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Abstract

In this thesis a concept for a cycler that transfers between Earth and Mars during the
currently used low v∞ launch windows and stays ”parked” at the planets is explored. The
parking orbits are designed to exploit the flexible dynamics of the circular restricted three-
body problem so that they have a high energy, prescribed parking time and conveniently
positioned injection and escape burns, in order to have a low ∆v required. Methods
for the computation of these parking orbits are formulated starting from the dynamical
structure of the Lagrangian points and using Lambert’s theorem suitable transfer dates
are chosen, after that an optimization process is carried out to find the parameters that
for each planetary stay phase give the parking orbit with the lowest ∆v.
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Sommario

In questa tesi è esplorata la possibilità di un cycler che viaggia tra Terra e Marte
durante le finestre di lancio a bassa v∞ usate correntemente e che rimane ”parcheggiato”
nelle vicinanze del pianeta. Le orbite di parcheggio sono progettate per sfruttare le
flessibili caratteristiche dinamiche del problema dei tre corpi ristretto in modo che
abbiano alta energia, tempo di parcheggio prestabilito e manovre di immissione e uscita
convenientemente posizionate in modo da avere un basso requisito di ∆v. I metodi per il
calcolo di queste orbite di parcheggio sono formulati partendo dalla struttura dinamica
dei punti Lagrangiani e le date di trasferimento interplanetario sono scelte utilizzando il
teorema di Lambert, dopodiché è presentato un processo di ottimizzazione volto a trovare
i parametri che per ogni periodo di stazionamento attorno a un pianeta forniscono l’orbita
di parcheggio con il più basso ∆v.
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Chapter 1

Introduction

1.1 Cycler trajectories

The human exploration of Mars will face many challenges: one of them is the long duration
of missions imposed by the scales and velocities of interplanetary travel. During their
trip to and from Mars the astronauts will therefore need comfortable living spaces, much
more comparable to the International Space Station in dimensions than the Apollo or
Artemis capsules used for manned Lunar missions. These large spacecrafts would need
very big amounts of propellant to accelerate so expedients to lower their ∆v over the
mission can hugely lower the mass needed to be launched from Earth.

A solution that has been investigated since the 1970s is the use of cycler trajectories.
These are a particular kind of orbits that intercept some planets periodically, in this case
Earth and Mars, where the large transfer spacecrafts can be left and used repeatedly
with low to near zero ∆v. The acceleration/deceleration phases near the planets can be
made by smaller ”taxi” spacecrafts, with a possible reduction in total mass needed for
the mission. The simpler and most famous of these trajectories is the Aldrin Cycler [1]
(named after its proposer Buzz Aldrin) where two transfer spacecrafts, an ”ascent” and
”descent” vehicle, are in elliptical heliocentric orbits. The sequence of this mission would
consist in the following sequence, illustrated in figure 1.1:

1. The crew ”taxies” from Earth orbit to rendez-vous with the ascent vehicle

2. The ascent vehicle arrives at Mars, where the crew taxies to its orbit (or surface).
The ascent vehicle continues along its cycler trajectories.

3. The descent vehicle passes by Mars, where it rendez-vous with the taxi.

4. The descent vehicle passes by Earth and the crew lands back home after approxi-
mately 2.14 years.

5. The ascent vehicle arrives at Earth, where it conducts a gravity assist to rotate
the argument of perigee of its heliocentric orbit in such a way that the relative
configuration between Mars and Earth is the same as point 1 (an analogous step is
made by the now uncrewed descent vehicle later). This point coincides with the
arrival of a new crew, thereby completing the cycle.

The downside of this cycler is that the v∞ of the various encounters are very high with
respect to the ones ”a la Hohmann” that are currently used for example in robotic
exploration missions. This implies that the taxi would need much bigger amounts of fuel
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Chapter 1. Introduction 1.1. Cycler trajectories
 

  

1 

2 

3 

4 

5 

Earth orbit 

Mars orbit 

ascent  

veichle descent 

veichle 

Figure 1.1: One cycle of the Aldrin cycler.

to rendez-vous with the ascent and descent vehicles than the ones that would be needed
for an optimal transfer arc, diminishing the advantage that the cycler architecture brings.

Another well-investigated concept is the Versatile International Station for Interplan-
etary Transport (VISIT) cyclers [2]. These trajectories do not use gravity assists and
exploit the fact that their period is commensurate both to Mars and Earth. For example,
the VISIT-1 trajectory shown in figure 1.2 has a commensurability of 4:5 to Earth (for
every four cycler orbits Earth makes five) and 3:2 with Mars. The v∞ for these trajectories
is much lower than in the Aldrin cycler as the perihelion and aphelion are very similar to
the semiaxis of Earth and Mars orbits. This cycler has the big downside of irregular and
possibly very long Mars stay duration, from 1.6 to 5.9 years. This can be mitigated by
introducing many cycler vehicles but this reduces the mass advantage of this solution.

 

Earth orbit 

cycler 

Mars orbit 

Earth 

encounter 

Mars 

encounter 

Figure 1.2: The VISIT-1 cycler trajectory.
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Chapter 1. Introduction

1.2 The Three Body Problem and Lagrangian points

The kinematics of two masses under gravitational mutual interaction was known since the
early 1608, when Johannes Kepler published his three laws, with the dynamical reasons
of their motion being understood by Isaac Newton in 1687. The case for three masses
eluded analytical solutions until in 1767 Leonhard Euler, who was studying a simplified
problem in which one of the masses in negligible and the other two are in a circular orbit,
discovered the collinear libration points and shortly after in 1772 Lagrange found out
about the existence of two other triangular libration points. These are equilibrium points
in which a spacecraft could remain stationary with respect to the geometric configuration
of the two massive bodies, and are commonly referred to as the Lagrangian points, despite
the first discovery by Euler.

Study of the so-called circular restricted three-body problem continued and in 1836
Jacobi discovered an integral of motion now named after him, the Jacobi integral. Later,
in 1899 Henri Poincaré demonstrated the existence of various families of periodic orbits
around the libration points, these orbits however don’t have analytical forms and until
the advent of computers their practical use was limited.

Since the 1960s the theoretical study of trajectories in the circular restricted three
body problem flourished, both for the increasing feasibility of solving numerically the
differential equations of motion and for the interest for space missions that exploited their
dynamics. The first space mission to use one of such trajectories was the International
Sun/Earth Explorer 3 (ISEE-3), first placed in 1978 an orbit around the Earth-Sun L1

point to study Earth magnetic field’s interaction with the solar wind. The spacecraft was
re-purposed in 1982 to intercept comet Giacobini-Zinner, maneuvering into the intercept
trajectory with a very low ∆v.

Figure 1.3: Artistic depiction of the ISEE-3 trajectory. (Painting in ISEE-3/ICE Control
Center at NASA Goddard).

To this day many missions have been launched into orbits around Sun-Earth libration
points, both for space weather monitoring (SOHO, ACE, WIND) and space-based as-
tronomy (GAIA, Planck, the James Webb telescope) and the coming years the Artemis
program will make wide use of the Earth-Moon three body problem for the transfers to
and from the Gateway station. A relatively recent development is the exploitation of both
the Sun-Earth and the Earth-Moon three-body dynamics to have low ∆v transfers to the
Moon, such as in the Hiten mission or SMART-1.

3



Chapter 1. Introduction

1.3 Thesis concept and outline

Today, missions to Mars are launched in periods when the v∞ requirements are low
due to the alignment of Earth and Mars called launch windows. The idea investigated
in this thesis is to construct cycler trajectories that transfer to and from Mars during
these launch windows, staying in high energy parking orbits during the stay at Mars and
Earth. This concept, illustrated in figure 1.5, allows for the coverage of all possible launch
windows with two cycler vehicles and has the minimum v∞ requirement for the taxi, since
it ”follows” the launch windows.
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Figure 1.4: The cycler concept investigated in this thesis.

Such a cycler would need to make maneuvers to inject into and escape from planetary
orbit but the ∆v can potentially be low if three criteria are met:

� The parking orbit has an energy very close to zero (thus to escape).

� The injection and escape maneuvers are done at a low altitude, in such a way that
the ∆v is much lower than the change in v∞ (this effect is described in detail in
section 3.5).

� The parking orbit is oriented in such a way that the maneuvers do not need to
rotate the velocity vector by a large amount.

Theoretical considerations (made in section 5.1) show that if these conditions are met
perfectly ∆v ' 1.8 km/s for a Mars stay and ∆v ' 9 km/s for an Earth stay.

Trajectories that pass near the libration points could satisfy these requirements, as
they have high energy and are highly flexible both in terms of geometry near the planet
and periapsis-to-periapsis travel duration. A feasible parking strategy could thus be
similar to the one shown in figure 1.5: the spacecrafts does the injection maneuver near
the planet, follows its ballistic path towards the libration points near which it resides
until the next launch windows arrives, passes again near the planet where it performs the
escape maneuver and proceeds to transfer to the next planet. The taxi travels with the
cycler vehicle for the interplanetary transfer and separates before the injection burn; after
landing it injects into an Earth transfer orbit and meets with the cycler vehicle during
the escape hyperbola, or alternatively the rendezvous can be done when the cycler vehicle
is still in orbit around the planet.
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Chapter 1. Introduction 1.3. Thesis concept and outline

injection manueverescape manuever

libration point

Mars

Figure 1.5: Parking trajectory concept.

Beside this introduction, this thesis is composed of the following chapters:

Chapter 2 The Circular Restricted Three Body Problem is introduced and its dynamics
are derived, with particular focus on the periodic orbits around collinear points, their
stability and the possible trajectories in their vicinity.

Chapter 3 Interplanetary transfers in the patched conics approach are introduced.
Launch windows are visualized with the porkchop diagram and a lower limit to the
theoretical ∆v of the cycler is formulated.

Chapter 4 The method to generate the parking orbits is formulated thanks to the
concepts introduced in chapter 2. The Keplerian orbit framework is used to calculate the
∆v associated to a specific parking orbit.

Chapter 5 Techniques to optimize the cycler trajectory, both the interplanetary and
the parking phases, are discussed and carried out.
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Chapter 2

Circular Restricted Three Body
Problem

The Circular Restricted Three Body Problem (CR3BP) is a dynamical model that
describes the motion of a spacecraft under the gravitational influence of two massive
bodies. In this thesis it is used to compute parking orbits in the Sun-Earth and Sun-Mars
system. This chapter is based on Dynamical Systems, the Three-Body Problem and Space
Mission Design by Koon, Lo, Mardsen and Ross [3], but differs in some expression due to
the fact that different reference frames have been used.
The CR3BP assumes the following two hypotheses:

� The mass of the spacecraft is negligible compared to the ones of the two massive
bodies m1 and m2. The motion of m1 and m2 is thus unaffected by the position of
the spacecraft.

� The two massive bodies move in a circular Keplerian orbit around each other,
characterized by a radius R? and a constant angular velocity Ω

The subscripts are chosen such that m1 > m2, in this way the mass parameter ν of the
system is defined as following:

ν =
m2

m2 +m1
∈ (0 , 0.5] (2.1)

Its values for the Sun-Earth (⊕) and Sun-Mars (�) systems are:

ν⊕ = 3.00349 · 10−6 ν� = 3.22574 · 10−7

2.1 Reference frames

The problem is formulated using two reference frames, shown in figure 2.2

� Inertial frame {X,Y, Z, t} with the origin in the center of mass and the Z axis
perpendicular to the massive bodies’ orbital plane. In this frame m1 and m2 move
in circles around the origin.

� Synodic (rotating) frame {x, y, z, t}. While the origin of this system is tradi-
tionally placed in the center of mass, for this thesis it is convenient to center the

6



Chapter 2. CR3BP 2.1. Reference frames

coordinates in m2: x axis is opposite to m1, y axis is oriented towards the velocity
of m2 in the inertial frame and z is aligned with Z. In this frame apparent forces
act on the spacecraft but it is still useful because m1 and m2 have fixed positions.

 

r2    ሬሬԦ 

Y 

X 

Ωt 

m1 

m2 

P 

Figure 2.1: Planar projection of inertial and synodic reference frames.

