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Introduction

Since the last century much theoretical work in the context of statistic quantum mechanics
has been done to explain phenomena such as Bose-Einstein condensation (BEC), supercon-
ductivity and superfluidity. These are commonly called macroscopic quantum phenomena
as their properties are consequences of quantum mechanics effects that occur below a crit-
ical temperature and affect the bulk properties of matter on a large scale. While BEC has
been only a theoretical prediction for more than seventy years, the existence of superflu-
idity was experimentally observed with the λ-transition of 4He and confirmed at the very
beginning of low temperature’s physics studies by Kapitza in 1938 [1], who introduced the
term ’superfluidity’ characterizing the ability to flow through narrow channels in absence
of viscosity. Soon after this discovery, London [2] established a relation between the λ-
transition and BEC of 4He bosons suggesting the existence of a classical field Ψ, the order
parameter and the wave function associated with the macroscopic component of the field
operator. This idea was developed with the two fluid model by Landau [3] and Tisza [4] and
led to a successful theory of motion for superfluid helium which also considered quasiparti-
cle excitations. Subsequently more phenomena related to superfluidity were investigated,
as quantized vortices, whose existence was predicted by Onsager [5] and Feynman [6] in
the 1950s. Another important step towards the comprehension of macroscopic quantum
phenomena was taken with BCS theory (1957) by Bardeen, Cooper and Schrieffer, which
extended BEC to fermionic systems with the condensations of Cooper pairs behaving like
a boson state.
In the experimental field many efforts were aimed at obtaining BEC. In 1980s progresses
in cooling and trapping techniques through magnetic traps and optical lactices allowed to
reach the necessary values of temperature and density in order to observe BEC. The pur-
pose was finally achieved in 1995 with atomic vapours of 87Rb [7] and 23Na [8] and earning
Cornell, Wieman and Ketterle the Nobel prize (2001). The discovery opened a new chapter
in condensed matter physics and since then many groups have observed BEC with trapped
dilute and ultra-cold alkali atoms: these sistems also show superfluid properties with some
differences compared to the case of 4He, mainly due to the interaction potential between
atoms. Techniques developed in the recent years, such as Feshbach resonances [9], provide
the possibility to vary the parameters characterizing the atomic interaction and to observe
via experiments many quantum effects in peculiar regimes and many other superfluid sys-
tems (Fermi gas, polariton condensates, multi-component BECs), hence the importance of
theoretical work in this scope.

The purpose of this work is to study two sistems of bosonic superfluids at zero temperature,
ultra-cold Bose gases and superfluid helium, within a simple classical field formalism, to
underline differences and similarities between them. We will start in general from the
Hartree equation of a bosonic system and, with different hypotesis on the interaction
potential between bosons, we will obtain the equations describing the two systems, mainly
focusing on elementary quasiparticle excitations and quantized vortices. As we shall see,
modeling 4He is much more difficult than modeling a weakly interacting Bose gas since,
in that case, the mean-field approach of the usually employed GP theory [10] [11] is not
appropriate to describe the main properties of superfluid helium. So our efforts will be
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mainly directed to modeling 4He with the help of theories developed in the last two decades.
Furthermore throughout this work the results will be compared with experimental data
and aftermaths of theories in literature, mainly the GP theory and its modifications for
weakly-interacting Bose gases, the density functional theory by Dalfovo [12], [13], and
non-local non-linear model proposed by Berloff for helium [14].

The author would like to thank Luca Salasnich for many useful discussions and informa-
tions, Annachiara Picco for support and many advices and Brendan B. Godfrey for the
precious computational help in solving ODEs involving a separatrix problem.

“That is one of the challenges of

the shooting method: some of

the shots can be way off target.“

– Brendan B. Godfrey
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1

Bosonic superfluids

In this chapter we will point out the concepts and develop the tools we will use to investigate
the features of bosonic superfluids. In the first section we will study the main properties
of Bose-Einstein condensates, superfluid 4He and ultra-cold atomic gases with the help of
some of the theories developed in literature. In the second section we will obtain the Hartree
equation for bosons at zero temperature and, with different choices of pseudopotentials,
the Gross-Pitaevskii equation (GPE). In the third section we will study with the help of
scattering theory the parameters characterizing the interaction potential for Bose gases,
such as the scattering length and the effective range and we will obtain a modified Gross-
Pitaevskii equation (MGPE) suitable to describe ultra-cold dilute Bose gases.

1.1 BEC, ultra-cold alkali gases and superfluid 4He

Unlike the ideal classical gas, the Bose-Einstein non-interacting gas, if cooled below a
critical temperature Tc, has a thermodynamic phase transition due only to the particle
statistics. BEC is usually interpreted as a first-order phase transition and is a state of
matter in which a large fraction n0 of bosons collapse into its lowest quantum state: the
separation of the two phases occurs in momentum space [2], where the condensed bosons
occupy a single quantum state with zero momentum p = h̄q = 0 and the normal particles
have finite momentum.
After the discovery of superfluidity of liquid helium below the temperature Tλ ' 2.17 K,
since 4He atoms are bosons, and from calculations Tc is close to Tλ, suggesting a relationship
between BEC and superfluidity was quite natural. Nevertheless BEC was predicted for an
ideal Bose gas, in which interactions between the atoms can be neglected, while liquid
helium is, as we shall see, a strongly-interacting system, due to the interatomic potential
and the high density n = 0.0218 Å−3. That is why BEC was not achieved via experiments
with helium but with very dilute ultra-cold gases of alkali atoms instead.

This kind of atoms is particularly suitable for observing BEC because they can be cooled
in magnetic traps in order to obtain very low densities of order 10−13 − 10−9 Å−3 and for
these densities we expect Tc of the order of 10−6 − 10−9 K. The magnetic trap method
employs the energy difference between different states of total spin (composition of nuclear
and valence electron spins), due to hyperfine interaction, to keep the ’low energy atoms’
bounded to the trap, letting the ’high energy atoms’ escape instead, so the system will cool
in average by evaporation. However an alkali atom gas is not an ideal Bose gas because the
interations between trapped atoms cannot be negleted: the atoms show a strong repulsion
at short distance and a Van der Waals attractive force at long distances. Nevertheless, the
rate of three-body collisions (that could lead to binding) is very slow due to the extremely
low densities of these gases, and so the interaction potential is well approximated by the
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pseudopotential
V (r− r′) = g0δ(r− r′), (1.1)

where the parameter g0 defines the strenght of the interaction. So a mean-field approach
to the study of a dilute alkali gas is possible and, as we shall see, the GP theory works well
in describing these systems’ properties and phenomena, such as quantized vortices. The
fact that a dilute alkali gas is a weakly interacting system and not a non-interacting one is
crucial: the two-body interactions are not just necessary to reach the thermal equilibrium
but they assure superfluidity in the condensate too. As we shall see in chapter 2, in absence
of interactions, the critical Landau velocity of the superfluid is zero, hence it is impossible
to have a flow with zero viscosity.

Unlike dilute alkali gases, liquid helium is a strongly interacting system due to its high
density. It also has peculiar features such as the fact that it remains in the liquid state
down to 0 K for pressures below about 2.5 MPa, as we can see from the phase diagram of
4He in Fig. (1.1): there are two different phases, the normal liquid He I and the superfluid
liquid He II, and no triple point. Liquid helium is a clear example of a quantum fluid in
which the effects of quantum mechanics are dominant: this is the result of the light mass of
4He atoms and the weak attractive Van der Waals interactions. Near the minimum of the
attracting well the interaction potential of helium is well described by a 12-6 Lennard-Jones
profile (for a more accurate potential see [15])

V (r) = 4ε

[(α
r

)12
−
(α
r

)6
]
, (1.2)

with ε = 10.22 K and α = 2.556Å: the little value of ε makes helium liquid only at 4 K. To
give an estimate of the role of quantum effects in the two phase we compute the thermal
de Broglie wavelength at T ' 4 K

λdB =

√
2πh̄2

mkBT
' 4 Å.

Since it is greater than the interatomic distance d = n−1/3 ' 3.5 Å , quantum effects are
really important in liquid helium. The fact that helium remains liquid down to 0 K is due
to zero point motion characterizing quantum fluids [16], [6], so that the solid phase only
occurs when high pressures are applied.

