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Turing patterns, a phenomenon introduced by mathematician and computer scien-
tist Alan Turing, are intricate spatial patterns that emerge in reaction-diffusion sys-
tems, reflecting the dynamic interplay between chemical reactions and diffusion.
These patterns, ranging from spots to stripes, offer physicists a captivating play-
ground to explore the fundamental principles governing self-organization in com-
plex systems. Studying Turing patterns not only unveils the underlying mechanisms
of pattern formation but also provides valuable insights into the universal principles
guiding the spontaneous emergence of order in nature.

This master thesis explores the application of a sparse regression framework to
analyze synthetic Turing patterns and experimental data from Drosophila embryos.
Focusing on the Brussellator model, the algorithm aims to identify coefficients of
reaction-diffusion equations based on stationary state and oscillation data. In the
analysis of synthetic Turing patterns, we observe that the algorithm’s success is in-
tricately linked to parameter selection, particularly the regularization strength and
sparsity threshold. The delicate balance between the model’s error and complexity,
as measured by interaction sparsity, and illustrated by a complexity-error tradeoff.
Despite promising results in low to moderate noise scenarios, the algorithm’s sensi-
tivity to noise, especially in Laplacian computation, remains a limitation. Extending
the study to synthetic oscillation data reveals the algorithm’s improved robustness
to noise, with successful identification of diffusion in the second-best sparse model.
However, challenges persist in accurate diffusion constant estimation and sensi-
tivity to noise (mainly in derivative calculations). Applying the sparse regression
framework to Drosophila Turing patterns uncovers additional challenges, primarily
related to the high noise level in Laplacian computation, limiting the algorithm’s
accuracy in identifying reaction terms. The conclusions highlight the need for fu-
ture developments, including the exploration of noise-robust methods, data aug-
mentation strategies, integration with biological models, and advanced parameter
optimization techniques to enhance the framework’s robustness and applicability
to real-world cases. Our work has thus contributed to a deeper understanding of
complex biological phenomena governed by reaction-diffusion dynamics.
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Chapter 1

Introduction

1.1 Dynamical Systems

Dynamical systems provide a robust mathematical framework for grasping the in-
tricate interplay between evolving quantities over time. This framework revolves
around the investigation, forecasting, and understanding of how a system’s state
evolves through a series of differential equations or iterative mappings. This ver-
satile approach finds applications in a wide range of phenomena, spanning classi-
cal mechanical systems, electrical circuits, turbulent fluids, climate science, finance,
ecology, social systems, neuroscience, epidemiology, and nearly every other system
that undergoes changes over time.

The world of dynamical systems is a fascinating blend of mathematics, linking
various domains such as linear algebra, differential equations, topology, numerical
analysis, and geometry. It has become a cornerstone for modeling and analyzing
systems across a spectrum of engineering, physical sciences, and life sciences [16].

Modern dynamical systems are currently experiencing a renaissance, transition-
ing from traditional analytical derivations and first-principles models to data-driven
methodologies. The confluence of vast data resources and the power of machine
learning is ushering in a transformative era for understanding and dissecting dy-
namical systems in the fields of science and engineering. Data is abundantly avail-
able, even as the fundamental laws or governing equations remain elusive, espe-
cially in domains like climate science, finance, epidemiology, and neuroscience. Even
in well-established fields like optics and turbulence, where governing equations are
firmly established, researchers are increasingly embracing data-driven approaches
[9]. Many pressing challenges, reliant on data-driven insights, such as predicting cli-
mate change, deciphering neural data for cognitive understanding, curbing disease
spread, or optimizing turbulence for energy-efficient power generation and trans-
portation, stand to benefit from advancements in the data-driven discovery of dy-
namics.

1.2 Data-driven Methods for System Identification

A dynamical system is modeled by an equation of the form

ut(x, t) = F(x, t, u, uxi
, uxixj

, . . .), (1.1)

where u = [u1, u2, . . .]T are the dynamical quantities that describe the state of
the systems, e.g. chemical concentrations, the subscript k in uk is referring to the
derivative of u w.r.t. the k variable, x is a point in the spatial domain, t is time and F
is the functional that describes how the system evolves in time.
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The goal of data-driven system identification is to learn the governing equations
(1.1) and specifically the functional F. In the context of data-driven discovery, we
can broadly categorize the approaches into three main groups [10]: classical sparse
methods, classical symbolic methods, and deep modeling methods. It is worth not-
ing that other ways of categorization may exist. The first category involves the use of
sparse regression. In this approach, we put forward a library of potential solutions,
and then we employ regularization-based techniques to identify the correct solu-
tion set, resulting in a succinct and sparse solution. The second category includes
symbolic regression methods. This method allows us to learn or generate solutions
through the estimation process, which provides a more symbolic representation of
the data. The third category concerns the use of deep models to improve the dis-
covery process. It integrates elements of the previous two approaches. For example,
deep models can be integrated into symbolic regression for a more integrated and
nuanced approach to discovery. A more articulated and nuanced approach to dis-
covery

In this thesis, we use a method from the first category called Sparse Identification
of Nonlinear Dynamics (SINDy) [2] and its extension to partial differential equation
systems (PDE-FIND)[15].

1.3 Sparse Regression for System Identification

Utilizing sparse regression for system identification, as highlighted in [2], offers a
scalable and less prone to over-fitting alternative in contrast to symbolic regression-
based methods for equation discovery. Sparse regression algorithms take advan-
tage of the inherent sparsity present in most physical systems’ governing equations
within a high-dimensional nonlinear function space, where only a few pertinent
terms dictate system dynamics.

In the context of partial differential equations (PDEs), as demonstrated in [15],
these algorithms have been extended. However, it’s important to note that they
exhibit heightened sensitivity to noise due to the numerical computation of deriva-
tives. To address this concern, the weak formulation of SINDy, discussed in [7], has
proven to be more robust when compared to other techniques.

In practical scenarios, system dynamics might involve latent variables that are
challenging to measure. [13] elucidates how prior knowledge of the physical sys-
tem can effectively tackle this issue while still deriving the dynamical equations via
sparse regression.

In cases where the system’s parameters are non-constant, identifying the cor-
rect set of equations governing the dynamics becomes a formidable task. [14] offers
a generalization of the sparse regression method for parametric partial differential
equations, addressing this challenge.

Furthermore, the algorithm’s versatility is evident in situations where dynami-
cal systems incorporate control parameters, enabling interactions with the system’s
behavior or accounting for external forcing parameters, as explored in [3]. Addi-
tionally, there are instances in the literature demonstrating hybrid approaches that
harness the power of deep models and sparse regression, combining the strengths of
neural networks as effective function approximators with the interpretability offered
by sparse regression, as exemplified in [1].
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1.4 Reaction-Diffusion Equation Discovery

Reaction-diffusion models are dynamical systems whose dynamics is driven by par-
tial differential equations (PDE), typically showing a diffusion term and a reaction
term as in the following equation

ut(x, t) = D · ∇2u + R(u, x, t), (1.2)

where u = [u1, u2, . . .]T are the chemical concentrations that describe the state
of the systems in every point x in space and instant t in time, ∇2 is the Laplacian
operator, D is the vector of diffusion coefficients and R is the vector of reaction terms
that models how the components of u interact.

Following Alan Turing’s seminal work in 1952 concerning the chemical founda-
tions of morphogenesis [18], both theoretical and experimental investigations have
revealed that solutions to reaction-diffusion (RD) partial differential equations ex-
hibit self-organizing characteristics, a phenomenon common to extensive biological
and chemical systems. These properties manifest as the emergence of coherent spa-
tial patterns or structures within extended media. Given the inherent non-linearity
of local kinetic processes in RD systems, local fluctuations can grow and propagate
through diffusion, influencing the surrounding environment. Moreover, reaction-
diffusion equations, in their partial differential form, serve as fundamental math-
ematical tools for exploring pattern formation in excitable media. In the context of
numerical simulations involving RD equations, one encounters undamped traveling
waves, spiral traveling waves, stable strips, and distinctive spotty structures known
as Turing patterns, as described in [4]. These patterns shed light on the intriguing
dynamics of self-organization in complex systems.