The two frames are linked by the following transformations:

X = (x+ 1− ν) cos(Ωt)− y sin(Ωt) (2.2a)

Y = (x+ 1− ν) sin(Ωt) + y cos(Ωt) (2.2b)

Z = z (2.2c)

As anticipated, in the fixed frame the massive bodies move in circular orbits with angular
velocity Ω:

X1 = −R?ν cos(Ωt) Y1 = −R?ν sin(Ωt) Z2 = 0

X2 = R?(1− ν) cos(Ωt) Y2 = R?(1− ν) sin(Ωt) Z2 = 0

Meanwhile in the synodic frame of reference their position are fixed at:

x1 = 0 y1 = 0 z1 = 0

x2 = −R? y2 = 0 z2 = 0

The vectors that connect m1, m2 to the point mass P are named respectively ~r1 and ~r2,
their magnitude being equal to:

r1 =
√

(x+R?)2 + y2 + z2 (2.3a)

r2 =
√
x2 + y2 + z2 (2.3b)

Since the synodic frame is centered on m2, the spacecraft position ~r in it coincides with
~r2. Both names will be used on depending on context, however their numerical values are
equal.
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Chapter 2. Circular Restricted Three Body Problem

2.2 Equations of motion

Equations of motion can be derived in the synodical frame with the Euler-Lagrange
equation:

d

dt

(
∂L
∂q̇j

)
=
∂L
∂qj

(2.4)

Where qj is the j-th coordinate of the system and L is the difference between kinetic K
and potential U energy:

L (q, q̇, t) = K − U (2.5)

The (specific) kinetic energy K in the inertial frame is:

K =
1

2

(
Ẋ2 + Ẏ 2 + Ż2

)
which by using the transformations in equations 2.2 can be expressed as:

K =
1

2

(
(ẋ− Ωy)2 + (ẏ +Ω(x+R?(1− ν)))2 + ż2

)
The potential energy U is given by the gravitational potential of the two bodies:

U = −µ1
r1
− µ2
r2

where µ1 = Gm1 and µ2 = Gm2 are the gravitational parameters of the two bodies. Since
r1 and r2 are the magnitudes of two vectors, their value is independent of the reference
frame, thus this expression is valid in both systems. By defining the characteristic
gravitational parameter µ? = G(m1 +m2) the expression for U becomes

U = −(1− ν)µ?
r1

− νµ?
r2

In conclusion, the lagrangian L becomes:

L =
1

2

(
(ẋ− Ωy)2 + (ẏ +Ω(x+R?(1− ν)))2 + ż2

)
+

(1− ν)µ?
r1

+
νµ?
r2

(2.6)

This expression can be simplified by choosing an adimensional set of coordinates {x′, y′, z′, t′},
defined as follows:

x′ =
x

R?
y′ =

y

R?
z′ =

z

R?
t′ =

t

T?

where the time unit T? is defined as the reciprocal of the angular velocity Ω:

T? =
1

Ω
=

√
R3

?

µ?
(2.7)

By applying these transformations, the lagrangian becomes:

L =
1

2

((
ẋ′ − y′

)2
+

(
ẏ′ + (x′ + 1− ν)

)2
+ ż′2

) R2
?

T 2
?

+

(
1− ν
r′1

+
ν

r′2

)
µ?
R?

From equation 2.7 it can be seen that µ?/R? = R2
?/T

2
? , thus both terms can be divided by

this quantity obtaining the adimensional lagrangian L′. The ′ superscript will be omitted

8



Chapter 2. CR3BP 2.2. Equations of motion

and for the rest of the chapter the coordinates will be adimensional (unless specified
otherwise):

L =
1

2

(
(ẋ− y)2 + (ẏ + (x+ 1− ν))2 + ż2

)
+

1− ν
r1

+
ν

r2

where r1 =
√

(x+ 1)2 + y2 + z2 and r2 =
√
x2 + y2 + z2. The expression can then be

rewritten in the following form:

L =
1

2

(
ẋ2 + ẏ2 + ż2

)
− ẋy + (x+ 1− ν)ẏ + 1

2

(
(x+ 1− ν)2 + y2

)
+

1− ν
r1

+
ν

r2

Then, all terms depending only on the position can be grouped in a single term constituting
an effective potential U :

U(x, y, z) =
1

2

(
(x+ 1− ν)2 + y2

)
+

1− ν
r1

+
ν

r2
(2.8)

The final form of the lagrangian is thus:

L =
1

2

(
ẋ2 + ẏ2 + ż2

)
− ẋy + (x+ 1− ν)ẏ + U(x, y, z) (2.9)

Using this lagrangian in the Euler-Lagrange equations 2.4, yields the following equations:

ẍ =
∂U

∂x
+ 2ẏ

ÿ =
∂U

∂x
− 2ẋ

z̈ =
∂U

∂z

(2.10a)

(2.10b)

(2.10c)

The derivatives of U are reported in appendix A at page 62.
System 2.10 is composed by second-order differential equations, but they can be trans-
formed into first-order by considering ẋ, ẏ, ż not as derivatives but as separate variables
vx, vy, vz, linked to x, y and z by being their derivatives. This lets us write a 6-dimensional
state vector x, comprised of the position ~r and the velocity ~v of the spacecraft in the
synodic frame of reference:

x =

[
~r
~v

]
=



x
y
z
vx
vy
vz

 (2.11)

The time derivative ẋ of the state vector is given by equations 2.10 and d
dt~r = ~v, it is

therefore a function f(x) of the state vector only. Denoting partial derivatives with a
subscript under ∂ as in ∂

∂qj
= ∂qj , the equation of motion becomes:

d

dt



x
y
z
vx
vy
vz

 =



vx
vy
vz

∂xU + 2vy
∂yU − 2vx

∂zU

 or shortly ẋ = f(x) (2.12)

9



Chapter 2. Circular Restricted Three Body Problem

The CR3BP admits one integral of motion J called Jacobi integral or Jacobi energy. By
multiplying equations 2.10 respectively by ẋ, ẏ and ż and adding them together, the
following equation can be obtained:

ẍẋ+ ÿẏ + z̈ż = ∂xUẋ+ ∂yUẏ + ∂zUż

then the following two identities can be verified:

dU(x, y, z)

dt
=
∂U

∂x

dx

dt
+
∂U

∂y

dy

dt
+
∂U

∂z

dz

dt
= ∂xUẋ+ ∂yUẏ + ∂zUż

1

2

d

dt

(
ẋ2 + ẏ2 + ż2

)
= ẍẋ+ ÿẏ + z̈ż

Substituting these identities in the first equation gives:

dU(x, y, z)

dt
=

1

2

d

dt

(
ẋ2 + ẏ2 + ż2

)
which can show explicitly a time invariant quantity (the Jacobi integral) by bringing the
second term to the left of the equal sign:

dJ

dt
= 0 (2.13)

J(x) =
1

2

(
ẋ2 + ẏ2 + ż2

)
− U(x, y, z) (2.14)

2.3 Equilibrium Points

The spacecraft is in equilibrium when ẋ = 0, which directly implies ~v = 0. It’s easy to see
from equation 2.12 that requiring ~v = 0 and ẋ = 0 reduces to ∂xU = ∂yU = ∂zU = 0. So
equilibrium points are found by solving:

(x+ 1− ν)− 1− ν
r31

(x+ 1)− ν

r32
x = 0

y −
(
1− ν
r31

+
ν

r32

)
y = 0

−
(
1− ν
r31

+
ν

r32

)
z = 0

(2.15)

(2.16)

(2.17)

Equation 2.17 reduces to z = 0: equilibrium points must lie in the x− y plane.
The remaining equations can be solved in two different ways, generating two families of
equilibrium points:

� It’s easy to verify that 2.15 and 2.16 are solved when r1 = r2 = 1. These solution
correspond to two equilibrium points placed on the vertexes of two equilateral
triangles with a common side whose vertexes are m1 and m2, for this reason they
are referred to as triangular points. They are usually labeled L4 and L5.

� The other equilibrium points are found by imposing y = 0, this identically satisfies
2.16 and leaves only 2.15. These solutions correspond to equilibrium points lying on

10



Chapter 2. CR3BP 2.3. Equilibrium Points

the x axis and are referred to as collinear points. Since y = z = 0 the radii r1 and
r2 become functions of x only:

r1 → |x− 1| r2 → |x|

By doing this substitution in 2.15 the following equation is obtained:

(x+ 1− ν)− (1− ν)(x+ 1)

|x+ 1|3
− νx

|x|3
= 0 (2.18)

This equation does not have closed form solutions but can be solved numerically for
a given value of ν. It has three solutions: one equilibrium point between m1 and
m2 called L1, two beyond them called L2 (beyond m2) and L3 (beyond m1).

These equilibrium points are often referred to as Lagrangian Points.
When ν is small, like in the case of the Sun-Earth and Sun-Mars systems, L1 and L2

are much closer to m2 than the other points, thus their dynamics is useful in designing
parking orbits that stay relatively close to the planetary body. Their dimensional x
coordinates are listed in table 2.1.

xL1 [km] xL2 [km]

⊕ -108 228.86 108 566.48

� -149 139.13 150 136.99

Table 2.1: x coordinates of L1 and L2 in the Sun-Earth (⊕) and Sun-Mars (�) systems
 

m2 m1 

L1 L2 L3 

L4 

L5 

y 

x 

Figure 2.2: Positions of equilibrium points and naming convention.
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Chapter 2. Circular Restricted Three Body Problem

2.4 Linearized dynamics and stability of collinear points

To investigate the stability of L1 and L2, system 2.12 needs to be linearized around the
equilibrium points. It will be later shown in section 2.8 that the qualitative geometry of
the solutions to the linearized equations will be the same of the full non-linear system.
First, a new x̃ axis is defined, parallel to x but centered in the equilibrium point:

x̃ = x− γ where

{
γ = xL1 at L1

γ = xL2 at L2

The new {x̃, y, z} frame is centered in the equilibrium point and since ˙̃x = ẋ, equation
2.12 can be used after substituting x̃ to x. Assuming small deviations from equilibrium,
the derivatives of the potential can be expanded in a Taylor series to first order:

∂xU = ∂xxUγ x̃+ ∂xyUγy + ∂xzUγz + ...

∂yU = ∂yxUγ x̃+ ∂yyUγy + ∂yzUγz + ...

∂zU = ∂xxUγ x̃+ ∂zyUγy + ∂zzUγz + ...

where the subscript γ indicates evaluation at the equilibrium point. First order derivatives
∂qjUγ are not present since partial derivatives of the potential are zero at equilibrium
points. The previous Taylor expansions can be used in equation 2.12, which can now be
turned into matrix form:

d

dt



x̃
y
z
vx
vy
vz

 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∂xxUγ ∂xyUγ ∂xzUγ 0 2 0
∂xyUγ ∂yyUγ ∂yzUγ −2 0 0
∂xzUγ ∂yzUγ ∂zzUγ 0 0 0





x̃
y
z
vx
vy
vz


which can be written in more compact form as:

˙̃x = Aγx̃ (2.19)

Matrix Aγ is constant. The second derivatives of the potential are found by plugging
x = γ, y = 0 and z = 0 in the expressions listed in appendix A:

� Since y = z = 0 it is trivial to see that ∂xyUγ = ∂xzUγ = ∂yzUγ = 0

� Remaining nonzero derivatives are made simpler by substituting r1 = 1 + γ (valid
for L1 and L2), r2 = |γ| and removing terms multiplied by y or z:

∂xxUγ = 1 + 2

(
1− ν

(1 + γ)3
+

ν

|γ|3

)
(2.20)

∂yyUγ = 1−
(

1− ν
(1 + γ)3

+
ν

|γ|3

)
(2.21)

∂zzUγ = −
(

1− ν
(1 + γ)3

+
ν

|γ|3

)
(2.22)

Their expression can be further simplified by defining a new quantity ξ as the term
inside the parenthesis, which is strictly positive:

ξ =
1− ν

(1 + γ)3
+

ν

|γ|3
> 0 (2.23)
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Chapter 2. CR3BP 2.4. Linearized dynamics and stability of collinear points

thus, the derivatives’ expressions become

∂xxUγ = 1 + 2ξ ∂yyUγ = 1− ξ ∂zzUγ = −ξ

Substituting these results in Aγ , the final form of the linearized dynamical system becomes:

d

dt



x̃
y
z
vx
vy
vz

 =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1 + 2ξ 0 0 0 2 0
0 1− ξ 0 −2 0 0
0 0 −ξ 0 0 0





x̃
y
z
vx
vy
vz


Since the third and sixth row of Aγ contains only one element, the motion in z can be
decoupled from the one in the x− y plane, reducing the system to:

z̈ = −ξz (2.24)

d

dt


x̃
y
vx
vy

 =


0 0 1 0
0 0 0 1

1 + 2ξ 0 0 2
0 1− ξ −2 0




x̃
y
vx
vy

 (2.25)

The two motions can thus be solved separately:

Vertical motion. Since ξ > 0, equation 2.24 describes an harmonic oscillation with
pulsation:

ωz =
√
ξ (2.26)

Thus, linearized motion along the z axis around the collinear points is always stable, and
can be expressed as:

z(t) = Az sin(ωzt+ ψz) (2.27)

where Az is the semiamplitude of the oscillation and ψz the initial phase.

