical model subject to requirements
represented by linear relationships (inequalities). We talk about a (mixed) integer
linear programming (M)ILP problem whenever the problem solution is bound to be
integer (or just a subset of its components is bound to be integer).

Although the problem of solving a system of linear inequalities dates back to
1827, when Jean-Baptiste Joseph Fourier published a method for solving them, the
creation of LP as a discipline, together with the recognition of its importance, came
only in the 1940’s by the seminal work of Dantzig, Koopmans and Von Neumann
[18]. Actually already in late 30’s a linear programming formulation of a problem
was given by the Soviet economist Leonid Kantorovich, who also proposed a method

13

14 3 Framework and main tools

for solving it. The problem he addressed in his work Mathematical Methods of Orga-
nizing and Planning Production was to schedule during World War II expenses and
returns in order to reduce army costs and to increase enemy losses. In 1947, George
Dantzig proposed the simplex algorithm (also known as the simplex method (SM)),
which can be applied to any non-integer linear program. Still nowadays, the simplex
method remains a fundamental computational instrument in LP. Since then, a lot of
progress has been made, both in theoretical and software implementation aspects.
Nowadays LP is applied to a plethora of human endeavors and activities. It is widely
used in areas as economics, logistics and computational sciences. Many industries
use LP as a standard tool. Examples of important application areas include shipping
or telecommunication networks, oil refining and blending, stock and bond portfolio
selection, airline crew planning and, of course, flight scheduling. Furthermore, LP
still plays a central role in pure mathematics fields as graph theory and combina-
torics. Some famous and important problem that can be treated through LP and
ILP are: the travelling salesman problem, the knapsack problem, the cutting stock
problem, set packing, covering and partitioning.

3.1 Integer linear programming
“Linear programming can be viewed as part of a great revolutionary de-
velopment which has given mankind the ability to state general goals and
to lay out a path of detailed decisions to take in order to “best” achieve
these goals when faced with practical situations of great complexity. Our
tools for doing this are ways to formulate real-world problems in detailed
mathematical terms (models), techniques for solving the models (algo-
rithms), and engines for executing the steps of algorithms (computers
and software).” (George Dantzig in [8], 1997)

For this section we mainly referred to [7]. Two other introductory textbooks sug-
gested for the interested reader are [8] and [18]

3 Framework and main tools 15

A linear program (LP) (in standard form) is a problem of the form

max cx

subject to Ax ď b pAq

x ě 0

where x, c P Rn, A P Rmˆn, b P Rm.

x

y0 1 2 3 4 5

1

2

3

4

5

Figure 3.1: A basic linear programming
problem

The problem is to find a point x which
maximizes the linear function cx, called the
objective function. Such a point must sat-
isfy the linear system of inequalities Ax ď
b, x ě 0. In other words a point x is a
possible solution (a so called feasible point)
only if it belongs to the so called feasible
region tx P Rn| Ax ď b, x ě 0u. Any point
x which belongs to the feasible region and
maximizes the objective function is a solu-
tion of the LP problem (A).

The geometric meaning of the problem
is depicted in Figure 3.1: it is asked to
find the most extreme point along a fixed
direction (the small arrow in the picture),
determined by the constant vector c, such
that this point is contained in the region
described by the inequality system Ax ď b

(the gray region in the picture). The red
dot shows such a point and it therefore represents a (the) solution. A LP does not
necessarily admit a solution. In fact, two other cases are possible: the problem can be
infeasible, meaning that the feasible region is the empty set and therefore no solution

16 3 Framework and main tools

exists, or the problem can be unbounded, meaning that its objective function can be
made arbitrarily “good” (this can happen when the feasible region is unbounded).
One crucial observation is that the geometric nature of the feasible region, which is
in general always a polyhedron, ensures that if the problem admits a solution then
there exists a solution which is a vertex of the feasible region. To solve this general
problem one really famous and successful algorithm is available: the simplex method.
This algorithm works brilliantly for problems in the form (A), where variables are
free to take any real value. It is essentially based on the crucial observation made
above, as in order to find the solution it basically enumerates all the vertices of the
feasible region. A qualitative step for the problem complexity is taken when the
variables involved are integral, for example variables that represent indivisible goods
or, more importantly, (0 ´ 1) decision variables, where by a decision variable we
mean a binary variable that has value 1 if a certain decision is taken, 0 otherwise.
In this case the problem is called a (pure) integer linear program (ILP) and it takes
the following form:

max cx

subject to Ax ď b pBq

x ě 0 integral

Problems in which only a subset of variables is bound to be integral are called mixed
integer linear programs (MILP). As already said, from LP to ILP there is a qualitative
step in the problems complexity. In fact, the complexity class of LP is P, meaning
that there exists a polynomial algorithm to solve it (which is actually not the simplex
method but the Karmarkar’s interior point algorithm), while ILP is in the NP-hard
complexity class. A geometric representation of this new problem is given by Figure
3.2: in this case the only feasible points, i.e. points that are possible solutions, are
represented by the gray dots. Hence, a solution is the integer point that we find as

3 Framework and main tools 17

we move as far as we can along the direction displayed by the small arrow. One such
point is the red one. In this case the simplex method is no more utilizable, since
the feasible region is no more a continuous area defined by linear inequality, but is
a discrete set of points. At first, integer programming might be dismissed as trivial.
In fact, one (a computer) could simply enumerate all the feasible integer points and
then pick a point that results in the largest value of cx. This is of course possible in
theory, but is not practical when the dimensions of the problem are big. Even simple
problems are actually impossible to solve using this kind of enumeration approach.

x

y0 1 2 3 4 5

1

2

3

4

5

Figure 3.2: A basic integer linear pro-
gramming problem

Another idea that comes quite naturally to
mind is trying to solve the problem with
the simplex method without setting the in-
tegrality constraints. This idea is known as
the problem (integrality constraints) relax-
ation. After all, one can see that in our
example the solution that the simplex al-
gorithm would find (the orange dot) would
not be that far from the right one (the red
dot). This second naive idea doesn’t actu-
ally work. In fact, one can show a num-
ber of counterexamples in which this ap-
proach miserably fails, as the solution of
the relaxed problem is arbitrarily distant
from the right one. Nevertheless, in the
following we describe two main algorithmic
idea that are currently heavily used in inte-
ger linear programming software that based
themselves on this relaxation idea. Summa-
rizing, we want to solve problem (B). We can easily solve problem (A) through the
simplex method. Problem (A) and problem (B) are related through the relaxation
process (problem (A) is the relaxation of problem (B)). We therefore want to find a
way to properly use the simplex method on problem (A) in order to solve problem
(B).

18 3 Framework and main tools

3.1.1 The Cutting Planes Method

The idea of cutting-planes method is to iteratively refine a feasible set by means of
linear inequalities, termed cuts (or cutting planes). In more detail, cutting plane
methods work by solving the linear relaxation of the integer program, i.e. the orig-
inal problem without integrality constraints, using the simplex method. The ob-
tained solution for the relaxed problem is then tested for being an integer point.

y

x0 1 2 3 4 5

1

2

3

4

5

Figure 3.3: First step in CP method

Otherwise, then, there must exist a linear
inequality separating the current solution
from the set of integer points, which are
candidate solutions. In fact, as already ob-
served, the solution found with the sim-
plex method must be a vertex. Finding
such an inequality is called a separation
problem. Such an inequality is called a
cut. Subsequently, we literally split with
the selected cut the relaxed region in two
splits. Thus the current non-integer solu-
tion is contained in one of the two splits,
while all the integer points that are can-
didate solutions are contained in the other
split of the relaxed region. The solution of the problem is then contained in the sec-
ond split. This process is then repeated iteratively until an optimal integer solution
is found. We illustrate this method by means of the previous example. We then start
using the simplex method to solve the linear relaxation (Figure 3.1) of the integer
problem (Figure 3.2). As a result see Figure 3.3: the simplex method gives us
the point represented by the red dot. This point is not integral and therefore is not
a solution of our integer problem. We then look for a cut separating this point from
the feasible integer points. One such cut is depicted in Figure 3.4 (a). We now
apply the simplex method to the pink region obtained by adding the cut. The solu-

3 Framework and main tools 19

tion to this new problem is again represented by the red dot, while the old solution
has been discarded (the orange dot). The new solution is again not integral. It is
then necessary to add another cut, separating this solution from the integer feasible
points. One such cut is depicted in Figure 3.4 (b). We now apply the simplex
method to the new pink region obtained by adding this second cut. The solution
to this new problem is represented by the red dot, while the old solution has been
discarded (the second orange dot). At this stage we look at the solution obtained
and we realize that it is integral. We have thus found the solution of the original
integer problem.

y

x0 1 2 3 4 5

1

2

3

4

5 1st cut

(a) Second step in CP method

y

x0 1 2 3 4 5

1

2

3

4

5 1st cut

2nd cut

(b) Third step in CP method

Figure 3.4

Obviously, it is of crucial importance for the success of this procedure the way
we choose the cuts. In fact, the more a cut is tight to the feasible integer points, the
better is the cut. In literature a lot of different types of cuts have been proposed,
some of which work in general, some others work well only for a specific family
of problems. Some well-known cuts families are Gomory’s mixed integer cuts and
Chvatal’s inequalities.

20 3 Framework and main tools

3.1.2 The Branch & Bound Method

We first illustrate this method by means of the previous example. The objective
function in this example is x ` y, maximized in the direction of the small arrow.
Let us first consider the solution found for problem (A) with the simplex method
(the red dot in Figure 3.5). This solution is the point x0 “ p4, 3.5q. Since
the solution is not integral, at least one of its component is not integral. Let us
choose one of these. In our case the only possibility is to take the second com-
ponent y, with value 3.5. Since we are looking for integral solutions, exactly one
of the two following alternatives must necessarily hold: either y ď 3 or y ě 4.

y

x0 1 2 3 4 5

1

2

3

4

5

Figure 3.5: First step in B&B

These two inequalities geometrically cut
our feasible region into three parts, as de-
picted in Figure 3.6 (a): a blue region, a
gray region and a green region. The gray
region does not contain any integer dot, be-
cause in this region 3 ă y ă 4. We can
therefore exclude that the solution of our
problem can be found in this region. Hence
the solution is contained either in the blue
region (which is formed by a single point,
the blue dot in Figure 3.6 (a)) or in
the green one. We now apply the simplex
method to both of the regions. In the blue
region we find the point x1 “ p2, 4q (the
blue dot) which is an integral point in which the objective function takes value 6.
In the green region we find the point x2 “ p4.1, 4q (the green dot) with value 8.2.
Since x1 is integral, it may be the solution. However, it is possible to find another
integer point in the green region with a value better than 6. We know that because
we found an upper bound in the green region, the value of point x2 found with the
simplex method, of 8.2, which is greater than 6. If the value taken by x2 was smaller

3 Framework and main tools 21

than 6, x1 would be our solution, because we would not have any chance to find
any point in the green region with a value higher than 6. Therefore at this point we
iterate the process: since x2 is not integral, one of its components is not integral. In
our case this component is the x one, which values 4.1. Like before, exactly one of
the following must hold: either x ď 4 or x ě 5. These two inequalities geometrically
cut the green region again into three parts, as depicted in Figure 3.6 (b): a purple
region, a yellow region and the gray region in-between.

y

x0 1 2 3 4 5

1

2

3

4

5

y ≤ 3

y ≥ 4

(a) Second step in B&B

y

x0 1 2 3 4 5

1

2

3

4

5 x ≤ 4 x ≥ 5

(b) Third step in B&B

Figure 3.6

The gray region does not contain any integer point, because in this region 4 ă
x ă 5. We can therefore exclude that the solution of our problem can be found in
this region. Hence the solution is contained either in the purple region or in the
yellow one. We now apply the simplex method to both of the regions. In the purple
region we find the point x3 “ p4, 3q (the purple dot) which is an integral point in
which the objective function takes value 7. In the yellow region we find the point
x4 “ p5, 1.1q (the yellow dot) with value 6.1. Since x3 is integral, it may be the
solution. As the value taken by x4 is smaller than 7 and it is an upper bound for
the value of all the points contained in the yellow region, there is no hope to find
a integral point in the yellow region with a value better than 7. Hence x1 is our
solution. The Branch and Bound algorithm follows closely the procedure that we

22 3 Framework and main tools

have just described. The name itself tells a lot about how the method works: an
alternation between branching phases, in which a feasible region gets split into two
feasible subregions; and bounding phases, in which a linear program is solved using
the simplex method, finding in this way an upper bound for the region taken into
account. The reader familiar with algorithms can easily recognize the binary tree
structure of the algorithm, as the root consists in the initial linear relaxation of the
original problem and every branching phase generates two leaves.

3.1.3 The Branch & Cut Method

In the Branch and Bound method, the tightness of the upper bound is essential for the
efficiency of the algorithm. Applying the cutting plane method to the subproblems
solved during the Branch and Bound allows to calculate tighter upper bounds. This
idea directly leads to the Branch and Cut method, which is “currently the most
successful method for solving integer programs” [7]. It works by inserting a cut step
before the branching step during the Branch and Bound method. Whether to add
new cuts or not before branching is usually decided empirically on the basis of the
success of previously added cuts. Typically, various cuts are added at the root node,
the linear relaxation of the original integer problem, while fewer or no cuts may be
added in the next steps.

3 Framework and main tools 23

3.2 Software framework and tools

In this section we first give some historical background on the development of linear
programming software, from the origins until nowadays. Secondly, we illustrate the
software programs that we have used.

3.2.1 LP software development

In the following we expose a brief history in the development of LP software (for
more historical insight see [9]):

1947 George Dantzig proposes the Simplex Method. The first application of
the simplex algorithm to the solution of a non-trivial LP of a 21 constraint,
77 variable instance. It is reported that the total computation time was 120
man-days.

1953 The first machine implementation of the simplex algorithm used a device
known as a Card Programmable Calculator (CPC). It was capable of handling
LPs with up to 45 constraints and 70 variables, with a total computation time
of about 8 hours.

1954–55 SM was improved thanks to new algorithms and re-implemented on
an IBM 701, IBM’s first real “scientific computer”. This implementation could
handle LPs with 101 constraints and was used in large computations on an
economic model, one of the first real applications of the SM.

1955–56 A new implementation was conceived for the IBM 704. This code
was able to handle LPs with up to 255 constraints. It was the first program
to be distributed for a wider audience. Later it was improved to handle 512
constraints. In 1956, LP/90 code was developed for the IBM 7090, it was able
to handle up to 1024 constraints. LP started being used in the oil industry.

24 3 Framework and main tools

1963–64 LP/90/94 was released for the IBM 7094. It reached the top of
first-generation of LP codes. It was used to re-locate factories in Europe by
Philips Petroleum, to select ships and transport aircraft to support military
deployment by UK, to choose investments on refinery infrastructure by British
Petroleum and to select coal mines for closure by the UK National Coal Board.

1970’s - 80’s A number of new generation of codes was developed and released
(APEX, FMPS, MINOS, MPSX, MPS III, XMP, UMPIRE). New methods and
ideas came up, as well as the implementation of previous theoretical results,
as the dual simplex algorithm, which could not be implemented on the older
class of computers.

1979 Leonid Khachiyan showed that LPs could be solved in polynomial time.
It was a fundamental theoretical advance, though not unexpected, mainly be-
cause of its important implications in the theory of combinatorial optimization.
Khachiyan also studied an algorithm known as the Ellipsoid Method. Even
though this algorithm was proven to be polynomial, it had scarce practical
impact, since variants of the SM and the Karmarkar’s interior point algorithm
are in practice much faster.

1980 IBM introduced the popular personal computer (PC) series IBM 5150.
Though PCs were not new at that time, the release of the IBM PC marked the
beginning of the business applications of PCs. It was realized that PCs could
be used as platforms for the development of practical LP and MIP codes.

1984 Narendra Karmarkar demonstrated a polynomial-time bound for LP that
was far better than the bounds for Khachiyan’s method and, more importantly,
it also corresponded to a computational approach that was applicable in prac-
tice, known as the Karmarkar’s interior point algorithm.

1988 The first version of CPLEX was released by Robert E. Bixby.

3 Framework and main tools 25

1990’s Important advances occurred during this period, as the utilization of
the dual simplex algorithm as a general purpose solver (not just used in B&B
algorithms), the development of dual steepest-edge algorithms and the im-
provement of linear algebra in the application of SM for large, sparse models.

2000’s - modern times R. Bixby has conducted some computational exper-
iments, showing that from 1988 to 2004 the average speed of at least one LP
code (namely CPLEX [30]) improved by a factor of roughly 3300. This im-
provement is independent of any machine effects and is at any rate greater
than the improvements in the speed of computing machines in the same pe-
riod. Combining it with the machines’ speed improvements, the resulting factor
exceeds six orders of magnitude [9].

Algorithmic improvement (machine independent)
Best of barrier, primal simplex, and dual simplex: ˆ3300

Machine improvement: ˆ1600
Total improvement (3300 · 1600): ˆ5 280 000

Other relevant modern software are Gurobi [29], released in 2009 by Gu, Roth-
berg and Bixby, and FICO Xpress [27], originally developed in 1983 and ac-
quired by FICO in 2008. Gurobi LP solver make use of primal and dual SM,
parallel barrier algorithm with crossover, concurrent optimization and sifting
algorithm; its MIP uses deterministic, parallel branch and cut, non-traditional
tree-of-trees search, multiple default heuristics, solution improvement, cutting
planes and symmetry detection [28]. FICO Xpress features techniques as pri-
mal and dual SM, Newton barrier algorithm, branch and bound, variable and
node selection, cutting planes, integer preprocessing, rounding heuristics [26].
These are just two relevant examples, but the software for LP and (M)ILP now
available are actually a great many.

26 3 Framework and main tools

For our purposes, we used the IBM software IBM ILOG CPLEX Optimization Studio
(version 12.6.0) through its Python (version 2.7) interface. We now spend some words
on the two main instruments that we have used to implement our model (for details
on the implementation of our model, see Chapter 6).

3.2.2 IBM ILOG CPLEX Optimization Studio

IBM ILOG CPLEX Optimization Studio (informally named CPLEX for short) is
an optimization software package. CPLEX is named after the simplex method.
CPLEX is implemented in the C programming language, even though nowadays
it also provides additional algorithms of mathematical programming and it offers
different interfaces towards other environment and programming languages besides C,
like C++, C#, Java and Python. It was originally developed by Robert E. Bixby and
it has been commercialized since 1988 by CPLEX Optimization Inc. In 1997 it was
acquired by ILOG and ILOG was in turn acquired by IBM in 2009. IBM currently
maintains and develops CPLEX. Among others, IBM ILOG CPLEX Optimizer can
solve integer programming problems and very large linear programming problems.
CPLEX is provided with a variety of techniques and algorithms as LP solvers (which
use pre-processing, algebra for sparse systems, primal and dual methods, techniques
to avoid degeneracy and numerical difficulties), a wide classes of cutting planes,
heuristics (such as node heuristics and polishing) and parallelization (such as B&B
search).

3.2.3 Python

Python is an open source programming language for general purpose programming.
It was created by the dutch programmer Guido van Rossum and first released in
1991. It is named after the British surreal comedy group Monty Python, whom
van Rossum was a big fan of. Python has a design philosophy that emphasizes code

3 Framework and main tools 27

readability, clearness and agility. Since 2003, Python has constanly ranked in the top
ten most popular programming languages in the TIOBE Programming Community
Index and since January 2018 it has been the fourth most popular language behind
Java, C, and C++. It was selected Programming Language of the Year in 2007 and
2010. Some well-known large organizations that use Python are Wikipedia, Google,
Yahoo!, CERN, NASA, Facebook, Amazon, Instagram, Spotify.

28 3 Framework and main tools

Chapter 4

State of the art

There are different approaches to the ATFM problem and various type of models
to mathematically describe it. Models may differ in many aspects. For example
some models are more detailed than others, some are deterministic while others are
stochastic, some are static while some others are dynamic. Basically, depending on
the model, different features and characteristics of the problem are captured. Among
the various model types, ILP models started being used to address the ATFM prob-
lem as defined in Chapter 2 in the 1990’s and they developed a lot during the last 30
years. The model proposed in our thesis belongs to this family of models. Compared
to other types of models, typical characteristics of ILP models are: determinism,
problems discretization approach, standard and efficient algorithms availability (as
seen in Section 3.1), easy generalization, model readability, decision problems suit-
ability. Discretization is in fact a feature shared by all the models described in the
next section. One main characteristic of these models is that time is discretized in
time periods. This highlights the non-detailed nature of these models, which capture
instead the general and macroscopic behaviour of air traffic flow.