In the realm of reaction-diffusion equation discovery, prior works in the litera-
ture offer valuable insights. In [19], the authors focus on defining a set of reaction-
diffusion equations as dynamic descriptions of protein network interactions strenghts.
Their approach involves utilizing gradient-based optimization techniques to deter-
mine the equation parameters. However, it’s important to note that this method
does not extend to systems with entirely unknown reaction terms.

An innovative approach, which combines deep models and sparse regression, is
presented in [12]. This approach effectively models reaction-diffusion reaction terms
by incorporating prior knowledge of the underlying physics of the system to guide
the architecture of the neural network (NN). The recurrent neural network is trained
to model the reaction term of the RD equations which is then approximated by a
polynomial sparse regression using SINDy.

The sparse regression method that we intend to employ [15] has been tested on
a reaction-diffusion system with a domain space that is non-physical for chemical
concentrations and populations, which are bound to be non-negative. It’s worth
highlighting that, to the best of our knowledge, no one has previously applied this
particular method to calibrate experiments using real-world experimental data. This
uncharted territory holds significant potential for advancing our understanding of
real reaction-diffusion systems.

1.5 Thesis Overview

In this thesis, we want to investigate the feasibility of system identification of non-
linear dynamics algorithm [2] on reaction-diffusion systems describing chemical in-
teractions. The system we use to test the model is the Brusselator [11, 16], which is a
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widely known reaction-diffusion system.
The study addresses the following key questions:

• Algorithm Performance:

* Can the algorithm accurately identify the equations governing simulated reaction-
diffusion systems?

• Hyper-parameter Selection:

* How can we optimize the selection of hyper-parameters for the algorithm?

• Noise Sensitivity:

* How does the fully data-driven approach to equation discovery behave as noise
levels increase?

• Applicability to Laboratory Data:

* Can this approach be extended to analyze laboratory data, specifically focusing
on protein concentrations in Drosophila embryos?

The thesis is structured into the following main chapters:

1. Chapter 2: Theoretical Foundation and Framework Introduction

* This chapter provides a theoretical introduction to reaction-diffusion sys-
tems and a detailed analysis of the reaction-diffusion model employed.

2. Chapter 3: Sparse Regression Framework for System Identification

* In this chapter, we introduce the sparse regression framework as a key
component of our system identification method. Theoretical aspects of
sparse regression are discussed in detail, laying the groundwork for its
application in subsequent chapters.

3. Chapter 4: Algorithm Application and Laboratory Data Analysis

* This chapter presents the outcomes of the algorithm when applied to sim-
ulated systems in two distinct stationary states. Additionally, it explores
the algorithm’s capability to infer the dynamics of two proteins from their
stationary states, using laboratory data obtained from Drosophila embryo
experiments.

4. Chapter 5: Conclusion

* The concluding chapter summarizes the key findings and implications of
the research. It highlights the algorithm’s performance, optimal hyper-
parameter selection, noise sensitivity, and the potential applicability to
laboratory data.
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Chapter 2

Reaction-Diffusion Systems

2.1 A Biological Perspective

Reaction-diffusion models represent dynamical systems governed by partial differ-
ential equations (PDEs). These equations typically comprise a diffusion term and a
reaction term, as depicted in Equation (2.1):

ut(x, t) = D∇2u + R(u, x, t). (2.1)

Here, u = [u1, u2, . . .]T denotes the chemical concentrations characterizing the
system’s state at each spatial point x and time instance t. The Laplacian operator,
denoted as ∇2, plays a pivotal role. Furthermore, D encompasses the vector of dif-
fusion coefficients, while R is the vector of reaction terms representing interactions
among the components of u. These systems arise by adding kinetic reaction terms
to the diffusion equations of different chemicals.

From a biological perspective, it was Alan Turing [18] who introduced the ground-
breaking concept that diffusive coupling between reacting substances in spatially
extended media or biological tissues can yield stable patterns known as Turing pat-
terns (Fig. 2.1). These patterns are characterized by non-uniform and consistent
spatial distributions of substance concentration. While intrinsic random movement
or Brownian motion of molecules in the media tends to homogenize local concentra-
tions and prevent steady gradients in most cases, the situation can be entirely differ-
ent for certain reacting substances in the media. For instance, when two molecules
with binding affinity collide and produce a third molecule, the local concentration
of the third molecule increases. Turing’s analysis went even further, suggesting
the possibility of traveling wave-type phenomena in multi-component systems of
reaction-diffusion equations.

The oscillatory behavior foreseen by Turing was experimentally confirmed in the
Belousov-Zhabotinsky reaction (Fig. 2.2) in extended media [20]. This auto-catalytic

FIGURE 2.1: Left panel: an example of Turing patterns from simu-
lations of reaction-diffusion equations. Right panel: an example of

Turing pattern in nature, i.e. the skin pattern of a giant pufferfish.
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reaction, initially conceived as an example of oscillatory chemical reactions, exhibits
periodic oscillations in intermediate concentrations in homogeneous media and un-
der an open flow regime. In extended media, fluctuations in the concentrations of
reacting substances evolve into wave-like fronts that propagate throughout the me-
dia. By manipulating these wave fronts experimentally, it’s possible to obtain grow-
ing spiral concentration waves, a phenomenon commonly observed in nature.

Moreover, reaction-diffusion systems can give rise to stable Turing patterns, and
the experimental observation of Turing patterns in a chemical experiment is a rela-
tively recent development [4]. This underscores the remarkable diversity and rele-
vance of reaction-diffusion dynamics in various scientific domains.

FIGURE 2.2: Patterns of the Belousov-Zhabotinsky reaction.

2.2 The Mass Action Law and Turing Instabilities

Before introducing the reaction diffusion model which we use, it is worth to spend
some time discussing the framework of chemical reactions modelling and Turing
instabilities.

In a solution, atoms and molecules interact, potentially binding together when
they possess the necessary chemical affinity, a quality determined by the nature
of the chemical bonds in the colliding molecules. Assuming a total of m chemical
substances and n chemical reactions, these reactions in the medium are illustrated
through n collision diagrams:

νi1 A1 + . . . + νim Am
ki−→ µi1 A1 + . . . + µim Am (i = 1, . . . , n) (2.2)

Here, Aj represents the atom or molecule of substance number j, and the ki’s denote
rate constants. In the following discussion, we use the same symbols to represent
both the atom or molecule of a substance and its concentration in the medium. The
integers νij and µij are stoichiometric coefficients (positive integers). The order of
each reaction in (2.2) is given by ri = ∑ νij. These diagrams portray interactions
between various molecules. For instance, if we have three molecules and molecule
A1 collides with molecule A2, resulting in the formation of molecule A3, the corre-
sponding reaction diagram can be simplified as follows:

1A1 + 1A2 + 0A3
k
−→ 0A1 + 0A2 + 1A3 (2.3)

Or, in a simplified form:
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A1 + A2
k
−→ A3 (2.4)

Here, k represents the rate of formation of A3. In collision diagram number i, if
ri = 2, we have a binary collision or a reaction of order 2. If ri > 2, we have a
higher-order collision. Collisions involving three or more molecules have a very
low probability of occurring and are generally not considered in chemical kinetics.

To derive the equations for the time evolution of the concentrations of the chem-
ical substances in an ensemble of chemical transformations, it is assumed that:

• Substances are homogeneous in the medium and have low density.

• All reactions occur at constant volume and temperature.

• The individual motion of molecules in the medium is independent of other
molecules, behaving as Brownian particles. Their collision frequency is pro-
portional to the local concentration.