Figure 1.1: Left: phase diagram of 4He showing the two phases He I and He II. Right: specific
heat CV of 4He showing the λ-transition. Figures taken from Annett. [16]

Another important feature of liquid helium is the specific heat CV singularity at the bound-
ary between the two phases He I and He II around Tλ ' 2.17 K, as shown in Fig. (1.1)
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which is called λ-point because of its form. The singularity is well described by a power
law: CV ' |T − Tλ|−0.009. Such power laws are very common in phase transitions and
many systems share the same sets of critical exponents: this is due to the fact that, below
a critical temperature, different systems show a sort of order which, in the case of He II
and also for BECs, can be interpreted as the presence of a coherence direction θ. This
direction θ(r) (that in general can be a function of coordinates) corresponds to the phase
of a macroscopic wave function ψ(r, t) = |ψ(r, t)|eiθ(r,t) that can be seen as the order pa-
rameter of the He II phase. Working at T = 0 K, if ψ is normalized to the total number
of particles N

N =

∫
d3r|ψ(r)|2, (1.3)

where n is the total density, we can write the wave function of the superfluid phase in the
useful form

ψ(r, t) =
√
n(r)eiθ(r,t), (1.4)

known as Madelung trasform: we shall see that this expression contains informations on
superfluid flow and quantized vortices. However we should clarify why we used the total
density n in the Madelung transform. Experiments on the superfluidity of He II showed
that this phase is well described by a two-fluid model [3], [4], so we can divide the total
density in two components: the "superfluid" component and the "normal" one:

n = ns + nn . (1.5)

At zero temperature it can be shown that ns = n and nn = 0, meaning that all the particle
partecipate in superflow. We also must not confuse the superfluid density ns with the
condensate density n0, which for helium at zero temperature is only a small fraction of the
total, n0 ' 0.1n. This distinguishes liquid helium from weakly interacting Bose gases such
as ultra-cold alkali atoms, for which is proved that at zero temperature n0 = ns ' n: it
is due to the strongly interactions between 4He atoms again. Indeed, in general, at zero
temperature the total number density n of a bosonic system can be written as

n = n0 + n1 , (1.6)

where n1 is the number density of the bosons out of the condensate. Now we want to use
these concepts to obtain an equation that describes as many of the system’s properties as
possible.

1.2 Hartree equation

Let us consider a system composed by N bosons in the same spin state. The system is
described by a symmetrical many-body wave function Ψ depending on spatial coordinates
ri = (xi, yi, zi) of the i-th particle and on time t:

Ψ = Ψ(r1, r2, . . . , rN , t) .

The system’s dynamics is described by the many-body Schrödinger equation (SE)

ih̄
∂

∂t
Ψ = HΨ ,

with H the system’s hamiltonian. Let us verify that the SE can be obtained extremeizing
the following functional called Dirac’s action.

SD[Ψ,Ψ∗] =

∫ t2

t1

dt

∫
d3r1 . . . d

3rNΨ∗(r1, r2, . . . , rN , t)
[
ih̄
∂

∂t
−H

]
Ψ(r1, r2, . . . , rN , t) .
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Imposing ∀δΨ such that δΨ(r, t1) = δΨ(r, t2) = 0, we have

δSD =
d

dα
SD[Ψ + αδΨ,Ψ∗ + αδΨ∗]

∣∣∣∣
α=0

= 0 ,

and we obtain

δSD =

∫ t2

t1

dt

∫
d3r1 . . . d

3rN δΨ∗
[
ih̄
∂

∂t
−H

]
Ψ + c.c. = 0 ,

where c.c. is the conjugate complex. So δSD = 0 if and only if the SE is satisfied.

Now we want to obtain an equation describing the ground state and excitation properties
(elementary excitations and quantized vortices) of a general superfluid system of N bosons.
We will try to maintain the most possibly general point of view within our classical field
formalism. Firstly let us consider a weakly interacting Bose gas. At zero temperature we
can consider all the bosons in their lowest single-particle quantum state, so we have a wave
fuction given by the Hartree approximation:

Ψ(r1, r2, . . . , rN , t) =
N∏
i=1

ψ(ri, t) . (1.7)

This ansatz is very useful because it allows to reduce the many-body problem to a single
particle wave function’s equation. Now we write the system’s Hamiltonian:

H =
N∑
i=1

[
− h̄2

2m
∇2
i + Vext(ri)

]
+

1

2

N∑
i 6=j

V (ri, rj) , (1.8)

where Vext is an external trapping potential and V is a two-body interaction potential.
Writing the Dirac action for the system described and substituting the Hartree approxi-
mation ansatz for the wave function Eq. (1.7), we find

SD[ψ,ψ∗] = N

∫ t2

t1

dt

∫
d3r ψ∗(r, t)

[
ih̄
∂

∂t
+
h̄2

2m
∇2

− Vext(r) −
N − 1

2

∫
d3r′V (r, r′)|ψ(r′, t)|2

]
ψ(r, t) .

(1.9)

Considering the thermodinamic limit N − 1 ' N and choosing the normalization of the
single particle wave function

N =

∫
d3r|ψ(r)|2, (1.10)

the action takes the form

SD[ψ,ψ∗] =

∫ t2

t1

dt

∫
d3r

{
ψ∗(r, t)

[
ih̄
∂

∂t
+
h̄2

2m
∇2

− Vext(r) −
1

2

∫
d3r′V (r, r′)|ψ(r′, t)|2

]
ψ(r, t)

}
.

(1.11)

We can now proceed to find the equations associated to this action by extremeizing it:

δSD =

∫ t2

t1

dt

∫
d3r δψ∗

[
ih̄
∂

∂t
+
h̄2

2m
∇2

− Vext(r) −
∫
d3r′V (r, r′)|ψ(r′, t)|2

]
ψ + c.c. = 0 .

(1.12)

In conclusion we obtain

ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2m
∇2 + Vext(r) +

∫
d3r′V (r, r′)|ψ(r′, t)|2

]
ψ(r, t) , (1.13)
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called the Hartree equation for weakly interacting Bose gas with general interactiong po-
tential V (r, r′). As stated in the previous section, for a trapped ultra-cold and dilute Bose
gas we can consider a mean-field interaction pair pseudopotential V (r, r′) = g0δ(|r − r′|).
Hence Eq. (1.23) reduces to the well-known Gross-Pitaevskii equation (GPE):

ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2m
∇2 + Vext(r) + g0|ψ(r, t)|2

]
ψ(r, t) . (1.14)

In section 1.3 we shall slightly improve this model taking into account finite range inter-
action.

Inspired by many successes of this approach to the dilute alkali Bose gases we want to try to
model superfluid helium with a similar single particle formalism. For a strongly interacting
system, the condensate wave function, which we shall call Φ0, cannot be obtained by the
Hartree approximation ansatz in Eq. (1.7) for the many body wave function Ψ. In general,
the most rigorous approach to commuting the many-body problem in a single-particle one
in BEC is the one reported by Leggett in his review [17]. Following the author, we write
the one-particle density function

G(r, r′, t) =

∫
d3r1 . . . d

3rNΨ∗(r, r2, . . . , rN , t)Ψ(r′, r2, . . . , rN , t) . (1.15)

Since from its definition G(r, r′, t), when regarded as a matrix function of indices r and r′,
is Hermitian, it is always possible to find a complete orthonormal basis of single-particle
eigenfunctions Φj such that

G(r, r′, t) =
∑
j

NjΦ
∗
j (r, t)Φj(r′, t) (1.16)

and that the eigenvalue equation is satisfied:∫
d3r′G(r, r′, t)Φj(r′, t) = NjΦj(r, t) . (1.17)

We can say that the system shows BEC if one or more of the eigenvalues Nj is of the order
of the total number of particles N ; considering the largest eigenvalue N0 and supposing we
are able to solve the Eq. (1.17), we can find the condensate single particle wave function
Φ0. To be rigorous, notice that the phase of Φ0 is the one appearing in the Madelung
transform of the macroscopic wave function Eq. (1.4). Unlike the weakly interacting case,
in which Φ0(r, t) is substantially equal to the Hartree approximation single-particle wave
functions ψ(r, t), in the case of He II there is not such equality since at zero temperature
the number of condensate bosons is only a small fraction of the total number of particles.
So, in order to model superfluid helium within the single particle approach, we assume to
be able to solve Eq. (1.17) for j = 0 to find Φ0 and then we define the single-particle wave
function as

ψ(r, t) =
√
NΦ0(r, t) , (1.18)

where N is the total number of particles and where Φ0(r, t) is normalized to 1. In this
way we expect this wave function to embody all the superfluid properties of He II since,
as seen in the previous section, at zero temperature n = ns. In order to obtain a more
general Hartree equation for liquid helium, we assume we can write the action as the sum
of two contributions: the condensate-like action S0, which depends on the just defined
wave function ψ(r, t), and the out-of-condensate-like action S1, which depends only on the
total number density n of the system:

S[ψ,ψ∗;n] = S1(n) + S0[ψ,ψ∗] , (1.19)

with

S1(n) = −
∫ t2

t1

dt

∫
d3r ε1(n) , (1.20)
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where ε1(n) is the energy density contribution due to the out-of-condensate bosonic parti-
cles. We can write the action S0 as

S0[ψ,ψ∗] = SD[ψ,ψ∗]−
∫ t2

t1

dt

∫
d3r εcorr(|ψ|2) , (1.21)

in which we added a correlation term εcorr(|ψ|2) that will be useful in modeling 4He. By
extremeizing Eq. (1.21), as previously done in the weakly interacting case, but taking into
account the additional term

δS0 =

∫ t2

t1

dt

∫
d3r δψ∗

[
ih̄
∂

∂t
+
h̄2

2m
∇2

− Vext(r) −
∫
d3r′V (r, r′)|ψ(r′, t)|2−µcorr(|ψ2|)

]
ψ + c.c. = 0 ,

(1.22)

we find

ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2m
∇2 + Vext(r) +

∫
d3r′V (r, r′)|ψ(r′, t)|2+µcorr(|ψ2|)

]
ψ(r, t) , (1.23)

which is the general Hartree equation that we will employ in modeling 4He. The energy of
the system can be obtained from Eq. (1.19):

E[ψ,ψ∗;n] =

∫
d3r

[
h̄2

2m
|∇ψ|2+Vext(r)|ψ|2

+
1

2

∫
d3r′|ψ(r, t)|2V (r, r′)|ψ(r′, t)|2+εcorr(|ψ|2) + ε1(n)

]
.