Planar motion. The matrix and state vector from equation 2.25 will still be referred
to as Aγ and x̃ for brevity, but they will not include the z and vz components. Since Aγ

is invertible, its eigenvalues λj can be calculated by solving:

det(Aγ − λI4) = 0

where I is the 4× 4 identity matrix. The determinant yields the following characteristic
polynomial equation:

λ4 − λ2(ξ + 2) + (1 + ξ − 2ξ2) = 0 (2.28)

Roots can be found by solving it as a second degree equation of λ2. They are:

λ1,2 = ±

√
ξ − 2 +

√
ξ(9ξ − 8)

2

λ3,4 = ±

√
ξ − 2−

√
ξ(9ξ − 8)

2

13



Chapter 2. CR3BP 2.4. Linearized dynamics and stability of collinear points

The zero degree term of 2.28 can be traced back to:

1 + ξ − 2ξ2 = (1− 2ξ)(1 + ξ) = ∂xxUγ ∂yyUγ

It is trivial to see from equation 2.20 that ∂xxUγ is positive, the sign of ∂xxUγ is not trivial
to determine but it can be proven to be negative (a demonstration is shown in appendix
B). This means that the zero-degree term of 2.28 is negative, thus one of the λ2 roots is
positive and one negative: looking at their expressions it can be concluded that λ21,2 > 0

and λ23,4 < 0, so λ1,2 must be real and λ3,4 imaginary. Following these considerations, λj
can be written in the form:

λ1 =+ σ (2.29a)

λ2 =− σ (2.29b)

λ3 =+ iωp (2.29c)

λ4 =− iωp (2.29d)

where i is the imaginary unit, σ and ωp are positive real numbers defined as:

σ =

√
ξ − 2 +

√
ξ(9ξ − 8)

2
> 0 (2.30)

ωp =

√√
ξ(9ξ − 8) + 2− ξ

2
> 0 (2.31)

Each eigenvalue λj of Aγ is associated to an eigenvector wj satisfying:

Aγwj = λjwj (2.32)

The state vector x̃ can be written as a linear combination of the eigenvectors wj :

x̃(t) =
∑
j

aj(t)wj (2.33)

Using this expression of x̃ the dynamical system 2.25 becomes:

d

dt

∑
j

aj(t)wj = Aγ

∑
j

aj(t)wj

the derivative and matrix multiplication can be moved inside the j-summation due to
their linearity, then by virtue of 2.32 the equation becomes:∑

j

daj
dt

wj =
∑
j

λjaj(t)wj

Since each aj except an arbitrarily chosen one can be set to zero, this relation must hold
for every j. The equation can thus be reduced, removing the summation and simplifying
wj from both members:

daj
dt

= λjaj(t)

which is solved by an exponential evolution of aj from an initial condition aj,0:

aj(t) = aj,0e
λjt

14



Chapter 2. CR3BP 2.4. Linearized dynamics and stability of collinear points

By using this result in combination with 2.33 and the expressions in 2.29, a general
solution of the dynamical system 2.25 can be written in the form:

x̃(t)
y(t)
vx(t)
vy(t)

 = a1,0e
σtw1 + a2,0e

−σtw2 + a3,0e
iωptw3 + a4,0e

−iωptw4 (2.34)

This formulation highlights the dynamical structure of the equilibrium points, we can in
fact see that the motion is characterized by three behaviors:

� Unstable behavior associated to a1,0e
σtw1. Since σ > 0 any nonzero initial

perturbation a1,0 grows exponentially with time.

� Stable behavior associated to a2,0e
−σtw2. Since −σ < 0 any nonzero a2,0 decreases

exponentially with time.

� Periodic behavior associated to a3,0e
iωptw3 + a4,0e

−iωptw4. The exponents have
no real part so a3(t) and a4(t) oscillate in time with pulsation ωp.

The values ofw = [wx, wy, wẋ, wẏ]
T can be determined by solving equation 2.32. Executing

the matrix multiplication and moving λw to the first term gives the system:
λwx − wẋ = 0

λwy − wẏ = 0

(1 + 2ξ)wx − λwẋ + 2wẏ = 0

(1− ξ)wy − 2wẋ − λwẏ = 0

Since eigenvectors’ magnitude is arbitrary it can be chosen so that wx = 1 (it could not
be zero otherwise every component would be). Substituting it in the system gives the
solution:

w =


1
κ
λ
λκ

 where κ =
λ2 − 1− 2ξ

2λ
(2.35)

This solution can be particularized for every j, giving:

w1 =


1
κ′

σ
σκ′

 w2 =


1
−κ′
−σ
σκ′

 w3 =


1
iκ′′

iωp

−ωpκ
′′

 w4 =


1
−iκ′′
−iωp

−ωpκ
′′

 (2.36)

where two new parameters, κ′ and κ′′ have been introduced for compactness:

κ′ =
σ2 − 1− 2ξ

2σ
(2.37)

κ′′ = −
ω2
p + 1 + 2ξ

2ωp
(2.38)
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Chapter 2. CR3BP 2.4. Linearized dynamics and stability of collinear points

Focusing just on the x and y components of 2.34 and inserting the values of wx and wy

found in 2.29 gives:{
x̃(t) = a1,0e

σt + a2,0e
−σt + a3,0e

iωpt + a4,0e
−iωpt

y(t) = a1,0κ
′eσt − a2,0κ′e−σt + a3,0iκ

′′eiωpt − a4,0iκ′′e−iωpt

Explicit sin(ωpt) and cos(ωpt) dependencies can be shown in the periodic terms by using
the Euler identity eix = cosx+ i sinx in the exponentials:

a3,0e
iωpt + a4,0e

−iωpt = a3,0(cos(ωpt) + i sin(ωpt)) + a4,0(cos(ωpt)− i sin(ωpt)) =

= (a3,0 + a4,0) cos(ωpt) + i(a3,0 − a4,0) sin(ωpt)

= b1 cos(ωpt) + b2 sin(ωpt)

a3,0iκ
′′eiωpt − a4,0iκ′′e−iωpt = a3,0iκ

′′(cos(ωp) + i sin(ωp))− a4,0iκ′′(cos(ωp)− i sin(ωp)) =

= iκ′′(a3,0 − a4,0) cos(ωpt)− κ′′(a3,0 + a4,0) sin(ωpt)

= b2κ
′′ cos(ωpt)− b1κ′′ sin(ωpt)

where the quantities b1 = a3,0 + a4,0 and b2 = i(a3,0 − a4,0) have been introduced. It
can be noted that to have real (thus physical) solutions, a3,0 and a4,0 must be complex
conjugates, in such a way that both b1 and b2 are real. The expressions can be further
simplified by defining:

Ax =
√
b21 + b22

ψp = tan−1

(
b2
b1

)
that transform the periodic terms into

a3,0e
iωpt + a4,0e

−iωpt = Ax cos(ωpt+ ψp)

a3,0iκ
′′eiωpt − a4,0iκ′′e−iωpt = κ′′Ax sin(ωpt+ ψp)

With these relations, including the motion in z from equation 2.27, the general solution
to the linearized equation of motion around L1 and L2 becomes

x̃(t) =Ax cos(ωpt+ ψp) + aue
σt + ase

−σt

y(t) =κ′′Ax sin(ωpt+ ψp) + auκ
′eσt − asκ′e−σt

z(t) =Az sin(ωzt+ ψz)

(2.39a)

(2.39b)

(2.39c)

Where au = a1,0 and as = a2,0 have been renamed with subscript u for ”unstable” and s
for ”stable”, given the behavior of those terms.
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Chapter 2. Circular Restricted Three Body Problem

2.5 Trajectories in the linearized dynamics

The trajectories described by system 2.39 can be categorized depending on their dynamic
behavior, and the various possibilities are visualized by setting to zero coefficients of the
system.

Libration orbits These trajectory contain only the periodic terms (au = as = 0), thus
the spacecraft position is bounded. The simplest type is the planar case in which Az = 0
and Ax 6= 0: the trajectory is an elliptical retrograde orbit (since κ′′ < 0) centered in the
equilibrium point. These trajectories are called Lyapunov Orbits and have a period equal
to 2π/ωp which is close to half of the orbital period of the massive bodies. When Ax = 0
and Az 6= 0 a vertical Lyapunov orbit is generated, which in the linearized dynamics
corresponds to a simple oscillation in the z axis around the equilibrium point with period
2π/ωz. If both Ax and Az are nonzero Lissajous orbits are described by the spacecraft.
From equations 2.26 and 2.26 we can see that ωp 6= ωv and their ratio is not a rational
number, these trajectories in fact are not strictly periodic (in the sense that they are not
closed on themselves). Lyapunov and Lissajous orbits are depicted in figure 2.3.

(a) Lyapunov orbit. (b) Lissajous orbit.

Figure 2.3: Libration orbits around collinear points in the with linearized dynamics. The
trajectory is shown in blue, while the libration point is depicted as a cross.

With full non-linear dynamics ωp and ωz are not constant but vary with Ax and Az

and for a sufficiently large Ax is possible to find an Az that satisfies ωp = ωz. These
trajectories are truly periodic and are referred to as Halo orbits but due to their inherent
non-linearity are not obtainable from the dynamics described by system 2.39.

Asymptotic trajectories If, in addition to the periodic terms, au or as are non-
zero the trajectories approach asymptotically libration orbits at t → ∞ or t → −∞:
these trajectories will be referred respectively to stable and unstable. Examples of such
trajectories are depicted in figure 2.4, where the z component of motion has been omitted
since it is always an oscillation around z = 0. These trajectories can extend to negative
or positive x̃ corresponding to a negative or positive as and au.
Given a libration orbit, the following sets can be defined:

17



Chapter 2. CR3BP 2.5. Trajectories in the linearized dynamics

(a) au 6= 0 (b) as 6= 0

Figure 2.4: Stable and unstable trajectories with linearized dynamics. The corresponding
libration orbit is shown in blue, the libration point is depicted as a cross, the unstable
trajectory in red while the the stable one in green.

� Stable manifold as the set of all the states belonging to a stable trajectory that
converges to the libration orbit.

� Unstable manifold as the set of all the states belonging to an unstable trajectory
that diverges from the libration orbit.

Figure 2.5: Some trajectories belonging to the stable manifold (in green) and the unstable
manifold (in red) associated to a Lyapunov orbit (in blue). with linearized dynamics.

These sets (shown in figure 2.5) are collectively known as invariant manifolds and each of
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Chapter 2. CR3BP 2.5. Trajectories in the linearized dynamics

them presents a positive branch and a negative one, relative to positive and negatives au
and as.

Transit and non-transit trajectories When both as and au are nonzero both stable
and unstable behaviors are present, and are classified based on their sign:

� Transit trajectories have auas < 0. The opposing signs makes the trajectory pass
from the positive to the negative x̃ side or vice versa.

� Non-transit trajectories have auas > 0, meaning that the spacecraft leaves the
equilibrium region from the same x̃ side from which it came from.

These trajectories are visualized easily by setting Ax = Az = 0, as shown in figure 2.6:
it can be seen that trajectories in this regime describe hyperbolae and the transit and
non-transit trajectories are separated by the asymptotic trajectories (that in this case
collapse to a line). Non-transit trajectories are exploited in this thesis to generate parking

Figure 2.6: Transit (in violet) and non-transit (in yellow) trajectories, with Ax = Az = 0
Stable and unstable manifold are shown respectively in green and red.

orbits with a specific time of flight, thanks to the fact that as the trajectory gets closer to
equilibrium the greater the time of flight becomes, making it easy to fine tune it to fit the
period of time between two launch windows. The system 2.39 can be particularized for
these trajectories, by assuming au = as and defining:

ε = au + as = 2au = 2as (2.40)

Thanks to this and the hyperbolic trigonometric functions coshx = 1
2(e

−x + ex) and
sinhx = 1

2(e
x − e−x), 2.39 becomes:

x̃(t) =Ax cos(ωpt+ ψp) + ε cosh(σt)

y(t) =κ′′Ax sin(ωpt+ ψp) + κ′ε sinh(σt)

z(t) =Az sin(ωzt+ ψz)

(2.41a)

(2.41b)

(2.41c)
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Chapter 2. Circular Restricted Three Body Problem

From this form it becomes apparent that the closest approach to equilibrium happens
at t = 0, where cosh(σt) = 1 and sinh(σt) = 0. A non transit trajectory with Ax 6= 0 is
shown in figure 2.7.

Figure 2.7: Non-transit trajectory (in yellow) and its corresponding Lyapunov orbit (in
blue). The closest approach to equilibrium is shown with a red dot.