Under these conditions, the time evolution of the concentrations of all the chemi-
cal substances represented by the generic diagram (2.2) is described by a set of m
ordinary differential equations:

dAj

dt
=

n

∑
i=1

ki(µij − νij)Aνi1
1 . . . Aνim

m (j = 1, . . . , m) (2.5)

Here, Aj represents the concentration of chemical substance number j. This system
of equations (2.5) is known as the law of mass action [8]. However, it’s important to
note that equations (2.5) are not necessarily independent. Representing them in the
form:

d

dt







A1
...

Am






=







µ11 − ν11 · · · µn1 − νn1
...

. . .
...

µ1m − ν1m · · · µnm − νnm













k1Aν11
1 · · · A

ν1m
m

...
kn Aνn1

1 · · · A
νm
m






:= Γ







ω1
...

ωn






(2.6)

the n×m matrix Γ has a rank r, where r ≤ min(n, m). If r = m, then the equations in
(3) are linearly independent. If r < m, the equations in (2.6) are linearly dependent.
To analyze this situation, let

V T
j = (µ1j − ν1j, . . . , µnj − νnj) with j = 1, . . . , m (2.7)

denote the row vectors of Γ. Since r < m, there exist constants αjk, with j = 1, . . . , m
and k = 1, . . . , m− r, such that:

∑ αjk · V j = 0 (2.8)

Given that each equation in (2.6) can be expressed as:

dAj

dt
= V j ·ω (2.9)

We can conclude that:

m

∑
j=1

αjk

dAj

dt
=

m

∑
j=1

αjkVj ·ω = 0→
m

∑
j=1

αjk Aj = constantk for k = 1, . . . , m− r (2.10)
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These relations (2.10) define m− r conservation laws.

∑
j

αjk Aj(t) = ∑
j

αjk Aj(0) for k = 1, . . . , m− r (2.11)

Turing implicitly assumed that all reactions occurring in a medium obey the mass
action law. In biological tissues, concentrations are not uniformly distributed, and
diffusion plays a vital role in creating local fluctuations in the concentration of cer-
tain chemical species. These diffusing substances were termed morphogens, form
producers, or evocators.

When taking Turing’s hypothesis to its full extent, the spatial patterns generated
by a specific chemical mechanism can be described using a set of reaction-diffusion
equations:

d

dt







A1
...

Am






=







µ11 − ν11 · · · µn1 − νn1
...

. . .
...

µ1m − ν1m · · · µnm − νnm













k1Aν11
1 · · · A

ν1m
m

...
kn Aνn1

1 · · · A
νm
m






+







D1∇
2A1

...
Dm∇2Am







(2.12)
In this equation, the Di values represent the diffusion coefficients associated with

morphogens or form producers, and ∇2 is the k-dimensional Laplacian operator.
For modeling morphogenesis accurately, it’s necessary to identify the morphogenic
substances with Di > 0 and the non-diffusing substances (Dj = 0). This requires pre-
cise knowledge of the developmental process under investigation. However, Tur-
ing adopted a more abstract approach. Turing discovered that coupling through
diffusion of a system of two non-linear ordinary differential equations with a sta-
ble fixed point could lead to instability in the eigenmodes of the associated lin-
earized reaction-diffusion equation. He constructed a one-dimensional spatial sys-
tem composed of a finite number of interconnected cells arranged in a ring. In each
cell, chemical substances evolve over time following the law of mass action (2.6).
The flow between adjacent cells is proportional to the difference in local concentra-
tions, and the extended spatial system is described by a reaction-diffusion system of
equations. Specifically, Turing considered the following system of reaction-diffusion
equations:

∂ϕ1

∂t
= f (ϕ1, ϕ2) + D1∇

2ϕ1

∂ϕ2

∂t
= g(ϕ1, ϕ2) + D2∇

2ϕ2 (2.13)

Here, D1 and D2 are the diffusion coefficients for ϕ1 and ϕ2, respectively, and the
spatial domain is a k-dimensional cube with side length S. Typically, in the literature
of reaction-diffusion systems and in Turing’s work, it is implicitly assumed that the
local equations in (2.13) are independent, and the phase space variables and param-
eters are also independent. If the local system associated with (2.13) has a fixed point
at (ϕ1, ϕ2) = (0, 0), linearizing around this fixed point yields:

d

dt

(

ϕ1

ϕ2

)

=

(

a11 a12

a21 a22

)(

ϕ1

ϕ2

)

+

(

D1∇
2ϕ1

D2∇2ϕ2

)

(2.14)

For initial data with Neumann boundary conditions (zero flux), the solutions of
(2.14) have the general form:
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ϕ1(x1, . . . , xk, t) = ∑
n1,...,nk≥0

cn1,...,nk
(t) cos

(

2πn1x1

S

)

· · · cos
(

2πnkxk

S

)

ϕ2(x1, . . . , xk, t) = ∑
n1,...,nk≥0

dn1,...,nk
(t) cos

(

2πn1x1

S

)

· · · cos
(

2πnkxk

S

) (2.15)

where cn1,...,nk
(t) and dn1,...,nk

(t) are the Fourier coefficients of the solution of (2.14).
The terms under the sum in (2.15) are eigenmode solutions of (2.14) and are indexed
by a k-tuple of non-negative integers. By introducing (2.15) into (2.14), we obtain the
following infinite system of ordinary differential equations:

d

dt

(

cn1,...,nk

dn1,...,nk

)

=

(

a11 − 4D1(n
2
1 + . . . + n2

k) a12

a21 a22 − 4D2(n2
1 + . . . + n2

k)

)(

cn1,...,nk

dn1,...,nk

)

= Jn1,...,nk

(

cn1,...,nk

dn1,...,nk

)

.

(2.16)
with (n1, . . . , nk) ≥ (0, . . . , 0).

For each non-negative k-tuple of integers (n1, . . . , nk), the stability of the eigen-
mode solutions of (2.16) is determined by the eigenvalues of the matrix Jn1,...,nk

. Writ-
ing the eigenvalues of Jn1,...,nk

as a function of the trace and determinant, we obtain,

λ+−
n1,...,nk

=
1
2

(

Tr Jn1,...,nk
±

√

(Tr Jn1,...,nk
)2 − 4 Det Jn1,...,nk

)

(2.17)

By (2.16), for every (n1, . . . , nk) ≥ (0, . . . , 0), the real and imaginary parts of (2.17)
are bounded from above, and we can define the number,

Λ = max
{

Re(λ±n1,...,nk
) : (n1, . . . , nk) ≥ (0, . . . , 0)

}

(2.18)

The number Λ is the upper bound of the spectral abscissas of the set of matrices
{Jn1,...,nk

: (n1, . . . , nk) ≥ (0, . . . , 0)}.
This linear analysis led Turing to find that, in the case of two or more diffusive

and reacting substances, a stable state of the local system (2.14) could be destabi-
lized by the diffusion terms, inducing a symmetry breaking in the global behav-
ior of the solutions of the non-linear system (2.13). This effect is called Turing or
diffusion-driven instability. Depending on the type and magnitude of the unstable
eigenmodes of the linearized reaction-diffusion system, different asymptotic states
of the non-linear system could eventually be reached. Turing implicitly conjectured
that if the eigenvalue with dominant real part of all the unstable eigenmodes of the
linearized system is real, an asymptotic time-independent solution of the non-linear
equation could eventually be reached. On the other hand, if the eigenvalue with
the dominant real part of all the unstable eigenmodes is complex, the solution could
evolve into a time periodic spatial function or wave. In the first case, we are in the
presence of a Turing instability, and in the second case, we have an oscillatory insta-
bility.