(1.24)

Notice the presence of the last term ε1(n), not appearing in Hartree equation Eq. (1.23).
We want to verify that this expression can describe the ground state properties of both
weakly interacting bose gases and superfluid helium. At equilibrium, for an untrapped
resting fluid, Vext = 0, |ψ|2→ n and ∇ψ = 0. For a weakly-interacting Bose gas both
εcorr(n) and ε1(n) are negligibile and we get, as expected

E

V
=

1

2
g0n

2 , (1.25)

where g0 is the integral of the interaction potential V (r, r′) = V (|r − r′|). In the case of
the superfluid helium both εcorr(n) and ε1(n) are relevant, and we have

E

V
=

1

2
g0n

2 + εcorr(n) + ε1(n) . (1.26)

It is evident that we can always properly choose εcorr and ε1 to reproduce the experimental
equation of state as reported in [19]:

E

V
= −V0

2
n2 − V1

3
n3 +

V2

4
n4, (1.27)

where V0 = 719kB Å3 K, V1 = 3.63 · 104 kB Å6 K and V2 = 2.48 · 106 kB Å9.

1.3 Scattering theory and finite range approximation

With regards to dilute ultra-cold Bose gases, in many cases it is useful to improve the
GP model overcoming the simple zero-range approximation for the interaction potential
between bosons and extending it to a finite-range model, [20], [21]. Hence we want to in-
troduce a correction term to the potential Eq. (1.1) to obtain a modified Gross-Pitaevskii
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equation. Firstly we hypotize that the interaction potential V between bosons pairs de-
pends only on the interparticle distance r = |r| = |r− r′|:

V (r) = V (|r− r′|) .

Now we analize this potential in momentum space: for weakly interacting Bose gases BEC
is a phenomenon that occurs in momentum space and, in low energy approximation, it
consists in a macroscopic occupation of quantum state q = 0. So we can study our mean-
field potential Umf

Umf =

∫
d3r′V (|r− r′|)|ψ(r′, t)|2

making a Fourier transform1. Remembering that the Fourier transform of a convolution is
the product of the convoluted terms’ transforms, under proper hypotesis of analyticity for
them, we obtain

F [Umf ](q) = F
[∫

d3r′V (|r− r′|)|ψ(r′, t)|2
]

(q) = F [V (r)](q)F [ |ψ|2](q) . (1.28)

Now we can expand the term V̂ (q) = F [V (r)](q) in MacLaurin series, because the most
relevant contribute is around q = 0. Since V (r) is a radial function, hence invariant for
parity in coordinates space, its transform conserves the same simmetry property in mo-
mentum space and so its MacLaurin expansion contains only even terms. If the expansion
is truncated at the second order we have

V̂ (q) =
∞∑
n=0

V̂ (2n)(0)

(2n)!
q2n = V̂ (0) +

1

2
V̂ ′′(0)q2 +O(q4) .

Substituting in Eq. (1.28) and antitrasforming with F [∇f ](q) = iqf̂(q) we have

Umf =

[
V̂ (0)− 1

2
V̂ ′′(0)∇2

]
|ψ(r, t)|2. (1.29)

We define the constants

g0 = V̂ (0) =

∫
d3r V (r) , g2 =

1

2
V̂ ′′(0) = −1

6

∫
d3r r2V (r) .

So in momentum space we can choose a pseudopotential of the form

V̂ (q) = g0 + g2q
2 , (1.30)

corresponding, as proved in [20], to a pseudopotential in real space of the form

V (r) = g0δ(r)−
g2

2

[
←−
∇

2
δ(r) +

−→
∇

2
δ(r)

]
. (1.31)

Substituting this potential in Eq. (1.23) under the same hypotesis of the GPE we obtain
the modified Gross-Pitaevskii equation (MGPE)

ih̄
∂

∂t
ψ(r, t) =

[
− h̄2

2m
∇2 + Vext(r) + g0|ψ(r, t)|2−g2∇2|ψ(r, t)|2

]
ψ(r, t) . (1.32)

We want now to study in detail, with the help of scattering theory, the parameters g0 and
g2 for ultra-cold gases. The scattering process between two identical particles is described

1The Fourier transform of a function f(x) is defined as

f̂(k) = F [f(x)](k) =

∫ ∞
−∞

dxf(x)e−ikx .
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by a wave function φ(r) depending on the relative coordinate r; it is the overlap of an
incident plane wave function and a diffuse spherical wave function. Let q and q′ be the
incident particle’s and the diffuse particle’s momenta, respectively. We have

φ(r) = eiq·r + f(q,q′)
eiqr

r
.

The function f(q,q′) is called scattering amplitude and its analytical expression can be
found as a function of the pair interaction potential V (|r − r′|) solving the stationary
Schrödinger equation for the scattering process. If the interaction potential is negligible
beyond a characteristic range r0 (Born approximation), we can compute the scattering
amplitude using free particle wave functions. So we have

Re[f(q,q′)] ' − m

4πh̄2

∫
d3r V (r)e−i(q−q′)·r = − m

4πh̄2 V̂ (q− q′) . (1.33)

From Eq. (1.33) the close link between the Fourier transform of the interaction potential
and the scattering amplitude is clear. The diffused spherical wave can be seen as a com-
bination of partial waves characterized by different values of angular momentum `: they
are called s-waves for ` = 0, p-waves for ` = 1 and so on. Hence we can expand the
scattering amplitude in partial waves f`(q) depending on the values of angular momentum.
Considering also the incident plane wave as a combination of spherical waves, it can be
proved [22] that the presence of the interaction potential implies the variation of the single
diffused spherical wave function by a coefficient 1 + 2iqf`(q) = e2iδ`(q), in which δ`(q) is
called phase-shift of the partial wave f`(q). Now we can write the scattering cross section
as a function of the incident particle’s momentum and expand in series over all components
of the incident wave

σ(q) =

∞∑
l=0

4π

q2
(2`+ 1) sin2 δ`(q) .

Since particles at low temperatures have not enough energy to access levels of higher
angular momenta, for ultra-cold gases the leading term is the one determined by the s-
wave:

f(q,q′) ' f0(q) =
e2iδ0(q) − 1

2iq
=
eiδ0(q)

q
sin δ0(q) .

Computing the cross section in the s-wave limit we obtain

lim
q→0

σ(q) = 4π
sin2 δ0(q)

q2
= 4πa2

s ,

where we defined the s-wave scattering length as, a quantity used in atomic physics to
characterize the interactions between atoms in the low energy limit

as = − lim
q→0

sin δ0(q)

q
, (1.34)

and the effective range re as the quadratic coefficient of the following expansion (see for
example [22])

q cot(δ0(q)) = − 1

as
+

1

2
req

2 +O(q4) . (1.35)

Considering the real part of the scattering amplitude and expanding in MacLaurin series
for q we find

Re[f0(q)] =
1

2q
sin(2δ0(q)) = q cot δ0(q)

sin2 δ0(q)

q2

=

(
− 1

as
+

1

2
req

2 +O(q4)

)(
+ a2

s + a3
sq

2(re − as)2 +O(q4)

)
.

(1.36)
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So, comparing Eq. (1.36) and Eq. (1.33), we have

V̂ (q) = −4πh̄2

m

[
− as +

(
as −

1

2
re

)
a2
sq

2 +O(q4)

]
, (1.37)

from whom expressions for g0 e g2 can be found, in agreement with [20]

g0 = V̂ (0) =
4πh̄2

m
as , (1.38)

g2 =
1

2
V̂ ′′(0) =

4πh̄2

m

(
1

2
re − as

)
a2
s .

Let us also point out that the sign of the parameters depends on the interatomic potential:
for as > 0 the interaction is repulsive at low momenta, if as < 0 is attractive. The
two parameters as and re are generally related depending on the analytical form of the
interaction potential. For example, for a hard-sphere potential with radius as, we have the
relation.

re =
2

3
as . (1.39)
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2

Elementary excitations

In this chapter we will study, with the formalism developed above, the excitation spectrum
of bosonic superfluids. In the first section, with the help of Landau’s theory, we will see the
reasons why we can say that ultra-cold Bose gases and 4He show superfluid properties. In
the second section we will focus on elementary excitation in bosonic superfluid and we will
find the form of the dispersion relation from the Hartree equation or the MGPE. Then,
in the last section, we will employ those relations to decribe the spectra of a BEC and of
superfluid 4He and we will compare the results with experimental data.