29

30 4 State of the art

4.1 Relevant ILP models for ATFM
The following chronological list reports some of the most important articles published
on this subject, all proposing various 0´1 linear programming models, that is linear
programs with decision variables.

Helme (1992) [13]: In this seminal article Marcia P. Helme proposes a linear pro-
gram to minimize delays through ground holding, allowing for the possibility of
an airborne delay. The trajectories are then a given data input and an aircraft
can deviate from them only in time. By that, we mean that the only decisions
which can be made are: 1) whether or not holding a flight to the ground at
the departure airport and if so decide for how much time; 2) whether or not
holding a flight airborne over the arrival airport and if so decide for how much
time. It is assumed that no speed control during the flight is possible.

Bertsimas & Stock Patterson (1998) [5]: This second paper introduces the pos-
sibility of speed control during the flight. Furthermore, it takes into account
continued flights, i.e. flights that are continued by other flights. This work by
Dimitris Bertsimas and Sarah Stock Patterson has been the start point of our
thesis. One major contributions of this paper is the introduction of a new type
of variables which has three main benefits: these variables clearly and directly
capture some constraints; they define constraints that are facets of the convex
hull of solutions; the relaxation of the linear program defined through them is
almost always integral. We shall in fact use the same type of variables, defined
in Section 5.4. This model is entirely reported in the next Section 4.2.

Bertsimas & Stock Patterson (2000) [6]: This model, actually tested only on
small instances, introduced the possibility for a flight to reroute, deciding which
possible flight routes configuration minimizes the total delay costs. Speed con-
trol is assumed possible.

4 State of the art 31

Bertsimas, Lulli & Odoni (2011) [4]: In this article is proposed a model includ-
ing rerouting, speed control, ground and airborne holding and stakeholders fair-
ness (that is, the output flight trajectories configuration should not particularly
penalize a stakeholder). It is to some extent an improvement of Bertsimas-Stock
Patterson 2000’s model, as it was proved able to solve bigger instances. This
paper, along with the Bertsimas-Stock Patterson 1998’s article, has been the
other fundamental source for the present thesis.

Augustin, Alonso-Ayuso, Escudero (2012) [1, 2]: This paper is divided into
two parts. The first one presents a mixed 0–1 model which allows flight cancel-
lation and rerouting. It considers several objective functions to minimize such
the number of flights exceeding a given time delay, penalization of alternative
routes to the scheduled one, time unit delay cost to arrive at intermediate air
sectors and penalization for advancing arrival to the sectors and airports over
the schedule. It is able to treat large-scale instances. The second part presents
a stochastic variation of the previous model, in which uncertainty is introduced.
(Note that all the previous models are deterministic).

Fomeni, Lulli & Zografos (2017) [11]: This paper presents a model that con-
tributes to the optimization and optimum configuration of trajectory based
operations (TBO). TBO is the concept of improving throughput, flight effi-
ciency, flight times, and schedule predictability through better prediction and
coordination of aircraft trajectories [35]. A 0-1 integer programming model is
developed with the aim to assign a 4D-trajectory to each flight with the pur-
pose to optimize the efficiency of the ATM system. The model considers the
preferred 4D-trajectory of all the flights in the pre-tactical phase and outputs
an optimal 4D-trajectory for each flight. These output trajectories are obtained
by minimizing the space-time deviation from the original preferred trajectories.
The TBO concept implies that these 4D-trajectory are to be shared and negoti-
ated with other stakeholders and subsequently managed throughout the flight.
The novelty of this model is that it both considers complete 4D-trajectories for

32 4 State of the art

each flight as well as the preferences and priorities of the ATM stakeholders.
In order to describe 4D trajectories, the information of flight level is included
in the decision variables.

4.2 The Bertsimas & Stock Patterson 1998 model

This model [5] is at the very basis of our work. We entirely present it in this section.
For a deeper understanding of it we strongly suggest to read Chapter 5 first. The
precise form of the ATFM problem addressed by this model is the following: given
a user-requested configuration of departure, arrivals and flight trajectories (which
in this case are a sequence of sectors along with a scheduled departure and arrival
times), find a trajectory configuration which minimizes flight delays, both on the
ground and on airborne, while respecting airspace capacity restrictions. Allowed
strategies are: ground holding, airborne holding, speed control. In other words, the
objective of the problem is to decide how much each flight is going to be held on the
ground and in the air in order to minimize the total delay cost. The models considers
a set a of flights F , a set of airports K, a set of sectors J , a set of time periods T ,
a set of pairs of flights that are continued C “ tpf, f 1q : f 1 is continued by flight fu.
The other problem data are given with the following notation:

Nf “ number of sectors in flight f ’s path

P pf, iq “

$

’

’

&

’

’

%

the departure airport, if i “ 1
the pi´ 1qst sector in flight f ’s path, if 1 ă i ă Nf

the arrival airport, if i “ Nf

Pf “ tP pf, iq : 1 ď i ď Nfu

Dkptq “ departure capacity of airport k at time t

4 State of the art 33

Akptq “ arrival capacity of airport k at time t

Sjptq “ capacity of sector j at time t

df “ scheduled departure time of flight f

rf “ scheduled arrival time of flight f

Ifj “ number of time units that flight f must spend to cross sector j

T fj “ first feasible times for flight f to arrive to sector j

T
f
j “ last feasible times for flight f to arrive to sector j

cfg “ cost of holding flight f on the ground for one unit of time

cfa “ cost of holding flight f in the air for one unit of time

One of the main innovations of this model is the proposal of a new form of deci-
sion variable:

xfj ptq “

$

&

%

1 if flight f has reached sector j by time t
0 otherwise

The mentioned novelty resides in the use of the proposition by instead of at, as in
previous models. This is critical to the understanding of the formulation. We will
spend some more words on this, but let us first present the model:

34 4 State of the art

min
ÿ

fPF

”

pcfg ´ cfaq
ÿ

tPT f
k
, k“P pf,1q

tpxfkptq ´ xfkpt´ 1qq

` cfa
ÿ

tPT f
k
, k“P pf,Nf q

tpxfkptq ´ xfkpt´ 1qq

` pcfa ´ cfg qdf ´ cfarf

ı

subject to
ÿ

f : P pf,1q“k,
tPT f

k

pxfkptq ´ xfkpt´ 1qq ď Dkptq @ k P K, t P T (1)

ÿ

f : P pf,Nf q“k,

tPT f
k

pxfkptq ´ xfkpt´ 1qq ď Akptq @ k P K, t P T (2)

ÿ

f : P pf,iq“j, P pf,i`1q“j1,

iăNf , tPT
f
j

pxfj ptq ´ xfj1ptqq ď Sjptq @ j P J , t P T (3)

xfj1pt` Ifj q ´ xfj ptq ď 0

$

’

&

’

%

@f P F , t P T fj ,

j “ P pf, iq,

j1 “ P pf, i` 1q
(4)

xfkptq ´ xf
1

k pt´ sf 1q ď 0
#

@pf 1, fq P C, t P T fk ,

k “ P pf, 1q “ P pf 1, Nf q
(5)

xfj pt´ 1q ´ xfj ptq ď 0 @f P F , j P Pf , t P T fk (6)

xfj,lptq P t0, 1u @ f P F j P Pf , t P T fj (7)

The objective function calculates the total delay cost in function of the trajecto-
ries configuration. We explicit the derivation of it in Section 5.6 (it is exactely the
same objective function that we used).

Constraints (1), (2) and (3) take into account the capacities of airports (departure
and arrival) and of sectors.

4 State of the art 35

Constraints (4) represent connectivity between sectors. They state that that if a
flight arrives at sector j1 by time t` Ifj , then it must have arrived at the subsequent
sector j by time t.

Constraints (6) represents connectivity between airports for continued flights. If
pf 1, fq is a continued flight, if f departs from airport k by time t, then flight f 1 must
have arrived at airport k by time t ´ sf 1 , where sf is the turnaround time, which
takes into account the time needed to clean, refuel, unload and load and prepare the
aircraft for the next flight.

Constraints (7) represent connectivity in time: if a flight f has arrived at sector
j by time t, then xfj ptq has to have value 1 for all the later times period s ě t.

The importance of the utilization of variables xfj ptq comes from the following con-
siderations and facts: they clearly and nicely capture the three types of connectivity
(between sectors, between aiports and connectivity in time); constraints (5), (6) and
(7) are facets of the convex hull of the feasible region defined by the model con-
straints; the utilization of these variables in the formulation is probably, according
to the authors, the reason why the linear relaxation of the feasible region is almost
always integral. This fact highlights the high importance of the introduction and
usage if these variables. We will in fact use the same variables type, as the reader
can see in Section 5.4

36 4 State of the art

Chapter 5

A model for ATFM with
separation constraints

On the basis of [5], we build an integer 0 ´ 1 programming model in order to treat
and solve the Air Traffic Flow Management Problem presented in Chapter 2. Our
purpose is to show that introducing separation constraints allows us to relax the
sector capacity restrictions, obtaining a better solution still remaining under well
controlled safety conditions.

5.1 Key ideas

At the base of our thesis it is the following key observation: the analysis of the
data on historical flight trajectories available from the data repository DDR2 [25]
shows that there exists discrepancy between sector capacity and approved initial
flight plans. In other words, it seems that is still safe to allow more flights to cross
a sector than the declared number. In fact, it has been observed that up to 20% of
sectors present up to a 50% capacity violation, for example in one sector out of five,
though the sector can nominally support e.g. 10 flights every hour, it can in practice
support up to 15 flights. Of course in such extreme cases traffic controllers are not

37

38 5 A model for ATFM with separation constraints

operating comfortably, but they are still able to control the traffic safely. Obviously,
an increase in the sector capacities implies an improvement of the air traffic flow.
Our proposal is then to use “observed” capacities instead of nominal ones, while
still maintaining safety. In order to ensure safety despite the increase of capacity we
introduce some kind of separation constraints between the flights. In other words
our goal is to describe an ATFM model with increased capacity on the one hand and
(simple) operational separation constraints on the other hand. Let us illustrate this
idea using the following toy example

(a) Infeasibile configuration (b) Feasible configuration

Figure 5.1

Suppose an airspace sectorisation consists of 6 sectors as in Figure 5.1 and
assume that 3 flights have as preferred trajectories those depicted in figure Figure
5.1a and assume that these flights are scheduled to cross the central sector at the
same time. If the nominal capacity of the sector in the center is 2, such configuration,
which is the one requested by the airspace users, is infeasible (that is unviable), since
the capacity of that sector would be violated. One of the three flights would then be
forced to reroute (see Figure 5.1b). This new configuration would then be feasible
but it would be more costly, since it would imply the delay of the rerouted flight.

5 A model for ATFM with separation constraints 39

Our point is that the potential capacity of the central sector is in actual fact higher
than its nominal capacity. The main reason for that is that the vertical dimension of
the sector allows three “separated” flight levels. The idea is then to allow a capacity
increase by restricting the flights to travel on well separated flight levels. This would
make the configuration in Figure 5.1a requested by the users feasible.

The key idea of our work is to compensate the reduction of safety resulting from
an increase of the nominal capacities, which as showed in the above toy example
should lower the entity of delays, with the imposition of such separation restrictions.
In fact, the main difference that our model presents with the models discussed in
Section 4 is the imposition of vertical and horizontal separation constraints, by
which we can control in more detail the distance between flights. Rerouting is not
possible in our model; we try to accommodate every user with its preferred route.
Hence, the only decisions to be made for a given flight trajectory are: when the
flight departs and how long it is held airborne over the arrival airport; at which level
the flight crosses each sector on its path. Moreover, we do not allow speed control.
Instead, the possibilities of both ground and airborne holding are modelled. One last
observation is worth being made: there is an analogy between choosing a route and
choosing a level, since they both imply a change of direction, horizontal in the first
case, vertical in the second. In other words, the possibility to change level during a
flight can be seen to some extent as a vertical rerouting. We exploited this idea to
reuse some concepts contained in the past papers concerning rerouting (in particular
[4]), especially to find the two classes of valid inequalities presented in Section 5.9.
Furthermore, the need for the introduction of two different type of variables in our
model comes from analogous reasons to those of [4]. This analogy arises again from
the similarity between the concepts of rerouting and levels distribution.

In accordance to the ideas that we just exposed, it is necessary to describe in
more detail the definition of the ATFM problem, introducing concepts that will be
formulated in our model.

40 5 A model for ATFM with separation constraints

5.2 An insight into the ATFM problem
The ATFM problem is characterized by various elements, that we describe below.

5.2.1 Sectors

The airspace is virtually divided into Flight Information Regions (FIRs). Each FIR
is managed by a controlling authority, responsible for ensuring ATS to every air-
craft flying within it. To manage the airspace in a FIR, ANSPs divide it into sec-
tors. These sectors are like 3D puzzle pieces with differing heights and sizes [32].
As an example see Figure 5.2, depicting the flight information region of Milan.

Figure 5.2: The Milan Flight Information Region
[39]

The boundaries of sectors are
formed by a number of factors,
many of them are ATS-oriented,
others defined by international
relations [33]. The total number
of airspace sectors in Europe is
679 [38]. Moreover, every air-
port is contained in a specific
sector. For our purposes, flight
routes can be seen as a sequence
of sectors, as we are not inter-
ested to capture flight trajecto-
ries in details (as already noted
in Chapter 4 we are only inter-
ested in the general behaviour of
air traffic flow). One of the ATFM problem data is then a set of flights, along with
their pre-determined routes, that is for each flight an ordered sequence of the type
(ABC, a, b, c, d, XYZ) is assigned, where ABC, XYZ are airports (identified by their
IATA code) and a, b, c, d are airspace sectors. It is finally worth pointing out again
that sectors are not bi-dimensional and they can actually overlap.

5 A model for ATFM with separation constraints 41

5.2.2 Capacity

As we have seen in Chapter 2, capacity is a crucial concept in ATFM. In that
chapter we defined sector capacity as the maximum number of flights entering a sector
during one hour that sector controllers can process without exceeding a maximum
predefined amount of work. This definition is dynamic, meaning that capacity is
time-dependent. In our model we shall discretize a long time period into smaller
time windows, hence it is natural for us to redefine capacity as a maximum number
of flights entering a sector during one single time period, which is usually shorter
than one hour (we shall consider 15-minutes time periods).

5.2.3 Flight levels

Another important characteristic of the airspace structure used by ATM is its sub-
division into vertical levels. These levels, that are actually defined by their pressure
altitude, that is by atmospheric pressure and not by standard altitude, can be seen
as the highways used by flights. Usually, each level is separated from the immediate
lower and higher levels by 500 ft (approximately 150 m). One key safety standard
is the separation between flights. ICAO specifies the minimum vertical separation
between flights as 1000 ft (300 m) below FL290 (the flight level at a pressure al-
titude of 29 000 ft) and 2000 ft (600 m) above FL290 [34]. In our model we take
into account this level subdivision, since we want to use it to vertically distribute
flights. Flight level is one of the trajectory element that we want to include in the
problem modelling. Hence we shall think of a trajectory as a sequence of sectors,
in which for each sector the flight level of the trajectory is specified, as well as the
time of entrance of the considered flight in that sector. Given a sector and a flight,
not every level is allowed for the flight. For example some levels are allowed only for
some specific aircraft classes. If a flight is allowed to fly at a certain level in a certain
sector, we say that the level is feasible for that flight in that sector. Hence, included
as a problem data, a set of feasible levels is given for each sector and for each flight.

42 5 A model for ATFM with separation constraints

Furthermore, when a flight passes from a sector to the next one it is allowed to change
its flight level only if the level variation is under the threshold of a given maximum
level variation. This maximum level variation is assumed to be sector dependent and
it is again a given data of our problem. Let us now spend some words on another
key concept of our model: flight separation.

5.2.4 Separation

For safety reasons, aircraft trajectories must be horizontally and vertically separated.
As already stated in the previous subsection, a vertical separation, meant as a level
separation, must be always maintained. This separation between flights usually
depends on the directions of the flight taken into account. In our model we shall
then set vertical separation according to directions. The horizontal separation is
instead usually calculated on a time basis, so for example we say that two flights are
separated by 15 minutes if, once they have reported their position, it takes 15 minutes
for a flight to reach the other one. Of course, the required amount of horizontal time
separation depends on the angle between the two flight’s trajectory. For example, if
they are travelling on the same route with opposite directions the horizontal distance
between them will be rapidly decreasing, until a possible collision occurs. In this
case it is typically required that the two flights travel maintaining a sufficiently high
level of separation. Summing up, we assume that, in order to guarantee horizontal
separation, it is necessary that two flights entering a sector from concordant directions
must be separated by a suitable time distance. Moreover, we assume that two flights
entering a sector from non-concordant directions must fly at suitably different flight
levels. The mathematical translation, that is the formalization, of these separation
requirements is one of the core elements of the present thesis.

5.2.5 Time

A set of time periods is given as a problem data too. In fact, as already mentioned
at the end of Chapter 4, time discretization of a bigger time period (for example a

5 A model for ATFM with separation constraints 43

5 hours period subdivided into 20 15-minutes periods) is a typical feature shared by
all the integer programming models covered in Chapter 4. We outline once again
that this discretization allows us on the one hand to use ILP models and on the other
hand means that our model can’t really capture detailed aspect of ATFM. Since we
are only interested in macroscopic aspects, this is not a problem.

5.2.6 Delay

Each flight has a scheduled departure time and a scheduled arrival time. Each flight
has a fixed maximum ground delay, meaning that to each flight a time period subse-
quent to the scheduled departure time is assigned by which the flight must take off.
The amount of time required for a flight to entirely cross a sector is another problem
given information. This amount of time can change depending on the flight and the
sector. For the sake of simplicity, in our model we will assume that speed control is
not possible during the flight. In other words the departure time determines the time
in which the flight crosses each sector in its path, except for the landing time, since
we will permit airborne holding over the arrival airport. Therefore, once a flight
has departed, the departure time determines the time in which the flight reaches
the airspace sector to which the arrival airport belongs. It does not determine the
landing time, since every flight is allowed to hold airborne before landing. To each
flight is assigned a time period by which it must land at the arrival airport. From the
information above can be easily calculated the feasible times for a flight to reach a
certain sector. This times are exactly the feasible departure times plus the time that
a flight must spend in each sector preceding the sector under consideration. All the
above gives us a description of a specific air space on which a set of flights travels.
One would like all the flights to take off and to land at the scheduled time, so that no
delay occurs. However, due to congestion at the arrival airport, in some cases a flight
has to hold airborne before landing. This of course implies some delay and therefore
extra costs. For each time period spent in airborne hold each flight has a related cost,
which we will refer to as the airborne delay cost and which is a problem given data.

44 5 A model for ATFM with separation constraints

As exhaustively illustrated in Chapter 2, one of the most common strategies to
avoid this kind of delay is ground holding. Since keeping an aircraft on the ground is
cheaper than to keep it on airborne, this can reduce the delay costs, but it still causes
delay expenses. We will refer to the cost of holding a flight to the ground for one time
period as the flight’s ground holding delay cost and this cost is a problem given data.

The objective of the model presented in this chapter is to find a configuration of
departures and arrivals which minimizes total delay cost. To this purpose the strate-
gies that we are allowed to use are ground holding, airborne holding and distribution
by levels of the air traffic.