2.3 The Brusselator Model

The reaction-diffusion model used to test the sparse regression method is based on
the Brusselator model proposed in [11]. According to the authors, this model mimics
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an auto-catalytic process and has the following kinetic mechanisms:

A
k1−→ X; B + X

k2−→ Y + D;

2X + Y
k3−→ 3X; X

k4−→ E. (2.19)

Here, X is the auto-catalytic chemical substance. Applying the mass action law to
(2.19), we obtain the following system of differential equations:

∂X

∂t
= k1A− k2BX + k3X2Y− k4X (2.20)

∂Y

∂t
= k2BX− k3X2Y (2.21)

∂A

∂t
= −k1A (2.22)

∂B

∂t
= −k2BX (2.23)

∂E

∂t
= k4X (2.24)

∂D

∂t
= k2BX (2.25)

These equations are subject to the conservation laws:

B(t) + D(t) = B(0) + D(0); (2.26)

X(t) + Y(t) + A(t) + E(t); = X(0) + Y(0) + A(0) + E(0); (2.27)

Assuming that A and B are constants, which are supplied during the reaction (open
flow reactor experiments), the reaction-diffusion Brusselator model becomes:

{

∂X
∂t = k1A− k2BX + k3X2Y− k4X + D1∇

2X
∂Y
∂t = k2BX− k3X2Y + D2.∇2Y

(2.28)

Here, D1 and D2 are diffusion coefficients, and ∇2 is the Laplace operator. The local
component of the vector field associated with equation (2.28) has a fixed point with
coordinates:

(X0, Y0) =

(

Ak1

k4
,

Bk2k4

Ak1k3

)

. (2.29)

If B <
k4
k2
+

A2k2
1k3

k2k2
4

, (X0, Y0) is a stable focus. If B >
k4
k2
+

A2k2
1k3

k2k2
4

, (X0, Y0) is an unstable

focus, and the local vector field has a supercritical Hopf bifurcation for B = k4
k2
+

A2k2
1k3

k2k2
4

.
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FIGURE 2.3: Bifurcation diagram of the solutions for the Brusselator
model (2.28)[6], with parameter values A = 2, k1 = k2 = k3 = k4 = 1,
and D2 = 1, in a one-dimensional domain of length S = 19.365. The
line B = 5 indicates the supercritical Hopf bifurcation of the fixed
point (X0, Y0) within the local system. The grey regions correspond to
parameter values where the origin exhibits a Turing instability. Nu-
merical integration of equations (2.28) for initial conditions slightly
deviating from the steady state (X0, Y0) reveals Turing patterns ex-
clusively in the dark-grey region. If B > 5, solutions within the light-
grey and white regions exhibit spatial constancy and temporal oscil-
lations, with a period defined by the limit cycle. If B ≤ 5, solutions
within the white regions remain time-independent and spatially con-

stant.
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FIGURE 2.4: The image depicts the steady state of the Brusselator
model, numerically integrated with a time step of dt = 0.001, spatial
step dx2 = 0.006, and model parameters set to k1 = k2 = k3 = k4 = 1,

D1 = 0.1, D2 = 1, A = 2, and B = 15.
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Fig. 2.3 explores the parameter space of the Brusselator model to visualize re-
gions of Turing instabilities and Turing patterns. Numerical integration for various
values of B and D1 delineates the boundary separating the dark and light-grey re-
gions in Fig. 2.3. Within the dark-grey region, small perturbations from the steady
state evolve into time-independent and spatially non-homogeneous states, known
as Turing patterns.
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FIGURE 2.5: This image displays the oscillatory behavior of a specific
spatial point in our system. The Brusselator model is numerically
integrated with a time step of dt = 0.1, spatial step dx2 = 0.6, and
model parameters set to k1 = k2 = k3 = k4 = 1, D1 = 0.1, D2 = 1,

A = 1, and B = 2.3.
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FIGURE 2.6: This figure illustrates the limit cycle towards which the
dynamics tend in the oscillatory regime of the Brusselator model.
Each point correspond to a point in the one dimensional system at

timestep t = 2000.
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To evaluate the sparse regression model, we simulate the Brusselator model un-
der varying conditions. In Fig. 2.4, we visualize the steady state of the Brusselator
model under parameters conducive to Turing patterns. The oscillatory behavior is
achieved with parameters k1 = k2 = k3 = k4 = 1, D1 = 0.1, D2 = 1, A = 2, and
B = 2.3. Fig. 2.5 showcases the oscillations at a specific spatial point within the
system. In Fig. 2.6, we visualize the system’s limit cycle in the oscillatory regime at
a significant time step t≫ 1.
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Chapter 3

Sparse Regression for System
Identification

3.1 Sparse Identification of Nonlinear Dynamics (SINDy)

Discovering dynamical system models from data stands as a central challenge in
mathematical physics, with a rich historical lineage dating back to the time of Ke-
pler and Newton when the laws governing planetary motion were first revealed.
Traditionally, this process relied on a blend of high-precision measurements and ex-
pert intuition. However, in today’s era of abundant data and increasing computa-
tional capabilities, the automated discovery of governing equations and dynamical
systems represents a novel and exciting scientific paradigm.

Typically, one of two approaches is followed: either the form of a candidate
model is constrained based on prior knowledge of the governing equations, or a few
heuristic models are tested and their parameters optimized to align with the avail-
able data. Nonetheless, simultaneously identifying both the nonlinear structure and
parameters of a model from data poses a considerably more formidable challenge
due to the vast number of possible model structures to consider.

The Sparse Identification of Nonlinear Dynamics (SINDy) algorithm [2] bypasses
this demanding task of exploring all possible model structures through a clever strat-
egy, exploiting the fact that many dynamical systems can be represented as

d

dt
x = f (x), (3.1)

where the dynamics f typically involve only a sparse set of active terms within the
space of potential right-hand side functions.

The approach is to approximate f using a generalized linear model:

f (x) ≈
p

∑
k=1

θk(x)ξk = Θ(x)ξ, (3.2)

where the objective is to identify the fewest non-zero terms in ξ as possible. This
is achieved by solving for the pertinent terms active in the dynamics using sparse
regression, which penalizes the inclusion of unnecessary terms in the model and is
scalable to handle large and complex problems.

The practical implementation of SINDy involves the collection of time-series data
from (3.1), which is structured into a data matrix:

X =
[

x(t1) x(t2) . . . x(tm).
]

(3.3)
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An analogous matrix is constructed for the derivatives of the data:

Ẋ =
[

ẋ(t1) ẋ(t2) . . . ẋ(tm)
]T

. (3.4)

In practice, this matrix derivative can be directly computed from the data within
X. For noisy data, a total-variation regularized derivative calculation often provides
robust results [5]. When dealing with noisy data, alternative methods include data
smoothing through convolution with a kernel (e.g., Gaussian) or employing poly-
nomial interpolation to derive locally smooth derivatives. If the data is noise-free, a
standard finite difference method can suffice for derivative estimation.

A library of candidate nonlinear functions Θ(X) is then assembled based on the
data within X:

Θ(X) =
[

1 X X2 . . . Xd . . . sin X . . .
]

(3.5)

Here, Xd represents a matrix where the column vectors comprise all conceivable
time series of d-th-degree polynomials based on the state x. Essentially, the library
of candidate functions is bound solely by one’s creative imagination.

The dynamical system described in (3.1) can be recast in terms of the data matri-
ces presented in (3.4) and (4.9) as follows:

Ẋ = Θ(X)Ξ. (3.6)

Each column ξk in Ξ represents a vector of coefficients that determine the active
terms in the k-th row of (3.1). A parsimonious model seeks an accurate fit in (3.6)
with the fewest terms in Ξ, which can be identified using convex ℓ1-regularized
sparse regression:

ξk = arg min
ξ′k

∥

∥Ẋk −Θ(X)ξ′k
∥

∥

2 + λ
∥

∥ξ′k
∥

∥

1 . (3.7)

In this equation, Ẋk refers to the k-th column of Ẋ, and λ serves as a regular-
ization parameter that promotes sparsity. Sparse regression methods like the Least
Absolute Shrinkage and Selection Operator (LASSO) [17] or the Sequential Thresh-
olded Least-Squares (STLS) algorithm used in SINDy [2] enhance the robustness of
this identification process, particularly for noisy over-determined problems.

