UNIVERSITA DEGLI STUDI DI PADOVA

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCATRONICA

MPPT ALGORITHMS BASED ON ARTIFICIAL
NEURAL NETWORKS FOR PV SYSTEM
UNDER PARTTAL SHADING CONDITION

ALGORITMI MPPT PER SISTEMI
FOTOVOLTAICI IN CONDIZIONE DI
PARZIALE OMBREGGIATURA BASATI SU
RETI NEURALI ARTIFICTALI

Relatore: Paolo Mattavelli ?QDQ Markseto:

Correlatore : Marta Molinas

Laureando: Riccardo Salviati
1183982

ANNO ACCADEMICO: 2019/2020

[ February 27, 2020 at 9:56 — classicthesis |



[ February 2y, 2020 at 9:56 — classicthesis ]



SOMMARIO

All'interno di molti sistemi fotovoltaici si incontra la necessita
di risolvere il problema di Maximum Power Point Tracking,
in sigla MPPT. Un insieme di pannelli fotovoltaici infatti pro-
duce una potenza che varia a seconda della tensione di lavoro,
della irradianza sui pannelli, e di altri parametri meno influenti
come la temperatura o l'invecchiamento dei materiali che com-
pongono il sistema considerato. Assumendo costanti le irradi-
anze e la temperatura, la curva che descrive I'andamento della
potenza generata al variare della tensione presenta un massimo
globale. Nel caso in cui ci siano piti pannelli fotovoltaici in se-
rie e le irradianze sui singoli pannelli siano diverse tra di loro
(situazione dovuta per esempio all’'ombra di una nuvola passeg-
gera, ad una rottura di una cella solare, o a luce riflessa da
un’auto di passaggio) la curva potenza-tensione presenta anche
alcuni massimi locali oltre al massimo globale. In questa situ-
azione i pannelli fotovoltaici si dicono essere in "condizione di
parziale ombreggiatura". La curva potenza-tensione e variabile
nel tempo e sconosciuta, e lo scopo degli algoritmi MPPT con-
siste proprio nell’inseguire il punto di massima potenza glob-
ale. Esistono varie tecniche, la maggior parte delle quali[15],[5]
basata sul metodo Perturba ed Osserva, in sigla P&O. Questo
metodo consiste nel perturbare i pannelli (imponendo una ten-
sione) e misurarne la potenza ottenuta. In questo modo & possi-
bile campionare la curva potenza-tensione. In questa tesi sono
stati studiati due algorirmi MPPT basati su una rete neurale ar-
tificiale di tipo Feed Forward, algoritmi ideati dagli autori degli
articoli [18],[17]. Il primo algorithmo e composto solamente da
una rete neurale, mentre il secondo algoritmo & un algoritmo
cosiddetto ibrido: due diversi sotto-algoritmi sono combinati

insieme al fine di sommare le proprieta positive di entrambi. Il
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primo dei due consiste in una rete neurale, mentre il secondo &
il cosiddetto algoritmo Hill Climbing. In questa tesi & stata am-
pliata I’analisi delle prestazioni dei due algoritmi, applicandoli
in una simulazione di una porzione di un sistema fotovoltaico.
E stato verificato che gli algoritmi studiati sono pil efficienti
di altri algoritmi nel momento in cui le irradianze sui pannelli
cambiano molto velocemente, come ad esempio accade sui ve-

icoli solari.
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ABSTRACT

In many photovoltaic systems is often required to implement a
Maximum Power Point tracking technique, in acronym MPPT
technique. The power generated by a set of photovoltaic pan-
els depends on the work point voltage, on the irradiances on
the panels, and to a lesser extent on the temperature and on
the aging of the materials of the devices considered. Assuming
as constant the irradiances and the temperature, the curve that
relates the power generated and the work point voltage shows
a global maximum. If there are more than one panel in series
and the irradiances on them are different one from each other
(for example when some clouds shade the panels, or when a
solar cell breaks, or when some light is reflected by a passing
car) the power-voltage curve can show some local maximums
besides the global one. In this situation the photovoltaic panels
are under the so called "partial shading condition". The curve
power-voltage is time variant and unknown: the target of the
MPPT algorithms is to track the Maximum Power Point. Sev-
eral techniques already exist and most of them are based on
Perturbation and Observation (P&O) technique. This technique
involves two actions: the Perturbation (by imposing a certain
work point voltage) and Observation (measuring the power
generated). Using this technique it is possible to sample the
power-voltage curve. In this thesis two MPPT algorithm have
been studied, both based on a Feed Forward Artificial Neural
Network and both created by the authors of articles [18][17].
The first algorithm is only a Neural Network, the second one
is a hybrid algorithm. When two or more sub-algorithms are
combined together, the set is an hybrid algorithm. The positive
properties of both of the sub-algorithms are operating in the

hybrid one. The first sub-algorithm is a simle Neural Network,
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the second one is a Hill Climbing algorithm. In this thesis the
two algorithms are studied, and it has been extended their anal-
ysis already started in articles [18],[17]. The algorithms have
been simulated on a portion of a photovoltaic system. It has
been verified that both of them are more efficient than other
algorithms when the irradiances on the panels are frequently

changing, that can happen for example on solar vehicles.
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INTRODUCTION

Much of photovoltaic’s magic is due to its elegance and simplicity. A
solar cell turns sunlight directly into electricity without fuel, moving

parts, or waste products [10].

One of the most important topic in the public politic debate is
the Global Warming problem, related to the creation of energy
we use for our technologies. The solutions of this problem are
so important that are been studied both by States, through Uni-
versities, and by private companies. Photovoltaic systems are
one of the most studied and applied technology for the produc-
tion of energy using renewable resources. "In fact whereas the
fossil fuels laid down by solar energy over hundreds of millions
of years must surely be regarded as capital, the Sun’s radiation
beamed at us day by day, year by year, and century by century,

is effectively free income to be used or ignored as we wish"[10].

This thesis focus on the solution of a well known problem
in the creation of photovoltaic energy: the tracking of the Max-
imum Power Point. Photovoltaic panels create the electric en-
ergy thanks to the irradiation received from the sun: generally
bigger is the irradiation, and bigger is the power generated.
But the power generated depends also on another parameter:
the work point voltage of the panels. Bigger is this voltage and
more little is the current generated by the solar cells of the pan-
els: the consequence of this fact is that exists only one work
point voltage called Vi,p, that maximize the power generated.
It is useful to know the value of this parameter: if the panels are

working at that voltage then the power generated is the maxi-
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INTRODUCTION

mum. Working at different voltages would mean not to use the

panel at their maximum potential.

In order to know the Vi, a tracking algorithm is needed.
The only task of this algorithm is to estimate the work point
voltage that would generate the maximum power. This maximum-
power-point voltage is often unknown, and depends on many
quantities: the irradiances first of all, but also the temperature,
or the aging of the materials that make up the panels. Then the
maximum-power-point is also time-variant with these quanti-
ties. Another problem come up in the condition of partial shad-
ing: this condition occurs when the irradiance on the panels is
not uniform. It can happen for example because some clouds
shade a portion of the panels, or a solar cell breaks. It can hap-
pen if some leaves fall on the panels, or when some light is
reflected on the panels. This situation make the estimation of
the MPP more difficult: the relation between the power and the
voltage in partial shading shows not only the global maximum
power but also some local maximum power points. These maxi-
mum power points make the tracking of the MPP more difficult,
especially while using some particular techniques of tracking
like the Hill Climb algorithm.

There are several techniques that could solve this tracking
problem [15], [5]. This thesis aims to study two algorithms
based on a Feed Forward Artificial Neural Network, presented
in articles [18], [17]. Neural Networks in fact could be useful in
the solution of the MPPT problem because they are fast in the
estimation of unknown parameters. Spending time in the esti-
mation of the Vipp, would mean spending time without gener-
ating the maximum power, that means less efficiency. A quick
estimation of the Vipp on the other hand would mean that the
maximum power starts to be generated early, and this increases

the efficiency.

In this thesis the ANN-based algorithms are simulated, and

tested in different conditions. Some characteristics of the algo-
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INTRODUCTION

rithm are studied: efficiency, time for the estimation of the Max-
imum Power Point, reaction to change of the PV system. These
performance parameters are compared with the same ones of
different algorithms, in order to have a useful comparison be-
tween different technologies that can guide manufacturers in

the choice of the proper algorithm for their project.

The simulations are implemented using Matlab and Simulink.
The simulations complete the analysis of the algorithms pre-
sented in [18], [17], using the algorithms on a simulated system

and measuring the electrical parameters.

The chapters are five, including this Introduction. Chapter 2
describe in detail the problem, from the operation of the pho-
tovoltaic module to the existing solutions for the MPP tracking.
Chapter 3 introduce the theory needed for the understanding
of the Neural Networks. During the implementation of the al-
gorithm some design choices are made, and they require a jus-
tification supported by the theory. In this chapter is finally de-
scribed the procedure for the training of the Neural Networks.
In chapter 4 the simulation procedure is presented, and the re-
sults are shown and commented. In chapter 5 the programs for

the simulations are presented in detail.
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STATE OF THE ART

2.0.1 Model characteristics

The solar cell is the core of the photovoltaic panels: thanks to
the photovoltaic effect, electric energy is created from the power
of the sunlight. The model that represents the electrical charac-
teristics of the solar cell is illustrated in Figure 1. The solar cell
is modeled as a current source with some parasitic elements in
addition with a diode. The Formula for the current is

q(Vv— IRS)) T V —1IRg

[ =1 —Iplexp( KT Ror

(1)

where A is the quality factor of the diode, Rgy, is the shunt re-
sistance, Rs is the series resistance. Ij is the current generated
thansk to the photovoltaic effect: it is proportional to the irradia-
tion received by the panel. The proportional coefficient depends
on the panel used.

A

{ ‘V Vo "

Figure 1: Electrical model. R¢1, is the shunt resistance. R; is the series

resistance. I is the current created thanks to the irradiance.

The characteristics of a solar panel are usually described us-
ing the power-voltage curve, shown in Figure 2, under Standard
Test Condition. In STC the irradiance is 1000 W/ m?, the tem-

perature is 25°C. The power is calculated multiplying voltage
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STATE OF THE ART

V and the current I that is calculated using Formula 1. In this

calculation I is constant and proportional to the irradiation.

ISC
lrmp f MPP

Current

Pmp
Power
‘-h-._,_‘\_s
0
Voltage Vimp Voc

Figure 2: Example of curve power-voltage and Current-Voltage of a
photovoltaic panel under standard test conditions. I is the
short-circuit current. V. is the open-circuit voltage. MPP is

the Maximum Power Point.

2.0.2  Open circuit voltage, short circuit current, maximum power
point and fill factor

There are two important points in Figure 2 : the V,. (open-
circuit voltage) and the I (short-circuit current) point. Both of
them are zero-Power point, but they show the maximum volt-
age and the maximum current that the solar panel can create.
The parameter defined as Py, rr = Voclsc is used to define the
fill factor, that is an industrial-used parameter to express the
overall quality of the panel. The definition of fill factor is the
following;:
Vimpplm

=l )
and cannot be bigger then 1, because of the Shunt and Series
Resistances shown in Figure 1. The typical FF for commercial

solar cells is usually over o.70 [10].
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STATE OF THE ART

2.0.3 Power-voltage curve changes

25

20°C
25°C
arc

[l
=1
T

Power (W)
o

=
=]
T

I
L L I II L1 |
0 2 4 6 8 10 12 14
Voltage (V)

Figure 3: Three examples of the power-voltage curve of the default

Simulink photovoltaic panel. The temperature is different

in every curve, the irradiance is constantly 200 W/m?.

There are three quantities that can change the power-voltage
curve and cannot be controlled, that are: the temperature, the

irradiation, and the aging of the materials that make up the
panels.

The temperature affects negatively the power curve, since the
Voc depends on the temperature. One may thinks that the tem-
perature increases the creation of current, which is true (see
Formula 1) but the extracurrent created is not big enough to

compensate the decrease of the open circuit voltage, that fol-

lows the linear empirical Formula 3 described in [19].

Voo(T) = Vol + %(T —273.15) (3)

where K, is an empirical negative temperature coefficient. In

Figure 3 are illustrated some examples of how the power-voltage
curve changes related to the temperature.

[March 3, 2020 at 12:12 — classicthesis ]
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The irradiance it’s the primary source of energy for solar pan-
els: bigger it is bigger is the current produced, and therefore the
power. Three examples are presented in Figure 4.
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Figure 4: Four examples of the power-voltage curve of the default

Simulink photovoltaic panel. The temperature is constant

at 25°C, the irradiances are different in every curve.