5 A model for ATFM with separation constraints 45

5.3 Problem data
The problem data are given with the following notation:

F “ tf1, . . . , fi, . . . , fMF u is the set of flight

K “ tk1, . . . , ki, . . . , kMKu is the set of airports

J “ tj1, . . . , ji, . . . , jMJ u is the set of airspace sectors

L “ tl0, . . . , li, . . . , lMLu is the set of airspace levels

T “ tt1, . . . , ti, . . . , tMT u is the set of time periods

A “ ta1, . . . , ai, . . . , aMAu is the set of airspace edges

Nf “ number of sectors in flight f ’s path

P pf, iq “

$

’

’

’

&

’

’

’

%

the departure airport, if i “ 1

the pi´ 1qst sector in flight f ’s path, if 1 ă i ă Nf

the arrival airport, if i “ Nf

Pf “ tP pf, iq : 1 ď i ď Nfu

Dkptq “ departure capacity of airport k at time t

Akptq “ arrival capacity of airport k at time t

Sjptq “ capacity of sector j at time t

df “ scheduled departure time of flight f

rf “ scheduled arrival time of flight f

46 5 A model for ATFM with separation constraints

Ifj “ number of time units that flight f must spend to cross sector j

T fj “ first feasible times for flight f to arrive to sector j

T
f
j “ last feasible times for flight f to arrive to sector j

T fj “ set of feasible times for flight f to arrive to sector j “ rT fj , T
f
j s

Lfj “ set of feasible flight level for flight f in sector j

δfj “ maximum level variation for flight f between sector j and its successor

tCsep “ time (horizontal) separation for potential chasing conflict

lCsep “ level (vertical) separation for potential chasing conflict

tOsep “ time (horizontal) separation for potential opposing conflict

lOsep “ level (vertical) separation for potential opposing conflict

KCpaq “ the set of potential chasing conflicting sectors centered in a

KOpaq “ the set of potential opposing conflicting sectors opposite to a

Ma “ maximum number of flights that use an edge in a potential opposing conflict with a

cfg “ cost of holding flight f on the ground for one unit of time

cfa “ cost of holding flight f in the air for one unit of time

5 A model for ATFM with separation constraints 47

5.4 Decision variables

We now want to discuss which are the most suitable decision variables to use for
our model’s purposes. One can think at three different natural variable types, for
f P F , j P J , l P L, t P T we define (see Figure 5.3):

wfj,lptq “

$

&

%

1 if flight f reaches sector j at level l at time t

0 otherwise

xfj,lptq “

$

&

%

1 if flight f has reached sector j at level l by time t

0 otherwise

yfj,lptq “

$

&

%

1 if flight f is in sector j at level l at time t

0 otherwise

In the model presented here we use the last two types of variables. The main rea-
son is that one can easily switch between variables wfj,lptq and x

f
j,lptq, since as showed

below they are in a linear relation. Hence one could express every expression in the
model indistinctly through one or the other type. As pointed out by Bertsimas and
Stock Patterson (see Section 4.2), the main reason why we prefer to use variables
xfj,lptq is that they allow us to clearly and nicely capture the two types of connec-
tivity constraints: connectivity in space and connectivity in time (see constraints
(6a), (6b), (6c) and (9)). We still need additional variables yfj,lptq in order to be able
to express opposing conflict separation constraints (7b). Unfortunately in this case
the relation between the two is not linear (a max operator is involved). In fact, as
already mentioned at the end of Section 5.1, we face the same problem as in [4].

48 5 A model for ATFM with separation constraints

t

1
wf

j,l(t)

1

t

xf
j,l(t)

1

t

yf
j,l(t)

t̄ t̄ + 1 t̄ + 2 t̄ + 3

Figure 5.3: a representation of the three variable types

The relations between the three types of variables are the following:

$

&

%

wfj,lptq “ xfj,lptq ´ x
f
j,lpt´ 1q

xfj,lptq “
ř

sďtw
f
j,lpsq

$

’

’

&

’

’

%

yfj,lptq “ max
!

0, xfj,lptq ´
ř

l1PLf

j1 ,

j1“succpjq

xfj1,l1ptq
)

xfj,lptq “ max
!

0, yfj,lptq ´ y
f
j,lpt´ 1q

)

$

’

’

&

’

’

%

yfj,lptq “ max
!

0,
ř

sďtw
f
j,lpsq ´

ř

l1PLf

j1 ,rďt

j1“succpjq

wfj1,l1prq
)

wfj,lptq “ max
!

0, yfj,lptq ´ y
f
j,lpt´ 1q

)

´max
!

0, yfj,lpt´ 1q ´ yfj,lpt´ 2q
)

5.5 The model
min

ÿ

fPF

”

pcfg ´ cfaq
ÿ

tPT f
k
, k“P pf,1q

tpxfk,l0ptq ´ xfk,l0pt´ 1qq

` cfa
ÿ

tPT f
k
, k“P pf,Nf q

tpxfk,l0ptq ´ xfk,l0pt´ 1qq

` pcfa ´ cfg qdf ´ cfarf

ı

subject to
ÿ

f : P pf,1q“k,
tPT f

k

pxfk,l0ptq ´ xfk,l0pt´ 1qq ď Dkptq @ k P K, t P T (1)

ÿ

f : P pf,Nf q“k,

tPT f
k

pxfk,l0ptq ´ xfk,l0pt´ 1qq ď Akptq @ k P K, t P T (2)

ÿ

f : P pf,iq“j, P pf,i`1q“j1,

iăNf , tPT
f
j
, lPLf

j
, l1PLf

j1

pxfj,lptq ´ xfj1,l1ptqq ď Sjptq @ j P J , t P T (3)

yfj,lptq ě xfj,lptq ´
ÿ

l1PLf

j1

xfj1,l1ptq

$

’

&

’

%

@ f P F , 1 ă i ă Nf

j “ P pf, iq, j1 “ P pf, i` 1q,
l P Lfj , t P rT fj , T

f

j ` Ifj s

(4)

ÿ

lPLf
j

xfj,lptq ď 1 @ f P F , j P Pf , t P T fj (5)

ÿ

lPLf
j

xfj,lptq ´
ÿ

l1PLf

j1

xfj1,l1pt` Ifj q “ 0

$

’

&

’

%

@f P F , i ă Nf ´ 1,

j “ P pf, iq, j1 “ P pf, i` 1q,
t P T fj

(6a)

xfj,lptq ´
ÿ

l1PLf

j1Xrl´δ
f
j
,l`δf

j
s

xfj1,l1pt` Ifj q ď 0

$

’

&

’

%

@f P F , i ă Nf ´ 1,

j “ P pf, iq, j1 “ P pf, i` 1q,
t P T fj , l P Lfj

(6b)

ÿ

lPLf
j
Xrl0,l0`δf

j
s

xfj,lptq ´ xfk,l0pt` Ifj q ě 0

$

’

&

’

%

@f P F , t P T fj ,

j “ P pf, Nf ´ 1q,
k “ P pf, Nf q

(6c)

t`tCsep
ÿ

s“t

l`lCsep
ÿ

m“l

ÿ

kPKCpaq

ÿ

f : pk,j1
qPPf

mPLf

j1 , sPT
f

j1

´

xfj1,mpsq ´ xfj1,mps´ 1q
¯

ď 1
#

@ a “ pj, j1q P A,

l P L, t P T
(7a)

yfj1,lptq ` ua,lptq ď 1

$

’

&

’

%

@ a “ pj, j1q P A,

f P F s.t. a P Pf

l P Lfj1 , t P rT fj1 , T
f

j1 ` Ifj1s

(7b)

t`tOsep
ÿ

s“t

l`lOsep
ÿ

m“l´lOsep

ÿ

kPKOpaq

ÿ

f 1 : pk,j1
qPPf 1

mPLf 1

j1 , sPT
f 1

j1

´

xf
1

j1,mpsq ´ xf
1

j1,mps´ 1q
¯

ď Maua,lptq

#

@ a “ pj, j1q P A,

l P L, t P T
(7c)

xfk,0pT
f

kq “ 1 @ f P F , k “ P pf, Nf q (8)

xfj,lptq ´ xfj,lpt´ 1q ě 0 @ f P F , j P Pf , l P Lfj , t P T fj (9)

xfj,lptq, yfj,lpsq, ua,mprq P t0, 1u

$

’

&

’

%

@ f P F j P Pf , l P Lfj ,

t P T fj , s P rT fj , T
f

j ` Ifj s

a P A, m P L, r P T
(10)

50 5 A model for ATFM with separation constraints

5.6 The objective function
Our objective is to minimize total delay cost. Let us now construct the objective
function which gives the total cost of delays as a function of xfj,lptq variables, i.e.
trajectories configurations.

The total number of time units that a flight f is held on the ground, let it be gf ,
equals the actual departure time minus the scheduled departure time, i.e.,

gf “
ÿ

tPT f
k
,k“P pf,1q

twfk,l0ptq ´ df

“
ÿ

tPT f
k
,k“P pf,1q

tpxfk,l0ptq ´ x
f
k,l0pt´ 1qq ´ df

The total number of time units that a flight f is held on airborne, let it be af , equals
the actual arrival time minus the scheduled arrival time minus the amount of time
that the flight has been held to the ground, i.e.,

af “
ÿ

tPT f
k
,k“P pf,Nf q

twfk,l0ptq ´ rf ´ gf

“
ÿ

tPT f
k
,k“P pf,Nf q

tpxfk,l0ptq ´ x
f
k,l0pt´ 1qq ´ rf ´ gf

Using the variables gf and af we can simply express the objective function as follows:
ÿ

fPF
rcfggf ` c

f
aaf s

Explicitly rewriting the objective function in terms of xfj,lptq we obtain the expression:
ÿ

fPF

”

cfg

´

ÿ

tPT f
k
,k“P pf,1q

tpxfk,l0ptq ´ x
f
k,l0pt´ 1qq ´ df

¯

`cfa

´

ÿ

tPT f
k
,k“P pf,Nf q

tpxfk,l0ptq ´ x
f
k,l0pt´ 1qq ´ rf

´
`

ÿ

tPT f
k
,k“P pf,1q

tpxfk,l0ptq ´ x
f
k,l0pt´ 1qq ´ df

˘

¯ı

5 A model for ATFM with separation constraints 51

Finally, rearranging terms we can obtain the following formulation of the objective
function.

ÿ

fPF

”

pcfg ´ c
f
aq

ÿ

tPT f
k
, k“P pf,1q

tpxfk,l0ptq ´ x
f
k,l0pt´ 1qq

` cfa
ÿ

tPT f
k
, k“P pf,Nf q

tpxfk,l0ptq ´ x
f
k,l0pt´ 1qq

` pcfa ´ c
f
g qdf ´ c

f
arf

ı

5.7 Model constraints

5.7.1 Capacity constraints

The constraints p1q, p2q, p3q limit the capacity of departure and arrival airports, and
of en-route sectors.

ÿ

f : P pf,1q“k,
tPT f

k

pxfk,l0ptq ´ x
f
k,l0pt´ 1qq ď Dkptq @ k P K, t P T (1)

ÿ

f : P pf,Nf q“k,

tPT f
k

pxfk,l0ptq ´ x
f
k,l0pt´ 1qq ď Akptq @ k P K, t P T (2)

ÿ

f : P pf,iq“j, P pf,i`1q“j1,

1ăiăNf , lPLf
j , l

1PLf

j1

pxfj,lptq ´ x
f
j1,l1ptqq ď Sjptq @ j P J , t P T (3)

52 5 A model for ATFM with separation constraints

The first three sets of constraints bound the solution to respect the capacity
of airports and sectors. We will therefore refer to them as capacity constraints.
Constraints p1q ensure that the number of flights that may take off from an airport
k at any time t will not exceed the departure capacity of airport k at time t, Dkptq.
Likewise, constraints p2q ensure that the number of flights that may arrive at an
airport k at any time t will not exceed the departure capacity of airport k at time
t, Akptq. Finally, constraints p3q ensure that for each sector j the total number of
flights that may feasibly cross it will not exceed the capacity of j at any time t, Sjptq.
This number is expressed by the left-hand side of p3q, since it counts the number
of flights that has entered sector j (at any feasible level) by time t and has not yet
entered in the successive sector (at any feasible level).

5.7.2 Relations among variables

The constraints p4q define the yfj,lptq variables:

yfj,lptq ě xfj,lptq ´
ÿ

l1PLf

j1

xfj1,l1ptq

$

’

’

’

&

’

’

’

%

@ f P F , 1 ă i ă Nf

j “ P pf, iq, j1 “ P pf, i` 1q,

l P Lfj , t P rT
f
j , T

f
j ` I

f
j s

p4q

Instead of using the max operator, we will actually define yfj,lptq through the fol-
lowing relation:

This definition ensures us that whenever flight f is in sector j at level l at time
t then yfj,lptq “ 1. However, if this is not the case, then yfj,lptq is free to take either 0
or 1 value, in particular it is not bounded to take 0 value, as in the definition given
at the beginning of the section. This does not actually bother us, since the first
information is the only one we need.

5 A model for ATFM with separation constraints 53

5.7.3 Space-time connectivity constraints

ÿ

lPLf
j

xfj,lptq ď 1 @ f P F , j P Pf , t P T fj (5)

Constraints (5) state that each flight cannot fly inside a sector at more than one level
simultaneously. (The level variation between sectors is quantized).

ÿ

lPLf
j

xfj,lptq´
ÿ

l1PLf

j1

xfj1,l1pt`I
f
j q “ 0

$

’

’

’

&

’

’

’

%

@f P F , t P T fj ,

j “ P pf, iq, j1 “ P pf, i` 1q,

i ă Nf ´ 1

p6aq

Constraints (6a) express sector connectivity: they state that before every flight passes
from a sector j to the next one j1, exactly (since we assume that the aircraft cannot
change its cruise speed) Ifj units of time must have been spent between the time t
in which the flight has entered sector j and the time it enters the next one.

xfj,lptq ´
ÿ

l1PLf

j1Xrl´δ
f
j ,l`δ

f
j s

xfj1,l1pt`I
f
j q ď 0

$

’

’

’

&

’

’

’

%

@f P F , t P T fj , l P L
f
j ,

j “ P pf, iq, j1 “ P pf, i` 1q,

i ă Nf ´ 1

p6bq

Constraints (6b) express level connectivity: they state that if a flight f has entered
sector j at level l by time t, then after Ifj units of time it must have entered the next
sector j1 at a feasible level l1 reachable from level l without exceeding the maximum
level variation δfj between j and j1.

ÿ

lPLf
jXrl

0,l0`δf
j s

xfj,lptq ´ xfk,l0pt`I
f
j q ě 0

$

’

’

’

&

’

’

’

%

@f P F , t P T fj ,

j “ P pf,Nf ´ 1q,

k “ P pf,Nf q

p6cq

Constraints (6c) state two requirements all together, specifying the two kind of con-
straints above described for the case in which the next element in a flight path is the

54 5 A model for ATFM with separation constraints

arrival airport. The first one is that before each flight lands at the arrival airport k,
at least (in this case possibly not exactly, since we assume that the aircraft can hold
on airborne on the arrival airport) Ifj units of time must have been spent between
the time t in which the flight has entered sector j to which the arrival airport belongs
and the time it lands. The second request is that each flight cannot enter sector j at
a level higher than l0`δfj in order to be able to land without violating the maximum
level variation.

5.7.4 Separation constraints

Given that often nominal sector capacities are underestimated compared to the actual
number of flights allowed in current operations, we propose to relax sector capacity
constraints, using observed capacities as right-hand side, in order to have more flex-
ibility. Of course, we still need to maintain some safety conditions. Hence we want
to impose some extra separation constraints. These constraints will be of two types.
Before we proceed with the description of the constraints, we need to introduce the
following set:

Definition We define the set of airspace directed edges as:

A “ ta “ pj, j1q | j, j1 P J , Df P F : j “ P pf, iq, j1 “ P pf, i` 1q, 1 ă i ă Nf ´ 1u

With abuse of notation we will write a “ pj, j1q P Pf if pj, j1q P A and j, j1 P Pf .

This shows that our problem input data implicitly define a directed graph G, whose
nodes are airports and sectors and whose edges are those just defined. (G “ pK Y
J ,Aq). We shall call this graph the airspace flow graph. The first type of constraints
involves flights that are in a “potential chasing conflict” pCCq. By that we mean
that their paths share a sector j and that the flights are entering the sector with
concordant directions, more precisely if they are entering using concordant edges.
Whether or not the edges are concordant is an information carried by the sets KC

defined below, which are provided as input data. Intuitively, one could think of

5 A model for ATFM with separation constraints 55

concordant edges as edges with the same head and with an in-between angle going
from 0˝ to 90˝. As an example of such a situation see Figure 5.4: flight f1 is
in a potential chasing conflict with flights f2, f3 and f7. In this case, either we
impose a large enough vertical separation (at least lCsep flight levels), or, if the vertical
separation is under this threshold, we impose a large enough horizontal separation
(the flights can enter the same sector only if they are separated by a large enough
time distance tCsep).

j

k1

k2

k3

k4

k5

k6

a

f1f2

f3

f4

f5

f6

f7

Figure 5.4: a depiction of the two possible conflict types: (CC) and (OC). We
are considering the situation from the point of view of flight f1, which is travelling
through the edge a “ pk5, jq. We have:

KC
paq “ tk4, k5, k6u KO

paq “ tk1, k2, k3u

The second type of constraints involves flights that are in an “potential opposing
conflict” (OC). In this case we mean that their paths share a sector j and that the

56 5 A model for ATFM with separation constraints

flights are entering sector j using opposite edges. As in the previous case whether or
not two edges are opposite is an information given by the sets KO. KOpk, jq contains
all the edges with head in j that are not in KCpk, jq. Hence, these sets come from
input data. Again, a naive way to think of opposite edges is as edges with same
head and with an in-between angle going from 90˝ and 180˝. As an example of this
situation see Figure 5.4: flight f1 is in a potential opposing conflict with flights f4,
f5 and f6. In this case we want to impose a very strong vertical separation, meaning
that they can be in the same sector only one at a time, unless they are maintaining a
safe vertical separation lOsep (normally, lOsep ą lCsep). That is: as long as one flight is in
a sector no other flight can enter the same sector if it is not at a sufficiently higher or
lower level. This seems a reasonably strong request to make and it should guarantee
sufficient safety conditions. However, if we don’t impose any other condition, as soon
as one flight crossing a sector j has left it, another one can enter in j at the same
or similar flight level. In order to implement a flexible and safe separation policy,
it’s worth to impose a (small) horizontal separation too. In this way if a flight has
just left a sector j, any other flight coming from an opposite direction (edge) need
to wait some time, namely tOsep, before entering j. We now give the following

Definitions
1. For a P A, a “ pj, j1q, we denote the set of potential chasing conflicting sectors cen-
tered in a with:

KCpaq “ KCpj, j1q “ tk P J | pk, j1q P A, pk, j1q is in a potential chasing conflict with pj, j1qu

Note that j should always be in KCpj, j1q.

2. For a P A, a “ pj, j1q, we denote the set of potential opposing conflicting sectors
opposite to a with:

KOpaq “ KOpj, j1q “ tk P J | pk, j1q P A, pk, j1q is in a potential opposing conflict with pj, j1qu
“ tk P J | pk, j1q P Au z KCpj1j1q

5 A model for ATFM with separation constraints 57

The potential conflict edge sets are such that for all a “ pj, j1q P A hold the
relations KCpaq X KOpaq “ 0 and KCpaq Y KOpaq “ tpk, j1q | pk, j1q P Au. The
first relation states that no edge can be simultaneously in a potential chasing conflict
and in a potential opposing conflict with another edge, while the second relation
states that given an edge a “ pj, j1q, every edge entering sector j1 must be either in
a potential chasing conflict or in a potential opposing conflict with a. Furthermore,
for the sake of consistency, the potential conflict edges sets should be built in such
a way that the following symmetric property holds: k P KCpj, j1q ñ j P KCpk, j1q

and k P KOpj, j1q ñ j P KOpk, j1q. These properties state that if an edge pk, j1q is
in a potential chasing/opposing conflict with another edge pj, j1q then pj, j1q is in a
potential chasing/opposing conflict with pk, j1q

Equipped with the above definitions we are now ready to give a formal description
of the constraints previously introduced.

t`tCsep
ÿ

s“t

l`lCsep
ÿ

m“l

ÿ

kPKCpaq

ÿ

f : pk,j1qPPf

mPLf

j1 , sPT
f

j1

´

xfj1,mpsq ´ x
f
j1,mps´ 1q

¯

ď 1

$

&

%

@ a “ pj, j1q P A,

l P L, t P T
(7a)

yfj1,lptq ` ua,lptq ď 1

$

’

’

’

&

’

’

’

%

@ a “ pj, j1q P A,

f P F s.t. a P Pf
l P Lfj1 , t P rT

f
j1 , T

f
j1 ` I

f
j1s

(7b)

t`tOsep
ÿ

s“t

l`lOsep
ÿ

m“l´lOsep

ÿ

kPKOpaq

ÿ

f 1 : pk,j1qPPf 1

mPLf 1

j1 , sPT
f 1

j1

´

xf
1

j1,mpsq ´ x
f 1

j1,mps´ 1q
¯

ďMaua,lptq

$

&

%

@ a “ pj, j1q P A,

l P L, t P T
(7c)

Constraints p7aq are imposing conditions on the entrance time (remember that the
variables difference xfj,lptq´x

f
j,lpt´1q takes value 1 if and only if flight f enters sector

j at level l at time t). They are defining a 3-dimensional (time,level,edge) conflict
zone in which no more than a flight is allowed to enter a certain sector.