2.1 Superfluid behavior and Landau’s criterion

Let us consider for simplicity an ultra-cold Bose gas described by the MGPE: similar
considerations can be done for 4He. Since the superfluid fraction of particle corresponds
to the condensate one, we can write the order parameter as a single particle wave function
using the Madelung transform:

ψ(r, t) =
√
n(r, t)eiθ(r,t) . (2.1)

The superflow arises when the phase θ varies in space [16]. Employing the usual quantum
mechanics’ formula with the wave function just defined, we can write the current density

j(r, t) =
h̄

2mi
[ψ∗∇ψ − ψ∇ψ∗] =

h̄

m
n(r, t)∇θ(r, t) . (2.2)

Since j(r, t) = n(r, t)v(r, t) we obtain the fundamental relation for the superfluid velocity

v(r, t) =
h̄

m
∇θ(r, t) . (2.3)

This relation, along with the Madelung transform, leads to a fluid dynamics interpretation
of the ultra-cold Bose gas [24]. In fact, substituting Eq. (2.1) in the MGPE Eq. (1.32)
and equaling the real and the imaginary part of each member, we obtain two equations: a
continuity equation and a dynamic one:

∂n

∂t
+∇ · (nv) = 0 , (2.4)

mn
∂v
∂t

+∇
[
− h̄2

2m

√
n∇2√n+

1

2
mnv2 + Vextn+ g0n

2 − g2n∇2n

]
= 0 . (2.5)

The first term in brackets P = − h̄2

2m

√
n∇2√n is called quantum pressure while the last

terms are proportional to the equation of state of the system. Eq. (2.4) and Eq. (2.5)
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are called superfluid hydrodynamics equations and, except for the quantum pressure term
and the finite range, are similar to Euler equations for an irrotational fluid (note that
∇× v = 0) and with zero viscosity.
We can simply extimate the importance of the quantum pressure term, the finite range
term and the GP model equation of state P0 = 1

2g0n
2 introducing a characteristic length

ξ representing the length at which density changes occur in the condensate: ∇2n ' n/ξ2.
So

P
P0
' h̄2

2g0nmξ2
.

Hence P � P in the limit of λ� ξ: in this regime and for a zero external potential the Eq.
(2.4) and Eq. (2.5) reduce to the Euler equations for zero viscosity. Neglecting finite-range
interactions g2 = 0 we define the healing lenth as

ξ =

√
h̄2

2g0nm
. (2.6)

If g2 6= 0 we can define a new healing length, equaling the kinetic term and potential term
in the MGPE equation Eq. (1.32). Remembering that |ψ|2∝ n and ∇2n ' n/ξ′2 the
healing length for the MGPE ξ′ is given by ξ′ = ξ

√
1− α, where α is an adimensional

parameter
α = − g2

g0ξ2
. (2.7)

So, if we consider finite-range interactions, the healing length of the system will change in
magnitude accordingly to the sign of the parameter α depending itself on the sign of g0

and g2. This ideas will be useful to study quantized vortices in weakly interacting Bose
gases, as we shall see in section 3.2.

Now we want to show that both dilute ultra-cold Bose gases and He II, described by the
MGPE and Hartree equation respectively, have a superfluid behavior, i.e. they flow without
friction. We will use a simple criterion developed by Landau [23], [16], [24] that employs
Galilean invariance. Let us first consider a fluid of mass M at absolute zero flowing along
a capillary at a constant velocity v. For an ordinary fluid viscosity and dissipation arise
when the flowing fluid particles are randomly scattered by the atoms of the channel’s walls,
so we have momentum transfer from the fluid to the walls: if viscosity is zero it means
that this scattering events do not occur. Let us consider the system in the frame in which
the fluid is at rest and the walls move with velocity −v. When viscosity is present the
fluid also begins to move: it is clear that the motion must arise gradually as elementary
excitations in the fluid appear. Let us suppose a single elementary excitation of momentum
q and energy h̄ω(q) arising in the fluid: so, since we are considering the fluid at rest, its
energy E and momentum p are equal to h̄ω(q) and h̄q. We will regard the excitation as
a quasiparticle. If we now consider the frame in which the walls are at rest, thanks to
Galilean trasformation p′ = p +Mv, we find

E′ =
p′2

2M
= E + p · v +

1

2
Mv2 , (2.8)

and substituting the values for E(q) = h̄ω(q) and p we obtain

E′ = h̄ω(q) + h̄q · v +
1

2
Mv2 . (2.9)

Since 1
2Mv2 is the kinetic energy of the flow, the change in energy is given by E(q)+ h̄q ·v

which must be negative since friction decreases the energy of the fluid. The quantity h̄q ·v
is at minimum when the excitation occurs in a direction antiparallel to flow, so we must
always have E(q)− h̄qv < 0, i.e.

v > vL = min
q

E(q)

h̄q
, (2.10)
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which is the so-called Landau’s criterion for superfluidity. The condition for the occurrence
of excitations and so for non-zero viscosity is given finding the minimum of E(q)/h̄q, i.e.
geometrically the minimum slope vL of the line drawn from the origin to each point of an
excitation spectrum in a (q, E(q)) graph. If the critical Landau velocity vL is not zero,
then, for velocities of flow below a certain value, excitations cannot appear in the fluid and
so the system shows the phenomenon of superfluidity. To find if this criterion is satisfied
by ultra-cold Bose gases and He II we have to find the expression of E(q).

2.2 Quasiparticle dispersion relation

In this section we will obtain the dispersion relation in a general form for both weakly
interacting gases and 4He. Let us start considering Hartree equation Eq. (1.23) with
Vext = 0. The dispersion relation can be obtained in the case of an homogeneous and
infinitely extended fluid: the solution at equilibrium is constant ψ = ψ0 and corresponds
to a costant density profile. At infinity we obtain the relation

µ =

∫
d3r′V (|r− r′|)|ψ0|2+µcorr(|ψ0|2) , (2.11)

which can also be written as

µ = g0|ψ0|2+µcorr(|ψ0|2) . (2.12)

Let us now consider a small perturbation η(r, t)

ψ(r, t) =

[
ψ0 + η(r, t)

]
e−iµt/h̄ . (2.13)

Substituting in Eq. (1.23) and keeping only first order terms in η and η∗, we get these
terms (we omit the phase term e−iµt/h̄)

ih̄
∂ψ

∂t
=

[
ih̄
∂η

∂t
+ µ(ψ0 + η)

]
.

ψ

∫
d3r′ V (r′)|ψ|2 = (ψ0 + η)

∫
d3r′ V (r′)

[
|ψ0|2+ψ0(η + η∗)

]
= g0|ψ0|2(ψ0 + η) + |ψ0|2

∫
d3r′V (r′)(η + η∗) .

ψµcorr

(
|ψ|2

)
= (ψ0 + η)

[
µcorr

(
|ψ0|2

)
+ ψ0(η + η∗)

∂µcorr

(
|ψ0|2

)
∂|ψ0|2

]

= µcorr

(
|ψ0|2

)
(ψ0 + η) + |ψ0|2

∂µcorr

(
|ψ0|2

)
∂|ψ0|2

(η + η∗) .

Now using Eq. (2.12) we obtain the following differential equation:

ih̄
∂η

∂t
=

h̄2

2m
∇2η + |ψ0|2

∫
d3r′V (r′)[η + η∗] + |ψ0|2

∂µcorr

(
|ψ0|2

)
∂|ψ0|2

[η + η∗] . (2.14)

Regarding |ψ0|2 as the particle density in unit volume n we can write Eq. (2.14) as

ih̄
∂η

∂t
=

h̄2

2m
∇2η + n

∫
d3r′V (r′)[η + η∗] + n

∂µcorr

∂n
[η + η∗] . (2.15)

Considering perturbations in the form of plane waves of frequency ω and wave vector q

η(r, t) = Aei(q·r−ωt) +B∗e−i(q·r−ωt) ,
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and substituting in Eq. (2.15) we obtain a system of equations in A e B:[
−h̄ω +

h̄2q2

2m
+ nV̂ (q) + n

∂µcorr

∂n

]
A+

[
nV̂ (q) + n

∂µcorr

∂n

]
B = 0

[
nV̂ (q) + n

∂µcorr

∂n

]
A+

[
+h̄ω +

h̄2q2

2m
+ nV̂ (q) + n

∂µcorr

∂n

]
B = 0

which has non-trivial solution if and only if

E(q) =

√
h̄2q2

2m

{
h̄2q2

2m
+ 2n

[
V̂ (q) +

∂µcorr

∂n

]}
. (2.16)

If this relation is monotonic, the critical Landau velocity is equal to the first sound velocity
we get from expanding Eq. (2.16) at first order in q

c = lim
q→0

1

qh̄
E(q) =

√
n

m

[
V̂ (0) +

∂µcorr

∂n

]
. (2.17)

Let us see what form takes the dispersion relation in case of a weakly interacting Bose gas
with finite range interactions. In that case we have µcorr = 0, µ = g0n and V̂ (q) = g0+g2q

2.
Hence we get

Efr(q) =

√
h̄2q2

2m

{
h̄2q2

2m
+ 2µ

[
1 +

g2q2

g0

]}
. (2.18)

Note that for g2 = 0 one obtains the well-known Bogoliubov dispersion relation [24], [25]
and from it the sound velocity

c =

√
µ

m
. (2.19)

The expansions at low momenta are justified by the low temperature hypotesis. This is the
same as stating that q2 � 2µm

h̄2
= 1/ξ2 i.e. 1/q2 ∼ λ2 � ξ2 hence we have a length scale

also for phenomena in momentum space. Notice that in absence of interaction g0 = 0,
µ = g0n = 0 and the critical velocity is zero. Hence a non-interacting BEC is not a
superfluid.

