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Introduction

The subject of this work will be the family of coloured graphical models, introduced by

Højsgaard & Lauritzen (2008), which are graphical models characterized by the presence

of symmetries between edges and vertices. A particular interest will be given to a

subfamily of coloured graphical models, called pdRCON models (Ranciati & Roverato,

2024a), used in the paired data setting, meaning that the graph is comprised of two

groups that are dependent of each other and present similarities. This dependence

structure in the data needs to be accounted for in the learning process. Special attention

will be brought to the role played by the hypotheses on the across-graph dependence

structure in the inference on the two group-level subgraphs.

The first chapter will give a brief introduction to the family of Gaussian Graphical

Models and their notation, and the general graphical lasso (Friedman et al., 2008) will

be presented.

The second chapter will focus on the family of coloured Gaussian graphical models,

and some examples of model selection procedures in the recent literature will be ex-

plained. The symmetric graphical lasso by Ranciati et al. (2021) will be introduced,

along with its extension given by the graphical lasso for paired data (Ranciati & Rover-

ato, 2024a), which gives a solution to the problem of model selection within the paired

data context through a fused-type lasso penalized log-loglikelihood approach.

The third chapter will show the results of a simulation study, making use of the R

package pdglasso (Ranciati & Roverato, 2024b), investigating whether a model reduc-

tion obtained by assuming that all across-group edges are either absent or symmetric

leads to improved structure and symmetry recovery of the two subgraphs, as well as

whether parameter estimation is more accurate.

The fourth chapter will present an instance of a real-world paired data problem,

where the variables are genes from a breast cancer tissue and healthy adjacent tissue, and
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interest is in estimating the similarities and differences of the conditional dependence

structures of the the gene-level transcription estimates of the cancerous and healthy

samples; the coloured graphs selected within the submodel classes considered in Chapter

three will be compared.



Chapter 1

Gaussian Graphical Models

The objective of this chapter is to give some background on Gaussian graphical models

(or GGMs) and the graphical lasso estimation approach, while establishing the notation.

A complete overview of graphical modelling can be found in Lauritzen (1996).

1.1 Graphs

A graph G is defined as the pair G = (V,E), where

� V = {1, 2, ..., p} is the set of vertices, sometimes also called nodes or points;

� E ¦ V ×V is the set of the edges, sometimes also called links or arcs, representing

relationships between pairs of edges.

There is a distinction between directed graphs, in which case E is a set of ordered

pairs of vertices and edges are usually represented graphically via the use of arrows,

and undirected graphs, in which case E is a set of unordered pairs of vertices; this work

will be focused on this second instance of graphical models. Directed graphs are used

for example in the fields of probabilistic reasoning and causal inference in the form of

Directed Acyclic Graphs, or DAGs, sometimes reffered to also as Bayesian networks ; see

e.g. Koski & Noble (2009).

In an undirected graph, the absence of an edge between two vertices implies that

the partial correlation between the two corresponding variables given the rest of the

graph is zero. That is, once the linear dependence on all other variables in the graph

is removed by fitting a regression model of each of the two variables on all others, the

residuals of these two regressions are uncorrelated. If joint normality of the variables in

3



4 Section 1.1 - Graphs

the graph is assumed, which will be the case with Gaussian Graphical Models, then lack

of correlation is equivalent to independence, and absence of an edge implies conditional

independence between the two corresponding variables given the rest of the graph. In

the graph of Figure 1.1 the absence of an edge between A and H, for example, implies

that the two variables are conditionally independent given the rest of the graph, that

is, A § H|V \ {A,H} ⇐⇒ A § H|{B,C,D,E, F,G}.
A different type of graphical model was introduced by Cox &Wermuth (1993), known

as the covariance graph model, in which the graph restricts the marginal independence

structure of the variables, rather than the conditional one; these models are however

analytically more complex and inferential procedures are more challenging.

1.1.1 Clique factorization

A graph clique is a subset of the vertex set C ¦ V that is fully connected : that is,

(s, t) ∈ E for all s, t ∈ C. A clique is maximal if it is not strictly contained in any

other clique or, in other words, a clique for which the addition of any further vertices

Figure 1.1: Example of an undirected graph having hav-
ing vertex set V = {A,B,C,D,E, F,G,H} and edge set
E{(A,C), (A,D), (C,D), (A,F ), (B,F ), (E,F ), (D,G), (F,H)} ¦ V × V .
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to the clique would make the subset not fully connected anymore. Figure 1.2 illustrates

the maximal cliques of the undirected graph of Figure 1.1. The set of all cliques in the

graph, both maximal and non-maximal, is denoted by C.
A collection of random variables X = (X1, ..., Xp), each taking values in the space X

can be associated with the graph G, thus constraining the distribution of the random

vector X via the clique structure of G.

For a given clique C ∈ C a compatibility function is a real-valued function ÈC of the

sub-vector xC = (xs, s ∈ C) taking positive real values. The probability distribution P

of the random vector X factorizes over the graph G if the decomposition

P(x1, ..., xp) =
1

Z

∏

C∈C
ÈC(xC) (1.1)

holds true, where Z =
∑

x∈X p

∏

C∈C ÈC(xC) is the partition function, a normalising con-

stant ensuring that the quantity is a valid probability distribution, with total probability

summing to one.

Such factorization makes evident the usefulness of graph models. Once a graph G

fitting to the random vector X is identified, it is possible to redefine the probability

distribution P, taking values in the space X p = X × X × ... × X, that would then

require to specify a potentially large number of parameters, into a much easier to handle

and compact product of compatibility function. This factorization is thus particularly

convenient in terms of storage and computational resources when p is large and the

clique sizes are not too big. Graphical models are then a useful framework for building

parsimonious models in high-dimensionality settings.

The structure of the graph is in general not known beforehand, and will need to be

learned from the data. This is a process called graphical model selection; more about

this will be presented later.

1.1.2 Markov property

Another possible way to look at how the graph constrains the distribution of the random

vector X is by considering its cut set structure.

A cut set is a subset of vertices S ¢ V such that when every node in S is removed,

the graph is separated into two fully disconnected subgraphs, having vertex sets denoted

here by A,B ¢ V . An example of a cut set is given in Figure 1.3.

The random vector X is said to be Markov with respect to the graph G if

XA § XB | XS for all cut sets S ¢ V . (1.2)
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Figure 1.2: Maximal cliques of the undirected graph of Figure 1.1. The maximal
cliques are {B,F}, {E,F}, {F,H}, {A,F}, {A,C,D}, {D,G}

As an example, one can think of a Markov chain: it can be considered a graph

with a chain structure, with edge set E = {(1, 2), (2, 3), ..., (p − 1, p)}. Any single

vertex s ∈ {2, 3, .., p − 1} forms then a cut set, separating the graph into the past

P = {1, ..., s − 1} and the future F = {s + 1, ..., p}. The Markov property in this

context states that the future XF is conditionally independent of the past XP given the

present Xs.

1.1.3 Hammersley-Clifford theorem

Remarkably, these two different characterizations are equivalent. This was proved by

Clifford & Hammersley (1971) in the so called Hammersley-Clifford theorem, known

also as the fundamental theorem of Markov fields, which states that for any strictly

positive distribution, that is, P for which P(x) > 0 for all x ∈ X p, the distribution of

the random vector X factorizes according to the graph G, qquation (1.1), if and only if

X is Markov with respect to the graph G, as in Equation (1.2). An easier proof of the

theorem is provided by Grimmett (1973).



Chapter 1 - Gaussian Graphical Models 7

Figure 1.3: Example of a cut set of the undirected graph of Figure 1.1. The cut set
{A,C} separates the graph into two fully disconnected subgraphs, one having vertex
set {B,E, F,H} and the other having vertex set {D,G}.

1.2 Gaussian graphical models

In the presence of continuous variables, the Gaussian distribution is almost always

assumed, because of its convenient analytical properties. A p-variate random vector X

follows a Gaussian distribution in p dimensions with mean vector µ ∈ R
p and variance-

covariance matrix Σ (X ∼ N(µ,Σ)) if its probability distribution can be written in the

form

Pµ,Σ(x) =
1

(2Ã)
p
2det(Σ)

1
2

e−
1
2
(x−µ)TΣ−1(x−µ) ,

which is part of the exponential family (see e.g. Salvan et al. (2020), Chapter 2). The

mean parametrization is being used here; in the context of Gaussian graphical models,

however, it is more convenient to use the canonical parametrization instead. Any non-

degenerate multivariate Gaussian distribution, meaning Σ is a strictly positive definite

matrix, can be represented in the form

Pγ,Θ(x) = exp

{

p
∑

s=1

µsxs −
1

2

p
∑

s,t=1

¹stxsxt − A(Θ)

}

,
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where ¹st = [Θ](s,t) and A = −1
2
log det( Θ

2π
), thus ensuring that the quantity is a valid

probability distribution, i.e.
∫

Pγ,Θ(x)dx = 1.

The rescaling by the −1
2
factor allows for the interpretation of Θ as Θ = Σ−1, the

inverse of the covariance matrix, which is called the precision or concentration matrix.

The convenience of this representation stems from the fact that it allows to discuss the

factorization property of the graph in terms of the sparsity pattern of Θ: whenever X

factorizes according to the graph G, it must hold that ¹st = 0 for any pair (s, t) /∈ E.
There is then a strict correspondence between the zero-pattern of the concentration

matrix Θ and the edge structure E of the underlying graph. The elements of the

concentration matrix Θ are directly interpretable in terms of the partial covariances

between variables: ¹st is the covariance between variables Xs and Xt, conditioned on all

other variables. If ¹st = 0, then the two variables are conditionally independent given

the rest of the graph, and the corresponding edge is absent.

The diagonal entries of Θ represent the inverse of the partial variances of each vari-

able, denoted as Ã2
ss|V \{s} = ¹−1ss ; the partial correlation between Xs and Xt is then given

by Äst|V \{s,t} = − θst√
θssθtt

(see Lauritzen (1996), section 5.1.3). Lastly, the regression

coefficient of Xs on Xt given XV \{s,t} is ´s←t|V \{s,t} = − θst
θss

.

1.2.1 Log-likelihood function for GGMs

A common assumption with GGMs is that the data has zero-mean (i.e. µ = 0p×1 =

(0, ..., 0)T ), so that only the symmetric concentration matrix Θ ∈ R
p×p is needed to

identify the model. Given a collection of N independent and identically distributed

samples X = {x1, ..., xN} from a graphical model, the log-likelihood function is

ℓ(Θ;X) =
2

N

N
∑

i=1

log(PΘ(xi))

=
2

N

N
∑

i=1

log

(

det(Θ)
1
2

(2Ã)
p
2

exp(−1

2
xi

TΘxi)

)

=
2

N

N
∑

i=1

(

1

2
log det(Θ)− p

2
log(2Ã)− 1

2
xi

TΘxi

)

= log det(Θ)− tr(SΘ) , (1.3)

where S = 1
N

∑N
i=1 xixi

T is the sample covariance matrix, and tr(C) denotes the trace,

i.e. the sum of the diagonal entries of the square matrix C. If the sample covariance S is

non-rank degenerate, and is thus invertible, then the ML estimate for the concentration

matrix is Θ̂MLE = S−1 and it converges to the true concentration matrix Θ as the sample
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size N tends to infinity. In most scenarios, however, the sample covariance will not be

a full rank matrix, so that the MLE fails to exist. In particular, this will be the case

whenever p < N , which is a common setting in a lot of GGMs application scenarios.

Moreover, the interest is often in obtaining a sparse estimate of the concentration

matrix, in which a lot of the off-diagonal entries are estimated exactly to be zero, so that

the corresponding graph is more easily interpretable and only the relevant associations

between variables are encoded via an edge. Regularization methods for the likelihood

function of the GGM are then particularly attractive.

1.3 Graphical lasso

A first approach could be to introduce a regularization that controls for the number of

edges itself, measured by the ℓ0 quantity

Ä0(Θ) =
∑

s ̸=t

I[¹st ̸= 0] ,

where I[·] is the indicator function. Note that Ä0(Θ) = 2|E|, where |E| denotes the

cardinality, i.e. the number of elements, of the set R. The optimazion problem over the

set of all positive definite matrices obtained,

Θ̂ ∈ argmax
ρ0(Θ)fk,Θ∈Sp+

{log det(Θ)− trace(SΘ)} ,

where Sp
+ = {A ∈ R

p×p|A = AT , A ° 0} denotes the set of all p× p symmetric positive

semi-definite matrices, is however highly non convex, as it essentially explores the set

of all
((p2)

k

)

possible subsets of k edges (Hastie et al. (2015), Section 9.3.1), and becomes

quickly untractable for large values of p.

It is often best to consider the convex relaxation obtained by replacing the ℓ0-based

constraint with a ℓ1-based constraint

Θ̂ = argmax
Θ∈Sp+

{log det(Θ)− trace(SΘ)− ¼||Θ||1} , (1.4)

where ||Θ||1 =
∑

s,t∈V |¹st| is the ℓ1-norm of Θ, i.e. the sum of the absolute values of the

entries of Θ and ¼ is the regularization parameter, controlling for the amount of sparsity

in the solution. This is an instance of a ℓ1-regularized log-determinant program, which

is a convex optimization problem with a unique optimum for any ¼ > 0 (Ravikumar

et al., 2011). The advantage to this approach is then two-fold: it both regularizes the
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estimation process yielding a unique solution, and the estimate of Θ obtained leads to

a sparse and more easily interpretable graph.

This optimization problem is referred to as the graphical lasso, proposed by Friedman

et al. (2008), who provided an extension of the lasso procedure, first introduced in the

seminal paper by Tibshirani (1996), to the family of GGMs.

1.3.1 Graphical lasso algorithm

The subgradient equation corresponding to Equation (1.4) is

Θ−1 − S − ¼Ψ = 0 , (1.5)

where Ψ is a symmetric p × p matrix having zeros on the diagonal entries and Èst =

sign(¹st) if ¹st ̸= 0, else Èst ∈ [−1, 1] if ¹st = 0 for s ̸= t.

The problem can be solved with a block coordinate descent approach (Banerjee et al.,

2008), partitioning each matrix partitioned into four blocks in this way, with respect

here for example to the p-th row and column:

Θ =

(

Θ11 ¹12

¹T12 ¹22

)

, S =

(

S11 s12

sT12 s22

)

, Ψ =

(

Ψ11 È12

ÈT
12 È22

)

, W =

(

W11 w12

wT
12 w22

)

, (1.6)

where W is the current version of the estimate of Θ−1 in this iterative process. If all

but the p-th row and column of W is considered to be fixed, Equation (1.5) leads to

W11´ − s12 + ¼È12 = 0 (1.7)

where ´ = − θ12
θ22

.

If the estimate of a lasso regression is considered to be a function of the inner products

XTX and XTy rather than the raw data X and y itself, then Equation (1.7) can be

seen as a modified version of the estimating equations for a lasso regression of the p-th

variable on all others, where the input inner products are W11 and s12, rather than S11

and s12. Equation (1.4) is then not equivalent to p separate lasso regression problems,

but to p coupled lasso regression problems sharing the same W (Friedman et al., 2008).

The graphical lasso algorithm is presented in Algorithm 1.1.

This is the algorithm as it was originally proposed by Friedman et al. (2008); a

slightly different formulation is given in Hastie et al. (2015), Section 9.3.2, where W

is simply initialized as W = S so that only the off-diagonal terms of Θ are penalized,
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Algorithm 1.1: Graphical Lasso

1. Initialize W = S + ¼Ip. Note that the diagonal of W will remain unchanged
throughout the whole process.

2. For j = 1, 2, ..., p, 1, 2, ..., p, ... until convergence:

(a) partition the matrices like in Equation (1.6), permuting the rows and
columns when necessary so that the target column j is the last.

(b) solve W11´ − s12 + ¼È12 = 0 using a coordinate descent algorithm (see
Appendix A), obtaining the (p− 1)× 1 vector solution ˆ́.

(c) Update the corresponding row and column of W with w12 = W11
ˆ́

solving thus the slightly different optimization problem

Θ̂ = argmax
Θ∈Sp+

{log det(Θ)− trace(SΘ)− ¼Ä1(Θ)} ,

where Ä1(Θ) =
∑

s ̸=t |¹st| is the sum of the absolute values of the off-diagonal terms of

Θ only.

It is possible to specify edge-specific penalty parameters ¼st, so that the optimization

problem becomes

Θ̂ ∈ argmax
Θ∈Sp+

{log det(Θ)− trace(SΘ)− Ä1(Θ ◦ Λ)} ,

where Λp×p = {¼st} with ¼st = ¼ts and ◦ is the component-wise multiplication, also

known as the Hadamard product, taking two matrices of the same dimensions and

producing a matrix where each element is the product of the corresponding elements of

the input matrices. Note that ¼st =∞ will force ¹̂st = 0 in the solution.

1.3.2 Exploiting the block diagonal structure of the concentra-

tion matrix

Witten et al. (2011) point out that if the true concentration matrix Θ has a block

diagonal structure, that is, Θ has the form

Θ =















Θ11 0 · · · 0

0 Θ22 · · · 0
...

...
. . . · · ·

0 0 · · · ΘKK















,
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then the graphical lasso problem can be solved separately for each block Θkk, k ∈
1, ..., K, and the overall solution is constructed from the individual solutions for each

block, leading to considerable computational gains. Letting D1, D2, ..., Dk denote a

partition of the p variables, i.e. Dk ∩Dk′ = ∅ for all k ̸= k′ and D1 ∪D2 ∪ ... ∪DK =

{1, 2, ..., p}, so that the elements of each block Dk are fully disconnected from elements

of all other blocks, the Authors prove that a necessary and sufficient for the solution of

the graphical lasso to be block diagonal is that |Sii′ | < ¼ for all i ∈ Dk, i
′ ∈ Dk′ , k ̸= k′.

Note that in order to achieve the block diagonal structure the order of the rows and

columns of Θ can be permuted.

1.3.3 Consistency of the graphical lasso estimator

Rothman et al. (2008) demonstrate that the rate of convergence of the graphical lasso

estimator in the Frobenius norm, where the Frobenius norm of a given matrix A ∈ R
m×n

is ||A||F =
√

∑m
i=1

∑n
j=1 |aij|2, as both p and N increase depends on how sparse the

true concentration matrix Θ0 is. The authors prove that, letting TΘ0 = {(i, j) : Θ0ij ̸=
0, i ̸= j} denote the true edge set, if ϕmin(Σ0) > 0, ϕmax(Σ0) < ∞ and ¼ proportional

to
√

log p
N

, then

||Θ̂−Θ0||F = OP

(
√

(p+ s) log p

N

)

,

where s g |TΘ0 |, hence the dependence on the sparsity of the true concentration matrix,

and ϕmin(·), ϕmax(·) denote the minimum and maximum eigenvalue, respectively. OP is

big O in probability, meaning that for any ϵ > 0 there exists a constant M > 0 such

that

lim
N,p→∞

P

(

||Θ̂−Θ0||F > M

√

(p+ s) log p

N

)

< ϵ ,

that is, the difference measured in terms of Frobenius norm between the graphical lasso

estimator of the concentration matrix Θ̂ and the true concentration matrix Θ0 grows at

most on the order of
√

(p+s) log p
N

with high probability as both N and p grow to infinity.