The aging of the panels along the years decrease the maxi-
mum power P, and also changes the value of Vipp, . To un-
derstand the aging of the photovoltaic modules, the optical and
electrical degradation effects are the most valuable explanation[1].
The optical degradation is due to the atmospheric elements

that ruin the protection materials between the solar cells and
the environment, decreasing the transmissivity (glass optical
losses and encapsulating losses). The electrical one is just a
slow degradation of the conducting materials, due to the in-
teraction of the materials with air, humidity or other environ-
mental factors. The maximum power point generally decreases
with a rate of 1% per year, and the series resistance of the pho-
tovoltaic module is estimated to increase of +12.8% per 20 years

of usage[1]. The effects of the aging are illustrated in Figure 5.
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Figure 5: Four examples of the power-voltage curve of the default
Simulink photovoltaic panel. The temperature is constant
at 25°C, the irradiance is constant at 200 W/m?. The aging
of the materials that make up the panel is represented by

the aging resistance, whose value is different for every curve
represented.

2.0.4 The bypass diode

A single solar cell is of not generating enough power: it is just
a high current source, working at low voltage. A photovoltaic

module is the combination of multiple strings of solar cells, Fig-
ure 6.

D

Il Il . Il
%] T I %

Figure 6: Photovoltaic module, where the cells are both in series and
in parallel.
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The solar cells can be placed in series, in parallel, or both, de-
pending on the desired V-I output needed. There is a particular
issue when there are some cells in series: when one of the cells
doesn’t produce the same amount of current produced by the
others, that cell limits the current flowing in that branch of the
circuit. This can happen when a cells is broken, or just because

of different irradiation of the cells, due to shading or reflection.

“good” cells L
che = “bad” cell

Figure 7: String of solar cells. In the first string there are not bypass
diodes. The second string is the model of the first string. The
third string show why the bypass diodes let the maximum

current produced to flow.

In Figure 7 is illustrated the problem, and the adapt solution:
a bypass diode. Thanks to the diodes in fact the current flowing
will be not the minimum one but the maximum one between
all the currents produced by the cells of that branch. Then the
curve power-voltage will be different from the one in Figure 2.
The new one is illustrated in Figure 8, and will have many local

maximums at most as many as are the bypass diodes used.
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(a) Simulink model, three photovoltaic modules in series with bypass diodes
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(b) Power-Voltage curves with different irradiances

Figure 8: Three examples of power voltage curves, when the pan-
els are irradiated differently. The blue curve represents the
case where the irradiances are 500,500,500 W/m?, the green
500,400,100 W/m?, the yellow 500, 300,200 W/ m?
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2.1 PROBLEM STATEMENT

In chapter 2.0.4 is introduced the power-voltage curve of panels
under partial shading, and is it discussed how this curve can
change related to the environment in chapter 2.0.3. Now is it
possible to explain the problem that this thesis aims to solve:
the goal is to extract the maximum power that the panels and
the environment let us to get. But it is unknown the voltage
that the control should impose in order to get the maximum
power, i.e. the Vipp. The overall circuit in fact is the one shown

in Figure 11, and some quantities need to be defined:

¢ output: the instant voltage V and current I created by the

panels

e input in the physical system: the PWM signal, that con-
trols the DC/DC converter. It is created by the control

circuit

¢ input in the controller: the voltage-reference, created by
the MPPT algorithm

¢ input in the MPPT algorithm: the instant voltage and Cur-

rent, that is also the output.

‘\ﬁ‘:‘-;i_—;!!-_!
. =
‘ {3 !

—

Figure 9: The irradiance sensor on a panel [20].

The Control circuit, which includes the MPPT algorithm and
the controller, has an important difference with the classic con-
trol circuits: it has no reference. The task of the MPPT block in
fact is to find the Vipp, that will be the voltage reference.
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Figure 10: Photovoltaic panels under partial shading[20].

In real systems often are available more quantities measured,
such as the temperature or the irradiances. The problem con-
sidered in this thesis assume not to have these measurements

available, for the following reasons:

¢ the industrial target of this thesis is solar vehicles, or other

really rapidly changing environment applications. Then

for mechanical reasons is better to use the most little amount

of components. In Figure 9 is it possible to observe that

the irradiance sensors are quite unwieldy

e the irradiance sensors can detect the irradiance outside
the panel, not on the panel, then cannot help to solve the

problem of partial shading, Figure 10.

There many different topology of DC/DC converter and con-
troller that can suit the problem considered, and many differ-
ent loads as well. In Figure 11 the converter is a Boost converter,
the Load a constant voltage source, and the controller a PI one.
These components depend on the real applications, and don’t
really affect the MPPT algorithm’s performances. They can af-
fect the overall circuit performances , but the MPPT algorithm
works independently from them. It will be designers” decision
to choose the suitable set of controller and converter for the real

application.

[March 3, 2020 at 12:12 — classicthesis |
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Figure 11: The physical system (photovoltaic panels, DC/DC con-
verter, the load) and the control circuit (the MPPT algo-

rithm and the controller) implemented in Simulink.
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2.2 EXISTING SOLUTIONS

The problem of MPPT has been widely studied for more than
tifteen years. The PSC problem (Partial Shading Condition) can
be solved now using many different techniques, that are classi-
tied in this article [15] in the three following groups: Hard com-
puting algorithms, Soft Computing algorithms, Hybrid algo-
rithms. "Soft computing differs from conventional (hard) com-
puting in that, unlike hard computing, it is tolerant of impre-
cision, uncertainty, partial truth, and approximation. In effect,
the role model for soft computing is the human mind" [22]. Soft
computing techniques include Evolutionary algorithms or algo-
rithms based on Fuzzy Logic or Neural Networks. The hard
algorithms include the Hc algorithm, the Open Circuit Voltage
algorithm, and other that are listed in the following paragraphs.
The hybrid algorithms are the combination of two or more of
the previous ones: often there are soft computing and hard com-
puting algorithm together. Some complete reviews among all

the algorithms now existing can be found in [15] and [5].

2.2.1  Hard computing algorithms

These techniques compared to the soft computing algorithms
are simpler, referring to both the hardware and the software.
These techniques are useful expecially in hybrid algorithms, as

it will be explained later in this chapter.

2.2.1.1  Open Circuit Voltage

The maximum power voltage is assumed to be around
Vier = VocK

where K is between 0.71 and 0.80. This method shows its com-

plete unefficiency in Figure 12, where the MPP is far away from
the Vier = 37.025x0.75 = 27.76V. This method works offline,

[March 3, 2020 at 12:12 — classicthesis ]
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and requires only one measurements of V. every time-interval
(decided heuristically).
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Figure 12: Photovoltaic panels under partial shading, the irradiances
are [200100600] W/m?. The maximum power point is at
Vmpp = 9.025V

2.2.1.2 Short Circuit Current

It is the same method as explained in the chapter 2.2.1.1, but

uses the current instead of the voltage:
Lier = LK

where K stays between 0.80 and 0.92 [15].

2.2.1.3 Temperature Based Algorithm

this method is useful to predict how the Vypp changes because

of the temperature [15]. It requires temperature’s sensors, and

just uses the Formula 4.

Vmpp(t) = Vimpp (Trer) + K(T — Trer) 4)
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2.2.1.4 Hill Climb (HC)

This method, based on the P&O technique presented in chap-
ter2.2.3, is one of the most used. It explores the power-voltage
curve sampling it, and track the MPP following the explored
samples with the biggest power. This algorithm will be simu-

lated in chapter 4.2, where it will be presented in detail.

2.2.1.5 Incremental conductance (IC)

The principle of incremental conductance (IC) method is sim-
ilar to the HC algorithm. The IC algorithm is based on the
P&O technique too, but the main parameter is the derivative
of the current over the voltage, instead of the absolute power.
This derivative is the conductance. This algorithm doesn’t os-
cillate around the MPP as the HC does[3]. On the other hand,
it is more complicated to implement it, due to the derivative
calculations. When the maximum is reached the Formula 5 is
satisfied.

ar 1

0=ty

(5)

2.2.1.6  Current sweep

In this method the power-voltage characteristic curve is ob-
tained using a sweep waveform for the PV array current. This
scan of the characteristic curve is repeated at fixed time [11].
With this method the real MPP is obtained. On the other hand,
the sweep takes certain time during which the operating point
is not the MPP, which implies some loss of available power.
Furthermore, the implementation complexity is high [14] due
to the particular circuit needed, and also the estimation time is
high. Due to the drawbacks and complexity exposed above, this
MPPT method is not the best option to track the MPP continu-
ously. However, it can be used in a hybrid algorithm, together

for example with the HC algorithm.

[March 3, 2020 at 12:12 — classicthesis ]
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2.2.2  Soft Computing

Soft Computing methods are emerged as an alternative ap-
proach to conventional techniques for partially shaded photo-
voltaic system because of their ability to solve the complex non-
linearity problems. Consequently, for the condition like PSC,
these techniques assure faster convergence and high efficiency.
Meanwhile, it should be noticed that the high cost and com-
plexity of implementation are two main drawbacks of these

methods[15].

Various optimization algorithms have been proposed in the
review[5], such as Particle Swarm Optimization (PSO) which
will be used in this thesis, and others like: Modified PSO, Arti-
ticial Bee Colony, Ant Colony Optimization, Simulated Anneal-
ing, Bat algorithm, Firefly algorithm, Firework algorithm, Glow-
worm Swarm Optimization, S-Jaya algorithm, Flower pollina-
tion, Grey Wolf Optimization, Teaching Learning Algorithm,
Mine Blast Optimization, Whale Optimization Algorithm, and

others.

2.2.2.1  Fuzzy Logic Control (FLC)

Fuzzy logic controller has wide range of applications in renew-
able energy applications[2]. The use of fuzzy logic controllers
has been increased over the last decade because it is able to deal
with imprecise inputs, doesn’t need an accurate mathematical

model and can handle nonlinearity.

It is not the goal of this thesis to explain in detail this com-
plex technique. However, in the reviews [5], [14] the FLC algo-
rithms are often the direct "competitor" of the ANN-based algo-
rithms, that are studied in this thesis. In fact the FLC techniques
are studied because of their rapidity in tracking the MPP and
their effectiveness, despite their complexity. This last comment

is true also for Neural Networks algorithms.
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2.2.2.2 Artificial Neural Network (ANN)

The Artificial Neural Network are one of the most important
techniques of the Artificial Intelligence. They are able to ap-
proximate complex system, learn from big data, or even fore-
cast future events. They are useful in many theoretical research
tields like function fitting, optimization or machine and deep

learning. this topic is better analyzed in the next chapters.

For MPPT algorithms the Neural Networks are useful be-
cause of their rapidty in tracking the MPP: they are probably
the fastest method[18]. Artificial Neural Networks are not used
so often in MPPT algorithms[15], [5], but there are in particular
two articles that is good to mention: articles[18], [17]. The idea
of this thesis started from them and the problem to solve is the
same. This thesis aims to complete the analysis of the solutions

purposed by the authors of [18] and [17].

2.2.2.3 Evolutionary Algorithms (EA)

In artificial intelligence, an evolutionary algorithm (EA) is a

19

generic population-based metaheuristic optimization algorithm[20].

An EA uses mechanisms inspired by biological evolution, such
as reproduction, mutation, recombination, and selection. In gen-
eral this class of algorithms works using a population of parti-
cles, that "explore" the unknown function in order to find the
global maximum (or minimum). Inside this population there
is a sort of communication between the particles, that helps
to achieve the goal quicker. Evolutionary algorithms often per-
form well approximating solutions to all types of problems be-
cause they ideally do not make any assumption about the un-

derlying fitness landscape[20].

In this thesis the PSO algorithm has been used, in order to
have one more element of comparison for the evaluation of the
performances of the ANN. PSO is one of the most common EA

used in literature[s].
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2.2.3 The P&O methodology

The Perturbation and Observation methodology (P&O) is used
in many MPPT algorithms, especially the ones that are part of
the Soft Computing techniques. It is not a MPPT algorithm, it’s
a technique that is used in many MPPT algorithms in order
to sample the instant power-voltage curve. It consists of the
following two steps:

® Perturbation: a certain voltage V;¢r is imposed on the cir-

cuit
¢ Observation: the current is measured.

In this way the power-voltage curve (that is unknown) can be
sampled, in other words "explored". An illustration of the pro-
cess of P&O is illustrated in Figure 13, where the Perturbation
and Observation is executed four times. Many algorithms are
based on this technique, for example the HC, the PSO, the Neu-
ral Networks, and others.
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Figure 13: The Perturbation and Observation technique: some exam-
ples of sampling an unknown power-voltage curve. The
samples are collected at Vyer = 12.5,19, 25,32 V.
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3.1 INTRODUCTION

Artificial intelligence and neural networks are information pro-
cessing paradigms inspired by the way biological neural sys-
tems process data. Artificial intelligence and cognitive model-
ing try to simulate some properties of biological neural net-
works. In the artificial intelligence field, artificial neural net-
works have been applied successfully to speech recognition,
image analysis and adaptive control, in order to construct soft-

ware agents or autonomous machines|[21].

