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Abstract

This research work has been carried out at the Computer Vision and Image
processing department of the University of Dundee in Scotland. We used the retinal
images of the GoDARTS dataset, which was born from a project in 1996 that aimed
to identify all diabetic patients in the Tayside region. Since diabetic patients may
suffer from diabetic retinopathy, they were offered retinal screenings to monitor
the retina’s health and prevent the disease.

Differently from the fasting glucose test, measuring the glycated haemoglobin offers
data about the trend of glycaemia over the last three months. Our idea was to
measure the exposure to glycated haemoglobin, which has been calculated as the
integral of the curve interpolating all the values of HbA1c for each patient.

This thesis aimed to predict the cumulative glycated haemoglobin (HbA1c) from
retinal images with a deep learning technique. Then, we aimed to build a model to
classify the risk of cardiovascular disease in the population of interest.

The main experiment concerned the prediction of the cumulative HbA1c for each
available image with the Efficient Net B2 neural network. However, the performance
obtained on the test set is not the expected one. The range of the predicted values
is significantly narrower than the actual range. Moreover, it seems that the error is
linearly dependent on the actual measurement of HbA1c.

Nevertheless, we repeated the same experiment on the left-eye and the right-eye
datasets and obtained the two average predicted values very similar (303075.2
versus 301050.1 mmol/mol). We concluded that we could use indistinguishably
left-eye and right-eye images.
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2 CHAPTER 0. ABSTRACT

Then we considered the trend of the predicted values for each patient and compared
it with the trend of the actual values. We aimed to study if the neural network, on
average, was able to capture the average trend of the cumulative HbA1c. Despite
the values being quite different, the average predicted trend is increasing as the
actual trend.

As the last step, we considered the position of the predicted line with respect
to the actual line. We aimed to investigate a potential association between an
above-predicted line and a higher risk of mortality, death due to cardiovascular
disease or experiencing a MACE. In all our qualitative analyses, we did not find
this association but the numerousness of the datasets was very small to draw any
conclusion.

For each task of risk assessment, we investigate if males and females were differently
distributed and if there were differences in their slope distributions. Thus, we
investigated if males have a higher risk of mortality, death due to cardiovascular
disease or experiencing a MACE than females and vice versa. We concluded that
they have the same probability of experiencing the three evaluated risks.
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Chapter 1

Introduction

1.1 Work Motivation

Nowadays the rate of people in the United Kingdom suffering from type 2
diabetes is significantly increasing. Their total number is estimated to grow to 5.5
million in less than 10 years. Therefore, it is very important to supply doctors and
health care systems with powerful instruments that are able to detect diabetes,
prevent it and provide useful advice to slow down its development.

The measurement of glycated haemoglobin is widely used to monitor the average
glycaemia over the last three months and to classify the diabetic status of a patient.
Since the average lifespan of red blood cells is about three months, measuring the
glycated haemoglobin gives important information about the level of blood glucose
concentration during the last months.

Retinal images and neural networks are a beneficial combo useful to predict some
medical outcomes of interest. For example, the age of a patient can be accurately
predicted from retinal images using different types of neural networks. Eye images
are a non-invasive and non-expensive way to monitor the health of a patient, in
particular, his/her cardiovascular system.

The idea at the basis of this research work is to merge together all the methodology
just mentioned in order to use retinal images as input of a neural network to predict
the exposure of glycated haemoglobin with the aim of assessing the risk of the
patient to develop cardiovascular disease.
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1.2 Diabetes

One in ten people over 40 lives in the UK with a diagnosis of diabetes, with a
total of 3.8 million people and 90% of those with type 2 diabetes. Moreover, almost
1 million more people with type 2 diabetes do not know they have it because they
have not been diagnosed, bringing the total number up to 4.7 million. By 2030 the
number of diabetic people is predicted to rise to 5.5 million.

Figure 1.1: Diabetes situation in England (UK).

Diabetes is a pathology caused by a modification of the insulin-glucose control
system, and there are two different types:

• Type 1 diabetes is an autoimmune pathology in which the beta cells of
the pancreas, which are responsible for insulin production, are destroyed by
antibodies and cytokines produced by the immune system. A patient who
suffers from this type of diabetes must be cured with pharmacological therapy
because his organism does not produce insulin anymore. So it can not use
glucose to produce the energy necessary for its functioning.

• Type 2 diabetes is caused by a combination of a deficit in insulin production
and a reduced response to insulin action. The phenomenon is called insulin-
resistance and it happens when the organs responsible for controlling glucose
concentration become less sensitive to insulin.
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Figure 1.2: Scheme of the glucose metabolism

Glucose metabolism is a fundamental process in a living organism, both from the
physiological point of view because it provides the energy necessary for the different
vital functions of cells and organs, and from the pathological point of view because
its malfunctioning may cause glucose intolerance and diabetes. The most important
system in its regulation is the endocrine system, which produces two hormones,
insulin and glucagon. In particular, in the pancreas, there are two types of cells:
the beta cells that produce insulin and are destroyed in T1D subjects, and alpha
cells that produce glucagon. These two hormones are continuously secreted and act
with opposing actions to maintain the glucose concentration in a specific range.

The liver has a crucial role in glucose metabolism as a glucose-sensor organ: it
can detect its concentration and react with an appropriate secretory response. It
can store glucose when its concentration is high and produce and release it in the
bloodstream when the organism is deficient.

It is essential for the subject’s health that the glucose blood concentration is
maintained at a precise interval: the average values of fasting glucose concentration
are between 60mg/dL and 110mg/dL, and they may rise to 140mg/dL two hours
after an Oral Glucose Tolerance Test (OGTT). When the glycaemia goes under
60mg/dl, the subject experiences a hypoglycaemia episode that is perceived with
weakness, headache, sweat and/or trepidation due to the suffering of the central
nervous system. In the most severe cases, it may bring hypoglycaemic coma [1].
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Hyperglycaemia, on the contrary, happens when the glycaemia is too high. If this
condition is maintained for an extended period, it may cause diabetic ketoacidosis
and coma caused by dehydration due to a blood accumulation of ketone bodies.

Patients with type 2 diabetes suffer from insulin-resistant which consists of the
cell’s incapability to use the insulin. They have fewer insulin receptors that make
glucose not enter the cells and accumulate in the bloodstream. As the first reaction,
the organism produces more insulin to maintain low glucose concentration, and
this phenomenon is known as hyperinsulinism. However, in the next stage, the
increased insulin production does not maintain glycaemia to normal values and
hyperglycaemia happens.

1.3 Glycated haemoglobin

HbA1c refers to glycated haemoglobin, which develops when haemoglobin binds
with glucose in the blood, becoming glycated. By measuring it, clinicians can get
an overall picture of the average blood sugar levels in the last couple of months.
For diabetic patients, this is very important since a higher value of HbA1c means
a greater risk of developing diabetes-related complications, like eye and kidney
damage, dementia and cardiovascular problems [2].

Figure 1.3: Glycated haemoglobin

Haemoglobin is a protein within red blood cells that carries oxygen throughout
the body. When the body processes sugar, glucose in the bloodstream naturally
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attaches to the haemoglobin. The attached amount is directly proportional to the
total amount of sugar in the organism.

Since the lifespan of red blood cells is around three months before renewal, HbA1c
measurement reflects the average glucose concentration over that duration, providing
a proper longer-term gauge of blood glucose control. On the contrary, fasting glucose
and oral glucose tolerance tests only indicate the current concentration and may be
biased by the day-to-day variability. Moreover, they need the person to fast and
have preceding dietary preparations.

Measuring HbA1c has many advantages. It can be measured at any time of the
day and taken from just a finger and it does not require special preparation such as
fasting. Furthermore, it is an important instrument for the early identification and
treatment of diabetes. For these reasons, it has become an interesting diagnostic
test for people with diabetes and a screening test for people at high risk of diabetes.
However, it is crucial to consider that HbA1c levels may be affected by some genetic,
hematologic and illness-related factors. Some of them are haemoglobinopathies,
certain anaemias and disorders associated with accelerated red cell turnover, such
as malaria [3].

The average values of HbA1c in healthy individuals are below or equal to 5.6%, a pre-
diabetic condition is identified within the range from 5.7% to 6.4%, and a diabetic
condition when levels are higher than 6.5%. The target value for diabetic people is
6.5%, which corresponds to 48 mmol/mol, i.e. mmol of glycated haemoglobin per
mol of haemoglobin.

1.4 Eye structure

The human eye is responsible for one of our five senses, the vision. When light
enters the eye through the pupil, the lens reflects it onto the retina, where messages
are encoded thanks to millions of specialised cells, the rods and the cones. These
cells transform the image into an electrical message that is in turn sent to the brain
through the optic nerve.

The eye is located in orbit, a bone cavity formed by several bones that contains the
eyeball, muscles, nerves and blood vessels. The eyeball comprises three chambers:
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the anterior, the posterior and the vitreous chamber, divided by three layers: the
outer, the middle and the inner layer. The first two chambers are filled with
aqueous humour, a watery fluid nourishing interior eye structures. The vitreous
chamber is filled with vitreous humour, a thicker transparent gel composed of 99%
water that comprises about two-thirds of the eye’s volume and helps maintain a
round shape. The liquid component is essential because it generates a pressure
that keeps the eyeball inflated.

Figure 1.4: Eye structure

The most important elements of the human eye are the followings [4]:

• cornea, the transparent curved layer that covers the front of the eyeball,
without blood vessels and extremely sensitive to pain. It protects the eye
from extraneous and harmful bodies and refracts light onto the lens.

• crystalline lens, a transparent structure located directly behind the iris,
whose function is to focus light rays onto the retina by changing shape. The
lens becomes thicker to focus on nearby objects and thinner to focus on
distant ones.

• iris, the coloured part of the eye regulates the amount of entering light by
controlling the pupil’s dilation and constriction, the iris’s black centre.
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• choroid, the middle layer between the retina and the sclera, spongy and
filled with blood vessels. Its functions are to absorb the light in excess to
prevent blurring of vision and supply oxygen and nutrients to the outer layers
of the retina.

• sclera, the white and robust part of the eye that forms, together with
the cornea, the outer protective coat. It is covered by the conjunctiva, a
transparent membrane that protects and lubricates the eye. The function of
the sclera is to provide protection and to serve as the attachment for ocular
muscles responsible for eye movements.

• retina, a light-sensitive layer covering the interior of the eye, whose function
is to sense light and create impulses sent through the optic nerve to the brain.

• macula, a yellow area at the retina’s centre with a diameter of 5.0 mm, which
is highly sensitive and responsible for detailed central vision. The centre of
the macula is the fovea, a circular area with a diameter of approximately 1.0
mm that contains no rods and the highest concentration of cones and where
the focused image is the most accurately registered by the brain.

• optic disc, the visible portion of the optic nerve with a diameter of 1.5
mm that identifies the start of the optic nerve. Since it does not have any
photoreceptor, it creates a blind spot on the retina. The optic nerve is a
structure composed of millions of nerve fibres, each linked to a photoreceptor
responsible for connecting the retina to the brain. It transmits the electrical
messages from cones and rods to the brain’s visual processing centre.

• cone and rod cells, the light-sensitive cells or photoreceptors present in the
retina. There are between 6 and 7 million cones, thick and short cells divided
into three types, each sensitive to the wavelength of a different primary colour.
Cones provide acute and detailed central vision and work at best in bright
light. On the other hand, the 120 million rods, long cylindrical structures,
are responsible for peripheral and night vision and can transmit only shades
of grey.
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1.5 The retina

Retina architecture

The retina is a part of the central nervous system and is the only visible one.
At its centre, as we can see in Fig.1.5, there is the optic nerve, a circular to an oval
white area measuring about 2× 1.5 mm, across from which the major retina blood
vessels branch. It contains the ganglion cell axons running to the brain and the
blood vessels that vascularise the retinal layers and neurons.
The fovea is a slightly oval-shaped and blood vessel-free reddish spot which is
located around 4.5− 5mm to the left of the disc. The central area of the fovea is
called the macula.

Figure 1.5: Images of the retina architecture.

The retina is divided into two zones: the central retinal, a circular field of ∼ 6
mm around the fovea which is the thickest region because of the high concentration
of cones, and the peripheral retina, the area outside the macula. The total retina is
a circular disc with a diameter between 30 and 40 mm and a thickness of 0.5 mm.
The two photosensors, the rods and the cones lie innermost in the retina closest to
the lens against the pigment epithelium and choroid.

Human retinas, as well as all vertebrate retinas, are composed of three layers of
nerve cell bodies:
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• the outer nuclear layer, with cell bodies of the rods and cones,
• the inner nuclear layer that contains cell bodies of the amacrine cells, in-

terneurons that operate in the second synaptic retinal layer-,
• the ganglion cell layer, which contains cell bodies of ganglion cells and

displaced amacrine cells.