Ravikumar et al. (2011) identify a lower bound to the sample size N for the graphical

lasso estimator to be model selection consistent, meaning that edge set yielded by the

estimator TΘ̂ is contained within the true edge set TΘ0 , i.e. it correctly excludes all

non-edges, with high probability as p→∞.



Chapter 2

Coloured GGMs

This chapter will first introduce the family of coloured Gaussian graphical models in

general, obtained by imposing equality restrictions on the concentration/partial corre-

lation matrix of a GGM, thus imposing symmetries between edges and vertices in the

graph. A sub-family of coloured GGMs is suited to deal with the paired data setting,

which will be the object of the second part of this chapter.

2.1 Coloured Gaussian graphical models

The family of coloured Gaussian graphical models was first presented in the seminal

paper by Højsgaard & Lauritzen (2008). The Authors introduce a new type of Gaussian

graphical models that impose symmetry restrictions on the concentration matrix Θ, and

therefore also on the conditional independence structure of the model. Three types of

coloured GGMs are defined:

1. RCON models, imposing equalities between specified entries of the concentration

matrix;

2. RCOR models, imposing equalities between specified entries of the partial corre-

lation matrix;

3. RCOP models, with restrictions generated by permutation symmetry, i.e. sym-

metry under permutation of variable labels.

The symmetry restrictions can be graphically represented by colouring with the same

colour edges and vertices that are constrained to be equal, hence the name coloured

GGMs. It is important to note that these constraints lead to a reduction of the model

and fewer parameters need to be estimated when coloured GGMs are compared to the

13
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general GGMs without symmetry restrictions. This family of model is therefore useful

when dealing with high dimensional settings, in which estimation of the concentration

matrix can be challenging.

Here only the RCON models will be presented in detail, RCOR and RCOP models

are mostly beyond the scope of this work. The reason for this is that the graphical

lasso for paired data, which will later be introduced, provides a robust and transparent

approach to perform model identification within a subfamily of RCON models, the so

called paired data RCON models, or pdRCON models, which is a novelty in the context

of coloured GGMs, as model identification is in general challenging and is a big barrier

for the family of models to become widely applicable.

2.2 Notation

Colouring the vertices of G = (V,E) with A f |V | different colours induces a partition

of V into the disjointed sets V1, .., VA, called vertex colour classes, with V = V1∪ ...∪VA
where all vertices belonging to the same vertex colour class Vi have the same colour. In

the same way, colouring the edges with B f |E| different colours induces a partition of

E into the disjointed sets E1, .., EB, called edge colour classes, with V = V1 ∪ ... ∪ VB,
where all edges belonging to the same edge colour class Vj have the same colour. V =

{V1, ..., VA} and E = {E1, ..., EB} are called vertex and edge colouring, respectively; the

pair (V , E) defines the coloured graph G. The underlying, uncoloured graph G = (V,E)

is sometimes referred to as the skeleton (Li et al., 2016). A colour class is called atomic

if it contains a single element; if it is not atomic, it is called composite.

2.3 RCON models

An RCON(V , E) model with vertex colouring V and edge colouring E is obtained by

restricting entries of the concentration matrix Θ in the following way.

1. For vertices in the same vertex colour class, the corresponding diagonal entries of

Θ, i.e. the inverse of the partial variances given the rest of the graph, must be

equal. For example, if the vertices s, t ∈ V have the same colour, then ¹ss = ¹tt.

2. For edges in the same edge colour class, the corresponding off-diagonal entries of

Θ, i.e. the opposite of the partial covariances, given the rest of the graph, must

be equal. For example, if the edges (s, t), (v, w) ∈ E have the same colour, then

¹st = ¹vw.
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Figure 2.1: Example of a coloured graph. The vertex colouring is V =
{

{1, 4}, 2, 3, 5
}

; the edge colouring is E =
{

{(1, 3), (2, 4)}, {(1, 2), (3, 4)}, (2, 3), (3, 5)
}

.

The RCON model encoded by the coloured graph of Figure 2.1, for example, has a

symmetry restriction on the vertices 1 and 4, the two red vertices form the vertex colour

class {1, 4}, and the respective concentrations ¹11 and ¹44 are constrained to be equal;

¹22, ¹33 and ¹55 can vary freely as the vertices 2, 3 and 5 are not coloured. Each one of

these vertices forms an atomic vertex colour class. The two orange edges form the edge

colour class {(1, 3), (2, 4)} and the respective concentrations ¹13 and ¹24 are constrained

to be equal; the two green edges form the edge colour class {(3, 4), (1, 2)}, with the

equality restriction ¹34 = ¹12. The remaining non-coloured edges (2, 3) and (3, 5) form

their own atomic edge colour class, and the respective concentrations ¹23 and ¹35 can vary

freely. It is then possible to specify the diagonal of Θ with a R× 1 vector of parameters

¸, and the off-diagonal entries of Θ with a S × 1 vector of parameters ¶. Knowing ¸

and ¶ one can determine Θ, so it is possible to re-write the concentration matrix as

Θ = Θ(¸, ¶). S+(V , E) denotes the set of all positive definite matrices that satisfy the

restrictions of the RCON(V , E) model. Note also that the restrictions defined here are

linear in the concentration matrix, so an RCON model is a linear exponential model

and the concentration matrix belongs to the class of matrices with a linear structure, as

defined in Anderson (1973), meaning that it can be expressed as a linear combination
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of known symmetric matrices, where the coefficients of the linear combination are the

unknown parameters to be estimated.

2.3.1 Likelihood equations for the RCON model

Let T u be the |V |×|V | diagonal matrix having entries T u
ss = 1 if s ∈ u, where u ∈ V , and

0 otherwise. Similarly, let Tu be the |V | × |V | symmetric matrix having entries T u
st = 1

if (s, t) ∈ u, where u ∈ E , and 0 otherwise. Note that u is here a general generator for

the model RCON(V , E), and there is no need to distinguish whether u refers to a vertex

colour class or an edge colour class.

Denoting with À = (¸, ¶) the (A+B)× 1 vector of unknown parameters, the concen-

tration matrix Θ = Θ(À) can be re-written as Θ =
∑

u∈V∪E ÀuT
u, and the term tr(SΘ)

in Equation (1.3) can thus be re-written as tr(SΘ) =
∑

u∈V∪E Àutr(ST
u). The maximum

likelihood estimate is obtained by equating the canonical statistics to their expectation,

yielding the system of equations

tr(ST u) = tr(ΣT u) , u ∈ V ∪ E ,

and the solution to the system, when it exists, is unique. The conditions for the MLE

to exist are however less restrictive then for the general GGM model without symmetry

restrictions, and fewer observations are needed.

These likelihood equations can be solved by applying the algorithm for a general

linear exponential family that was proposed by Jensen et al. (1991), using a Newton’s

iterative method on the N -th root of the reciprocal of the likelihood function, maxi-

mizing with respect to one parameter at a time. This algorithm is globally convergent

in the one-parameter case, and empirical evidences suggests that it is quite stable and

may be globally convergent in the multi-parameter case (Højsgaard & Lauritzen, 2007).

In the context of the RCON model, this translates to an algorithm that consists of two

nested loops, where the outer loop iterates over the elements of V ∪E until convergence,

and the inner loop maximizes the log-likelihood ℓ(Θ) with respect to Àu, while keeping

all other parameters fixed. The iterative step in the inner loop is given by the update

rule for Àu

Àu ← Àu +
∆u

tr(T uΣ̂T uΣ̂) + ∆2
u/2

,

where ∆u is the discrepancy ∆u = tr(T uΣ̂) − tr(T uS) and Σ̂ = Θ̂−1 is the current

estimate of Σ in this iterative process.
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It is worth noting that if the random vector X is rescaled to form X
′

, where X
′

s =

asXa, s ∈ V , then X
′

will not in general satisfy the same restrictions of an RCON model

on X, unless as = a for all s ∈ V . A standardization procedure, for example, will not

preserve the original structure of colour classes. The Authors suggest therefore to use

RCON models when all variables are on comparable scales. On the other hand, RCOR

models, imposing restrictions on the partial correlations rather than the concentrations,

i.e. the partial covariances, have the property of invariance under rescaling if variables

in the same colour class are transformed in the same way, i.e. under transformations of

the form

X∗ = ΥX , for Υ =
∑

u∈V
ÅuT

u . (2.1)

Restrictions on the partial correlations, however, are not linear in Θ anymore and

the models obtained are curved exponential families. Joint concavity cannot in general

be guaranteed and the likelihood function may have multiple local maxima. Moreover,

Højsgaard & Lauritzen (2008) point out that a RCON model is also a RCOR model,

and is thus invariant for a transformation like in Equation (2.1) if and only if any pair

of edges in the same edge colour class (s, t), (v, w) ∈ u ∈ E connects the same vertex

colour classes.

2.4 Coloured Gaussian graphical models for paired

data

When constructing a graph model, the observations may not always be an i.i.d. sam-

ple, but may be organised in two or possibly more dependent groups sharing the same

variables, so that there is an association structure between the two groups, as the two

corresponding sub-graphs are expected to share some of the features, while retaining

some individual, group-specific ones. An example of such scenario is with cancer ge-

nomics, where the two groups can be defined as cancer cells and a control sample from

histologically normal tissue adjacent to the tumor (see Chapter 4). These two groups

will clearly form a dependent sample as the tissues have similar characteristics and be-

long to the same patient. The coloured Gaussian graphical model for paired data was

first introduced by Roverato & Nguyen (2022) to deal with this type of situation.

The Authors consider the random vector XV = (X1, ..., Xp) to be split into two

subvectors X = (XL, XR)
T with |L| = |R| = p/2 = q, where each variable in the

Left block can be naturally paired with the corresponding variable in the Right block,

called its twin or homologous variable. This is denoted by assuming the two edge sets
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are L = {1, ..., q} and R = {q + 1, ..., p} and setting i′ = i + q for i ∈ L, so that

R = {1′, ..., q′}, where every {i, i′} for i ∈ L is a pair of twin variables from the left and

right block respectively. A vertex colour class is said to be twin-pairing if it is formed

by a pair of twin vertices; a twin-pairing edge colour class is a pair of twin edges. Two

possible kinds of twin-pairing edge colour class can be distinguished: the inside-group,

or inside-block, type, where the two edges link vertices inside the same group (so pairs

of edges such as {(i, j), (i′, j′)}, with i ∈ L), and the across-group, or across-block, type,

where the two edges link a vertex from each of the two groups (so pairs of edges such

as {(i, j′), (i′, j)}, with i ∈ L). A RCON(V , E) model is a RCON model for paired data

(pdRCON model) if all its vertex colour classes and edge colour classes are either atomic

or twin-pairing.

An aspect worth noting is that with pdRCON models the concentration values that

are compared when imposing symmetry restrictions are associated with twin variables

only, measuring common features, so it is to be expected that the scales will be similar.

The remark described in Section 2.3.1 about the need for the variables to be measured

in comparable scales in RCON models is generally not a problem for the subfamily of

pdRCON models.

2.5 Structural learning of a coloured GGM

Learning a coloured GGM is a challenging task, and different solutions have been pro-

posed. Algorithms that perform model search by moving locally between neighbouring

models are challenging, as the dimensionality of the search space is higher than the

corresponding classic GGM, as p increases (Roverato & Nguyen, 2022) and identifying

neighbouring structures is computationally very expensive. To better understand this,

one can think of a complete graph with p vertices: for the GGM case, only one possible

model can be associated to this graph, while the number of possible coloured GGM for

paired data to choose from is equal to 2(p/2)
2
. For the RCON family, Gehrmann (2011)

showed that the number of possible RCON models grows super-exponentially with the

number p of variables.

A few examples of algorithms that perform structural learning in the context of

coloured GGMs will be here presented briefly.



Chapter 2 - Coloured GGMs 19

2.5.1 Penalized composite likelihood

Li et al. (2021) proposed a model selection method for the RCON family based on a

ℓ1-penalized composite likelihood function. When a full likelihood function is compu-

tationally expensive or infeasible, the composite likelihood is a pseudo-likelihood ap-

proach allowing to define an estimation function given from multiplying a sequence of

low-dimensional, and easier to deal with, conditional or marginal distributions. Maxi-

mizing the log-composite likelihood can still provide consistent estimation and has good

asymptotic properties (Varin et al., 2011).

The method is based on the conditional distribution of Xj given the rest of the graph,

which is given by (see Appendix B for details)

Xj|V \{j} ∼ N

(

−
∑

i ̸=j

Xi
¹ij
¹jj
,
1

¹jj

)

,

with the density function

f(xj|XV \{j}; Θ) =
¹
1/2
jj√
2Ã

exp







−1

2
¹jj

[

xj + ¹−1jj

(

p
∑

i=1,i ̸=j

¹ijxi

)]2






.

The conditional composite likelihood is then given by

Lc(Θ) =
N
∏

k=1

p
∏

j=1

¹
1/2
jj√
2Ã

exp







−1

2
¹jj

[

xkj + ¹−1jj

(

p
∑

i=1,i ̸=j

¹ijxki

)]2






,

where xki is the entry in row k and column i of the N×p data matrix X. The conditional

composite log-likelihood is then

ℓc(Θ;X) =
N
∑

k=1

p
∑

j=1







1

2
log ¹jj −

1

2
¹jj

[

xkj + ¹−1jj

(

∑

i ̸=j

¹ijxki

)]2






=
1

2

p
∑

j=1

{

N log ¹jj − ¹jj
N
∑

k=1

[

xkj + ¹−1jj (¹ijxki)
]2

}

.

It can be rewritten in a matrix format as

ℓc(Θ;X) =
1

2

p
∑

j=1

{

N log ¹jj − ¹jj||X(j) −XBj||2
}

,

whereX(j) is the j-th column ofX andBj is the j-th column of the matrix (´j←i|V \{i,j})p×p,
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recalling that ´j←i|V \{i,j} = − θij
θjj

from Chapter 1. The off-diagonal elements ¹ij, i ̸= j,

are rewritten according to their lexicographical order as the vector · = (·1, ..., · p(p−1)
2

)T ,

so that the concentration matrix Θ can be expressed as the parameter vector ¹ =

(¹11, ¹22, ..., ¹pp, ·
T )T .

The regularized conditional composite log-likelihood approach suggested by the Au-

thors is given by the minimization problem

¹̂pcl = argmin
θ

{

− 1

N
ℓc(¹) + ¼1

∑

j<j′

Jτ (|¹jj − ¹j′j′ |)+

¼2

p(p−1)
2
∑

j=1

Jτ (|·j|) + ¼3
∑

j<j′

Jτ (|·j − · ′j|)
}

,

where ¼1, ¼2 and ¼3 are non-negative tuning parameters, Ä is a treshold parameter

determining the strength of penalization on off-diagonal elements and differences be-

tween element pairs of the concentration matrix, and Jτ (x) = min
(

x
τ
, 1
)

. These four

parameters can be tuned minimizing in a four-dimensional parameter space using a grid

search procedure the Bayesian information criterion for composite likelihood (Gao &

Song, 2010),

BICc = −2ℓc(¹̂pcl) + df logN ,

where df denotes the total number of parameters in the concentration matrix.

The Authors propose a computationally efficient method to solve the minimization

problem by combining a difference of convex functions (DC) algorithm, the augmented

Lagrangian approach and coordinate descent optimization. A simulation study gener-

ating data from different symmetric graph structures shows that the method performs

fairly well both in recovering the conditional dependence relationships, i.e. the structure

of the skeleton, as well as the symmetry structures.

2.5.2 Bayesian model selection approach

Bayesian inference for undirected graphs often uses a conjugate Wishart prior (see e.g.

Letac & Massam, 2007) for the concentration matrix Θ. A G-Wishart prior distribution

for the concentration matrix of the graph G = (V,E), having then off-diagonal entries

constrained to be equal to zero whenever (i, j) /∈ E, WisG(¸,D) has the density

p(Θ|G, ¸,D) =
1

IG(¸,D)
(detΘ)(η−2)/2 exp

{

−1

2
< Θ, D >

}

,
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defined over the space of positive definite matrices Sp
+, where < A,B >= tr(ATB)

denotes the trace inner product, ¸ is the shape parameter controlling for the amount

of prior confidence about the structure of Θ and D is a symmetric scale matrix serving

as a prior estimate for Θ, setting the prior mean for the concentration matrix. The

normalizing constant IG(¸,D) is finite if ¸ > 2 and D is positive definite. When G

is the full graph, i.e. E = V × V , the G-Wishart distribution becomes the classic

Wishart distribution Wis(¸,D). The Wishart distribution is the distribution of the

sample covariance matrix from observations from a multivariate normal distribution.

Its extension for the coloured GGM is the coloured G-Wishart distribution (Massam

et al., 2018), which is a Diaconis-Ylvisaker distribution having density

p(Θ|¸,D,G) = 1

IG(¸,D)
(detΘ)(η−2)/2 exp

{

−1

2
< Θ, D >

}

IPG
(Θ) ,

defined over the space of positive definite matrices Sp
+, and is also the conjugate prior.

Here I(·) is the indicator function and PG is the cone of p× p positive definite matrices

obeying to the symmetry constraints of the coloured graph G = (V , E):

PG = {Θ ∈ Sp
+|if Vk is a vertex colour class in V , then for all i ∈ Vk, ¹ii are equal

and if El is an edge colour class in E , then for all (i, j) ∈ El, the entries ¹ij are equal} .

The posterior density given the N × p data matrix X is proportional to

p(G,Θ|X) = p(X|G,Θ)p(Θ|G)p(G)

∝ 1

IG(¸,D)
(detΘ)(N+η−2)/2 exp

{

−1

2
< Θ, S +D >

}

p(G)IPG
(Θ) ,

where S is the sample covariance matrix and p(G) is the prior distribution on the graph

structure. As mentioned before, the number of possible coloured graphical models grows

super-exponentially with the number of variables p so an extensive search through the

space of coloured graph is computationally impossible, except in very-low dimensional

cases.