2.6 Flow and state transition matrix

Linearized dynamics are unsuitable for the design of real world trajectories, mathematical
tools to deal with the full non-linear equations of motion are introduced in this section.
Given a dynamical system ẋ = f(x), the flow ϕ is a function that maps an initial position
x0 at time t0 to the position x(t) at time t:

ϕ(x0, t) =

t∫
t0,x0

f(x(τ))dτ ϕ(x0, t) : x0 7→ x(t) (2.42)

From this definition, it can be seen that the time derivative of the flow is f :

dϕ(x0, t)

dt
= f(ϕ(x0, t)) = f(x(t)) (2.43)

Given a reference trajectory x̄(t) = ϕ(x̄0, t), a small perturbation in the initial state δx0

will evolve over time as:
δx(t) = ϕ(x̄0 + δx0, t)− x̄(t)

which can be expanded in a Taylor series1 to first order as
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Chapter 2. CR3BP 2.6. Flow and state transition matrix 

x t  ( ) 

x t  ( ) 

δx t     ( ) 

x0 

x0 

δx0 

Figure 2.8: reference trajectory x̄(t) and perturbed trajectory x(t)

δx(t) =
∂ϕ(x0, t)

∂x0
δx̄0 + ...

In this case, the differentiation matrix is referred to as the state transition matrix Φ:

Φ(x0, t0, t) =
∂ϕ(x0, t)

∂x0
=
∂x(t)

∂x0
(2.44)

where dependence on the initial condition x0 is usually omitted. With this definition, the
displacement at time t1, δx1, becomes to first order:

δx1 = Φ(t0, t1)δx0 (2.45)

The state transition matrix has also the following properties, easily verifiable remembering
that it is the derivative of the flow:

Φ(t0, t0) = I6 (2.46)

Φ(t0, t2) = Φ(t0, t1)Φ(t1, t2) (2.47)

Φ(t1, t0) = Φ(t1, t0)
−1 (2.48)

The x0-derivation of equation 2.43 can be manipulated to get:

∂

∂x0

(
dϕ(x0, t)

dt

)
=
∂f(ϕ(x0, t))

∂x0

d

dt

(
∂ϕ(x0, t)

∂x0

)
=
∂f

∂x

∣∣∣∣
x(t)

∂ϕ(x0, t)

∂x0

which, recognizing Φ from equation 2.44 becomes:

Φ̇ = A(t)Φ (2.49)

where matrix A contains the x-derivatives of f :

A(t) =
∂f

∂x

∣∣∣∣
x(t)

=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∂xxU ∂xyU ∂xzU 0 2 0
∂xyU ∂yyU ∂yzU −2 0 0
∂xzU ∂yzU ∂zzU 0 0 0

 (2.50)

Equation 2.49 can be used to propagate Φ from an initial state Φ0 = I6.
1The partial differentiation between two vectors ∂a

∂b
gives a matrix D whose elements Djk are:

D =
∂a

∂b
Djk =

∂aj

∂bk
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2.7 Non-linear Lyapunov orbits

Lyapunov orbits do not have a closed form in the non-linear dynamics thus a technique
to approximate them numerically is needed.
By observing system 2.12 and assuming t0 = 0 it can be easily verified that the equations
are invariant under the substitution:

x =



x
y
z
vx
vy
vz

→ xm =



x
−y
z
−vx
vy
−vz

 and t→ −t (2.51)

where xm will be referred to as the mirror configuration of x. This symmetry implies that
if x(t0 + t) is a solution of 2.12, then xm(t0 − t) also is:

ϕ(x0, t1) = x1 =⇒ ϕ(xm
0 ,−t1) = xm

1

and since x1 = (xm
1 )

m, it follows that:

ϕ(x0, t1) = ϕ(xm
0 ,−t1)m (2.52)

Any periodic orbit repeats after a period TL, thus it has the following property:

ϕ(x0, t) = ϕ(x0, t+ TL) (2.53)

A trajectory that satisfies this relation can be obtained by ”sticking together” two mirror
trajectories by requiring xm = x at t = 0 and TL/2 (as shown in figure 2.9):{

x0 = xm
0

ϕ(x0, TL/2) = ϕ(x0, TL/2)
m

(2.54)

This is because, using equation 2.52 and these ansatz gives:

ϕ(x0, TL/2) = ϕ(x0, TL/2)
m = (ϕ(xm

0 ,−TL/2)m)m = ϕ(x0,−TL/2)

=⇒ ϕ(x0,−TL/2) = ϕ(x0,−TL/2 + TL)

ensuring the periodicity of the trajectory. The initial state x0 of the periodic orbit can
be further determined by looking at x0 = xm

0 component-wise:

x0
y0
z0
vx0
vy0
vz0

 =



x0
−y0
z0
−vx0
vy0
−vz0

 =⇒ x0 =



x0
0
z0
0
vy0
0


after which,the z0 component can then be set to zero, since z(t) = 0 is a valid solution
of equation 2.10 and linear Lyapunov orbit are planar. For this reason the z and vz
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Figure 2.9: On the left, two mirror trajectories are shown with x(t) = ϕ(x0, t) and
xM(−t) = ϕ(xM

0 ,−t). On the right the terminal states of the mirror trajectories coincide,
forming a periodic orbit. State vectors are represented by a black dot (position) and a
black arrow (velocity).

component will be omitted for the rest of this section. The initial state of a Lyapunov
orbit can be thus be written in the form:

x0 =


x0
0
0
vy0

 (2.55)

To find a relation between x0 and vy0 an iterative procedure called differential correction
is used. First, a variation of the flow function is defined, not integrating until a certain
time is reached, but until x(t) crosses the x− z plane:

ϕxz(x0) =

y(t)=0∫
t0,x0

f(x(t))dt (2.56)

Supposing to know a close but inexact guess of initial state x0, its integration until the
x− z plane is crossed gives:

x1 = ϕxz(x0) =


x1
0
vx1
vy1


where vx1 is not zero and y1 = 0 from the definition of ϕxz. Supposing now that a
correction δx0 is applied to x0 causing the integration to proceed for an extra δt; the
displacement δx1 from x1 at the final state can be approximated to first order as:

δx1 = Φ(t0, t1)δx0 + f(x1)δt (2.57)

To have a Lyapunov orbit it should be true that x1 = xm
1 (from ansatz 2.54), which would

imply that y1 and vx1 should be zero. Thus, the displacement δx1 should have:

δy1 = 0 δvx1 = −vx1
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Chapter 2. CR3BP 2.7. Non-linear Lyapunov orbits

Assuming that the correction only acts on the y-velocity of the initial state, it will be in
the form:

δx0 =


0
0

δvy0
0


Substituting this expression in 2.57 and taking in account only the components for winch
δx1 is known yields the system:{

δy1 = 0 = Φyẏδvy0 + vy1δt

δvx1 = −vx1 = Φẋẏδvy0 + v̇x1δt

where Φyẏ and Φẋẏ are the components of Φ(t0, t1). The system can be solved for δvy0:

δvy0 = −vx1
(
Φẋẏ −

v̇x1
vy1

Φyẏ

)−1

(2.58)

The correction δx0 can thus be calculated from a guess of the initial state, and applied
iteratively to get arbitrarily precise results:

x
(j+1)
0 = x

(j)
0 + δx

(j)
0 (2.59)

A suitable initial guess can be given by the linearized equations 2.39 and their t-derivatives:

x
(0)
0 =


Ax + γ

0
0

κ′′ωpAx

 (2.60)

where ωp and κ′′ are defined respectively in equations 2.29 and 2.38. This guess converges
rapidly for small Ax which are close to linearity, but is not suitable for large Lyapunov
orbits. To deal with this issue a set of small orbits can be computed first, then a new first

guess of v
(0)
y0,k can be extrapolated linearly from the two nearest converged initial states

vy0,k−1 and vy0,k−2, with:

v
(0)
y0,k = vy0,k−1 +

Ax,k −Ax,k−1

Ax,k−1 −Ax,k−2
(vy0,k−2 − vy0,k−1) (2.61)

These procedures allow the rapid computation of families of Lyapunov orbits, which can
map a wide range of Ax-vy0 pairs to be later interpolated obtaining initial guesses for
arbitrary Ax; Lyapunov orbits calculated with this method for the Sun-Mars system are
shown in figure 2.10.
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Chapter 2. CR3BP 2.7. Non-linear Lyapunov orbits

Figure 2.10: L1 and L2 Lyapunov orbit families in the Mars-Sun system. L1 (negative x)
and L2 (positive x) are shown as crosses.

The orbits are very close to ellipses for small values of Ax but their shape changes
significantly for bigger values, warping the upper and lower parts of the ellipse towards
m2. The period of the Lyapunov orbits increase with Ax, becoming larger than half the
m2 revolution period (πT?) around m1 at Ax ' 0.26|γ|.

Figure 2.11: Adymensional Lyapunov orbit period versus semiamplitude for the Sun-Mars
system.
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Chapter 2. Circular Restricted Three Body Problem

2.8 Monodromy matrix and stability of Lyapunov orbits

An important tool for the study of periodic orbits is the monodromy matrix M, defined
as the state transition matrix evaluated over one period TL:

M(x0) = Φ(x0, t0, t0 + TL) where x0 : ϕ(x0, t0, t0 + TL) = x0 (2.62)

The monodromy matrix gives information about how displacements in initial conditions
δx0 evolve after a period:

δx1 = M(x0)δx0 (2.63)

This equation is very similar to 2.25, the main difference being this is a relation between
two states rather than a differential equation describing the evolution of a state. This
makes possible to study the stability of a Lyapunov orbit in a similar fashion to how
stability of equilibrium points was investigated. First, eigenvalues α and eigenvectors u
of M are computed:

Mu = αu (2.64)

Then, δx0 is expressed as a linear combination of eigenvectors u:

δx0 =
∑
j

cjuj (2.65)

Thus, δx1 is given by:

δx1 =
∑
j

cjαjuj (2.66)

Thus, stability along the direction x is given by the magnitude of αj . For Lyapunov
orbits the eigenvalues take the form:

α1 = Λ > 1 α2 =
1

Λ
α3 = α4 = 1 α5 =

1

α6
(2.67)

which are indication of the following behaviors:

� Unstable and stable behavior associated to α1 and α2, similarly to λ1 and λ2 in
the linearized dynamics. Stable and unstable trajectories can be approximated
numerically by choosing a small but nonzero c1 or c2 to generate initial conditions
x0 = δx+xL (xL being a state in the Lyapunov orbit) and integration equations of
motion. Invariant manifolds can be computed by integrating from initial conditions
with small but nonzero c1 or c2 for various phases ψ along a Lyapunov: an example
of them is shown in figure 2.12.

� Cyclic behavior is associated to α3 and α4. The first eigenvector is aligned to
velocity of x0, since the periodicity ensures that displacements along the orbit
remain unchanged after one period. The second unitary eigenvalues is related to
an ”adjacent” periodic orbit at a different Jacobi integral J and it can be proved
taking the x0-derivative of J(ϕ(x0, TL)) = J(x0) and applying the chain rule:

∂J(ϕ(x0, TL))

∂x0
=
∂J(ϕ(x0, TL))

∂ϕ(x0, TL)

ϕ(x0, TL)

∂x0

=⇒ ∂J(x0)

∂x0
=
∂J(x0)

∂x0
M(x0)

Thus the row vector ∂J(x0)
∂x0

is a left eigenvector of M with eigenvalue +1.
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Chapter 2. CR3BP 2.8. Monodromy matrix and stability of Lyapunov orbits

Figure 2.12: Stable (green) and unstable (red) manifolds of a Lyapunov orbit (blue)
around L1 in the Sun-Mars system

� The non planar behavior is associated to α1 and α2, which for small amplitudes are
two complex conjugates with magnitude |α5| = |α6| = 1.

Analogously to the linearized dynamics, non-transit trajectories can be generated by
setting, for example c1 = c2 (assuming the x component of the eigenvectors have the same
sign) and defining ε = c1 + c2 and n = u1 + u2 by integrating from the initial conditions:

x0 = xL(Ax, ψ) + εn+ c5u5 + c6u6 (2.68)

Since eigenvectors’ magnitude is arbitrary vector n can be chosen such that its spatial
part is pointing towards m2, in this way non transit trajectory will approach and arrive
from m2. Like eigenvectors, n is a function of x0, thus of Ax and ψ.

Figure 2.13: Spatial part of n (in dark red) for various phases ψ along a Lyapunov orbit
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Chapter 3

Interplanetary transfers

Interplanetary transfers are modeled in a ”traditional” way, using the two body problem
framework and patched conics to determine the trajectories from one planetary body to
another.