2.3 Excitation spectrum for a weakly-interacting Bose gas

The elementary excitation spectrum of an ultra-cold alkali gas is monotonic with a shape
that resembles the free particle spectrum. We want to compare the dispersion curve ob-
tained from Eq. (2.18) with experimental data obtained by the group of Davidson [26].
They considered a BEC of 87Rb atoms in the 5s1/2, F = 2, mF = 2, trapped by a magnetic
field and cooled with an evaporation technique similar to the one described in section 1.1.
Our Eq. (2.18) has been found for homogeneous condensate but, as stated by the authors,
the dispersion curve of the trapped condensate should largely reflect the intrinsic porper-
ties of the homogeneous BEC. If we set ξ =

√
h̄2

2µm and 2µ = h̄2

mξ2
as unit of length and

energy respectively, with µ/h = 1.91 kHz the measured chemical potential, we can write
Eq. (2.18) in the form:

ωfr(q) =
h̄

mξ2

√
q2ξ2

2

{
q2ξ2

2
+

[
1− αq2ξ2

]}
. (2.20)

with α = −g2ξ
−2/g0, the adimensional parameter defined in Eq. (2.7). In the case of 87Rb

the scattering length is as = 90.6a0 ' 48 Å [9] and from this value we can compute g2
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once we know α. To see if our model suits the data we tried to fit them with Eq. (2.20)
with free parameter α. In Fig. (2.1) we show the experimental data together with our fit,
the spectrum obtained with the GPE model (α = 0) and the free particle curve ω0 = h̄q2

2m .
From the fit we obtained the value α ' 0.08. We see that our model improves the GP
one at medium and short wavelengths but lacks accuracy at low momenta, i.e. in the
so-called phonon part of the spectrum, due to other effects not taken in account by our
simple model and to the fact that the atoms are trapped. The authors in [26] employed
an improved Bogoliubov spectrum in the local density approximation (LDA) in which the
speed of sound cld(q)is not constant like in the MGPE model but slowly varies:

cld(q) =
h̄q

2m

√
S(q)−2 − 1 , (2.21)

where S(q) is the structure factor giving the magnitude of density fluctuations in the fluid.
The authors considered the following form with Θ = 2µ/(h̄ω0(q)) adimensional function
of momentum

S(q) =
15

4

{
3 + Θ

4Θ2
− 3 + 2Θ−Θ2

16Θ5/2

[
π + 2 arctan

(
Θ− 1

2
√

Θ

)]}
. (2.22)

So the dispersion relation that fits the data is

ωld(q) =

√(
h̄q2

2m

)2

+ c2
ld(q)q

2 . (2.23)

From this model the speed of sound, which is also the Landau critical velocity, is ceff =
32

15π

√
µ
m ' 0.68c, a little smaller than our speed of sound.

◆◆◆◆
◆◆◆◆

◆
◆

◆

◆

◆

5 10 15
q [μm-1]

2

4

6

8

10

12

14

ω(q)/2π [kHz]

Figure 2.1: The elementary excitation spectrum for a 87Rb BEC: "♦" data from [26], the fit
dispersion curve from Eq. (2.20) for α ' 0.08 (large-dashed red line), the GP model dispersion
curve (dot-dashed blue line), the LDA dispersion curve Eq. (2.23) (solid black line) and the free
particle spectrum ω0 (short-dashed green line).
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2.4 Excitation spectrum for superfluid 4He

Let us consider liquid helium at zero temperature and pression. The elementary excita-
tion spectrum for liquid helium obtained via experiments, e.g. with neutron scattering
methods (see the works of Donnelly [27]), is not monotonic but has a characteristic trend.
There are three main regions in the spectrum. At very low momenta q the energy is, as
expected, approximately linear E(q) = h̄cq with c = 238 m/s: such behaviour is similar
to quasiparticle excitations called phonons in solid state physics. This region corresponds
to greater λdB than a single atom size and is due to a rigid movement of groups of atoms
together. At higher values of momenta we have a minimum, called the roton part of the
spectrum in which the energy goes as

E(q) = ∆ +
h̄2

2m∗
(q − q0)2 , (2.24)

with extrapolated parameters m∗ = 0.16m4He, ∆ = 8.7 K and q0 = 1.926Å−1. It is worth
saying that this form of the spectrum was first suggested by Landau (1947) from an analysis
of experimental results regarding the thermodynamic quantities for liquid helium and only
later confirmed by neutron scattering experiments. In the roton region λdB is of the order of
the interparticle distance n−1/3 so the moving particle couples strongly to the surrounding
ones leading to a circular motion around the travelling particle. We will see that the roton
part of the spectrum is the most important one and it affects the profile of quantized
vortices in 4He. In conclusion, at even higher momenta, the experimental spectrum shows
a saturation rather than a conventional free-particle one. According to [14], [13], we will
ignore this feature, assuming at high momenta a similar to free-particle spectrum.

Now we want to reproduce the experimental spectrum of 4He using Eq. (2.16): so we
have to choose the analytic form of µcorr and of the potential V (r). Following the work of
Berloff [14] [28] and Dalfovo [13], [12], we choose the correlation term µcorr as follows

µcorr = W |ψ|2(1+ν) , (2.25)

in analogy with Skyrme correlation energy adopted for atomic nuclei [18], with W and ν
as free parameters. As proved in [29] this term is necessary, otherwise the model would
have non-physiscal features such as non-dissipative mass concentrations. For the two-body
interaction potential V (|r− r′|), following again Berloff and Jones [14], [28] we chose

V (r) = V0

[
(α+ βr2A2 + γr4A4)e−A

2r2 + δe−B
2r2
]

(2.26)

with the constant V0, dimensionally an energy, and the parameters A, B, α, β, γ, δ.
This choice allows us to work with a Fourier-transformable potential without the need
of screening a more realistic 12-6 Lennard-Jones potential 1.2 at little values of r. It is
important to state that the resulting potential is not a completely realistic interaction
potential for liquid helium but it is meant to embody other correlation effects. We chose
the values of the parameters with requirements: (1) the dispersion relation obtained by
substituting this potential in Eq. (2.16) gives a good fit to experimental data for the
phonon and roton part of the spectrum, (2) the normalization condition at infinity is
satisfied, (3) the two-body interaction shows a strong repulsion at short distances, (4) the
parameters lead to a s-wave scattering length as computed from this potential V (r) equal
to the helium experimental one as = 2.2Å (see [30] and references therein); as we shall see,
this sets a constraint for parameters W and ν. The Fourier trasform of Eq. (2.26) reads

V̂ (q) =
1

16
π3/2V0

{
e−

q2

4A2

A3

[
16α+ 4β

(
6− q2

A2

)
+ γ

(
60− 20q2

A2
+
q4

A4

)]
+ 16δ

e−
q2

4B2

B3

}
.
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We set ξ =
√

h̄2

2µm and 2µ = h̄2

mξ2
as unit of length and energy of our model respectively.

Then we notice that in Eq. (2.16) the term with µcorr becomes 2n∂µcorr∂n = 2(1 + ν)Wn1+ν ,
which is an energy. So we set the dimensionless parameter

χ =
Wn1+ν

µ
, (2.27)

and V0 = µξ−3/n. We can write the dispersion relation for our model in the form

E(q) =
h̄2

mξ2

√
q2ξ2

2

{
q2ξ2

2
+

[
V̂ (ξq) + (1 + ν)χ

]}
. (2.28)

Requesting the bulk normalization Eq. (2.12) we get the constraint for χ and for the fit
parameters

χ = 1− V̂ (0) . (2.29)

This also sets the speed of sound of the model from Eq. (2.28) as c = h̄2

mξ2

√
1+χν

2 . Since
we know the experimental speed of sound c we can obtain the expression for the healing
length of the model:

ξ =
h̄√
2mc

√
1 + χν ' 0.471

√
1 + χν Å . (2.30)

Now we can explicit the constraint on the scattering length

as =
mV̂ (0)

4πh̄2 =

√
2mc

nh̄
· 1− χ√

1 + νχ
. (2.31)

This shows that once we set the value of ν, Eq. (2.31) fixes the value of χ, hence the
healing length of the model ξ. More freedom can be obtained relaxing the requirement
(4). We chose ν = 1 and we obtained from Eq. (2.31) the value of χ ' 0.58. From the
fit with Eq. (2.28) shown in Fig. (2.2) we obtained the values of the parameters A ' 1.9,
α ' 4.833, β ' −2.602, γ ' −1.822, B ' 0.567 and δ ' 0.171. In Fig. (2.2) we also show
how the finite range approximation of the potential Eq. (2.26, Efr, can well reproduce the
data for the phonon part of the spectrum, the critical velocity vL ' 56.5 m/s, close to the
experimental one (we must take into account that vortex production lowers the critical
velocity [6]), and sound velocity c = 238 m/s. Another possible choice was ν = 2.8 as it
takes into account the right proportionality to the density n of the sound velocity: c ∝ n2.8

as showed by Donnelly and Berloff in [14] and references therein. The result fit is visually
identical to the one with ν = 1 but we obviously obtained different parameters: χ ' 0.419,
A ' 1.82, α ' 10.2, β ' −16, γ ' 1.764, B ' 0.667, δ ' 0.383. These fit parameters for
ν = 1 and ν = 2.8 will be used in section 3.3 to find the density profile of a vortex line in
4He.
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Figure 2.2: The elementary excitation spectrum of 4He: "�" data from Annett [16], "4" data from
Donnelly [27], the fit E(q) with Eq. (2.28) for ν = 1 (solid black line), the real and imaginary part
of the finite range approximation Efr(q) (solid and dashed red lines), sound and critical Landau
velocities (solid green and purple long-dashed lines respectively).
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3

Quantized vortices

In this chapter we will study the rotational motion in superfluids and particularly the
fact that circulation is quantized. In the first section we will obtain the rotational motion
quantization from the macroscopic wave function hypotesis and we will study the formation
of vortices in a rotating superfluid. In the second section we will solve the stationary MGPE
in a particular case for a weakly interacting Bose gas to find the vortex line profile. In
conclusion, in the third section, we will solve the complete stationary Hartree equation for
He II with the terms obtained in section 2.4 and we will find the vortex line density profile.