Various regularization terms can be employed to solve the sparse regression
problem, such as ℓ2, ℓ1, and ℓ0 norms for sparsity control. Additionally, an alter-
native option is the Sparse Relaxed Regularized Regression (SR3) [21], which intro-
duces a relaxation of the regularized problem and generally excels in terms of errors,
false positives, and conditioning.

The Sequential Thresholded Least Squares algorithm, STLSQ(Θ, Ẋ, threshold, n,
iterations), outlines the steps involved in the sparse regression process:

The outcome of the SINDy regression process yields a parsimonious model that
includes only the essential terms necessary to explain the observed behavior. In
contrast, the brute-force search through the extensive array of potential model struc-
tures, which would involve regression onto every possible sparse nonlinear struc-
ture, is computationally infeasible. SINDy offers a modern and efficient solution
based on convex optimization and machine learning.

It’s noteworthy that in the case of discrete-time dynamics, when Θ(X) primar-
ily consists of linear terms and λ is set to zero to remove sparsity promotion, this
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Algorithm 1 STLSQ(Θ, Ẋ, threshold, n, iterations)

1: Ξ← Θ
²Ẋ ▷ Initial guess: Least-squares

2: for k← 1 to iterations do

3: smallinds← (abs(Ξ) < threshold) ▷ Find small coefficients
4: Ξ[smallinds]← 0 ▷ Threshold small coefficients
5: for ind← 1 to n do ▷ n is the state dimension
6: biginds← ¬smallinds[:, ind]
7: Ξ[biginds, ind]← Θ[:, biginds]²Ẋ[:, ind] ▷ Regress dynamics onto

remaining terms
8: end for

9: end for

10: return Ξ

algorithm reduces to Dynamic Mode Decomposition (DMD). However, when least-
squares regression, akin to DMD, is employed, any level of measurement error or nu-
merical imprecision will activate all terms in the library, resulting in a non-physical
model. SINDy’s strength lies in its capacity to identify parsimonious models that
exclusively encompass the necessary nonlinear terms, thus yielding interpretable
models that circumvent overfitting.

3.2 Partial Differential Equation Extension

A significant extension of the SINDy modeling framework involves the generaliza-
tion of the library to include partial derivatives, enabling the identification of partial
differential equations. This resulting algorithm, named the Partial Differential Equa-
tion Functional Identification of Nonlinear Dynamics (PDE-FIND), has proven suc-
cessful in identifying several canonical PDEs from classical physics purely based on
noisy data. These PDEs include Navier±Stokes, Kuramoto-Sivashinsky, Schrödinger,
reaction±diffusion, Burgers, Korteweg±de Vries, and the diffusion equation for Brow-
nian motion [15].

PDE-FIND shares similarities with SINDy, as it relies on sparse regression in a
library constructed from measurement data. The spatial time-series data is orga-
nized into a single column vector Υ ∈ Cmn, representing data collected over m time
points and n spatial locations. Additional inputs, such as a known potential for the
Schrödinger equation or the magnitude of complex data, are arranged into a column
vector Q ∈ Cmn. Next, a library Θ(Υ, Q) ∈ Cmn×D of D candidate linear and non-
linear terms, as well as partial derivatives for the PDE, is constructed. Derivatives
are computed either using finite differences for clean data or, when noise is present,
through polynomial interpolation or by convolving the signal with a smoothing fil-
ter and then computing finite differences. The candidate linear and nonlinear terms,
along with the partial derivatives, are combined into a matrix Θ(Υ, Q), which takes
the form:

Θ(Υ, Q) =
[

1 Υ Υ
2 . . . Q . . . Υx ΥΥx . . .

]

. (3.8)

Each column of Θ contains all the values of a particular candidate function across
all mn space-time grid points where data is collected. The time derivative Υt is
computed and reshaped into a column vector. The PDE evolution can be expressed
within this library as follows:

Υt = Θ(Υ, Q)ξ (3.9)



18 Chapter 3. Sparse Regression for System Identification

Each entry in ξ corresponds to a coefficient for a term in the PDE. For canonical
PDEs, the vector ξ is sparse, indicating that only a few terms are active.

If the library has a rich enough column space to represent the dynamics, the PDE
can be well approximated by (3.9) with a sparse vector of coefficients ξ. To identify
the active terms in the dynamics, sparsity-promoting regression, similar to SINDy,
is employed. It’s crucial to note that the regression problem in (3.9) may suffer from
poor conditioning. Errors in computing the derivatives may be amplified when in-
verting Θ. Therefore, a least-squares regression significantly alters the qualitative
nature of the inferred dynamics.

In practice, the goal is to find the sparsest vector ξ that satisfies (3.9) with a small
residual. Instead of attempting a computationally intractable combinatorial search
for all possible sparse vector structures, a common technique is to relax the problem
to a convex ℓ1-regularized least-squares [17]. However, this may perform poorly
with highly correlated data. Instead, ridge regression with hard thresholding is em-
ployed, known as sequential threshold ridge regression (STRidge), as presented in
Algorithm 2 (reproduced from Rudy et al. [15]). By iteratively refining the tolerance
of Algorithm 2, the best predictor is determined based on selection criteria.

In [15] the authors extend the STRidge algorithm to an ℓ0-regularized optimiza-
tion problem as follows:

ξ = arg min
ξ

∥Θ(Υ, Q)ξ − Υt∥
2
2 + ϵκ(Θ(Υ, Q)) ∥ξ∥0 (3.10)

where κ(Θ) is the condition number of the matrix Θ, offering more robust regu-
larization for ill-posed problems. The penalty term ∥ξ∥0 discourages over-fitting by
selecting from an optimal position in a Pareto front.

Algorithm 2 STRidge(Θ, Υt, α, threshold, iters)

ξ̂ ← arg minξ ∥Θξ − Υt∥
2
2 + α ∥ξ∥2

2
bigcoeffs← {j : |ξ̂ j| ≥ threshold}
ξ̂[∼ bigcoeffs]← 0
ξ̂[bigcoeffs]← STRidge(Θ[:, bigcoeffs], Υt, threshold, iters− 1)
return ξ̂

After having implemented a rudimentary version of the algorithm for educa-
tional purposes, for the analysis undertaken in this thesis we leveraged the opti-
mized Python package PySindy [pysindy] to discover equations within the analyzed
datasets.
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Chapter 4

Results and Discussion

4.1 Synthetic Turing Patterns Data

We start our analysis by employing the sparse regression framework on the station-
ary state of the Brussellator within the Turing patterns regime. In this state, the
system satisfies the following set of equations.

{

∂X
∂t = k1A− k2BX + k3X2Y− k4X + D1∇

2X = 0
∂Y
∂t = k2BX− k3X2Y + D2∇2Y = 0

(4.1)

This means that we can express the diffusion terms as the reaction terms changed of
sign and rescaled by the diffusion constants.

{

∇2X = −20 + 160X− 10X2Y

∇2Y = −15X + X2Y
(4.2)

Where we have substituted the parameters with the actual coefficient of the sim-
ulated system. To apply the sparse regression algorithm we have to compute the
Laplacian (Fig. 4.1) starting from the data. This procedure is done by finite differ-
ences and it is highly sensible to noise.
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FIGURE 4.1: This image displays the computed discrete Laplacian of
the simulated Turing patterns.
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After having computed the Laplacian we want to apply the sparse identifica-
tion of nonlinear dynamics (SINDy), and write the Laplacian as a matrix product as
follows

{

∇2X = Θ(X, Y)ξx

∇2Y = Θ(X, Y)ξy,
(4.3)

where X and Y are the concentrations vectors of the system with dimensions M =
370, ξx and ξy are the sparse vectors with most of the components equal to 0, Θ(X, Y)
is the library of functions, which in this case is composed by all the polynomial in X
and Y up to degree 4.