Moreover, two layers of neuropils, where synapses occur, divide the previous three
layers. The neuropil is divided into the outer plexiform layer (OPL) and the inner
plexiform layer (IPL). The OPL is a connection layer where rods connect with
cones. Instead, the IPL has a carrying-information function between the ganglion
cells and the bipolar and amacrine ones. Then the information reaches the brain
along the optic nerve.

The two most important sources of blood supply to the retina are:
• the choroidal blood vessels, which receive the greatest blood flow, around

65 − 85%, that is vital for the maintenance of the outer retina, including
photoreceptors,

• the central retinal artery, that has four main branches -divided in turn into
three layers of capillary networks- and nourishes the inner layers with the
remaining 20− 30% of the flow.

When light enters the eye, it must travel through the retina before striking and
activating the photosensors that absorb the photons carried by light rays. Their
activation is translated firstly into a biochemical message and then into an electrical
message that stimulates the retinal neurons and is transmitted to the brain.

Fovea

The fovea is the essential part of the retina for human vision. Protective
mechanisms are present to protect the delicate cones and to avoid bright light and
ultraviolet irradiation damage. If the cones of the fovea are destroyed, we become
incapable of seeing.

The centre of the fovea is called the foveal pit. It is a highly specialised region of
the retina where cones are concentrated at maximum density and organised into a
hexagonal mosaic, and rods are assent. Below the foveal pit, the other layers are
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displaced concentrically and form the foveal slope, a thicker region in both human
and monkey retinas. The rim of this area is the parafovea, the thickest portion of
the entire retina with ganglion cells organised into six layers.

The foveal area, including the foveal pit, the foveal slope and the parafovea, is
considered the macula. The macula lutea has a yellow pigmentation due to the
carotenoids present in the axons of the cones. It acts like an additional short-
wavelength filter after the lens. It helps improve the achromatic resolution of the
foveal cones and blocks harmful UV light irradiation [5].

Degenerative diseases

In some diseases, the retina becomes damaged or compromised, and its imaging
can be used as an important diagnostic tool to check the illness’s progress. Degen-
erative changes should be monitored because they may lead to severe damage to
the eye, the sight capability and thus the messages sent to the brain.

One of the world’s most widespread causes of blindness is age-related macular
degeneration. The macula area becomes compromised because the pigment epithe-
lium degenerates and fluid leakages behind the fovea. The cones in this region die,
causing an irrecoverable central visual loss.

Another common disease is glaucoma, which happens when the eye pressure is too
high and consequently, the eye can not exchange fluids properly because of the
elevated pressure. Moreover, the blood vessels and the ganglion cells are damaged.

Diabetic patients may suffer from diabetic retinopathy. It is a side effect of diabetes,
which causes the distortion and uncontrollable multiplication of the eye’s blood
vessels and may cause blindness [5]. In its early stages, there are no symptoms so
people may not realise they are developing the disease. Thus screening is impor-
tant because if the condition is caught early, treatment is effective at reducing or
preventing visual impairment and sight loss.
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1.6 Retinal imaging

Retina is an important part of the human body that contains essential informa-
tion about the health of a subject. Retinal images help clinicians in understanding
the pathophysiology of a disease and identifying those features that can be used
as a diagnostic tool in evaluating the progress of a disease, as well as stratifying
patients according to their risk of developing a particular disease in the future and
probing the role of the microvasculature in the development of clinical eye and
systemic disease.

Retinal image analysis (RIA) has been widely used to study different pathologies,
such as diabetic retinopathy, cardiovascular disease and hypertension. The retina
must receive a constant supply of blood through a network of tiny blood vessels
but, for example, a persistently high blood sugar level -as happens in diabetic
patients- can damage its blood vessels and lead to blindness. For these reasons,
the study of the retina is a handy tool to identify pathologies early, prevent the
development of new diseases, and assess the efficacy of new treatments.

Retinal imaging has developed greatly in the last century and is now a mainstay
in treating and screening patients with retinal and systemic diseases. The main
imaging techniques are the followings:

• Fluorescein Angiography, according to which a fluorescent dye is injected
into a vein and fluoresces in the blood, including the retina’s blood vessels.
When it passes through the retina, photographs record the blood flow and
reveal abnormal blood vessels exhibiting hypo or hyper fluorescence and
damage. FA is an invasive and time-consuming technique that only records
the superficial vascular plexus.

• Autofluorescence imaging, based on natural fluorescence, some retinal cells
glow without any injected dye when the retina is illuminated with blue light.
This fluorescence creates a black-and-white image which can be interpreted
by recognising characteristic patterns and used to check the health of the
retina layers.
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• Optical Coherence Tomography Angiography, a non-invasive imagining
technology that uses rays of light, that are non-harmful nor dangerous. OCTA
records fovea-centred images of the retina blood flow, including the radial
peripapillary capillary plexus, the intermediate one and the deep capillary
network, features that were not visible with the previous techniques.

• Color Fundus Photography, a non-invasive and fast technique that uses a
fundus camera -a specialised low-power microscope with an attached camera-
to detect the presence of some diseases and to monitor the retina’s health
and changes over time. It records colour images of the interior surface of the
fundus of the eye; in particular, the central and peripheral retina is visible,
together with the optic disc and the macula. It can be used with fluorescein
angiography to obtain a better interpretation and more complete results. It
requires dilation of the patient’s pupil, increasing the angle of observation
and the photographed area.

1.7 Document structure

This work is structured into six chapters. After the introduction (Chapter 1),
Chapter 2 is about related works, i.e. past research and achievements linked to our
main research topic. In Chapter 3 the materials used in this thesis are explained,
such as the dataset, retinal images and the Safe Haven environment. In Chapter
4 neural networks are explored in detail, particularly their architecture and their
training process. The experiments and results are presented in Chapter 5, while
the final chapter contains the conclusions: a brief summary of our work, the main
achievements, limitations and future works.
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(a) Fluorescein Angiography (b) Autofluorescence Imaging

(c) Optical Coherence Tomography Angiography (d) Color Fundus Photography

Figure 1.6: Examples of retinal image techniques.
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Chapter 2

Related work

2.1 About this chapter

The purpose of this chapter is to present the main achievements of the last years
in applying neural networks to retinal images to predict some biological outcomes.
Many recent studies have highlighted the critical role of these images, which provide
high-resolution in-vivo images of the internal structure of the eye, particularly of
its vasculature, without any invasive or expensive procedure. The human retina is
considered a fundamental predictive biomarker for cerebral and systemic vascular
diseases because its vasculature is affected by the physiologic and pathologic con-
ditions related to the subject’s global vasculature health. Deep neural networks
are widely used to extract clinical information from retinal images, such as car-
diovascular risk factors and individual characteristics. They are shown to achieve
excellent performance in these tasks.

2.2 Age prediction from retinal images

Poplin et al. [6] used a deep learning model to predict for the first time
cardiovascular risk factors not previously thought to be present or quantifiable in
retinal images, such as age, sex, smoking status and major adverse cardiac event.
They used two different datasets to train and test the model, the UK Biobank
and the EyePACS, which contain mostly diabetic patients presenting for diabetic

19
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retinopathy screening and with a mean of the glycated haemoglobin HbA1c higher
than average values.

They used the Inception-v3 neural network, which predicted age and sex highly
accurately, with the MAE for age in the two datasets equal to 3.26 and 3.42 years.
It also predicted the HbA1c, blood pressure and BMI but with a low coefficient of
determination R2.

Then they stratified the model’s performance by diabetic retinopathy severity,
previously assessed by a retinal specialist, and found no significant difference
between the groups. Moreover, they trained a model to predict the onset of major
adverse cardiovascular events (MACE) within five years in the UK Biobank dataset.
The model achieved an area under the receiving operating characteristic curve
(AUC) of 0.70. To make a comparison, AUCs were generated using individual
factors alone, and the combination of these factors was seen to perform better.

They demonstrated that applying deep learning techniques to fundus images can
predict multiple cardiovascular risk factors, such as age and sex because the human
retina contains important information about a subject’s health.

Figure 2.1: Actual vs predicted age in the two validation sets.
The black line represents y = x values.
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Two years later Kim et al. [7] used a convolutional neural network (CNN)
applied to retinal images to predict age and sex in two different groups of partici-
pants: normal participants and participants with a systemic vascular-altered status.
They used about 412 thousand fundus images from the Seoul National University
Bundang Hospital Retinal Image Archive (SBRIA).

The images were pre-processed and normalised to a z-score to ensure the classi-
fication results were invariant to intensities and colour contrasts. They used a
ResNet-152, the deepest residual network that achieves better performance, with
the following structure: the set consists of a convolutional layer, batch normalisation
and ReLU activation with 151 layers and a fully connected last layer.
The CNN was made a direct regressor for age prediction by defining the unprocessed
numerical output of the network as the predicted age. On the contrary, it was
made a classifier for sex prediction by defining the output of the sigmoid function
as the probability of predicted sex.

Figure 2.2: Scheme of the convolutional neural network used by Kim et al.

The age in the normal population was predicted accurately with an MAE of 3.06
years and a coefficient of correlation between chronologic and predicted age equal
to R2=0.92. The R2 was lower in the vascular-altered population, suggesting that
the ageing process and the pathologic vascular changes affect the retina.
The sex was predicted with an AUC of 0.97 in the normal test set, and similar
performance was achieved in the test set of the population with underlying vascular
conditions.
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Moreover, the effect of retinal blood vessels was studied by predicting age and
sex from vessel-erased images. The blood vessel region was extracted using the
scale-space approximated CNN. Then an inpainting technique was applied to fill
holes by extrapolation from the surrounding background. Age was predicted with
an MAE of 3.19 years.

The class activation map (CAM) technique was applied to highlight the core regions
where the network focuses on when it predicts age and sex. In the vessel-erased
images, the neural network’s attention is still focused on where blood vessels are
present.

Figure 2.3: CAM heat-maps (C, D) of an original image (A) and a
vessel-erased image (B) evaluated in the age prediction model.

The human retina and optic disc continuously change with ageing, and they share
pathologic and physiologic characteristics with brain and systemic vascular status.
Retina changes are caused by metabolism because cells and tissues are damaged
while by-products accumulate in this process. However, the ageing process observed
in retinal fundus images may saturate at age 60; age prediction’s accuracy is the
best in participants aged 20-40 years old, then decreases gradually and deteriorates
in subjects older than 60.
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2.3 The effects of age and sex

Mortality from cardiovascular disease (CVD) remains the leading cause of death
worldwide today, with an increasing burden on the Middle East population. This
burden may be reduced by the early identification of individuals developing the
disease and by providing the proper lifestyle and medication to alter its course.
Therefore, CVD risk stratification instruments are beneficial and retinal images
can be one of them to identify subjects at risk. Deep learning can rapidly extract
detailed information from fundus images to aid CVD risk determination.

Gerrits et al. [8] investigated the prediction of cardiometabolic risk factors from
fundus images and how age and sex, as mediating factors, can affect these predictions.
They used retinal images from 3000 Qatari citizens participating in the Qatar
Biobank study. The images, initially with a resolution of 1600x1059, were rescaled
to 400x400, then filtered through a Gaussian filter and processed with different
data augmentation techniques.

To maintain a lightweight and efficient deep learning method, they used a MobileNet-
V2 neural network based on depth-wise separable convolutions. A global average
pooling layer and two fully connected layers were added to the baseline. The first
fully connected layer had 512 neurons and a ReLU activation, while the second
was different according to the type of predicted variable. For continuous variables,
the second fully connected layer had one output and a linear activation, while for
categorical variables, it had one output and a sigmoid activation.

The predictions of age and sex were very accurate using the four images available
per person. Age was predicted with a mean absolute error (MAE) of 2.78 years
and an R2 of 0.89, while sex with an area under the curve (AUC) equal to 0.97.

They also evaluated the predictive value of these two variables in predicting a
clinical variable by constructing a simple linear regression model with age and
sex as independent covariates. This step was done to understand if the trained
neural network was reporting inherent correlations among age, sex and the variable
being examined. Relatively good performance was achieved in predicting the blood
pressure, the HbA1c, relative fat mass and testosterone.
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The test set was split according to sex and to age into four subgroups with an almost
equal number of individuals in each subgroup. An example of this experiment
can be seen in Fig.2.4. They demonstrated that when the neural network predicts
testosterone, it indirectly predicts sex. On the contrary, there are no differences
between males and females for age and HbA1c predictions.
Furthermore, there are no differences in the model’s performances in predicting sex
in the groups divided by age, but there are in predicting the HbA1c and systolic
blood pressure. They supposed that age influences the model’s performance for
testosterone and relative fat mass predictions.

(a) Age: actual vs predicted.

(b) Testosterone: actual vs predicted.