3.2 BRIEF HISTORY

The preliminary theoretical base for contemporary neural net-
works was independently proposed by Alexander Bain (1873)
and William James(1890). In their work, both thoughts and body
activity resulted from interactions among neurons within the
brain. In the late 1940s psychologist Donald Hebb created a
hypothesis of learning based on the mechanism of neural plas-
ticity that is now known as Hebbian learning. Hebbian learning
is considered to be a "typical" unsupervised learning rule and
its later variants were early models for long term potentiation.
These ideas started being applied to computational models in
1948 with Turing’s B-type machines. Rosenblatt (1958) created
the perceptron, an algorithm for pattern recognition based on
a two-layer learning computer network using simple addition
and subtraction. With mathematical notation, Rosenblatt also
described circuitry "not" in the basic perceptron, such as the

"exclusive-or" circuit, a circuit whose mathematical computa-

21
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tion could not be processed until after the backpropagation al-

gorithm was created by Werbos (1975).

Through the influence of John Hopfield (1986), who had per-
sonally convinced many researchers of the importance of the
tield, and the wide publication of backpropagation by Rumel-
hart, Hinton and Williams, the field of neural networks slowly
showed signs of upswing. From this time on, the development
of the field of research has almost been explosive[9]. It can no
longer be itemized, but some of its results will be seen in the

following][9].

3.3 STRUCTURE AND PROPERTIES

The elements that make up an ANN are illustrated in Figure 14

and have the following names][7]:

* neurons: fundamental components, they are the place where

to make the calculations (see Figure 15)

* edges: connections between neurons. They are associated

to a numeric value called weight.

¢ layers: series of neurons. When the ANN shows more
then one hidden layers, the net is considered a "deep ANN",
otherwise just "shallow ANN"

Every single neuron calculate the output of his own activation

function, using the formula 6:

M
z= Z WmnXm + & (6)
m=1
where x1,x2, ..., X are the M incoming signals, and wy, wy, ..., wm
are the related synapses weights, while « is a value attached to
every neuron called bias. The result z is then the input of the
activation function, as illustrated in Figure 15. A deeper expla-

nation of these formula can be found in this book[9].
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Figure 14: Structure of a simple Feedforward ANN
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Two different main kinds of ANN’s structure arise from the
way the neurons are connected to each other: feed-forward neu-
ral network (FNN) and recurrent neural network (RNN)[18].
The Feedforward Neural Network are the most simple, and
each neuron in one layer has only directed connections to the
neurons of the next layer (towards the output layer). The Re-
current Neural Network is defined as the process of a neuron

influencing itself by any means or by any connection.

The ANN are used for solving many different problems, in-
cluding classification, prediction, filtering, optimization, pattern
recognition, and function approximation (fitting). The last men-
tioned one is the problem of this thesis, that aims to find the
nonlinear relationship between the voltage reference and the
maximum power of the panel, using the data as will be ex-

plained later.

There is an important property of the Neural Networks that
is good to mention: standard multilayer feedforward networks are
capable of approximating any measurable function to any desired de-
gree of accuracy, in a very specific and satisfying sense. Has been
thus established that such "mapping” networks are universal approx-
imators. This implies that any lack of success in applications must
arise from inadequate learning, insufficient numbers of hidden units
or the lack of a deterministic relationship between input and target[8].
This property has been fundamental, because is it possible to
assert that, referring to the thesis” problem, always exist a more
precise Neural Network that will make the MPPT algorithm more ef-
fective. It will be just a design choice how accurate the Neural
Network will be.

3.4 TRAINING
The training of a Neural Network is probably the most crucial

point of the implementation of this method. During the train-

ing process all the weights of the edges and the biases of the
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Figure 15: Structure of a single neuron

neurons are changed and adapted in order to accomplish the
goal prefixed: when some weight or biases are changed, then
the NN "has learned" something. There are basically three main

method of learning:

* Reinforcement learning (online): the neural network try
to maximize a reward function, that give a certain value

to some input and output quantities

* Unsupervised learning (online): is the biologically most
plausible method, but is not suitable for all problems. Only
the input patterns are given; the network tries to identify

similar patterns and to classify them into similar categories[9]

* Supervised Learning (offline): the training set consists of
input patterns as well as their correct results in the form
of the precise activation of all output neurons. Thus, for
each training set that is fed into the network the output,
for instance, can directly be compared with the correct so-
lution and the network weights can be changed according
to their difference. The objective is to change the weights
to the effect that the network cannot only associate input
and output patterns independently after the training, but
can provide plausible results to unknown, similar input

patterns[9].

[March 3, 2020 at 12:12 — classicthesis ]
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3.4.1 The supervised learning

The supervised learning procedure is not always biologically
plausible, but it is effective and therefore very practicable. It
is the learning technique that has been been used in this the-
sis. The algorithm used to train the ANN in this thesis is the
Levenberg-Marquardt backpropagation, that is the most used

for FNN[18] because of his speed-convergence and easy-calculations

properties. This algorithms is not analyzed in detail. It is pre-
sented intuitively in the following paragraphs the operation of
the general back-propagation algorithm, that is useful to un-
derstand how the dataset should be in order to get a working
Neural Network. In fact for the supervised learning it is needed
a dataset that will be used for the training of the network. This
dataset must include a sufficient and various number of input
and their respective desired output. The inputs will be given to
the neural network, the outputs are the results expected from

the neural network.

3.4.1.1  The backpropagation procedure

The backpropagation of error learning procedure is intuitively de-
scribed in this paragraph. First of all is useful to understand
what does it means "to train" a neural network: it means that
the edges and the biases (that are numerical values) of the neu-
rons are increased or decreased, following the learning procedure
used. This "strengthening" is made following the mathematical
rules described by the learning procedure used, in this thesis

the learning procedure is the backpropagation.

The backpropagation of error changes the weights and the
biases of the neurons in order to minimize the error between
the output given by the network not yet trained and the output
desired. The steps of this operations are illustrated in Figure
16 and commented more in detail in the following lines. The

illustrated steps of the backpropagation algorithm are:
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¢ forward propagation: one input from the dataset is given
to the neural network, that, following equation 6, returns

one output called y

¢ error calculation: the error y —ye is calculated, where y. is
the desired output expected from the network and known

from the training dataset

* backward propagation: the error is propagated backward
through the net. Every neuron calculates its own contribu-
tion to the error, and changes its weights and biases using
the mathematical method called "gradient descent". This
method is described in [9].

FORWARD PROPAGATION

LOSS

BARCKWARD PROPAGATION

Figure 16: The three steps of the backpropagation illustrated: for-
wrd propagation, loss calculation (or error calculation) and

backward propagation

Once the three steps are executed, the Neural Network has
been "trained". The weights and the biases are changed in order
to adapt the net and to reduce the error y —ye. One epoch is the
repetition of these three steps one time for every couple [input,
output] of the training dataset. At every epoch the net adapt its
operation in order to give the desired outputs with the desired
tinal mean squared error (MSE). More little is the desired error,

and more epochs are usually needed.

[March 3, 2020 at 12:12 — classicthesis ]
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3.4.2 Cross Validation and Overfitting

One of the problems that occur during neural network training
is called overfitting. The overfitting is detected when new data
(different from the ones in the training dataset) are given as
input to the network and the new error y — y. is large, despite
the mean squared error previously described has been driven
to a very small value. The explanation for this situation is the
following: the network has memorized the training examples,
but it has not learned to generalize to new situations[12]. A
useful representation of the problem is illustrated in Figure 17
where there are some example of bad fitting, good fitting, and

overfitting in a two-dimensional problem.

— Model
True function
e*es Samples

Model
True function
Samples

Model
True function
Samples

Figure 17: Example of fitting a function. In the first picture the model
"saved" in the ANN is insufficiently accurate (low number
of epochs), and the MSE between the model (y) and the
samples (ye) is high. In the second picture the model is
good (adequate number of epochs) and the MSE is low. In
the third picture the model "saved" in the ANN follows per-
fectly all the samples (the MSE is almost zero) but doesn’t

fit the true function: this caseis called overfitting.

One method for improving network generalization is to use
a network that is just large enough to provide an adequate fit.
The larger network you use, the more complex the functions
the network can create. If you use a small enough network, it

will not have enough power to overfit the data.
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Unfortunately, it is difficult to know beforehand how large
a network should be for a specific application. There are two
other methods for improving generalization: regularization and
early stopping[12]. The next sections describe these two tech-

niques.

EARLY STOPPING In this technique the available data is di-
vided into three subsets. The first subset is the training set,
which is used for computing the gradient and updating the
network weights and biases. The second subset is the valida-
tion set. The error on the validation set is monitored during
the training process. The validation error normally decreases
during the initial phase of training, as does the training set er-
ror. However, when the network begins to overfit the data, the
error on the validation set typically begins to rise. When the
validation error increases for a specified number of iterations,
the training is stopped, and the weights and biases at the min-
imum of the validation error are returned (see Figure 18). The
comparison between the validation error and the training set
error is called cross validation.

The test set error is not used during training, but it is used
to compare different models. It is also useful to plot the test
set error during the training process. If the error in the test set
reaches a minimum at a significantly different iteration number
than the validation set error, this might indicate a poor division
of the data set[12].

REGULARIZATION  Another method for improving general-
ization is called regularization. This involves modifying the per-
formance function, which is normally chosen to be the sum of
squares of the network errors on the training set. This method
has not been used in the thesis, so it will not be explained in
detail.
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Best Validation Performance is 0.9614 at epoch 19

107 f
Train
Validation
_TESt -
— 1
o= 10 Best
w
E
o
= .1DCI ............................................................................
w
]
1+
e
S o
g 10
W
-
m
5]
= 102
.m-f} . 1y | . L L
1] 10 20 30 40 50 60

69 Epochs

Figure 18: Example of the errors’ graphs during the training of a
ANN. The illustrateed errors are: Training error, validation
errot, and Set error. These are useful to detect and prevent

the overfitting.

3.5 IMPLEMENTATION OF THE ARTIFICIAL NEURAL NET-

WORK

While implementing a neural network, two design problems
have to be faced: the training the ANN, and the architecture
choice. Because of the problem that this thesis aims to solve,
a Feedforward NN is the best choice for the architecture, but
there is no precise way to know how many layers and neurons
and what kind of training data are needed. This two problems

are addressed separately, in the following paragraphs.

3.5.1 Training

In this chapter it will be used a simple architecture of the ANN:

three hidden layers, with respectively 18, 9, 5 neurons. This ar-
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chitecture is chosen from article [17], but is not necessary the
best one for this problem. This architecture is used only for sep-
arating the training problem from the architecture-choice prob-
lem, so the results obtained from different training methods can

be compared and are indipendent from the architecture.

The last decision now is about what dataset to use for the
training: two different datasets are available, generated as de-
scribed in chapter 5. These two datasets both contains the in-
puts needed by the ANN and the respective desired outputs.
The difference between them is the distribution of the irradi-
ances. One dataset is generated based on a Normal distribution
of irradiances, the second is based on a Uniform distribution,
and they are described in chapter 4.1. The two distributions
are an estimation of how the irradiances can change with time.
The Normal distribution is probably closer to a real applica-
tion, while the Uniform distribution is useful to test a MPPT
algorithm because the wide changes of the irradiance, as can
be observed in Figure 19, stress more the algorithm. To under-
stand which one gives the best results, the four combination
of training and test are simulated, as in table 1. How the sim-
ulation is performed is described in the next chapters, in this

chapter only the training procedure is described indipendently.

Training distribution | Test distribution | Efficiency
Normal Normal 0.9963
Normal Uniform 0.9884
Uniform Uniform 0.8574
Uniform Normal 0.9062

Table 1: Comparison of performances between ANN trained using
different dataset.

The results tell that the training using the Normal distribu-

tion is better then using the Uniform one. This fact has an in-
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Normal and Uniform distribution of the irradiances
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Figure 19: The two distributions of the irradiances on the first panels

of the system described in chapter 5.

tuitive explanation: a neural network basically calculates the
output that has the highest probability to be good. Then hav-
ing a training dataset that is "compact" like the Normal distri-
bution is better then the Uniform distribution, which spreads
too much the information, with the consequence of obtaining a

model not sufficiently accurate.