58 5 A model for ATFM with separation constraints

Constraints p7bq and p7cq set together stronger requirements. To impose the
conditions discussed above, we need to have information not just on the entrance
time of a flight in a sector but on the entire time period spent by a flight in a sector.
That is why we make use of yfj,lptq variables (remember that yfj,lptq takes value 1
whenever flight f is crossing sector j at level l at time t): in case of a potential
opposing conflict we want to control flight distances not just at the entrance time
but during all the permanence of a flight in the sector. These constraints then impose
that if a flight f is (still) crossing sector j1 at level l at time t coming from sector j, no
flight coming from an opposite sector k can cross the same sector j1 unless it cross it
either maintaining a vertical distance larger than lOsep or waiting some time (at least
tOsep) after the moment in which f leaves the sector. In this way we are guaranteeing
that flights that are in a potential opposing conflict can’t cross simultaneously the
same sector unless they are vertically well separated. Let us now explain how the two
constraints sets work together to translate this requirement: for every edge a P A
we consider in p7bq a flight f that uses that edge to enter a sector j1 coming from
another sector j. Constraints p7bq tell us that whenever f is travelling inside sector
j1 at a certain (feasible) time t and at a certain (feasible) level (so that yfj1,lptq “ 1)
the binary variable u, depending on the same edge, same level and same time, is
forced to take value 0. Here is where constraints (7c) come into play: they state
that if ua,lptq “ 0 no flight can enter sector j1 using an edge in potential opposing
conflict with a, unless they enter after some time tOsep or maintaining a sufficiently
high vertical separation (at least lOsep levels). If otherwise yfj1,lptq “ 0, meaning that
flight f is not crossing sector j1 at time t at level l, we don’t want to make any
imposition on the flights in a potential opposing conflict with f . In fact, in this case
constraint p7bq is not imposing any restriction on ua,lptq, which is therefore free to
take either 0 or 1 value. This allow the LHS of p7cq to take any value between 0 and
Ma. This latter is a constant counting the number of flights possibly using an edge
in a potential opposing conflict with a. This constant can be further refined defining
it as the number of flights that possibly use an edge in a potential opposing conflict
with edge a at a time s P rt, t` tOseps, at a level m P rl´ lOsep, l` l

O
seps. This means that,

as desired, no imposition is actually made on the number of flights coming from an
opposite direction to that of the edge a.

5 A model for ATFM with separation constraints 59

One way in which safety can be improved is restricting the set KC and conse-
quently enlarging KO. Another one is to increase vertical and horizontal separation
in both constraints set, that is to take big tCsep, lCsep, tOsep and lOsep. Furthermore, for
the sake of flexibility the parameters of flights separation may be sector dependent.
In other words we should write tCseppjq, lCseppjq, tOseppjq and lOseppjq.

Observation
Instead of inequalities p7bq and (7c) one can formally impose opposing separation
constraints through the following relations:

yfj1,lptq `

t`tOsep
ÿ

s“t

s PT f 1

j1

l`lOsep
ÿ

m“l´lOsep

mPLf 1

j1

´

xf
1

j1,mpsq´x
f 1

j1,mps´1q
¯

ď 1

$

’

’

’

&

’

’

’

%

@ f P F , a “ pj, j1q P Pf ,

k P KOpaq, f 1 : pk, j1q P Pf 1 ,

l P Lfj1 , t P rT
f
j1 , T

f
j1 ` I

f
j1s

p7bq1

The idea here is to define a constraint for each couple of flights that are in a pos-
sible opposing conflict. This is of course a possibility, but the number of opposing
separation constraints would dramatically increase. In fact the number of opposing
separation constraints is in the two cases:

p7bq, p7cq : |A||L||T | `
ÿ

pj,j1qPA

ÿ

f s.t.
pj,j1qPPf

|Lfj1 |p|T
f
j1 | ` I

f
j1q

p7bq1 :
ÿ

fPF

ÿ

pj,j1qPA

ÿ

kPKOpj,j1q

ÿ

f : pk,j1qPPf 1

|Lfj1 |p|T
f
j1 | ` I

f
j1q

An upper bound for the number of p7bq, p7cq constraints is |A|p|L||T |`WY pD`Zqq,
an upper bound for the number of p7bq1 constraints is |F ||A|KWY pD ` Zq,
where W “ maxaPA |tf s.t. a P Pfu| and K “ maxaPA |K

Opaq|.

60 5 A model for ATFM with separation constraints

5.7.5 Variables shape and domains

xfk,0pT
f
kq “ 1 @ f P F , k “ P pf,Nf q (8)

xfj,lptq ´ x
f
j,lpt´ 1q ě 0 @ f P F , j P Pf , l P Lfj , t P T

f
j (9)

xfj,lptq, y
f
j,lpsq, ua,mprq P t0, 1u

$

’

’

’

&

’

’

’

%

@ f P F j P Pf , l P Lfj ,

t P T fj , s P rT
f
j , T

f
j ` I

f
j s

a P A, m P L, r P T

(10)

Constraints (8) ensure that each flight must land at the arrival airport by the
last feasible time T fk . This is crucial in order to exclude the trivial solution xfj,lptq “
0 @f P F , j P J , l P L, t P T

Constraints (9) assure the time consistency of xfj,lptq variables: if flight f has en-
tered sector j at level l by time t´ 1 then it must has entered sector j at level l by
time t (and so by every other time s ě t).

Constraints (10) set the model variables to be binary.

5.8 Simple trajectories
The proposed model includes constraints that impose that a flight’s level variation
between two consecutive sectors doesn’t exceed a certain fixed maximal variation.
One more issue that one may want to deal with is how these level variations affect the
trajectory of a flight. In fact, one would like to have flights with a simple trajectory.

5 A model for ATFM with separation constraints 61

1

2

3

DEP a b c d e ARR

Figure 5.5: A zigzagging trajectory

By a simple trajectory we mean a tra-
jectory which is divided into exactly two
simple flight phases, a climb phase and de-
scent phase. This is how an usual flight
trajectory is divided. Our model, however,
doesn’t exclude that unpleasant zigzagging
trajectories are assigned to a flight. As an
example see Figure 5.5: the flight depicted
has a trajectory which is not simple. It is easy to see that such a situation can only
arise when the number of sectors crossed by a fight is larger than 5. In order to
approach this problem we define the following two type of binary variables, which
we will call respectively climbing and descending variables:

pzfj,lptq “

$

’

’

&

’

’

%

1
if flight f has changed its flight level between sector j and sector succpjq
from level l to a (strictly) higher one

0 otherwise

qzfj,lptq “

$

’

’

&

’

’

%

1
if flight f has changed its flight level between sector j and sector succpjq
from level l to a (strictly) lower one

0 otherwise

Constraints p11aq and p11bq include the definition of climbing and descending
variables into the model.

pzfj,lptq ě pxfj,lptq ´ x
f
j,lpt´ 1qq ´

ÿ

j1“succpjq,

mPLf

j1 , mď l

pxfj1,mpt` I
f
j q ´ x

f
j1,mpt` I

f
j ´ 1q (11a)

qzfj,lptq ě pxfj,lptq ´ x
f
j,lpt´ 1qq ´

ÿ

j1“succpjq,

mPLf

j1 , mě l

pxfj1,mpt` I
f
j q ´ x

f
j1,mpt` I

f
j ´ 1q (11b)

@ f P F , @ j P PfzK, l P Lfj , t P T
f
j :

62 5 A model for ATFM with separation constraints

Actually, if j is the first sector crossed by a flight right after take off we don’t
need neither pzfj,lptq nor qzfj,lptq variables. That’s because a flight is always forced to
climb during take off. For the analogous reason (a flight is always forced to descend
during the landing) we do not need neither pzfj,lptq nor qz

f
j,lptq variables if j is the last

sector crossed by a flight right before landing.

We are now ready to impose the simple trajectory constraints.

ÿ

lPLf
j

qzfj,lptq `
ÿ

mPLf

j1

pzfk,mpt`
n´1
ÿ

h“i

Ifh q ď 1

$

’

’

’

&

’

’

’

%

@ f P F s.t. Nf ě 7,

j “ P pf, iq, 1 ă i ă Nf ´ 2,

k “ P pf, nq, i ă n ă Nf ´ 1, t P T fj

p12q

Constraints p12q ensure that whenever a flight has descent between a sector j “
P pf, iq and its successor j1 “ P pf, i ` 1q from level l to a lower one, it can’t climb
from k “ P pf, nq to k1 “ P pf, n`1q from a certain level m to a higher one, whenever
k is a sector which follows sector j in the path of f . In other words it guarantees
that once an aircraft has started descent it can never climb again to an upper level,
hence ensuring simple trajectories.

5.9 Two classes of valid inequalities
In the following we propose two classes of valid inequalities for the set of feasible
solutions of ATFMP. Their purpose is to strengthen the polyhedral structure of
the formulation. This inequalities are inspired by the valid inequalities presented
by Bertsimas, Lulli & Odoni in [4]. In fact, the object of that paper is rerouting.
The authors propose two classes of valid inequalities, exploiting the information of
actual feasible routes in order to make some deductions, then formalized into these
inequalities. We replicate their arguments in the scope of level distribution, which
can be seen as a sort of vertical rerouting. For a comfortable notation we give the
following

5 A model for ATFM with separation constraints 63

Definitions

1. Given f P F , pj, j1q P Pf , l P Lfj we define the set of successor levels of level l
in sector j for flight f as:

Sfj plq :“ Lfj1 X rl ´ δ
f
j , l ` δ

f
j s

2. Given f P F , pj, j1q P Pf , l1 P Lfj we define the set of predecessor levels of level
l1 in sector j1 for flight f as:

Pfj1pl1q :“ tm P Lfj | l1 P rm´ δ
f
j ,m` δ

f
j s u

The first set contains all the levels in sector j1 feasibly reachable by flight f from
level l in sector j. Similarly, the second set contains all the levels in sector j from
which flight f can feasibly reach level l1 in sector j1. We are now ready to present
the following two symmetrical proposition:

Proposition 1 (Fork level inequalities)
The constraints

xfj,lptq ě
ÿ

l1PSf
j plq s.t.

|Pf

j1 pl
1q|“1

xfj1,l1pt` I
f
j q

$

&

%

@f P F , pj, j1q P Pf

l P Lfj , t P T
f
j

are valid inequalities for the set of feasible solutions of ATFMP.

Proof. The inequalities of Proposition 1 state that if a flight f has not entered sector
j at level l by time t (xfj,lptq “ 0) it will not enter sector j1 by time t ` Ifj at any of
the levels feasibly reachable from l, unless these level can be feasibly reached from
other levels belonging to j. A formal proof is the following: fix f P F , pj, j1q P Pf

64 5 A model for ATFM with separation constraints

l P Lfj , t P T
f
j and suppose that

ř

l1PSf
j plq s.t.

|Pf

j1 pl
1q|“1

xfj1,l1pt ` Ifj q “ 1. We need to prove

that xfj,lptq “ 1. By constraints (5) we deduce that
ř

l1P Lf

j1
xfj1,l1pt ` Ifj q “ 1. Hence

by sector connectivity constraints (6a) we have
ř

mPLf
j
xfj,mptq “ 1. If xfj,mptq “ 1

with m ‰ l then for constraints (6b)
ř

l1PSf
j pmq

xfj1,l1pt ` Ifj q “ 1 must hold. Then,
since Sfj pmq X tl1 P S

f
j plq s.t. |P

f
j1pl1q| “ 1u “ H, for constraints (5) xfj1,l1pt` Ifj q “ 0

@ l1 P Sfj plq s.t |P
f
j1pl1q| “ 1, which contradicts our hypothesis. Hence xfj,lptq “ 1. l

For example, see Figure 5.6. If flight f has not entered sector j at level 5 by
time t (xfj,5ptq “ 0), it will not enter sector j1 by time t ` Ifj neither at level
4 nor at level 5, since they can be feasibly reached only from level 5. Hence
xfj1,4pt ` Ifj q ` xfj1,5pt ` Ifj q “ 0. However, since level 6 is feasibly reachable from
level 7 of j, xfj,5ptq “ 0 does not imply that xfj1,6pt` I

f
j q “ 0.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

j j′
δfj = 1

Figure 5.6: A representation of fork&joint inequalities: it depicts a situation in
which a flight f passes from a sector j to the subsequent sector j1 with a maximum
level variation δfj set to 1. The red and green circles indicate which are the feasible
levels for f .

5 A model for ATFM with separation constraints 65

Proposition 2 (Joint level inequalities)
The constraints

xfj1,l1pt` I
f
j q ě

ÿ

l PPf

j1 pl
1q s.t.

|Sf
j plq|“1

xfj,lptq

$

&

%

@f P F , pj, j1q P Pf

l1 P Lfj1 , t P T
f
j

are valid inequalities for the set of feasible solutions of ATFMP.

Proof. A symmetric argument for the level joint inequalities of Proposition 2 can
be made: they state that if a flight f has not entered sector j1 at level l1 by time
t ` Ifj (xfj1,l1pt ` Ifj q “ 0) it cannot has entered sector j by time t at any of the
levels from which l1 can be feasibly reachable, unless these level can feasibly reach
other levels belonging to j1. The symmetrical formal proof is the following: fix
f P F , pj, j1q P Pf l1 P Lfj1 , t P T

f
j and suppose that

ř

lPP f

j1 pl
1q s.t.

|Sf
j plq|“1

xfj,lptq “ 1. We need

to prove that xfj1,l1pt` I
f
j q “ 1. By constraints (5) we deduce that

ř

lP Lf
j
xfj,lptq “ 1.

Hence by sector connectivity constraints (6a) we have
ř

mPLf

j1
xfj1,mpt ` Ifj q “ 1. If

xfj1,mpt ` Ifj q “ 1 with m ‰ l1 then
ř

lPPf

j1 pmq
xfj,lptq “ 1 must hold. Otherwise,

in fact, if
ř

lPPf

j1 pmq
xfj,lptq “ 0 for constraints (6b) xfj1,mpt ` Ifj q “ 0. Then, since

Pfj1pmq X tl P Sfj1pl1q s.t. |Sfj plq| “ 1u “ H, for constraints (5) xfj,lptq “ 0 @ l P Pfj1pl1q

s.t |Sfj plq| “ 1, which contradicts our hypothesis. Hence xfj1,l1pt` I
f
j q “ 1. l

For example, see again Figure 5.6. If flight f has not entered sector j1 at level
6 by time t` Ifj (xfj,6pt` I

f
j q “ 0), it cannot has entered sector j by time t at level 7,

since it can feasibly reach only level 6. Hence xfj1,7ptq “ 0. However, since level 5 can
feasibly reach levels 4 and 5 of j1, xfj,6pt` I

f
j q “ 0 does not imply that xfj1,5ptq “ 0.

66 5 A model for ATFM with separation constraints

Observation
Fork level inequalities looks very similar to level connectivity constraints (6b) of our
model:

xfj,lptq ď
ÿ

l1PSf
j plq

xfj1,l1pt` I
f
j q

$

&

%

@f P F , pj, j1q P Pf

l P Lfj , t P T
f
j

(6b)

One should not be deceived: the opposite sign of the inequality, along with the fact
the the right-hand side summation is made over levels with exactly one predecessor,
implies that the inequalities exposed above carry an information that is contained in
the model only indirectly. In fact, level connectivity constraints state the is a flight
has reached a certain sector j at a certain level l by a certain time t, it then have to
reach the subsequent sector j1 by the time t ` Ijf at a feasible level l1 P Sfj plq. If it
has not reached sector j at level l at time t no implication is available for variable
xfj1,l1pt` I

f
j q. As showed in the proof of Proposition 1, in order to deduce fork level

inequalities we need to step through some not trivial proof passages involving other
constraints types. It is then worth to explicit this information.

5.10 Size of the formulation
Let D be the maximum cardinality of the set of feasible times for flight f to be in
sector j taken over all f and j, i.e.

D “ max
fPF ,jPPf

|T fj |

Let then

X “ max
fPF

|Nf |, Y “ max
fPF ,jPPf

|Lfj | and Z “ max
fPF ,jPPf

Ifj

be respectively the maximum number of sectors that a flight passes through along its
route and the maximum number of levels at which a flight can cross a sector, taken
over all flights. X ě 3, since departure and arrival airports are always counted as
sectors on a flight’s path and a path always contains at least one sector.

5 A model for ATFM with separation constraints 67

We recall that:

• |F | is the total number of flights

• |K| is the total number of airports

• |J | is the total number of sectors

• |L| is the total number of levels

• |T | is the total number of time periods

• |A| is the total number of edges

The actual number of variables xfj,lptq is
ÿ

fPF

ÿ

jPPf

|Lfj ||T
f
j |

An upper bound to the number of variables xfj,lptq is then |F |XYD.
The actual number of variables yfj,lptq is

ÿ

fPF

ÿ

jPPf

|Lfj |p|T
f
j | ` I

f
j q

An upper bound to the number of variables yfj,lptq is then |F |XY pD ` Zq.
The actual number of variables ua,lptq is

|A||L||T |

68 5 A model for ATFM with separation constraints

The exact number of constraints is:

2|K||T | ` |J ||T | `
ÿ

fPF

P pf,Nf´1q
ÿ

j“P pf,2q
|Lfj |p|T

f
j | ` I

f
j q p1q, p2q, p3q, p4q

`
ÿ

fPF

ÿ

jPPf

|Lfj ||T
f
j | `

ÿ

fPF

P pf,Nf´2q
ÿ

j“P pf,1q
p1` |Lfj |q|T

f
j | p5q, p6aq, p6bq

`
ÿ

fPF
|T fP pf,Nf´1q| `

ÿ

pj,j1qPA

ÿ

f s.t.
pj,j1qPPf

|Lfj1 |p|T
f
j1 | ` I

f
j1q p6cq, p7bq

` 3|A||L||T | ` |F | `
ÿ

fPF

ÿ

jPPf

|Lfj |p3|T
f
j | ` I

f
j q p7aq, p7cq, p8q, p9q, p10q

An upper bound on the number of constraints is:

2|K||T | ` |J ||T | ` |F |XY pD ` Zq

`|F |XYD ` |F |Xp1` Y qD

`|F |D ` |A||F |Y pD ` Zq

`3|A||L||T | ` |F | ` |F |XY p3D ` Zq

which can be rewritten as

2|K||T | ` |J ||T | ` 3|A||L||T | ` |F |XY p6D ` 2Zq

` |F |DpX ` 1q ` |A||F |Y pD ` Zq ` |F |

Let us make some computations to see the model size in two different instances. We
first consider a realistic instance with 3000 flights, 112 sectors, 20 airports, 10 levels,
45 times and 5ˆ112 edges (supposing that on average from each sector other 5 sector
are reachable). Suppose then that the upper bounds D,X, Y and Z are 4, 5, 10 and
3 respectively.

5 A model for ATFM with separation constraints 69

The upper bounds for the number of variables are:

xfj,lptq : 3000ˆ 5ˆ 10ˆ 4 “ 600 000

yfj,lptq : 3000ˆ 5ˆ 10ˆ p4` 3q “ 1 050 000

ua,lptq : 5ˆ 12ˆ 10ˆ 45 “ 252 000

An upper bound for the total number of variables is then 1 902 000, almost 2
million variables. An upper bound for the number of constraints is 1 122 937 840,
more than one billion constraints. These number are really big and although such a
problem is still treatable, there’s no hope to have it solved in less then hours.

As Chapter 7 will testify, for smaller instances the model dimensions are much
more treatable. For example, let us take the “super hexagon” airspace of Section
7.1. We have 75 flights, 13 sectors, 6 airports, 9 levels, 45 times and 45 edges. The
upper bounds D,X, Y and Z are 10, 7, 9 and 4 respectively. The upper bounds for
the number of variables in this case are:

xfj,lptq : 75ˆ 7ˆ 9ˆ 10 “ 47 250

yfj,lptq : 75ˆ 7ˆ 9ˆ p10` 4q “ 66 150

ua,lptq : 45ˆ 9ˆ 45 “ 18 225

An upper bound for the total number of variables is then 131 625. An upper bound
for the number of constraints is 808 425. These numbers are far more treatable.