Qiong Li & Massam (2020) propose instead an hill-climbing algorithm exploring

neighbouring configurations that combines linear regression with a double reversible

jump. The double reversible jump makes it possible to calculate the Bayes factor without

having to compute the prior normalizing constants, which is a computational stumbling

block. The approach is as follows:

1. Start with the graph G[1] with p vertices, no edges, and no symmetry restrictions.
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2. Let G[t] be the current version of the graph. Repeat for j = 1, ..., p:

(a) fit a linear regression to search for potential edges to add to the graph G[t]

Xj ∼ ´j
1X1 + ...+ ´j

j−1Xj−1 + ´j
j+1Xj+1 + ...+ ´j

pXp ;

(b) set ´j

G[t] = {´j
i |(i, j) ∈ G[t]} and find the significant regression coefficients ´j

i

with p-values less than the specified ³ level among {´j
1, ..., ´

j
j−1, ´

j
j+1, ..., ´

j
p}\

´j

G[t] ;

(c) order the edges from the most significant to the least significant. Whether

an edge is accepted or not and its colour class is determined on the basis of

the Bayes factor as follows:

i. Let G∗ be the graph obtained by adding the edge (i, j) to G[t]. Estimate

the Bayes factor p(G∗|X)/p(G[t]|X) with the double reversible jump al-

gorithm. Whenever the ratio is greater the one, the graph G∗ is accepted

and G[t+1] = G∗; otherwise, G[t+1] = G[t].

ii. It is then checked if the new edge can be added to one of the existing

edge colour classes. For every existing edge colour class l = 1, ..., k:

A. if (i, j) was accepted in the previous step, let G∗∗ be the graph ob-

tained by adding (i, j) to the l-th edge colour class. Estimate the

Bayes factor p(G∗∗|X)/p(G[t+1]|X) and if G[∗∗] is accepted, G[t+2] =

G∗∗ is set, and the next most significant edge in step 2.(c) is investi-

gated;

B. if (i, j) is not accepted in the l-th colour class and l ̸= k, let l = l+1

and the algorithm goes back to the previous step;

C. if l = k and the new edge (i, j) cannot be merged into any of the

existing colour classes, (i, j) forms a new atomic edge colour class

and the graph remains G[t+2] = G[t+1]

3. Determine the vertex colour classes. For r = 1, ..., p:

(a) for every existing vertex colour class m = 1, ..., w:

i. Let G∗∗ be the graph obtained from G[t+2] by setting the vertex r to be in

the m-th colour class. Estimate the Bayes factor p(G∗∗|X)/p(G[t+2]|X).

If the Bayes factor is larger than one, the proposed vertex colour merging

is accepted and G[t+3] = G∗∗. Let r = r+1 and the algorithm goes back

to step 3;
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ii. If the Bayes factor is less than one and m ̸= w let m = m + 1 and the

algorithm goes back to step 3.(a) for the next existing vertex colour class;

iii. if l = m and the r-th vertex cannot be merged into any existing vertex

colour classes, it becomes a new atomic vertex colour class.

The Authors prove that the probability that the Bayes factor comparing the true

model versus any other model is greater than one converges to one as the sample size

N increases. Although this does not guarantee model selection convergence for the pro-

cedure as a whole as it is computationally impossible to compare all possible candidate

models, the algorithm still moves towards the true graph.

2.5.3 Stepwise procedure for the pdRCON model

Roverato & Nguyen (2022) show how the subclass of pdRCON models form a sublattice

of RCON models, although a non-distributive one, which makes the computation of

neighbouring models difficult. The Authors then implemented a stepwise backward

elimination procedure to perform model selection for the pdRCON class, in which,

starting from the largest model, at each step all the neighbouring submodels form the

set of candidate models; all the submodels of previously rejected models are instantly

discarded, and the remaining submodels are classified as either accepted or rejected on

the basis of a likelihood ratio test at the 0.05 significance level, and the accepted model

with the highest p-value is the starting point at the next step of the algorithm. The

procedure stops whenever all candidate models are rejected.

2.6 The symmetric graphical lasso

Ranciati et al. (2021) proposed a penalized likelihood method with a fused-type lasso pe-

nalization to make inference on the brain connectivity network by measuring the BOLD

level, a measure of brain activity reflecting changes in blood oxygenation levels in re-

sponse to neural activity, via resting state functional magnetic imaging (R-fMRI ) scans

data, collected on subjects at rest, without external stimuli. The objective is to under-

stand the neuronal organization of the brain through the investigation of spontaneous

neural activity.

2.6.1 Description of the problem

The cerebral cortex is subdivided into p = 70 spatial regions of interest (ROIs) by

clustering anatomically and functionally similar voxels from the R-fMRI scans according



24 Section 2.6 - The symmetric graphical lasso

to Desikan et al. (2006). It is a well known fact that the human brain has a natural

symmetric structure, so that every spatial ROI on the left hemisphere has an homologous

spatial ROI on the right hemisphere, and in the same way in the graph modelling the

brain network one can identify pairs of homologous vertices and edges.

Despite this strong structure-wise symmetry, however, the two hemispheres exhibit

functional asymmetry, also known as lateralization, referring to activity-related differ-

ences, which are usually detected while the patients perform tasks connected to lan-

guage organization and handedness, (e.g., spatial reasoning is more often associated

with the right hemisphere and language processing with the left hemisphere). This can

be compared to how the right and left hand are anatomically symmetric, but can op-

erate differently. Previous R-fMRI studies, which represent spontaneuos, low-frequency

fluctuations in brain activity, measured via the BOLD signal when the subject is not

performing any explicit task and is simply asked to stay awake with eyes open, suggested

that brain networks show strong bilateral synchronization. Brain activity in one ROI is

most often mirrored with activity in its homologous ROI in the other hemisphere.

2.6.2 Methodological framework

The data is the p × T matrix measuring brain activity over the p = 70 spatial ROIs

at t = 1, ..., T equally spaced time points, with T = 404. An additive signal and noise

decomposition for a generic column X(t) is assumed,

X(t) =M (t) + Y (t) ,

where M (t) is the vector collecting the BOLD signal and Y (t) is the idiosyncratic noise

component. The ROI network association structure will be based on the estimate of

Y (t), obtained by extracting the BOLD signalM (t) from X(t) via three different filtering

techniques:

1. a first-order vectorial autoregressive model, VAR(1);

2. a score-driven model;

3. local polynomial regression.

While a detailed discussion over the different detrending techniques is beyond the scope

of this work, it is worth noting that a more robust approach, such as the score-driven

model, leaves more information to the vector of residuals, leading to an estimated brain

association network with more symmetries; on the other hand, an approach that may
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tend to overfit the data, such as a high-degree local polynomial regression, may put most

of the dependence structure in the signal rather than the noise component, leading

to a less symmetric graph. As there is no general consensus on how to perform the

detrending, it may be best to use different methods and compare the results.

Letting V = {1, .., p} denote denote the set indexing the p = 70 ROIs, YV =

(Y1, ..., Y70)
T is the zero-mean residual vector, where the time index can be dropped

as it is assumed that the time series dynamics have been fully captured by the BOLD

signal M (t). The vector YV can be naturally partitioned into the subvectors YL and YR,

associated, respectively, with the left and right hemispheres, with L = {1, ..., q} and

R = {q + 1, ..., p} where q = p/2. In this way, the region Yi of YL is homologous to the

region Yi+q of YR. To simplify the notation, i′ = i+ q for every i ∈ L.

Joint normality is assumed, YV ∼ Np(0,Σ), and Θ =

(

ΘLL ΘLR

ΘRL ΘRR

)

is the partition

of the concentration matrix Θ = Σ−1 with respect to the two groups. Interest is in

estimating an undirected graph taking into account the symmetric structure between

the two hemispheres represented by YL and YR.

2.6.3 The symmetric graphical lasso estimator

Ranciati et al. (2021) define the symmetric graphical lasso estimator as

Θ̂sgl = argmin
Θ∈Sp+

{− log det(Θ) + tr(SΘ) + ¼1||Θ||1 + ¼2||ΘLL −ΘRR||1} ,

minimizing a (minus) penalized log-lihelihood, where ¼1 is the regularization parameter

encouraging sparsity in Θ, remarking that this first penalization term is equal to the one

in Equation (1.4), and ¼2 is the regularization parameter encouraging elements of Θ̂sgl
LL

in the solution to be equal to the corresponding elements of Θ̂sgl
RR, Θ̂

sgl =

(

Θ̂sgl
LL Θ̂sgl

LR

Θ̂sgl
RL Θ̂sgl

RR

)

being the partition of the solution with respect to the two groups. This is a convex

optimization problem, and the Authors provided an alternating directions of multipliers

(ADMM) algorithm to solve it in a computationally feasible way, even in high dimen-

sional settings. It is a first instance of a lasso method that performs simultaneously

model selection and estimation within the class of RCON models, as the solution ob-

tained is a pdRCON model, identifying twin-pairing vertex colour classes, corresponding

to ¹̂sglii = ¹̂sgli′i′ in the solution, and inside-group twin-pairing edge colour classes, corre-

sponding to ¹̂sglij = ¹̂sgli′j′ in the solution, which are of natural interest in the analysis of

brain networks.
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It does not, however, provide a general solution to perform model selection in the

pdRCON class, as it cannot identify across-group twin-pairing edge colour classes. The

graphical lasso for paired data (Ranciati & Roverato, 2024a) extends further on the

idea of the symmetric graphical lasso in order to deal with the whole family of pdRCON

models.

The Authors carry out a simulation study analyzing the performance of the sym-

metric graphical lasso on generated data mimicking the structure of the fMRI data.

Choosing the values of the regularization parameters with an oracle procedure that se-

lects the value of ¼1 yielding a graph with equal edge density of the true graph used to

simulate the data, the results of the simulation study show that the symmetric graphi-

cal lasso performs only slightly worse than the general graphical lasso in recovering the

overall structure of the true graph, with even smaller differences in the denser scenarios.

Moreover, the symmetric graphical lasso exhibits a satisfying performance in terms of

recovery of symmetries in the true graph, which is something that, on the other hand,

the graphical lasso cannot do.

The Authors then apply the symmetric graphical lasso to the real-world data from

the R-fMRI scans after filtering out the time-dependency structure, selecting the values

of ¼1 and ¼2 by looking at the extended Bayesian information criterion,

eBIC = −2ℓ(Θ̂mle) + log(N)d+ 4dµ log(p) , (2.2)

where ℓ(Θ̂mle) is the maximized unpenalized log-likelihood function for the pdRCON

model, d is the number of free parameters in the model and µ is the parameter that

controls the amount of preference expressed by the criterion towards more parsimonious

models, with µ = 0 coinciding with the standard BIC, choosing in this case µ = 0.5.

As a joint grid search over ¼1 and ¼2 is computationally intensive, first ¼2 is fixed to

an arbitrarily low value and a dense grid search over ¼1 is performed, selecting ¼∗1; then

after a conditional sweep over a grid of 20 logarithmically spaced values for ¼2, the

final pair of optimal values for the regularization parameters (¼∗1, ¼
∗
2) is selected. After

estimating two symmetric graphical lasso model on the filtered R-fMRI data from two

subjects, one of which has a mental disorder and the other one is healthy, the graphs

obtained show that, regardless of the filtering method chosen in the preliminary step,

the mentally ill patient has a more symmetric brain network association structure than

the healthy one, which is line with the evidence of lack of asimmetry in schizophrenic

patients shown in Li et al. (2019). An implementation in R of the symmetric graphical

lasso can be found at https://github.com/savranciati/sgl.
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2.7 The graphical lasso for paired data

2.7.1 Structural and parametric symmetries

Consider the partition of the concentration matrix in a paired data setting according to

the split of the random vector X in the left and right block, described in Section 2.4,

Θ =

(

ΘLL ΘLR

ΘRL ΘRR

)

.

Denoting by GA = (A,EA) the subgraph of the graph G = (V,E) induced by the

subset A ¦ V , where (i, j) ∈ EA if and only if both i, j ∈ A and (i, j) ∈ E, then if Θ is

adapted to G, i.e. every missing edge of G implies a zero off-diagonal entry in Θ, ΘLL

and ΘRR are adapted to GL and GR, respectively. GL and GR are thus the group (or

block) specific graphs.

Ranciati & Roverato (2024a) introduce a distinction between structural and paramet-

ric symmetries for the pdRCON context, where structural symmetries deal with the fact

that two edges are either both present or not, whereas parametric symmetries are more

restrictive and deal with the fact that the corresponding entries of the concentration

matrix are also equal.

There is an inside-block structural symmetry if, for a pair i, j ∈ L, with i ̸= j, the

edges (i, j) and (i′, j′) are either both present or both missing in the two subgraphs

GL and GR, respectively. There is an across-block structural symmetry if the edges

(i, j′) and (i′, j) are either both present or both missing in G, concerning therefore the

association structure present between the two groups. A parametric symmetry can be

inside-block (if ¹ij = ¹i′j′), across-block (if ¹ij′ = ¹i′j) and it can also involve vertices:

there is a vertex parametric symmetry if ¹ii = ¹i′i′ , for i ∈ L.
It might be worth noting that every structural symmetry due to a pair of missing

edges corresponds also to parametric symmetry, as the two corresponding entries of the

concentration matrix will both be zero, and thus equal.

Ranciati & Roverato (2024a) also point out that in the context of pdRCON models

the colouring of edges and vertices is redundant, as a pdRCON can be uniquely identified

by simply determining whether each parameter is constrained or not, distinguishing thus

only between coloured and non-coloured edges and vertices.

2.7.2 The graphical lasso for paired data estimator

In order to perform simultaneously estimation and model selection within the family of

pdRCON models Ranciati & Roverato (2024a) introduce the graphical lasso for paired
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data estimator, obtained by minimizing the penalized log-likelihood

Θ̂glpd = argmin
Θ∈S+p

{−ℓ(Θ) + Pλ1(Θ) +Qλ2(Θ)} , (2.3)

where ℓ(Θ) = log det(Θ) − tr(SΘ) is the log-likelihood function of a GGM defined in

Equation (1.3), Pλ1 = ¼1||Θ||1 is the penalization term of the standard graphical lasso

of Equation (1.4) encouraging sparsity in Θ, Qλ2 is a fused-type lasso penalty defined

as

Qλ2 = ¼2(||ΘLL −ΘRR||1 + ||ΘLR −ΘRL||1) , (2.4)

encouraging parametric symmetries and ¼1, ¼2 g 0 are regularization parameters.

The first term of the fused-type lasso penalty,

¼2||ΘLL −ΘRR||1 = ¼2
∑

i∈L
|¹ii − ¹i′i′ |+ ¼2

∑

i,j∈L,i ̸=j

|¹ij − ¹i′j′ | ,

encourages both vertex parametric symmetries and inside-block parametric symmetries,

whereas the second term,

¼2||ΘLR −ΘRL||1 = ¼2
∑

i,j∈L
|¹ij′ − ¹i′j| ,

encourages across-block symmetries. Note that |¹ij′−¹i′j| will be equal to zero whenever

i = j because Θ is symmetric.

2.7.3 Path of solutions

In order to define a grid of penalty parameters values to compute the path of solutions,

it is of interest to identify the value of ¼1 that yields a diagonal matrix as the solution

and the value of ¼2 that yields a fully symmetric solution, with both ΘLL = ΘRR, i.e. full

vertex parametric symmetry and full structural and parametric inside-block symmetry,

and ΘLR = ΘRL, i.e. full structural and parametric across-block symmetry, to be set as

the maximum values of the grid.

From the result mentioned in Section 1.3.2 about the necessary and sufficient con-

dition for the solution of the graphical lasso to be block diagonal, it can easily be

proven by considering each diagonal entry to be a block of its own that the solution

is a diagonal matrix if and only if ¼1 g ¼diag1 , where ¼diag1 max
i,j∈V,i ̸=j

|sij|. Moreover, the

result in Section 1.3.2 implies also that the solution of the graphical lasso is here block

diagonal (Θ̂glpd
LR = Θ̂glpd

LR = Oq), meaning that there are no across-block edges and
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the two groups are then completely indepedent, whenever ¼1 g max
i,j∈L
|sij′ |. Ranciati

& Roverato (2024a) prove that both of these results still hold true for the graphical

lasso for paired data even when ¼2 > 0. Additionally, the Authors prove that a suf-

ficient solution for the solution Θ̂glpd to be fully symmetric is that ¼2 g ¼sym2 , where

¼sym2 = max {|sij − si′j′ |/2, |si′j − sij′ |/2|i, j ∈ L}.
As the model selection criterion the eBIC (2.2) is considered, defined this time as

eBIC = −Nℓ(Θ̂mle) + log(N)d+ 4dµ log(p) ,

where the maximized log-likelihood of a given pdRCON model can be computed using a

penalized log-likelihood (2.3) where every entry of the concentration matrix is penalized

differently. ¼1 = ∞ is set for every missing edge in the corresponing coloured graph,

and ¼1 = 0 for every non-missing edge; ¼2 =∞ for every present symmetry and ¼2 = 0

for every non-symmetry.

First, ¼2 is fixed to zero and the graphical lasso solution is computed for a sequence

of m equally spaced on the log-scale values from ¼diag1 /m to ¼diag1 , thus identifying the

optimal value of ¼1, ¼
∗
1; fixing ¼1 = ¼∗1, the graphical lasso for paired data solution

is computed for a sequence of m equally spaced on the log-scale values from ¼sym2 /m

to ¼sym2 . The optimal pair of regularization parameters values (¼∗1, ¼
∗
2) is then chosen

comparing the eBIC values for these last m solutions, plus the case ¼2 = 0, i.e. the

standard graphical lasso.

2.7.4 Relevant pdRCON submodel classes

The Authors propose also a different way to define the fused-type penalty (2.4) in order

to implement a wider flexibility by associating every type of parametric symmetry with

a regularization parameter of its own. This different specification of the fused-type

penalty is given by

Qλ2 = ¼
(V )
2 ||diag(ΘLL)− diag(ΘRR)||1 + ¼

(I)
2 ||Θ∗LL −Θ∗RR||1 + ¼

(A)
2 ||ΘLR −ΘRL||1 ,

where Θ∗LL = ΘLL − diag(ΘLL), Θ
∗
RR = ΘRR − diag(ΘRR) and diag(A) is a diagonal

matrix having the same diagonal as A. ¼
(V )
2 is then associated with vertex symmetry,

¼
(I)
2 with inside-block symmetry and ¼

(A)
2 with across-block symmetry. Each of the three

parameters can take the value:

� 0→ no contraints regarding that type of symmetry;

� ¼2 → the amount of symmetry regularization implied by ¼2;
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� ∞→ full symmetry.

One can then select a model within one of |{0, ¼2,∞}|3 = 27 different pdRCON sub-

model classes.

A relevant pdRCON submodel class is given for example by assuming full vertex

symmetry, i.e. ¼
(V )
2 = ∞, thus imposing all partial variances Ã2

ii|V \{i} = 1/¹ii to be

equal. If this (strong) assumption is valid, such a model has the advantage that equalities

between off-diagonal entries of the concentration matrix can directly be interpretable

in terms of equality of the corresponding partial correlations (see Section 1.2), whereas

that does not hold true for a pdRCON model in general.

If, for example, interest is in the two subgraphs GL and GR and the across-group

association structure encoded by ΘLR is considered to be a nuisance parameter, choosing

¼
(A)
2 =∞ allows the number of parameters to be estimated to be lower. Considerations

on the across-group association structure will be investigated in further detail in the

simulation study of Chapter 3.

A fully symmetric model, having ¼V2 = ¼
(I)
2 = ¼

(A)
2 = ∞ can be a useful benchmark

for comparisons. Such a model belongs to the family of RCOP models, meaning the two

random vectors XL, XR are exchangeable and the concentration matrix Θ is invariant

under the action of J =

(

Oq Iq

Iq Oq

)

, i.e. JΘJ = Θ. Interestingly, Højsgaard & Lauritzen

(2008) proved that in this case the estimate of Θ can simply be computed as the MLE

of the standard GGM without symmetry restrictions by considering the average sample

covariance matrix S = (S + JSJ)/2.