3.5.2  Architecture

The architecture design is probably the most investigateda very
discussed problem when using neural networks, because there
are no formulas for the design of the networks. From the liter-
ature the only thing that is clear about the final performances
of the architecture of ANNSs is the theorem reported in chapter
3.3, so it is known that exists always the best architecture, more
precisely: there is always an architecture that makes the ANN

sufficiently accurate for the goal of the problem.
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To understand which architecture to use in this thesis a lot
of different architectures are tested, using the same training
method. In this way only the effect of the architecture are influ-
encing the final efficiency, and in this way the best architecture

can be chosen.

Without any specific reasoning the architectures will be com-
posed by three hidden layers with the same number of neurons:
this is called rectangular configuration, and will not change. The
two parameters that will change among all the architectures

are:

¢ NSAMPLE: the number of samples that the ANN can use
during the exploration (the exploration of the algorithm

is explained in detail in chapter 4.4)
¢ N: this is the number of neurons in every hidden layer.

In order to have an exhaustive amount of different cases, NSAM-
PLE will vary between 14 different values, that are in Table 2,
and N will vary between 1 and 30. The total number of differ-
ent architecture then is 14x30 = 420. The NSAMPLE represents
the number of samples that the ANN algorithm does during

the exploration: this is explained in chapter 4.4. The maximum

NSAMPLE | 3 4 5 6 7 8 9 10 15 20 25 30 40 60

NEURONS | 1T 1 1
PER 2 2 2
LAYER

30 30 30

Table 2: All the different parameters respectively for every different
ANN architecture tested. The efficiency of every architecture

is rapresented in Figure 20.

efficiency’s values resulted from these test are very irregularly

distributed, and this distribution is represented in Figure 2o:
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the best numerical result have to be chosen, and following Fig-
ure 20 for every NSAMPLE there is one "optimum" number of

neurons per layer that is the candidate N.

Efficiency per architecture

NSAMFLE

5 10 15 20 25 30
MNeurons per layer
0.8 0.9 1
Color comesponding to the efficiency

Figure 20: The distribution of the efficiencies: brighter color cor-
respond to higher efficiency. For every combination of
NSAMPLE and number of neurons per layer N there is one
efficiency obtained from the simulations. The architecture
represented are referring to the architectures presented in
Table 2. The maximum efficiency values are highlighted by

the red rectangles.

3.5.3 Most performing ANN

Summarizing the results from the two previous paragraphs, the
best ANN are trained using the Normal irradiation dataset. The
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best architectures so far found are reported in Table 3, depend-
ing on the number of sample for the exploration (the explo-

ration of the ANN algorithm is explained in chapter 4.4).

NSAMPLE 3 4 5 6 7
HIDDEN LAYER1 2 3 2 12 12
HIDDEN LAYER2 | 2 3 2 12 12
HIDDEN LAYER3 2 3 2 12 12

Efficiency 0.988 0.992 0.988 0.9892 0.988

NSAMPLE 8 9 10 15 20
HIDDEN LAYER1 1 3 12 8 18
HIDDEN LAYER2 1 3 12 8 18
HIDDEN LAYER3 1 3 12 8 18

Efficiency 0.988 0.989 0.985 0.992 0.988

NSAMPLE 25 30 40 60
HIDDEN LAYER1 5 4 5 10
HIDDEN LAYER2 | 5 4 5 10
HIDDEN LAYER3 5 4 5 10

Efficiency 0.992 0.984 0.993 0.982

Table 3: The best architecture studied for the problem and their ef-
ficiency value obtained from the simulations. The efficiency

parameter is presented in chapter 4.4.
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SIMULATIONS AND RESULTS

In this chapter the four MPPT algorithms (Hill Climb, Hill
Climb Modified, Particle Swarm Optimization, Artificial Neu-
ral Network) are presented in detail and simulated, and their

performances are compared.

4.1 GENERAL TEST PROCEDURE

The idea for the test of the algorithms is the following: every
algorithm is tested on the system presented in chapter 5 irra-
diated by 500 different combination of three irradiances, one
irradiance per panel. Therefore at every combination of irradi-
ances the power-voltage curve is different, and also the Vip,
and the Py,pp. The temperature is assumed fixed at 25°C and
the panels are assumed new: thanks to these two assumptions,

the power-voltage curve depends only on the irradiances.

The main parameter used for the comparison is the average

efficiency, that is

500
efficiencyaverage = =~ Z efficiency; =
500 = 5

500
1 Z Pmpp_estimated,i
i=1

00 Pmpp_theoric,i

The efficiency; is the efficiency obtained while the irradiances
on the panels are the irradiances (A1, A2, A3)i. The Prpp_estimated,i
is the power generated by the panels that are working at Vinpp_estimated,is
that is the value calculated by the MPP algorithm under the ir-
radiances combination (A7, A2,A3)i. The Prpp_theoric,i is known
thanks to the simulations described in chapter 5, and there is

one Prinp theoric,i for each combination of irradiances (A1, A2, A3);.

37
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NOTE ON THE IRRADIANCES In order to have a complete
case-study two different way of generating the random irradi-
ances are considered. In one dataset of irradiances the random
values are uniformly distributed around one mean value (600
W/m?). In the second dataset the irradiances are normally dis-
tributed around their mean value and with a certain variance
(respectively 600 W/m?2, 160 W/m?). These numerical values
are chosen referring to the studies [18] and [17]. The uniform
distribution is used for the test of the algorithms. The normal
distribution is used for the training of the Neural Networks, as

it has been explained in chapter 3.5.1.

In the review articles [15], [5] a second parameter is con-
sidered for the comparison of the different MPPT algorithms,
that is the tracking time, or estimation time. This is the time that
the algorithms need in order to estimate a new Viupp_estimated-
The faster is the estimation of the Vi,pp estimated, the faster the

Pinpp_estimatea Starts to be generated.

There are some considerations to do in order to explain the
test procedure. These considerations will be explained in detail

in the following chapters, now they are only presented:

¢ HC and HC modified: the tracking time depends on many

parameters, like the voltage interval used to update the

new Vinpp estimated and on how much "far" is the Viypp estimated

from the Vip theoric; in general more time is used and
more efficient is the algorithm, as it will be verified after-

wards

¢ PSO: the tracking time can be set by the manufacturer,
that can choose the maximum number of Perturbation
and Observations the algorithm is allowed to do; in gen-
eral the bigger is this number, the better is the efficiency of
the algorithm, as it will be verified afterwards. It is equiv-
alent to say that there is one tracking time value for the

efficiency desired
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* ANN: the tracking time can be set by the manufacturer,
that can choose the maximum number of Perturbation
and Observations similarly to the PSO case; but it is not
necessarily true that the bigger is this number the better
is the efficiency of the algorithm, as it will be shown after-

wards.

After the considerations listed above it is clear that the effi-
ciency of the first three algorithms is related to how much time
the estimation process could use. If there is not sufficient time
the estimation process will not complete its operation, and the
estimation will be not sufficiently accurate and the efficiency

obtained will be low.

Because in a Neural Network the tracking time is a parame-
ter that can be decided by the maker, in order to compare the
efficiency of the four algorithms the following procedure has
been used. This procedure has been executed one time for ev-

ery different combination of irradiances.

PROCEDURE  Every algorithm is tested for a given time, that
is called exploration time. The MPPT algorithm works during
the exploration time, and the best estimation of Vi, so far
achieved is the final Vi, estimatea- The efficiency number 1i is
finally calculated using the Pr,p estimatea at the end of the ex-

ploration time.

The difference between exploration time and the tracking or es-
timation time is conceptual. The first one is the maximum time
given to the algorithm for working, it is decided before the start
of the simulation and it is not a property of the algorithm. The
second one is the minimum time needed to the algorithm for
getting the estimation of Vinpp_estimateda With the desired preci-
sion, it is a property of the algorithm and it is only one value
(per precision desired). Several examples of the tracking time

are reported in the review [5].
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4.2 THE HC AND THE HC MODIFIED

4.2.1  The HC algorithm

The HC algorithm is simple, and its logic is illustrated in Fig-
ure 21: the HC moves the voltage reference in one direction
and then does it again if that direction increased the power ob-
tained, otherwise the voltage reference is moved in the opposite

direction.

start cycle

———

measure Vik), (k)

Yez

|P(K) - P{k-1)] = delta

P(k}-P(k-1)>0

Decrease
Vref

decrease \ref| increase Vref Increase Vref

[ "

» end cycle <

Figure 21: Hill climbing algorithm, logic flux diagram. Delta is a suf-

ficiently little power interval.

There are two important drawbacks of this algorithm:

* when the Vinpp_estimatea is close enough to the Vi,p theoric,
the HC still explores around that voltage to look for better
points; this exploration creates an oscillation in the power

generated
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¢ sometimes happen that the algorithm is stuck in a local
maximum point, but not in the global one; the curve of
the Power, as shown in chapter 2.0.4, has multiple local
maximums, and only one global maximum. This event
(see Figure 22) actually happens enough times to decrease
the average efficiency, specially if the new Vi,p theoric 1S
far from the previous one and the change of irradiances

was quick.

On the other hand, there is a really positive aspect: when a slow
change in the PV curve happens, for example because of the
temperature or the aging effect, then the HC algorithm follows

perfectly the new global maximum.

Voltage
35 T . . T :
. N
T, /M
30 | -
= W
25 F Vrr'axPoxmr i
20 i i i i i
925 930 8935 940 945 950 955
time [s]
Power
1201 P
F=‘rr'm(. theoric
100 l =
=
80 .
SD C 1 1 I I 1 -
925 930 8935 940 945 950 955
time [s]

Figure 22: Hill climbing algorithm, example. At every exploration the
voltage increase or decrease of 0.1 V and one Perturba-
tion and Observation needs 0.1 s. From time = 927 s
to t = 937.5 s the irradiances A1,A2,A3 = 515;487;554
W/m?. From time = 937.5 s to t = 948 s the irradiances
A1,A2,A3 = 539;215;763 W/m?. It is illustrated the situ-
ation when the MPP found by the algorithm is not the
Global MPP.
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4.2.2  The HC modified algorithm

In this thesis two HC algorithms are simulated: the first one is
the classic version of the algorithm, already presented in chap-
ter 4.2.1. The second version is an improved[16] version of the
tirst one. The purpose of this modified algorithm is to solve the
main issue of the HC, that is described in Figure 22: the new
algorithm in fact should be able to find the Global MPPT, not

only local ones.

HC-modified
4D T T T T T T T T T
: :}// //‘ | }/,/
=20 S J/
v
10 F // V"naxl’o'm'
D I i I i I i I i I
30 35 40 45 50 55 G0 65 70 75 80
time [s]
200 T T T T T T T T T
P
150 :‘ P'nax.t"eo’c T
= 100 —‘L — _ . .
D Il 1 Il 1 Il 1 Il 1 Il
30 a5 40 45 50 55 60 65 70 75 80
time [s]

Figure 23: An example of the HC-modified algorithm working. At
every exploration the voltage increase or decrease of 0.1 V

and one Perturbation and Observation needs 0.1 s.

The logic of the HC-modified is the following, repeated at
most as many times as many Bypass Diodes present in the cir-

cuit:
¢ search for a MPP around a certain V;¢f using a simple HC

* when a local maximum (LMPP1) is found, explore some

random work-point whose voltages are far from the Vippp1
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¢ if some points with bigger power than Pypipp; are found,
then the algorithm will move the V¢ on that working-

point
e another classic HC search starts, and find V| pmpp;2.

* repeat the sequence comparing the power of LMPP2 with

the new points

‘ ‘ main ‘ | | | checking algorithm | |

i calculafion o
Explore some work | work points using
points N dmin and Vsc

frigger ON

A 4

HC classic algorithm

There is one
with bigger
power?

Save Vmpp, Impp,
Pmpp of the local
MPP

V' updated on that

H
H
H
H
H
i
¥ work point, called i
H
H
H
H
H
H

Vnew
Cheking algorithm <:> r:fu\-
i
i
i
i
i
i

HC classic algorithm
until a local maximum
is found

!

Explore others work
points

-

4

trigger OFF

h

Global MPF found

Figure 24: The logic diagram of the HC-modified algorithm. Vmin is
the V.. dmin is the "distance" estimated between the power
peaks in the P-V curve: dmin=V,./number of bypass

diodes.

For a better understanding of the algorithm, two logic-flux
diagram are illustrated in Figure 24. The checking function is
not really implemented, but it is useful to help the reader to

understand better the program.
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4.2.3 The results

The two HC algorithms are tested using different exploration
time. The panels are irradiated by the irradiances that are ran-
domly generated following the uniform distribution. The av-
erage efficiency has been measured for every exploration-time
used, as showed in table 4. The exploration time is measured
in samples: every sample need 0.1 s, and corresponds to one

Perturbation and Observation.