3.1 Phase defects and vortices

As seen in the first chapter the superfluid can be described by a macroscopic wave function
(order parameter) extending over the entire system, written in the form of the Madelung
transform Eq. (2.1). We also saw that as a consequence a phase gradient in the system
induces an inviscid flow with velocity

v(r) =
h̄

m
∇θ(r) , (3.1)

which therefore is also irrotational
∇× v = 0 . (3.2)

Another important property regards the circulation of the flow. Let us consider a flow
around a closed path C with line element ds around a fixed axis z. If we define the
circulation of the flow Γ as

Γ =

∮
C
v · ds , (3.3)

for the irrotational property the circulation is indipendent from the choice of the path C
that wraps the axis. Substituting v from Eq. (3.1) in Eq. (3.3) we find

Γ =

∮
C

h̄

m
∇θ(r)ds =

h̄

m
∆θ . (3.4)

But, since the macroscopic wave function ψ(r) =
√
n(r)eiθ(r) has to be single-valued, it

must be ∆θ = 2πs where s ∈ Z. This implies that within the considered region there
must be a phase defect point, where θ takes every value and consistently ψ = 0: it is a
singularity whose presence affects the fluid’s properties. First of all the circulation of the
flow is quantized:

Γ =
hs

m
. (3.5)

21



This is equivalent to imposing the angular momentum quantization L = sh̄. Hence the
quantized circulation is another property that characterizes flow for superfluids, together
with zero viscosity and irrotationality. Introducing cylindrical coordinates (r, θ, z), using
Eq. (3.5), and computing the integral in Eq. (3.3) we find the azimuthal speed around the
z axis:

vθ =
sh̄

mr
. (3.6)

Eq. (3.6) implies that, to avoid velocity divergence, as r → 0 the fluid density, i.e. n = |ψ|2,
has to be zero. We can now see that a quantized vortex is a well defined topological
singularity. The quantum number s is called vortex charge and it corresponds to the
topological winding number of the phase around the closed loop. The flow in a quantized
vortex profoundly differs from flow in a classical vortex. To show the main difference let
us consider vorticity, a vectorial field defined as ω = ∇× v [24]. Unlike the classical case,
the irrotational property of the quantum fluid implies that ω = 0 for r > 0: therefore a
flowing particle will never change its orientation with regards to a reference in the rotational
motion. The only contribution to the vorticity is in the singularity itself and it is quantized:
ω = h

mδ
(3)(r)ẑ. Nevertheless, from an experimental point of view, as stated by many

authors [6], [10], there are limitations on the definition of the position of the singularity,
due to the uncertainty principle. This implies that the vorticity spreads out a little and so
we expect a core in which the density becomes very small, but not zero, and the velocity is
finite. However, while in classical fluids the vorticity has arbitrary values, in a superfluid
the rotational motion around the singularity has well-defined shape and intensity.

Let us give an insight on vortex nucleation. Vortices, as topological defects, can only
be created near a boundary or even spontaneously but paired with a vortex of opposite
charge. Experimentally they are created by rotating the superfluid, for example in a bucket
of radius D. A vortex is created only if it lowers the energy of the rotating system: this
implies that, to create a vortex, the rotational velocity must be greater than a critical
value Ω > Ωc. Since the energy of the vortex is roughly proportional to v2

θ ∝ s2 we can
see that multi-charged vortices are less stable than single-charged ones so, if the former
are product, they shall decay quite quickly in many single-charged vortices. These vortices
arrange themselves in a so-called vortex lattice, that have been observed both in 4He and
in atomic Bose gases [24]. If the necessary critical velocity is exceeded vortices are created
near the walls of the bucket and a vortex lattice develops in the bulk, with density increasing
with the rotational velocity Ω.

To study quantized vortices we will employ the stationary form of our Hartree equation,
that we can find substituting

ψ(r, t) = ψ(r)e−iµt/h̄ , (3.7)

in which µ can be easily proved to be the chemical potential. So we find

µψ(r) =

[
− h̄2

2m
∇2 +

∫
d3r′V (r, r′)|ψ(r′)|2+µcorr(|ψ2|)

]
ψ(r) . (3.8)

3.2 Vortices in dilute weakly interacting Bose gases

We want now to study the properties of a vortex in a weakly-interacting Bose gas with
singularity in the origin. In dilute atomic BECs the so-called gas parameter na3

s is small
(10−4 ÷ 10−8), therefore the vortex structure can be studied with a local appproach, i.e.
with the finite range model of the MGPE. Furthermore the diluteness of the gas leads to
a large healing length ξ ' 10−6 m enabling the experimental observation of the core. We
want to concentrate on the effects of the finite range interaction so we will consider an
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untrapped BEC of infinite extension and we will employ the stationary MGPE:[
− h̄2

2m
∇2 + g0|ψ|2−g2∇2|ψ|2

]
ψ = µψ . (3.9)

The first step is to cast this equation in dimensionless variable. As usual we introduce
as unit of length the healing length ξ defined in Eq. (2.6) and the parameter α (Eq.
(2.7)). Imposing ψ →

√
n at infinity we fix the chemical potential as µ = g0n. With the

substitutions ψ → ψ/
√
n and r→ ξr we find the dimensionless MGPE:

∇2ψ + ψ − |ψ|2ψ − α∇2|ψ|2ψ = 0 . (3.10)

On the dimensionless coordinates we introduce cylindric coordinates (ρ, θ, ζ) and we write
the wave function in the new coordinates to explicit the angular momentum quantization
along the ζ axis:

ψ(ρ, θ, ζ) = φ(ρ)eisθ , (3.11)

with s ∈ Z. Remembering the expression of Laplacian in cylindrical coordinates,

∇2 =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂θ2
+

∂2

∂ζ2
,

and introducing the wave function Eq. (3.11) into Eq. (3.10) we obtain a non linear
second-order differential equation also parametric in α

φ′′ +
1

ρ
φ′ − s2

ρ2
φ+ φ− φ3 − α

[
2φ′′φ2 + 2φ′

2
+

1

ρ
φ2φ′

]
= 0 . (3.12)

We recognize in the equation the linear centrifugal term ∝ s2/ρ2 and the non-linear terms
due to interaction between bosons. We have Dirichlet boundary conditions φ(0) = 0 since
the wave function must vanish in the singularity and φ(∞) = 1 for the normalization
condition imposed. The equation is not analitically solvable but we can study the asintotic
behavior of the solution, e.g. with polynomial trial functions. If for ρ → 0 we consider
solutions of the type ρτ , with τ > 0 a parameter to be found, we obtain that for all values
of α the solution goes as φ ∼ ρ|s|; notice that nevertheless we have no information on the
value of φ′. In a similar way, if for ρ → ∞ we try with solutions of the family 1 − uρ−τ
with u another parameter we find the asymptotic behavior φ ∼ 1− s2/(2ρ2). Hence

φ(r) ∼

{
ρ|s| ρ→ 0

1− s2/(2ρ2) ρ→∞
(3.13)

Furthemore it is important to underline the fact that the boundary condition at infinity
impose a restraint to the parameter α. In fact in Eq. (3.12) in the limit ρ → ∞ we
can neglect the terms proportional to 1/ρ and consider φ′ = 0 (the solution is costant
at infinity): we obtain the following differential equation to be considered in the range
0 ≤ φ ≤ 1

φ′′ = −V ′(φ) =
φ(φ2 − 1)

1− 2αφ2
, (3.14)

for which we have the equilibria of interest φ = 0 and φ = 1 (our boundary conditions).
The searched solution will be a curve between the points (0, 0) and (1, 0) in the phase
space (φ, φ′). Unlike φ = 0, which is always stable, studying φ = 1 we find that it is an
equilibrium only if α < 1/2. In fact the associated potential is

V (φ) =
2αφ2 + (1− 2α) ln(1− 2αφ2)

8α2
,

and, due to the presence of the logarithm, the potential diverges if φ → 1 for values
α > 1/2.
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Eq. (3.12) was solved numerically for a single-charged vortex with the sofware Mathematica
(v 11.2) employing a shooting method to find with enough precision the appropriate (and
unique) value of the initial condition φ′(0) for which, varying the parameter α, the solution
satisfies the boundary condition at infinity. This is a so-called separatrix problem, because
the solution divides the region of exponentially divergent solutions from oscillating solution
which are affected by the attractor φ ≡ 0, so very high precision is needed to obtain long
range constant solutions. We notice that for ρ ∼ 5 the solutions are very close to the
asymptotic behaviour of Eq. (3.13). As shown in Fig. (3.2), the shape of the vortex varies
consistently with the new healing length accordingly to the relation

ξ′ = ξ
√

1− α . (3.15)

Hence, with regards to the GPE vortex profile (α = 0), the vortex widens for α < 0 and
narrows for 0 < α < 1/2. The role of the healing length as the characteristic length for
superfluid phenomena is definetely clear: a greater healing length means that the vortex
will assume the constant profile at greater distances from the origin. Moreover we also got
numerical evidence that no converging solutions exist for α > 1/2. In conclusion we report
a simple analytic expression which very well approximates the solutions, called the Padé
approximation

f(ρ) =
ρ√
ρ2 + λ

, (3.16)

with the parameter λ which can be tuned accordingly to the value of α: for the GPE a
good choice is λ = 2.