Figure 2.4: Age and testosterone predictions in males and females.
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These results suggest that when predicting a cardiovascular risk factor other than
age and sex, the model pays attention to the same characteristics already explaining
age and sex. They demonstrated that the retina stores unique information about
an individual’s health status, comprehending information related to blood pressure
and HbA1c.

2.4 An application to GoDARTS database

Accelerate ageing can be detected from the vascular systems using molecular and
cellular biomarkers and functional and structural ones. An important biomarker
in the human body is the brain, a highly vascular organ whose images contain
recognised shreds of evidence of age-related tissue health, such as manifestations
of white matter disease and other age-related structural changes. The retina is
embryologically derived from the brain and is a highly vascularised neurological
tissue, but, unlike the brain, it can be imaged quickly and inexpensively with digital
photography.

Deep learning applied to retinal images has recently been shown to accurately
predict a subject’s age. Moreover, the difference between the chronological age
and the predicted one can be exploited and used as an important biomarker of the
subject’s health. An individual with a predicted age greater than their chronological
age is supposed to have a more significant risk of all-cause death.

Ghouse et al. [9] applied to retinal images a neural network to predict biological
vascular age in order to investigate how the difference between chronological and
retinal vascular predicted age (predicted age difference, PAD) was associated
with major adverse cardiovascular events (MACE) and all-cause death in a large
population of individuals with Type 2 Diabetes.

GoDARTS dataset was used, selecting patients with a MACE at the date of the
earliest available image but no history of hospitalisation. Images were pre-processed
to reduce the effect of image variations, such as brightness, colour and focus. They
were resized to the standard size of 260x260 pixels, which is the one recommended
to improve accuracy in the used neural network [10].
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The EfficientNet-B2 network was used since it achieves excellent performance in
imaging tasks. The fully connected layer was replaced with a global average pooling
layer followed by a single output node with linear activation. Grad-CAM heatmaps,
applied to the last convolutional layer, showed that the network identified the
macula and the optic disc as the most important features to predict age.

Results are encouraging because the MAE in predicting age was 3.96 years for the
whole cohort with an R2 equal to 0.798. Despite the limitations of the work, it can
be considered an important achievement in understanding how retinal images can
be used in deep learning to predict a biological outcome.

2.5 Contribution of the University of Dundee

The VAMPIRE team of the University of Dundee investigated how the combi-
nation of clinical, retinal and genomic features can successfully stratify the cardio-
vascular risk in patients with type-2 diabetes selected from GoDARTS database
[11]. The performance suggested that multimodal features could capture essential
knowledge for MACE risk assessment, and bootstrap analysis was performed to
assess the robustness of all three sources of features.

There were 157 retinal features extracted semi-automatically from retinal images
with the VAMPIRE 3.1 software of the University of Dundee and Edinburgh and
343 single nucleotide polymorphisms (SNPs). A total of 519 features were used as
independent variables in a predictive model developed using L1-regularised logistic
regression to predict the binary outcome of MACE onset before censoring. The
output probability was used to stratify patients into two groups, high-risk and
low-risk. They chose Lasso regression because it performs simultaneous feature
selection and model estimation.

The λ parameter, which controls the strength of regularisation, was tuned using
10-fold cross-validation and the model corresponding to the lowest deviance λ

was selected (Fig 2.5). It contained 51 features from all three categories. On
the contrary, the model corresponding to λ1SE, defined by only seven predictors,
contained only clinical features and one gene score and it achieved comparable
performance. The features selected in the two models are represented in Tab 2.1.
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Category Using λmin Using λ1SE
Retinal 7 features selected None selected
SNPs 34 features selected None selected
Gene scores CVD gene scores CVD gene scores

Clinical

• Age at imaging
• Blood pressure lowering drugs taken
• History of smoking
• Evidence of CVD before imaging
• Diastolic blood pressure
• High density lipoprotein
• Glycated Haemoglobin
• Triglycerides
• Duration of diabetes

• Age at imaging
• Blood pressure lowering
drugs taken
• History of smoking
• Evidence of CVD
before imaging
• Diastolic blood pressure
• High density lipoprotein

Table 2.1: Features selected in the models corresponding to λmin and to λ1SE.

Figure 2.5: Results of the cross-validation, showing how changing λ affects binomial
deviance. The vertical line on the left represents λmin, the one on the right λ1SE.
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Bootstrap analysis was performed to assess the robustness of the feature selection
with Lasso regression over variations of the training set. A total of 500 iterations
were completed on the model corresponding to λmin. A significant result is that the
variables age at imaging was selected in every bootstrap iteration. Other features
selected with a frequency higher than 75% were clinical features, such as the history
of CVD, history of smoking and glycated haemoglobin and some genetic features.
No individual retinal measurements were selected at high frequency because they
can be highly correlated.

A former PDRA of the University of Dundee, Boyle Liam, started with the
basis of this work and studied whether retinal and genomic measurements can
stratify cardiovascular risk in the GoDARTS dataset’s population. The focus
was on major adverse cardiovascular events (MACE), defined as nonfatal stroke,
nonfatal myocardial infarction and cardiovascular death. His dataset contained
clinical markers, such as age, sex and haemoglobin levels, retinal markers extracted
from retinal images through the software VAMPIRE of the University of Dundee
and genetic markers.

Figure 2.6: Features selected in the bootstrap analysis
made on the dataset containing all the features.
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He performed five experiments with different sets of features and the main results
he achieved are the followings:

• age at imaging was selected 100%, together with the glycated haemoglobin
(gh) and the history of a previous CVD (pre), among all the clinical features,

• in the model with clinical and retinal features, clinical ones are still predomi-
nantly, and the first retinal one was selected 83%,

• in the model with clinical, retinal and genomic features and the model with
all the features, the most often selected are clinical and genomic.

2.6 Conclusion

In this chapter, some important achievements in applying deep learning tech-
niques to retinal images have been presented. They highlight the importance
of retinal images, which represent a non-invasive and non-expensive diagnostic
tool useful to understand better a subject’s health, particularly his cardiovascular
health.

Retina blood vessels are affected by systemic diseases, such as diabetes and glycated
haemoglobin, as well as hypertension and smoking conditions, and its vasculature
can be studied to prevent some diseases and stratify patients.
Retinal images can be used efficiently in neural networks to predict some important
individuals characteristic. For example, age can be predicted with an MAE of only
three years.

Moreover, it has been shown that retinal features are less important than clini-
cal features in assessing cardiovascular risk. The features selected most often in
bootstrap analysis with Lasso regression are the age at imaging, i.e. the age of
the patient when the image was taken, the level of glycated haemoglobin and the
history of a previous cardiovascular event.
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Chapter 3

Materials

3.1 About this chapter

The purpose of this chapter is to present and describe the dataset, the images
and the environment used in our experiments. We used the GoDARTS dataset,
which contains more than 10 thousand patients that suffer from type 2 diabetes
and live in the Tayside region, a region in east Scotland that includes the cities of
Dundee and Perth. Since the disease of these subjects, they were offered retinal
screening to prevent, diagnose and monitor diabetic retinopathy. More than 102
thousand fundus photography images of the retina were collected and are available
for research purposes. Using images and clinical data is made possible through
Safe Haven’s remote-access environment. It has been implemented by the Health
Informatics Centre (HIC) of the University of Dundee to protect data confidentiality,
satisfy public concerns about data loss and reassure data controllers about HIC’s
secure management and processing of their data.

3.2 GoDARTS

The DARTS - Diabetes Audit and Research in Tayside Scotland - study started in
1996 as a collaboration between the University of Dundee, three Tayside Health Care
Trusts: the Ninewells Hospital and Medical School, the Perth Royal Infirmatory,
the Stracathro Hospital and a group of Tayside general practitioners to identify all
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diabetic patients within the Tayside region and to improve health care [12]. The
collected data, including hospital diabetes clinics, diabetes prescription database
and all diabetes-related records, is continually updated by a dedicated team of
clinicians and forms an important longitudinal dataset of clinical data.

In 1998 genetic data started to be collected through a blood sample for DNA
extraction, together with phenotypic data through lifestyle questionnaires and
clinical examination. This more comprehensive study, called GoDarts – Genetic of
DARTS – aims to study and identify if there are correlations between specific genetic
and environmental factors and the disease onset, its progression and response to
treatment.

Figure 3.1: Venn diagram showing the overlap in patient recruitment.

The GoDARTS study has been created in three different phases:

(i) The first one, GoDARTS1, was the pilot phase to test the recruitment
processes and ability to anonymously link patient clinical data from electronic
records to the study. In this phase, only blood samples were taken when the
patient was recruited and no baseline data were recorded.
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(ii) In the second phase, GoDARTS2, two groups of patients were recruited, one
with type 2 diabetes patients and one control group, with on average one
control patient per case of diabetes. Baseline clinical and lifestyle measure-
ments were recorded for all patients, for example, the smoking history, level of
physical activity and menopause history for women, as well as height, weight,
blood pressure and heart rate.

(iii) During the third phase, GoDARTS3, other patients were recruited, and urine
and blood samples for RNA extraction were collected. Some of them also
participated in phase one or two, where baseline data was missed or the
quality of the extracted DNA was poor, and only 1451 patients involved only
in the GoDARTS1 do not have these data.

GoDARTS dataset contains a total of 18306 participants, 10149 with type 2 diabetes
and 8157 healthy controls at baseline. All participants are asked to provide informed
consent for their data to be used for research purposes and explicit consent of use
in collaboration with the industry. This way, it is possible to access longitudinal
data relating to routine diabetes management.

The linkage between different databases is made possible thanks to the community
health index (CHI), a 10-digit unique numerical identifier issued to each patient on
the first registration with a GP or on the first admission to a Scotland hospital.
This index is then converted into a study pro-CHI, patients’ identity is protected,
but the linkage across multiple datasets is still possible.

The main strengths of GoDARTS are its large size, the availability of genetic and
phenotypic data, the ability to link patients’ data to routine electronic medical
records and the consent to use these data for research purposes and to contact for
possible future research participation. However, there are some weaknesses, like the
missing baseline data for some GoDARTS1 patients and the lifestyle questionnaires;
since they are self-completed, they may have some bias.

In our experiments we used a subset of GoDARTS, which contains 8750 T2D
subjects, of which 3751 are females and 4819 males. A total of 102 082 retinal
images are available. The age of the patient when an image is taken is recorded in
the variable ’age_at_img’, whose average of the entire dataset is 67.64 years.
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In Fig.3.2 we see its distribution in males and females. They are very similar:
females distribution has a mode equal to 69.86 years and a mean to 67.96 years
with a skewness coefficient of -0.42, males distribution has a mode equal to 71.31
years and a mean to 67.39 years with a skewness coefficient of -0.57.

(a) Distribution in males (b) Distribution in females

Figure 3.2: Age at imaging distribution.

The aim of our experiments is predicting the cumulative glycated haemoglobin
from retinal images, thus we are interested in understanding how this variable is
distributed in our population. As we can see, it has a skewed distribution with a
skewness coefficient equal to 2.43.

Figure 3.3: Distribution of the cumulative glycated haemoglobin.
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3.3 Retinal images

All patients with diabetes in Scotland are offered annual retinal screening with
digital retinal photography. Since 2006 these images have been stored centrally
by the Scottish National Diabetes Eye Screening (DES) service. The capture of
retinal image follows the standard Scottish diabetes retinal screening protocol,
which includes a 45° field of view and macula-centred [9].
The dataset contains 102,082 retinal images taken at multiple time points for ap-
proximately ten years starting from 2006. We used these images in our experiments
to train and test our neural network.

(a)

(b)

Figure 3.4: Examples of GoDARTS fundus images.
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Images were pre-processed to reduce the effect of image variations, such as brightness,
colour, focus and overall quality. Firstly, the excess black regions of the images were
discarded. Images were resized to the standard size of 260× 260 pixels, which is
recommended to obtain optimal performance when using neural networks on images.
Then, they were equalised by contrast-limited adaptive histogram equalisation
on the R, G, and B colour channels separately. Finally, pixel intensities were
normalised to [0, 1]. An example of this process can be seen in Fig. 3.5.

Figure 3.5: Pre-processing: original image (left) and processed image (right).

3.4 Safe Haven

The Safe Haven environment is a web-accessible Virtual Desktop Environment
that allows secure remote access to research data provided by Health Informatics
Centre (HIC) service and it is based on the VMWare View Horizon VDI technology.

To ensure the safe use of research data, some restrictions are imposed. Within the
Safe Haven environment, no internet access is available, applications’ installation
is disabled and only applications installed by HIC service are available. Data are
not released externally to data users for analysis on their computers but placed on
a server at HIC, within a restricted, secure IT environment, where the data users
are given secure remote access to carry out their analysis. Copying research data
supplied by HIC out of the environment is not permitted; however, analysis results,
such as reports, summaries and graphs, that do not contain patient-level data are
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allowed to be removed and exported after a HIC Data Analyst has reviewed them.