Exploration time [samples] | 3 4 5 6 7
Efficiency of HC 0.879 0.895 0.896 0.897 0.898

Efficiency of HC modified | 0.743 0.751 0.756 0.761 0.768

Exploration time [samples] 3 9 10 15 20
Efficiency of HC 0.202 0.903 0.903 0.204 0.904

Efficiency of HC modified | 0.773 0.777 0.782 0.810 0.838

Exploration time [samples] | 25 30 40 60

Efficiency of HC 0.904 0.904 0.904 0.904
Efficiency of HC modified | 0.867 0.843 0.873 0.979

Table 4: Comparison of the efficiencies between HC and HC modified,
while the exploration time changes. The exploration time is
measured in samples. Each sample needs 0.1 s, and corre-

sponds to one Perturbation and Observation.

The results in Table 4 are illustrated in Figure 25 in order to
analyze the trend of the efficiency. From Figure 25 it is possi-
ble to observe that the HC is not a good algorithm, even if the
given exploration time is big. In fact ususally the HC algorithm
is used in hybrid algorithms, not alone. Viceversa The HC mod-
ified could be an efficient algorithm (after 60 Perturbations and
Observations the efficiency is almost 98%) but only if the explo-
ration time is bis enough: in fact if the exploration time allows

40 or less Perturbations and Observations the efficiency is lower
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than 87%. This efficiency is not good if compared to the other

algorithms presented in the reviews [15],[5].

Comparison of efficiencies
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Figure 25: The trend of the efficiencies of the HC and HC modified

algorithm related to the available exploration time

In Figure 26 the operation of the two HC algorithms is repre-
sented. From this figure it is possible to explain two facts that

were already observed from Figure 25:

¢ the HC efficiency does not improve even if the exploration
time is increased because the Vi, estimated Often is stuck
in local MPP

¢ the HC modified algorithm is not able to complete its ex-
ploration if the exploration time is too short (see Figure
52 in the Appendix), and the partial estimation that come
out from the algorithm is not good enough to get a good
efficiency; but if the exploration time is sufficient (Figure
26) then the algorithm completes the exploration and the

final efficiency is good
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Figure 26: An example of the operation of the HC algorithms. The

exploration time is 6 s. One Perturbation and Observation

takes 0.1 s, then the Perturbations and Observations are

60. The average efficiency of the HC is 0.904, of the HC

modified is 0.979.

4.3 THE PARTICLE SWARM OPTIMIZATION

4.3.1 The algorithm

PSO is a simple, intelligent optimization and a meta heuristic

approach. It was proposed by Eberhard and Kennedy in 1995[4].

PSO is a type of Evolutionary Algorithm search optimization

technique, originated while observing groups of birds solving

the difficulties involved in optimization together. It has been in-

vented in order to explore a N-dimensional space that is mostly

unknown and to find the global optimum point of this space.

In PSO there is a group of particles that explore the space: these

particles communicate among the group in order to get the op-

timum faster.
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Figure 27: PSO-algorithm logic flow chart.

There are many parameters that have to be set by the pro-
grammer that can influence the overall performance of the al-

gorithm, and they are:
* 1n,: number of particles
* wy: weighting function
* 1M maximum number of iterations.
* w: inertia of the particles.
* ¢y: cognitive coefficient
® c2: social coefficient

These parameters have been set following the suggestion of ar-
ticle [13] in order to get a good operation of the algorithm. A
simple flowchart that represent the logic of this algorithm is in

Figure 27.

It is not the goal of this thesis to analyze deeply this algo-
rithm. It has been used just to have a useful comparison be-
tween the results of one of the most used Evolutionary algo-

rithms and the algorithms studied.
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4.3.2  The results

Like during the test of the HC algorithms the PSO has been
tested using different exploration time. The irradiances are again
randomly generated, following the same uniform distribution
as in the chapter 4.2. Again the average efficiency has been mea-
sured for every exploration-time used, as showed in table 5. The
exploration time is measured in samples: every sample needs

0.1 s, and corresponds to one Perturbation and Observation.

Exploration time [samples] | 3 4 5 6 7

Efficiency of PSO 0.926 0.901 0.966 0.970 0.977

Exploration time [samples] 8 9 10 15 20

Efficiency of PSO 0.945 0.959 0.975 0.983 0.988

Exploration time [samples] | 25 30 40 60

Efficiency of PSO 0.991 0.993 0.997 0.998

Table 5: Efficiencies of the PSO, while the exploration time change.
The exploration time is measured in samples. Each sample
needs 0.1 s, and corresponds to one Perturbation and Obser-

vation.

The results in table 5 are illustrated in Figure 28, where the
trend of the efficiency can be observed. From the picture it is
possible to observe that the efficiency improves if the explo-
ration time increases. The efficiency is bigger than 98.9% if the
exploration time allows more than 20 Perturbation and obser-
vations.

In order to have an intuitive idea of how the algorithm works,
two example of the operation of the algorithm are reported in
Figure 30, 29. It is possible to observe that a low number of
Perturbation and Observations reduce the effectiveness of the

algorithm and then the final efficiency, as reported in table 5.
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Figure 28: The trend of the efficiencies of the PSO algorithm related

to the available exploration time.
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Figure 29: An example of the operation of the PSO algorithm. The
exploration time is 6 s. One Perturbation and Observation
takes 0.1 s, then the Perturbations and Observations are 60.

The average efficiency of the PSO in this case is 0.998.
4.4 THE ANN
4.4.1  The ANN algorithm

An MTTP algorithm based on ANN works doing two different

actions: exploration and exploitation. During the exploration
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Figure 30: An example of the operation of the PSO algorithm. The
exploration time is 1 s. One Perturbation and Observation
takes 0.1 s, then the Perturbations and Observations are 10.

The average efficiency of the ANN in this case is 0.983.

a definite number of couples (V,P), respectively voltage and
power, are saved and merged in a vector X. After the collection
of the samples, the completely full vector X will be the input of
the ANN, that will "exploitate": the network returns as output
the Vinpp_estimatea- In Figure 31 the exploitation and the explo-
ration process are illustrated, and in Figure ?? the logic flow
diagram is represented.

As in the HC modified and in the PSO simulations the ex-
ploration of the ANN starts every time the irradiances change.
Then the efficiency is calculated at the end of every exploita-
tion, and the average efficiency of the algorithm is finally the

average of all the 500 different ones.
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ANN exploration and exploitation
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Figure 31: Operation of the ANN algorithm: exploration (green rect-
angles) and immediately after exploitation. In this image
two different Power-Voltage curves, which refer to two dif-
ferent irradiances condition, are illustrated. The orange cir-
cles represent the (V, P) samples (three samples) of the ex-
ploration, the red circle the Real Global MPP, the blue cir-
cle the work-point estimated by the ANN. The output of
the ANN is the Vinpp_estimated, that is the voltage of the

working point during the exploitation.
4.4.2  The results

The ANN has been tested using different exploration time and
different irradiances, following the same methodology used for
the previous algorithms. The efficiency obtained are represented
in table 6 and Figure 34. Two examples of the operation of the
ANN are represented in Figure 32,33, where it is possible to vi-
sualize what was clear from the numbers in table 6: even if the
ANN uses few samples still the estimation of the Vipp theoric 18

good, and consequently the average efficiency.
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Samples

3 4 5 6 7

Efficiency

0.988 0.992 0.988 0.989 0.988

Samples

8 9 10 15 20

Efficiency

0.988 0.989 0.985 0.992 0.988

Samples

25 30 40 60

Efficiency

0.992 0.984 0.993 0.982

Table 6: The efficiency of the ANN algorithm, while the exploration

time changes. The exploration time is measured in samples.

Each sample needs 0.1 s,and corresponds to one Perturbation

and Observation.
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Figure 32: An example of the operation of the ANN algorithm. The

exploration time is 1 s. One Perturbation and Observation

takes 0.1 s, then the Perturbations and Observations are 10.

The average efficiency of the ANN is 0.985
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Figure 33: An example of the operation of the ANN algorithm. The
exploration time is 6 s. One Perturbation and Observation
takes 0.1 s, then the Perturbations and Observations are 60.

The average efficiency of the ANN is 0.982.

4.4.3 Comparison of results: ANN, HC, HC modified, PSO

The efficiency of the ANN are compared with the efficiencies
of the other algorithms, that are the HC, the HC-modified, and
the PSO.

Observing Figure 34, two main facts can be observed:

¢ the ANN algorithm is more efficient than the others (around
98 — 99%) when just a few samples of exploration are
available. This means that the ANN could be the best
choice when a quick estimation of the MPP is needed, for

example when the irradiances are rapidly changing

e PSO is the most efficient when there are more than 20
samples available. This means that if more time is avail-

able for the exploration, the PSO algorithm is preferable
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Comparison of efficiencies
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Figure 34: The algorithms’ efficiencies compared. The ANN is the
most efficient if the exploring time is short. When the sam-
ples for the exploration are more than 20 the PSO is prefer-
able to the ANN.

¢ the HC is not efficient: too often it gets stuck in local MPP,
preventing the algorithm to find the global MPP. Also if
there is more time available, the efficiency doesn’t im-
prove. In fact the HC is used expecially in hybrid algo-

rithms

¢ the HC-modified could be a good algorithm, but it is re-
ally slow. Only after 60 explorations the algorithm start to

be competitive with the others.

The comparison so far presented consider the irradiances as
the only variable that change the power-voltage curve. But in
a real applications also the temperature and the aging of ma-
terials affect the P-V curve, even if less than the irradiances.
This two effects are not considered in the training of the ANN,
and this could decrease the efficiency of the ANN algorithm. In

fact it is correct to consider that inside the Neural Network a
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"model" is saved, and this model is based on the training data.
As it will be described in chapter 3.5.1 the data used for the
training don’t consider the temperature and the aging effects,
because they are assumed not measurable. But the HC can re-
act well to little change of the power-voltage curve, because
its tracking action is continuously working. So thanks to this
observation an idea come up to the researchers [17]: to create
a hybrid algorithm, that combines the good properties of the
ANN with the properties of the HC.
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4.5 THE HYBRID ANN WITH HC ALGORITHM

4.5.1 The algorithm

ANN HC
) ) i depending on
time for exploration defined
|Vref - Vmppl
rapidity very rapid generally slow
L depending on
efficiency 928 —99%

many factors

sensitive to bad mea-

yes no
surements
sensitive to system
yes no
changes
triggering strategy in-| always trig-
high
fluence gered
oscillations  around
no yes
MPP
reaction to little
changes (temperature, | not good excellent
irradiances...)
reaction to  wide
excellent really bad

changes of irradiances

Table 7: Positive and negative characteristics of HC and ANN algo-

rithm.

In the previous chapters some characteristics of the single
algorithms have been analyzed. In this chapter the ANN and
the HC algorithm will be combined together, in order to get
an algorithm that combines the positive behavior of the two

algorithms, that are showed in Table 7.
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In fact while the ANN reacts well to big and quick changes of
the irradiances, the HC reacts well to every little disturb (mea-
surements, temperature...). Therefore the combination of the
two, even where there are no disturbs, gets an improvements
of the performances: the ANN will bring rapidly the V;¢¢ close
but not overlapped to the global Vi,p, and then the HC will
move the V;¢r closest as possible (Figure 35). This second step
increase the exploration time, but it is an exploration around
the global Py, so the power extracted is still almost the max-
imum. A drawback of this algorithm is the oscillation of the
Vier around the Vyypp, but can be stopped or reduced by the

manufacturer.

The operation of the algorithm is the following, illustrated in

Figure 35:

* when a trigger variable is ON, the pure ANN start its

exploration

57

* the pure ANN eploitates, so the V;¢ becomes the Vipp_estimated

estimated by the ANN. If the ANN worked properly the
Vinpp_estimateda should be close to the Global MPP, that is

the Vmpp_theoric .

¢ the HC algorithm starts its exploration: the voltage refer-
ence is moved looking for the local maximum, that should

be also the global maximum Vi,p theoric

In the hybrid algorithm the exploration time is divided into
two different explorations: the ANN exploration, and the HC
exploration. It will be a choice for the manufacturer how to
distribute the available time between the two algorithms. Two
examples of different choices of the ANN exploration time and

of the HC exploration time are illustrated in Figure 36,37.
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Figure 35: The Hybrid ANN algorithm operation. The green rectan-
gles highlight the ANN exploration (5 perturbations and
observations). The pink rectangle the HC exploration(100
perturbations and observations). Note the oscillations dur-

ing the final exploitation, due to the exploration of the HC.

4.5.2  The results

The algorithm obtained is a good improvement of the ANN.
One of its most valuable characteristic is that its efficiency is at
least the efficiency of the ANN, and the HC can only improve
it a little bit. In Figure 38 the hybrid algorithm is compared
with the pure ANN: in the image the samples of the x-axis are
only referred to the ANN exploration in both the algorithms.
The hybrid algorithm then requires some extra samples for the
HC exploration. In order to give to the HC exploration a suf-
ficient number for the best results 100 extra samples are given.
Therefore Figure 38 represents how the efficiency can be at most
improved if the HC algorithm is added to the pure ANN.