70 5 A model for ATFM with separation constraints

Chapter 6

Model implementation

For the implementation of our model, we have used IBM ILOG CPLEX Optimization
Studio (version 12.6.0) using its Python (version 2.7) interface as the modelling
language. For some insight on CPLEX and Python see Subsection 3.2.2. Every
single problem instance can be described by the data file format described in The
input data are those corresponding to to the notation defined in Section 5.3. This
data file is then readable by the Python code through which we interface with the
CPLEX solver. This program then writes the specific model arising from these
data. In particular it defines the objective function and the constraints for that
particular instance. The way in which Python defines the objective function and
the inequalities is described in Section 6.2. Finally, in the Appendix are entirely
reported a data file sample, named data_super_hexagon_15_NO_SEP.txt, which
describes the 15 flight instance with no separation constrains and nominal capacities
on the “super hexagon” airspace of Section 7.1, and the complete Python program
that implements our model, named ATFMP.py.

71

data_super_hexagon_15_NO_SEP.txt
ATFMP.py

72 6 Model implementation

6.1 Data file format description

In this section we describe the data file format that we used to describe a specific
instance of the ATFMP. This is a .txt file containing all the problem input data as
listed in Section 5.3, written in Python. This file is to be read by the code which
models the problem instance and it then passes the to the CPLEX solver. Let us start
with the description. First of all are defined the set of flights F , the set of airports
K, the set of sectors J , the set of levels L and the set of times T . We implemented
the sets as Python lists, the most common ordered iterable in Python. We defined
flights, levels and times sets by using the Python feature of list comprehension.
FLIGHTS
flights = ["f%d"%n for n in range (1, N_f)]

AIRPORTS
airports = ["ABC" ,...,"XYZ"]

SECTORS
sectors = ["a" ,...,"z" ,]

LEVELS
levels = [l for l in range(N_l)]

TIME WINDOWS
times = [t for t in range(N_t)]

Flights, sectors and airports are represented by strings, levels and times by integers.
We then define the set of paths Pf using a dictionary: to each flight is associated a
tuple (immutable iterable in Python, hence ordered) which contains the flight’s path.
The airports departure and arrival capacities pDk, Akq as well as sectors capacities
Sj are defined using dictionaries.
PATHS
paths = {f:(k_1 ,j_1 ,j_2 ,j_3 ,k_2) ,....}

AIRPORTS CAPACITIES
airp_capacities = {ABC :(ABC_dep_cap , ABC_arr_cap) ,...}

SECTORS CAPACITIES
sect_capacities = {j:j_cap ,...}

.txt

6 Model implementation 73

Are then defined the crossing times: to each flight is associated a tuple whose com-
ponents are the crossing times for each sector in the flight’s path. Note that the first
time of the tuple is 0, because the time to "cross" departure airports is 0. The feasible
departure times are given assigning to each flight the first and the last feasible time
for departure. To each flight is then assigned the last feasible time for arrival.
SECTORS CROSSING TIMES
crossing_times = {f:(0,t_1 ,...) ,...}

(FIRST ,LAST) FEASIBLE DEPARTURE TIMES
FL_dep_times = {f:(t_first_dep , t_last_dep) ,...}

LAST FEASIBLE ARRIVAL TIMES
last_arr_times = {f:t_last_arr ,...}

Afterwards, we define the feasible levels using nested dictionaries: to each flight is
assigned a dictionary which associate to every sector in the flight’s path the feasible
levels for that flight in that sector. The only feasible level for airports is 0. Anal-
ogously, we define the maximum level variations from a certain sector/airport in a
flight’s path to the next one. Then, for each edge of the airspace flow graph G is
assigned the set of potential opposing conflict sectors. Note that the information
of which are the edges of the graph is an implicit information carried by all flights
path. Thus, given the set of potential opposing conflict sectors, the set of potential
chasing conflict sectprs is implicitly given also . These two implicit information are
made explicit by the code ATFM.py (lines 111-127).
FEASIBLE LEVELS
feas_levels = {f:{k:[0] ,j:[l_1_j ,... , l_n_j] ,...}

MAXIMUM LEVEL VARIATIONS
max_level_var = {f:{k: max_lev_var_k ,j: max_lev_var_j ,...} ,...}

OPPOSING CONFLICT SETS
opposing_conflict = {(j_1 ,j_2):[j_opp ,...] ,...}

Finally, are naturally defined separation constants and delay costs.
CHASING CONFLICT SEPARATION
chase_time_separation = cts
chase_level_separation = cls

ATFM.py

74 6 Model implementation

OPPOSING CONFLICT SEPARATION
opp_time_separation = ots
opp_level_separation = ols

GROUND HOLDING COSTS
grh_costs = {f:grh_cost_f ,...}

AIRBORNE DELAY COSTS
abd_costs = {f:abd_cost_f ,...}

6.2 Code description

Let us now describe the Python implementation of the model. The code that we are
going to illustrate is entirely reported in the Appendix. The description of the first
program is the following:

lines 1-3 The CPLEX module is imported and a CPLEX problem object is created.

ll. 4-8 A .txt data file of the form described in the previous section is imported
and read

ll. 10-62 “Reading functions” are defined. They extrapolate from a variable name,
which is a string of the form "x[f,j,l,t]", the variable associated flight,
sector, level and time

ll. 64-86 "Utility functions" are defined. They made explicit some information car-
ried implicitly by the data file, as the departure and arrival airports, the flights
minimal length, the number of sector crossed by a flight, the scheduled and the
feasible arrival times

ll. 88-89 The constant Ma is defined (possibly this information could be written in
the data file)

ll. 91-109 The feasible times intervals T fj “ rT
f
j , T

f
j ` I

f
j s are defined for each flight

and sector on its path

.txt
"x[f,j,l,t]"

6 Model implementation 75

ll. 111-127 The edges of the airspace are constructed as well as the set of possible
chasing conflict sectors.

ll. 129-150 Variables names, which are strings, are defined along with a variables
list containing all the variables

ll. 152-164 The objective function minus the additive constant pcfa ´ cfg qdf ´ cfarf is
defined

ll. 166-169 The additive constant pcfa ´ cfg qdf ´ cfarf is defined

ll. 171-188 Two classes of constraints are defined to pre-process some information:
the xj,lf ptq variables are all 0 whenever t is not a feasible time for flight f to
reach sector j; xj,lf ptq variables are all 0 if t is the last feasible time for a flight
to reach a sector j in its path

ll. 190-433 The problem constraints are defined, following the order of Section 2.3

ll. 437-446 The sense of the objective function, the objective function and the con-
straints are specified to the problem object defined at the beginning

l. 448 The model instance is written on a specific file format (.lp)

l. 450 A time limit for the solver is set

ll. 452-455 The solver is called on the problem object (the model) defined through
the above passages

ll. 459-484 The solution is printed out on a .txt file. This file displays the total
delay cost, the amount of ground holding delay and the amount of airborne
delay. It also displays for each flights the actual departure and arrival times as
well as the amount of ground-holding and airborne delay for that specif flight.

There are different ways in which a model can be created by CPLEX using Python.
The one we choose works as follows. An ordered list containing all the prob-
lem variables names is defined (see line 150 in ATFMP.py). The objective function

.lp
.txt
ATFMP.py

76 6 Model implementation

is identified with a list containing all the coefficient of the linear objective func-
tion, where if a variable does not appear in the objective function its coefficient
is 0 (see lines 152-164). Every problem constraint is identified by a string (e.g.
"cap_arr_airp_const(a,6)") and defined by a list, a number (a float) and a letter
(a string). The list contains two different lists: the first contains the names of the
variables involved in the constraint, the second contains the coefficients of the vari-
ables whose names are in the first list. The string ("G", "L" or "E") defines the sense
of the constraint (ě,ď or “). The float number indicates the right-hand side of the
constraint. Before calling the solver on the problem object, we need to assign to the
object the following attributes: the problem sense (minimize or maximize); the OF
as defined above, the type of the variables (real, integers or binary) and the name of
the variables; the constraint list (containing all the constraints lists described above),
the constraints senses list (containing all the senses of the constraints), the rhs list
(containing all the rhs of the constraints) and the list containing all the constraints
names. Once that the CPLEX model object is defined through the above passages,
the solver can be called on the object by the method .solve()

"cap_arr_airp_const (a,6)"
"G"
"L"
"E"
.solve()

Chapter 7

Computational results

One key question that we want to address is: does our new model improve airspace
utilization? In this chapter, we shall try to answer this question thanks to the com-
putational results that we obtained from our own implementation of the model. For
the implementation we have used IBM ILOG CPLEX Optimization Studio (version
12.6.0) using its Python (version 2.7) interface as the modelling language, on a PC
with Intel R© CoreTM i5-2500 CPU 3.30GHz ˆ 4 processor and Linux Ubuntu 16.04
LTS 64-bit OS. The python code that we implement is entirely reported in the Ap-
pendix, along with the description of the data file form. We solved each ATFM
problem instance first using our model without separation constraints (7a), (7b) and
(7c) and nominal sector capacities, then we solved them introducing to the model
separation constraints with separation parameters tOsep=1, lOsep=1, tVsep=1, lVsep=1 and
increasing nominal mean sector capacities by 30%, 45% and 60%. Furthermore, we
imposed a running time limit of 1 800 seconds for small instances, while the limit was
set to 3 600 seconds for bigger instances. According to the key question asked at the
beginning of the present chapter, our purpose is to see whether or not some improve-
ment is obtained introducing separation constraints and increasing sector capacities
and to understand how the entity of this increase affects the solution. We have used
4 different instances. For the sake of simplicity, in these instances we assumed the

77

78 7 Computational results

capacity parameters to be constant. In the following we show and analyze the results
obtained for each instance.

7.1 Results on “super hexagon” instance

a

b

c

d

e

f
g

h

i

l

m

n

o

HAM

VCE

CDG BER

FCO

LHR

Figure 7.1: The super hexagon air space

In this instances group we consider an
hexagonal airspace composed by 13 sectors
(a, b, c, d, e, f, g, h and i) and containing 6
airports (HAM, VCE, CDG, BER, FCO and
LHR). This airspace is depicted in Figure
7.1. Each sector is vertically subdivided
into 9 levels and we assumed that all levels
are feasible for each flight. The maximum
level variation between sectors is fixed for
every flight to 3. The time periods are 44,
representing 44 15-minutes time windows
summing up to 11 hours. We tested the
model over 5 different sets of flights of in-
creasing size: 15, 20, 30, 60 and 75. For
each instance discussed in this chapter we
set for every flight the ground holding delay
to 1 and the airborne delay to 3. We as-
sumed for each instance an airports mean
capacity of 5 aircrafts per time period, both for departure and arrival, while the
sector basic mean capacity depends on the number of flights taken into account. As
Table 1 illustrates, we obtain a decisive improvement of the solution (except for the
30 flights case). The table rows correspond to the number of flights of the instance,
while columns corresponds to the type of model used (without separation, with sepa-
ration and capacities improved by 30%, 40%, 60%). For each instance are indicated

7 Computational results 79

the number of sectors and airports as well as the basic mean sector capacity and
the airports departure and arrival mean capacity. For each numerical experiment is
reported the total running time, the time to solve the root linear relaxation and the
mean sector capacity of that instance. Finally, for each instance, the table shows
the value of the objective function at the optimal minimum and the entity of the
two types of delay: ground holding delay and airborne delay. Obviously this im-
provement increases as we increase the sector capacities. The entity of the solution
improvement between the first and second column of the table is of:

• 15 flights: +5.7%

• 20 flights: +48.5%

• 30 flights:

$

&

%

´16% lower bound

´76% upper bound

• 60 flights: +42%

• 75 flights: +54%

This results, with the exception of the 30 flights case, shows an improvement of
the solution. This means that for these ATFM problem instances enhancing ca-
pacities by at least 30% allows a more flowing traffic, despite of the separation
constraints.

su
p

er
 h

ex
ag

on

N
O

 S
E

PA
R

A
T

IO
N

S
E

PA
R

A
T

IO
N

, C
A

PA
C

IT
Y

 +
30

%

S
E

PA
R

A
T

IO
N

, C
A

PA
C

IT
Y

 +
45

%

S
E

PA
R

A
T

IO
N

, C
A

PA
C

IT
Y

 +
60

%
D

E
L

A
Y

 T
Y

P
E

O
.F

.
G

H
A

B
O

.F
.

G
H

A
B

O
.F

.
G

H
A

B
O

.F
.

G
H

A
B

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S

E
C

T
O

R
S

13

75
F

L
IG

H
T

S
76

76
0

29
4.

07
se

c.

35
35

0

31
.2

1
se

c.

24
24

0

14
.6

0
se

c.

N
O

 S
O

L
U

T
IO

N
 F

O
U

N
D

IN
 3

60
0.

0
se

c.

A

IR
P

O
R

T
S

6
R

O
O

T
8.

87
 s

ec
.

R
O

O
T

5.
02

se
c.

R
O

O
T

3.
61

se
c.

R
O

O
T

B
A

S
IC

 M
E

A
N

 C
A

PA
C

IT
Y

4

C
A

P.
4

C
A

P.
5.

2
C

A
P.

5.
8

C
A

P.
6.

5
A

IR
P

O
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (
se

p,
ar

r)
5,

 5

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S

E
C

T
O

R
S

13

60
F

L
IG

H
T

S
31

31
0

20
.0

4
se

c.

18
18

0

13
.1

9
se

c.

9
9

0

9.
28

se
c.

8
8

0

10
.0

8
se

c.

A

IR
P

O
R

T
S

6
R

O
O

T
4.

08
 s

ec
.

R
O

O
T

2.
21

 s
ec

.
R

O
O

T
1.

94
 s

ec
.

R
O

O
T

1.
87

 s
ec

.
B

A
S

IC
 M

E
A

N
 C

A
PA

C
IT

Y
4.

12

C
A

P.
4.

2
C

A
P.

5,
4

C
A

P.
6

C
A

P.
6.

54
A

IR
P

O
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (
de

p,
ar

r)
5,

 5

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S

E
C

T
O

R
S

13

30
F

L
IG

H
T

S
25

25
0

68
.0

9
se

c.
U

P
P

E
R

 B
O

U
N

D
:

44
18

00
.1

1
se

c.
U

P
P

E
R

 B
O

U
N

D
:

42
18

00
.1

1
se

c.
U

P
P

E
R

 B
O

U
N

D
:

40
18

00
.1

0
se

c.

A

IR
P

O
R

T
S

6
R

O
O

T
6.

04
 s

ec
.

R
O

O
T

22
.5

7
se

c.
R

O
O

T
 2

3.
17

 s
ec

.
R

O
O

T
26

.9
2

se
c.

B
A

S
IC

 M
E

A
N

 C
A

PA
C

IT
Y

3.
1

L
O

W
E

R
 B

O
U

N
D

:
29

L
O

W
E

R
 B

O
U

N
D

:
27

L
O

W
E

R
 B

O
U

N
D

:
24

C
A

P.
3.

1
C

A
P.

4
C

A
P.

4.
5

C
A

P.
5,

1
 A

IR
P

O
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (
de

p,
ar

r)
5,

 5

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S

E
C

T
O

R
S

13

20
F

L
IG

H
T

S
33

33
0

1.
47

se

c.

17
17

0

1.
19

 s
ec

.

14
14

0

1.
18

 s
ec

.

14
14

0

1.
14

 s
ec

.

A

IR
P

O
R

T
S

6
R

O
O

T
0.

29
 s

ec
.

R
O

O
T

0.
20

se
c.

R
O

O
T

0.
22

se
c.

R
O

O
T

0.
15

se
c.

B
A

S
IC

 M
E

A
N

 C
A

PA
C

IT
Y

2.
6

C
A

P.
2.

6
C

A
P.

3.
4

C
A

P.
3.

8
C

A
P.

4,
2

A
IR

P
O

R
T

S
 M

E
A

N
C

A
PA

C
IT

Y
 (

de
p,

ar
r)

5,
 5

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S
O
L
V
I
N
G

T
I
M
E

S

E
C

T
O

R
S

13

15
F

L
IG

H
T

S
35

32
1

0.
90

se
c.

33
30

1

16
8.

51
se

c.

33
30

1

21
8.

07
se

c.

33
30

1

10
6.

00
 s

ec
.

A

IR
P

O
R

T
S

6
R

O
O

T
0.

12
 s

ec
.

R
O

O
T

2.
69

 s
ec

.
R

O
O

T
2.

18
 s

ec
.

R
O

O
T

1.
26

 s
ec

.
B

A
S

IC
 M

E
A

N
 C

A
PA

C
IT

Y
2.

1

C
A

P.
2.

1
C

A
P.

2.
7

C
A

P.
3

C
A

P.
3.

3
A

IR
P

O
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (
de

p,
ar

r)
5,

 5

Ta
bl

e
1:

R
es
ul
ts

on
“s
up

er
he
xa

go
n”

in
st
an

ce

7 Computational results 81

7.2 Results on “euro” instance

a b

c

d

e

f g

FCO BRI

ZAG

MXP

LJU

BRN VIE

Figure 7.2: The euro air space

In this instances group we consider
an europe-like airspace (imitiating the
airspace comprising Italy, Croatia, Slove-
nia, Switzerland and Austria) composed by
7 sectors (a, b, c, d, e, f and g) each of which
contains exactly one airports. The airports
are: FCO, BRI, MXP, ZAG, LJU, BRN and
VIE. As before, each sector is vertically sub-
divided into 9 levels and we assumed that
all levels are feasible for each flight. The
maximum level variation between sectors is
fixed for every flight to 3. The time periods
are 44. We tested the model over 4 differ-
ent sets of flights of increasing size: 15, 30,
45 and 60. We assumed for each instance an airports mean capacity of 5.3 aircrafts
per time period for departure and 3.9 aircrafts per time period for arrival, while the
sector basic mean capacity is set to be 1.9 in every instance. As Table 2 illustrates,
in this case our model performs very poorly. The entity of the solution improvement
between the first and second column of the table is:

• 15 flights: the solution changes from 0 to 6

• 30 flights: -175%

• 45 flights:

$

&

%

´100% lower bound

´113% upper bound

• 60 flights:

$

&

%

´32% lower bound

´144% upper bound

82 7 Computational results

These results look actually worse than in the previous instance, since the delay costs
are more than double. One possible explanation is that in this instance a lot of flights
cross in their path sector c and each flight which enters sector c prevents, because
of opposing separation constraints, any other flights coming from an opposite edge
to cross sector c, thus provoking a lot of congestion. Furthermore, the fact that the
solution does not really change passing from column 2 to column 4 as the sector
capacities increase, implies that the cause of delays in these columns does not come
from sectors congestion but from separation constraints. In other words separation
constraints are in this case stronger than the capacity constraints. Therefore, the
trade off between increasing nominal sector capacities and introducing separation
constraints is unfavorable, because we do not have any improvement by increasing
capacities while separation constraints just provoke a solution worsening. Another
important observation is that in these instances level distribution is not that efficient
since most of the flight has a short path, during which they cannot reach an high
level because of maximum level variation restrictions. For example, a flight from
FCO to VIE with path (FCO, a, c, g, vie) cannot reach a level higher than 6, since its
maximum level variation is set to 3.

eu
ro

N

O
 S

E
PA

R
A

T
IO

N
S

E
PA

R
A

T
IO

N
, C

A
PA

C
IT

Y
 +

30%

S
E

PA
R

A
T

IO
N

, C
A

PA
C

IT
Y

 +
45%

S

E
PA

R
A

T
IO

N
, C

A
PA

C
IT

Y
 +

60%
D

E
L

A
Y

 T
Y

P
E

F.O
G

H
A

B
F.O

G
H

A
B

F.O
G

H
A

B
F.O

G
H

A
B

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S
E

C
T

O
R

S
7

60
F

L
IG

H
T

S
64

61
1

3.44 sec.
U

P
P

E
R

 B
O

U
N

D
:

149
1800.05 sec.

U
P

P
E

R
 B

O
U

N
D

:
126

1800.10 sec.

U
P

P
E

R
 B

O
U

N
D

:
154

1800.04 sec.

A
IR

P
O

R
T

S
7

R
O

O
T

0.36 sec.

R
O

O
T

7.28
sec.

R
O

O
T

7.55
sec.

R
O

O
T

5.61
sec.