To have access Safe Haven environment, participation in the “Good research practise:
principles and guidelines” course held by the Medical Research Council (MRC) is
required [13]. The MRC is dedicated to improving human health through excellent
medical research and expects that all MRC-funded research is conducted according
to the highest possible standards of research practice to ensure the integrity, clarity
and good management of the research and outputs. Achieving these ethical and
quality standards depends on the integrity, honesty and professionalism of all
individuals involved in the research process. Thus, promoting and delivering
good research practice is fundamental. Fostering a culture that supports good
research practice and aims to prevent research misconduct is a duty for research
organisations.

Good research practice provides solid foundations for a research career, supporting
high-quality education and training, it delivers assurance to those work builds on
the findings of others, and it also helps to increase public confidence and trust in
the research process and its outputs.

The principles relating to the conduct of research are the following:

• research excellence and integrity: the MRC is dedicated to excellence and
high ethical standards in the design, conduct, reporting and exploitation of
publicly-funded research,

• respect, ethics and professional standards: all research must respect and
maintain the dignity, rights, safety and wellbeing of all involved. Moreover,
all researchers should be familiar with the relevant legal and ethical require-
ments and take appropriate steps to manage data appropriately, maintain
confidentiality and minimise any adverse impact their work may have on
people, animals and the natural environment.

• honesty and transparency: all those involved should be honest in respect of
their actions and their responses to the actions of others, and this applies to
the whole range of research activity,
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• openness and accountability: MRC-funded researchers are expected to foster
the exchange of ideas and to be as open as possible in discussing their work
with other scientists and the public, furthermore the findings must be made
available to the research community and the public and a complete and
accurate account of scientific evidence must be presented to support the
appropriate and effective use of this knowledge,

• supporting training and skills: all those involved in MRC-funded research
have a responsibility to develop and maintain the skills necessary for their
research and to assist and mentor others with their personal development.

3.5 Conclusion

In this chapter, the materials used in our experiments were presented. The
dataset is the GoDARTS, which contains around 8 thousand patients with type 2
diabetes and around 102 thousand retinal images. These images were pre-processed
to reduce the effect of image variations and ensure optimal performance of the
neural network. The processing of sensible data was done inside the Safe Haven
environment, which protects patients’ confidentiality and ensures clinical data’s
correct and safe use.

The next chapter will illustrate the methods used to compute our analysis and
results. In particular, we will see what a neural network is, how it works, and why
we chose the EfficientNet-B2 to perform our experiments.



Chapter 4

Methods

4.1 About this chapter

In this chapter, neural networks and their structures will be investigated, par-
ticularly what is their architecture and how they learn from the data. Multiple
algorithms will be presented in order to understand the steps that had been made
to develop the Nadam algorithm. We will focus on convolutional neural networks
that are commonly used and have excellent performance in classification tasks
and image recognition. Then, we will focus on the neural networks mentioned in
Chapter 2, which will be examined in more detail. Finally, the neural network that
we used in our experiments, the Efficient Net B2 network, will be illustrated.

Neural networks are used for statistical analysis, data modelling and classification
tasks. Some examples are image and speech recognition, textual character recogni-
tion, medical diagnosis or financial market indicator prediction. Neuroscientists
and psychologists are interested in neural networks as computational models of
the animal brain. Physicists and mathematicians are willing to understand their
fundamental properties as complex systems. Commercial and industrial people use
neural networks to model and analyse large and misunderstood datasets [14].

We can state that neural networks are a tool widely used in different sectors with
different purposes. They are also finding natural applications in the healthcare
sector and are the basis of artificial intelligence (AI).
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4.2 Neural network

The human brain consists of an estimated 8.6× 1010 nerve cells, called neurons,
and each has, on average, 7000 synaptic connections. Neurons are the main
component of the nervous tissue and communicate via electrical signals that are
short-lived impulses or spikes in the cell membrane’s voltage.
They consist of three components: the cell body, dendrites and a single axon. The
terminal part of the axons is responsible for signal transmission and interneuron
connections. Here synapses happen, and the electrical signal is converted into
an electrochemical one which leaves the axon of a neuron and is received by the
dendrites of another neuron. Synapses are electrochemical junctions located on cell
branches, i.e. on the dendrites.

Typically, each neuron receives many thousands of connections from other neurons
and these signals are integrated. Only if the resulting signal exceeds a threshold,
the neuron will generate a voltage impulse in response which is transmitted to
other neurons. This is the so-called all-or-none response: if a neuron responds at
all, it must respond completely.

Figure 4.1: a) human neuron architecture, b) translation of a human neuron into a
neuron in neural networks, c) connections between human neurons, d) connections
between neurons in neural networks.
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This architecture and communication system is simulated in neural networks
composed of different layers full of thousands of neurons. Synapses are modelled by
a weight such that each input is multiplied by it before entering the equivalent of
the cell body. Here, the signals are summed together by simple arithmetic addition
to supply a node activation and the total signal is compared with a threshold.

4.2.1 Architecture

A neural network consists of a pool of simple processing units which communicate
by sending signals to each other over a large number of weighted connections.
The elements of a neural network are:

• a set of processing units called neurons,
• a state of activation yk for every unit,
• connections between the units, and generally, each connection is defined by a

weight wjk which determines the effect that the signal of unit j has on unit k,
• an activation function Fk, which determines the new level of activation based

on the effective input sk(t) and the current activation yk(t),
• an external input, aka bias, θk for each unit,
• a method for information gathering, the learning rule with its learning rate

parameter.

Figure 4.2: Deep neural network with an input layer,
multiple hidden layers and an output layer.
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Within a neural network, three types of units can be distinguished:
• input units that receive data from outside the neural network,
• output units that send data out of the network and compone the last layer,
• hidden units, whose inputs and outputs remain within the neural network.

Each neuron receives inputs from the previous layer and produces outputs that
are the next layer’s inputs. The total input to unit k is the weighted sum of the
outputs from each of the connected units plus a bias term:

sk(t) =
∑︂

j

ωjk(t)yj(t) + θk(t)

Then an activation function gives the effect of the total input on the activation of
the unit, it takes the total input sk(t) and the current activation yk(t) and produces
a new value of the activation of the unit k:

yk(t + 1) = Fk(yk(t), sk(t))

Often they are non-decreasing functions of the total input of the unit:

yk(t + 1) = Fk(sk(t)) = Fk

(︂∑︂
j

ωjk(t)yj(t) + θk(t)
)︂

Figure 4.3: Activation function acting on a NN node.

We indicate a constant parameter whose value is set before the training process with
the term hyperparameter. In neural networks, hyperparameters are the learning
rate, the number of epochs, the batch size, the number of hidden layers, and the
number of neurons for each layer.
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4.2.2 Activation functions

Activation functions are an integral part of a neural network that introduces
non-linearity and allows to perform more tasks. Without these functions, a NN is
a simple linear regression model. An activation function decides whether a neuron
should be activated, i.e. if the neuron’s input is important or not in the process of
prediction or classification. Its central role is transforming the weighted sum, input
of the node, into a value, input of the following hidden or output layer.

A common activation function is the sigmoid one, whose curve looks like an S-shape.
It is especially used in probability prediction since it exists between zero and one
but never in hidden layers. It is defined as:

Φ(x) = 1
1 + exp−x

where x is the node’s input. The sigmoid function is differentiable and monotonic,
however, it may make the neural network stuck at the training time.

Figure 4.4: Comparison between the sigmoid and the ReLU activation function.

Another widely used activation function is the ReLU (Rectifier Linear Unit) function,
used in the hidden layers and convolution networks. It is defined as:

f(x) = max(0, x)

where x is the input of the neuron. It has the advantage of performing better
gradient propagation with fewer vanishing gradients compared to the sigmoidal
activation function that saturates in both directions. It is computationally efficient
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and scales invariant. However, it is not differentiable at zero, not zero centred and
not bound. It may suffer from the dying problem, which happens when neurons
are pushed into an inactivation state such that no gradient flows backwards. They
become stuck in a perpetually inactive state and die.

4.2.3 Learning process

A neural network must be tuned such that applying a set of inputs produces
the desired set of outputs. One way is to set the weights explicitly using a priori
knowledge, but usually, we do not have this information and have millions of
parameters to set. The best way is to train the neural network by feeding it on
teaching patterns and letting it change its weight according to some learning rule
[14]. Then, it can be used to predict or classify the outcome of unseen data.

When we train the model, we evaluate its accuracy using a cost or loss function.
One of the most used cost functions is the mean squared error (MSE), which we
also used in our experiments, defined as:

MSE = 1
2m

m∑︂
i=1

(ŷi − yi)2

where we consider the i-th sample, ŷi is the predicted outcome and yi is the actual
outcome, m is the number of samples. We aim to minimise it to ensure the fit
correctness for any given observation.

The cost function provides feedback to the model so that it can adjust its parameters
and find the minimum. The iterative process stops when the cost function is equal
to or close to zero.

The backpropagation algorithm adjusts the weights of the neural network through
gradient descent, determining the direction to take in order to reduce errors and
minimise the cost function. The parameters of the model are adjusted gradually to
converge at the minimum.

The learning rate parameter determines the step’s size at each iteration while
moving toward a minimum of the loss function. It can be metaphorically thought
of as the speed at which the model is learning.
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A high learning rate shortens the training time but decreases the ultimate accuracy
with the risk of overshooting the minimum. On the contrary, a low learning rate
extends the training time and, thus, the computational cost, but with potentially
more accuracy and precision.

A momentum can be used to allow the balance between the gradient and the last
change such that the weight adjustments depend partially on the previous changes.
If it is set close to zero, it emphasises the gradient, while a value close to one
emphasises the last change.

The batch size is the number of samples passed to the network before updating
the model’s parameters. The term iterations is the number of batches needed to
complete one epoch.
Batch normalisation is a technique for training neural networks that standardise
the inputs to a layer for each batch, stabilising the learning process and reducing
the number of epochs required to train the network [15]. It can be implemented
during the training process by computing the neural network’s weights through
gradient descent, determining the direction to take to statistics just calculated. In
common practice, two new parameters to learn are added to each layer: the input
data’s new mean and standard deviation, to make the scaling and shifting process
automatic.

4.2.4 Backpropagation algorithms

Gradient descent (GD) is a first-order iterative optimisation algorithm where
the gradient of the function to be minimised with respect to the parameters θ is
computed, and a portion η of that gradient is subtracted from the parameters.
It is based on the idea that the direction to reach the minimum is the opposite
direction of the function’s gradient at the current point. In fact, this direction is
the steepest descent. The gradient vector for each weight indicates by what amount
the error would increase or decrease if a tiny amount increased the weight. The
weight vector is then adjusted opposite of the gradient vector direction.
The algorithm aims to minimise a cost function built on the difference between
the predicted and the desired output and the weights modifications are made to
reduce this error. It requires two parameters: a direction and a learning rate.
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Algorithm 1 Gradient descent [16]
gt ← ∇θt−1f(θt−1)
θt ← θt−1 − ηgt

Stochastic gradient descent (SGD) is a procedure that shows an input vector
for a few examples, computes the outputs and the errors, computes the average
gradient for those examples and adjusts the weights accordingly. The process is
repeated for any small sets of samples from the training set until the average of the
objective function stops decreasing. The name stochastic derives from the fact that
each small group gives a noisy estimate of the average gradient over all examples
[17]. Then the performance of the system is measured on the test set, data that
are not previously seen in order to test and measure the generalisation ability of
the model.
The frequent updates are easier to store in memory and offer more detail and
speed. Moreover, they result in noisy gradients, which are useful in escaping the
local minimum and saddle points. SGD uses a single learning rate for all weights
updates that does not change during training.

Two problems can be experienced in deeper neural networks: the vanishing gradient
and the exploding gradients. In the first one, the gradient becomes smaller and
smaller during backpropagation. Consequently, the earlier layers learn more slowly
than the later layers, and the weight parameters update until zero. Therefore, the
algorithm is no longer learning. In the exploding gradients, the gradient and the
parameters become too large, causing model instability.

Stochastic gradient descent may have problems in finding the global minimum
in ravines, which are areas where the surface curves much more steeply in one
dimension than another, common near local minima of the cost function [18]. In
these situations, SGD oscillates around the ravine’s slope, making little progress
towards the minimum. As shown in the figure below, momentum makes SGD
accelerate in the right direction and reduces the oscillations.
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Figure 4.5: a) A neural network distorts the input space to make the data classes
linearly separable, b) The chain rule of derivatives. A small change ∆x in x is
transformed into a small change ∆y in y and then into a change ∆z in z. c) The
forward pass: at each layer, the total input z is calculated as a weighted sum of
the outputs of the units of the previous layer. Then, a non-linear function f(·) is
applied to obtain the layer’s output. d) The backward pass: at each hidden layer,
the error derivative with respect to the output is computed and then converted
into the error derivative with respect to the input [17].