3.1 Keplerian orbits

Keplerian orbits are the well-known solution for the motion of a spacecraft under the
influence of a single spherical massive body. The second-order equation of motion is given
by the equation:

d2

dt2
~r = − µ

r3
~r (3.1)

Where ~r is the position vector of the spacecraft relative to the massive body and µ is its
gravitational parameter. The values of µ for Earth (⊕), Mars (�) and Sun (�) are:

µ⊕ = 3.986 · 105 km3/s2 µ
�

= 4.283 · 104 km3/s2 µ� = 1.327 · 1011 km3/s2

Since the acceleration is always parallel to the radius, the trajcetory is confined to a plane,
and it can be expressed in polar coordinates {r, θ} with the relation:

r(θ) =
a(1− e2)
1 + e cos θ

(3.2)

where a is the semi-major axis, e is the eccentricity and θ is the true anomaly (as shown
in figure 3.1). An integral of motion called orbital energy or (keplerian energy) exists,
whith expression:

ε =
v2

2
− µ

r
= − µ

2a
ε̇ = 0 (3.3)

where v is the velocity of the spacecraft (~v = ~̇r). Keplerian orbits can be classified in
three different classes:

� Elliptical orbits are periodic orbits characterized by:

0 < e < 1 ε < 0 a > 0

The shape of the trajectory is an ellipse, with a focus centered on the massive body.

28



Chapter 3. Interplanetary transfers 3.1. Keplerian orbits

� Hyperbolic orbits are non-closed orbits, whose parameters lie in the ranges:

e > 1 ε > 0 a < 0

Their shape is a branch of hyperbola, thus the radius r approaches infinity for some
values of θ. In fact, the trajectory has two asymptotes, one for t→∞ and one for
t→ −∞. The asymptotic velocities ~v∞ are referred to hyperbolic excess velocities,
and since r →∞ at t→ ±∞, the keplerian energy of an hyperbolic orbit can be
also written as:

ε =
v2∞
2

(3.4)

� Parabolic orbits are the boundary case between elliptical and hyperbolic, charac-
terized by ε = 0 and e = 1. Since energy is zero, every point along the trajectory
has velocity equal to the escape velocty ve:

ve =

√
2µ

r
(3.5)

 

r r

ϑ ϑ

a aae
ae

Figure 3.1: Elliptical (left) and hyperbolic (right) orbits.
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Chapter 3. Interplanetary transfers

3.2 Lambert’s problem

Knowing the positions of a spacecraft ~r1, ~r2 at two different times separated by a known
time interval ∆t is sufficient, in the two body problem, to determine a keplerian trajectory
between them. In fact, the Lambert theorem [4] states:

The transfer time ∆t between two positions ~r1 and ~r2 depends only on the sum
of the radii r1 + r2, the major semiaxis a of the orbit and the chord between
the positions |~r1 − ~r2|.

An equivalent formulation more useful in this context, being the orbit determined by a
single couple of corresponding position ~r and velocity ~v is:

Given two position ~r1, ~r2 along a Keplerian orbit and the time of flight ∆t
between them, the velocities ~v1 and ~v2 can be determined.

 

t+Δt 

t 

 

r 2 

→ 

r 1 

→ 

→ 

v 2 

→ 

v 1 

Figure 3.2: Illustration of Lambert’s problem.

The analytical procedure to find ~v1 and ~v2, described in detail in chapter 5.3 of Orbital
Mechanics for Engineering Students of Curtis [5], is the following:

1. The difference in true anomaly ∆θ is simply the angle between ~r1 and ~r2:

∆θ = cos−1

(
~r1 · ~r2
r1r2

)
2. The parameter A is calculated as following:

A = sin(∆θ)

√
r1r2

1− cos(∆θ)

3. Parameter ζ is found by solving numerically the equation(
Γ(ζ)

C(ζ)

) 3
2

S(ζ) +A
√
ζ −√µ∆t = 0

where S(x) and C(x) are the Stumpff’ functions, defined as following:

S(x) =


x−2/3(

√
x− sin

√
x) if x > 0

1/6 if x = 0

(−x)−2/3(
√
−x− sinh

√
−x) if x < 0

C(x) =


x−1(1− cos

√
x) if x > 0

1/2 if x = 0

−x−1(cosh
√
−x− 1) if x < 0
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Chapter 3. Interplanetary transfers

and Γ(x) is a function of S(x) and C(x), defined as:

Γ(x) = r1 + r2 +A+
xS(x)− 1√
C(x)

4. A set of parameters called Lagrangian Coefficients are calculated:

f = 1− Γ(ζ)

r1
g = A

√
Γ(ζ)

µ
ġ = 1− Γ(ζ)

r2

5. Finally, velocities are found using the following formulae:

~v=
1

g
~r2 −

f

g
~r1 ~v2 =

ġ

g
~r2 −

1

g
~r1

This procedure will be indicated as the function L :

(~v1, ~v2) = L (~r1, ~r2,∆t) (3.6)

3.3 Patched Conics

A common assumption for the design of interplanetary trajectories is the patched conics
approximation. It is an approximation of the three body problem in which the spacecraft
is considered to be affected only by the gravity of a single body at a time, that body
being the one where the gravitational influence is the most significant. The sphere of
influence (SOI) is defined as:

RSOI =

(
m1

m2

)2/5

R? (3.7)

Where m1 and m2 are the masses of the two bodies (m1 > m2) and R? is the distance
between them. For example, in the case of an Earth to Mars trasnsfer the trajectory is
separated into three parts:

� Departure hyperbola: the spacecraft starts in an hyperbolic trajectory character-
ized by a certain ~v∞1 and is considered to move along it until it exits Earth’ sphere
of influence.

� Transfer ellipse: when it exits Earth SOI, the spacecraft is considered to move in
an elliptical orbit around the Sun, starting at the position the Earth is at departure,
with velocity ~v1 = ~vE + ~v∞1 (where vE is the velocity of Earth in the Sun-fixed
frame). The trajectory continues along the elliptic arc until the spacecraft reaches
Mars SOI with a velocity v2 (in the Sun-fixed frame)

� Arrival hyperbola: the spacecraft moves in an hyperbolic orbit around Mars,
characterized by an arrival hyperbolic excess velocity ~v∞2 = ~v2 − ~vM .

This example is shown in figure 3.3.
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→ 

v 2 

→ 

v 2 

Earth 

Mars 

Earth SOI 

Mars SOI 

Sun 

→ 

v E 

→ 

v 
M 

→ 

v 
1 

→ 

v 
M 

→ 

v ∞ 1 

→ 

v ∞ 2 

→ 

v E 

Mars 

Earth 

transfer 
ellipse 

arrival 
hyperbola 

departure 
hyperbola 

at departure 

at arrival 

→ 

v 1 

Sun-fixed frame 

Earth-fixed frame 

Mars-fixed frame 

Figure 3.3: Illustrative example of an Earth-Mars transfer trajectory with patched conics
(distances and radii are not to scale).

3.4 Porkchop plots and transfer windows

From the procedure described in section 3.2, given the Earth and Mars postions ~r⊕(t), ~r�(t)
in the Sun-fixed frame, the velocities ~v1 and ~v2 of a transfer arc starting at Earth at t1
and arriving at mars at t2 can be determined univocally:

(~v1, ~v2) = L
(
~r⊕(t1), ~r�(t2), t2 − t1

)
(3.8)

Also, by knowing the velocities of Earth and Mars at departure and arrival the hyperbolic
excess velocities can be computed by:

~v∞1 = ~v1 − ~v⊕ ~v∞2 = ~v2 − ~v� (3.9)

The same applies to a Mars-Earth transfer.
Position of Earth and Mars (commonly referred to as ephemeris) can be found online, for
example, from JPL’s Horizons System [6]. The ephemeris can then be used to draw a so
called porkchop plot, showing v∞ at arrival and departure as a function of the departure
time and transfer duration. Porkchop plots for Earth and Mars are shown in the following
pages, for departures dates ranging from 2020 to 2030 (if v∞ > 7 km/s it is not plotted).
It can be seen that v∞ has various minima, corresponding to transfers when the relative
phase of Earth and Mars are such that a transfer arc arrives at Mars near apoapsis and
at Earth near periapsis. These minima are called transfer windows and repeat roughly
every synodic period Tsyn:

Tsyn ' 780 days (3.10)
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Chapter 3. Interplanetary transfers

3.5 Ideal capture/departure ∆v

The ideal capture/departure ∆v can be defined as the ∆v necessary to get to escape
velocity ve from the periapsis rp of an hyperbolic orbit with an excess velocity v∞ (or
vice versa). The velocity at periapsis of the hyperbolic orbit can be found from equation
3.3 and 3.4 to be:

vp =

√
v2∞ +

2µ

rp

Expressing the escape velocity as in equation 3.5 lets ∆vi = vp − ve be written as a
function of rp and v∞ (for a given gravitational parameter µ):

∆vi =

√
v2∞ +

2µ

rp
−

√
2µ

rp
(3.11)

This relation is shown in figure 3.4, from which two aspects can be seen:

� ∆vi decreases significantly with low periapsis.

� ∆vi is higher for Mars than for Earth.

This is due to the so-called Oberth effect [7]: changes in orbital energy are bigger for a
given ∆v when the manuever is done at high velocity (thus lower in the gravitational
potential near the planet). The ∆vi for Earth is generally smaller than for Mars because of
the greater mass of Earth, however Earth has a bigger radius so it doesn’t allow periapsis
low as much as at Mars.

0

Figure 3.4: ∆vi for Earth (left) and Mars (right) as a function of periapsis radius rp for
various values of v∞.
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Chapter 4

Computation of parking orbits

The following chapter illustrates a technique to find parking orbits calcluate the ∆v for
capture and departure. It will be assumed that the hyperbolic excess velocities at arrival
~v∞a and departure ~v∞d are known, as well as the parking duration tp = td − ta (ta and td
being the arrival and departure epoch). In section 5.1 the method for obtaining these
quantities is discussed.

4.1 Symmetric 2D parking orbits

Two assumptions can be made in a first approximation to the parking orbit:

� Symmetry: The trajectory is composed by two halves, each one the mirrored
version of the other, each one having a duration of tp/2.

� Planarity: The trajectory lies in the same plane the planet orbits the Sun.

The initial state x0 can be chosen to be the halfpoint of the trajectory, and for the
previous assumptions the only nonzero components will be x and vy. Furthermore, in
order to respect symmetry the state must either be in a Lyapunov orbit or in one that
has both stable and unstable motion in ”equal amounts”.
Lyapunov orbits can be computed in the manner discussed in section 2.7, so the state xL

in a Lyapunov orbit can be expressed as a function of the x-semiamplitude Ax and the
phase along the orbit ψ:

xL = xL(Ax, ψ)

The initial condition of a non-transit parking orbit can be found by adding stable csus

and unstable cuuu eigenvectors to xL. Symmetry requires that cu = cs and ψ = {0;π},
so defining n = uu + us and ε = cu = cs the initial state of the 2D symmetric orbit can
be written as.

x0(Ax, ε) = xL(Ax, {0;π}) + εn(Ax) (4.1)

Since the parking duration is known, the two branches of the parking orbit can be
integrated, also obtaining the initial xi and final xf state

xi = ϕ(x0, t0 − tp/2) (4.2)

xf = ϕ(x0, t0 + tp/2) (4.3)

It can be seen that in this way a family of parking orbits can be generated by the variation
of two continuous parameters: Ax and ε. There are actually four trajectories for every
Ax − ε couple, due to ψ being 0 or π and the Lyapunov state being around L1 or L2.
An example of 2D symmetric parking orbits is shown in figure 4.1
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Chapter 4. Computation of parking orbits

Figure 4.1: 2D symmetric parking orbits relative to a Lyapunov orbit (red dotted line)
for various values of ε. On the right is shown a detailed zoom of the vicinity of xL.

4.2 Generic 3D parking orbits

The 2D symmetric problem is very useful for finding initial estimates of the optimal
trajectory but the two assumptions are not completely realistic. This is due to two
reasons:

� The magnitude of ~v∞a can be different to the one of ~v∞d, this is due to the fact
that every transfer window is slightly different form each other. This also means
that the halfway point does not necessarily divide the parking orbit into two mirror
trajectories

� In general ~v∞ has nonzero z component, due to the different inclination of the orbits
of Earth and Mars around the sun. For this reason injection and escape from a
planar parking orbit would use some ∆v to rotate the velocity vector rather than
increase or decrease energy.