B
A

S
IC

 M
E

A
N

 C
A

PA
C

IT
Y

1,9

L
O

W
E

R
 B

O
U

N
D

:
81

L
O

W
E

R
 B

O
U

N
D

:
80

L
O

W
E

R
 B

O
U

N
D

:
77

C
A

P.
1.9

C
A

P.
2.5

C
A

P.
2.8

C
A

P.
3.1

A
IR

PO
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (dep,arr)
5.3, 3.9

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S
E

C
T

O
R

S
7

45
F

L
IG

H
T

S
23

23
0

 1.56 sec.
U

P
P

E
R

 B
O

U
N

D
:

49
3606.4

sec.

49
49

0

5418.5
sec.

U
P

P
E

R
 B

O
U

N
D

:
48

1824.37
sec.

A
IR

P
O

R
T

S
7

R
O

O
T

0.18 sec.
R

O
O

T
0.14 sec.

R
O

O
T

1.58 sec.
R

O
O

T
1.32 sec.

B
A

S
IC

 M
E

A
N

 C
A

PA
C

IT
Y

1,9

L
O

W
E

R
 B

O
U

N
D

:
46

L
O

W
E

R
 B

O
U

N
D

:
42

C
A

P.
1.9

C
A

P.
2.5

C
A

P.
2.8

C
A

P.
3.1

A
IR

PO
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (dep,arr)
5.3, 3.9

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S
E

C
T

O
R

S
7

30
F

L
IG

H
T

S
8

8
0

1.60 sec.

22
22

0

422.27
sec.

22
22

0

 459.41
sec.

22
22

0

466.99 sec.

A
IR

P
O

R
T

S
7

R
O

O
T

0.12 sec.
R

O
O

T
0.43 sec.

R
O

O
T

0.35 sec.
R

O
O

T
0.39 sec.+

B
A

S
IC

 M
E

A
N

 C
A

PA
C

IT
Y

1,9

C
A

P.
1.9

C
A

P.
2.5

C
A

P.
2.8

C
A

P.
3.1

A
IR

PO
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (dep,arr)
5.3, 3.9

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S
E

C
T

O
R

S
7

15
F

L
IG

H
T

S
0

0
0

0.79 sec.

6
6

0

4.45 sec.

6
6

0

5.08 sec.

6
6

0

5.78 sec.

A
IR

P
O

R
T

S
7

R
O

O
T

0.02 sec.
R

O
O

T
0.10 sec.

R
O

O
T

0.08 sec.
R

O
O

T
0.10 sec.

B
A

S
IC

 M
E

A
N

 C
A

PA
C

IT
Y

1,9

C
A

P.
1.9

C
A

P.
2.5

C
A

P.
2.8

C
A

P.
3.1

A
IR

PO
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (dep,arr)
5.3, 3.9

Table
2:

R
esults

on
“euro”

instance

84 7 Computational results

7.3 Results on “rectangle” instance
In this instances group we consider an airspace composed by 9 sectors (a, b, c, d, e,
f, g, h and i) and 5 airports. The airports are: CDG, HAM, BER, FCO and VCE. Each
sector is vertically subdivided into 9 levels and we assumed that all levels are feasible
for each flight. The maximum level variation between sectors is fixed for every flight
to 3. The time periods are 44. We tested the model over 3 different sets of flights of in-
creasing size: 30, 45 and 50. We assumed for each instance an airports mean capacity
of 9 aircrafts per time period for departure and 8.6 aircrafts per time period for ar-
rival, while the sector basic mean capacity is set to be 5.3 in every instance. Table 3
illustrates that also in this case our model shows really poor performances. The entity
of the solution improvement between the first and second column of the table is of:

a b c

d

e

f

g

h

i

VCE

CDG HAM

BERFCO

Figure 7.3: The rectangle air space

• 30 flights: -3 800%

• 45 flights: -745,5%

• 50 flights:

$

&

%

´616, 7% lower bound

´1025% upper bound

One can make the same arguments as
above. The model probably performs
poorly when flights path are short and
therefore higher levels are not actually fea-
sible.

rectan
gle

N

O
 S

E
PA

R
A

T
IO

N
S

E
PA

R
A

T
IO

N
, C

A
PA

C
IT

Y
 +

30%

S
E

PA
R

A
T

IO
N

, C
A

PA
C

IT
Y

 +
45%

S

E
PA

R
A

T
IO

N
, C

A
PA

C
IT

Y
 +

60%
D

E
L

A
Y

 T
Y

P
E

F.O
G

H
A

B
F.O

G
H

A
B

F.O
G

H
A

B
F.O

G
H

A
B

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S
E

C
T

O
R

S
9

50
F

L
IG

H
T

S
12

12
0

4.05 sec.
U

P
P

E
R

 B
O

U
N

D
:

135
3600.06

sec
U

P
P

E
R

 B
O

U
N

D
:

124
3600.05

sec.
U

P
P

E
R

 B
O

U
N

D
:

115
3600.04

sec.

A
IR

P
O

R
T

S
5

R
O

O
T

0.33 sec.
R

O
O

T
53.82 sec.

R
O

O
T

52.67 sec.
R

O
O

T
52.60 sec.

B
A

S
IC

 M
E

A
N

 C
A

PA
C

IT
Y

5.3

L
O

W
E

R
 B

O
U

N
D

:
86

L
O

W
E

R
 B

O
U

N
D

:
86

L
O

W
E

R
 B

O
U

N
D

:
86

C
A

P.
5.3

C
A

P.
6.9

C
A

P.
7.8

C
A

P.
8.4

A
IR

PO
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (dep,arr)
9, 8.6

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S
E

C
T

O
R

S
9

45
F

L
IG

H
T

S
11

11
0

3.35 sec.
U

P
P

E
R

 B
O

U
N

D
:

94
3600.07

sec.

93
93

0

2604.05
sec.

93
93

0

2115.35
sec.

A
IR

P
O

R
T

S
5

R
O

O
T

 0.28 sec.
R

O
O

T
24.96 sec.

R
O

O
T

27.00 sec.
R

O
O

T
29.10 sec.

B
A

S
IC

 M
E

A
N

 C
A

PA
C

IT
Y

5.3

L
O

W
E

R
 B

O
U

N
D

:
93

C
A

P.
5.3

C
A

P.
6.9

C
A

P.
7.8

C
A

P.
8.4

A
IR

PO
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (dep,arr)
9, 8.6

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S
E

C
T

O
R

S
9

30
F

L
IG

H
T

S
1

1
0

2.03 sec.

39
39

0

43.30 sec.

39
39

0

35.07 sec.

39
39

0

16.09 sec.

A
IR

P
O

R
T

S
5

R
O

O
T

0.14 sec.
R

O
O

T
3.28 sec.

R
O

O
T

3.21 sec.
R

O
O

T
4.87 sec.

B
A

S
IC

 M
E

A
N

 C
A

PA
C

IT
Y

5.3

C
A

P.
5.3

C
A

P.
6.9

C
A

P.
7.8

C
A

P.
8.4

A
IR

PO
R

T
S

 M
E

A
N

C
A

PA
C

IT
Y

 (dep,arr)
9, 8.6

Table
3:

R
esults

on
“rectangle”

instance

86 7 Computational results

7.4 Results on “donut” instance

a
b

c
d

e

f

g

h

i

ATH AMS

BER

CDGCIA

DUB

EDI

GVA

IST

Figure 7.4: The donut air space

In this last instances group we consider an
airspace composed by 9 sectors (a, b, c,
d, e, f, g, h and i) and 9 airports. The
airports are: ATH, AMS, BER, CDG, CIA,
DUB, EDI, GVA and IST. Each sector is ver-
tically subdivided into 9 levels and we as-
sumed that all levels are feasible for each
flight. The maximum level variation be-
tween sectors is fixed for every flight to 3.
The time periods are 44, representing 44 15-
minutes time windows summing up to 11
hours. We tested the model over 2 different
sets of flights of size 30 and 45. We assumed
for each instance an airports mean capacity
of 6.3 aircrafts per time period, both for de-
parture and arrival, while the sector basic
mean capacity is set to be 6 in one case and
3 in the other one. The results are illustrated by Table 3. The solution improvement
between the first and second column of the table is in the two cases:

Basic mean capacity: 3

• 30 flights:

$

&

%

`17.5% lower bound

`1.6% upper bound

• 45 flights:

$

&

%

`21, 7% lower bound

´4.3% upper bound

Basic mean capacity: 6

• 30 flights:

$

&

%

´716, 6% lower bound

´783, 3% upper bound

• 45 flights:

$

&

%

´1 400% lower bound

´2 100% upper bound

7 Computational results 87

This example shows that the model can improve the solution when nominal ca-
pacities are low, while if capacities are high adding separation constraints is in com-
parison much more restrictive.

7.5 Discussion
Driven from the results discussed in the above sections, we conducted further ex-
periments. These experiments showed the correctness of the hypothesis that short
paths combined with low maximum level variations restricts flights possibilities to
distribute. New experiments conducted on the two donut airspace cases without
imposing any level maximum variation give the following results:

Basic mean capacity : 6
flights no separation separation, cap +30% separation, cap +45% separation, cap +60%

30 1 4 4 4
45 6 10 10 10

Basic mean capacity : 3
flights no separation separation, cap +30% separation, cap +45% separation, cap +60%

30 23 8 5 3
45 63 30-35 18-26 17-18

where two numbers separated by the hyphen (-) are solution’s lower and upper
bounds.
In this case the solution improvements between the first and the second column are
in the two cases:

Basic mean capacity: 3

• 30 flights: 65%

• 45 flights:

$

&

%

`52, 4% lower bound

`44.4% upper bound

Basic mean capacity: 6

• 30 flights: ´300%

• 45 flights: ´66.7%

d
on

u
t

N

O
 S

E
PA

R
A

T
IO

N
S

E
PA

R
A

T
IO

N
, C

A
PA

C
IT

Y
 +

30
%

S

E
PA

R
A

T
IO

N
, C

A
PA

C
IT

Y
 +

45
%

S

E
PA

R
A

T
IO

N
, C

A
PA

C
IT

Y
 +

60
%

D
E

L
A

Y
 T

Y
P

E
F.

O
G

H
A

B
F.

O
G

H
A

B
F.

O
G

H
A

B
F.

O
G

H
A

B

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S

E
C

T
O

R
S

9

45
F

L
IG

H
T

S
6

3
1

2.
62

 s
ec

.
U

P
P

E
R

 B
O

U
N

D
:

53
18

00
.0

4
se

c.
U

P
P

E
R

 B
O

U
N

D
:

61
18

00
.0

6
se

c.
U

P
P

E
R

 B
O

U
N

D
:

57
18

00
.1

1
se

c.

A

IR
P

O
R

T
S

9
R

O
O

T
0.

25
 s

ec
.

R
O

O
T

27
.9

9
se

c.
R

O
O

T
28

.6
9

se
c.

R
O

O
T

27
.7

2
se

c.
B

A
S

IC
 M

E
A

N
 C

A
PA

C
IT

Y
6

L
O

W
E

R
 B

O
U

N
D

:
49

L
O

W
E

R
 B

O
U

N
D

:
49

L
O

W
E

R
 B

O
U

N
D

:
49

C
A

P.
6

C
A

P.
7.

8
C

A
P.

8.
6

C
A

P.
9.

6
A

IR
PO

R
T

S
 M

E
A

N
C

A
PA

C
IT

Y
 (

de
p,

ar
r)

6.
3,

 6
.3

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S

E
C

T
O

R
S

9

30
F

L
IG

H
T

S
1

1
0

2.
19

 s
ec

.
U

P
P

E
R

 B
O

U
N

D
:

22
18

00
.0

9
se

c.
U

P
P

E
R

 B
O

U
N

D
:

22
18

00
.1

0
se

c.
U

P
P

E
R

 B
O

U
N

D
:

22
18

00
.0

5
se

c.

A

IR
P

O
R

T
S

9
R

O
O

T
0.

17
 s

ec
.

R
O

O
T

9.
89

 s
ec

.
R

O
O

T
9.

59
 s

ec
.

R
O

O
T

9.
62

 s
ec

.
B

A
S

IC
 M

E
A

N
 C

A
PA

C
IT

Y
6

L
O

W
E

R
 B

O
U

N
D

:
15

L
O

W
E

R
 B

O
U

N
D

:
15

L
O

W
E

R
 B

O
U

N
D

:
15

C
A

P.
6

C
A

P.
7.

8
C

A
P.

8.
6

C
A

P.
9.

6
A

IR
PO

R
T

S
 M

E
A

N
C

A
PA

C
IT

Y
 (

de
p,

ar
r)

6.
3,

 6
.3

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S

E
C

T
O

R
S

9

45
F

L
IG

H
T

S
63

60
1

6.
52

 s
ec

.
U

P
P

E
R

 B
O

U
N

D
:

62
18

00
.0

6
se

c.
U

P
P

E
R

 B
O

U
N

D
:

57
18

00
.0

6
se

c.
U

P
P

E
R

 B
O

U
N

D
:

65
18

00
.0

4
se

c.

A

IR
P

O
R

T
S

9
R

O
O

T
0.

59
 s

ec
.

R
O

O
T

30
.0

2
se

c.
R

O
O

T
30

.2
8

se
c.

R
O

O
T

25
.8

7
se

c.
B

A
S

IC
 M

E
A

N
 C

A
PA

C
IT

Y
3

L
O

W
E

R
 B

O
U

N
D

:
52

L
O

W
E

R
 B

O
U

N
D

:
48

L
O

W
E

R
 B

O
U

N
D

:
49

C
A

P.
3

C
A

P.
3.

9
C

A
P.

4.
3

C
A

P.
4,

8
A

IR
PO

R
T

S
 M

E
A

N
C

A
PA

C
IT

Y
 (

de
p,

ar
r)

6.
3,

 6
.3

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

SO
LV

IN
G

T
IM

E
SO

LV
IN

G
T

IM
E

S

E
C

T
O

R
S

9

30
F

L
IG

H
T

S
23

23
0

25
.7

6
se

c.
U

P
P

E
R

 B
O

U
N

D
:

24
18

00
.0

4
se

c.
U

P
P

E
R

 B
O

U
N

D
:

22
18

00
.0

5
se

c.
U

P
P

E
R

 B
O

U
N

D
:

22
18

00
.0

8
se

c.

A

IR
P

O
R

T
S

9
R

O
O

T
5.

40
 s

ec
.

R
O

O
T

11
.5

1
se

c.
R

O
O

T
14

.1
0

se
c.

R
O

O
T

12
.6

5
se

c.
B

A
S

IC
 M

E
A

N
 C

A
PA

C
IT

Y
3

L
O

W
E

R
 B

O
U

N
D

:
18

L
O

W
E

R
 B

O
U

N
D

:
16

L
O

W
E

R
 B

O
U

N
D

:
15

C
A

P.
3

C
A

P.
3.

9
C

A
P.

4.
3

C
A

P.
4,

8
A

IR
P

O
R

T
S

M

E
A

N
C

A
PA

C
IT

Y
 (

d
e
p

,a
rr

)
6
.3

,
6
.3

Ta
bl

e
4:

R
es
ul
ts

on
“d

on
ut
”
in
st
an

ce

7 Computational results 89

Having relaxed level variation restriction has reduced the worsening of the solu-
tion for the case of 6 basic mean capacity and has increase the improvement of the
solution for the case of 3 basic mean capacity. The deductions that we can make
from these observation are quite natural and are the following: separation constraints
effectiveness increases as the mean sector nominal capacity decrease. Separation ef-
fectiveness increases as the mean maximum level variation 1increases. Separation
effectiveness increases as the mean length of flights’ paths increases. One last and
more relevant conclusion that we can draw is that potential opposing conflict sepa-
ration constraints are maybe too restrictive and they hence need a revision.

In the next chapter final conclusions are drawn and possible improvements and
future developments are discussed.

90 7 Computational results

Chapter 8

Conclusions

In this thesis, we proposed an integer 0´1 linear programming model to address the
ATFM problem. The motivations to address such a problem, along with some gen-
eral background on ATM, were first provided. We then gave some detail on integer
linear programming theory and on modern available software. Next, we introduced
the key ideas of our work and we described the specific characteristics of the ATFM
problem that we wanted to include in our model as well as the strategies that we
have adopted to address the problem. Afterwards, the mathematical details of the
model were given. In particular, the main original contributions of our work have
been accurately described: the formalization of the separation constraints, the in-
troduction of simple trajectory constraints and the inclusion of two classes of valid
inequalities. The validity of these inequalities has been then formally proven. Sub-
sequently, we described the implementation of the model using the Python interface
to the CPLEX solver. Finally, we reported the results of some computational tests
on small instances, obtained using the implemented program.

The novel class of separation constraints that we introduced was proven to be
actually effective. Conceptually, the main idea of our work was to control the air traf-
fic flow in more detail then in the original model [5] from which our research began.

91

92 8 Conclusions

As a conclusion, our model allows to describe trajectory interactions more precisely,
while it is still able to well capture macroscopic and general features of the prob-
lem. Hence, looking for a more accurate description of trajectories interactions, by
means of decision variables similar to the one we used, can be a good and profitable
direction to take for future research. This thesis has shown that such an approach
is absolutely possible, since we manage to follow it successfully, without leaving the
rich and powerful framework of integer linear programming. As a last consideration,
we feel that some improvement of our model can be certainly achieved. We now
suggest some possibilities that should be taken into account for future research.

After having conducted some experiments on small instances, one of the con-
clusion that we drew is that the class of constraints that we called opposing sepa-
ration constraints is maybe too restrictive. In fact, the model performs well under
some particular conditions (such as low nominal sector capacity and high maximum
level variation). Otherwise the solution improvements can be negative. Our analy-
sis suggests that the cause are opposing separation constraints, because among the
separation constraints they are the most restrictive. These constraints then might
need to be revised. One possible direction to future improvement of the model can
be the relaxation of this separation requirements.

Future development of the model might include a reformulation of the objec-
tive function, e.g. including minimization of the number of flights exceeding a given
time delay, as well as fairness consideration, like in previous works based on the same
decision variables as the one we considered. It would be also easy to include speed
control in the model, allowing more flexible solutions. Of particular interest would
finally be the inclusion of rerouting in our model, hence describing complete 4D tra-
jectories. In this case a possible objective function could also include penalization of
alternative routes to the scheduled one.

8 Conclusions 93

As a conclusive suggestion, we would surely conduct more computational ex-
periments in order to test the model behaviour on bigger instances. To this purpose,
one should definitely take into consideration the inclusion in the model implementa-
tion of the valid inequalities exposed in Section 5.9. This could in fact reduce the
running time of the implementation, allowing faster tests.