Figure 4.6: Comparison between SGD progress without momentum
and with momentum.
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Traditional momentum considers a variable that represents the last performed
update. It accumulates a decaying sum with decay constant µ of past gradients
and continues to move in their direction. The previous update is added into a
momentum vector m and the hyperparameter η controls how much of the last
change to add. We can compare it to a ball rolling downhill that accelerates in the
same direction even in the presence of small hills [15].
SGD does not calculate the exact derivative of the cost function but estimates it
on a small batch. Consequently, it may happen that the weights updates do not
move in the right direction because of the noisy gradients. Using a momentum
variable allows us to estimate the cost function’s gradient better and move in the
right direction.
However, traditional momentum suffers from the overshooting of the minima, which
is a problem solved with the Nesterov approach.

Algorithm 2 SGD with traditional momentum
gt ← ∇θt−1f(θt−1)
mt ← µmt−1 + gt

θt ← θt−1 − ηmt

Figure 4.7: Comparison between the tradition momentum and the NAG momentum.
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An extension of the gradient descent optimisation algorithm is the Nesterov
accelerated gradient momentum (NAG), which uses the partial derivative of
the projected update rather than the derivative current variable value. At first,
it calculates the projected position of the variable using the change from the last
iteration and then uses its derivative for the calculation of the new position of the
variable. The idea is to make a first big jump in the direction of the previously
accumulated gradient and then measure it and make corrections.

The four steps of the algorithm are the followings:

• project the solution’s position: projection(t + 1)=x(t)+momentum*change(t),

• and calculate its gradient: gradient(t + 1)=f ’(projection(t + 1));

• calculate the change in the variable using the partial derivative:
change(t + 1)=momentum*change(t) - (step size)*gradient(t + 1);

• and update the variable: x(t + 1)=x(t)+change(t + 1).

It has been demonstrated that NAG momentum improves the rate of convergence,
i.e. the number of iterations required to find a solution is decreased.

Algorithm 3 Nesterov-accelerated gradient
gt ← ∇θt−1f(θt−1 − ηµmt−1)
mt ← µmt−1 + gt

θt ← θt−1 − ηmt

The challenge is finding the correct learning rate and momentum value in order to
guarantee convergence. We can write NAG to be more straightforward and efficient
in implementation as follows [16]:

Algorithm 4 NAG rewritten
gt ← ∇θt−1f(θt−1)
mt ← µtmt−1 + gt

m̄t ← gt + µt+1mt

θt ← θt−1 − ηmt¯
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Choosing the optimisation algorithm for a neural network is crucial to time
the solution’s convergence. The Adaptive Momentum (Adam) optimisation
algorithm is an extension of the stochastic gradient descent to update network
weights iteratively. It has two main components: a momentum and an adaptive
learning rate, and it combines the advantages of two techniques: the Adaptive
Gradient Algorithm (AdaGrad) and the Root Mean Square Propagation.

AdaGrad adaptively scales the learning rate with respect to the accumulated
squared gradient for each dimension at each iteration. It decreases the learning
rate along dimensions that have already changed significantly and increases it along
dimensions that have changed slightly.
At first, a step size for a given dimension is calculated by summing the partial
derivatives for the examined parameter. Then, it is used to make a move in that
dimension using the partial derivative.
The initial step size is divided by the square root of the sum of squared partial
derivatives, such that the learning rate is shrunk according to the entire history of
the squared gradient [19].

However, since it accumulates the gradients from the beginning of the training
process, the norm vector may become very large. Consequently, the search progress
slows, and the network no longer learns because the learning rate is almost zero.
Moreover, its performance worsens when the loss function is non-convex and
gradients are dense. This limitation is dealt with the RMSprop approach that
replaces the sum of past gradients with a decaying mean, allowing the neural
network to learn infinitely.

Algorithm 5 AdaGrad
gt ← ∇θt−1f(θt−1)
nt ← nt−1 + g2

t

θt ← θt−1 − η gt√
nt+ϵ

Algorithm 6 RMSprop
gt ← ∇θt−1f(θt−1)
nt ← νnt−1 + (1− ν)g2

t

θt ← θt−1 − η gt√
nt+ϵ
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RMSProp is a stochastic technique that introduces a moving average of squared
gradients for each weight to normalise the gradient. It computes the moving average
of the partial derivatives instead of the sum in calculating the new learning rate.
The normalisation balances the step size because it decreases the momentum for
large gradients to avoid exploding gradients and increases it for small gradients
to prevent the problem of vanishing gradients. The usage of the moving average
allows the neural network to forget early gradients, focusing on the most recently
observed partial gradients, overcoming the limitation of AdaGrad.

Adam combines the classical momentum with RMSprop to improve perfor-
mance. It is a first-order gradient-based algorithm based on adaptive estimates of
lower-order moments. It needs three hyperparameters: the initial learning rate and
the decay rates of the first and second-order moments.
The algorithm estimates the gradient’s first-order moment (the gradient mean) and
the second-order moment (element-wise squared gradient) using the exponential
moving average and then corrects its bias. The first moment normalised by the
second moment gives the direction of the update. An initialisation bias correction
term overcomes the instability that the initialization of m and n to zero may create.

Algorithm 7 Adam
gt ← ∇θt−1ft(θt−1)
mt ← µtmt−1 + (1− µ)gt

nt ← νnt−1 + (1− ν)g2
t

m̂← mt

1−µt

n̂← nt

1−νt

θt ← θt−1 − η m̂t√
n̂t+ϵ

Each iteration of the algorithm performs the following steps:
• computation of the gradient and its element-wise square using the current

parameters,
• updating the exponential moving average of the two moments,
• computation of the unbiased average of the moments,
• updating the weight by dividing the first order moment unbiased average

by the square root of the second order moment unbiased average and then
scaling by the learning rate,
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• applying the update to the weights.

The advantages of Adam are several: it is straightforward to implement and
computationally efficient, it requires little memory, it is invariant to diagonal
rescale of the gradients, and it is appropriate initialisation very noisy or sparse
gradients and with a lot of data and parameters. Moreover, its hyperparameters
are intuitively interpretable and usually require little tuning.

Since Adam combines two algorithms that are beneficial for different reasons and
Nesterov momentum is theoretically superior to traditional moment, we can think of
combining Adam with NAG to obtain an algorithm that overcomes the limitations
of the singular approaches [16].

Algorithm 8 Nesterov-accelerated Adaptive Momentum Estimation (Nadam)
Require: α0, . . . , αT ; µ0, . . . , µT ; ν; ϵ: hyperparameters

m0; n0 ← first and second moment vectors
while θt not converged do

gt ← ∇θt−1ft(θt−1)
mt ← µtmt−1 + (1− µt)gt

nt ← νnt−1 + (1− ν)g2
t

gt̂ ← gt

1−
∏︁t

i=1 µi

m̂← mt

1−
∏︁t+1

i=1 µi

n̂← nt

1−νt

m̄t ← (1− µt)ĝt + µt+1m̂t

θt ← θt−1 − η m̄t√
n̂t+ϵ

end while
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4.3 Convolutional neural networks

Convolution neural networks (CNNs) are similar to feedforward networks, which
comprehend an input layer, multiple hidden layers, and an output layer. However,
CNNs are easier to train. In fact, the number of weights per layer is smaller, resulting
in fewer parameters, which is an advantage in processing high-dimensional data
such as images. CNNs are usually applied for image recognition and classification,
pattern recognition and processing data organised in multiple arrays. Their capacity
can be controlled by varying their depth, width and height.

Figure 4.8: Example of a convolution network used for classification.

Convolutional networks usually have three types of layers:

• convolutional layers, that apply spatial filters, also called kernels, to input
images to produce feature maps that indicate the presence of a feature in
the image. The neural network learns the filter parameters in the training
process in order to maximise the response to a local region of the input image.
Especially, the first layers detect the low-level feature, while the later layers
the high-level features.
Each filter is convolved with the input image to compute an activation or
feature map that detects the presence of a feature. The dot product between
the pixels of the image and the value of the kernel is computed step by step
at every spatial position. All units in a feature map share the same filter
bank, but different feature maps in a layer use other filter banks.
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Usually, convolutional filters are smaller than the input images, so each
neuron is connected to only a tiny region of the image whose size is obviously
equal to the filter size. Moreover, they are not fully connected, which means
that not all input nodes affect all output nodes. Therefore, these layers have
more flexibility in learning.
The convolution is very useful in images where local data groups are often
highly correlated, as happens in images, forming neighbourhoods of points
that can be easily detected and identified by the network.

• pooling layers, whose function is to merge similar features into one by
summarising the presence of features in patches of the feature map. It is the
so-called "downsampling" process [15] that reduces the spatial dimensionality
and the size of the feature maps. These layers aim to create a lower resolution
version of an input signal that still contains the essential features or elements
but not the fine details that are usually unnecessary for the task.
Pooling layers are generally added after convolutional layers and this structure
can be repeated multiple times within a CNN, as we can see in Fig.4.8.
Pooling requires the choice of a pooling operation that acts through a filter
whose size is smaller than the size of the feature maps. In fact, it always
reduces the dimension of the feature map, thus the number of pixels. Close
pooling units are used to reduce the dimension of the representation and
create invariance to small shifts, local translation, and distortions [17].
A typically pooling function is the Max Pooling which returns the maximum
or larger value of a local patch of points in a feature map. The output is the
most present feature in that activation map.
Another common function is the Average Pooling, which calculates the average
value for each patch of the feature map, whose size is given by the kernel’s
size and returns the feature’s average presence.

• fully connected layers, which correspond to the final layer in a CNN in
which the neuron applies a linear transformation to the input vector through
a weights matrix. Then a non-linear activation function is used to the product
to get the output. In FC layers, all possible connections layer to layer are
present, i.e. every input affects every output since every neuron is connected



4.3. CONVOLUTIONAL NEURAL NETWORKS 55

to every neuron of the previous layer. However, not all weights affect all
outputs and the output size can be arbitrarily chosen with the number of
columns in the weights matrix.

Figure 4.9: Comparison between a fully connected layer, where each neuron affects
the output of each neuron in the following layer, and a convolutional layer, where
a kernel selects the neurons that affect the output of the neurons in the next layer.

In Chapter 2, we have presented different papers in which neural networks were
applied to retinal images to predict some outcomes with medical importance. Now
we can provide more details of the used neural networks.

Poplin et al. [6] used the Inception-v3 neural network to predict cardiovascular
factor from retinal images. Inception neural networks are convolutional networks
that can detect the salient part of an image through the applications of different
kernels with different sizes at the same level. In a traditional convolutional network,
multiple deep layers may overfit the data. Moreover, the essential parts of an
image that are captured by the network for classification may have different sizes.
Therefore, choosing the right kernel size is crucial, and its tuning may not be so
easy. The idea of the Inception networks is to apply filters of multiple sizes at the
same level of the network to capture both the information globally distributed and
the detailed information locally distributed in the input image. The result is a
wider rather than deeper neural network.
Inception-v3 has 42 layers and includes convolution layers with kernel size 3× 3,
average pooling layers, Max pooling layers, organised in parallel blocks linked with
concatenation layers, and lastly, a dropout, a fully connected and a softmax layer.
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Figure 4.10: Architecture of the Inception-v3 network.

Kim et al. [7] used a convolutional network, particularly a ResNet-152 with a
convolutional layer, followed by batch normalisation and ReLu activation function
for 151 layers and a final fully connected layer. The kernel size of the first convolution
layer was 7×7 with stride two and padding three, while the kernel of the other Conv
layers was set to 3×3. The network was pre-trained in general image classification
with the ImageNet database (a large database with more than 14 million images
from 20.000 categories used in visual object recognition and classification tasks)
and the found parameters were used as an initial guess in the training process.

Gerrits et al. [8] applied to retinal images a MobileNet-v2 pre-trained on
ImageNet database to predict cardiovascular risk factors.
MobileNet is a class of CNNs that uses depthwise separable convolutions. Therefore,
the number of parameters and the computational cost are significantly reduced
in comparison with traditional convolution networks. Separable convolutions are
made possible through two operations: a depthwise convolution and a pointwise
convolution. MobileNets factorize the traditional convolution into a 3×3 depth-wise
followed by a 1×1 pointwise convolution. The idea is to separate the dimensions of
the kernels, i.e. separate the depth dimension from the horizontal one and then
use a unitary filer to cover the third dimension.
MobilNet-v2 has 17 bottleneck residual blocks followed by a 1×1 traditional
convolutional layer, a global average pooling and a classification layer. In each
block, there is an expansion layer and a depthwise convolution layer, both followed
by batch normalization and a ReLu activation function, then there is a projection
layer followed by only batch normalization.
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Figure 4.11: Architecture of the residual bottleneck block in MobileNet-v2.