A final observation on the hybrid algorithm: it counteracts

little changes of the temperature or of the system. The good
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Figure 36: The Hybrid ANN algorithm operation, when the ANN ex-
ploration time is 1 s and the HC exploration time is 9 s.
The HC algorithm increase or decrease its new voltage ref-

erence using steps of 0.1 V.

property of the HC, the continuous tracking of the MPP (if the
change is little), is fully used.
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Figure 37: The Hybrid ANN algorithm operation, when the ANN ex-
ploration time is 6 s and the HC exploration time is 4 s.
The HC algorithm increase or decrease its new voltage ref-

erence using steps of 0.1 V.

46 GENERAL CONSIDERATIONS

4.6.1 Different Photovoltaic System

In order to verify that the results so far obtained are correct
in general, a new physical system is tested. This new system
is made of five PV modules, and imitate the system used in
article [6]. The solar module used in that article is the SPR-E19-
320W, that is also one of the models already implemented in the
Simulink library. This panels have the characteristics illustrated
in the Appendix A in Figure 45,46,47, that are different enough
from the modules previously used (Figure 42, 43 in Appendix
A). As an example, the algorithm with 2 s of exploration time
has been studied (20 samples). The results obtained from the

simulations are similar to the ones obtained from the previous
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Samples 3 4 5 6 7

Efficiency 0.993 0.993 0.994 0.992 0.993

Improvement | +0.5% +0.12% +0.55% +0.25% +0.47%

Samples 8 9 10 15 20

Efficiency 0.994 0.993 0.993 0.993 0.991

Improvement | +0.50% +0.26% +0.74% +0.11% +0.22%

Samples 25 30 40 60

Efficiency 0.993 0.995 0.993 0.991

Improvement | +0.10% +1.08% +0.04% +0.92%

Table 8: Efficiency obtained using the Hybrid ANN algorithm. The
samples reported in the table are dedicated only to the ANN
exploration. The HC algorithm was free to use 100 more sam-
ples for its exploration. The new efficiency is compared with
the efficiency in the pure ANN, and the improvement is re-

ported in the table.

system: using an ANN algorithm alone the maximum efficiency
(97%) is obtained using the rectangular architecture with 4 neu-
rons, [4 4 4]. The hybrid algorithm using the same ANN can
get a 98.9% efficiency, which again is similar if compared to the
previous system. So it is possible that the algorithm so far stud-
ied could work for different photovoltaic systems, but needs to

be verified every time.

4.6.2  Re-training online

In a real application of the ANN algorithms there is the prob-
lem of how to create the datasets that will train the net. Often
it is difficult to create a sufficiently accurate model of the irradi-
ances, and that affect the final performances of the net. Another
problem come up with time: the aging of the materials make the

model initially "estimated" in the ANN not good anymore. So
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Comparison of efficiencies
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Figure 38: The Hybrid ANN efficiency compared with pure ANN. In

this picture the x-axis represents the samples dedicated
only to the ANN exploration. The Hybrid algorithm im-

proves the ANN, but needs time for it, so additional 100
samples are given only to the hybrid algorithm.

a new procedure can be used in order to deal these problems:
the retraining online.

The retraining online is based on the following property of
the hybrid algorithm: it basically "corrects" the estimation of the

pure ANN, thanks to the HC algorithm properties. Therefore
the idea is to use this corrected Vipp estimatea for training a
new ANN, using a sufficient number of new data collected. A

new net can be trained offline by another processor, while the

tirst net is still working. In this way probably the new trained
net could be more performing than the first one.

During the analysis of this strategy the comparison is be-

tween the efficiency of the pure ANN and of the hybrid ANN
with HC algorithm. The retraining procedure follows the next
steps, listed in Table o:
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e train and test the pure ANN and the hybrid algorithm,
with the aging resistance (which represents the aging of
the panels, as will be explained in chapter 5) R = 0 Q.

That means that the panels are new

e train and test both the algorithms using a system aged:
the series resistance is increased by R = 0.1 Q. The per-
formances of the ANN decrease, the performances of the
hybrid algorithm not significantly. While the hybrid algo-
rithm works, it also collects data that will be used for the

re-training

* using the data collected from the hybrid algorithm a new
ANN is created, and tested on the same system in order
to verify that the retraining action increased the efficiency.
The performances of the new ANN are improved, as it is

possible to observe in Figure 39.

¢ this procedure restart from the second step.

Four attempts to verify that the retraining method works
have been executed: at every attempts the system is aged and
this aging is represented by the aging resistance, whose value
increases by 0.1 Q. The results are reported in Table 9 and
Figure 39. This number of attempts is not sufficient to have
a complete analysis of this method, but some observations can

already be done.

In Figure 39 it is possible to observe an unexpected fact:
even if the pure ANN improves his performances thanks to the
retraining, the hybrid algorithm on the other hand decrease
his efficiency. A possible explanation for this fact is that the
Vimpp_estimated Of the pure ANN (that is also the Viipp estimated
by the ANN in the hybrid algorithm but before the correction
of the HC algorithm) is more often far from the Global MPP
but closer to other Local MPD, after every retraining. This idea
would explain why the pure ANN is more efficient with retrain-

ing (because instead of estimating random work points at least
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Step Dataset Algorithm System aging Efficiency Level of

used for [Q] efficiency
training
1 Initial pure ANN 0 0.959 low
Initial Hybrid 0 0.997 high
Initial pure ANN 0.1 0.966 low
Initial ~ Hybrid 0.1 0.996 high
2 First pure ANN 0.1 0.982  medium
First Hybrid 0.1 0.994 high
First pure ANN 0.2 0.969 low
First Hybrid 0.2 0.994 high
3 Second pure ANN 0.2 0.987  medium
Second  Hybrid 0.2 0.991 high
Second pure ANN 0.3 0.983  medium
Second  Hybrid 0.3 0.991 high
4 Third pure ANN 0.3 0.986  medium
Third Hybrid 0.3 0.989  medium

Table 9: Procedure of test and results of the retraining, step by step.
There are three lines highlighted: during that tests the new
datasets for the retraining are collected, and the following
networks are retrainined with these new datasets collected.
In this table can be observed that the retraining improves
the efficiency of the pure ANN algorithm, but decreases the
efficiency of the hybrid one.

esteems local MPP) and also why the hybrid algorithm is less

efficient with training.

From Figure 39 the conclusion is that is more efficient to not
retrain the networks. The hybrid algorithm that uses the ANN
trained only one time is able to get a high efficiency even if
the system is changing with time. In article [1] it is reported
that after 20 years the series resistance that represents the ag-
ing of the materials of the panels can be about 12.8% times the
internal series resistance of the panels. The value of the internal
series resistance of the panels used in this thesis is 0.296 QO and
then the aging resistance after 20 years of usage can be approx-
imated at 0.058 Q). Therefore the hybrid algorithm is probably
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able to keep his efficiency also after 20 years. It has been tested

using as aging resistance R = 0.1, 0.2, 0.3, 0.4 Q and the effi-

ciency was always above 99%.

Efﬁ1ciency of the pure ANN and hybrid ANN, retrained N times
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Figure 39: The trend of the efficiencies of the algorithms while time

4.6.3

pass, and the aging of the material are affecting the power

generation. The retraining process improve the efficiency

of the pure ANN algorithm but decrease the one of the

hybrid algorithm.

Triggering Strategies

The triggering strategy consists in the design choice about when

to make every algorithm to start the exploration. This event can

happen periodically, or when the controller receive some input

from the environment, and this strictly depends on the real ap-

plication and the manufacturer.

The triggering strategy can affect the final efficiency in a dif-

ferent way depending on the algorithm used. If the MPPT algo-

rithm is the HC then basically exploration is also the exploita-
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tion, so the triggering strategy doesn’t affect the efficiency. If
the algorithm used is the HC-modified, ANN, Hybrid ANN, or
PSO then yes: during the exploration some power is lost, and
in some situations it is not negligible. Comparing the two most
efficient algorithms, that are the PSO and the Hybrid ANN,
then it is clear that the best option is the Hbryid ANN, for two

reasons:

¢ this algorithm can detect little changes also during the
exploitation (because the HC algorithm is working), so it

is not necessary to start a new exploration too often

¢ the exploration of the ANN is faster then the PSO, and
this means that there are smaller oscillations in the output

power and voltage.
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In this chapter is presented the Simulink model of the physical
system and the environment that is used for the simulations,
that is slightly different from the model in Figure 11. In fact
a too accurate model in Simulink requires too much time to
be simulated (more then two hours) due to the high dynam-
ics of some devices, but thanks to some assumptions and ap-
proximations the new model requires only from few seconds to
maximum forty minutes (depending on some parameters). In
this chapter are presented the programs implemented for test-
ing the MPPT algorithms, and it is explained in detail how the

calculations are executed.

5.1 THE PHYSICAL MODEL

As in Figure 11, the main components of the physical system
are: the DC/DC converter, the Load, the controller, the MPPT
algorithm, the photovoltaic panels, the environment. In the sim-
plified model that have been used in the simulations every com-

ponent has his needed some assumptions, as follow.

LOoAD  The photovoltaic panels are Direct Current Power sources,
then between the panels and the load (could be the elctric grid,
or different stand-alone applications) some DC/DC or DC/AC
converter are usually needed. These converters from the panels
point of view are a voltage source, that can control the output
voltage of the panels. Therefore they are represented by a con-

stant voltage source.

67

[March 3, 2020 at 12:12 — classicthesis ]



68

SIMULATION PROGRAMS

CONTROLLER  The controller is not completely simulated: it
is approximated using a first order system, which include also
the DC/DC converter circuit. The time constant of the system
is assumed to be 100 us, that means a bandwidth of 1590 Hz.
This is the highest value obtained from the simulation without

choosing a too small timestep.

MPPT ALGORITHM  This function block receives as input the
Voltage and the Current corresponding to the last V;f imposed
on the circuit, and its eventual delay is included in the first

order system already mentioned.

PHOTOVOLTAIC PANELS they are the default model of Simulink,

their parameters are in the Appendix 42,43,44. The problem

considered includes three panels in series (Figure 40).

AGING OF THE MATERIALS this effect is simply modeled
as an extra series resistance for every panel that decrease the
final power obtained, as you can see in Figure 40. The aging

resistance model is studied and proposed in article[1].

ENVIRONMENT  The environment is assumed to have con-
stant temperature, 25°C, in order to consider only the variation
of the irradiances as an environment factor. In a real application
the temperature changes slowly so it is reasonable to assume
it as a constant, and his effect on the efficiency of the MPPT
algorithm will be studied in the chapter 4.5. The same consid-
erations are valid for the aging effect on the panels. To have
a complete case-study, two dataset of irradiances are consid-
ered: one dataset of irradiances that are uniformly distributed
around their mean value (600 W/m?) and one dataset whose
irradiances are normally distributed around their mean and
variance (respectively 600 W/m?, 160 W/m?). These numerical

values are chosen referring to the studies [18] and [17]. These
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two type of dataset have been used to train and also to test the

Neural Networks.

In Figure 40 is illustrated the fast model used in the simula-

tions.
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Figure 40: An illustration of the model used for the simulations
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5.2 SIMULINK PROGRAMS

In this section the two main Simulink programs are presented:
the

dataset_creator, which simulate the system and save the pa-
rameters for the training of the ANN, and the dataset_tester,
which test the considered MPPT algorithm and calculate his
performances. The MPPT alogorithms tested and their relatives

code are presented in detail.

5.2.1 Dataset creator

In this section is described the program that will create the data
for the training. These data, in the form of a two-dimension

array, should include
* the power measurements corresponding to the Vi, that

will be the input data for the training

* the real Vy,p, that the ANN is supposed to give as output.
These are the target outputs.

This matrix should contain a sufficient amount of different power-

voltge curves, to train the most general ANN. This amount, fol-

lowing the article [18], is decided to be 500. A full image of the

Simulink program is at the end of the chapter, Figure 48.
Basically the program will do the following actions 500 times:

e create a triple of Irradiances, and use it on the panels

¢ scan the whole Power-Voltage curve of the panels

* sample the P-V curve, and save also the Vy,p, and the
Pmpp

¢ store these data in one row of the final matrix.

At the end the matrix will be saved in the workspace of the
computer, in order to keep this data available for future utiliza-

tion.
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5.2.2 The dataset matrix

As explained in chapter 4.4, during the ANN exploration a def-
inite number of samples (V,P) are collected. This number can
be decided by the manufacturer, and the variable that stores it
is called NSAMPLE: for example in Figure 31 you can observe
that NSAMPLE = 3. The dataset for the training of the ANN

used in Figure 31 is illustrated in Table 11.