Θ(X, Y) =
[

1 X Y X2 XY Y2 . . . X4 Y4
]

. (4.4)

After choosing the threshold parameter and the regularization strength α we can
apply the algorithm. At each iteration of the sequential thresholded algorithm, we
choose the sparse vector coming from the following optimization.







ξx = arg minξ′x
{
∥

∥∇2X −Θ(X, Y)ξ′x
∥

∥

2
2 + α

∥

∥ξ′x
∥

∥

2
2}

ξy = arg minξ′y
{
∥

∥

∥∇2Y −Θ(X, Y)ξ′y

∥

∥

∥

2

2
+ α

∥

∥

∥ξ′y

∥

∥

∥

2

2
}

(4.5)

The process of identifying the optimal sparse model is significantly shaped by
the selection of the regularization parameter, α, and the choice of the threshold. The
threshold operates iteratively, selectively discarding less relevant columns in the re-
gression matrix. A high threshold encourages greater sparsity, potentially leading
to a scenario where no columns are selected, and every term in the sparse vector
is set to 0, a condition indicative of minimal model complexity. Conversely, a low
threshold results in every component of the sparse vector being non-zero, signaling
potential over-fitting of the model.

The pivotal role of the threshold becomes evident as it governs the delicate trade-
off between model error and complexity. The regularization strength, denoted by α,
further fine-tunes this balance by influencing the magnitude of terms in the sparse
vector. A higher α imposes penalties on larger-normed vectors, promoting a "sim-
pler" solution. Conversely, lower α values may result in larger terms within the
sparse vector, potentially leading to over-fitting. To summarize, if we hold α con-
stant, a higher threshold fosters sparsity in the vector. On the other hand, fixing the
threshold while increasing α encourages a sparser vector. In the presence of noise, a
higher α becomes indispensable to mitigate the risk of over-fitting. This trade-off is
visually evident in Fig. 4.2, which illustrates the relationship between model com-
plexity, quantified by the number of nonzero coefficients in the sparse vectors, and
error as a function of threshold.

The selection of the optimal parameters, which include both regularization strength
and threshold, is achieved by grid search. The ideal parameter set achieves an equi-
librium by ensuring that the sparse vectors contain a minimum number of nonzero
terms. Choosing a more complex solution than the optimal one does not produce
a significant reduction in error, while choosing a simpler solution leads to a signifi-
cant increase in error. Fig. 4.3 shows how the choice is made. After conducting the
grid search we can plot the error as a function of the number of non-zero coefficients
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FIGURE 4.2: This image shows the existing trade-off between the
complexity of the model and the error which is controlled by the mag-
nitude of the threshold. For this plot, the regularization strength is
fixed to α = 10−5. The error is measured as Mean Absolute Error

(MAE).

of the sparse vectors. We plot this for every parameters choice and choose the best
option according to the error and the complexity of the model (Fig. 4.3).

Our goal is to employ this method for the accurate identification of dynamic sys-
tem equations based on real data. To pursue this goal, we evaluated the robustness
of the algorithm in the presence of different levels of noise to ensure its reliability
and performance under different conditions.

As demonstrated in Table 4.1, the algorithm shows a good ability to accurately
identify the coefficients that constitute the differential equations (4.12) up to a spe-
cific noise threshold.

The impact of noise is closely related to the process of calculating the derivatives
by finite differences. Moreover, the calculation involves obtaining a second-order
derivative from a signal affected by noise, with the noise level of the derivative in-
creasing proportionally to the order of differentiation. During this research we also
explore other possible approaches that are more noise-robust to calculate deriva-
tives, such as:

• Polynomial Interpolation: we define a rolling window and a degree k. In
each window we interpolate the point with a polynomial of degree k and then
we take the derivative of the polynomial. This method introduces two more
hyper-parameter which are the size of the window and the degree of the poly-
nomial.

• Total Variation Denoising: We get a smoothed signal by minimizing its total
variation and then we compute finite differences derivatives. The optimization
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FIGURE 4.3: Each point in the graph is an output model for specific
hyper-parameters, i.e. the threshold and the regularization strength.
For each model we plot its error and its complexity measured in num-
ber of non-zero coefficient of the sparse vector. It is clear that there is
a Pareto optimal solution that represent the best choice for the hyper-

parameters. The plot is referred to concentration X.

is the following one

arg min
u

{

λ
N−1

∑
i=1

|ui+1 − ui|+
1
2

N

∑
i=1

(ui − u0i
)2

}

where u0 is the one dimensional noisy signal and u is the denoised one.

• Smoothed Finite Differences: we convolve the data with a smoothing filter,
e.g. a Gaussian or a moving average filter. After this, we evaluate derivatives
through finite differences.

All the methods for computing derivatives mentioned above do not exhibit com-
parable performance to finite differentiation, whether in the presence or absence of
noise. The attempts to denoise or smooth the signal appear to result in a substan-
tial loss of information regarding the system dynamics. Consequently, the algorithm
outputs a model that is less accurate than the one obtained through finite differenti-
ation.

To address the issue of noise, we explored an alternative sparse regression op-
timization algorithm known as Sparse Relaxed Regularized Regression (SR3) [21].
This optimization approach is supposedly more robust to noise, as suggested by the
literature.

{

ξx = arg minξ′x

1
2∥∇

2X −Θ(X, Y)ξ′x∥
2
2 + α∥u∥0 +

1
2ν∥ξ

′
x − u∥2

2

ξy = arg minξ′y

1
2∥∇

2Y −Θ(X, Y)ξ′y∥
2
2 + α∥u∥0 +

1
2ν∥ξ

′
y − u∥2

2
(4.6)

Despite the implementation of this strategy, the performance of the best model
showed marginal improvement over the Sequential Thresholded Ridge Regression
(STRidge) used initially. The results, incorporating more than six polynomial terms,
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Noise Chemical Alpha Threshold Reaction Term

0%
X 10−5 0.2 −20.000 + 159.999x− 10.000x2y
Y 10−5 0.1 −15.000x + 1.000x2y

0.001%
X 10−5 0.2 −20.000 + 159.999x− 10.000x2

Y 10−5 0.1 −15.000x + 1.000x2y

0.01%
X 10−5 0.2 −20.001 + 159.999x− 10.000x2y
Y 10−5 0.1 −15.000x + 1.000x2y

0.1%
X 10−5 4.72 −20.003 + 159.973x− 9.998x2y
Y 10−4 0.2 −14.998x + 1.000x2y

0.5%
X 5x10−3 5.226 −19.857 + 159.490x− 9.972x2y
Y 10−2 0.6 −14.970x + 0.998x2y

1%
X 0.5 6.7 12.680x2 + 25.685xy− 15.990x2y+

57.876xy2 − 16.450xy3

Y 0.5 0.5 −3.791xy + 0.554x2y

TABLE 4.1: In the table are listed the results of the best model for dif-
ferent noise levels. If the noise is small enough the algorithm correctly
identifies the reaction terms of the the reaction-diffusion system. The
reported noise levels are expressed as a percentage of the standard

deviation of the noise-free dataset.

clearly indicated signs of over-fitting. As a result, we chose to rely exclusively on the
more efficient STRidge algorithm.

As highlighted earlier, a notable limitation stems from the poor noise tolerance
associated with the way we compute derivatives. Addressing this issue is critical for
further refinement of the algorithm. Furthermore, when dealing with Turing mod-
els, unlike the oscillation regime, we face the challenge of limited data availability.
In this regime, the model is fit with only 370 data points, in sharp contrast to the few
thousand we can use for the time-dependent oscillation regime. This discrepancy
emphasizes the need for nuanced considerations and adjustments in the modeling
approach for the different regimes.

4.2 Synthetic Oscillations Data

We now aim to explore the algorithm’s performance using the same set of reaction-
diffusion equations but with different parameters. Specifically, the selected coeffi-
cients for the equations (4.7) induce a steady state marked by sustained oscillations.