94 8 Conclusions

Appendix

In the following we include both an example of a data file and the entire code of the
Python program that we wrote for the model implementation.

data_super_hexagon_15_NO_SEP.txt

1 ## INSTANCE DESCRIPTION
2 # In this problem instance we test the model without separation constraints
3 # and with nominal capacities on the super_hexagon airspace :
4 #
5 # _____________________
6 # /\a /\
7 # /f \ HAM /b \
8 # / \ / \
9 # / \ ______________ / \

10 # / /\g /\ \
11 # / /n \ /h \ \
12 # / / \ / \ \
13 # / / \ _______ / \ \
14 # / / LHR /o \ BER \ \
15 # / / / \ \ \
16 # / _______ / _______ / \ _______ \ _______ \
17 # \e \m \ /i /c /
18 # \ \ \ / / /
19 # \ \ \ _______ / / /
20 # \ \ /l \ / /
21 # \ CDG \ / \ / VCE /
22 # \ \ / FCO \ / /
23 # \ \/ _____________ \/ /
24 # \ /d \ /
25 # \ / \ /
26 # \ / \ /
27 # \/ _____________________ \/
28
29 ## FLIGHTS
30 flights = ["f%d"%n for n in range (1 ,16)]
31
32 ## AIRPORTS
33 airports = ["HAM","BER","VCE","FCO","CDG","LHR"]
34
35 ## SECTORS
36 sectors = ["a","b","c","d","e","f","g","h","i","l","m","n","o"]
37
38 ## LEVELS
39 levels = [0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9]
40
41 ## TIME WINDOWS
42 times = [t for t in range (35)]

95

data_super_hexagon_15_NO_SEP.txt

44 ## PATHS
45 paths = {
46 "f1":("HAM","a","b","c","VCE"),
47 "f2":("HAM","a","g","h","i","c","VCE"),
48 "f3":("HAM","a","g","o","i","c","VCE"),
49 "f4":("HAM","a","f","e","CDG"),
50 "f5":("HAM","a","g","n","m","e","CDG"),
51 "f6":("HAM","a","g","o","m","e","CDG"),
52 "f7":("HAM","a","b","h","BER"),
53 "f8":("HAM","a","g","h","BER"),
54 "f9":("HAM","a","g","o","h","BER"),
55 "f10":("HAM","a","f","n","LHR"),
56 "f11":("HAM","a","g","n","LHR"),
57 "f12":("HAM","a","g","o","n","LHR"),
58 "f13":("HAM","a","g","o","l","FCO"),
59 "f14":("VCE","c","b","a","HAM"),
60 "f15":("VCE","c","i","h","g","a","HAM")}
61
62 ## AIRPORTS CAPACITIES
63 airp_capacities = {
64 "FCO":(3.0 ,4.0) ,
65 "CDG":(5.0 ,4.0) ,
66 "VCE":(4.0 ,1.0) ,
67 "HAM":(5.0 ,6.0) ,
68 "LHR":(6.0 ,1.0) ,
69 "BER":(7.0 ,6.0)}
70
71 ## SECTORS CAPACITIES
72 sect_capacities = {
73 "a":2.0 ,
74 "b":2.0 ,
75 "c":2.0 ,
76 "d":2.0 ,
77 "e":2.0 ,
78 "f":2.0 ,
79 "g":2.0 ,
80 "h":2.0 ,
81 "i":2.0 ,
82 "l":2.0 ,
83 "m":2.0 ,
84 "n":2.0 ,
85 "o":3.0}
86
87 ## SECTORS CROSSING TIMES
88 crossing_times = {
89 "f1":(0 ,2 ,4 ,2 ,0) ,
90 "f2":(0 ,1 ,1 ,3 ,1 ,1 ,0) ,
91 "f3":(0 ,1 ,2 ,2 ,2 ,1 ,0) ,
92 "f4":(0 ,2 ,4 ,2 ,0) ,
93 "f5":(0 ,1 ,1 ,3 ,1 ,1 ,0) ,
94 "f6":(0 ,1 ,2 ,2 ,2 ,1 ,0) ,
95 "f7":(0 ,2 ,1 ,1 ,0) ,
96 "f8":(0 ,1 ,2 ,1 ,0) ,
97 "f9":(0 ,1 ,2 ,1 ,1 ,0) ,
98 "f10":(0 ,2 ,1 ,1 ,0) ,
99 "f11":(0 ,1 ,2 ,1 ,0) ,

100 "f12":(0 ,1 ,2 ,1 ,1 ,0) ,
101 "f13":(0 ,1 ,2 ,3 ,1 ,0) ,
102 "f14":(0 ,2 ,4 ,2 ,0) ,
103 "f15":(0 ,1 ,1 ,3 ,1 ,1 ,0)}

96

105 ## (FIRST ,LAST) FEASIBLE DEPARTURE TIMES
106 FL_dep_times = {
107 "f1":(1 ,1) ,
108 "f2":(2 ,2) ,
109 "f3":(2 ,20) ,
110 "f4":(2 ,20) ,
111 "f5":(3 ,20) ,
112 "f6":(4 ,20) ,
113 "f7":(3 ,20) ,
114 "f8":(3 ,20) ,
115 "f9":(1 ,20) ,
116 "f10":(1 ,20) ,
117 "f11":(3 ,3) ,
118 "f12":(2 ,20) ,
119 "f13":(2 ,20) ,
120 "f14":(3 ,20) ,
121 "f15":(2 ,20)}
122
123 ## LAST FEASIBLE ARRIVAL TIMES
124 last_arr_times = {"f%d"%n:30 for n in range (1 ,16)}
125
126 ## FEASIBLE LEVELS
127 feas_levels = {
128 "f1":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"b":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"c":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,

"VCE":[0]} ,
129 "f2":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"g":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"h":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,

"i":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"c":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"VCE":[0]} ,
130 "f3":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"g":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"o":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,

"i":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"c":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"VCE":[0]} ,
131 "f4":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"f":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"e":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,

"CDG":[0]} ,
132 "f5":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"g":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"n":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,

"m":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"e":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"CDG":[0]} ,
133 "f6":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"g":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"o":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,

"m":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"e":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"CDG":[0]} ,
134 "f7":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"b":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"h":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,

"BER":[0]} ,
135 "f8":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"g":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"h":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,

"BER":[0]} ,
136 "f9":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"g":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"o":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,

"h":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"BER":[0]} ,
137 "f10":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"f":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"n"

:[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"LHR":[0]} ,
138 "f11":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"g":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"n"

:[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"LHR":[0]} ,
139 "f12":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"g":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"o"

:[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"n":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"LHR":[0]} ,
140 "f13":{"HAM":[0] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"g":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"o"

:[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"l":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"FCO":[0]} ,
141 "f14":{"VCE":[0] ,"c":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"b":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"a"

:[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"HAM":[0]} ,
142 "f15":{"VCE":[0] ,"c":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"i":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"h"

:[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"g":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"a":[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9] ,"HAM" :[0]}}
143
144 ## MAXIMUM LEVEL VARIATIONS
145 max_level_var = {
146 "f1":{"HAM":3,"a":3,"b":3,"c":3},
147 "f2":{"HAM":3,"a":3,"g":3,"h":3,"i":3,"c":3},
148 "f3":{"HAM":3,"a":3,"g":3,"o":3,"i":3,"c":3},
149 "f4":{"HAM":3,"a":3,"f":3,"e":3},
150 "f5":{"HAM":3,"a":3,"g":3,"n":3,"m":3,"e":3},
151 "f6":{"HAM":3,"a":3,"g":3,"o":3,"m":3,"e":3},
152 "f7":{"HAM":3,"a":3,"b":3,"h":3},
153 "f8":{"HAM":3,"a":3,"g":3,"h":3},
154 "f9":{"HAM":3,"a":3,"g":3,"o":3,"h":3},
155 "f10":{"HAM":3,"a":3,"f":3,"n":3},
156 "f11":{"HAM":3,"a":3,"g":3,"n":3},
157 "f12":{"HAM":3,"a":3,"g":3,"o":3,"n":3},
158 "f13":{"HAM":3,"a":3,"g":3,"o":3,"l":3},
159 "f14":{"VCE":3,"c":3,"b":3,"a":3},
160 "f15":{"VCE":3,"c":3,"i":3,"h":3,"g":3,"a":3}}

97

162 ## OPPOSING CONFLICT SETS
163 opposing_conflict = {
164 ("a","b"):["c","h"],
165 ("a","f"):["e","n"],
166 ("a","g"):["n","h","o"],
167 ("b","a"):["f","g"],
168 ("b","c"):["d","i"],
169 ("b","h"):["g","i","o"],
170 ("c","b"):["a","h"],
171 ("c","d"):["e","l"],
172 ("c","i"):["h","l","o"],
173 ("d","c"):["b","i"],
174 ("d","e"):["f","m"],
175 ("d","l"):["i","m","o"],
176 ("e","d"):["c","l"],
177 ("e","f"):["a","n"],
178 ("e","m"):["l","n","o"],
179 ("f","a"):["b","g"],
180 ("f","e"):["d","m"],
181 ("f","n"):["g","m","o"],
182 ("g","a"):["b","f"],
183 ("g","h"):["b","i"],
184 ("g","n"):["f","m"],
185 ("g","o"):["i","l","m"],
186 ("h","g"):["a","n"],
187 ("h","i"):["c","l"],
188 ("h","o"):["l","m","n"],
189 ("i","c"):["b","d"],
190 ("i","h"):["b","g"],
191 ("i","l"):["d","m"],
192 ("i","o"):["g","m","n"],
193 ("l","i"):["c","h"],
194 ("l","m"):["e","n"],
195 ("l","o"):["g","h","n"],
196 ("m","e"):["d","f"],
197 ("m","l"):["d","i"],
198 ("m","n"):["f","g"],
199 ("m","o"):["g","h","i"],
200 ("n","g"):["a","h"],
201 ("n","m"):["e","l"],
202 ("n","o"):["h","i","l"],
203 ("o","g"):["a"],
204 ("o","h"):["b"],
205 ("o","i"):["c"],
206 ("o","l"):["d"],
207 ("o","m"):["e"],
208 ("o","n"):["f"]}
209
210 ## CHASING CONFLICT SEPARATION
211 chase_time_separation = 0
212 chase_level_separation = 0
213
214 ## OPPOSING CONFLICT SEPARATION
215 opp_time_separation = 0
216 opp_level_separation = 0
217
218 ## GROUND HOLDING COSTS
219 grh_costs = {"f%d"%n:1.0 for n in range (1 ,16)}
220
221 ## AIRBORNE DELAY COSTS
222 abd_costs = {"f%d"%n:3.0 for n in range (1 ,16)}

98

ATFMP.py

1 import cplex
2
3 problem = cplex.Cplex ()
4
5 prob_name = input(’Select problem data name: ’)
6
7 f = open(’data_%s.txt ’%prob_name ,’r’)
8 exec(f.read ())
9

10 ## READING FUNCTIONS
11 def flight (var):
12 if var [4] == ’,’: return var [2:4]
13 elif var [5] == ’,’: return var [2:5]
14 elif var [6] == ’,’: return var [2:6]
15 def sector (var):
16 if var [4] == ’,’:
17 if var [5] in sectors : return var [5]
18 else: return var [5:8]
19 elif var [5] == ’,’:
20 if var [6] in sectors : return var [6]
21 else: return var [6:9]
22 elif var [6] == ’,’:
23 if var [7] in sectors : return var [7]
24 else: return var [7:10]
25 def level(var):
26 if var [4] == ’,’:
27 if var [6] == ’,’: return int(var [7])
28 elif var [8] == ’,’: return int(var [9])
29 elif var [5] == ’,’:
30 if var [7] == ’,’: return int(var [8])
31 elif var [9] == ’,’: return int(var [10])
32 elif var [6] == ’,’:
33 if var [8] == ’,’: return int(var [9])
34 elif var [10] == ’,’: return int(var [11])
35 def time(var):
36 if var [4] == ’,’:
37 if var [6] == ’,’:
38 if var [10] == ’]’: return int(var [9])
39 elif var [11] == ’]’: return int(var [9:11])
40 elif var [12] == ’]’: return int(var [9:12])
41 elif var [8] == ’,’:
42 if var [12] == ’]’: return int(var [11])
43 elif var [13] == ’]’: return int(var [11:13])
44 elif var [14] == ’]’: return int(var [11:14])
45 if var [5] == ’,’:
46 if var [7] == ’,’:
47 if var [11] == ’]’: return int(var [10])
48 elif var [12] == ’]’: return int(var [10:12])
49 elif var [13] == ’]’: return int(var [10:13])
50 elif var [9] == ’,’:
51 if var [13] == ’]’: return int(var [12])
52 elif var [14] == ’]’: return int(var [12:14])
53 elif var [15] == ’]’: return int(var [12:15])
54 if var [6] == ’,’:
55 if var [8] == ’,’:
56 if var [12] == ’]’: return int(var [11])
57 elif var [13] == ’]’: return int(var [11:13])
58 elif var [14] == ’]’: return int(var [11:14])
59 elif var [10] == ’,’:
60 if var [14] == ’]’: return int(var [13])
61 elif var [15] == ’]’: return int(var [13:15])
62 elif var [16] == ’]’: return int(var [13:16])

99

ATFMP.py

64 ## UTILITY FUNCTIONS
65 def dep(var):
66 return paths[flight (var)][0]
67 def arr(var):
68 return paths[flight (var)][-1]
69 def len_flight (f):
70 len_flight = 0
71 for k in crossing_times [f]:
72 len_flight += k
73 return len_flight
74 def len_flight_var (var):
75 return len_flight (flight (var))
76 def N_f(f):
77 return len(paths[f])
78 def arr_times (f):
79 arr_times =[]
80 t = dep_times [f][0]+ len_flight (f)
81 while t in times:
82 arr_times . append (t)
83 t += 1
84 return arr_times
85 def flight_time (f):
86 return arr_times (f)[0]- dep_times [f][0]
87
88 ## M CONSTANT DEFINITION
89 M = 100.0
90
91 ## FEASIBLE DEPARTURE TIMES CONSTRUCTION
92 dep_times = {}
93 for f in flights :
94 dep_times [f] = range(FL_dep_times [f][0] , FL_dep_times [f][1]+1)
95
96 ## FEASIBLE TIMES CONSTRUCTION
97 feas_times = {}
98 for f in flights :
99 feas_times [f] = {}

100 feas_times [f][paths[f][0]] = [int(dep_times [f][0] -1)] + [int(t) for t in dep_times [f
]]

101 feas_times [f][paths[f][1]] = [int(dep_times [f][0] -1)] + [int(t) for t in dep_times [f
]]

102 i = 1
103 r = crossing_times [f][1]
104 for j in paths[f][2: -1]:
105 feas_times [f][j] = [t+r for t in feas_times [f][paths[f][1]]]
106 i += 1
107 r += crossing_times [f][i]
108 feas_times [f][paths[f][-2]] += range(feas_times [f][paths[f][-2]][-1]+1 , times [-1]+1)
109 feas_times [f][paths[f][-1]] = feas_times [f][paths[f][-2]][crossing_times [f][-1]:]
110
111 ## EDGES CONSTRUCTION
112 edges = []
113 for f in flights :
114 for j in paths[f][1: -2]:
115 i = paths[f]. index(j)
116 j_next = paths[f][i+1]
117 v = (j, j_next)
118 if v not in edges:
119 edges. append (v)
120
121 ## CHASING CONFLICT SETS CONSTRUCTION
122 chasing_conflict = {}
123 for e in edges:
124 chasing_conflict [e] = []
125 for f in edges:
126 if f[1] == e[1] and f[0] not in opposing_conflict [e]:
127 chasing_conflict [e]. append (f[0])

100

129 ## VARIABLES NAMES
130 x_variables = []
131 for f in flights :
132 for j in paths[f]:
133 for t in times:
134 for l in feas_levels [f][j]:
135 x_variables . append ("x[%s,%s,%d,%d]" % (f, j, l, t))
136
137 y_variables = []
138 for f in flights :
139 for j in paths[f][1: -1]:
140 for l in feas_levels [f][j]:
141 for t in times:
142 y_variables . append ("y[%s,%s,%d,%d]" % (f, j, l, t))
143
144 u_variables = []
145 for e in edges:
146 for l in levels :
147 for t in times:
148 u_variables . append ("u[(%s,%s) ,%d,%d]" % (e[0], e[1], l, t))
149
150 variables = x_variables + y_variables + u_variables
151
152 ## OBJECTIVE FUNCTION COEFFICIENTS
153 objective = [0.0 for v in variables]
154 for f in flights :
155 for t in dep_times [f]:
156 i = variables .index("x[%s,%s,0,%d]" % (f, paths[f][0] , t))
157 objective [i] += t*(grh_costs [f]- abd_costs [f])
158 i_before = variables .index("x[%s,%s,0,%d]" % (f, paths[f][0] , t -1))
159 objective [i_before] -= t*(grh_costs [f]- abd_costs [f])
160 for t in arr_times (f):
161 k = variables .index("x[%s,%s,0,%d]" % (f, paths[f][-1], t))
162 objective [k] += t* abd_costs [f]
163 k_before = variables .index("x[%s,%s,0,%d]" % (f, paths[f][-1], t -1))
164 objective [k_before] -= t* abd_costs [f]
165
166 ## ADDITIVE CONSTANT IN OBJECTIVE FUNCTION
167 K_obj = 0
168 for f in flights :
169 K_obj += (abd_costs [f]- grh_costs [f])* dep_times [f][0] - abd_costs [f]* arr_times (f)[0]
170
171 ## AUXILIARY VARIABLES CONSTRAINT
172 aus_const = [[v for v in x_variables if time(v) <= feas_times [flight (v)][sector (v)][0]] ,
173 [1.0 for v in x_variables if time(v) <= feas_times [flight (v)][sector (v)][0]]]
174 constraints = [aus_const]
175 rhs = [0.0]
176 constraint_names = [" aus_const "]
177 constraint_senses = ["E"]
178
179 ## LAST FEASIBLE TIME CONSTRAINT
180 last_const = [[v for v in x_variables if time(v) == feas_times [flight (v)][sector (v)

][-1]] ,
181 [1.0 for v in x_variables if time(v) == feas_times [flight (v)][sector (v)

][-1]]]
182 constraints . append (last_const)
183 k=0
184 for f in flights :
185 k += float(len(paths[f]))
186 rhs. append (k)
187 constraint_names . append (" last_const ")
188 constraint_senses . append ("E")

101

190 ##[1] AIRPORTS DEPARTURE CAPACITY CONSTRAINTS
191 for a in airports :
192 for t in times [1:]:
193 air_const = [[] ,[]]
194 for f in flights :
195 if a == paths[f][0] and t in dep_times [f]:
196 air_const [0]. append ("x[%s,%s,0,%d]" % (f, a, t))
197 air_const [1]. append (1.0)
198 air_const [0]. append ("x[%s,%s,0,%d]" % (f, a, t -1))
199 air_const [1]. append (-1.0)
200 if air_const != [[] ,[]]:
201 constraints . append (air_const)
202 rhs. append (airp_capacities [a][0])
203 constraint_names . append (" cap_dep_airp_const (%s,%d)"%(a,t))
204 constraint_senses . append ("L")
205
206 ##[2] AIRPORTS ARRIVAL CAPACITY CONSTRAINTS
207 for a in airports :
208 for t in times [1:]:
209 air_const = [[] ,[]]
210 for f in flights :
211 if a == paths[f][-1] and t in arr_times (f):
212 air_const [0]. append ("x[%s,%s,0,%d]" % (f, a, t))
213 air_const [1]. append (1.0)
214 air_const [0]. append ("x[%s,%s,0,%d]" % (f, a, t -1))
215 air_const [1]. append (-1.0)
216 if air_const != [[] ,[]]:
217 constraints . append (air_const)
218 rhs. append (airp_capacities [a][1])
219 constraint_names . append (" cap_arr_airp_const (%s,%d)"%(a,t))
220 constraint_senses . append ("L")
221
222 ##[3] SECTORS CAPACITY CONSTRAINTS
223 for j in sectors :
224 for t in times [1:]:
225 cap_const = [[] ,[]]
226 for f in flights :
227 if j in paths[f]:
228 j_next = paths[f][paths[f]. index(j)+1]
229 for l in feas_levels [f][j]:
230 cap_const [0]. append ("x[%s,%s,%d,%d]" %(f, j, l, t))
231 cap_const [1]. append (1.0)
232 for m in feas_levels [f][j_next]:
233 cap_const [0]. append ("x[%s,%s,%d,%d]" %(f, j_next , m, t))
234 cap_const [1]. append (-1.0)
235 if cap_const != [[] ,[]]:
236 constraints . append (cap_const)
237 rhs. append (sect_capacities [j])
238 constraint_names . append (" cap_sec_const (%s,%d)"%(j,t))
239 constraint_senses . append ("L")
240
241 ##[4] Y- VARIABLES CONSTRAINTS
242 for f in flights :
243 for j in paths[f] [1: -1]:
244 for l in feas_levels [f][j]:
245 next_j = paths[f] [paths[f]. index(j)+1]
246 for t in times:
247 y_const = [[] ,[]]
248 y_const [0]. append ("y[%s,%s,%d,%d]" % (f, j, l, t))
249 y_const [1]. append (1.0)
250 y_const [0]. append ("x[%s,%s,%d,%d]" % (f, j, l, t))
251 y_const [1]. append (-1.0)
252 for m in feas_levels [f][next_j]:
253 y_const [0]. append ("x[%s,%s,%d,%d]" % (f, next_j , m, t))
254 y_const [1]. append (1.0)
255 constraints . append (y_const)
256 rhs. append (0.0)
257 constraint_names . append (" y_const (%s,%s,%d,%d)"%(f, j, l, t))
258 constraint_senses . append ("G")