Irradiances [W/m?] Voltage reference V;¢[V]

686.03 | 238.58 |651.00 12.89|24.21(35.54
384.02|1,172.54|530.63 12.89(24.21|35.54
580.14 | 714.36 |716.06 12.89|24.22(35.54
714.76 | 707.44 |825.45 12.89 (24.22|35.54
647.02| 716.30 |678.22 12.89 | 24.22|35.54

Table 10: Some examples of the irradiances used and voltage refer-
ence used, when NSAMPLE = 3. These values are a little

number, the real matrixes are 500 rows big.

Power measured [W]| Vi [V]

72.09| 49.80 | 48.17 | 20.76
58.90| 80.10 | 76.88 | 33.34
78.771120.79 | 94.21 32.08
79.21|146.82|109.55 | 31.45
75-11|134.46| 97.15 | 31.45

Table 11: Example of dataset training matrix obtained from the pa-
rameters in Table 10, when NSAMPLE = 3. The illustrated
table is an portion of the real dataset training matrix, that is

500 rows long.

The (NSAMPLE + 1)-column of the dataset training matrix

contains the Target output values, that are the real Viypp. As
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you can see in Table 11 in every row different values of Power
and Vipp are collected: that’s because for every row a differ-
ent triplet of irradiances are used on the photovoltaic panels,
see Table 10. Two examples of the collection of two different
dataset training matrixes are illustrated in Figure 41, where it
can be observed that many different triplets of irradiances are
tested on the circuit. The respective power-voltages curves are
completely explored, then sampled (3 times in the first picture
and 13 times in the second picture, because NSAMPLE is re-

spectively 3 and 13. ) and the MPP point is found.
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Figure 41: Illustration of the creation of two different training matrix
in Simulink, respectively when NSAMPLE = 3 (first pic-
ture) or NSAMPLE = 13 (secondo picture). The respective
Vimpp saved in matrix 11 are the ones which correspond to
the MPPs highlighted by the purple line.
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5.2.3 The irradiances

The irradiances are different for every panel, so a new triplet of
irradiances creates a new Power-Voltage curve. The irradiances
are generated randomly, following two different distribution.
One dataset has the irradiances that are uniformly distributed
around their mean value (600W/m?) and the other one nor-
mally distributed around their mean and variance (respectively
600W/m?, 160W/m?). These numerical values are chosen refer-

ring to the studies [18] and [17].

5.2.4 The voltage references

The Vi used for the sampling of the power-voltage curve are
chosen following a simple formula 7, where 1 < n < NSAMPLE.
Tthey are uniformly distributed between V. and V..

0.9Voc

Vret (M) = (S AMPLE

n + 0.05V, (7)

A raffiguration on how the V,¢ are distributed along the Power-

Voltage curve is in Figure 41.

5.2.5 The Simulink Functions

The final Simulink program that creates the dataset for the train-
ing need more functions, in order to manipulate the data of the
simulation and get the aimed matrix. These function blocks re-
call a MATLAB function, respectively reported in the Appendix

B, and are:

* duty and power manager: this block removes some unneces-
sary data, prepare the data in the correct format for the
next function blocks and create the desired V., that is

just a ramp from Vi to Vi
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* Max research: this block look for the maximum Power along
the Power-Voltage curve and save the Vi, and the Py

in two variables, that will be the output

* saving matrix: this function save the instant voltage V cor-
responding to the V¢ of the matrix in Table 10, and store
it into the final matrixes. Later stores also the results from

the Max research function.

A complete illustration of this function inside the Simulation

program is in Figure 48.

5.3 ALGORITHM-TESTER PROGRAM

The program illustrated in Figure 50 aims to calculate the per-
formances of the chosen MPPT algorithm. The output of the
program is a two-dimensional array, an example is in Table 12,
where in every row (corresponding to the same triples of irra-

diances of Table 10) the following parameters are saved:

* V.. the steady-state V;., that is supposed to be last esti-
mation of the Vi, of the MPPT algorithm used

* P, it is the power obtained by imposing on the circuit
the Vref

® Vinax,theo: it is the Vi, corresponding to the triple of ir-

radiances that is used in that instant

® Piax,theo: i the Py corresponding to the triple of irradi-

ances that is used in that instant.

5.3.1 The Algorithms Functions
In Figure 50 it is possible to observe the complete Simulink pro-

gram, where some function blocks that recall MATLAB func-

tions are implemented. These are:
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Vref Pref Vmax,theo Pmax,theo

23.03 121.15 20.76 154.72
34.23 164.76  33.02  175.59
21.61 105.51 21.70 105.52
34.74 64.42  20.76 159.40
25.94 7515  33.02 93.52

Table 12: Performance matrix example.

e MPPT block: the MPPT algorithm is executed in this block,
the input is the only power measured and the output is
the V;¢r and the theoric Vipp

* matrix creator: here the final performances matrix is filled,

and the performance parameters are saved inside it.

The single block and respective programs are reported in Ap-
pendix B.
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CONCLUSIONS

In this thesis four MPPT algorithms have been simulated, and a
fiftth hybrid algorithm have been implemented using two of the
previous. All of them have been simulated, in order to complete

the analysis of the performances already started in [18],[17].

The algorithms have been simulated on a portion of a photo-
voltaic system, where the irradiances were changing frequently.
The efficiency of the algorithms have been measured, and the
conclusions are the following: the ANN-based algorithms met
the expectations of being faster than the other algorithms in
tinding the MPP. This was expected from the theory of the
Neural Networks. The other algorithms simulated showed to
be efficient enough only until a certain exploration time. If this
time is sufficiently big and allows more than 20 perturbations
and explorations, then the Particle Swarm algorithm is more
efficient than Neural Network based algorithms. But if the ex-
ploration time is short, and the perturbations and explorations
are only 3, or only 4, until 20, then the ANN-based algorithms
are the most efficient algorithms among the studied ones. This
means that these algorithms could be preferred to other MPPT
algorithms in applications like solar vehicles, where the irradi-

ances are frequently changing.

The pure ANN and the hybrid ANN-HC algorithms have
been tested when the real system is slightly different from the
model estimated in the Neural Network: this could be the ef-
fect of the temperature change or of the aging of the materials
that make up the panels. It has been verified that the hybrid
algorithm reacts well to this problem and gets again a high ef-

ficiency, while the pure ANN algorithm’s efficiency decrease.

77
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The conclusion is that when is possible it is preferable to use
the hybrid ANN with HC algorithm instead of the pure ANN.

The idea for this thesis came from two articles, [18] [17]. In
these articles only some parameters of the ANN algorithm have
been measured, and it is not included the final efficiency of the
overall circuit. In this thesis their algorithms have been applied
on a little photovoltaic system in a simulation, in order to cal-
culate the efficiency. The results have been compared to the
ones of other known[15] algorithms. Now the analysis of this
algorithm is more complete, and a manufacturer have more in-
formations to understand if to prefer an ANN-based algorithm
to the others. A future activity on this problem could be the

implementation of the algorithm on a real application.
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DEVICES ELECTRICAL PARAMETERS

In this section the electrical characteristics of the photovoltaic

panels used in simulations are listed.

Module data

Module: | User-defined

Maximum Power (W) 83.2824 Cells per medule (Mcell) ‘60{3 ‘ H

Open circuit voltage Voc (V) |37 92*20/60 | Shert-circuit current Isc (A) |8.62 ‘ H

Voltage at maximum power point Vmp (V) |30. 96*20;’60 Current at maximum power point Imp (A) g
Temperature coefficient of Voc (%/deg.C) |-0.33969 i Temperature coefficient of Isc (%/deg.C) |0.063701 E

Figure 42: The parameters of the default single photovoltaic module.

Model parameters

Light-generated current IL (A) |B8.6307
Diode saturation current 10 (A) 1.4176e-10
Diode ideality factor 0.99132

Shunt resistance Rsh (ohms) 82.1161

Series resistance Rs (ohms) 0.098625

Figure 43: The parameters of the default single photovoltaic module.
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Array type: User-defined;
1 series modules; 1 parallel strings

g10€; AL e 2 i
T
2 5F  psknwme 1
3
O
e
0 . . . : . :
0 2 4 3] 8 10 12 14
Voltage (V)
ol . . . . . . .
=
g sof 1
]
o
0 2 4 & & 10 12 14

Voltage (V)

Figure 44: The characteristic power-voltage curves of the default sin-

gle photovoltaic module.

Module data

Module: | SunPower SPR-E19-320

Maximum Power (W) 320.542 Cells per module (MNeell) 96

Open circuit voltage Voc (V) 4.8 Short-circuit current Isc (A) | 6.24

Voltage at maximum power point Vmp (V)  54.7 Current at maximum power point Imp () 5.86
Temperature coefficient of Voc (%/deg.C) -0.2727 Temperature coefficient of Isc (%/deg.C) |0.061747

Figure 45: The parameters of the single solar module SPR-E19-320W.

Model parameters

Light-generated current IL (A) | 6.2792
Diode saturation current 10 (A) |5.61%9e-12
Diode ideality factor 0.95375

Shunt resistance Rsh (ohms) 330.2738

Series resistance Rs (ohms) 0.45463

Figure 46: The parameters of the single solar module SPR-E19-320W.
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Array type: SunPower SPR-E19-320;

1 series modules; 1 parallel strings
b ERPETTT T T T i T
6
<
E 1 o5 cm?
Sol
o
O Wi \
a h ! 1 1 " .
0 10 20 30 40 50 60 70
Voltage (V)
400
=
8 200
[=]
o
od : I m -1l
0 10 20 30 40 50 G0 70

Voltage (V)

Figure 47: The characteristic power-voltage

curves of the single solar
module SPR-E19-320W.
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SIMULINK AND MATLAB

In this section the complete programs used are listed.

B.1 DATASET TRAINING

B.1.1 Duty and Power Manager

function [duty, Pout, Vout, Iout] = fcn(t, contatorel,
deltaT, NSAMPLE, P, V, I)

t1=0.05*deltaT*NSAMPLE;
12=0.95+deltaT+*NSAMPLE;

T=deltaT*NSAMPLEx* (contatorel-1);
pendenzaRampa= 1/ (deltaT+*NSAMPLE);

if t >= T+tl & t < T+t2
duty = -pendenzaRampax(t-deltaT*NSAMPLExcontatorel);
Pout=P;
Vout=V;
Tout=I;
elseif t < tl
pl= -pendenzaRampax*(T+tl-deltaT+*NSAMPLExcontatorel);
X=spline_4condition(tl, 0, 0, pl, 0, -pendenzaRampa);
t0=0;
duty =X(1) + X(2)*(t-t0) + X(3)*(t-t0)"2 + X(4)*(t-t0)
A3
Pout=0;
Vout=0;
Iout=0;
elseif t>= t24T && t < T+deltaTxNSAMPLE

85
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X=spline_4condition( T+deltaT+*NSAMPLE,t2+T , -
pendenzaRampax* (T+t2-deltaT«NSAMPLExcontatorel),
0.5, -pendenzaRampa, 3);

t0=t2+T;

duty = X(1) + X(2)x(t-t0) + X(3)*(t-t0)"2 + X(4)*(t-t0)
A3;

Pout=0;

Vout=0;

Tout=0;

elseif t >= T & t <= t1+T

X=spline_4condition( t1+T, T , 0.5, -pendenzaRampax(T+
t1-deltaT+NSAMPLExcontatorel) , 3, -pendenzaRampa )

t0=T;

duty = X(1) + X(2)*(t-t0) + X(3)*(t-t0)"2 + X(4)*(t-t0)
A3,

Pout=0;

Vout=0;

Tout=0;

else

duty = -1;

Pout=-1;

Vout=-1;

Iout=-1;

end

B.1.2 Max Research

function [Pmax, Vmax] = fcn (Pin, Vin, contal, duty)

persistent massimo;

if isempty(massimo)
massimo=0;

end

persistent VV;

if isempty(VV)
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VV=0;

end

persistent lastcontal;
if isempty(lastcontal)
lastcontal=1;

end

if contal ~= lastcontal
lastcontal=contal;

massimo=0;

VWW=0;
end
if Pin > massimo

massimo=Pin;

VV=Vin;

end
Pmax=massimo;
Vmax=VV;

end

B.1 DATASET TRAINING

B.1.3 Saving Matrix

function [y2, Py, Vy, Iy , stop, ii, jj, dutysj] = fcn(P,V
, I, Pmax, duty, Vmax, NSAMPLE, NPROVE, confdataset, cl,

soglia)

persistent i;
if isempty (i)
i=1;

end

persistent j;