{

∂X
∂t = 1− 3.3X + X2Y +∇2X
∂Y
∂t = 2.3X− X2Y + 0.01∇2Y

(4.7)

In this case, we are looking for the sparse vectors that best satisfy the following
equation.

{

∂X
∂t = Θ(X, Y)ξx
∂Y
∂t = Θ(X, Y)ξy

(4.8)

In this case the regression matrix Θ is composed of all polynomial terms in X
and Y up to degree 4 and spatial derivative terms up to second order.
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Θ(X, Y) =
[

1 X Y X2 XY Y2 . . . ∂X
∂z . . . ∂2X

∂z2

]

(4.9)

where z is the spatial dimension of the one-dimensional system. In this case, the
optimization algorithm run at each step of the iterative thresholded method is the
solution of the following equations.







ξx = arg minξ′x

∥

∥

∥

∂X
∂t −Θ(X, Y)ξ′x

∥

∥

∥

2
+ α

∥

∥ξ′x
∥

∥

2

ξy = arg minξ′y

∥

∥

∥

∂Y
∂t −Θ(X, Y)ξ′y

∥

∥

∥

2
+ α

∥

∥

∥ξ′y

∥

∥

∥

2

(4.10)

As in the previous case there is a high dependency on noise given by the nu-
merical computation of finite derivatives. And accordingly with the case of simu-
lated Turing patterns even if we try to compute the derivative in more-noise robust
method the performance of the algorithm does not improve compared to the finite
differences scheme. Even though with this dataset the algorithm performs more
poorly in terms of correct identification of the coefficients in the reaction terms, we
have to appreciate the noise robustness of the approximate solutions and the correct
choice of the polynomial terms in the library of functions Θ.
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FIGURE 4.4: Each point in the graph is an output model for specific
hyper-parameters, i.e. the threshold and the regularization strength.
For each model, we plot its error and its complexity measured in the
number of non-zero coefficients of the sparse vector. It is clear that
there is a Pareto optimal solution that represents the best choice for

the hyper-parameters. The plot is referred to a concentration X.

Given the interpretation of under- and over-fitting as respectively high error and
low number of terms in the equation and low error and high number of terms, we
can pick the best model hyper-parameters of the model as done previously (Fig.
4.4). The optimal model, which is the one with the lowest sparsity and lowest error
(Fig. 4.4) does identify the correct library terms but does not manage to detect the
diffusion terms. The following table reports the results of the algorithm as noise
increases.
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Noise Chemical α Threshold Identified Equation

0%
X 10−5 0.2 0.899− 3.176x + 0.990x2y
Y 10−5 0.1 2.232x− 0.981x2y

0.001%
X 10−5 0.2 0.899− 3.176x + 0.990x2y
Y 10−5 0.1 2.232x− 0.981x2y

0.01%
X 10−5 0.2 0.899− 3.176x + 0.990x2y
Y 10−5 0.1 2.232x− 0.981x2y

0.1%
X 10−5 4.72 0.899− 3.176x + 0.990x2y
Y 10−4 0.2 2.232x− 0.981x2y

0.5%
X 5× 10−3 0.1 0.898− 3.175x + 0.990x2y
Y 10−2 0.6 2.232x− 0.981x2y

1%
X 0.5 6.7 0.898− 3.174x + 0.990x2y
Y 0.5 0.5 2.231x− 0.981x2y

5%
X 0.6464 10−5 0.887− 3.136x + 0.977x2y
Y 0.608 0.1 2.207x− 0.970x2y

10%
X 0.9696 10−5 3.363− 7.695x− 1.111y+

1.857x2 + 2.198xy
Y 0.1 0.8 4.545x− 1.723x2 − 1.143xy

TABLE 4.2: In the table are listed the results of the best model for
different noise levels. If the noise is small enough, the algorithm cor-
rectly identifies the reaction terms of the reaction-diffusion system.
The noise is the reported percentage of the standard deviation of the

noise-free simulations.

Noise Chemical α Threshold Second Best Sparse Model

0%
X 10−5 0.2 −3.117x2 + 0.867x3+

0.988x2y + 0.806∇2x
Y 10−5 0.1 2.234x− 0.982x2y−

1.208∇2y

0.001%
X 10−5 0.2 −3.117x2 + 0.867x3+

0.988x2y + 0.805∇2x
Y 10−5 0.1 2.234x− 0.982x2y−

1.207∇2y

0.01%
X 10−5 0.2 −3.117x2 + 0.867x3+

0.988x2y + 0.801∇2x
Y 10−5 0.1 2.234x− 0.982x2y−

1.195∇2y

0.1%
X 10−5 4.72 −3.117x2 + 0.867x3+

0.988x2y + 0.787∇2x
Y 10−4 0.2 2.234x− 0.982x2y−

1.159∇2y

0.5%
X 5× 10−3 0.1 −3.115x2 + 0.866x3+

0.988x2y + 0.542∇2x
Y 10−2 0.6 2.233x− 0.981x2y−

0.657∇2y

TABLE 4.3: In the table are listed the results of the second-best model
for different noise levels. As we can notice the algorithm correctly

selects the Laplacian to include in the equation.
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Selecting the second-best sparse model enables the algorithm to successfully
identify the presence of diffusion. It’s noteworthy that even in the presence of mini-
mal noise, the algorithm can detect the existence of diffusion. In the case of chemical
species X, the identified diffusion constant aligns closely with the actual value (Eq.
(4.7)). Similarly, for chemical species Y, the algorithm identifies diffusion, albeit with
an inaccurate diffusion constant. Importantly, in the case of chemical species Y, the
second-best optimal solution accurately selects all the correct function library terms,
providing a robust approximation of the coefficients for the reaction terms. With the
current data, the algorithm is more robust to noise compared to the Turing patterns
data. The cause can be identified in the relative abundance of data points compared
with the stationary case. Moreover, the inability of the algorithm to compute the
correct diffusion term is once again linked to noisy derivatives. The higher the order
of the derivative of a noise data, the higher will be also the noise of the derivative.

4.3 Drosophila Turing Patterns

Turing pattern are self arising order structured that we can see regularly in the nat-
ural world. In this section we comment on the trial to calibrate experimental data
coming from Turing pattern arising in an embryo of the drosophila. In this preco-
cious state of development, it is reasonable to think that pattern formation is driven
by protein production and interaction. We apply the sparse regression framework
of laboratory data of two proteins concentrations (Fig. 4.5).
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FIGURE 4.5: The picture shows the distribution of two proteins in the
embryo of a fruit fly.

As done in the first section of this chapter we compute the discrete Laplacian
through finite differences avoiding the boundary regions where the pattern is not
present. It is already clear from the form of the Laplacian in Fig. 4.6 that there is
a high presence of noise. Nonetheless, we want to investigate if the magnitude of
the noise is too high for our model to correctly identify the dynamical equations. In
particular, as previously done on synthetic data of the Turing pattern coming from
the brusselator model, we want to apply the sparse regression framework to identify
the reaction term for the two proteins.
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FIGURE 4.6: The picture shows the Laplacian of the distribution of
two proteins in the embryo of a fruit fly.

Given the interpretation of under- and over-fitting as respectively high error and
low number of terms in the equation and low error and high number of terms, we
can pick the best model hyper-parameters of the model as done previously (Fig. 4.7).
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FIGURE 4.7: The plot shows the optimal and most sparse model for
the protein dataset of the drosophila.

We apply the algorithm to this data finding that noise is indeed too high to have
a precise or reasonable approximation of the reaction terms. This fact can be noticed
by looking at the prediction of the fit in Fig. 4.8

The optimal model we found for the real system is presented in the following
equation, which is sparse.

{

∇2X = −Rx(X,Y)
D1

= −3.686XY + 5.606XY2;

∇2Y = −
Ry(X,Y)

D2
= 2.353X2Y− 3.408XY3.