2 4 6 8 10 12
ρ

0.2

0.4

0.6

0.8

1.0

ϕ(ρ)

Figure 3.1: Profile of φ(ρ) solution of Eq. (3.12) for different values of the parameter α with
appropriate values of φ′(0): α = 0 (GPE, solid black line, φ′(0) ' 1.1664), α = −0.6 (large-dashed
red line, φ′(0) ' 1.3389), α = +0.4 (dotted purple line, φ′(0) ' 1.0533), α = −3 (blue dot-dashed
line, φ′(0) ' 2.1459), α = −7 (short-dashed green line, φ′(0) ' 4.1289).
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Figure 3.2: Detail of Fig. (3.1): notice that the vortex profile widens and crushes for α < 0
according to Eq. (3.15). Particularly we notice how this deformation is substantially "symmetric"
with regards to the GPE profile. Furthermore all the solutions follow the asymptotic behavior
forseen 1− 1/(2ρ2) for ρ > 5 (large-dashed black line).

3.3 Vortices in superfluid 4He

In He II the gas parameter na3
s ' 0.3 is relatively large due to the strong interactions and

high density of liquid helium. This leads to a very small healing length ξ ' 0.5÷1.0Å and
thus to difficulties in observing directly the structure of the vortex core. More accurate
observations, together with Montecarlo calculations with realistic potentials [31]and the
works of Berloff and Dalfovo [14], [12] show that, unlike vortices in weakly interacting Bose
gases, the approach of the 4He fluid density to infinity is oscillatory rather than monotonic,
the oscillations depending on the nature of the quasiparticle excitation spectrum. To prove
this we consider the generalized non-local and non-linear Schrödinger equation we wrote
in section 2.4 in order to describe the elementary excitations of superfluid helium. In the
stationary form we have

µψ =

[
− h̄2

2m
∇2 +

∫
d3r′ V (|r′ − r|)|ψ(r′)|2+W |ψ|2(1+ν)

]
ψ . (3.17)

To find the structure of a single-charged vortex one must solve Eq. (3.17) in cylindrical
polar coordinates. Following [14], firstly we cast this equation into dimensionless variable
with the same units chosen in section 2.4 absorbing the dimensionless constant nξ−3/µ in
V

∇2ψ +

[
1−

∫
d3r′ V (|r′ − r|)|ψ(r′)|2−χ|ψ|2(1+ν)

]
ψ = 0 . (3.18)

Now we introduce dimensionless cylindrical coordinates and we choose for the wave function
the form of Eq. (3.11) with s = 1. Substituting in Eq. (3.18) we find

φ′′(ρ) +
1

ρ
φ′(ρ)− 1

ρ2
φ(ρ)− χφ(ρ)2ν+3 −

∫ ∞
0

ρ′dρ′
∫ ∞
−∞

dζ ′

×
∫ 2π

0
dθ′φ(ρ′)2V

(√
ρ2 + ρ′2 − 2ρρ′ cos(θ − θ′) + (ζ − ζ ′)2

)
= 0 .

(3.19)

For the potential we choose the form of Eq. (2.26); integrating in θ′ and ζ ′ we obtain the
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non-local and non-linear differential equation

0 = φ′′(ρ) +
1

ρ
φ′(ρ)− 1

ρ2
φ(ρ)− χφ(ρ)2ν+3 − φ(ρ)

∫ ∞
0

φ2(ρ′)

{
2π3/2

A
e
−A2

(
ρ2+ρ

′2
)

× [k0(ρ, ρ′)I0(2A2ρρ′)− k1(ρ, ρ′)I1(2A2ρρ′)] +
2π3/2

B
δe
−B2

(
ρ2+ρ

′2
)}

ρ′dρ′ .

(3.20)

The two functions k0 and k1 are given by

k0(ρ, ρ′) = α+
1

2
β +

3

4
γ + γA4[(ρ2 + ρ′

2
)2 + 4ρ2ρ′

2
] +A2(β + γ)(ρ2 + ρ′

2
)

k1(ρ, ρ′) = 2A2ρρ′(β + 2γ) + 4γA4ρρ′(ρ2 + ρ′
2
) ,

(3.21)

while I0 and I1 are the modified Bessel functions of order 0 and 1 that come from integration
in θ′. The solution has the same asymptotic behavior of Eq. (3.13) found for the MGPE
case.

The equation was solved numerically with the software Mathematica upgrading the code
employed in the previous section (see appendix): the integration in cylindrical coordinates
and the presence of Bessel functions complicate the separatrix problem requiring much more
precision in the shooting method. The solution can be found only iteratively since we have
to choose a reasonable guess φ0 to compute the integral and start the integration; then,
after we have found a solution φ1, we recalculate the integral and so on, until convergence.
As a starting guess we chose the simple Padé approximation Eq. (3.16) with λ = 1; trials
with other starting guesses led to the same converging solution but required more time.
Usually 10-15 iterations and 2-5 hours of computational time on a standard laptop are
enough to obtain a well-converged solution to ρ = 20 depending on the parameters used.
We solved Eq. (3.20) with the two sets of parameters found in section 2.4 with a fit to
the dispersion curve: this is necessary because the vortex core density profile reflects the
roton spectrum properties. Moreover the parameters were found with the constraint of
Eq. (2.29) implying also the asymptotic limit of Eq. (3.20) to be satisfied. In Fig. (3.3)
we show the solutions φ2 found for ν = 1 and ν = 2.8, together with the starting Padé
approximation φ0 and we compare them with the Montecarlo data from [31]: the feature
of oscillating behavior of the density near the core is evident. As stated by Dalfovo [12]
the data of Chester et al. can be fitted with the composition of a monotonic function and
a damped Bessel function J0(q0r) where q0 = 1.926 Å−1 is the wave vector of the roton
minimum, 0.9077

√
1 + νχ in adimensional units. We chose the form plotted in Fig. (3.3),

here in dimensionless units ρ:

f(ρ) =
ρ√

ρ2 + 0.25

[
1− 0.8e−0.4ρJ0(q0ρ)

]
. (3.22)

The link between the excitation spectrum and the vortex density profile is now clear. The
boundary can be seen as a source of elementary excitations among which the roton excita-
tions play the most important role: the liquid organize itself in quantized density "shells"
separated by distance of order of the roton wavelength and amplitude which decreases as
the distance from the boundary r = 0 increases. That is why the requirement of a potential
giving the right excitation spectrum is essential in reproducing quantized vortex in 4He.
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Figure 3.3: Quantized vortex in 4He. The numerical solutions of Eq. (3.20) with ν = 1 (solid black
line) and ν = 2.8 (long-dashed red line) compared to Montecarlo data from [31], fitted with Eq.
(3.22) (dotted green line) together with the Padé approximation, the initial guess φ0 resembling
the GPE vortex profile (dot-dashed purple line).
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Conclusions

In this work we reviewed the main properties of two of the most studied bosonic superfluid
systems: ultra-cold alkali gases and 4He. Within a classical field formalism we wrote the
Hartree equation, a single-particle differential equation, by which, with proper changes
applied and hypotesis, we managed to describe the ground state properties, the quasipar-
ticle excitation spectrum and quantized vortices, which are one of the most surprising and
interesting phenomena in superfluidity. We also compared the results with experimental
data with fair success.
The work on superfluid 4He may appear old-fashioned but the effort in modeling such
system within a simple single-particle formalism, in parallel to other more complicated
theories, can be useful to understand how the interparticle interactions can affect the na-
ture of different quantum systems. For example, working with a non-local potential term as
we did, inspired by the works of Berloff and Dalfovo, led us to develop tools and numerical
techniques that can be useful to study condensates with strong dipolar interactions [33],
very recently observed in BEC of 52Cr, 168Er and 164Dy.
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Appendix - Mathematica codes

(* MGPE EQUATION *)
Clear[eps , end , \[ Alpha]]
end = 12;
eps = 10^-5;
\[Alpha] = Rationalize[-5, 0]; (*set the parameter *)

eqnMGPE =
u’’[r] + u’[r]/r - u[r]/r^2 + u[r] -

u[r]^3 - \[Alpha] D[r D[(u[r])^2, r], r] u[r]/r == 0;
sp = ParametricNDSolveValue [{eqnMGPE , u[eps] == 0, u’[eps] == up0 ,

WhenEvent[u[r] > 11/10 , {bool = 1, "StopIntegration"}],
WhenEvent [{u[r] < 8/10, u[r] < 0}, {bool = 0,

"StopIntegration"}]}, u, {r, eps , end + 3}, {up0 , wp0},
WorkingPrecision -> wp0 , Method -> "StiffnessSwitching",
Method -> {"ParametricSensitivity" -> None}, MaxSteps -> 100000];

bl = 9/10; bu = 10; imax = 200; wp = 75;
Row[{ ProgressIndicator[Dynamic[ip], {0, imax}], " ",