2.7.5 ADMM algorithm

The restrictions defined for a pdRCON model are once again linear in the concentration

matrix, it is a linear exponential model, the log-likelihood function is concave and the

graphical lasso for paired data represents a convex optimization problem. For the so-

lution the Authors propose an Alternating Directions Method of Multipliers (ADMM)

algorithm (Boyd et al., 2011), which breaks down the problem into smaller, more man-

ageable subproblems that can be solved efficiently. It alternates updates on each variable

while keeping all others fixed, and iterating until convergence is reached. The algorithm

here extends the one proposed for the symmetric graphical lasso (Ranciati et al., 2021).

In this case, the procedure consists of two nested optimization problems, each solved
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with an ADMM algorithm. The optimization problem (2.3) is equivalent to the mini-

mization with respect to Θ, Z of the quantity

− log det(Θ) + tr(SΘ) + ¼1||Z||1 + ¼
(V )
2 ||diag(ZLL)− diag(ZRR)||1+

¼
(I)
2 ||Z∗LL − Z∗RR||1 + ¼

(A)
2 ||ZLR − ZRL||1 ,

where Θ, Z ∈ S+
p and subject to the linear constraint Z = Θ. The scaled form (Boyd

et al. (2011), Section 3.1.1) of the augmented Lagrangian is then

Lρ1(Θ, Z, U) =− log det(Θ) + tr(SΘ) + ¼1||Z||1 + ¼
(V )
2 ||diag(ZLL)− diag(ZRR)||1+

¼
(I)
2 ||Z∗LL − Z∗RR||1 + ¼

(A)
2 ||ZLR − ZRL||1+

Ä1
2
||Θ− Z + U ||2F −

Ä1
2
||U ||2F , (2.5)

where U is the scaled dual variable, || · ||F is the Frobenius norm (see Section 1.3.3 for

the definition), and Ä1 is the augmented Lagrangian parameter defining the step size,

controlling the penalty for violating the linear constraint Z = Θ. When the algorithm

is at convergence, the constraint Z = Θ cancels out the last two terms of Equation (2.5)

and the solution is obtained. Equation (2.5) can be minimized by initializing Z1 and U1

equal to the zero matrix and alternating updates for the quantities Θ, Z, U iteratively

through these three following steps:

1. Θl+1 = argmin
Θ∈S+p

{

− log det(Θ) + tr(SΘ) + ρ1
2
||Θ− Z l + U l||2F

}

;

2.
Z l+1 = argmin

Z∈S+p

{

¼1||Z||1 + ¼
(V )
2 ||diag(ZLL)− diag(ZRR)||1 + ¼

(I)
2 ||Z∗LL − Z∗RR||1+

¼
(A)
2 ||ZLR − ZRL||1 +

Ä1
2
||Θl+1 − Z + U l||2F

}

;

3. U l+1 = U l +Θl+1 − Z l+1 ,

for l = 1, 2, ... until convergence.

Step 1. coincides with the first step of the ADMM algorithm for graphical lasso

detailed in Boyd et al. (2011) and can be solved analytically. Letting QDQT be the

eigendecomposition of the matrix Ä1(Z
l−U l)−S, with dii being the i-th diagonal entry

of D, the analytical solution is given by Θl+1 = QD̃QT , where D is a diagonal matrix

with i-th diagonal entry d̃ii =
dii+
√

d2ii+4ρ1

2ρ1
. Each d̃ii will always be positive because

Ä1 > 0 so the condition Θl+1 ∈ S+
p will always be satisfied.
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Step 2. needs to be solved with an ADMM algorithm of its own. Let vech(·) denote
the half vectorization operator, i.e. an operator converting a symmetric matrix into a

vector by stacking the elements from its lower triangolar part, diagonal included, vd(·)
denote the diagonal extraction operator, i.e. the operator extracting the diagonal entries

of a square matrix and stacking them into a vector, and A a generic matrix having rows

and columns also indexed by V = L ∪R. The vector v(A) is defined as

v(A) =

[

vd(ALL)
Tvd(ARR)

Tvech(ALL)
Tvech(ARR)

T

vech(ALR)
Tvech(ARL)

Tvd(ALR)
T

]

,

and the vectors zl, bl are defined as zl = v(Z l) and bl = v(Θl)+v(U l). Letting s = q(q−1)
2

,

the equality constraints associated with parametric symmetries can be encoded in the

matrix

F =









F1

F2

F3









,

where

F1 =
(

Iq −Iq Oq,4s+q

)

, F2 =
(

Os,2q Is −Is Os,2s+q

)

and

F3 =
(

Os,2q+2s Is −Is Oqq

)

. (2.6)

Step (2) can then be re-stated as the optimization problem

argmin
z

{

1

2
||z − b||22 + ¼′1||z||1 + ||F (¼′2 ◦ z)||1

}

, (2.7)

where ◦ denotes the Hadamard product (see Section 1.3.1 for a definition), ¼′1 = ¼1/Ä1

and ¼′2 is the vector ¼′2
T =

(

λ
(V )
2

rho1
1T2q

λ
(I)
2

ρ1
1T2s

λ
(A)
2

ρ1
1T2s+q

)

, with 1a being the unit vector

of length a.

Friedman et al. (2007) proved that for fused-type lasso optimization problems such

as Equation (2.7), once the solution for ¼′1 = 0, ẑ(0, ¼′2), is known, the general solution

for ¼1 > 0 is given by a soft-tresholding operation, namely,

ẑ(¼′1, ¼
′
2) = Sλ′

1
(ẑ(0, ¼′2))sign(ẑ(0, ¼

′
2))(|ẑ(0, ¼′2)| − ¼′1)+ .
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The optimization problem that needs to be solved is then

argmin
z

{

1

2
||z − b||22 + ||F (¼′2 ◦ z)||1

}

,

which requires an inner ADMM procedure. The vectors v and t are initialized with zero

entries, and the quantities z, v, t are updated with the following three steps:

i zm+1 = (I + Ä2F
TF )−1[b+ Ä2F

T (vm − tm)] ;

ii vm+1 = Sλ′
2/ρ2

(Fzm+1 + tm) ;

iii tm+1 = tm + Fzm+1 − vm+1 .

The algorithm stops when the primal and dual residuals are both below the given

numerical precision treshold (Boyd et al., 2011).

The implementation given in the R package pdglasso (Ranciati & Roverato, 2024b)

achieves better efficiency for the algorithm by making the step sizes Ä1 and Ä2 adaptive,

i.e. their value is updated at every step to speed up convergence, by reducing the

dimensions of the matrix F depending on the pdRCON submodel class of interest, and

by exploiting the sparsity of F when encoding the results of the products involving it.





Chapter 3

Simulation study

This chapter presents the results of a simulation study regarding the role played by the

across-graph association in the context of pdRCON models, and how it affects inference

on the left and right blocks. The study was performed in R and made use of the pdglasso

(Ranciati & Roverato, 2024a) package, and the tidyverse (Wickham et al., 2019),

ggplot2 (Wickham, 2016), see (Lüdecke et al., 2021) packages were used to analyse

and visualise the results. The R code is available in the Appendix C. The scenarios

considered here will have p = 20 variables; the results of a similar simulation study but

in a higher dimensionality setting, having 50 variables, can be found in Appendix D.

3.1 Objective of the study

The objective of the study is to determine whether a reduction of the number of the

parameters in the model to be estimated obtained by making the assumption of no

across-block edges or the assumption of full across-block symmetry in the graph G leads

to a substantial improvement in the quality of the inference on the left and right sub-

graphs, GL and GR.
If that is the case, such assumptions could then be useful in situations where the

across-graph association structure is of no interest, the entries of the concentration

matrix defining it are regarded as nuisance parameters, only the left and right blocks of

Θ, ΘLL and ΘRR are the parameters of interested so disregarding across-graph edges to

focus on recovering the structure of the two sub-graphs might be attractive.

There are two aspects to coloured graph recovery : the overall edge structure of the

underlying skeleton graph, i.e. whether an edge is present or missing, and the symmetric

structure, i.e. whether an edge is coloured or not. The only symmetries investigated

here are the ones involving pairs of non-missing edges; it could be of interest to evaluate

35
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also the presence of symmetries due to pairs of missing edges, but since pdRCON models

are often deployed in high-dimensionality, relatively low edge-density frameworks, the

first type of symmetries are considered.

3.2 The pdRCON without across-block edges sub-

model class

The additional pdRCON submodel class considered in the simulation study is obtained

by redefining the penalization term Pλ1(Θ) in Equation (2.3), which is the penaliza-

tion term of the standard graphical lasso and thus penalizes equally every entry of the

concentration matrix Θ, in such a way that the left and right block ΘLL and ΘRR are

penalized differently from the block defining the across-group structure, ΘLR. The new

penalization term is

Pλ1 = ¼1(||ΘLL||1 + ||ΘRR||1) + ¼across1 ||ΘLR||1 , (3.1)

and the pdRCON without across-block edges submodel class is given by imposing ¼across1 =

∞. In this way, all entries of ΘLR, and of ΘRL = ΘT
LR, are forced to be equal to zero

in the solution; ΘLL and ΘRR, on the other hand, have their ℓ1 norm penalized with

the amount of penalization implied by ¼1 < ∞, regulating for the amount of sparsity

of the edges in the two subgraphs GL and GR. The model selection procedure for this

new submodel class works in the same way as described in Section 2.7.3, selecting first

the optimal value of ¼1 in the grid, and then the optimal value of ¼2 conditioned on the

value of ¼1 selected in the first step.

3.3 Framework of the simulation study

The true model the data was generated from was a pdRCON model using the function

pdRCON.simulate(), having parameters

� p, the number of variables;

� dens, the density of uncoloured edges throughout the whole graph;

� dens.vertex, the proportion of coloured vertices among the p vertices;

� dens.inside the density of coloured inside-block vertices;

� dens.across the density of coloured across-block vertices.
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Three coloured graph scenarios were considered, in order to determine whether the

effects of different across-group association structure hypotheses on the inference over

the two groups differ depending on the edge density and the number of symmetries in

the graph. These were:

� a high density, 50% symmetric setting, having p = 20, dens = 0.5, dens.vertex =

0.5, dens.inside = 0.25, dens.across = 0.25;

� a high density, fully symmetric setting, having p = 20, dens = 0, dens.vertex =

1, dens.inside = 0.5, dens.across = 0.5;

� a low density, low symmetry setting, having p = 20, dens = 0.2, dens.vertex =

0.1, dens.inside = 0.1, dens.across = 0.1.

Figure 3.1: Example of a true coloured graph the data was generated from in
the high density, 50% symmetric setting. ■ denotes a parametric symmetry, ⃝ a
structural (but not parametric) symmetry, ∼ a structural asymmetry and an empty
cell a missing edge.

An example of a true coloured graph in the high density, 50% symmetric setting is

given in Figure 3.1. At each step of the simulation, for each true pdRCON model, three

models, having decreasing number of parameters to be estimated, are selected based on

the simulated dataset:

1. a pdRCON model allowing, but not forcing, vertex, inside-block and across block

symmetries;
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2. a pdRCON model allowing vertex and inside-block symmetries and forcing all

across-block edges to be symmetric;

3. a pdRCON model allowing vertex and inside-block symmetries and having no

across-block edges.

The three selected coloured graphs based on the dataset generated from the example

of a coloured graph of Figure 3.1, with sample size N = 100, are given in Figure 3.2,

3.3, 3.4 respectively. It can be observed that the models selected have lower densities

than the true model, and different assumptions on the across-group structure lead to

selected coloured graphs that differ also in the left and right blocks.

Figure 3.2: pdRCON model allowing for vertex, inside-block and across-block sym-
metries selected by the BIC on a simulated dataset from the coloured graph of Figure
3.1.

The selection procedure for each model uses a grid of 20 equally spaced on the

logarithmic scale values of ¼1 from
λdiag
1

20
to ¼diag1 and a grid of 20 equally spaced on

the logarithmic scale values of ¼2 from
λsym
2

20
to ¼sym2 , and BIC is used to compare the

models. For each sample size value, ten true pdRCON models are randomly generated,

and for each true pdRCON model the measures defined in Section 3.4 are computed

on the three selected models from the aforementioned pdRCON submodel classes, and

then the scores obtained for the measures over the ten iterations are averaged, and their

standard deviations are computed to account for variability.

A number of iterations larger than ten would be preferable, as the results exhibit

large variability, but the computational burden of the model selection procedure is an
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Figure 3.3: pdRCON model allowing for vertex and inside-block symmetries, and
forcing across-block symmetries selected by the BIC on a simulated dataset from the
coloured graph of Figure 3.1.

obstacle even when working in a relatively low dimensionality setting, such as in this

case with p = 20.
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Figure 3.4: pdRCON model allowing for vertex and inside-block symmetries, and
not allowing across-block edges selected by the BIC on a simulated dataset from the
coloured graph of Figure 3.1.

3.4 Performance measures

3.4.1 Graph recovery measures

In order to compare the performance of the models in recovering the structure of the

subgraphs GL and GR some well-established measures were considered:

ePPV =
eTP

#edges
, eTPR =

eTP

eP
, eTNR =

eTN

eN
,

eF1 = 2× ePPV× eTPR

ePPV + eTPR
= 2× eTP

2× eTP + eFP + eFN
,

eMCC =
eTP× eTN− eFP× eFN

√

(eTP + eFP)(eTP + eFN)(eTN + eFP)(eTN + eFN)
,

where

� ePPV is the edge Positive Predicted Value, or precision, defined as the ratio be-

tween the number of true, correctly identified edges, eTP, i.e. the edges in the

selected left and right subgraphs that correspond to edges in the true subgraphs,

and the number of edges in the selected subgraphs, #edges. In the second refor-

mulation, eFP is the number of false edges, i.e. the edges in the selected left and

right subgraphs not corresponding to edges in the true subgraphs, and eFN is the
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number of false missing edges, i.e. edges in the true subgraphs not recovered by

the selected subgraphs;

� eTPR is the edge True-Positive Rate, defined as the ratio between eTP and the

number of edges in the true subgraphs, eP;

� eTNR is the edge true-negative rate, defined as the ratio between the true, cor-

rectly identified missing edges (eTN), i.e. the missing edges in the selected sub-

graphs that correspond to missing edges in the true subgraphs, and the number

of missing edges in the true subgraphs (eN);

� eF1 is the edge F1 score, which is a summary measure defined as the harmonic

mean of ePPV and eTPR, evaluating the overall accuracy of the selected sub-

graphs, particularly used in sparse graph scenarios;

� eMCC is the Matthews Correlation Coefficient, function of the true and false edges

and of the true and false missing edges, ranging in value from -1 to 1, where -1 is

associated with a completely inverse identification of edges and non-edges, 0 with

a performance equal to guessing at random, and 1 with perfect graph recovery.

3.4.2 Symmetry recovery measures

Analogously, the measures considered to assess the performance in recovering the sym-

metric structure of GL and GR were

sTPR =
sTP

sP
, sTNR =

sTN

sN
, (3.2)

where

� sTPR is the symmetry True-Positive Rate, defined as the ratio between the number

of true, correctly identified, symmetries, sTP, i.e. the symmetries in the selected

left and right subgraphs that correspond to symmetries in the true subgraphs, and

the number of symmetries in the true subgraphs, sP;

� sTNR is the symmetry true-negative rate, defined as the ratio between the true

parametric asymmetries, sTN, i.e. the parametric asymmetries in the selected

subgraphs that correspond to parametric asymmetries in the true subgraphs, and

the number of parametric asymmetries in the true subgraphs, sN.
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3.4.3 Measures of the accuracy of the estimated concentration

matrix

Other than the recovery of the coloured graph, interest is also in the accuracy of the

estimates of the left and right block of the concentration matrix, ΘLL and ΘRR.

The two measures considered were the Frobenius norm error and the entropy loss

(Dey & Srinivasan, 1985), summed for left and right block respectively:

Frobenius norm error(Θ̂) = ||ΘLL − Θ̂LL||F + ||ΘRR − Θ̂RR||F ,

Entropy loss(Θ̂) =(tr(ΣLLΘ̂LL)− log det(ΣLLΘ̂LL)− q)+
(tr(ΣRRΘ̂RR)− log det(ΣRRΘ̂RR)− q) ,

where Σ = Θ−1 is the true covariance matrix. The Frobenius norm error is a distance,

an element-by-element discrepancy measure with a geometric interpretation, while the

entropy loss is a scale-invariant loss function, thus focusing on structural inaccuracies

in the estimation of the concentration matrix, rather than the absolute values of the

singular concentrations, and has a probabilistic interpretation, it measures how well Θ̂

estimates the inverse of the covariance matrix of a multivariate normal distribution.

The more accurate the estimate, the closer SΘ̂ will be to the identity matrix.

3.5 Results

3.5.1 High density, 50% symmetric setting

The sample size values considered were N = {20, 40, 60, 80, 100, 150, 200}. Figure 3.5

shows that no model has a clear edge in terms of structure recovery of GL and GR, and
the variability of the results, visualized here through vertical bars depicting ±1 standard
deviation from the mean across the ten iterations, is quite high, although the pdRCON

model forcing across-block edges to be symmetric seems to perform consistently slightly

better on average than the other two in the F1 score. Similarly, Figure 3.6 shows

that there are not large differences in recovering the symmetric structure of GL and GR
either, although the model forcing across-block edges to be symmetric estimates a larger

amount of symmetries in the two subgraphs (Figure 3.8). The two estimation accuracy

measures in Figure 3.7 show different results: allowing across-block symmetries leads
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Figure 3.5: Structure recovery measures of GL and GR for the high density, 50%
symmetric setting. Vertical bars denote±1 standard deviation across the 10 iterations.

to a better estimate in terms of Frobenius norm error, while the no across-block edges

hypothesis leads to a smaller entropy loss.
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Figure 3.6: Symmetric structure recovery measures of GL and GR for the high den-
sity, 50% symmetric setting.

Figure 3.7: Estimation accuracy measures of ΘLL and ΘRR for the high density,
50% symmetric setting.
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Figure 3.8: Total number of parameters estimated and numbers of edges and non-
zero parametric symmetries in GL and GR for the high density, 50% symmetric setting.
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3.5.2 High density, fully symmetric setting

Another scenario considered is with a true coloured graph being an instance of a fully

symmetric model, having every edge and vertex coloured. An example of a model the

data was generated from is given in Figure 3.9.

Figure 3.9: Example of a true coloured graph the data was generated from, in the
high density, fully symmetric setting.

Compared to the prior scenario, with similar graph density but lower symmetry, the

pdRCON model forcing across-group symmetries has a more distinct edge in recovering

the graph structure of GL and GR, performing better in both the F1 score and Matthews

Correlation Coefficient (Figure 3.10). Some values for the ePPV and the eMCC in the

low sample sizes are missing because it sometimes happens that the model selected in

an iteration has no edges, resulting in a NaN value for those measures. Figure 3.11 shows

that the symmetry-wise True Positive Rate is also higher for the model forcing across-

group symmetries, although all three models are comparable in terms of estimation

accuracy (Figure 3.12). Remarkably, it can be observed from Figure 3.13 that the total

number of parameters estimated is actually higher when forcing across-group symme-

tries: the reduction of the model in the across-group structure is more than compensated
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Figure 3.10: Structure recovery measures of GL and GR for the high density, fully
symmetric setting

by an increase of the number of both edges and non-zero parametric symmetries esti-

mated in the left and right groups. The coloured subgraphs GL and GR obtained are

both denser and have more information about the symmetric structure.
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Figure 3.11: Symmetry-True Positive Rate of GL and GR for the high density, fully
symmetric setting

Figure 3.12: Estimation accuracy measures of ΘLL and ΘRR for the high density,
fully symmetric setting
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Figure 3.13: Total number of parameters estimated in the models and numbers of
edges and non-zero parametric symmetries in GL and GR for the high density, fully
symmetric setting
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3.5.3 Low density, low symmetry setting

Lastly, the lower density scenario was considered. An example of a model the data was

generated from is given in Figure 3.14.