(4.11)
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FIGURE 4.8: The plot shows the best model fit (dotted lines) and the
Laplacian of the protein concentrations of the drosophila.

The system of equations considering just the reaction term is the following is the
following

{

∂X
∂t = AXY + BXY2

∂Y
∂t = CX2Y + DXY3

(4.12)

where A = 3.686, B = −5.606, C = −2.353, D = 3.408. This system has a
fixed point in (X0, Y0) = (− A2D

B2C
,− A

B ). The Jacobian evaluated in (X0, Y0) has real
eigenvalues λ1 = −0.834 and λ2 = 2.675. So it is an unstable fixed point but the
behaviour of the system with diffusion might vary.

When fitting the Laplacian, the diffusion constant emerges as a scaling factor ac-
companying the coefficients of the reaction term, as outlined in the equation (4.12).
When we standardize the diffusion constant to 1 and use the scalar coefficients, de-
rived from the sparse regression model, we essentially re-scale the time. Although
this is not a problem for a single system, where the actual dynamics remain consis-
tent, it becomes a crucial consideration for two coupled differential equations. In
this context, uniform scaling of the system is essential. The maximum diffusion con-
stant between the two chemicals sets the spatial and temporal scales. Accordingly,
we set one diffusion constant to 1, assuming it is the maximum, and conduct a grid
search for the other within the range (0, 1). Next, after determining the diffusion
constants, we numerically integrate the reaction-diffusion equations derived from
(4.12) including the diffusion terms, looking for the steady state of the system.

After this analysis we could not see any Turing pattern structure in the stationary
state of the systems with various diffusion constants. Already from the approxima-
tion of the computed discrete Laplacian (Fig. 4.6), and even more in the prediction
of the Laplacian (Fig.4.8) we can see that the noise level is high. The prediction of
the Laplacian manages to find the correct period of the periodic signal but performs
poorly in identifying peaks and wells. So even though the spatial structure of the
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protein distribution looks pretty similar to the one of Turing pattern originated from
reaction-diffusion we could not calibrate the experiment and re-propose the same
results in a simulated system.

4.4 Remarks

The analysis of the algorithm reveals its potential in identifying terms associated
with local interactions between reactants, even in the presence of moderate noise.
However, to enhance its performance, as we stated in the preceding paragraphs,
further development of denoising or derivative computation methods is necessary,
distinct from the ones attempted in this thesis.

A key observation is the potential relationship between the algorithm’s resilience
to noise and the number of points considered for the fit. As we saw with the two
different dataset, the noise robustness of the algorithm varies. To investigate this we
could vary the sample abundance to discern if the accuracy of the model is signifi-
cantly affected by the number of points. We expect the model to depend highly on
data points number in low sample abundance and we hypothesis the presence of a
number of sampling point after which the performance does not rise and remains
constant. This analysis could be enriched by assessing the algorithm’s efficiency
across different scenarios, manipulating both the number of points and the inten-
sity of noise. The expectation is that as noise increases, more points are required to
prevent model over-fitting.

Concerning optimization, the ridge regression method has been consistently em-
ployed. This method allows for the exploration of parameter space, providing a
straightforward means to select the optimal model by plotting model error against
the number of terms present in the models. Exploratory attempts with a relaxed
version of regression, incorporating l1 and l0 norm regularization, were made to
enhance performance in noisy conditions. However, the outcome was unfavorable,
leading to the continuation of the standard ridge regression method. The algorithm’s
effectiveness depends on various factors, including the ad hoc choices of regulariza-
tion and derivative calculation methods, which may be system-dependent.

Investigating the hypotheses we are proposing is beyond the scope of the thesis.
We place emphasis on the potential insights that could be gained from a deeper
comprehension of the algorithm’s behavior, in particular in our case where we are
interested in a specific kind of models and equations, namely reaction-diffusion.
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Chapter 5

Conclusions

5.1 Synthetic Turing Patterns Data

In this study, we applied a sparse regression framework to analyze synthetic Turing
patterns generated by the Brussellator within the Turing patterns regime. The al-
gorithm aimed to identify the coefficients of the reaction-diffusion equations based
on stationary state data. We observed that the success of the algorithm is highly
sensitive to the choice of parameters, such as the regularization strength (α) and the
threshold for sparsity. Exploring the delicate balance between model error and com-
plexity was crucial to find the optimal model, as illustrated in the complexity-error
tradeoff (Fig. 4.2).

The grid search for optimal parameters demonstrated the importance of fine-
tuning to achieve an equilibrium, ensuring that the sparse vectors contain a minimal
number of nonzero terms. However, the algorithm’s performance was affected by
noise in the Laplacian computation, particularly in the calculation of derivatives
using finite differences.

To address noise sensitivity, we explored alternative methods for calculating
derivatives, such as polynomial interpolation, total variation denoising, and smoothed
finite differences. However, these approaches did not outperform the finite differ-
ences scheme.

Additionally, we investigated the Sparse Relaxed Regularized Regression (SR3)
algorithm as an alternative to mitigate noise impact. Despite implementation, the
performance improvement was marginal, and the initial Sequential Thresholded
Ridge Regression remained the more efficient choice.

The algorithm showed promising results in identifying coefficients in the pres-
ence of low to moderate noise levels. However, the sensitivity to noise, especially in
derivative calculations, remains a limitation that requires further consideration and
refinement.

5.2 Synthetic Oscillations Data

Extending the analysis to synthetic oscillation data, we explored the algorithm’s per-
formance in identifying coefficients for reaction-diffusion equations inducing sus-
tained oscillations. Similar challenges with noise sensitivity were encountered, and
the impact of noise on derivative calculations persisted. Nevertheless, the algorithm
demonstrated better robustness to noise compared to the Turing patterns data, likely
due to the relative abundance of data points.

The algorithm successfully identified the presence of diffusion in the second-best
sparse model, even with minimal noise, although the accuracy of diffusion constant
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estimation varied. The optimal model proved crucial in accurately selecting function
library terms, providing a robust approximation of coefficients for reaction terms.

The limitations associated with noise in derivative calculations remained, em-
phasizing the need for further improvements and considerations when dealing with
different regimes and noise levels.

5.3 Drosophila Turing Patterns

Applying the sparse regression framework to experimental data from Turing pat-
terns in Drosophila embryos posed additional challenges. The Laplacian computa-
tion revealed a high presence of noise, impacting the algorithm’s ability to accurately
identify reaction terms. Despite attempts to explore alternative methods and algo-
rithms, the noise level proved too high for precise approximation.

The analysis also revealed challenges related to limited data availability, empha-
sizing the need for nuanced modeling approaches for different regimes.

In conclusion, while the sparse regression framework shows promise in iden-
tifying reaction-diffusion coefficients, addressing noise sensitivity and adapting to
different regimes are essential for robust and reliable results.

5.4 Further Developments

The presented research opens avenues for future exploration and refinement of the
sparse regression framework for reaction-diffusion systems:

• Noise Robustness: Develop and test additional noise-robust methods for deriva-
tive calculations to enhance the algorithm’s performance in the presence of
high noise levels.

• Data Augmentation: Investigate techniques for data augmentation or collec-
tion strategies to mitigate challenges associated with limited data availability,
especially in experimental settings.

• Parameter Optimization: Explore advanced optimization techniques to auto-
mate the process of selecting optimal hyper-parameters, reducing the need for
manual grid search.

• Real-world Applications: Apply the refined framework to real-world biologi-
cal systems beyond synthetic data, considering the intricacies of experimental
noise and complexities of biological processes. In the context of the reaction-
diffusion system, a challenging problem would be to calibrate the Belousov-
Zhabotinsky reaction from laboratory data which up until today remains an
open problem.

By addressing these future directions, we aim to enhance the robustness, accu-
racy, and applicability of the sparse regression framework, contributing to a deeper
understanding of complex biological phenomena governed by reaction-diffusion
dynamics.
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