To allow for non-symmetric orbits it is sufficient to let ψ vary freely and keep cu and
cs as separate parameters. To have a 3D orbit and use the same philosophy of the 2D
symmetric case one would need to first compute a state in a nonlinear Lissajous trajectory
and then add the unstable and stable components. However the calculations are much
more complex than the Lyapunov orbit ones and since Lissajous orbits are characterized
by x amplitude, z amplitude and planar-vertical phase difference any survey of a given
resolution would require the cube of the computation time needed to survey the Lyapunov
initial parameters space. A very useful approximation that is sufficient to compute
parking orbits is to assume that a Lissajous initial state can be found by adding a z and
vz component to a Lyapunov initial state. This is not the case in the nonlinear regime and
the orbit would diverge from equilibrium if propagated, however the stable and unstable
components that are added with nonzero cs and cu diverge more rapidly than the errors
introduced in the approximation.
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Chapter 4. Computation of parking orbits

Taking these points into consideration, the initial state for a generic parking orbit can be
written as:

x0(Ax, ψ, cs, cu, z0, vz0) = xL(Ax, ψ) + csus + cuuu + [0 0 z0 0 0 vz0]
t (4.4)

The initial conditions depend on 6 variables so they are not suitable for large-scale
surveys of the phase space but the extra degrees of freedom are useful for finding optimal
trajectories.
It can also be seen that a relatively minor change in z0 and vz0 enables to reach a wide
range of periapsis inclinations. This is convenient as the injection/escape maneuvers can
fully exploit the Oberth effect near the planet without ”wasting” ∆v for orbital plane
changes. This is shown in figure 4.2.

Figure 4.2: Three parking trajectories with different z0. On the left the whole parking
orbit is shown while on the right the part of the trajectory near the planet (in this case
Mars) is highlighted.

4.3 Calculation of ∆v

The ∆v can then be found as the magnitude of the difference of velocity vectors before
and after the manuever: the final and initial velocities and positions of the parking orbit
can be easily retrieved by the initial and final states, thus the velocity vector at the same
positions but in the hyperbolic trajectories needs to be calculated to find the ∆v.
The patched conics approximation determines both ~v∞ for a given transfer arc but does
not fully constrain the departure/arrival hyperbolae. This is because Keplerian orbital
states in three dimensions have 6 degrees of freedom (including the true anomaly or time
to periapsis) and fixing ~v∞ leaves three of them free. The trajectory however can be
fully constrained by imposing that it passes trough a certain position ~r, which can be
the initial/final position of the parking orbit. When the orbital elements are found, the
velocity in the hyperbolic trajectory can be calculated analytically.
First, knowing ~r and ~v∞ constrains the orbital plane so the problem can be carried out
with the two-dimensional equations. To treat the departure and arrival scenario with the
same mathematical tools, the unit vector û is defined as:

û =

{
+v̂∞ at departure

−v̂∞ at arrival
(4.5)
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Chapter 4. Computation of parking orbits 4.3. Calculation of ∆v

Then the angle φ can be defined as the angle between û and ~r, found with:

φ = cos−1

(
~r · û
r

)
(4.6)

Before proceeding it is useful to draw an indicative drawing of the geometrical configuration:
as shown in figure 4.3 there are in general two hyperbolas for every ~v∞-~r pair of vectors,
one passing on the ”frontside” of the planet and another passing on the ”backside” of it.

 

r → 

û β 1 

β 2 

b1 

b2 

Figure 4.3: Geometric configuration of the problem.

For each hyperbola, the angle β can be defined as the angle lying between û and the
periapsis position. The frontside angle will be referred to as β1 while the backside will be
called β2. The value of β can be found as the limit of the true anomaly θ as the radius r
goes to infinity in equation 3.2:

r(θ) =
a(1− e2)
1 + e cos θ

=⇒ θ(r) = ± cos−1

(
1

e

(
a(1− e2)

r
− 1

))
β = lim

r→∞
θ(r) = ± cos−1

(
−1

e

)
Also, looking at figure 4.3 it can be seen that if φ > 0, then β1 > 0 and β2 < 0, thus:

β1 = +cos−1

(
− 1

e1

)
β2 = − cos−1

(
− 1

e2

)
(4.7)

It is important to note that the difference between β1 and β2 is not only the sign, as the
eccentricities of the two hyperbolae are not the same (e1 6= e2).
The true anomalies θ1 and θ2 at the position ~r are the difference between β and φ, the
sign changing for the departure/arrival and the front/back hyperbola:

θ1 =

{
β1 − φ at departure

φ− β1 at arrival
θ2 =

{
φ− β2 at departure

β2 − φ at arrival
(4.8)

With this formulation, θ < 0 while the spacecraft is travelling from apoapsis to periapsis,
θ = 0 at periapsis and θ > 0 while travelling from periapsis to apoapsis. By using equation
3.4, 3.3 and 3.2, two expressions can be obtained for the parameter −r/a:

1

2
v2∞ = − µ

2a
=⇒ −r

a
=
v2∞r

µ

r =
a(1− e2)
1 + e cos θ

=⇒ −r
a
=

e2 − 1

1 + e cos θ
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which can be equated, giving the following relation:

v2∞r

µ
=

e2 − 1

1 + e cos θ

after this, substituting the expression found before for θ and β, the equation can be
rewritten as:

v2∞r

µ
=

e21 − 1

1 + e1 cos
(
φ− cos−1

(
− 1

e1

)) =
e22 − 1

1 + e2 cos
(
φ+ cos−1

(
− 1

e2

)) (4.9)

This relation is shown in figure 4.4. The equation does not change for arrival and
departure, since the cosine of the true anomaly is the same for a negative or positive
argument; it does, however, change for the fronside and backside (the signs that follow φ
are opposite). The only unknowns in the equations are the eccentricities and, despite not
being analytically solvable, e1 and e2 can be found numerically.

Figure 4.4: Isocurves of v2∞r/µ as a function of φ and e, as described by equations 4.9.
Isocurves are present even where not explicitly shown (except in the grey zone) but have
been omitted because the lines would be too dense.

For some values of φ and e2 the denominator in the third member of equation 4.9 becomes
negative, but this cannot be possible since the first member is always positive. Thus, to
have physical results the following condition must be true

1 + e2 cos

(
φ+ cos−1

(
− 1

e2

))
> 0 =⇒ φ > 2π − 2 cos−1

(
− 1

e2

)
Which, using the definition of β2 can be seen to be equivalent to

φ > 2π + 2β2 (4.10)

When this condition is not satisfied, φ is too low to allow any backside hyperbola with
eccentricity e2 to exist for any value of v2∞r/µ. This condition does not forbid in principle
to find an e2 (thus a backside hyperbola) for any given value of φ and v2∞r/µ but the
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Chapter 4. Computation of parking orbits 4.3. Calculation of ∆v

result can be very close to 1, which often corresponds to a periapsis below the surface of
the planet. The semiaxis of the orbit can be found from v∞ with equations 3.3 and 3.4:

a = − µ

v∞
(4.11)

Then, knowing the eccentricity e the impact parameter b is found with:

b = −a
√
e2 − 1 (4.12)

The angular momentum unit vector can be calculated as following without knowing
explicitly the velocity ~v.

ĥ1 =
r̂ × v̂∞
|r̂ × v̂∞|

ĥ2 =
v̂∞ × r̂
|r̂ × v̂∞|

(4.13)

where × indicates the cross product. By using v̂∞ instead of û, this formulation does
not change depending on if the hyperbolic orbit is at arrival or departure, but it changes
for the frontside and backside cases. From each one of the two ĥ and r̂ the angular unit
vector θ̂ can be found as:

θ̂ = ĥ× r̂ (4.14)

no normalization is necessary in this case since by construction ĥ and r̂ are perpendicular.
The angle between θ̂ and the velocity is often referred to as flight path angle χ and it can
be calculated from e and θ:

χ = arctan

(
e sin θ

1 + e cos θ

)
(4.15)

The vis viva equation (3.3) can be used to find the magnitude of the velocity:

v =

√
v2∞ +

2µ

r
(4.16)

Finally, the velocity vector ~v at the position ~r of an hyperbolic orbit characterized by ~v∞
can be found with the following expression:

~v = v
(
sinχ r̂ + cosχ θ̂

)
(4.17)

Both solutions generally valid, altough it can happen that the periapsis of the hyperbola
is below the surface of the planet. To check this occurrence the periapsis radius can be
calculated from a and e and then required to be above the radius of the planet Rp:

rp = a(1− e2) > Rp (4.18)
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Chapter 5

Cycler optimization

The previous chapter illustrates how to find a parking trajectory and its associated ∆v
given a number of free parameters:

� Arrival and departure ~v∞ and parking time tp which are determined by the
interplanetary arrival and departure trajectories.

� Initial state of the parking orbit x0 which, given the two ~v∞, corresponds to a
certain ∆v.

These parameters can be chosen to minimize ∆v, with the constrain that the trajectory
never goes below the surface of the planet.

5.1 Interplanetary trajectory optimization

Without finding any specific parking orbit, an assumption can be made on the ∆v which
simplifies the problem:

Given an arrival and departure asymptotic velocities ~v∞a, ~v∞d and parking
time tp, the minimum ∆v obtainable by a parking orbit is proportional to the
sum of the ideal ∆v of v∞a and v∞d at the radius of the planet rp.

∆v = ∆via +∆vid =
1

η
(∆vi(v∞a, rp) + ∆vi(v∞d, rp)) (5.1)

where ∆vi is the ideal ∆v defined in equation 3.11 and rp is the radius of the planet (plus
the atmosphere and and eventual margin). In this way the parking efficiency η can be
calculated once the specific trajectory is found. The validity of this assumption will be
discussed later in section 5.3.
If the only objective was to minimize the ∆v across a single Earth → Mars → Earth
mission then the two interplanetary transfer arcs could be simply chosen by looking at the
minima of v∞ at Mars arrival and departure on the corresponding porkchop plot. This
would fix the time of arrival ta and departure td at Mars and consequently the parking
time tp = td − ta. However, the situation is more complicate if we want to design a cycler
trajectory where each interplanetary arc determines two v∞ because now we need to
minimize the sum of the ∆vi at the start and at the end of the interplanetary trajectory.
To avoid confusion, while the ”a” and ”d” subscripts will refer to arrival and departure
from a parking trajectory, the subscripts ”1” and ”2” will indicate the beginning and the
end of an interplanetary transfer in this context. Since the asymptotic velocities v∞1 and
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Chapter 5. Cycler optimization 5.1. Interplanetary trajectory optimization

v∞2 can be determined as functions of t1 and t2, as shown in sections 3.2 and 3.4, the
following quantity can also be computed as a function of t1 and t2 for both the Earth →
Mars and Mars → Earth cases:

∆vi1 +∆vi2 =

√
v2∞1 +

2µ⊕
r⊕
−

√
2µ⊕
r⊕

+

√
v2∞2 +

2µ�
r�
−

√
2µ�
r�

(5.2)

Such a plot is shown at page 45, for the 2020-2030 year of departure interval. With
assumption 5.1, the t1 and t2 that give the lowest ∆v for parking are the one corresponding
to minima in ∆vi1 +∆vi2. The optimal transfer dates in the 2020-2038 year of departure
interval are listed in the tables 5.1 and 5.2 (the meaning of the cell colors will be clarified
in the next paragraph):

Table 5.1: optimal Mars → Earth transfers

t1 t2 t2 − t1 v∞1 v∞2 ∆vi1 ∆vi2 ∆vi1 +∆vi2
[date] [date] [days] [km/s] [km/s] [km/s] [km/s] [km/s]

20/06/2020 24/12/2020 187 3.315 3.009 1.019 0.413 1.431
14/07/2022 12/04/2023 271 3.198 2.912 0.954 0.387 1.341
22/07/2024 07/05/2025 288 2.779 2.656 0.735 0.323 1,058
06/08/2026 11/06/2027 312 2.601 2.913 0.649 0.387 1.036
10/08/2028 12/07/2029 336 2.602 3.528 0.650 0.563 1.213
24/12/2030 04/10/2031 284 3.247 3.429 0.980 0.533 1.513
17/04/2033 01/11/2033 198 2.903 3.215 0.797 0.470 1.267
25/06/2035 09/01/2036 197 3.039 2.535 0.868 0.294 1.162
04/08/2037 07/07/2038 337 4.188 2.535 1.549 0.294 1.844

Table 5.2: optimal Earth → Mars transfers

t1 t2 t2 − t1 v∞1 v∞2 ∆vi1 ∆vi2 ∆vi1 +∆vi2
[date] [date] [days] [km/s] [km/s] [km/s] [km/s] [km/s]

21/07/2020 05/02/2021 199 3.877 2.779 0.677 0.735 1.412
27/08/2022 05/08/2023 343 4.177 2.707 0.782 0.700 1.482
25/09/2024 26/08/2025 334 3.612 2.550 0.590 0.626 1.215
28/10/2026 26/08/2027 302 3.127 2.681 0.445 0.687 1.132
21/11/2028 15/09/2029 297 3.036 2.973 0.420 0.834 1.253
28/10/2030 02/10/2031 354 2.685 4.184 0.330 1.547 1.877
17/02/2033 15/09/2033 210 2.545 3.370 0.297 1.050 1.346
10/05/2035 17/11/2035 191 3.092 3.277 0.435 0.997 1.432
07/07/2037 30/03/2038 266 3.664 3.395 0.606 1.064 1.670

The ∆vi varies substantially for each transfer, this is due to the fact that Earth and Mars
orbits are not circular nor coplanar, so some launch windows are more advantageous than
others. Its average value is 〈∆vi1 +∆vi2〉 = 1.371 km/s.
To have the fastest cycler trajectory the spacecraft needs to take the first transfer available
after it arrives at a planet; for example a spacecraft departing from Earth on the 20th of
June 2020 arrives at Mars on the 24th of December 2020 so the first available transfer
back to Earth is on the 27th of August 2021. Since the Earth → Mars and the Mars →
Earth launch windows always overlap it’s not possible for a single spacecraft to exploit
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Chapter 5. Cycler optimization 5.1. Interplanetary trajectory optimization

all of them but at least two are necessary. This fact also imposes a minimum parkinkg
duration tp at the planet, that is listed in tables 5.4 and 5.3 with the corresponding arrival
and departure date ta and tp.