ProgressIndicator[Dynamic[rm], {0, end }]}]
Do[bool = -1; bmiddle = (bl + bu)/2; s = sp[bmiddle , wp];

rm = s["Domain"][[1, 2]];
If[bool == 0, bl = bmiddle , bu = bmiddle ];
ip = i; If[bool == -1, Return []], {i, imax}] // AbsoluteTiming

N[bmiddle , wp]
p0 = Plot[{s[r]}, {r, eps , Min[rm, end]}, PlotStyle -> {Black},

AxesLabel -> {"\[Rho]", "\[Phi ](\[ Rho])"}, Axes -> True ,
AxesStyle ->
Directive[Black , FontSize -> 18,
FontFamily -> "TeX Gyre Pagella Math"],

LabelStyle ->
Directive[Black , FontSize -> 18,
FontFamily -> "TeX Gyre Pagella Math"], ImageSize -> {Large},

PlotRange -> All];

(* HARTREE EQUATION *)
Clear[A, B, a, b, d, \[HBar], M, n, \[Chi], \[Nu], v0, v1, v2 , g0 , g1,

j, g00 , g02 , A\[Xi], \[Xi], X1 , X0, X2 , JJ , n0vera , V0];
Off[InterpolatingFunction ::dmval]
eps = 10^-5;
end = 20;
V0 = 1;
\[HBar] = 1.054571800 10^ -34; (*J*s*)
NA = 6.022 10^23 ;
M = 4.003 10^-3/NA; (*kg*)
e = 1.602176 10^ -19;
kb = 1.3806503*10^ -23;
c = 238;
as = 2.4 10^ -10;
n0 = 0.0218 10^30;
v0 = 719 kb*10^ -30;
v1 = 3.63 10^4 kb*10^ -60;
v2 = 2.48 10^6 kb*10^ -90;
qrot = 1.926 10^10;
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Erot = 8.62 kb;
(* Equation parameters *)
\[Chi] = Rationalize [0.41893541674371876 , 0]
\[Nu] = Rationalize [2.8, 0];
(* Potential parameters *)
A = Rationalize [1.8216676598426922 , 0];
a = Rationalize [10.202043404551432 , 0];
b = Rationalize [ -16.006267177481995 , 0];
d = Rationalize [1.7643890809636422 , 0];
n = Rationalize [0.3832609060333534 , 0];
B = Rationalize [0.6666019134179484 , 0];

V[r_] = ((a + b A^2 r^2 + d A^4 r^4) Exp[-A^2 r^2] +
n Exp[-B^2 r^2]);

VT[q_] = 4 Pi *1/
64 Sqrt [\[Pi]] V0 ((16 a E^(-(q^2/(4 A^2))))/(A^2) ^(3/

2) + (16 E^(-(q^2/(4 B^2))) n)/(B^2) ^(3/
2) - (4 b E^(-(q^2/(4 A^2))) (-6 A^2 + q^2))/(A^2) ^(5/
2) + (E^(-(q^2/(4 A^2))) d (60 A^4 - 20 A^2 q^2 +
q^4))/(A^6 Sqrt[A^2]));

Print["\[Xi]=", \[Xi] =
Sqrt [\[ HBar ]^2/ c^2 /2/M^2] Sqrt[1 + \[Nu] \[Chi ]]](* healing length *)

\[Mu] = \[HBar ]^2/M/2/\[ Xi]^2;(* chemical potential *)
Print["g00=",
g00 = N[SeriesCoefficient[Series[VT[q], {q, 0, 2}], 0]]]

Print["g02=",
g02 = N[SeriesCoefficient[Series[VT[q], {q, 0, 2}], 2]]]

Print["as=", as = N[M/(4 Pi \[HBar ]^2) (g00 \[Mu]/n0)]](* scattering length
*)

j[x_ , r_] = 2 A^2 r x;
g0[x_, r_] =

a + b/2 + 3 d/4 + A^2 (b + d) (x^2 + r^2) +
d A^4 ((x^2 + r^2)^2 + 4 x^2 r^2);

g1[x_, r_] = j[x, r] (b + 2 d) + 4 d A^4 r x (r^2 + x^2);
jb[x_, r_] = 2 B^2 r x;
g0b[x_ , r_] = n
endp = end + 1;
s[0][x_] = x/Sqrt[x^2 + 1];
F[0] = Interpolation@

Rationalize[
Table[{r,

2 (Pi)^(3/2)/
A E^(-A^2 (r^2)) NIntegrate [(x s[0][

x]^2 E^(-A^2 x^2) (g0[x, r] BesselI[0, j[x, r]] -
g1[x, r] BesselI[1, j[x, r]])), {x, 0, 30},

WorkingPrecision -> 30, PrecisionGoal -> 8] +
2 (Pi)^(3/2)/

B E^(-B^2 (r^2)) NIntegrate [(x s[0][
x]^2 E^(-B^2 x^2) (g0b[x, r] BesselI[0, jb[x, r]])), {x,

0, 30}, WorkingPrecision -> 30, PrecisionGoal -> 8]}, {r, 0,
endp , 1/10}] , 0];

Print["Asymptotic test =", N[1 - \[Chi] - F[0][ end]]] (*check if it is
close enough to 0*)

Print["\[Chi]=", N[\[Chi]]]

mmin = 1; mmax = 10; imax = 200; wp = 60; (* iteration parameters: change if
needed *)

Row[{ Dynamic[m], " ", ProgressIndicator[Dynamic[ip], {0, imax}],
" ", ProgressIndicator[Dynamic[rm], {0, end }]}]

AbsoluteTiming[
Do[eqn = u’’[r] + u’[r]/r - u[r]/r^2 +

u[r] - \[Chi]*u[r]^(2 \[Nu] + 3) -
u[r] (F[m - 1][r] + F[Max[m - 2, 0]][r])/2 == 0;

sp = ParametricNDSolveValue [{eqn , u[eps] == eps up0 ,
u’[eps] == up0 ,

30



WhenEvent[
u[r] > s[0][ end] + 1/5 (1 - r/endp) + 1/200 (r/endp), {bool =

1, "StopIntegration"}],
WhenEvent [{u[r] < s[0][ end] - 1/5 (1 - r/endp) - 1/200 (r/endp),

u[r] < 1/5}, {bool = 0, "StopIntegration"}]},
u, {r, eps , endp}, {up0 , wp0}, WorkingPrecision -> wp0 ,
Method -> "StiffnessSwitching",
Method -> {"ParametricSensitivity" -> None},
MaxSteps -> 100000];

bl = 1/5; bu = 2;
Do[bool = -1; bmiddle = (bl + bu)/2; st = sp[bmiddle , wp];
rm = st["Domain"][[1, 2]];
If[bool == 0, bl = bmiddle , bu = bmiddle ]; ip = i;
If[bool == -1, Return []], {i, imax }];

s[m] = st; N[bmiddle , wp];
F[m] =
Interpolation@
Rationalize[
Table[{r,

2 (Pi)^(3/2)/
A E^(-A^2 (r^2)) NIntegrate [(x Piecewise [{{s[m][x],

eps < x < end}},
s[0][x]]^2 E^(-A^2 (x^2)) (g0[x, r] BesselI[0,

j[x, r]] - g1[x, r] BesselI[1, j[x, r]])), {x, 0,
30}, WorkingPrecision -> 30, PrecisionGoal -> 8] +

2 (Pi)^(3/2)/
B E^(-B^2 (r^2)) NIntegrate [(x Piecewise [{{s[m][x],

eps < x < end}},
s[0][x]]^2 E^(-B^2 x^2) (g0b[x, r] BesselI[0,
jb[x, r]])), {x, 0, 30}, WorkingPrecision -> 30,

PrecisionGoal -> 8]}, {r, 0, endp , 1/10}] , 0];
Print["bmiddle ", m, ": ", N[bmiddle]], {m, mmin , mmax }]];

Plot[Evaluate@Table[s[m][r], {m, mmax - 5, mmax}], {r, eps , end},
PlotRange -> All , AxesLabel -> {r, u}, ImageSize -> Large ,
LabelStyle -> {Black , Bold , Medium }]

Plot[Evaluate@Table[F[m][r], {m, mmax - 5, mmax}], {r, 0, end},
PlotRange -> All , AxesLabel -> {r, "F"}, ImageSize -> Large ,
LabelStyle -> {Black , Bold , Medium }]

Plot[Evaluate@Table[s[m][r]^2, {m, mmax - 5, mmax}], {r, 0.01, end},
PlotRange -> All , AxesLabel -> {"r", "n(r)"}, ImageSize -> Large ,
AxesStyle ->
Directive[Black , FontSize -> 17,
FontFamily -> "TeX Gyre Pagella Math"],

LabelStyle ->
Directive[Black , FontSize -> 17,
FontFamily -> "TeX Gyre Pagella Math"], ImageSize -> {Large},

PlotRange -> All]
Print["\[Xi]=", \[Xi] =

Sqrt [\[ HBar ]^2/ c^2 /2/M^2] Sqrt[1 + \[Nu] \[Chi ]]]
psol = Plot[s[mmax][r/(10^10 \[Xi])]^2, {r, 10^-4, 10},

PlotRange -> All]
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