Figure 3.14: Example of a true coloured graph the data was generated from, in the
low density, low symmetry setting.

In this scenario differences between the three submodel classes are more opaque.

Once again, some values of ePPV and eMCC are missing when the sample size is low.

The models with ¼
(A)
2 = ∞ and ¼

(A)
2 = ¼2 have very similar Frobenius norm error

(Figure 3.17), but the F1 score, which is a more useful metric in low density settings

since predicting well non-missing edges is more important than predicting missing edges,

is generally slightly higher when across-group edges are forced to be symmetric (Figure

3.15). Moreover, it also has an advantage in terms of edge and symmetry-True Positive

Rate (Figure 3.16) when for larger sample sizes. The model with ¼
(A)
2 = ∞ is also the

one estimating the most amount of edges and symmetries in the two subgraphs (Figure

3.18).
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Figure 3.15: Structure recovery measures of GL and GR for the low density, low
symmetry setting.
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Figure 3.16: Symmetric structure recovery measures of GL and GR for the low
density, low symmetry setting.

Figure 3.17: Estimation accuracy measures of ΘLL and ΘRR for the low density,
low symmetry setting.
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Figure 3.18: Total number of parameters estimated in the models and numbers
of edges and non-zero parametric symmetries in GL and GR for the low density, low
symmetry setting.





Chapter 4

Breast cancer data analysis

This chapter presents an analysis of the breast cancer gene expression data considered

in Ranciati & Roverato (2024a) with the three pdRCON submodel classes considered

in Chapter 3, and how the models obtained differ based on the assumption about the

across-group structure.

4.1 Problem description

The data is the gene-level transcription estimates through a log2(Y +1) transformation

of the normalized counts Y , quantifying how much of a particular gene is transcribed into

RNA. N = 114 individuals took part in the study, and for each individual a sample of

breast cancer tissue was examined, along with a sample of healthy adjacent tissue. This

is an instance of a paired data problem, where the p = 178 genes can be naturally split

into two groups each one comprised of q = 89 genes, describing the breast cancer sample

and the control one respectively. Interest is in the estimation of a graphical model that

can represent the conditional dependence structure between the transcription estimates

of the genes; a pdRCON model can also indentify symmetries and asymmetries involving

the association network of the breast cancer tissue and the healthy tissue, which can

provide particularly useful insights.

Moreover, it is plausible that the interest lies in the two groups’ subgraphs and how

they differ, while the across-group structure is a nuisance element. The three submodel

classes of Chapter 3, having different assumptions about the across-group association

structure, will be considered and the models obtained compared.

55
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4.2 Model selection with eBIC

The model selection procedure considered is the same grid search with 20 equally spaced

on the logarithmic scale values for both parameters described in Section 3.3.

Figure 4.1 shows the coloured graph selected within the subclass of pdRCON models

allowing, but not forcing, vertex, inside-block and across-block symmetries. It can be

oberserved how the subgraph associated with the tissue affected by cancer, which is the

left block of the coloured graph, has a denser network, having 104 edges compared to 56

for the right block, corresponding respectively to a subgraph density of 2.7% and 1.4%,

suggesting a higher number of interactions between genes in cancer cells compared to

healthy tissue, which is a well established fact (see e.g. Goh et al., 2007). The graph

has low density (1.07%) and no parametric symmetries are estimated, although there

are 17 structural inside-block symmetries due to pairs of non-missing edges. Moreover,

12 out of the 17 structural inside-block symmetries involve the gene LRP2.

Figure 4.2 and 4.3 show that in this case, the left and right coloured subgraphs

selected are exactly the same for all three subclasses, and the left and right blocks

of the estimates of the concentration matrix have Frobenius norm differences close to

zero. When dimensionality is high and the number of across-block edges is small, the

assumptions on the across-group structure seem to have little effect on the inference

over the two groups.

Figure 4.1: pdRCON allowing vertex, inside-block, and across-block symmetries
selected by the eBIC having γ = 0.5.
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Figure 4.2: pdRCON allowing vertex and inside-block symmetries and forcing
across-block symmetries selected by the eBIC having γ = 0.5.

Figure 4.3: pdRCON allowing vertex and inside-block symmetries and forcing
across-block edges to be missing selected by the eBIC having γ = 0.5.

4.3 Model selection with BIC

When using BIC in the model selection procedure, the pdRCON models obtained are

considerably less sparse, and some differences between submodel classes arise even in
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Figure 4.4: pdRCON allowing vertex, inside-block, and across-block symmetries
selected by the BIC.

Figure 4.5: pdRCON allowing vertex and inside-block symmetries and forcing
across-block symmetries selected by the BIC.

the left and right blocks. The model forcing across-block symmetries has less across-

block edges than the model simply allowing across-block symmetries, 47 compared to

109; differences between these two models in the left and right blocks are however

very small, with ≈ 99% of inside-block edges being shared. The model forcing across-

block edges to be missing is more parsimonious, with an overall graph density of 2.58%

compared to ≈ 5% for the previous two coloured graphs, and an inside-block density of
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Figure 4.6: pdRCON allowing vertex and inside-block symmetries and forcing
across-block edges to be missing selected by the BIC.

5.2% compared to 9.4%. The results are summarized in Table 4.1.

It can be concluded that the conditional dependence structure of the gene-expression

levels of the two tissues does present some structural similarities, involving in particular

the LRP2 gene, which could be a starting point for further investigation. To recover

symmetries better, however, a larger sample size would likely be needed.
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Conclusion

This work addressed the role played by the across-group association structure in paired

data problems. A simulation study was set to investigate whether different hypotheses

on the across-group association structure can alter the quality of the recovery of the

group-level subgraphs and their symmetries, as well as the accuracy of the estimation

of the left and right blocks of the concentration matrix. A pdRCON model forcing

the across-block edges to be symmetric, thus reducing the number of parameters in the

across block of the concentration matrix to be estimated, leads to improved inference on

the two groups, with more edges and symmetries of their relative subgraphs recovered

and a better performance in terms of Frobenius norm error of the estimate of the two left

and right blocks of the concentration matrix. Lastly, the model subclasses considered

in the simulation study were deployed to deal with the breast cancer gene expression

data, and the models obtained were compared; however differences in the selected sub-

graphs and the inside-group parameters were small, especially when model selection was

performed using eBIC with µ = 0.5, so that sparse models with few across-block edges

are selected. It is worth remarking that computational aspects are particularly relevant

with pdRCON models, as the model selection procedure, even when the grid search for

the optimal parameters is over a relatively small number of values, can take hours on a

regular laptop in high dimensionality contexts such as in the breast cancer case, having

p = 178.
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Appendix A

Pathwise coordinate descent algorithm

Friedman et al. (2007) propose the pathwise coordinate descent algorithm as follows.

One can observe that the solution of a lasso regression problem with a single predictor,

ˆ́ = argmax
β

1

2

N
∑

i=1

(yi − xi´)2 + ¼´ , (A.1)

is very simple, and is the soft-tresholded version of the least square estimate ˜́:

ˆ́lasso = Sλ( ˜́) = sign( ˜́)(| ˜́| − ¼)+ . (A.2)

With multiple, uncorrelated, predictors the lasso solution is once again the soft tresh-

olded version of the ˜́ vector containing the least squares estimates. In general, with

correlated predictors, this is no longer the case. One can instead consider a simple

iterative algorithm that applies univariate soft-tresholding for every j = 1, ..., p us-

ing xij, i = 1, ..., N as the predictor and the partial residuals r
(j)
i , i = 1, ..., N as the

response variable, iterating over j = 1, ..., p, 1, ..., p, 1, ... until convergence. r
(j)
i =

yi −
∑

k ̸=j xik
ˆ́
k = yi − ŷi

(j)
i represent the residuals of the regression model without

the j-th predictor, and ˆ́
k is the current estimate of ´k in this iterative process.

The algorithm allows to solve the lasso regression problem over a grid of values of

¼ in a very computationally efficient manner, as each solution can be used as a warm

start for the next value of ¼ in the grid.

Moreover, the pathwise coordinate descent algorithm performs well in the whole class

of problems for which the univariate solution can be computed quickly, such as the Least

Absolute Deviation lasso (LAD-lasso), the elastic net, the group lasso and many more.

However, the pathwise coordinate descent algorithm does not work in problems where

the penalty term is non-separable, and therefore cannot be represented as a univariate
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problem; an example of such instance is with the fused lasso.



Appendix B

Conditional distribution of a random variable given

the rest of the graph

Let X = (X1, ..., Xp)
T be a p-dimensional multivariate normal random vector, X ∼

Np(µ,Σ), with Θ = Σ−1 concentration matrix. Interest is in the conditional distribution

of the j-th component given all other components X−j = (X1, ..., Xj−1, Xj+1, Xp)
T .

Partition X and Θ, isolating the variable Xj from all others:

X =

(

Xj

X−j

)

, Θ =

(

¹jj ¹j,−j

¹−j,j Θ−j,−j

)

. (B.1)

The joint probability density function of X is

f(X) =
1

√

(2Ã)p det(Σ)
exp

{

−1

2
XTΘX

}

. (B.2)

The term XTΘX in the exponential can be re-written as

XTΘX =
(

Xj XT
−j

)

(

¹jj ¹j,−j

¹−j,j Θ−j,−j

)(

Xj

X−j

)

, (B.3)

resulting in the a quadratic form in Xj

XTΘX = ¹jjX
2
j + 2Xj¹j,−jX−j +XT

−jΘ−j,−jX−j

= ¹jj

(

X2
j + 2

¹j,−jX−j

¹jj
Xj

)

+XT
−jΘ−j,−jX−j , (B.4)
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observing that XT
−j¹−j,j = ¹j,−jX−j. Completing the square for Xj the argument of the

exponential term in (B.2) becomes

−1

2
¹jj

(

(

Xj +
¹j,−jX−j

¹jj

)2

−
(

¹j,−jX−j

¹jj

)2
)

− 1

2
XT

−jΘ−j,−jX−j . (B.5)

Looking only at the terms involving Xj and considering X−j as known, a normal

distribution for Xj given X−j can be identified, where the conditional mean and variance

are

E(Xj|X−j) = −
¹j,−jX−j

¹jj
, Var(Xj|X−j) = 1/¹jj . (B.6)

Observing that ¹j,−jX−j =
∑

i ̸=j Xi¹ij, the conditional distribution is

Xj|V \{j} ∼ N

(

−
∑

i ̸=j

Xi
¹ij
¹jj
,
1

¹jj

)

. (B.7)



Appendix C

Code

C.1 Simulation study

rm(list=ls())

library(pdglasso)

library(tidyverse)

library(ggplot2)

library(see)

#auxiliary functions:

half.vec <- function(M){

return(M[upper.tri(M, diag=FALSE )])

}

mat2vec <- function(M){

p <- dim(M)[1]

q <- p/2

return(c(diag(M[1:q,1:q]),

diag(M[(q+1):p,(q+1):p]),

half.vec(M[1:q,1:q]),

half.vec(M[(q+1):p,(q+1):p]),

half.vec(M[1:q,(q+1):p]),

half.vec(M[(q+1):p,1:q]),

diag(M[1:q,(q+1):p]))

)

}

#function to perform model selection in the subclass of pdRCON models having

#no across -block edges.

pdRCON.fit.noacrossedges <- function(S,

n,

lams = NULL ,

gamma.eBIC = 0.5,

type = c("vertex",

"inside.block.edge",

"across.block.edge"),

force.symm = NULL ,

X.init = NULL ,
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rho1 = 1,

rho2 = 1,

varying.rho1= TRUE ,

varying.rho2= TRUE ,

max_iter = 5000,

eps.abs = 1e-08,

eps.rel = 1e-08,

verbose = FALSE ,

progress = TRUE ,

print.type = TRUE){

start.time <- Sys.time()

if(is.null(lams )){

lams <- matrix (0,2,4)

lams[,2] <- lams.max(S)

lams[,1] <- lams[,2]/20

lams[,3] <- c(20 ,20)

lams[,4] <- c(TRUE ,TRUE)

}

rownames(lams) <- c("l1","l2")

colnames(lams) <- c("min","max","n.pts","log.spacing")

## Prepare temp objects

eBIC.l1 <- matrix(0,lams [1,3],4)

eBIC.l2 <- matrix(0,lams [2,3],4)

### First grid search for lambda_1, with lambda_2=0

if(lams [1 ,4]==1) l1.vec <- exp(seq(log(lams [1,1]),log(lams [1,2]),

length.out=lams [1 ,3])) else l1.vec <-

seq(lams[1,1], lams[1,2], length.out=lams [1 ,3])

l1.vec <- sort(l1.vec , decreasing=TRUE)

p <- NCOL(S)

q <- p/2

cat("Selecting a pdRCON model without across -block edges .\n")

for(i in 1:lams [1 ,3]){

if(progress ==TRUE) cat(

"Searching over lambda1 grid (",i,"/",lams[1,3],").\n", sep="")

lam1 <- matrix(l1.vec[i], nrow = p, ncol = p)

lam1 [1:q,(q+1):p] <- Inf

lam1[(q+1):p,1:q] <- Inf

lam1 <- mat2vec(lam1)

mod.out <- admm.pdglasso(S,

lambda1=lam1 ,

lambda2=0,

type=type ,

force.symm=force.symm ,

X.init=X.init ,

rho1=rho1 ,

rho2=rho2 ,

varying.rho1=varying.rho1 ,

varying.rho2=varying.rho2 ,

max_iter=max_iter ,

eps.abs=eps.abs ,

eps.rel=eps.rel ,

verbose=FALSE ,
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print.type=FALSE)

eBIC.l1[i ,1:3] <- compute.eBIC(S=S,

mod=mod.out ,

n=n,

gamma.eBIC=gamma.eBIC ,

max_iter=max_iter)

eBIC.l1[i,4] <- mod.out$internal.par$converged +0

if(eBIC.l1[i ,4]==0) cat

("Convergence not achieved for this value of lambda1! \n")

}

best.l1 <- l1.vec[which.min(eBIC.l1[ ,1])]

if(length(best.l1 )==0) stop("Grid search of lambda1 failed!")

best.l1.mat <- matrix(best.l1 , nrow = p, ncol = p)

best.l1.mat [1:q,(q+1):p] <- Inf

best.l1.mat[(q+1):p,1:q] <- Inf

best.l1.mat <- mat2vec(best.l1.mat)

if(progress ==TRUE) cat("--- \n", sep="")

### Second grid search for lambda_2, with lambda_1= best.l1.mat

if(lams [2 ,4]==1) l2.vec <- exp(seq(log(lams [2,1]),log(lams [2,2]),

length.out=lams [2 ,3])) else l2.vec <-

seq(lams[2,1], lams[2,2], length.out=lams [2 ,3])

l2.vec <- sort(l2.vec , decreasing=TRUE)

for(i in 1:lams [2 ,3]){

if(progress ==TRUE)

cat("Searching over lambda2 grid (",i,"/",lams[2,3],").\n", sep="")

mod.out <- admm.pdglasso(S,

lambda1=best.l1.mat ,

lambda2=l2.vec[i],

type=type ,

force.symm=force.symm ,

X.init=X.init ,

rho1=rho1 ,

rho2=rho2 ,

varying.rho1=varying.rho1 ,

varying.rho2=varying.rho2 ,

max_iter=max_iter ,

eps.abs=eps.abs ,

eps.rel=eps.rel ,

verbose=FALSE ,

print.type=FALSE)

eBIC.l2[i ,1:3] <- compute.eBIC(S=S,

mod=mod.out ,

n=n,

gamma.eBIC=gamma.eBIC ,

max_iter=max_iter)

eBIC.l2[i,4] <- mod.out$internal.par$converged +0

if(eBIC.l2[i ,4]==0)

cat("Convergence not achieved for this value of lambda2! \n")

}

### adding eBIC value/results and l2 value to path

### already estimated from the first grid.search where lam2 =0

eBIC.l2 <- rbind(eBIC.l2 , eBIC.l1[which.min(eBIC.l1[,1]),])

l2.vec <- c(l2.vec ,0)
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best.l2 <- l2.vec[which.min(eBIC.l2[ ,1])]

if(length(best.l2 )==0) stop("Grid search of lambda2 failed!")