Table 5.3: parking duration tp = td − ta at Earth

ta td tp
[date] [date] [days]

24/12/2020 27/08/2022 611
12/04/2023 25/09/2024 532
07/05/2025 28/10/2026 539
11/06/2027 21/11/2028 529
12/07/2029 28/12/2030 534
04/10/2031 17/02/2033 502
01/11/2033 10/05/2035 555
09/01/2036 07/07/2037 545

Table 5.4: parking duration tp = td − ta at Mars

ta td tp
[date] [date] [days]

05/02/2021 14/07/2022 524
05/08/2023 22/07/2024 352
26/08/2025 06/08/2026 345
26/08/2027 10/08/2028 350
15/09/2029 24/12/2030 465
02/10/2031 17/04/2033 563
15/09/2033 25/06/2035 648
17/11/2035 04/08/2037 626

In tables 5.1, 5.2, 5.4 and 5.3 the rows have been colored with two different colors: all
transfers and parking phases with the same color are part of the same cycler trajectory.
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Chapter 5. Cycler optimization

5.2 Coordinate frame conversion

Two different coordinate frames, shown in figure 5.1, are used to compute the interplanetary
arc and the parking orbits:

� Inertial frame - The Lambert problem is solved in the J2000 Ecliptic reference
frame, that will be referred in this section as {X,Y, Z}. This frame is centered in
the solar system barycenter (SSB), its XY plane coincides with the ecliptic and the
X̂ vector points to the Venal point at epoch 2000. Earth does not orbit exactly in
the ecliptic since orbital precession has changed slightly its orbital plane since the
J2000 reference frame has been defined. Given that the system is centered in the
SSB and it doesn’t rotate, this frame is inertial.

� Corotating frame - The parking orbit is solved in a frame which is defined as
follows to approximate the one used in chapter 2 for the study of the CR3BP:

– The system is centered in the barycenter of the planet (Mars or Earth)

– The x̂ vector is aligned to the vector ~R that connects the SSB to the planet
barycenter.

– The xy plane contains the x̂ vector and the velocity vector of the planet in
the inertial frame ~Vp, the ŷ vector is perpendicular to x̂ in such a way that it

forms an acute angle with ~Vp.

– The ẑ vector closes the triplet in such a way that x̂× ŷ = ẑ.

 

⊱
 X 

Y 
Z 

VP    ሬሬԦ 

R    ሬሬԦ 

planet 

SSB 

Vernal 

point 

R    ሬሬԦ 
VP    ሬሬԦ 

x 

z 

y 

Figure 5.1: Inertial frame (left) and corotating frame (right)

The parking trajectory is modeled in the CR3BP but when the SOI is crossed at high
velocity, so before the injection manuever and after the escape one, the two body approxi-
mation is valid and the patched conics approach can be used. In this approach the only
relevant parameter that ”communicates” between various sphere of influences is the ~v∞,
so it’s also the only one that needs to be converted between the two frames of reference.
Doing that in an exact way would imply a contribution in the corotating frame due to the
rotation velocity of the frame itself, but this correction would be of order of magnitude:

vrot ∼ 2π
Rp

Torbit
∼ 104 km

1 year
∼ 10−4 km/s << v∞ ' 3 km/s
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Chapter 5. Cycler optimization

thus, it can be ignored. This makes the conversion from inertial to corotating velocity
simply the linear transformation:vxvy

vz

 =

R̂X R̂Y R̂Z

ÛX ÛY ÛZ

ĤX ĤY ĤZ

vXvY
vZ

 where Ĥ =
R̂× ~Vp
Vp

and Û = R̂× Ĥ (5.3)

5.3 Parking trajectory optimization

Having fixed the transfers now ~v∞a, ~v∞d and tp are known so a family of parking orbits
can be computed as illustrated in chapter 4 and a ∆v value assigned for each trajectory;
this section shows how to find the one that minimize ∆v, taking as an example the parking
at Mars between the arrival on the 26th of August 2025 and the departure on the 6th of
August 2026, characterized by the following parameters:

tp = 345 days ~v∞a =

−0.699−2.353
0.841

 km/s ~v∞d =

−0.192−2.430
−0.893

 km/s

As anticipated the x and z components are nonzero due to the fact that Earth and Mars’
orbits around the Sun are not circular nor coplanar. The interplanetary transfer arcs that
result in these parameters are shown in figure 5.2:

Figure 5.2: Interplanetary transfers for the 2024-2026 launch windows to and from Mars.
The spacecraft trajectory is represented by the blue line, the red and green lines are the
trajectories of Mars and Earth respectively, while the circles at the end of the curves are
the planets’ position at the beginning and end of each transfer.

As the duration of the parking orbit is fixed, a trajectory is uniquely identified by the
state x0 at its midpoint, which has six degrees of freedom in general, parametrized for
example as in equation 4.4: a survey of the phase space would be too computationally
expensive but assuming that a 2D symetric parking orbit gives a good initial guess, we
can parametrize x0 as in 4.1 and survey the Ax − ε space to find an initial guess to later

47



Chapter 5. Cycler optimization 5.3. Parking trajectory optimization

optimize. Since the search is in the 2D orbit family, using the 3D ~v∞ would grossly
overestimate the ∆v since the out of plane velocity cannot be matched. A much more
representative way of conducting this survey that still gives good initial guesses can be
done by using a ”planified” ~v∞plan, i.e. projecting it into the x− y plane and rescaling it
to match its original magnitude:

~v∞ =

v∞,x

v∞,y

v∞,z

 ⇒ ~v∞plan =

v∞,x

v∞,y

0

 |~v∞|√
v2∞,x + v2∞,y

In figure 5.4 the result of this survey are shown. It can be seen that there are ”branches”
of low ∆v in the configuration space and looking at the trajectories belonging to these
branches it becomes apparent that all of them share the two following properties:

� Low periapses, to maximize the Oberth Effect.

� Small changes of v̂ before and after the maneuver, to minimize the ∆v ”wasted” in
rotating the velocity vector without chaning energy.

From this survey the best 2D symmetric trajectory found is in the L2 ψ = π family and
is characterized by Ax = 149 362 km ' 0.137 γ and ε|~nr| = 79 804 km ' 0.074 γ, shown
in figure 5.3. This trajectory, as hinted to in chapter 4, is used as initial guess for the
optimal 3D parking orbit.

Figure 5.3: Optimal 2D trajectory. Bird’s-eye view (left) and detail around Mars with the
planet in scale (right). The parking trajectory is in blue while the arrival and departure
arcs are shown in purple and orange respectively.
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Figure 5.3: ∆ v survey for symmetric 2D transit orbits around L1 and L2. In the abscissa
the x-semiamplitude of the Lyapunov orbit is shown, both for the ψ = 0 and ψ = π cases
(they are side by side and reversed because the ψ = 0 case can be seen as a Ax < 0 and
ψ = π case). In the ordinate the magnitude of the spatial part ~nr of the phase space
vector n = x0 − xL is shown, which can be thought of as the ”distance from equilibrium”.
Dark red indicates ”crashing” trajectories that intersect the planet either in the parking
orbit or in the arrival or departure hyperbolas.
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Figure 5.4: ∆v survey for symmetric 2D transit orbits around L1 and L2. In the abscissa
the x-semiamplitude of the Lyapunov orbit is shown, both for the ψ = 0 and ψ = π cases
(they are side by side and reversed because the ψ = 0 case can be seen as a Ax < 0 and
ψ = π case). In the ordinate the magnitude of the spatial part ε~nr of the phase space
vector εn = x0−xL is shown, which can be thought of as the ”distance from equilibrium”.
Dark red indicates ”crashing” trajectories that intersect the planet either in the parking
orbit or in the arrival or departure hyperbolas.
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The optimization process has been found to be challenging as any algorithm that tried
to minimize the ∆v varying all 6 free parameters (Ax, cs, cu, z0, vz0 and ψ) at the same
time would either fail to converge or stop at a non-optimal result. This behaviour has
been attributed to two facts:

� The trajectory is much more sensitive to cs and cu than to any other parameter.

� Any small change in Ax, z0, vz0 or ψ changes significantly the cs and cu for which
the lowest ∆v is achieved.

To overcome this problem a solution is to use a layered approach, by reoptimizing the
”sensitive” parameters for each iteration of the ”unsensitive” ones. In this way an
algorithm can assess the dependence of ∆v on the unsensitive parameters independently
from the sensitive ones and can converge to an optimum, this however comes at the cost
of a big increase in computation time. This approach is illustrated in figure 5.5

 

vary cs cu 

Gradient optimization 

vary Ax  z0  vz0  ψ 

CR3BP 

propagator 
∆v  x 0  

Grid optimization 

layer 0 

layer 1 

layer 2 

optimal 2D x 0  optimal 3D x 0  

initial guess: output: 

Figure 5.5: Layered optimization method. The second layer uses the grid algorithm and
varies the unsensitive variables Ax, z0, vz0 and ψ, while for each iteration the first layer
optimizes the sensitive parameters cs and cu using the gradient algorithm. A ”zero” layer
is constituted by the CR3BP integrator and the equations described in chapter 4 for
calculating the ∆v. Both algorithms are described in detail in appendix C.

Another problem encoutered during the optimization process is constituted by trajectories
that pass below the surface of the planet and that due to their low periapsis give a lower
∆v despite being obviously unacceptable. To deal with this issue, given a mimimum
allowable altitude rmin, any positive difference rmin − rp is added to the ∆v ”cost” for
the optimization: this doesn’t change anything if the trajectory stays above rmin but if
it does then the cost of that trajectory sharply increases. In other words, the objective
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function f(x) to minimize by the algorithms is:

f(x0) =

{
∆v(x0) if rp(x0) > rmin

∆v(x0) + rmin − rp(x0) if rp(x0) < rmin

(5.4)

Carrying out this procuedure the trajectory shown in figure 5.6 can be found, characterized
by the following parameters:

Ax = 137 053 km cu = 3.675 · 10−4 cs = 3.906 · 10−4

z0 = 117 855 km vz0 = 4.51 m/s ψ = 184.6 ◦

∆v = 2.684 km/s rpa = 23 891 km rpd = 18 112 km

The ∆v at each layer 2 iteration of the optimization process is shown in figure 5.7. The z
extension of the parking trajectory is cleary visible as well as the asymmetry between
the arrival and departure trajectories. Interestingly the periapses are not very low and
this is not due to the fact that lower periapses aren’t possible; however given the specific
directions of the ~v∞ of this transfer window a lower periapsis would increase a lot the
angle between the velocity vectors before and after the manuevers, negating the benefit
that the Oberth effect would offer. Judging by the criteria outlined in 5.1, the efficiency
of this parking orbit is:

η =
∆via +∆vid

∆v
=

0.626 + 0.649

2.684
= 47.05% (5.5)

The efficiency is not very high, this is due mainly to the high periapses that are

Figure 5.6: Optimal 3D trajectory

unfortunately unavoidable in this specific transfer window. The situation could improve
changing the dates of the launch windows, potentially yielding a higher η and an overall
lower ∆v despite the increase in ∆vi. These findings contradict the hypothesis made at the
beginning of section 5.1, or at least they limit its applicability to a ”first guess” for finding
the actual optimal transfers. This search is not impossible but it’s made computationally
intensive by the fact that each change of date (both departure and arrival) chages two
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Figure 5.7: Result of layer 2 iterations during the optimization process

~v∞ and thus leads to two different parking ∆v. Thus, the optimization of the dates for
the cycler trajectory cannot be split into separate parking orbits whose ∆v gets summed
in the end, but has to be done as a whole with all of the N transfers:

∆vcycler = f(t1, t2, ... , t2N ) (5.6)

For this reason, the cycler trajectory will be calculated in this thesis with the suboptimal
dates shown at page 43. The next cycler phase is the Earth-parking phase whose transfers
shown in figure 5.9 are characterized by the following parameters:

ta : 26/08/2027
td : 10/08/2028
tp = 350 days

~v∞a =

 −0.5012.8944
0.0867

 km/s ~v∞d =

−0.84272.5917
1.4521

 km/s

Figure 5.8: Interplanetary transfers for the 2026-2028 launch windows to and from Earth.
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The optimal parking orbit, shown in figure 5.9 is much different than the one shown
previously around Mars, this is due mainly to the fact that tp/TLT? ratio and Gm2 are
much higher in this case. It is charachterized by the following parameters:

Ax = 91 174 km cu = 1.261 · 10−4 cs = 2.626 · 10−4

z0 = −133 291 km vz0 = 86.38 m/s ψ = 159.37 ◦

∆v = 3.541 km/s rpa = 99 308 km rpd = 105 127 km

The efficiency of this transfer is even lower than the previous case, at η = 22.79%, due to

Figure 5.9: Parking orbit around Earth for the 2026-2028 launch windows.

the same reasons. The optimization process takes a similar number of iterations, shown
in figure 5.10

Figure 5.10: Result of layer 2 iterations during the optimization process
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5.4 Results

In this section a portion of the two cyclers, schematized in figure 5.11 is shown.