[March 3, 2020 at 12:12 - classicthesis ]
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if isempty(j)
j=1;
end
ii=i;
3i=3;
persistent datasetP;
if isempty(datasetP)
datasetP=confdataset;
end
persistent datasetV;
if isempty(datasetV)
datasetV=confdataset;
end
persistent datasetI;
if isempty(datasetI)
datasetI=confdataset;
end
persistent flag;
persistent flag2;
if isempty(flag)
flag = 0;
flag2=0;
end
Py=datasetP;
Vy=datasetV;
Iy=datasetI;
y2=[0, Pmax];
stop=0;
dutys=zeros( NSAMPLE, 1);
for cont = 1:1:NSAMPLE
dutys(cont)=1-(cont*(0.95-0.05)/(NSAMPLE)+0.04);
end
dutysj=dutys(j);
if cl==NPROVE+1
stop =1;
Py=datasetP;
Vy=datasetV;
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Iy=datasetI;
return;

end

if duty <= dutys(j) && Pmax > 0 && flag2 ==
y2=[P, Pmax];
if 1<=NPROVE

if P > (0.001)
datasetP(i, j)=P
datasetV(i, j)=V;
datasetI(i, j)=I

else
datasetP(i, j)=0;
datasetV(i, j)=V;
datasetI(i, j)=0;

end

Py=datasetP;

Vy=datasetV;

Iy=datasetI;

i=j+1;

if(j > NSAMPLE)
i=1;
i=i+1;
flag =1;
flag2 =1;

end

else

Py=datasetP;

Vy=datasetV;

Iy=datasetI;

stop=1;

y2=[0, Pmax];

end

end
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if 1 <= NPROVE+1 && j == 1 && 1 >1 & P > 0.001 && flag
datasetP(i-1, NSAMPLE+1)=Pmax;
datasetV(i-1, NSAMPLE+1)=Vmax;
datasetI(i-1, NSAMPLE+1)=Vmax;
Py=datasetP;
Vy=datasetV;
Iy=datasetI;

end

if P < 0.001

flag =0;
elseif j > 1
flag =1;
end
if Pmax< 0.01
flag2=0;
end
ii=i;
3i=3;

dutysj=dutys(j);

end

B.2 ALGORITHM-TESTER PROGRAM
B.2.1 ANN

The duty regulator and power manager function block of Figure

51:

function [Vref, ctrlSelect, X, prova, VmaxP] = fcn( i,
contatore2, deltaT, NSAMPLE, P, V_DC_load, Pmeas_init ,

VmaxPower, simoutV)
persistent Pmeas;

if isempty(Pmeas)

Pmeas=Pmeas_init;
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end

prova=0;
Vref=0;
X=Pmeas;

VmaxP=VmaxPower(i);

voltages=zeros( NSAMPLE, 1);
for cont = 1:1:NSAMPLE
voltages(cont)=simoutV(contatore2, cont);
end
if contatore2 <= NSAMPLE
Vref=voltages(contatore2);
if P>le-3
Pmeas (contatore2)=P;
else
Pmeas(contatore2)=0;
end
prova=0;
ctrilSelect=1;

X= Pmeas_init;

elseif contatore2 >=NSAMPLE+1
X=Pmeas;

ctrlSelect=-1;

else
X=Pmeas;
Vref=0.5;
ctrilSelect=1;
prova=-1;

end

B.2.2 HC

The code used for the HC-modified algorithm:
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function [Vref, PEOOENDPEO1l, VN, Pmppo]

counter)

persistent
persistent
persistent
persistent
persistent
persistent
persistent
persistent
persistent
persistent

persistent

flagl;
flag2;
flag3;
flag4;
flag5;
flagb6;
Vn;
Vrefp;
Vmpp;
Pmpp;
cprec;

if isempty(flagl)

flagl = 0;
flag6=0;
cprec=0;
flag3 =0;
flag4=0;
flag5=0;
Vn =0;
flag2=0;
Pmpp = 0;
Vmpp=0;
Vrefp =0;

end

if counter ~=
flagl = 0;
flag2 = 0;
flag3=0;
flag4=0;
flag5=0;
flag6=0;

cprec

cprec=counter;
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Vref=Vrefp;
PEOOENDPEQ1=-11;
Pmppo =Pmpp;
VN=Vn;

Vn = 2.53;
return;

end

dmin = 37/3;
Pn=0;
factor = 0.51;
if flagl ==
Vref = 0.7%37;
Vn = 2.35;
PEOOGENDPEOL1 =-3;
flagl =1;
Pmpp =0;
Pmppo =Pmpp;
VN=Vn;
return;
elseif flag2 ==
[Vref, flag2] = pEoSubroutine(V, I, 1, 0.1);
PEOOENDPEQ1 =flag2-0.5;
if flag2 ==
Vmpp = V;
Pmpp = Vx*I;
end
Pmppo =Pmpp;
VN=Vn;
return;
elseif Vn > Vmpp -dmin
if flagb ==
Vn=Vn+dmin;
flagb =1;

end

if Vn > 37
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if flagb ==
Vref = Vmpp;
PEOGENDPEQO1=4;
Pmppo =Pmpp;
VN=Vn;
flag5=1;
return;
end
local=0;
[Vref, local] = pEoSubroutine(Vv, I, 1, 0.1);
PEOOENDPEO1=1local+0.25;
Pmppo =Pmpp;
VN=Vn;
return;
else
if flag3 ==
Vref = Vn;
Vrefp=Vn;
PEOOENDPEO1 = 2;
flag3 =1;
Pmppo =Pmpp;
VN=Vn;
return;
end
Pn = VxI;
if Pn > Pmpp && flag4 ==

[Vrefp, flag4] = pEoSubroutine(V, I, 1, 0.1);

Vref=Vrefp;
PEOGENDPEO1 = flag4;
if flagd ==

Vmpp = V;

Pmpp VxI;

end
Pmppo =Pmpp;
VN=Vn;

return;
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else
Vref = Vrefp;
Vn = Pmpp/(Ixfactor);
PEOOENDPEO1 = 5;
flag3=0;
flag4 =0;
Pmppo =Pmpp;
VN=Vn;
return;
end
end
else
if flag3 ==
Vref = Vn;
Vrefp=Vn;
PEOOENDPEOL = -2;
flag3 =1;
Pmppo =Pmpp;
VN=Vn;
return;
end
Pn = VxI;
if Pn > Pmpp && flag4 ==
[Vrefp, flag4] = pEoSubroutine(V, I, 1, 0.1);
PEOOENDPEO1 = flag4+0.5;
Vref=Vrefp;
if flagd4 ==

V;
VxI;

Vmpp
Pmpp

end
Pmppo =Pmpp;
VN=Vn;
return;

else
Vref = Vrefp;
Vn = Pmpp/(I);
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PEOOENDPEO1 = -5;
flag3=0;
flag4 =0;

Pmppo =Pmpp;
VN=Vn;
return;

end

end

end

B.2.3 PSO

It is reported here the code for the PSO-algorithm:

function [Vref, ctrlSelect, X, prova, VmaxP] = fcn( i,

contatore2, noP, nVar, V, I, maxIter, Pmeas_init ,

VmaxPower, simoutV, clock, swarmconfig)

VmaxP=VmaxPower(i);

persistent
persistent
persistent
persistent
persistent
persistent
persistent
persistent
persistent
persistent
persistent
persistent
persistent
persistent

persistent

dataVis=0;

[March 3,

flag;

flagl;

flag2;

flagFinal;

k;

t;

Vrefp;

Swarm;
average_objective; %= zeros(1l
cgCurve;
FirstP_D1;
position_history;
clprec;

lastTen;

lasti;
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ub =37;

b = 2.53;

wMax = 0.9;

wMin = 0.2;

cl =2;

c2 = 2;

vMax =(ub - 1b) .*x 0.5; % (ub - 1b) .*x 0.2;
vMin = -vMax;

if isempty(flag)

flag = 1;
flagl 1;
flag2 = 0;
lasti=0;

k =1;

t=1;
Vrefp=0;

average_objective = zeros(1l, maxIter);

cgCurve = zeros(1l, maxIter);

FirstP_D1 = zeros(1l , maxIter);

position_history = zeros(noP , maxIter , nVar );
Swarm=swarmconfig;

clprec =i;

flagFinal=1;

lastTen = zeros(10, 1);

end

if i ~= clprec
flag = 1;
flagl = 1;
flag2 = 0;
lasti=0;
k =1;
t=1;
Vrefp=0;

average_objective = zeros(1l, maxIter);

cgCurve = zeros(1l, maxIter);
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FirstP_D1 = zeros(l , maxIter);

position_history = zeros(noP , maxIter , nVar );

Swarm=swarmconfig;
clprec =i;

flagFinal=1;

lastTen = zeros(10, 1);

end

if clock ==1 && flag == 1 && flagFinal ==

if flagl ==
flagl=0;
ctrlSelect=1;
X=t;

prova = k;
Vrefp=Swarm.Particles (k) .X;
Vref =Vrefp;

return;

end
prova = k;
flagl=1;

ctrilSelect=2;

currentX = Swarm.Particles(k).X;

position_history(k , t , : ) = currentX;
power = -VxI;
average_objective(t) = average_objective(t)

if power < Swarm.Particles(k).PBEST.0
Swarm.Particles(k).PBEST.X = currentX;
Swarm.Particles(k).PBEST.0 = power;

end

if power < Swarm.GBEST.O
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Swarm.GBEST.X
Swarm.GBEST.O0

currentX;

power;

end

Vrefp =Swarm.GBEST.X;
Vref =Vrefp;
X=t;
flag =0;
k=k+1;
if k > noP
k=1;
flag2=1;

end

if flag2 ==
ctrlSelect=3;
prova = k;

w = wMax - t .x ((wMax - wMin) / maxIter);

FirstP_D1(t) = Swarm.Particles(1).X;
for j =1 : noP

Swarm.Particles(j).V = w x Swarm.Particles(j).V

B= + cl * rand(1,1) * (Swarm.Particles(j).PBEST.

X - Swarm.Particles(j).X) + ¢c2 * rand(1,1) =*
(Swarm.GBEST.X - Swarm.Particles(j).X);

Swarm.Particles(j).V=Swarm.Particles(j).V+B;

index1 find(Swarm.Particles(j).V > vMax);

index2 = find(Swarm.Particles(j).V < vMin);

Swarm.Particles(j).V(indexl) = vMax(indexl);

Swarm.Particles(j).V(index2) vMin(index2);

Swarm.Particles(j).X = Swarm.Particles(j).X +

Swarm.Particles(j).V;
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indexl find(Swarm.Particles(j).X > ub);

index2 = find(Swarm.Particles(j).X < 1b);

Swarm.Particles(j).X(index1l) = ub(indexl);
Swarm.Particles(j).X(index2) = 1lb(index2);
end
if dataVis ==

outmsg = [’Iteration# 7, num2str(t) , ~ Swamm.
GBEST.O = ’ , num2str(Swarm.GBEST.0)];
disp(outmsg);

end

cgCurve(t) = Swarm.GBEST.O0;

average_objective(t) = average_objective(t) / noP;

t = t+1;

flag2 = 0;

X=t;

Vrefp =Swarm.GBEST.X;
Vref =Vrefp;

lasti=lasti+l;
if lasti>10
somma=0;
for i=1:1:10
somma=somma+lastTen(1i);
end
media=somma/10;
if abs(media - lastTen(10))<0.1
flagFinal =0;
t = maxIter;
Vrefp =Swarm.GBEST.X;
Vref = Vrefp;
X=t;
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else

else

end

end

B.2 ALGORITHM-TESTER PROGRAM

end

lasti=1;
end
lastTen(lasti)=Swarm.GBEST.O0;
if t > maxIter

flagFinal =0;

t = maxIter;

Vrefp =Swarm.GBEST.X;

Vref = Vrefp;

X=t;
end

end

if clock ==
flag = 1;
prova = k;
ctriSelect=0;
X=t;
Vref=Vrefp;

provaan example = k-0.1;
ctriSelect=0;

X=t;

Vref=Vrefp;

B.2.4 The simulink blocks
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Figure 48: The complete Simulink program for the creation of the

training dataset matrix. The Solar System block include the

Simulink model in Figure 4o0.
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Figure 49: The new system tested, with five Photovoltaics modules
SPR-E19-320W.
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Figure 50: The complete Simulink program for the testing of the

MPPT algorithm. The Solar System block include the

Simulink model in Figure 4o0.
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Figure 51: The MPPT block for the test of the ANN
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Figure 52: An example of the operation of the HC algorithms. The
exploration time is 1 s. One Perturbation and Observation
takes 0.1 s, then the Perturbations and Observations are
10. The average efficiency of the HC is 0.903, of the HC
modified 0.782.
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Figure 54: The MPPT block for the test of the PSO
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