## Fit final model

mod.out <- admm.pdglasso(S,

lambda1=best.l1.mat ,

lambda2=best.l2 ,

type=type ,

force.symm=force.symm ,

X.init=X.init ,

rho1=rho1 ,

rho2=rho2 ,

varying.rho1=varying.rho1 ,

varying.rho2=varying.rho2 ,

max_iter=max_iter ,

eps.abs=eps.abs ,

eps.rel=eps.rel ,

verbose=verbose ,

print.type=print.type)

l1.path=cbind(l1.vec ,eBIC.l1)

l2.path=cbind(l2.vec ,eBIC.l2)

colnames(l1.path) <- c("lambda1.grid", "eBIC ",

" log -Likelihood ","num. of params",

"converged (1= TRUE)")

colnames(l2.path) <- c("lambda2.grid", "eBIC ",

" log -Likelihood ","num. of params",

"converged (1= TRUE)")

time.exec <- Sys.time()-start.time

return(list(model=mod.out ,

best.lambdas=c(best.l1 ,best.l2),

lambda.grid=lams ,

l1.path=l1.path ,

l2.path=l2.path ,

time.exec=time.exec))

}

# SIMULATION STUDY

#How do different assumptions on the across -block structure of the pdRCON model

#influence inference on the left and right blocks of the concentration matrix?

performance.measures <- function(G_estimated , G_true){

p <- dim(G_estimated )[1] #number of variables

n.edges <- p*(p-1)/2 #number of edges in the complete graph

GL_estimated <- G_estimated != 0 #position of the edges in the estimated graph

GL_true <- G_true != 0 #position of the edges in the true graph

P.G_true <- sum(GL_true[upper.tri(GL_true , diag = FALSE )]) #number of edges

#in the true graph

N.G_true <- n.edges - P.G_true #number of missing edges in the true graph

P.G_estimated <- sum(GL_estimated[upper.tri(GL_estimated , diag = FALSE )])

#number of edges in the estimated graph

N.G_estimated <- n.edges - P.G_estimated #number of missing edges in the

# estimated graph

TP <- sum(GL_estimated[upper.tri(GL_estimated , diag = FALSE )] &



Appendix 71

GL_true[upper.tri(GL_true , diag = FALSE )]) #number of true

#edges

FP <- P.G_estimated - TP #number of false edges

FN <- P.G_true - TP #number of false missing edges

TN <- N.G_estimated - FN #number of true missing edges

G_estimated_lowertri <- G_estimated[lower.tri(G_estimated , diag = TRUE)]

G_true_lowertri <- G_true[lower.tri(G_true , diag = TRUE)]

sP.G_estimated <- sum(G_estimated_lowertri == 2) #number of non -zero symmetric

# concentrations in the estimated concentration matrix

sP.G_true <- sum(G_true_lowertri == 2) #number of non -zero symmetric

# concentrations in the true concentration matrix

sN.G_estimated <- sum(G_estimated_lowertri == 1) #number of parametric

# asymmetries in the estimated concentration matrix

sN.G_true <- sum(G_true_lowertri == 1) #number of parametric asymmetries

#in the true concentration matrix

sTP <- sum(G_estimated_lowertri == G_true_lowertri & G_true_lowertri == 2)

#number of true symmetries , non -zero symmetries in the estimated concentration

#matrix corresponding to non - symmetries in the true concentration matrix

sTN <- sum(G_estimated_lowertri == G_true_lowertri & G_true_lowertri == 1)

#number of true parametric asymmetries , parametric asymmetries in the

# estimated concentration matrix corresponding to parametric asymmetries in

#the true concentration matrix

return(list(n.edges=n.edges , P.G_true=P.G_true , N.G_true=N.G_true ,

P.G_estimated=P.G_estimated , N.G_estimated=N.G_estimated ,

TP=TP , FP=FP , TN=TN , FN=FN ,

sP.G_estimated=sP.G_estimated , sP.G_true=sP.G_true ,

sN.G_estimated=sN.G_estimated , sN.G_true=sN.G_true ,

sTP=sTP , sTN=sTN))

}

measures_subgraphs <- function(G, Gtrue) {

#computes the relevant quantities over the left and right subgraphs , and

#returns the list with the sum of the quantities

p <- dim(G)[1]

q <- p/2

G_L <- G[1:q,1:q]

G_R <- G[(q+1):p,(q+1):p]

Gtrue_L <- Gtrue [1:q,1:q]

Gtrue_R <- Gtrue [(q+1):p,(q+1):p]

measures_L <- performance.measures(G_L, Gtrue_L)

measures_R <- performance.measures(G_R, Gtrue_R)

totals <- Map(‘+‘, measures_L, measures_R)

return(totals)

}

PPV <- function(A){ return(A$TP/A$P.G_estimated )}# Positive Predicted Values or

#Precision

TPR <- function(A){ return(A$TP/A$P.G_true)}# True Positive Rate or Recall

TNR <- function(A){ return(A$TN/A$N.G_true)} #True Negative Rate

F1 <- function(A){ return (2*A$TP/(2*A$TP+A$FP+A$FN))} #F1 score , harmonic mean
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#mean of precision and recall

MCC <- function(A){ return ((A$TP*A$TN -A$FP*A$FN)/

sqrt((A$TP+A$FP)*(A$TP+A$FN)*

(A$TN+A$FP)*(A$TN+A$FN)))} #Matthews

# Correlation Coefficient

sTPR <- function(A){ return(A$sTP/A$sP.G_true)} #symmetry - True Positive Rate

sTNR <- function(A){ return(A$sTN/A$sN.G_true)} #symmetry - True Negative Rate

simulation.study <- function(N, n.iterations , p, d, dcv , dci , dca) {

#N is the vector containing the sample sizes

#n. iterations the number of iterations to be averaged over to get the results

#measures

#p is the number of variables in the graph

#d is the density of non -coloured edges

#dcv is the density of coloured vertices

#dci is the density of coloured inside -block edges

#dca is the density of coloured across -block edges

layers.labels <- paste("N=", N, sep = "")

final.results <- array(0, dim=c(3, 24, 7))

dimnames(final.results) <- list(

rows = c("lambda2 ^(A)= lambda2","lambda2 ^(A)=Inf", "no across -block edges"),

cols = rep(c("ePPV", "eTPR", "eTNR", "eF1", "eMCC", "sTPR", "sTNR",

"Frob", "EL", "Npar", "Nedges", "Nsymmetries"),2),

layers = layers.labels

)

times.mle.fails.to.be.computed <- 0 #to keep track of how many times the

#function pdRCON.mle () fails to compute the MLE of the selected model

if (p %% 2 != 0) {

stop("Error: The number of variables ’p’ must be an even number.")

}

q <- p/2

start.time <- Sys.time() #to keep track of how much time the simulation takes

for (i in 1: length(N)) {

n <- N[i]

res.1 <- matrix(0, nrow = n.iterations , ncol = 12)

res.2 <- matrix(0, nrow = n.iterations , ncol = 12)

res.3 <- matrix(0, nrow = n.iterations , ncol = 12)

#matrices where the scores of each performance measure for every

# iteration with the current sample size value (outer for loop)

#are saved

for (j in 1:n.iterations) {

sim <- pdRCON.simulate(p=p, dens=d,

dens.vertex=dcv , dens.inside = dci ,

dens.across = dca , sample.size = n) #true model

#the data is generated from

G0 <- sim$pdColG #true coloured graph

K0 <- sim$K #true concentration matrix

K0_L <- K0[1:q,1:q] #left block of the true concentration matrix

K0_R <- K0[(q+1):p,(q+1):p] #right block of the true

# concentration matrix

Sigma <- solve(K0) #true covariance matrix

Sigma_L <- Sigma [1:q,1:q] #left block of the true covariance

#matrix
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Sigma_R <- Sigma [(q+1):p,(q+1):p] #right block of the true

# covariance matrix

S <- cov(sim$sample.data) #sample covariance matrix

mod.1 <- pdRCON.fit(S, n, gamma.eBIC = 0)

# selection of a pdRCON model allowing vertex , inside -block and

#across -block symmetries

mod.2 <- pdRCON.fit(S, n,

force.symm = "across.block.edge",

gamma.eBIC = 0)

# selection of a pdRCON model allowing vertex and inside -block

# symmetries and forcing across -block symmetries

mod.3 <- pdRCON.fit.noacrossedges(S, n, gamma.eBIC = 0)

# selection of a pdRCON model allowing vertex and inside -block

# symmetries and not allowing across -block edges

estG.1 <- pdColG.get(mod.1$model)$pdColG

estG.2 <- pdColG.get(mod.2$model)$pdColG

estG.3 <- pdColG.get(mod.3$model)$pdColG

#matrices encoding the estimated graphs for each of the three

#selected models

measures .1 <- measures_subgraphs(estG.1, G0)

measures .2 <- measures_subgraphs(estG.2, G0)

measures .3 <- measures_subgraphs(estG.3, G0)

#relevant quantities to compute the measures related to graph

# structure recovery and symmetry recovery

PPV.1 <- PPV(measures .1)

TPR.1 <- TPR(measures .1)

TNR.1 <- TNR(measures .1)

F1.1 <- F1(measures .1)

MCC.1 <- MCC(measures .1)

sTPR.1 <- sTPR(measures .1)

sTNR.1 <- sTNR(measures .1)

# computation of the measures related to graph structure recovery

# andsymmetry recovery

mle.1 <- pdRCON.mle(S, estG .1)

if (is.null(mle .1)) {

#if pdRCON.mle fails to compute the MLE , use the solution

#of the penalized loglikelihood optimization problem as a

#fallback estimate

mle.1 <- mod.1$model$X

mle.1_L <- mle .1[1:q,1:q]

mle.1_R <- mle .1[(q+1):p,(q+1):p]

Frob.1_L <- norm(K0_L - mle.1_L, type = "F")

# Frobenius norm error of the left block

Frob.1_R <- norm(K0_R - mle.1_R, type = "F")

# Frobenius norm error of the right block

Frob.1 <- Frob.1_L + Frob.1_R

#sum of the Frobenius norm error over the two left and

#right blocks

prod.mle.1_L <- mle.1_L %*% Sigma_L

prod.mle.1_R <- mle.1_R %*% Sigma_R

EL.1_L <- sum(diag(prod.mle.1_L)) -
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log(det(prod.mle.1_L)) - q

#entropy loss of the left block

EL.1_R <- sum(diag(prod.mle.1_R)) -

log(det(prod.mle.1_R)) - q

#entropy loss of the right block

EL.1 <- EL.1_L + EL.1_R

#sum of the entropy loss over the two left and right blocks

times.mle.fails.to.be.computed <-

times.mle.fails.to.be.computed + 1

#add 1 to the count of the times pdRCON.mle () fails to

#compute the mle

}

else {

mle.1_L <- mle .1[1:q,1:q]

mle.1_R <- mle .1[(q+1):p,(q+1):p]

Frob.1_L <- norm(K0_L - mle.1_L, type = "F")

# Frobenius norm error of the left block

Frob.1_R <- norm(K0_R - mle.1_R, type = "F")

# Frobenius norm error of the right block

Frob.1 <- Frob.1_L + Frob.1_R

#sum of the Frobenius norm error over the two left and

#right blocks

prod.mle.1_L <- mle.1_L %*% Sigma_L

prod.mle.1_R <- mle.1_R %*% Sigma_R

EL.1_L <- sum(diag(prod.mle.1_L)) -

log(det(prod.mle.1_L)) - q

#entropy loss of the left block

EL.1_R <- sum(diag(prod.mle.1_R)) -

log(det(prod.mle.1_R)) - q

#entropy loss of the right block

EL.1 <- EL.1_L + EL.1_R

#sum of the entropy loss over the two left and right

#blocks

}

Npar.1 <- pdColG.get(mod.1$model)$n.par

#total number of parameters estimated by the selected model

#(across -block included)

Nedges .1 <- measures .1$P.G_estimated

Nsymm .1 <- measures .1$sP.G_estimated

PPV.2 <- PPV(measures .2)

TPR.2 <- TPR(measures .2)

TNR.2 <- TNR(measures .2)

F1.2 <- F1(measures .2)

MCC.2 <- MCC(measures .2)

sTPR.2 <- sTPR(measures .2)

sTNR.2 <- sTNR(measures .2)

mle.2 <- pdRCON.mle(S, estG .2)

if (is.null(mle .2)) {

mle.2 <- mod.2$model$X

mle.2_L <- mle .2[1:q,1:q]

mle.2_R <- mle .2[(q+1):p,(q+1):p]

Frob.2_L <- norm(K0_L - mle.2_L, type = "F")

Frob.2_R <- norm(K0_R - mle.2_R, type = "F")

Frob.2 <- Frob.2_L + Frob.2_R
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prod.mle.2_L <- mle.2_L %*% Sigma_L

prod.mle.2_R <- mle.2_R %*% Sigma_R

EL.2_L <- sum(diag(prod.mle.2_L)) -

log(det(prod.mle.2_L)) - q

EL.2_R <- sum(diag(prod.mle.2_R)) -

log(det(prod.mle.2_R)) - q

EL.2 <- EL.2_L + EL.2_R

times.mle.fails.to.be.computed <-

times.mle.fails.to.be.computed + 1

}

else {

mle.2_L <- mle .2[1:q,1:q]

mle.2_R <- mle .2[(q+1):p,(q+1):p]

Frob.2_L <- norm(K0_L - mle.2_L, type = "F")

Frob.2_R <- norm(K0_R - mle.2_R, type = "F")

Frob.2 <- Frob.2_L + Frob.2_R

prod.mle.2_L <- mle.2_L %*% Sigma_L

prod.mle.2_R <- mle.2_R %*% Sigma_R

EL.2_L <- sum(diag(prod.mle.2_L)) -

log(det(prod.mle.2_L)) - q

EL.2_R <- sum(diag(prod.mle.2_R)) -

log(det(prod.mle.2_R)) - q

EL.2 <- EL.2_L + EL.2_R

}

Npar.2 <- pdColG.get(mod.2$model)$n.par

Nedges .2 <- measures .2$P.G_estimated

Nsymm .2 <- measures .2$sP.G_estimated

PPV.3 <- PPV(measures .3)

TPR.3 <- TPR(measures .3)

TNR.3 <- TNR(measures .3)

F1.3 <- F1(measures .3)

MCC.3 <- MCC(measures .3)

sTPR.3 <- sTPR(measures .3)

sTNR.3 <- sTNR(measures .3)

mle.3 <- pdRCON.mle(S, estG .3)

if (is.null(mle .3)) {

mle.3 <- mod.3$model$X

mle.3_L <- mle .3[1:q,1:q]

mle.3_R <- mle .3[(q+1):p,(q+1):p]

Frob.3_L <- norm(K0_L - mle.3_L, type = "F")

Frob.3_R <- norm(K0_R - mle.3_R, type = "F")

Frob.3 <- Frob.3_L + Frob.3_R

prod.mle.3_L <- mle.3_L %*% Sigma_L

prod.mle.3_R <- mle.3_R %*% Sigma_R

EL.3_L <- sum(diag(prod.mle.3_L)) -

log(det(prod.mle.3_L)) - q

EL.3_R <- sum(diag(prod.mle.3_R)) -

log(det(prod.mle.3_R)) - q

EL.3 <- EL.3_L + EL.3_R

times.mle.fails.to.be.computed <-

times.mle.fails.to.be.computed + 1

}

else {

mle.3_L <- mle .3[1:q,1:q]
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mle.3_R <- mle .3[(q+1):p,(q+1):p]

Frob.3_L <- norm(K0_L - mle.3_L, type = "F")

Frob.3_R <- norm(K0_R - mle.3_R, type = "F")

Frob.3 <- Frob.3_L + Frob.3_R

prod.mle.3_L <- mle.3_L %*% Sigma_L

prod.mle.3_R <- mle.3_R %*% Sigma_R

EL.3_L <- sum(diag(prod.mle.3_L)) -

log(det(prod.mle.3_L)) - q

EL.3_R <- sum(diag(prod.mle.3_R)) -

log(det(prod.mle.3_R)) - q

EL.3 <- EL.3_L + EL.3_R

}

Npar.3 <- pdColG.get(mod.3$model)$n.par

Nedges .3 <- measures .3$P.G_estimated

Nsymm .3 <- measures .3$sP.G_estimated

res .1[j,] <- c(PPV.1, TPR.1, TNR.1, F1.1, MCC.1,

sTPR.1, sTNR.1,

Frob.1, EL.1, Npar.1, Nedges.1, Nsymm .1)

res .2[j,] <- c(PPV.2, TPR.2, TNR.2, F1.2, MCC.2,

sTPR.2, sTNR.2,

Frob.2, EL.2, Npar.2, Nedges.2, Nsymm .2)

res .3[j,] <- c(PPV.3, TPR.3, TNR.3, F1.3, MCC.3,

sTPR.3, sTNR.3,

Frob.3, EL.3, Npar.3, Nedges.3, Nsymm .3)

#save each measure in the corresponding row of the matrices

cat("i = ", i, ", j = ", j, "\n") #to trace progress

}

#at the end of the inner for cycle , compute the averages and save them in

#the results object

final.results[1,,i] <- c(colMeans(res.1), apply(res.1, 2, sd))

final.results[2,,i] <- c(colMeans(res.2), apply(res.2, 2, sd))

final.results[3,,i] <- c(colMeans(res.3), apply(res.3, 2, sd))

}

time.exec <- Sys.time()-start.time

return(list(results = final.results ,

time.exec=time.exec ,

times.mle.fails.to.be.computed = times.mle.fails.to.be.computed ))

}

# ###############################################################################

#Scenario 1: p = 20, dens = 0.5, dens.vertex = 0.5, dens.inside = 0.25 ,

#dens.across = 0.25 (high density , 50% symmetric )

# ###############################################################################

#Example of a true coloured graph:

set.seed (555)

sim <- pdRCON.simulate(p = 20, dens = 0.5, dens.vertex = 0.5,

dens.inside = 0.25, dens.across = 0.25,

sample.size = 100)

G0 <- sim$pdColG

png("examplep20d50dcv50dci25dca25.png", width = 800, height = 600, res = 150)

pdColG.plot(G0)

dev.off()
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N <- c(20, 40, 60, 80, 100, 150, 200)

sim.p20d50dcv50dci25dca25 <- simulation.study(N, n.iterations = 10, p = 20,

d = 0.5, dcv = 0.5, dci = 0.25,

dca = 0.25)

results <- sim.p20d50dcv50dci25dca25$results

sim.p20d50dcv50dci25dca25$times.mle.fails.to.compute

sim.p20d50dcv50dci25dca25$time.exec

save.image("p20d50dcv50dci25dca25.simulation.RData")

#load (" p20d50dcv50dci25dca25 . simulation .RData ")

ePPVdf.means <- data.frame(sample_size = N,

across.symm = results [1,1,],

forcedacross.symm = results [2,1,],

noacross.edges = results [3,1,])

ePPVdf.sds <- data.frame(sample_size = N,

across.symm = results [1,13,],

forcedacross.symm = results [2,13,],

noacross.edges = results [3,13,])

ePPVdf.means <- ePPVdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

ePPVdf.sds <- ePPVdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_ePPVdf <- left_join(ePPVdf.means , ePPVdf.sds ,

by = c("sample_size", "group"))

ePPVplot <- ggplot(merged_ePPVdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -Predicted Positive Value",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d50dcv50dci25dca25.ePPV.png", width = 800, height = 600, res = 150)

ePPVplot

dev.off()

eTPRdf.means <- data.frame(sample_size = N,

across.symm = results [1,2,],

forcedacross.symm = results [2,2,],

noacross.edges = results [3,2,])

eTPRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,14,],

forcedacross.symm = results [2,14,],

noacross.edges = results [3,14,])

eTPRdf.means <- eTPRdf.means %>%
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pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

eTPRdf.sds <- eTPRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eTPRdf <- left_join(eTPRdf.means , eTPRdf.sds ,

by = c("sample_size", "group"))

eTPRplot <- ggplot(merged_eTPRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -True Positive Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d50dcv50dci25dca25.eTPR.png", width = 800, height = 600, res = 150)

eTPRplot

dev.off()

eTNRdf.means <- data.frame(sample_size = N,

across.symm = results [1,3,],

forcedacross.symm = results [2,3,],

noacross.edges = results [3,3,])

eTNRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,15,],

forcedacross.symm = results [2,15,],

noacross.edges = results [3,15,])

eTNRdf.means <- eTNRdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

eTNRdf.sds <- eTNRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eTNRdf <- left_join(eTNRdf.means , eTNRdf.sds ,

by = c("sample_size", "group"))

eTNRplot <- ggplot(merged_eTNRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -True Negative Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),
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"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d50dcv50dci25dca25.eTNR.png", width = 800, height = 600, res = 150)

eTNRplot

dev.off()

eF1df.means <- data.frame(sample_size = N,

across.symm = results [1,4,],

forcedacross.symm = results [2,4,],

noacross.edges = results [3,4,])

eF1df.sds <- data.frame(sample_size = N,

across.symm = results [1,16,],

forcedacross.symm = results [2,16,],

noacross.edges = results [3,16,])

eF1df.means <- eF1df.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

eF1df.sds <- eF1df.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eF1df <- left_join(eF1df.means , eF1df.sds ,

by = c("sample_size", "group"))

eF1plot <- ggplot(merged_eF1df ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -F1 score",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 12))

png("p20d50dcv50dci25dca25.eF1.png", width = 800, height = 600, res = 150)

eF1plot

dev.off()

eMCCdf.means <- data.frame(sample_size = N,

across.symm = results [1,5,],

forcedacross.symm = results [2,5,],

noacross.edges = results [3,5,])

eMCCdf.sds <- data.frame(sample_size = N,

across.symm = results [1,17,],

forcedacross.symm = results [2,17,],

noacross.edges = results [3,17,])

eMCCdf.means <- eMCCdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",
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values_to = "y")

eMCCdf.sds <- eMCCdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eMCCdf <- left_join(eMCCdf.means , eMCCdf.sds ,

by = c("sample_size", "group"))

eMCCplot <- ggplot(merged_eMCCdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -MCC",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d50dcv50dci25dca25.eMCC.png", width = 800, height = 600, res = 150)

eMCCplot

dev.off()

sTPRdf.means <- data.frame(sample_size = N,

across.symm = results [1,6,],

forcedacross.symm = results [2,6,],

noacross.edges = results [3,6,])

sTPRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,18,],

forcedacross.symm = results [2,18,],

noacross.edges = results [3,18,])

sTPRdf.means <- sTPRdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

sTPRdf.sds <- sTPRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_sTPRdf <- left_join(sTPRdf.means , sTPRdf.sds ,

by = c("sample_size", "group"))

sTPRplot <- ggplot(merged_sTPRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "symmetry -True Positive Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +
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theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d50dcv50dci25dca25.sTPR.png", width = 800, height = 600, res = 150)

sTPRplot

dev.off()

sTNRdf.means <- data.frame(sample_size = N,

across.symm = results [1,7,],

forcedacross.symm = results [2,7,],

noacross.edges = results [3,7,])

sTNRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,19,],

forcedacross.symm = results [2,19,],

noacross.edges = results [3,19,])

sTNRdf.means <- sTNRdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

sTNRdf.sds <- sTNRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_sTNRdf <- left_join(sTNRdf.means , sTNRdf.sds ,

by = c("sample_size", "group"))

sTNRplot <- ggplot(merged_sTNRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "symmetry -True Negative Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d50dcv50dci25dca25.sTNR.png", width = 800, height = 600, res = 150)

sTNRplot

dev.off()