Figure 5.11: The two cycler trajecotries, between years 2024 and 2032
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~v∞ =

−0.8103.495
−0.484

 km/s (at Earth)

transfer duration: 335 days

~v∞ =

−0.699−2.353
0.841

 km/s (at Mars)
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Ax = 137 053 km cu = 3.675 · 10−4 cs = 3.906 · 10−4

z0 = 117 855 km vz0 = 4.51 m/s ψ = 184.6 ◦

∆v = 2.684 km/s rpa = 23 891 km rpd = 18 112 km
06/08/2026
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~v∞ =

−0.192−2.430
−0.893

 km/s (at Mars)

transfer duration: 309 days

~v∞ =

−0.8432.592
1.452

 km/s (at Earth)
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Ax = 91 174 km cu = 1.261 · 10−4 cs = 2.626 · 10−4

z0 = −133 291 km vz0 = 86.38 m/s ψ = 159.37 ◦

∆v = 3.541 km/s rpa = 99 308 km rpd = 105 127 km
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In
t
e
r
p
l
a
n
e
t
a
r
y
t
r
a
n
sf
e
r

~v∞ =

−0.8432.592
1.452

 km/s (at Earth)

transfer duration: 298 days

~v∞ =

−0.316−2.949
−0.211

 km/s (at Mars)

26/08/2029
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Ax = 149 142 km cu = 7.535 · 10−5 cs = 8.099 · 10−5

z0 = 25 986 km vz0 = 7.48 m/s ψ = 185.79 ◦

∆v = 2.06 km/s rpa = 4772 km rpd = 9658 km
24/12/2030
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~v∞ =

−0.852−2.275
−0.887

 km/s (at Mars)

transfer duration: 284 days

~v∞ =

1.8142.843
1.036

 km/s (at Earth)

04/10/2031
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Cycler B
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~v∞ =

 0.014
−2.780
0.084

 km/s (at Mars)

transfer duration: 289 days
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Ax = 52 208 km cu = 1.837 · 10−3 cs = 2.444 · 10−3

z0 = −107 711 km vz0 = −21.45 m/s ψ = −22.92 ◦

∆v = 3.054 km/s rpa = 99 308 km rpd = 105 127 km
28/10/2026
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n
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y
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r
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n
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e
r

~v∞ =

 0.014
−2.780
0.084

 km/s (at Earth)

transfer duration: 302 days

~v∞ =

 0.653
−2.575
0.481

 km/s (at Mars)

26/08/2027
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26/08/2027
M
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r
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it

Ax = 52 208 km cu = 1.837 · 10−3 cs = 2.444 · 10−3

z0 = −107 711 km vz0 = −21.45 m/s ψ = −22.92 ◦

∆v = 3.054 km/s rpa = 99 308 km rpd = 105 127 km
10/08/2028
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r

~v∞ =

 0.754
−2.231
−0.961

 km/s (at Mars)

transfer duration: 336 days

~v∞ =

 ????
−2.231
−0.961

 km/s (at Earth)

12/07/2029
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r
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it

Ax = 251 282 km cu = 1.114 · 10−3 cs = 9.141 · 10−4

z0 = 1149 km vz0 = −89.42 m/s ψ = 0.57 ◦

∆v = 3.836 km/s rpa = 63 912 km rpd = 61 494 km
28/12/2030
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28/12/2030
In
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~v∞ =

−1.53972.104
1.947

 km/s (at Earth)

transfer duration: 278 days

~v∞ =

 0.021
−3.301
1.643

 km/s (at Mars)

02/10/2031
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Conclusions and future work

The use of three-body parking orbits for an Earth-Mars cycler that transfers between
the planets during the low v∞ transfer windows appears to be feasible, however the ∆v
requirement found with the optimization methods outlined in this thesis is 2 ∼ 3 times
larger than the theoretical minimum that this cycler strategy can yield. Better result
could be found, as the method can be improved in a number of ways:

� The dates of the transfers have been chosen based on the lowest ∆vi criteria, assuming
that it was the main driver in determining the ∆v of the cycler. However, it has
been found that the ∆v of a parking orbit is highly dependent on the direction of the
~v∞ vectors: changing slightly the date of the transfers could change the direction of
~v∞ without having a big effect on ∆vi, with the possibility of lowering the periapses
of the optimal parking orbits and thus the overall ∆v. This would probably require
either more computational power, time or a much faster optimization scheme.

� The Earth parking trajectories are the most ∆v demanding between the two planets.
Improvements can be made by exploiting the presence of the Moon trough gravity
assists (potentially also with maneuvers at periselene that use the Oberth effect),
which has been neglected for simplicity in this thesis.

� Only two maneuvers have been assumed, one for injection and one for escape, while
keeping the parking trajectory entirely ballistic. Additional mid-parking maneuvers
can be added in order to change the direction of ~v at periapsis and improve η. If
these maneuvers are made near the Lyapunov orbit they can change the trajectory
drastically with small amounts ∆v.

� The parking trajectories have been found in the circular three-body problem but
Earth and Mars’ orbits around the sun are not circular (especially the latter). A
more correct model is the elliptical restricted three body problem, or even better
the usage of a full-ephemeris model. This would not necessarily yield a lower ∆v
but would be necessary to compute ”real” trajectories.

Finally, the methodologies outlined in this thesis can be applied to a more general set of
problems than the design of a cycler, for example single return Mars missions or ESA’s
upcoming Comet Interceptor mission.
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Appendix A

Derivatives of the effective
potential

The effective potential has the following expression:

U(x, y, z) =
1

2

(
(x+ 1− ν)2 + y2

)
+

1− ν
r1

+
ν

r2

where r1 and r2 have expression:

r1 =
√
(x+ 1)2 + y2 + z2 r2 =

√
x2 + y2 + z2

Its derivatives are the following, using the notation ∂
∂qj

= ∂qj

∂xU = (x+ 1− ν)− 1− ν
r31

(x+ 1)− ν

r32
x (A.1)

∂yU = y −
(
1− ν
r31

+
ν

r32

)
y (A.2)

∂zU = −
(
1− ν
r31

+
ν

r32

)
z (A.3)

∂xxU = 1− 1− ν
r31
− ν

r32
+ 3

(
1− ν
r51

(x+ 1)2 +
ν

r52
x2

)
(A.4)

∂yyU = 1− 1− ν
r31
− ν

r32
+ 3

(
1− ν
r51

+
ν

r52

)
y2 (A.5)

∂zzU = −1− ν
r31
− ν

r32
+ 3

(
1− ν
r51

+
ν

r52

)
z2 (A.6)

∂xyU = 3

(
1− ν
r51

(x+ 1) +
ν

r52
x

)
y (A.7)

∂xzU = 3

(
1− ν
r51

(x+ 1) +
ν

r52
x

)
z (A.8)

∂zyU = 3

(
1− ν
r51

+
ν

r52

)
zy (A.9)
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Appendix B

Sign of the second y-derivative of
the effective potential

Recalling from appendix A that the first x-derivative of the potential is:

∂xU = (x+ 1− ν)− 1− ν
r31

(x+ 1)− ν

r32
x

it can be evaluated at L1 or L2 by substituting y = z = 0, x = γ, r1 = 1 + γ, r2 = |γ|.
Doing that and recalling that the first derivative of the potential is zero at equilibrium
points gives:

∂xUγ = γ + 1− ν − 1− ν
(γ + 1)2

− ν

|γ|3
γ = 0 (B.1)

which rearranging the terms becomes:

1− ν
(γ + 1)2

= γ + 1− ν − ν

|γ|3
γ (B.2)

Recalling equation 2.21, the second-y derivative of U at the collinear points is:

∂yyUγ = 1− 1− ν
(γ + 1)3

− ν

|γ|3

Using equation B.2 to rewrite the first fraction the following steps can be made:

∂yyUγ = 1−
(
γ + 1− ν − ν

|γ|3
γ

)
1

γ + 1
− ν

|γ|3

= �1−
�
�
�γ + 1

γ + 1
+

ν

γ + 1
+

1

γ + 1

ν

|γ|3
− ν

|γ|3

=
ν

γ + 1
+

ν

|γ|3

(
�γ −�γ − 1

γ + 1

)
=

ν

γ + 1

(
1− 1

|γ|3

)
Since ν

γ+1 is positive the sign of ∂yyUγ is decided by 1 − 1
|γ|3 : γ is the adimensional

distance of L1 or L2 from m2 so it is necessary less than the distance between m1 and
m2: this means that γ < 1 wich in turn implies 1− 1

|γ|3 < 0. Thus

∂yyUγ < 0 (B.3)
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Appendix C

Optimization algorithms

Consider the function f(x) where x = [x1 ... xn]
T, whith a minimum min

x
f = f(xopt);

there are many algorithms that from an initial guess x(0), here are illustrated the two
used in this thesis.

C.1 Gradient method

This algorithm relies on the fact that ∇f is a vector oriented in the direction where f
grows in the x space. The algorithm is outlined below and illustrated in figure C.1a

input x(0), s0 . choose initial x and step size
f0 = f(x0), ∇f0 = [∂1f ... ∂nf ]x0 . calculate initial f and gradient
m, l← 0
while sl < smin do . iterate until step size is below a treshold smin

x(m+1) = x(m) − sl ∇fm
|∇fm| . calculate next x making a step opposite to gradient

if fm+1 < fm then
m← m+ 1 . if f decreases, make another step

else
sl+1 = sl/k . if f increase, reduce step size by a factor k > 1
l← l + 1

end if
end while
output x(m) . the last value of x is approximately xopt

The factor k, as well as the minimum step size smin, can be set to different values and in
the optimization process describe at page 50: the following have been found to work:

smin = 10−12 s0 = 10−5 k =
√
10

This method requires the gradient to be computed at each step: when f has no closed
form therefore no expression for its derivative (such is the case for the ∆v calculation), it
can be approximated by finite differences of f evluated at two positions smin apart:

∂jf |x '
f(x+ sminx̂j)− f(x)

smin
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Appendix C. Optimization algorithms C.2. Grid method

C.2 Grid method

This algorithm, shown in figure C.1b, is simpler and more robust but less efficient, it
makes steps in the x space one dimension at a time instead of finding the best direction.

input x(0), s0,1, ... , s0,n . choose initial x and step sizes
f0 = f(x0) . calculate initial f
m← 0
while m < mmax do . iterate until desired level mmax is reached

for j ∈ {1, ..., n} do for each dimension
if f(x(m) + sm,jx̂j) < fm then . if f decreases in +s direction

D ← +1 . set direction to +s
else if f(x(m) − sm,jx̂j) < fm then . if f decreases in −s direction

D ← −1 . set direction to −s
else

D ← 0 . else no decrease of f in either direction
end if
while D 6= 0 do . while f decreases in some direction

if f(x(m) +Dsm,jx̂j) < fm then . if f decreases in next step
x(m) ← x(m) +Dsm,jx̂j . step along current dimension

else
D ← 0 . else no decrease of f in either direction

end if
end while
j ← j + 1 . next variable
sm+1,j = sm,j/k . reduce step size

end for
m← m+ 1 . next level

end while
output x(m) . the last value of x is approximately xopt

As previously, the factor k and the maximum level mmax, can be set to different values.
Those used in the process described at page 50 are:

mmax = 3 k = 10

                               

x  
(0)  

step size s  
1  

step size s  
2  

f(x) = const 

bad step 

min f 

x  
1  

x  
2 

(a) Gradient method

 
Level 1 

 

Level 2 

 

x  
(0)  

x  
(1)  

x  
(1)  

x  
(2)  

f(x) = const 

min f 

s  
1,1  

s  
2,1  

x  
1  

x  
2 s  

1,2  
s  

2,2  

(b) Grid method

Figure C.1: Visualizations of the optimization algrithms
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