Projection layers or bottleneck layers are added in convolutional blocks with the
function of reducing the dimension of the data entering the layer. They are
linear blocks since no activation function is applied to the output of these layers
because non-linearity elements may destroy important information contained in
the data. Expansion layers work as opposed to projection layers, their output
dimension is bigger than the input dimension. Moreover, in each block, there is
a residual connection which is a path that allows data to reach some layers of
the neural network by skipping others. Residual connections help the gradients’
backpropagation process making it converge faster and easier.

4.4 EfficientNets

Convolutional neural networks are usually developed according to a finite
number of resources and then scaled up to obtain better performance if more
resources are available.
Tan et al. [10] proposed an innovative scaling method, called compound scaling
method, to balance the dimensions of convolutional neural networks. They obtained
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a new type of convolutional neural network, the EfficientNets, which has been
empirically shown to have higher performance with significantly fewer parameters.
They tested these new networks on the ImageNet dataset and obtained a higher
accuracy compared to the one obtained with ResNet or other ConvNets, as we can
see below. They used the RMSprop optimiser.

Figure 4.12: Number of parameters and accuracy of different convolutional neural
networks applied to the ImageNet database. Efficient Nets have higher accuracy,
reached with fewer millions of parameters.

The dimensions of a neural network are scaled independently, and often, only one
of them is modified. The three possible dimensions to scale are:

• depth, which is typically increased since deeper networks can detect more
complex features even if they are more difficult to train and may suffer from
vanishing gradients problem;

• width, which is commonly modified in small models. Wider networks capture
fine features and are easier to train. However, they have difficulty capturing
high-level features if they are too wide.

• resolution, which is increased in ConvNets to detect more fine features and
patterns.



4.4. EFFICIENTNETS 59

Figure 4.13: a) baseline neural network; b,c,d) traditional scaling approaches
according to which only one dimension is increased; e) compound scaling method
in which the three dimensions are scaled uniformly with a fixed ratio.

The scaling process requires a lot of time and manual tuning in order to find the
architecture that allows us to reach the best performance on our data. For example,
ResNet can be scaled down or up to ResNet-200, the deepest ResNet network.
However, we are not sure to have reached the optimal solution and often, we only
find a sub-optimal tuning and thus a sub-optimal accuracy and efficiency. In fact,
the three dimensions depend on one another. For this reason, Tan at al. thought
to scale them with a common uniform criterion to balance them. The balance
between depth, width and resolution is achieved by scaling them with a constant
ratio, represented by the parameter Φ in the following way:

Depth: d = αΦ

Width: w = βΦ

Resolution: r = γΦ

such that: α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

where α, β and γ are constant determined by a small grid search [10].
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Starting from the baseline EfficientNet-B0, two steps have to be computed to obtain
the other networks:

1. fixing Φ = 1 and finding the optimal parameters α, β and γ for the
EfficientNet-B0 network. In particular, they found α = 1.2, β = 1.1 and
γ = 1.15.

2. then fixing α, β and γ and finding Efficient Nets-B1 to B7 by using different
values of the parameter Φ.

The architecture of these networks starts from a common structure of EffNet-B0
which is then built up to obtain networks from B0 (with 237 layers) to B7 (with 813
layers) [20]. There is a stem and a final layer that are equal in all eight networks,
and they are represented in Fig.4.14.

Figure 4.14: Common structure in all Efficient Nets.

The different layers are made up of 5 modules, represented in Fig.4.15. Then, these
modules are combined to create sub-blocks which form the various layers.

Figure 4.15: Modules that are used to build all the Efficient Nets.
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Figure 4.16: Architecture of EffNet-B2.

In our experiment, we used the same neural network used by Ghouse et al. [9]
to predict the cumulative glycated haemoglobin from retinal images of diabetic
Scottish patients. EfficientNet-B2 was implemented in Python, and Keras 2 and
TensorFlow 1.9.0 packages were used to build, train and test the network.
Keras is an effective open-source neural network Application Programming Interface
(API) written in Python and integrated with the TensorFlow library. TensorFlow
is an end-to-end open-source deep learning framework used for developing neural
networks.

In our Efficient Net B2, the fully connected layer was replaced with a global
average pooling layer followed by a single output node with linear activation.
The convolutional layers were not modified, and their weights were initialised by
applying the network to the ImageNet database. The total number of trainable
parameters was 7.7 million.

4.5 Conclusion

In this chapter, neural networks have been presented. In particular, we started
with a biological overview to understand where the idea of implementing artificial
neural networks was born. We explored their architecture, the possible layers that
can be inserted and the activation functions that can be applied to each node of
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the network. The role of activation functions is to introduce some non-linearities,
and they are essential elements in making a neural network different from a simple
linear regression model.

Then we explained the learning process, which aims to reduce the error between
the real output of the data and the output predicted by the network. A cost
function quantifies this error. With the term learning, we indicate the process in
which the neural network learns the parameters of each layer by changing them
and testing their performance on a labelled training set. The tunable parameters
are the weights of the layers composing the network and they are changed in a
backpropagation process that aims to minimise the cost function.

There are many algorithms which compute the backpropagation process by calculat-
ing the gradient of the error and then adjusting the network’s weights according to
it. The first proposed was the gradient descent algorithm, which has been improved
in the stochastic gradient descent one. The advantages of adding a momentum to
the process have been explained, and some efficient algorithms have been presented.
We explored the Nesterov-accelerated gradient technique in more detail, which
makes the convergence process faster and lets us obtain a better approximation of
the calculated gradients.

Further steps have been made to arrive at the development of the Adam algorithm,
which combines the advantages of two already existing techniques, AdaGrad and
RMSProp. The combination between Adam and NAG is called the Nadam algo-
rithm and it is used in our Efficient Net B2 to train the network and learn the
optimal parameter for our task.

In the next chapter, we will present the experiments and the analysis carried out at
the University of Dundee in Scotland by my colleague Quinto Andrea and me, under
the supervision of Professor Trucco Manuel and with the precious collaboration of
Doctor Doney Alex.



Chapter 5

Experiments and Results

5.1 About this chapter

The previous chapters presented the materials and methods needed to perform
our experiments. In this chapter, we will explain in detail the experiments we
performed and the results we obtained and achieved.

First of all, we tried to reproduce the results of Boyle Liam [21]. We performed
a feature selection with Lasso regression and bootstrap analysis on a data set
comprehending both clinical and retinal features. The dataset was a subset of the
GoDarts database. The retinal features had been extracted from retinal images with
the VAMPIRE software developed by the University of Dundee and the University
of Edinburgh.

Then we moved inside the Safe Haven environment. The first experiment was made
to familiarise ourselves with the data and the code and to reproduce the results
obtained by Ghouse et al. [9]. The aim was to predict the age of diabetic patients
from retinal images using an Efficient Net B2 network.

The following step was the prediction of the cumulative glycated haemoglobin
using the same neural network and retinal images. We performed three different
experiments and we elaborated on the results of the last one, the most correct and
complete.

63
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5.2 Feature selection with Lasso regression

In the first phase of our work, we tried to reproduce the results obtained by
Boyle Liam [21], in particular, which are the most important features to predict a
cardiovascular failure, indicated by the covariate CVD_fail in our dataset.

The dataset contains 4711 patients and 184 covariates between clinical and retinal
features, extracted by retinal images with the software VAMPIRE, version 3.2.

The aim was to predict the covariate CVD_fail as a linear combination of the other
features and then establish the most significant ones for the outcome prediction.
The outcome equal to 1 means that the patient experienced a cardiovascular fail
event, while equal to 0 means that cardiovascular disease is absent.

Cardiovascular disease is one of the leading causes of death and disability in the UK;
only in 2019, an estimated 17.9 million people, which represents the 32% of global
deaths, died from a cardiovascular disease [22]. However, this can be prevented
by leading a healthy lifestyle. It is important to understand what environmental
factors, lifestyle habits or clinical measurements are significant in developing a
CVD to act on them and prevent the disease or slow its progress.

Our work has been organised in the following steps:

1. pre-processing of the data:

• correlation: we investigate the correlation between the covariates and
the relationship between them. We decide to delete all the covariates
that were not important and misleading for our outcome prediction:

– the id of the patient and the image size, not linked to a CVD,
– the death and the date of death because the patient’s death is a

future event which has not still happened at the moment of the
analysis and is not relevant to CVD prediction,

– the date_age55 which indicates the date at which the patient is 55
years old and is highly correlated with dob, the date of birth,

– e_date which is the date at which the retinal image was taken, but
it is highly correlated con e_age, which is the age of the patient at
the moment of the image,
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– dement_time and dement_date which are highly correlated with
dement_time_age,

– cvd_fail because it is the outcome that we aim to predict and
cvd_time because we have already in the dataset cvd_time_age.

• splitting of the dataset: we split our dataset into a training and
a test set to train our model with the training set and then test its
performance on the test set.
Since the two classes are unbalanced because we have 3095 patients
with cvd_fail equal to 0 and 1616 ones with cvd_fail equal to 1, we
performed a stratified split to maintain the same class proportion of the
original dataset in both the training and test sets.
We have in the original dataset, in the training set (3533 subjects) and
in the test set (1178 subjects) 34% of patients who experienced a CVD
and 66% who did not.

• imputation of the missing values: we hypothesize that the missing
values are missing values completely at random (MCAR), which means
that the missing values do not depend on patient characteristics and on
the missing data, but their occurrence is random. Under this hypothesis,
we can perform their imputation and replace them.
We use the k-nearest neighbours’ algorithm with k = 10. For each
missing data, it searches for the ten nearest values using a Euclidean
metric, calculates their average value and replaces the missing value
with it.

2. model assessment and cross-validation: we fit our training set with a
logistic model and then apply cross-validation with folds number equal to 10
to find the optimal value of λ.
We use the R package glmnet, which fits a data set with a generalised
linear model (GLM) by penalising a maximum likelihood. The minimisation
problem is the following:

min
β0,β

1
N

N∑︂
i=1

ωili(yi, β0 + βT xi) + λ
[︃1− α

2 ||β||22 + α||β||1
]︃
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By default, the parameter α is equal to 1. Hence, the GLM model becomes a
Lasso (Least Absolute Shrinkage and Selection Operator) regression model.
Lasso regression is a regularization technique used to increase the generaliza-
tion ability of the model in predicting correctly the outcome of previously
unseen data. It performs regularization, i.e. it shrinks towards zero the model
coefficients, and feature selection by setting equal to zero the coefficient of
covariates that are less significant for outcome prediction.

In the R function, we set a binomial family because we have two classes that
are fitted with a logistic model. Thus, the minimisation problem becomes:

min
β0,β
−

[︃ 1
N

N∑︂
i=1

yi · (β0 + xT
i β)− log(1 + e(β0+xT

i β))
]︃

+ λ
[︃1− α

2 ||β||22 + α||β||1
]︃

The loss function used in the cross-validation is the misclassification error in
the case of binomial classes.
We set the variable standardise = True to standardise the data of the train-
ing set and obtain columns with zero mean and unitary standard deviation.
Covariates may have very different and large scales, so it is common practice
to standardise them. Moreover, we weigh the weights of the model in order
to take into account the fact that the two classes are unbalanced.

3. bootstrap analysis: at last, we perform a bootstrap analysis to assess the
stability of feature selection.
Feature selection methods may suffer from instability; in fact, variations
of the same training set can lead to different results and selected features.
Resampling methods such as cross-validation or bootstrap analysis are per-
formed to make a feature selection more stable. Bootstrap analysis establishes
that, at each iteration, we resample with replacement of the original training
set to create an internal training set with a number of observations equal to
the numerousness of the original dataset and an internal test set with the
out-of-bag elements.
At each iteration, we train the model on the internal training set and test its
performance on the internal test set. Ultimately, we can average the results
and assess the stability of feature selection.
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Figure 5.1: Curve obtained with the cross-validation which shows the deviance as
a function of the number of features selected. The left vertical line represents the
model with λmin, the right line the model with λ1SE.

Figure 5.2: Features that have been selected at most with bootstrap analysis.
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As we can see above, the most important features in predicting cardiovascular
disease are the clinical ones. In particular, the age when the image was taken
(e_age), the age at diagnosis of dementia (dement_time_age), and the presence of
past cardiovascular disease (pre) have been selected 100%. Some retinal features
have been selected with a high percentage too. The variable leverhulme should
be neglected because it indicates the source of the dataset, so it is not correlated
with our outcome. We note also that the glycated haemoglobin (gh) has been
selected with a high percentage equal to 83%, indicating its importance in predicting
cardiovascular failure.