Frobdf.means <- data.frame(sample_size = N,

across.symm = results [1,8,],

forcedacross.symm = results [2,8,],

noacross.edges = results [3,8,])

Frobdf.sds <- data.frame(sample_size = N,

across.symm = results [1,20,],

forcedacross.symm = results [2,20,],

noacross.edges = results [3,20,])

Frobdf.means <- Frobdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Frobdf.sds <- Frobdf.sds %>%
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pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_Frobdf <- left_join(Frobdf.means , Frobdf.sds ,

by = c("sample_size", "group"))

Frobplot <- ggplot(merged_Frobdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Frobenius norm error",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.8),

legend.text = element_text(size = 11))

png("p20d50dcv50dci25dca25.Frob.png", width = 800, height = 600, res = 150)

Frobplot

dev.off()

ELdf.means <- data.frame(sample_size = N,

across.symm = results [1,9,],

forcedacross.symm = results [2,9,],

noacross.edges = results [3,9,])

ELdf.sds <- data.frame(sample_size = N,

across.symm = results [1,21,],

forcedacross.symm = results [2,21,],

noacross.edges = results [3,21,])

ELdf.means <- ELdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

ELdf.sds <- ELdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_ELdf <- left_join(ELdf.means , ELdf.sds ,

by = c("sample_size", "group"))

ELplot <- ggplot(merged_ELdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Entropy loss",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.8),

legend.text = element_text(size = 11))
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png("p20d50dcv50dci25dca25.EL.png", width = 800, height = 600, res = 150)

ELplot

dev.off()

Npardf.means <- data.frame(sample_size = N,

across.symm = results [1,10,],

forcedacross.symm = results [2,10,],

noacross.edges = results [3,10,])

Npardf.sds <- data.frame(sample_size = N,

across.symm = results [1,22,],

forcedacross.symm = results [2,22,],

noacross.edges = results [3,22,])

Npardf.means <- Npardf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Npardf.sds <- Npardf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_Npardf <- left_join(Npardf.means , Npardf.sds ,

by = c("sample_size", "group"))

Nparplot <- ggplot(merged_Npardf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Total number of parameters",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(label = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.2, 0.8),

legend.text = element_text(size = 11))

png("p20d50dcv50dci25dca25.Npar.png", width = 800, height = 600, res = 150)

Nparplot

dev.off()

Nedgesdf.means <- data.frame(sample_size = N,

across.symm = results [1,11,],

forcedacross.symm = results [2,11,],

noacross.edges = results [3,11,])

Nedgesdf.sds <- data.frame(sample_size = N,

across.symm = results [1,23,],

forcedacross.symm = results [2,23,],

noacross.edges = results [3,23,])

Nedgesdf.means <- Nedgesdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Nedgesdf.sds <- Nedgesdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",
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values_to = "y")

merged_Nedgesdf <- left_join(Nedgesdf.means , Nedgesdf.sds ,

by = c("sample_size", "group"))

Nedgesplot <- ggplot(merged_Nedgesdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Number of edges in G_L and G_R",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(label = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d50dcv50dci25dca25.Nedges.png", width = 800, height = 600, res = 150)

Nedgesplot

dev.off()

Nsymmdf.means <- data.frame(sample_size = N,

across.symm = results [1,11,],

forcedacross.symm = results [2,11,],

noacross.edges = results [3,11,])

Nsymmdf.sds <- data.frame(sample_size = N,

across.symm = results [1,23,],

forcedacross.symm = results [2,23,],

noacross.edges = results [3,23,])

Nsymmdf.means <- Nsymmdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Nsymmdf.sds <- Nsymmdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_Nsymmdf <- left_join(Nsymmdf.means , Nsymmdf.sds ,

by = c("sample_size", "group"))

Nsymmplot <- ggplot(merged_Nsymmdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Number of symmetries in G_L and G_R",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(label = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d50dcv50dci25dca25.Nsymm.png", width = 800, height = 600, res = 150)

Nsymmplot
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dev.off()

# ###############################################################################

#scenario 2: p = 20, dens = 0, dens.vertex = 1, dens.inside = 0.5,

#dens.across = 0.5 (full symmetry)

# ###############################################################################

#example of a true coloured graph:

set.seed (777)

sim <- pdRCON.simulate(p = 20, dens = 0, dens.vertex = 1,

dens.inside = 0.5, dens.across = 0.5,

sample.size = 100)

G0 <- sim$pdColG

png("examplep20d0dcv100dci50dca50.png", width = 800, height = 600, res = 150)

pdColG.plot(G0)

dev.off()

N <- c(20, 40, 60, 80, 100, 150, 200)

sim.p20d0dcv100dci50dca50 <- simulation.study(N, n.iterations = 10, p = 20,

d = 0, dcv = 1, dci = 0.5,

dca = 0.5)

results <- sim.p20d0dcv100dci50dca50$results

sim.p20d0dcv100dci50dca50$times.mle.fails.to.compute

sim.p20d0dcv100dci50dca50$time.exec

save.image("p20d0dcv100dci50dca50.simulation.RData")

#load (" p20d0dcv100dci50dca50 . simulation .RData ")

ePPVdf.means <- data.frame(sample_size = N,

across.symm = results [1,1,],

forcedacross.symm = results [2,1,],

noacross.edges = results [3,1,])

ePPVdf.sds <- data.frame(sample_size = N,

across.symm = results [1,13,],

forcedacross.symm = results [2,13,],

noacross.edges = results [3,13,])

ePPVdf.means <- ePPVdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

ePPVdf.sds <- ePPVdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_ePPVdf <- left_join(ePPVdf.means , ePPVdf.sds ,

by = c("sample_size", "group"))

ePPVplot <- ggplot(merged_ePPVdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -Predicted Positive Value",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),
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expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.ePPV.png", width = 800, height = 600, res = 150)

ePPVplot

dev.off()

eTPRdf.means <- data.frame(sample_size = N,

across.symm = results [1,2,],

forcedacross.symm = results [2,2,],

noacross.edges = results [3,2,])

eTPRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,14,],

forcedacross.symm = results [2,14,],

noacross.edges = results [3,14,])

eTPRdf.means <- eTPRdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

eTPRdf.sds <- eTPRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eTPRdf <- left_join(eTPRdf.means , eTPRdf.sds ,

by = c("sample_size", "group"))

eTPRplot <- ggplot(merged_eTPRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -True Positive Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.eTPR.png", width = 800, height = 600, res = 150)

eTPRplot

dev.off()

eTNRdf.means <- data.frame(sample_size = N,

across.symm = results [1,3,],

forcedacross.symm = results [2,3,],

noacross.edges = results [3,3,])

eTNRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,15,],

forcedacross.symm = results [2,15,],

noacross.edges = results [3,15,])

eTNRdf.means <- eTNRdf.means %>%

pivot_longer(cols = -sample_size ,
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names_to = "group",

values_to = "y")

eTNRdf.sds <- eTNRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eTNRdf <- left_join(eTNRdf.means , eTNRdf.sds ,

by = c("sample_size", "group"))

eTNRplot <- ggplot(merged_eTNRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -True Negative Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.eTNR.png", width = 800, height = 600, res = 150)

eTNRplot

dev.off()

eF1df.means <- data.frame(sample_size = N,

across.symm = results [1,4,],

forcedacross.symm = results [2,4,],

noacross.edges = results [3,4,])

eF1df.sds <- data.frame(sample_size = N,

across.symm = results [1,16,],

forcedacross.symm = results [2,16,],

noacross.edges = results [3,16,])

eF1df.means <- eF1df.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

eF1df.sds <- eF1df.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eF1df <- left_join(eF1df.means , eF1df.sds ,

by = c("sample_size", "group"))

eF1plot <- ggplot(merged_eF1df ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -F1 score",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +
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theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 12))

png("p20d0dcv100dci50dca50.eF1.png", width = 800, height = 600, res = 150)

eF1plot

dev.off()

eMCCdf.means <- data.frame(sample_size = N,

across.symm = results [1,5,],

forcedacross.symm = results [2,5,],

noacross.edges = results [3,5,])

eMCCdf.sds <- data.frame(sample_size = N,

across.symm = results [1,17,],

forcedacross.symm = results [2,17,],

noacross.edges = results [3,17,])

eMCCdf.means <- eMCCdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

eMCCdf.sds <- eMCCdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eMCCdf <- left_join(eMCCdf.means , eMCCdf.sds ,

by = c("sample_size", "group"))

eMCCplot <- ggplot(merged_eMCCdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -MCC",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.eMCC.png", width = 800, height = 600, res = 150)

eMCCplot

dev.off()

sTPRdf.means <- data.frame(sample_size = N,

across.symm = results [1,6,],

forcedacross.symm = results [2,6,],

noacross.edges = results [3,6,])

sTPRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,18,],

forcedacross.symm = results [2,18,],

noacross.edges = results [3,18,])

sTPRdf.means <- sTPRdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")
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sTPRdf.sds <- sTPRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_sTPRdf <- left_join(sTPRdf.means , sTPRdf.sds ,

by = c("sample_size", "group"))

sTPRplot <- ggplot(merged_sTPRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "symmetry -True Positive Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.sTPR.png", width = 800, height = 600, res = 150)

sTPRplot

dev.off()

sTNRdf.means <- data.frame(sample_size = N,

across.symm = results [1,7,],

forcedacross.symm = results [2,7,],

noacross.edges = results [3,7,])

sTNRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,19,],

forcedacross.symm = results [2,19,],

noacross.edges = results [3,19,])

sTNRdf.means <- sTNRdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

sTNRdf.sds <- sTNRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_sTNRdf <- left_join(sTNRdf.means , sTNRdf.sds ,

by = c("sample_size", "group"))

sTNRplot <- ggplot(merged_sTNRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "symmetry -True Negative Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),
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legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.sTNR.png", width = 800, height = 600, res = 150)

sTNRplot

dev.off()

Frobdf.means <- data.frame(sample_size = N,

across.symm = results [1,8,],

forcedacross.symm = results [2,8,],

noacross.edges = results [3,8,])

Frobdf.sds <- data.frame(sample_size = N,

across.symm = results [1,20,],

forcedacross.symm = results [2,20,],

noacross.edges = results [3,20,])

Frobdf.means <- Frobdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Frobdf.sds <- Frobdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_Frobdf <- left_join(Frobdf.means , Frobdf.sds ,

by = c("sample_size", "group"))

Frobplot <- ggplot(merged_Frobdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Frobenius norm error",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.8),

legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.Frob.png", width = 800, height = 600, res = 150)

Frobplot

dev.off()

ELdf.means <- data.frame(sample_size = N,

across.symm = results [1,9,],

forcedacross.symm = results [2,9,],

noacross.edges = results [3,9,])

ELdf.sds <- data.frame(sample_size = N,

across.symm = results [1,21,],

forcedacross.symm = results [2,21,],

noacross.edges = results [3,21,])

ELdf.means <- ELdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

ELdf.sds <- ELdf.sds %>%

pivot_longer(cols = -sample_size ,
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names_to = "group",

values_to = "y")

merged_ELdf <- left_join(ELdf.means , ELdf.sds ,

by = c("sample_size", "group"))

ELplot <- ggplot(merged_ELdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Entropy loss",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.8),

legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.EL.png", width = 800, height = 600, res = 150)

ELplot

dev.off()

Npardf.means <- data.frame(sample_size = N,

across.symm = results [1,10,],

forcedacross.symm = results [2,10,],

noacross.edges = results [3,10,])

Npardf.sds <- data.frame(sample_size = N,

across.symm = results [1,22,],

forcedacross.symm = results [2,22,],

noacross.edges = results [3,22,])

Npardf.means <- Npardf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Npardf.sds <- Npardf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_Npardf <- left_join(Npardf.means , Npardf.sds ,

by = c("sample_size", "group"))

Nparplot <- ggplot(merged_Npardf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Total number of parameters",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(label = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.2, 0.8),

legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.Npar.png", width = 800, height = 600, res = 150)
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Nparplot

dev.off()

Nedgesdf.means <- data.frame(sample_size = N,

across.symm = results [1,11,],

forcedacross.symm = results [2,11,],

noacross.edges = results [3,11,])

Nedgesdf.sds <- data.frame(sample_size = N,

across.symm = results [1,23,],

forcedacross.symm = results [2,23,],

noacross.edges = results [3,23,])

Nedgesdf.means <- Nedgesdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Nedgesdf.sds <- Nedgesdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_Nedgesdf <- left_join(Nedgesdf.means , Nedgesdf.sds ,

by = c("sample_size", "group"))

Nedgesplot <- ggplot(merged_Nedgesdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Number of edges in G_L and G_R",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(label = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.Nedges.png", width = 800, height = 600, res = 150)

Nedgesplot

dev.off()

Nsymmdf.means <- data.frame(sample_size = N,

across.symm = results [1,11,],

forcedacross.symm = results [2,11,],

noacross.edges = results [3,11,])

Nsymmdf.sds <- data.frame(sample_size = N,

across.symm = results [1,23,],

forcedacross.symm = results [2,23,],

noacross.edges = results [3,23,])

Nsymmdf.means <- Nsymmdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Nsymmdf.sds <- Nsymmdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")
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merged_Nsymmdf <- left_join(Nsymmdf.means , Nsymmdf.sds ,

by = c("sample_size", "group"))

Nsymmplot <- ggplot(merged_Nsymmdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Number of symmetries in G_L and G_R",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(label = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d0dcv100dci50dca50.Nsymm.png", width = 800, height = 600, res = 150)

Nsymmplot

dev.off()

# ###############################################################################

#scenario 3: p = 20, dens = 0.2, dens.vertex = 0.1, dens.inside = 0.1,

#dens.across = 0.1 (low density , low symmetry)

# ###############################################################################

#example of a true coloured graph:

set.seed (888)

sim <- pdRCON.simulate(p = 20, dens = 0.2, dens.vertex = 0.1,

dens.inside = 0.1, dens.across = 0.1,

sample.size = 100)

G0 <- sim$pdColG

png("examplep20d20dcv10dci10dca10.png", width = 800, height = 600, res = 150)

pdColG.plot(G0)

dev.off()

N <- c(20, 40, 60, 80, 100, 150, 200)

sim.p20d20dcv10dci10dca10 <- simulation.study(N, n.iterations = 10, p = 20,

d = 0.2, dcv = 0.1, dci = 0.1,

dca = 0.1)

results <- sim.p20d20dcv10dci10dca10$results

sim.p20d20dcv10dci10dca10$times.mle.fails.to.compute

sim.p20d20dcv10dci10dca10$time.exec

save.image("p20d20dcv10dci10dca10.simulation.RData")