102

260 ##[5] LEVEL UNIQUENESS CONSTRAINTS
261 for f in flights :
262 for j in paths[f][1: -1]:
263 for t in times :
264 level_const = [[] ,[]]
265 for l in feas_levels [f][j]:
266 level_const [0]. append ("x[%s,%s,%d,%d]"%(f, j, l, t))
267 level_const [1]. append (1.0)
268 constraints . append (level_const)
269 constraint_names . append (" level_const (%s,%s,%d)"%(f,j,t))
270 constraint_senses . append ("L")
271 rhs. append (1.0)
272
273 ##[6a] SECTORS STRONG CONNECTIVITY CONSTRAINTS
274 for f in flights :
275 for j in paths[f][: N_f(f) -2]:
276 i = paths[f]. index(j)
277 next_j = paths[f][i+1]
278 for t in times:
279 if t+ crossing_times [f][i] in times:
280 conn_const = [[] ,[]]
281 for l in feas_levels [f][j]:
282 conn_const [0]. append ("x[%s,%s,%d,%d]"%(f, j, l, t))
283 conn_const [1]. append (1.0)
284 for m in feas_levels [f][next_j]:
285 conn_const [0]. append ("x[%s,%s,%d,%d]"%(f, next_j , m, t+

crossing_times [f][i]))
286 conn_const [1]. append (-1.0)
287 constraints . append (conn_const)
288 constraint_names . append (" strong_conn_sec_const (%s,%s,%d)"%(f,next_j ,t))
289 constraint_senses . append ("E")
290 rhs. append (0.0)
291
292 ##[6b] LEVELS CONNECTIVITY CONSTRAINTS
293 for f in flights :
294 for j in paths[f][: -2]:
295 for t in feas_times [f][j][1:]:
296 for l in feas_levels [f][j]:
297 i = paths[f]. index(j)
298 next_j = paths[f][i+1]
299 lev_conn_const = [[] ,[]]
300 lev_conn_const [0]. append ("x[%s,%s,%d,%d]"%(f, j, l, t))
301 lev_conn_const [1]. append (1.0)
302 for m in feas_levels [f][next_j]:
303 if m in range(l- max_level_var [f][j],l+ max_level_var [f][j]+1):
304 lev_conn_const [0]. append ("x[%s,%s,%d,%d]"%(f, next_j , m, t+

crossing_times [f][i]))
305 lev_conn_const [1]. append (-1.0)
306 constraints . append (lev_conn_const)
307 constraint_names . append (" lev_conn_const (%s,%s,%d,%d)"%(f,j,l,t))
308 constraint_senses . append ("L")
309 rhs. append (0.0)
310
311 ##[6c] SECTORS WEAK CONNECTIVITY CONSTRAINTS
312 for f in flights :
313 j = paths[f][-2]
314 for t in feas_times [f][j]:
315 next_j = paths[f][-1]
316 if t+ crossing_times [f][-2] in feas_times [f][next_j]:
317 conn_const = [[] ,[]]
318 conn_const [0]. append ("x[%s,%s,%d,%d]"%(f, next_j , 0, t+ crossing_times [f

][-2]))
319 conn_const [1]. append (1.0)
320 for l in feas_levels [f][j]:
321 if l in range (1, max_level_var [f][j]+1):
322 conn_const [0]. append ("x[%s,%s,%d,%d]"%(f, j, l, t))
323 conn_const [1]. append (-1.0)
324 constraints . append (conn_const)
325 constraint_names . append (" weak_conn_sec_const (%s,%s,%d)"%(f, next_j , t))
326 constraint_senses . append ("L")
327 rhs. append (0.0)

103

329 ##[7a] CHASING SEPARATION CONSTRAINTS
330 for e in edges:
331 j = e[1]
332 for l in levels [1:]:
333 for t in times [1:]:
334 chase_sep_const = [[] ,[]]
335 for s in range(t,t+ chase_time_separation +1):
336 for m in range(l,l+ chase_level_separation +1):
337 for k in chasing_conflict [e]:
338 for f in flights :
339 if k in paths[f]:
340 if j == paths[f][paths[f]. index(k)+1]:
341 if m in feas_levels [f][j] and s in feas_times [f][j

][1:]:
342 chase_sep_const [0]. append ("x[%s,%s,%d,%d]"%(f, j

, m, s))
343 chase_sep_const [1]. append (1.0)
344 v = "x[%s,%s,%d,%d]"%(f, j, m, s -1)
345 if v not in chase_sep_const [0]:
346 chase_sep_const [0]. append (v)
347 chase_sep_const [1]. append (-1.0)
348 else:
349 i = chase_sep_const [0]. index(v)
350 chase_sep_const [1][i] -= 1.0
351 if chase_sep_const != [[] ,[]]:
352 constraints . append (chase_sep_const)
353 constraint_names . append (" chase_sep_const ((%s,%s) ,%d,%d)"%(e[0],e[1], l,

t))
354 constraint_senses . append ("L")
355 rhs. append (1.0)
356
357 ##[7c] OPPOSING SEPARATION CONSISTENCY CONSTRAINTS
358 for e in edges:
359 j = e[0]
360 j_next = e[1]
361 for f in flights :
362 if j in paths[f]:
363 if j_next == paths[f][paths[f]. index(j)+1]:
364 for l in feas_levels [f][j_next]:
365 for t in times [1: -1]:
366 opp_sep_cons_const = [[] ,[]]
367 opp_sep_cons_const [0]. append ("u[(%s,%s) ,%d,%d]"%(e[0], e[1], l,

t))
368 opp_sep_cons_const [1]. append (-M)
369 for s in range(t,t+ opp_time_separation +1):
370 for m in range(l- opp_level_separation ,l+ opp_level_separation

+1):
371 for k in opposing_conflict [e]:
372 for g in flights :
373 if k in paths[g]:
374 if j_next == paths[g][paths[g]. index(k)+1]:
375 if m in feas_levels [g][j_next] and s in

feas_times [g][j_next][1:]:
376 opp_sep_cons_const [0]. append ("x[%s,%

s,%d,%d]"%(g, j_next , m, s))
377 opp_sep_cons_const [1]. append (1.0)
378 v = "x[%s,%s,%d,%d]"%(g, j_next , m,

s -1)
379 if v not in opp_sep_cons_const [0]:
380 opp_sep_cons_const [0]. append (v)
381 opp_sep_cons_const [1]. append

(-1.0)
382 else:
383 i = opp_sep_cons_const [0]. index(

v)
384 opp_sep_cons_const [1][i] -= 1.0
385 if opp_sep_cons_const != [[] ,[]]:
386 constraints . append (opp_sep_cons_const)
387 constraint_names . append (" opp_sep_cons_const ((%s,%s) ,%s,%d,%d

)"%(e[0],e[1], f, l, t))
388 constraint_senses . append ("L")
389 rhs. append (0.0)

104

391 ##[7b] OPPOSING SEPARATION CONSTRAINTS
392 for e in edges:
393 j = e[0]
394 j_next = e[1]
395 for f in flights :
396 if j in paths[f]:
397 if j_next == paths[f][paths[f]. index(j)+1]:
398 for l in feas_levels [f][j_next]:
399 for t in times [1: -1]:
400 opp_sep_const =[[] ,[]]
401 opp_sep_const [0]. append ("y[%s,%s,%d,%d]"%(f, j_next , l, t))
402 opp_sep_const [1]. append (1.0)
403 opp_sep_const [0]. append ("u[(%s,%s) ,%d,%d]"%(e[0], e[1], l, t))
404 opp_sep_const [1]. append (1.0)
405 constraints . append (opp_sep_const)
406 constraint_names . append (" opp_sep_const ((%s,%s) ,%s,%d,%d)"%(e[0],

e[1], f, l, t))
407 constraint_senses . append ("L")
408 rhs. append (1.0)
409
410 ##[8] ARRIVAL CONSTRAINTS
411 for f in flights :
412 constraints . append ([["x[%s,%s,%d,%d]"%(f, paths[f][-1], 0, last_arr_times [f])

] ,[1.0]])
413 constraint_names . append (" arr_const (%s)"%f)
414 constraint_senses . append ("E")
415 rhs. append (1.0)
416
417 ##[9] TIME CONNECTIVITY CONSTRAINTS
418 for f in flights :
419 for j in paths[f]:
420 for l in feas_levels [f][j]:
421 for t in times [1:]:
422 conn_temp = [[] ,[1.0 , -1.0]]
423 conn_temp [0]. append ("x[%s,%s,%d,%d]"%(f, j, l, t))
424 conn_temp [0]. append ("x[%s,%s,%d,%d]"%(f, j, l, t -1))
425 constraints . append (conn_temp)
426 constraint_names . append (" conn_temp_const (%s,%s,%d,%d)"%(f, j, l, t))
427 constraint_senses . append ("G")
428 rhs. append (0.0)
429
430 ##[10] BINARY TYPE VARIABLES CONSTRAINTS
431 my_ctype = ""
432 for v in variables :
433 my_ctype += "B"
434
435 ########## - - - - CPLEX SOLVER - - - -##########
436
437 problem . objective . set_sense (problem . objective .sense. minimize)
438
439 problem . variables .add(obj = objective ,
440 types = my_ctype ,
441 names = variables)
442
443 problem . linear_constraints .add(lin_expr = constraints ,
444 senses = constraint_senses ,
445 rhs = rhs ,
446 names = constraint_names)
447
448 problem .write(" model_ %s.lp"% prob_name)
449
450 problem . parameters . timelimit .set (7200.0)
451
452 try: problem .solve ()
453
454 except CplexError :
455 print(’ERROR ’)

105

457 ########## - - - - PRINT SOLUTION TO FILE - - - -##########
458
459 file = open(’solution_ %s.txt ’%prob_name ,’w’)
460
461 file.write(" SOLUTION STATUS : %s \n \n"% problem . solution . get_status_string ())
462 if problem . solution . get_status_string () != " integer infeasible ":
463 file.write(" SOLUTION :\n\n")
464 file.write(" Total delay cost: %f \n \n"%(K_obj+ problem . solution . get_objective_value

()))
465 actual_dep = {}
466 tot_GH_del = 0
467 tot_AB_del = 0
468 for f in flights :
469 for t in dep_times [f]:
470 if problem . solution . get_values ()[variables .index("x[%s,%s,0,%d]"%(f, paths[f

][0] , t))]==1.0:
471 file.write(" Departure flight %s: %d GH delay flight %s: %d \n"%(f,t,f

,t- dep_times [f][0]))
472 actual_dep [f]=t
473 tot_GH_del += t- dep_times [f][0]
474 break
475 file.write("\ nTotal GH delay : %f \n \n"% tot_GH_del)
476 for f in flights :
477 for t in arr_times (f):
478 if (problem . solution . get_values ()[variables .index("x[%s,%s,0,%d]"%(f, paths[

f][-1], t))]==1.0) :
479 file.write(" Arrival flight %s: %d AB delay flight %s: %d \n"%(f,t,f,t

- actual_dep [f]- flight_time (f)))
480 tot_AB_del += t- actual_dep [f]- flight_time (f)
481 break
482 file.write("\ nTotal AB delay : %f \n \n"% tot_AB_del)
483
484 file.close ()

106

References

[1] A. Agustı, A. Alonso-Ayuso, L. F. Escudero, C. Pizarro, et al. On air traffic
flow management with rerouting. Part I: Deterministic case. European Journal
of Operational Research, 219(1):156–166, 2012.

[2] A. Agustı, A. Alonso-Ayuso, L. F. Escudero, C. Pizarro, et al. On air traffic
flow management with rerouting. Part II: Stochastic case. European Journal of
Operational Research, 219(1):167–177, 2012.

[3] ATAG. https://aviationbenefits.org/media/149673/abbb2016_eur.pdf, 2016.

[4] D. Bertsimas, G. Lulli, and A. Odoni. An integer optimization approach to
large-scale air traffic flow management. Operations research, 59(1):211–227,
2011.

[5] D. Bertsimas and S. Stock Patterson. The air traffic flow management problem
with enroute capacities. Operations research, 46(3):406–422, 1998.

[6] D. Bertsimas and S. Stock Patterson. The traffic flow management rerouting
problem in air traffic control: A dynamic network flow approach. Transportation
Science, 34(3):239–255, 2000.

[7] M. Conforti, G. Cornuejols, and G. Zambelli. Integer Programming. Springer
International Publishing, 2014.

[8] G. B. Dantzig and M. N. Thapa. Linear programming 1: introduction. Springer-
Verlag, 1997.

107

https://aviationbenefits.org/media/149673/abbb2016_eur.pdf

[9] R. E. Bixby. A brief history of linear and mixed-integer programming compu-
tation. Documenta Mathematica · Extra Volume ISMP, pages 107–121, 2012.

[10] Eurostat. https://ec.europa.eu/eurostat/web/transport/data/main-tables.
[Accessed on September 21, 2018].

[11] F. D. Fomeni, G. Lulli, and K. Zografos. An optimization model for assigning
4d-trajectories to flights under the tbo concept. In Twelfth USA/Europe Air
Traffic Management Research and Development Seminar (ATM2017). Seattle,
Washington, USA June, pages 26–30, 2017.

[12] F. Furini, C. A. Persiani, and P. Toth. The time dependent traveling sales-
man planning problem in controlled airspace. Transportation Research Part B:
Methodological, 90:38–55, 2016.

[13] M. P. Helme. Reducing air traffic delay in a space-time network. In Systems,
Man and Cybernetics, 1992., IEEE International Conference on, pages 236–242.
IEEE, 1992.

[14] IATA. Tackling the european infrastructure crisis
https://airlines.iata.org/analysis/tackling-the-european-infrastructure-crisis,
2016. [Accessed on September 21, 2018].

[15] ICAO. Global Air Traffic Management Operational Concept. Springer Interna-
tional Publishing, 2005.

[16] W. Kersten. Global logistics management: sustainability, quality, risks, vol-
ume 9. Erich Schmidt Verlag GmbH & Co KG, 2008.

[17] G. Lulli and A. Odoni. The european air traffic flow management problem.
Transportation science, 41(4):431–443, 2007.

[18] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,
1998.

108

https://ec.europa.eu/eurostat/web/transport/data/main-tables
https://airlines.iata.org/analysis/tackling-the-european-infrastructure-crisis

[19] EUROCONTROL. Air Traffic Flow and Capacity Management (ATFCM)
https://www.eurocontrol.int/articles/air-traffic-flow-and-capacity-management.
[Accessed on September 21, 2018].

[20] EUROCONTROL. Pessimistic Sector Capacity Estimation
https://www.eurocontrol.int/sites/default/files/library/026_Pessimistic_

Sector_Capacity.pdf, 2003. page 3.

[21] EUROCONTROL. Long Term Forecast - Flight movements 2010 - 2030
https://www.eurocontrol.int/sites/default/files/publication/files/

long-term-forecast-2010-2030.pdf, 2010.

[22] EUROCONTROL. Airspace Management Planning Chart ASM
https://www.eurocontrol.int/sites/default/files/field_tabs/content/documents/

nm/cartography/asm-desk-20oct2011.pdf, 2011.

[23] EUROCONTROL. Performance Review Report (PRR) 2011
https://www.eurocontrol.int/sites/default/files/publication/files/prr-2011.

pdf, 2011.

[24] EUROCONTROL. EUROCONTROL ATM Lexicon
https://ext.eurocontrol.int/lexicon/index.php/Air_Traffic_Flow_Management,
2015.

[25] EUROCONTROL. Demand Data Repository 2 (DDR2)
https://www.eurocontrol.int/articles/ddr2-web-portal, 2018.

[26] FICO Xpress. https://www.fico.com/fico-xpress-optimization/docs.
[Accessed on October 2, 2018].

[27] FICO Xpress Solver. https://www.fico.com/en/products/fico-xpress-solver.
[Accessed on October 3, 2018].

109

https://www.eurocontrol.int/articles/air-traffic-flow-and-capacity-management
https://www.eurocontrol.int/sites/default/files/library/026_Pessimistic_Sector_Capacity.pdf
https://www.eurocontrol.int/sites/default/files/library/026_Pessimistic_Sector_Capacity.pdf
https://www.eurocontrol.int/sites/default/files/publication/files/long-term-forecast-2010-2030.pdf
https://www.eurocontrol.int/sites/default/files/publication/files/long-term-forecast-2010-2030.pdf
https://www.eurocontrol.int/sites/default/files/field_tabs/content/documents/nm/cartography/asm-desk-20oct2011.pdf
https://www.eurocontrol.int/sites/default/files/field_tabs/content/documents/nm/cartography/asm-desk-20oct2011.pdf
https://www.eurocontrol.int/sites/default/files/publication/files/prr-2011.pdf
https://www.eurocontrol.int/sites/default/files/publication/files/prr-2011.pdf
https://ext.eurocontrol.int/lexicon/index.php/Air_Traffic_Flow_Management
https://www.eurocontrol.int/articles/ddr2-web-portal
https://www.fico.com/fico-xpress-optimization/docs
https://www.fico.com/en/products/fico-xpress-solver

[28] GUROBI. http://www.gurobi.com/products/features-benefits.
[Accessed on October 2, 2018].

[29] GUROBI. www.gurobi.com.
[Accessed on October 3, 2018].

[30] IBM. https://www.ibm.com/analytics/cplex-optimizer.
[Accessed on October 3, 2018].

[31] IBM. CPLEX User’s manual, version 12.1, 2015.

[32] NATS. National Air Traffic Services
https://www.nats.aero/ae-home/introduction-to-airspace/, 2018.

[33] SKYbrary. https://www.skybrary.aero/index.php/Sectorisation, 2016.
[Accessed on September 23, 2018].

[34] SKYbrary. https://www.skybrary.aero/index.php/Separation_Standards, 2016.
[Accessed on September 23, 2018].

[35] SKYbrary. https://www.skybrary.aero/index.php/4D_Trajectory_Concept, 2017.
[Accessed on September 23, 2018].

[36] STATISTA. The Statistics Portal https://www.statista.com/statistics/193533/

growth-of-global-air-traffic-passenger-demand/, 2018.
[Accessed on September 23, 2018].

[37] STATISTA. The Statistics Portal https://www.statista.com/statistics/564769/

airline-industry-number-of-flights/, 2018.
[Accessed on September 23, 2018].

[38] STATISTA. The Statistics Portal https://www.statista.com/statistics/276222/

number-of-airspace-sectors-in-europe-and-the-us/, 2018.
[Accessed on September 23, 2018].

110

http://www.gurobi.com/products/features-benefits
www.gurobi.com
https://www.ibm.com/analytics/cplex-optimizer
https://www.nats.aero/ae-home/introduction-to-airspace/
https://www.skybrary.aero/index.php/Sectorisation
https://www.skybrary.aero/index.php/Separation_Standards
https://www.skybrary.aero/index.php/4D_Trajectory_Concept
https://www.statista.com/statistics/193533/growth-of-global-air-traffic-passenger-demand/
https://www.statista.com/statistics/193533/growth-of-global-air-traffic-passenger-demand/
https://www.statista.com/statistics/564769/airline-industry-number-of-flights/
https://www.statista.com/statistics/564769/airline-industry-number-of-flights/
https://www.statista.com/statistics/276222/number-of-airspace-sectors-in-europe-and-the-us/
https://www.statista.com/statistics/276222/number-of-airspace-sectors-in-europe-and-the-us/

[39] VATITA. Virtual Air Traffic ITA
http://www.vatita.net/drupal/airspace/fir-milano, 2010.

111

http://www.vatita.net/drupal/airspace/fir-milano

113

	 Abstract
	 List of acronyms
	Introduction
	Motivations
	Content and contributions

	The ATFM problem
	The ATFM
	The problem

	Framework and main tools
	Integer linear programming
	The Cutting Planes Method
	The Branch & Bound Method
	The Branch & Cut Method

	Software framework and tools
	LP software development
	IBM ILOG CPLEX Optimization Studio
	Python

	State of the art
	Relevant ILP models for ATFM
	The Bertsimas & Stock Patterson 1998 model

	A model for ATFM with separation constraints
	Key ideas
	An insight into the ATFM problem
	Sectors
	Capacity
	Flight levels
	Separation
	Time
	Delay

	Problem data
	Decision variables
	The model
	The objective function
	Model constraints
	Capacity constraints
	Relations among variables
	Space-time connectivity constraints
	Separation constraints
	Variables shape and domains

	Simple trajectories
	Two classes of valid inequalities
	Size of the formulation

	Model implementation
	Data file format description
	Code description

	Computational results
	Results on ``super hexagon'' instance
	Results on ``euro'' instance
	Results on ``rectangle'' instance
	Results on ``donut'' instance
	Discussion

	Conclusions
	Appendix