5.3 Age prediction with neural network

As the first step, in order to familiarize ourselves with the code, the Safe Haven
environment and the data, we reproduced the results obtained by Ghouse et al. [9].
We applied the Efficient Net B2 network, described in more detail in Chapter 4, to
the retinal images of the GoDarts database to predict the age of the patient.

Figure 5.3: Training and validation loss as a function of the number of epochs.

The number of epochs was set to 50 and the batch size to 32.
The training process was stopped if the loss evaluated on the validation set did not
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improve for 20 consecutive epochs. The learning rate was reduced by a factor of
0.1 if the validation loss did not improve for 10 successive epochs. The minimum
learning rate was set to 10−7. The training process took a total of 12.89 hours.

The original dataset was split into three datasets: 70% of images for the training
set, 10% for the validation set and 20% for the test set. Our training set contained
57098 images, the validation set 8282 and the test set 16024 images.
The training set is needed to train the neural network and find the optimal
parameters’ values to get the best performance in our outcome prediction. The
validation set is used to test the performance of the model fitted on the training
set during the tuning of the parameters. Once the final model has been assessed,
its final performance is tested on the test set.

After the training process of the neural network, the model performance was
assessed on the test set and the patient’s age was predicted for each retinal image.
The average error, calculated on the absolute difference between the predicted
age and the actual age, is 4.10 years. This result is consistent with the results of
Ghouse et all. and the papers presented in Chapter 2 concerning age prediction.

Figure 5.4: Distribution of the predicted and actual ages.

The figure above shows the distributions of the actual and predicted values
which are almost equal. This means that the age has been accurately predicted.
In the figures below, we can see the actual age versus the predicted age and the
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actual age versus the absolute error. The error is the absolute difference between
the actual and the predicted age.

(a) Actual age vs predicted age.

(b) Actual age vs absolute error.

Figure 5.5: Plot of the actual slope versus
the predicted age (a) and the absolute error (b).
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As we can expect, there is a linear relationship between the actual age and
the predicted age, in fact, the points lie around the bisector of the first and third
quarters. On the contrary, we expect that the error is normally distributed and
independent of the measurements, in fact, the points have a random distribution.

We can conclude that the Efficient Net B2 applied to retinal images can efficiently
predict the age of a diabetic patient.

5.4 Haemoglobin prediction with neural network

Three experiments, whose main aim was predicting the exposure to glycated
haemoglobin, were performed and are described in the following sections. The
Efficient Net B2 network described in the previous chapter was used in all of them.
The training conditions, such as the criterion for early stopping and the one for
the reduction of the learning rate, were the same used in the experiment on age
prediction, as well as the pre-processing process of the images.

The values of the cumulative glycated haemoglobin were provided by Dr Huan
Wang, a statistician in the School of Medicine at the University of Dundee. A
special thanks to him for his help and his provided data.

The cumulative value has been calculated as an approximation of the integral of all
available values over time. The integral was approximated as a trapezoid sum. For
those patients who do not have a haemoglobin measurement at the date of the first
retinal image, we considered a constant value, thus the integral was approximated
with a rectangle from the date of the first image to the date of the first haemoglobin
measurement.

We started from a dataset with 100789 images and their corresponding cumulative
haemoglobin value. All our experiments were carried out inside the Safe Haven
environment to protect the patient’s confidentiality and data’s sensibility, and any
of this information has been exported. All data exported and shown in the next
sections do not contain sensitive data.
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5.4.1 Experiment 1

This experiment aimed to predict the last cumulative glycated haemoglobin
value from the first image available for the patient.
We aimed to understand if some regions detected by the neural network could
predict the last cumulative haemoglobin value in the first retinal image taken for
each patient. In other words, if we can predict a future cumulative value from a
retinal image.

Despite the originality of the approach, we found that this is not possible. Retinal
images do not store the information needed to calculate a future cumulative
haemoglobin value.

This unsuccessful discovery was confirmed by Doctor Doney Alex, who confirmed
that this approach contrasts with the approach of Ghouse et al.. In fact, they
predicted the patient’s age from his/her retinal image, where age is a piece of
information dated at the exact moment of the image. On the contrary, we tried
to use a retinal image to predict something that has not still happened but will
happen in the future.

Figure 5.6: Schematization of the first experiment.

The main limitation of this experiment is that we do not even know when this
potential cumulative haemoglobin value will happen in future. In our training set,
we have different periods for each patient between the time when the first retinal
image was taken and the time when the last cumulative haemoglobin value was
calculated. Our neural network is impossible to learn to this interval because it
does not depend on features or elements contained in the retinal image but relies
on external motivations. This limitation is represented graphically above.
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5.4.2 Experiment 2

The aim was to predict the cumulative baseline value of the glycated haemoglobin
from the baseline retinal image.

Since we can not predict future values with our neural network, we performed a
simplified experiment. We selected only the first image of each patient and trained
the network to predict the corresponding cumulative haemoglobin value. In this
case, we are trying to predict something that happens at the exact moment when
the retinal picture is taken.

Once we understood that this experiment is correctly formulated, we moved to
Experiment 3, in which we considered all available images. In fact, in Experiment
3 we did not reduce the size of the original dataset, as we did in Experiment 2.

Figure 5.7: Schematization of the second experiment.

5.4.3 Experiment 3

The aim of this experiment was to predict the cumulative glycated haemoglobin
value from all available images. We considered all available images, both left and
right images, and tried to predict their corresponding cumulative haemoglobin
value with our neural network.

The dataset was split into three datasets: the training set with 72388 images, the
validation set with 7713 images and the test set with 20058 images.
This is the same approach and reasoning as Experiment 2. Still, rather than
considering only the baseline image and value, we selected the couple image -
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cumulative HbA1c value for each patient since we have the calculated cumulative
glycated haemoglobin for each image.

Figure 5.8: Schematization of the third experiment.

The number of epochs was set to 200. However, the early stopping criterion was
met at epoch number 44. The training process took a total of 13.87 hours.

Figure 5.9: Training and validation loss as a function of the number of epochs.

Despite the promising results obtained with age prediction, the results of this
experiment are not expected. The average absolute error, calculated as the absolute
difference between the actual and the predicted value, is 117840.9 mmol/mol.

Fig.5.10 shows the distribution of the actual values and the one of the predicted
values of cumulative HbA1c. The histogram of the predicted values is more
compressed than the histogram of the actual values, indicating a substantial error
in the prediction of the outcome.
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(a) Distribution of the actual cumulative HbA1c.

(b) Distribution of the predicted cumulative HbA1c.

Figure 5.10

Fig.5.11 shows the predicted value and the absolute error versus the actual value.
There is not a linear relationship qualitatively observable between the predicted
and the actual values. However, we expected most of the points to lie around the
first-third quarters’ bisector.

From the second figure, it seems there is a linear relationship between the absolute
error and the actual value of cumulative HbA1c. If so, this would imply that the
error we made in the prediction depends on the amplitude of the actual cumulative
haemoglobin, in contrast with what we supposed. In fact, we hypothesized that
the error was normally distributed and independent of the measurements.
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Looking at all graphs, we can note that there is, on average, a big error in the
outcome predictions. We investigated it also by plotting some spaghetti plots.

(a) Actual cumulative HbA1c vs predicted cumulative
HbA1c.

(b) Actual cumulative HbA1c vs absolute error.

Figure 5.11
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(a)

(b)

Figure 5.12: Spaghetti plots of the actual (a) and predicted (b) values.
Each line represents a different patient. The black line is the median line.

The different distribution of the predicted values can be easily detected from the
"spaghetti plots" above. The predicted distribution is significantly more compressed
than the actual one. One of the reasons could be a too wide dataset. In fact,
the values of the cumulative HbA1c lie between some thousands and more than 1
million mmol/mol.
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However, the median values are pretty similar and a big result is the increasing
slope of the median predicted values. That means that, on average, the neural
network was able to capture an increasing trend of the values of cumulative HbA1c.

We can conclude that this NN does not accurately estimate the single value of
cumulative glycated haemoglobin but the increasing direction of the median trend’s
slope was correctly captured. The successive analysis described in Section 5.5 aims
to investigate the trend of the predicted values for each patient and compare it
with the trend of the actual values. We considered only patients who have more
than three images, thus more than three values of cumulative HbA1c.

5.4.4 Left - Right division

For further information, we divided the dataset used in Experiment 3 into two
datasets: the left one, which contains only the retinal images of the left eye, and
the right one with only the right eye images. Then, we try to predict with the
same neural network the value of the cumulative HbA1c for each image available
in each dataset.

This left-right division aimed to understand if there were some significant differences
between the left eye and the right eye. As we can see in the table below, the values
are very similar and the average absolute error is slightly bigger than the average
absolute error made in the predictions of the entire dataset. The higher error can
be due to the smaller size of the dataset.

Actual value
[mmol/mol]

Predicted value
[mmol/mol]

Average error
[mmol/mol]

Left eye
dataset 303075.2 284058.3 139975.2

Right eye
dataset 301050.1 286834.2 137538.3

Table 5.1: Average values of the left eye and right eye experiments.
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Fig.5.13 shows the distributions of the predicted values of the left and right eye
and they are quite different from the actual ones. The bias, that was present in
Experiment 3, is still present and the predicted values are quite far from the actual
values.

We can conclude that there are no differences in using only right eyes or left eyes
and we can give in input to our neural network both images indiscriminately.

(a) Actual cumulative HbA1c - Right eye (b) Predicted cumulative HbA1c - Right eye

(c) Actual cumulative HbA1c - Left eye (d) Predicted cumulative HbA1c - Left eye

Figure 5.13: Distributions of the actual and predicted values
in the right-eye and left-eye datasets.
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5.5 Trend of the cumulative HbA1c

In this step is to consider for each patient the set of the predicted values of
cumulative HbA1c available for each image and calculate the trend of these values
through a linear regression:

y = mx + q

where m is the slope of the interpolation line, q is the intercept with the y-axis, y

is the predicted cumulative HbA1c, and x is the time evaluated in days between
one measurement and the next.

For each patient, we obtain the slope and the intercept of the line that interpolates
the values of the predicted cumulative HbA1c and the slope and the intercept of
the lines that interpolate the values of the true cumulative HbA1c. Thus, for each
patient, we have two slopes, the actual and the predicted slopes, and two intercepts,
the actual and the predicted ones, and we can compare them for further analysis.

The two slopes are very different, with the actual slope which is more than once
and a half of the predicted slope. On the contrary, the predicted intercept is bigger
than the actual one.

slope [mmol/mol/day] intercept [mmol/mol]
interpolation line of

the actual values 58.86 158917.3

interpolation line of
the predicted values 34.71 196364.3

Table 5.2: Average values of the slopes and intercepts of the interpolation lines.

In Fig.5.14, we can see the slopes’ and intercepts’ histograms of the actual and the
predicted values. The histogram of the predicted slopes is wider, and its average
value is lower than the average of the actual slopes, a signal of an underestimation
of the daily increase. In fact, the slope of the interpolation line can be interpreted as
the average increase of cumulative HbA1c per day. On the contrary, the histogram
of the predicted intercepts is tighter, and its average value is right-shifted, which
means that, on average, the initial value of the predicted line is higher than the
initial value of the actual line.
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(a) Slopes of the actual and predicted cum. HbA1c.

(b) Intercepts of the actual and predicted cum. HbA1c.

Figure 5.14: Distributions of the slopes and intercepts.

Note that with the expression "predicted line" we mean the line which interpolates
the predicted values of cumulative glycated haemoglobin, while the "actual line" is
the one which interpolates the actual values.
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(a) Actual slope vs predicted slope.

(b) Actual intercept vs predicted intercept.

Figure 5.15: Plot of the actual slope and intercept versus the predicted
slope and intercept. The black line is the bisector of the first-third quarter.
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Fig.5.15 shows two plots: the actual slopes versus the predicted slopes and the
actual intercepts vs the predicted intercepts. We expect most of the points to lie
around the bisector of the first-third quarters, but, as we can see, this does not
happen. Moreover, the predicted intercepts are always positive, while some of the
actual intercepts are actually negative. This fact implies that the average predicted
line starts from a higher initial value of cumulative HbA1c than the actual line but
has a lower slope, so it rises slower.

5.5.1 Classification of the position

The following step was to study if there is any association between a higher
predicted trend of cumulative HbA1c and an outcome of medical interest, such as
a MACE event.

To study these potential associations we divided our dataset into three classes:

• above: the predicted interpolation line lies entirely above the actual interpo-
lation line, such that for that patient the predicted trend is higher;

• below: the predicted interpolation line lies entirely below the actual interpo-
lation line;

• intersection: there is an intersection between the two lines.

Three examples of the class divisions which has just been explained can be appreci-
ated in Fig.5.16. For example, the first image is classified as above because the line
that interpolates the predicted values (orange line) is above each point to the line
that interpolates the actual values (blue line).
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(a) Example of an above classification.

(b) Example of a below classification.