#load (" p20d20dcv10dci10dca10 . simulation .RData ")

ePPVdf.means <- data.frame(sample_size = N,

across.symm = results [1,1,],

forcedacross.symm = results [2,1,],

noacross.edges = results [3,1,])

ePPVdf.sds <- data.frame(sample_size = N,

across.symm = results [1,13,],

forcedacross.symm = results [2,13,],

noacross.edges = results [3,13,])

ePPVdf.means <- ePPVdf.means %>%
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pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

ePPVdf.sds <- ePPVdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_ePPVdf <- left_join(ePPVdf.means , ePPVdf.sds ,

by = c("sample_size", "group"))

ePPVplot <- ggplot(merged_ePPVdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -Predicted Positive Value",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d20dcv10dci10dca10.ePPV.png", width = 800, height = 600, res = 150)

ePPVplot

dev.off()

eTPRdf.means <- data.frame(sample_size = N,

across.symm = results [1,2,],

forcedacross.symm = results [2,2,],

noacross.edges = results [3,2,])

eTPRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,14,],

forcedacross.symm = results [2,14,],

noacross.edges = results [3,14,])

eTPRdf.means <- eTPRdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

eTPRdf.sds <- eTPRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eTPRdf <- left_join(eTPRdf.means , eTPRdf.sds ,

by = c("sample_size", "group"))

eTPRplot <- ggplot(merged_eTPRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -True Positive Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),
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"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d20dcv10dci10dca10.eTPR.png", width = 800, height = 600, res = 150)

eTPRplot

dev.off()

eTNRdf.means <- data.frame(sample_size = N,

across.symm = results [1,3,],

forcedacross.symm = results [2,3,],

noacross.edges = results [3,3,])

eTNRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,15,],

forcedacross.symm = results [2,15,],

noacross.edges = results [3,15,])

eTNRdf.means <- eTNRdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

eTNRdf.sds <- eTNRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eTNRdf <- left_join(eTNRdf.means , eTNRdf.sds ,

by = c("sample_size", "group"))

eTNRplot <- ggplot(merged_eTNRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -True Negative Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d20dcv10dci10dca10.eTNR.png", width = 800, height = 600, res = 150)

eTNRplot

dev.off()

eF1df.means <- data.frame(sample_size = N,

across.symm = results [1,4,],

forcedacross.symm = results [2,4,],

noacross.edges = results [3,4,])

eF1df.sds <- data.frame(sample_size = N,

across.symm = results [1,16,],

forcedacross.symm = results [2,16,],

noacross.edges = results [3,16,])

eF1df.means <- eF1df.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",
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values_to = "y")

eF1df.sds <- eF1df.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eF1df <- left_join(eF1df.means , eF1df.sds ,

by = c("sample_size", "group"))

eF1plot <- ggplot(merged_eF1df ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -F1 score",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 12))

png("p20d20dcv10dci10dca10.eF1.png", width = 800, height = 600, res = 150)

eF1plot

dev.off()

eMCCdf.means <- data.frame(sample_size = N,

across.symm = results [1,5,],

forcedacross.symm = results [2,5,],

noacross.edges = results [3,5,])

eMCCdf.sds <- data.frame(sample_size = N,

across.symm = results [1,17,],

forcedacross.symm = results [2,17,],

noacross.edges = results [3,17,])

eMCCdf.means <- eMCCdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

eMCCdf.sds <- eMCCdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_eMCCdf <- left_join(eMCCdf.means , eMCCdf.sds ,

by = c("sample_size", "group"))

eMCCplot <- ggplot(merged_eMCCdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "edge -MCC",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +
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theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d20dcv10dci10dca10.eMCC.png", width = 800, height = 600, res = 150)

eMCCplot

dev.off()

sTPRdf.means <- data.frame(sample_size = N,

across.symm = results [1,6,],

forcedacross.symm = results [2,6,],

noacross.edges = results [3,6,])

sTPRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,18,],

forcedacross.symm = results [2,18,],

noacross.edges = results [3,18,])

sTPRdf.means <- sTPRdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

sTPRdf.sds <- sTPRdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_sTPRdf <- left_join(sTPRdf.means , sTPRdf.sds ,

by = c("sample_size", "group"))

sTPRplot <- ggplot(merged_sTPRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "symmetry -True Positive Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d20dcv10dci10dca10.sTPR.png", width = 800, height = 600, res = 150)

sTPRplot

dev.off()

sTNRdf.means <- data.frame(sample_size = N,

across.symm = results [1,7,],

forcedacross.symm = results [2,7,],

noacross.edges = results [3,7,])

sTNRdf.sds <- data.frame(sample_size = N,

across.symm = results [1,19,],

forcedacross.symm = results [2,19,],

noacross.edges = results [3,19,])

sTNRdf.means <- sTNRdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

sTNRdf.sds <- sTNRdf.sds %>%
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pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_sTNRdf <- left_join(sTNRdf.means , sTNRdf.sds ,

by = c("sample_size", "group"))

sTNRplot <- ggplot(merged_sTNRdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "symmetry -True Negative Rate",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d20dcv10dci10dca10.sTNR.png", width = 800, height = 600, res = 150)

sTNRplot

dev.off()

Frobdf.means <- data.frame(sample_size = N,

across.symm = results [1,8,],

forcedacross.symm = results [2,8,],

noacross.edges = results [3,8,])

Frobdf.sds <- data.frame(sample_size = N,

across.symm = results [1,20,],

forcedacross.symm = results [2,20,],

noacross.edges = results [3,20,])

Frobdf.means <- Frobdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Frobdf.sds <- Frobdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_Frobdf <- left_join(Frobdf.means , Frobdf.sds ,

by = c("sample_size", "group"))

Frobplot <- ggplot(merged_Frobdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Frobenius norm error",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.8),

legend.text = element_text(size = 11))
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png("p20d20dcv10dci10dca10.Frob.png", width = 800, height = 600, res = 150)

Frobplot

dev.off()

ELdf.means <- data.frame(sample_size = N,

across.symm = results [1,9,],

forcedacross.symm = results [2,9,],

noacross.edges = results [3,9,])

ELdf.sds <- data.frame(sample_size = N,

across.symm = results [1,21,],

forcedacross.symm = results [2,21,],

noacross.edges = results [3,21,])

ELdf.means <- ELdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

ELdf.sds <- ELdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_ELdf <- left_join(ELdf.means , ELdf.sds ,

by = c("sample_size", "group"))

ELplot <- ggplot(merged_ELdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Entropy loss",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(labels = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.8),

legend.text = element_text(size = 11))

png("p20d20dcv10dci10dca10.EL.png", width = 800, height = 600, res = 150)

ELplot

dev.off()

Npardf.means <- data.frame(sample_size = N,

across.symm = results [1,10,],

forcedacross.symm = results [2,10,],

noacross.edges = results [3,10,])

Npardf.sds <- data.frame(sample_size = N,

across.symm = results [1,22,],

forcedacross.symm = results [2,22,],

noacross.edges = results [3,22,])

Npardf.means <- Npardf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Npardf.sds <- Npardf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",
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values_to = "y")

merged_Npardf <- left_join(Npardf.means , Npardf.sds ,

by = c("sample_size", "group"))

Nparplot <- ggplot(merged_Npardf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Total number of parameters",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(label = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.2, 0.8),

legend.text = element_text(size = 11))

png("p20d20dcv10dci10dca10.Npar.png", width = 800, height = 600, res = 150)

Nparplot

dev.off()

Nedgesdf.means <- data.frame(sample_size = N,

across.symm = results [1,11,],

forcedacross.symm = results [2,11,],

noacross.edges = results [3,11,])

Nedgesdf.sds <- data.frame(sample_size = N,

across.symm = results [1,23,],

forcedacross.symm = results [2,23,],

noacross.edges = results [3,23,])

Nedgesdf.means <- Nedgesdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Nedgesdf.sds <- Nedgesdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_Nedgesdf <- left_join(Nedgesdf.means , Nedgesdf.sds ,

by = c("sample_size", "group"))

Nedgesplot <- ggplot(merged_Nedgesdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Number of edges in G_L and G_R",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(label = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d20dcv10dci10dca10.Nedges.png", width = 800, height = 600, res = 150)

Nedgesplot
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dev.off()

Nsymmdf.means <- data.frame(sample_size = N,

across.symm = results [1,11,],

forcedacross.symm = results [2,11,],

noacross.edges = results [3,11,])

Nsymmdf.sds <- data.frame(sample_size = N,

across.symm = results [1,23,],

forcedacross.symm = results [2,23,],

noacross.edges = results [3,23,])

Nsymmdf.means <- Nsymmdf.means %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

Nsymmdf.sds <- Nsymmdf.sds %>%

pivot_longer(cols = -sample_size ,

names_to = "group",

values_to = "y")

merged_Nsymmdf <- left_join(Nsymmdf.means , Nsymmdf.sds ,

by = c("sample_size", "group"))

Nsymmplot <- ggplot(merged_Nsymmdf ,

mapping = aes(x=sample_size , y=y.x,

color = group )) +

geom_line() +

geom_errorbar(aes(ymin = y.x - y.y, ymax = y.x + y.y), width = 15,

position = position_dodge(width = 10), size = 0.5) +

labs(title = "Number of symmetries in G_L and G_R",

x="Sample size", y = "", color = NULL) +

scale_color_okabeito(label = c(expression(lambda [2]^{(A)} == lambda [2]),

expression(lambda [2]^{(A)} == infinity),

"no across edges")) +

theme_minimal () +

theme(legend.position = c(0.8, 0.2),

legend.text = element_text(size = 11))

png("p20d20dcv10dci10dca10.Nsymm.png", width = 800, height = 600, res = 150)

Nsymmplot

dev.off()

C.2 Breast cancer data analysis

rm(list=ls())

library(pdglasso)

load("breast_cancer.RData")

source("pdRCON.fit.noacrossedges.R")

N <- nrow(bc.data)

#Model 1: pdRCON allowing vertex , inside -block , and across -block symmetries

mod.1 <- pdRCON.fit(S, N)

estG.1 <- pdColG.get(mod.1$model)$pdColG

estK.1 <- mod.1$model$X

png("breastcancermod1.png", width = 800, height = 600, res = 150)

pdColG.plot(estG .1)
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dev.off()

#Model 2: pdRCON allowing vertex and inside -block symmetries , and forcing

#across -block symmetries

mod.2 <- pdRCON.fit(S, N, force.symm = "across.block.edge")

estG.2 <- pdColG.get(mod.2$model)$pdColG

estK.2 <- mod.2$model$X

png("breastcancermod2.png", width = 800, height = 600, res = 150)

pdColG.plot(estG .2)

dev.off()

#Model 3: pdRCON allowing vertex and inside -block symmetries , and forcing every

#across -block edge to be missing

mod.3 <- pdRCON.fit.noacrossedges(S, N)

estG.3 <- pdColG.get(mod.3$model)$pdColG

estK.3 <- mod.3$model$X

png("breastcancermod3.png", width = 800, height = 600, res = 150)

pdColG.plot(estG .3)

dev.off()

save.image("breastcancermodels.RData")

pdColG.summarize(estG .1)

pdColG.summarize(estG .2)

pdColG.summarize(estG .3)

p <- dim(S)[1]

q <- p/2

estG.1_L <- estG .1[1:q,1:q]

estG.1_R <- estG .1[(q+1):p,(q+1):p]

estG.1_L_lowertri <- estG.1_L[lower.tri(estG.1_L)]

estG.1_R_lowertri <- estG.1_R[lower.tri(estG.1_L)]

sum(estG.1_L_lowertri != 0 & estG.1_R_lowertri != 0) #number of structural

#inside -block symmetries

n.edges.estG.1_L <- sum(estG.1_L_lowertri != 0)

n.edges.estG.1_R <- sum(estG.1_R_lowertri != 0)

n.edges.estG.1_L/((q)*(q-1)/2) #graph density of G_L

n.edges.estG.1_R/((q)*(q-1)/2) #graph density of G_R

(n.edges.estG.1_L + n.edges.estG.1_R) / (q * (q - 1)) #inside -block

#graph density

common_non_zero <- (estG.1_L != 0) & (estG.1_R != 0)

row_common_counts <- rowSums(common_non_zero)

col_common_counts <- colSums(common_non_zero)

max_row_index <- which(row_common_counts == max(row_common_counts ))

max_col_index <- which(col_common_counts == max(col_common_counts ))
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gene.names[max_row_index]

gene.names[max_col_index]

estG.2_L <- estG .2[1:q,1:q]

estG.2_R <- estG .2[(q+1):p,(q+1):p]

estG.3_L <- estG .3[1:q,1:q]

estG.3_R <- estG .3[(q+1):p,(q+1):p]

estK.1_L <- estK .1[1:q,1:q]

estK.1_R <- estK .1[(q+1):p,(q+1):p]

estK.2_L <- estK .2[1:q,1:q]

estK.2_R <- estK .2[(q+1):p,(q+1):p]

estK.3_L <- estK .3[1:q,1:q]

estK.3_R <- estK .3[(q+1):p,(q+1):p]

identical(estG.1_L, estG.2_L) && identical(estG.1_L, estG.3_L)

identical(estG.1_R, estG.2_R) && identical(estG.1_R, estG.3_R)

norm(estK.1_L - estK.2_L, type = "f")

norm(estK.1_L - estK.3_L, type = "f")

norm(estK.1_R - estK.2_R, type = "f")

norm(estK.1_R - estK.3_R, type = "f")

#with BIC:

#Model 1: pdRCON allowing vertex , inside -block , and across -block symmetries

mod .1. BIC <- pdRCON.fit(S, N, gamma.eBIC = 0)

estG .1. BIC <- pdColG.get(mod .1. BIC$model)$pdColG

png("breastcancermod1BIC.png", width = 800, height = 600, res = 150)

pdColG.plot(estG .1. BIC)

dev.off()

save.image("breastcancermodels.RData")

#Model 2: pdRCON allowing vertex and inside -block symmetries , and forcing

#across -block symmetries

mod .2. BIC <- pdRCON.fit(S, N, force.symm = "across.block.edge", gamma.eBIC = 0)

estG .2. BIC <- pdColG.get(mod .2. BIC$model)$pdColG

png("breastcancermod2BIC.png", width = 800, height = 600, res = 150)

pdColG.plot(estG .2. BIC)

dev.off()

save.image("breastcancermodels.RData")

#Model 3: pdRCON allowing vertex and inside -block symmetries , and forcing every

#across -block edge to be missing

mod .3. BIC <- pdRCON.fit.noacrossedges(S, N, gamma.eBIC = 0)

estG .3. BIC <- pdColG.get(mod .3. BIC$model)$pdColG

png("breastcancermod3BIC.png", width = 800, height = 600, res = 150)

pdColG.plot(estG .3. BIC)

dev.off()

save.image("breastcancermodels.RData")

#load (" breastcancermodels .RData ")
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pdColG.summarize(estG .1. BIC)

pdColG.summarize(estG .2. BIC)

pdColG.summarize(estG .3. BIC)

estG .1. BIC_L <- estG .1. BIC [1:q,1:q]

estG .1. BIC_R <- estG .1. BIC[(q+1):p,(q+1):p]

estG .1. BIC_L_lowertri <- estG .1. BIC_L[lower.tri(estG .1. BIC_L)]

estG .1. BIC_R_lowertri <- estG .1. BIC_R[lower.tri(estG .1. BIC_L)]

sum(estG .1. BIC_L_lowertri != 0 & estG .1. BIC_R_lowertri != 0)

n.edges.estG .1. BIC_L <- sum(estG .1. BIC_L_lowertri != 0)

n.edges.estG .1. BIC_R <- sum(estG .1. BIC_R_lowertri != 0)

n.edges.estG .1. BIC_L/((q)*(q-1)/2) #graph density of G_L

n.edges.estG .1. BIC_R/((q)*(q-1)/2) #graph density of G_R

(n.edges.estG .1. BIC_L + n.edges.estG .1. BIC_R) / (q * (q - 1)) #inside -block

#graph density

estG .2. BIC_L <- estG .2. BIC [1:q,1:q]

estG .2. BIC_R <- estG .2. BIC[(q+1):p,(q+1):p]

estG .2. BIC_L_lowertri <- estG .2. BIC_L[lower.tri(estG .2. BIC_L)]

estG .2. BIC_R_lowertri <- estG .2. BIC_R[lower.tri(estG .2. BIC_L)]

sum(estG .2. BIC_L_lowertri != 0 & estG .2. BIC_R_lowertri != 0)

n.edges.estG .2. BIC_L <- sum(estG .2. BIC_L_lowertri != 0)

n.edges.estG .2. BIC_R <- sum(estG .2. BIC_R_lowertri != 0)

(n.edges.estG .2. BIC_L + n.edges.estG .2. BIC_R) / (q * (q - 1))

n.edges.estG .2. BIC_L/((q)*(q-1)/2) #graph density of G_L

n.edges.estG .2. BIC_R/((q)*(q-1)/2) #graph density of G_R

sum(estG .1. BIC_L_lowertri != estG .2. BIC_L_lowertri)

estG .1. BIC_L[which(estG .1. BIC_L != estG .2. BIC_L)]

estG .2. BIC_L[which(estG .1. BIC_L != estG .2. BIC_L)]

sum(estG .1. BIC_R_lowertri != estG .2. BIC_R_lowertri)

1 - (sum(estG .1. BIC_L_lowertri != estG .2. BIC_L_lowertri) +

sum(estG .1. BIC_R_lowertri != estG .2. BIC_R_lowertri )) /

(n.edges.estG .1. BIC_L + n.edges.estG .1. BIC_R)

estG .3. BIC_L <- estG .3. BIC [1:q,1:q]

estG .3. BIC_R <- estG .3. BIC[(q+1):p,(q+1):p]

estG .3. BIC_L_lowertri <- estG .3. BIC_L[lower.tri(estG .3. BIC_L)]

estG .3. BIC_R_lowertri <- estG .3. BIC_R[lower.tri(estG .3. BIC_L)]
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sum(estG .3. BIC_L_lowertri != 0 & estG .3. BIC_R_lowertri != 0)

n.edges.estG .3. BIC_L <- sum(estG .3. BIC_L_lowertri != 0)

n.edges.estG .3. BIC_R <- sum(estG .3. BIC_R_lowertri != 0)

n.edges.estG .3. BIC_L/((q)*(q-1)/2) #graph density of G_L

n.edges.estG .3. BIC_R/((q)*(q-1)/2) #graph density of G_R

(n.edges.estG .3. BIC_L + n.edges.estG .3. BIC_R) / (q * (q - 1))
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Additional graphs

D.1 High density, 50% symmetric setting

When increasing the dimensionality to p = 50, the advantage given by assuming all

across-block to edges to be symmetric in terms of structure recovery of GL and GR in

the first scenario is made clearer, with the model performing consistently better in terms

of F1 score and edge-True Positive Rate (Figure D.1), as well as symmetry-True Positive

Rate (Figure D.2), throughout all sample and a higher absolute number of edges and

symmetries is estimated in the two subgraphs (Figure D.4). The assumption ¼
(V )
2 =∞

leads also to a more accurate estimate in terms of Frobenius norm error, while the no

across-block edges assumption leads to the smallest entropy loss (Figure D.3.)
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Figure D.1: Structure recovery measures of GL and GR for the high density, 50%

symmetric setting, when p = 50.
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Figure D.2: Symmetric structure recovery measures of GL and GR for the high

density, 50% symmetric setting, when p = 50.

Figure D.3: Estimation accuracy measures of ΘLL and ΘRR for the high density,

50% symmetric setting, when p = 50.
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Figure D.4: Total number of parameters estimated and numbers of edges and non-

zero parametric symmetries in GL and GR for the high density, 50% symmetric setting,

when p = 50.
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D.2 High density, fully symmetric setting

Differences in terms of structure recovery are not clear (Figure D.5), but the model

forcing across-block symmetries is distinctly better in terms of symmetry-True Positive

Rate (Figure D.6), and a has a higher total number of parameters being estimated

(Figure D.8). The no across-block edges hypothesis, on the other hand, leads to a

substantial improvement in terms of entropy loss when compared to the other two

models. (Figure D.7).

Figure D.5: Structure recovery measures of GL and GR for the high density, fully

symmetric setting, when p = 50.
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Figure D.6: Symmetry-True Positive rate of GL and GR for the high density, fully

symmetric setting, when p = 50.

Figure D.7: Estimation accuracy measures of ΘLL and ΘRR for the high density,

fully symmetric setting, when p = 50.
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Figure D.8: Total number of parameters estimated and numbers of edges and non-

zero parametric symmetries in GL and GR for the high density, fully symmetric setting,

when p = 50.
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D.3 Low density, low symmetry setting

In the low density, low symmetry scenario forcing across-block symmetries leads once

again to a slightly better edge-F1 score (Figure D.9) and has a higher number of sym-

metries in the two subgraphs (Figure D.12), with a better symmetry-True Positive Rate

(Figure D.10), although there are no clear differences in terms of Frobenius norm loss

when compared with the model having ¼
(V )
2 = ¼2 (Figure D.11).

Figure D.9: Structure recovery measures of GL and GR for the low density, low

symmetry setting, when p = 50.
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Figure D.10: Symmetric structure recovery measures of GL and GR for the low

density, low symmetry setting, when p = 50.

Figure D.11: Estimation accuracy measures of ΘLL and ΘRR for the low density,

low symmetry setting, when p = 50.
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Figure D.12: Total number of parameters estimated and numbers of edges and non-

zero parametric symmetries in GL and GR for the low density, low symmetry setting,

when p = 50.
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