(c) Example of an intersection classification.

Figure 5.16: Example of the interpolation line’s classification.
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5.6 Risk assessment

This analysis aims to understand if there is an association between an above-
predicted line and a higher probability of experiencing a MACE or death due to
cardiovascular disease. The idea is that an above-predicted line is synonymous,
for example, with a higher risk of mortality, i.e. those patients who will die have
some characteristics in their retina which have been detected with the images
and then are recognised by the neural network which predicts higher values as a
warning. Starting from this idea, we study three possible associations described in
the following sections: the risk of mortality, the risk of death due to a CVD and
the risk of a MACE event.

5.6.1 Risk of mortality

We aim to understand if a higher predicted line implies a higher risk of mortality.
We want to demonstrate that if a patient has a predicted line which is classified as
above, he has a higher risk of dying than a patient whose predicted interpolation
line is below the actual interpolation line.

Figure 5.17: Actual versus predicted slope in the alive and dead datasets.
The black line is the bisector of the first-third quarter.
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Firstly, we tried to understand if people who died and those who did are distributed
differently. In particular, we plot them with two different colours (salmon = alive
patients, dark grey = dead patients) to see if there are some differences in the
distributions of points (Fig.5.17).

To go into more detail, we consider two datasets: one with all the patients alive in
our original datasets and one with the dead patients. Then we calculate how many
dead patients have a predicted line above the actual line to see if this number is
significant to the total number of dead.

Above Perc. Below Perc. Intersection Perc. Total
Alive 585 54.1% 299 27.6% 198 18.3% 1082
Dead 155 49.5% 109 34.8% 49 15.7% 313

Table 5.3: Count of the above, below and intersecting lines
in the alive and dead datasets.

(a) Actual vs predicted slope in dead people. (b) Actual vs predicted slope in alive people.

Figure 5.18: Plot of the actual versus the predicted slope
in the dead-people and alive-people datasets.

Contrary to our hypothesis, most of the patients in both datasets have an above
line, i.e. the interpolation line of the predicted values is at each point higher than
the interpolation line of the actual values. Surprisingly, the percentage of alive
people, whose predicted lines are above the actual lines, is slightly bigger than the
one of dead people. However, this can be due to the small size of the datasets.
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Also looking at their distribution, we can not appreciate any significant difference
between the above and below lines. In fact, the distribution of the below slopes is
a little right-shifted, meaning that, on average, high values of the actual slope are
predicted smaller.

Therefore, we can not use the classification of the position of the interpolation line
as an instrument to establish who has a higher risk of mortality. It seems that an
above-predicted line is not correlated with death and, thus, the mortality risk.

For further information, we investigate the male and female distributions in the
two datasets. We wonder if a patient is more likely to die than a patient of the
opposite sex. Moreover, if males and females are equally distributed or if there is
an under or overestimation for one of the two sex.

Figure 5.19: Actual versus predicted slope in males and females of the dead
dataset. The blue line is the bisector of the first-third quarter.

Males Percentage Females Percentage Total
Alive 574 75.2% 508 80.4% 1082
Dead 189 24.7% 124 19.6% 313
Total 763 632 1395

Table 5.4: Count of the males and females in the two datasets.
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Males have a slightly higher probability of dying than females, however, the
numerousness of the two datasets is too small to draw any conclusion.
Looking at Fig.5.19, we can not assess that sex is discriminating in dead people
because males and females have pretty similar distributions.

The following step considers only the death due to cardiovascular disease. In fact,
considering all the deaths, which can be happened to different causes, can be a too
broad domain of investigation. Moreover, we know that the retina stores important
information about the health of the cardiovascular system, so investigating the
association between cumulative HbA1c and CVD death could be encouraging.

5.6.2 Risk of CV death

In our dataset, we have a variable whose name is CVdeath which indicates if
one of the first three causes of death of a patient is a cardiovascular problem. We
aim to study if CVdeath is associated with a higher predicted slope. In this study
we are considering only died patients.
The first step is visualizing the distribution of people who died due to CVD and
the one of people who died due to different causes.

Figure 5.20: Actual versus predicted slope in two datasets:
no death due to a CVD, yes death due to a CVD.
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Then we divided our dataset into two subgroups: the patients whose one of
the first causes of death is a cardiovascular disease and the patients who died due
to different causes. Then we count how many predicted lines are classified above,
below and intersecting the actual lines.

Above Perc. Below Perc. Intersection Perc. Total
yes CVdeath 72 47.1% 58 37.9% 23 15.0% 153
no CVdeath 53 45.3% 40 34.2% 24 20.5% 117

Table 5.5: Count of the above, below and intersecting lines in the two datasets.

(a) Actual vs predicted slope in the yes-Cvdeath dataset.

(b) Actual vs predicted slope in the no-CVdeath dataset.

Figure 5.21: Plot of the actual versus predicted slope in the two datasets.
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Both datasets have the same percentage of the above-predicted lines. Moreover,
looking at their distribution, we can not assess that there are differences in the
distributions of the above- and below-lines, as we can see in Fig.5.21.

As done before, we investigate the male and female distributions in the two datasets.
We wonder if a patient is more likely to die due to cardiovascular disease than a
patient of the opposite sex.

(a) Male and females distribution in the yes-Cvdeath dataset.

(b) Male and females distribution in the no-CVdeath dataset.

Figure 5.22: Plot of the actual versus predicted slope in the two datasets.
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Looking at Fig.5.22, we can not assess that sex is discriminating both in the yes-
CVdeath and no-CVdeath datasets because males and females have pretty similar
distributions. In both plots, we can note some outliers blue points (male patients),
however, there are too few points to draw any conclusion or association.

Males Percentage Females Percentage Total
yes CVdeath 95 56.9% 58 56.3% 153
no CVdeath 72 43.1% 45 43.7% 117

total 167 103 270

Table 5.6: Count of the males and females in the two datasets.

Males have a higher probability than females of having CVD as one of the first
three causes of death. However, even in this study, the numerousness of the two
datasets is very small.

We can conclude the data we have do not show an association between an above-
predicted line and death due to cardiovascular disease and that males and females
seem to have the same probability of dying due to CVD. However, it is essential to
note the numerousness of the dataset, which is very small.

Since we are considering broad causes of death, in fact, one of the first three is the
cardiovascular disease but the other two can actually be very different, as the last
step, we investigate a narrow outcome, which is the MACE. Thus, we repeated the
studies that we have done till now about the risk of mortality and death due to
CV, but now with the risk of experiencing a MACE.

5.6.3 Risk of MACE

A major adverse cardiovascular event (MACE) is a cardiovascular event that
can be a nonfatal stroke, a nonfatal myocardial infarction and cardiovascular death.
It is one of the main outcomes of interest in the cardiovascular domain.

In this study, we aim to understand a potential association between an above-
predicted line and the risk of experiencing a MACE. As we can see in Fig.5.23, we
can not appreciate big differences between the two groups of patients.
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(a)

(b) Zoom of the previous plot.

Figure 5.23: Actual vs predicted slope highlighting
with two different colours the two datasets.

In Table 5.7, we can see the number of people with and without a MACE,
whose interpolation predicted lines are classified as above, below or intersected.
Contrary to our hypothesis, most of the people in the no-MACE dataset have an
above-predicted line. However, the datasets are too small to draw any conclusion.
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Above Perc. Below Perc. Intersection Perc. Total
yes MACE 105 44.7% 89 37.8% 41 17.5% 235
no MACE 465 53.5% 240 27.6% 165 18.9% 870

Table 5.7: Count of the above, below and intersecting lines
in the no-MACE and yes-MACE datasets.

(a) Position of the interpolation line in people with no MACE.

(b) Position of the interpolation line in people with a MACE.

Figure 5.24
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Furthermore, we investigated if males and females have different distributions
in the two datasets. We wondered if experiencing a MACE is more probable in
a male or female patient and if sex discriminates in assessing a higher predicted
slope in one of the two MACE groups. However, as shown in the table below,
experiencing a MACE is equally probable in male and female patients. Males have
a slightly higher probability, but the total numbers of patients are too small to
conclude a higher risk of a MACE. The distributions of males and females in both
datasets are similar and indistinguishable, as shown in Fig.5.25.

(a) Males and females distribution in the yes-MACE dataset.

(b) Males and females distribution in the no-MACE dataset.

Figure 5.25
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Males Percentage Females Percentage Total
yes MACE 141 23.4% 94 18.7% 235
no MACE 462 76.6% 408 81.3% 870

total 603 502 1105

Table 5.8: Count of the males and females in the two datasets.

We can conclude that the position of the predicted line with respect to the
actual line and the sex of the patient are not significant in assessing a higher risk
of experiencing a MACE.

5.7 Conclusion

In this chapter, we presented the experiments and the main achieved results.
Firstly, we performed feature selection on a subset of the GoDARTS dataset to
understand the most important features in predicting cardiovascular failure. We
applied Lasso regression, reinforced by a bootstrap resampling to assess the stability
of the selection. Some of the available clinical features, such as the patient’s age,
history of previous cardiovascular disease and the age of dementia diagnosis, were
selected in each bootstrap iteration. These were the most significant features in
outcome prediction. However, some retinal features, which had been extracted
from retinal images with the software VAMPIRE, were selected with a percentage
higher than 80%, suggesting that they are important too in outcome prediction.

The first step inside the Safe Haven environment aimed to predict the age of the
patients from their retinal images. We wanted to reproduce the results achieved by
Ghouse et al.[9] in order to familiarise ourselves with the environment, the data
and the code. Moreover, we had the opportunity to check the functioning of the
Efficient Net B2, the neural network we used in this experiment and the next ones.
Age was accurately predicted with an average error of 4.10 years, a result consistent
with the results obtained before in age prediction.

The following step aimed to predict the cumulative glycated haemoglobin with the
Efficient Net B2 neural network from retinal images. We performed three different
experiments to understand in depth which was the optimal strategy to proceed
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and interpret our data and results. We considered the final results obtained in the
third experiment, which aimed to predict the cumulative HbA1c for each image
available. However, the neural network could not accurately predict the outcome
of interest: the average error was around 117840 mmol/mol. We could see how
much the distributions of actual and predicted values differentiate by looking at
their plot.
Moreover, we proved that right and left eye images did not produce different
predictions, thus, they can be used as input of our neural network indiscriminately.

Since a single-value estimation could not be obtained, we considered for each
patient the set of images available and their predicted values. We interpolated
them with linear regression, particularly considering the slope and the intercept of
this interpolation line. We did the same for the actual values of cumulative HbA1c.
We compared the two slopes and intercepts, but they are actually quite different.

We tried to elaborate on these results by interpreting an above-predicted line
as a higher risk of developing a specific outcome. We investigated the risk of
mortality, dying due to cardiovascular disease and experiencing a MACE. Despite
the promising approach and hypothesis, we could not draw any conclusion, mainly
due to the limited numerousness of available datasets.
When we studied the association between a higher predicted slope and the risk
of mortality, we noted that most both alive and dead people have a predicted
line which is classified above the actual line. The same result was observed when
we studied the risk of dying due to cardiovascular disease and the risk of MACE.
Moreover, no significant differences were evaluated between males and females,
whose distributions were investigated in all the risk assessment tasks.

Therefore, we can conclude that our neural network can not accurately predict
the cumulative glycated haemoglobin from retinal images. Moreover, that the
predicted trend for each patient is quite different from his/her actual trend and
that the position of the predicted line can not be exploited as an instrument in risk
assessment. However, we proved that left and right eyes do not produce different
estimates and that males and females of our dataset have the same probability of
dying due to cardiovascular disease and experiencing a MACE.
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Conclusions

6.1 Our work

This research thesis concerns the applications of a neural network to retinal
images to predict cumulative glycated haemoglobin. In this section, we will briefly
summarize it.

We used the GoDARTS dataset, which contains patients who live in the Tayside
region in Scotland and suffer from type 2 diabetes. Because of their disease and risks,
they were offered retinal screening to monitor and diagnose diabetic retinopathy, a
pathology affecting the eye’s blood vessels that may cause irreversible blindness in
diabetic people. The dataset contains 102,082 images taken between 2006 and 2016
and stored at the Scottish National Diabetes Eye Screening service. The images
are colour fundus photography, which is a non-invasive and fast imaging technique
that uses a fundus camera to record the interior surface of the eye. Before entering
the neural network, the images are pre-processed in order to reduce the effect of
image variations and create a set of images similar in size, colour and intensity.

During the first months spent at the University of Dundee, in order to familiarize
ourselves with the dataset, we performed a feature selection on the GoDARTS
dataset to understand which features were the most important in the prediction
of cardiovascular failure. Our dataset contained both clinical features and retinal
features, which have been extracted from the retinal images with the software
VAMPIRE developed by the University of Dundee and the University of Edinburgh.
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We confirmed the already existing results in the literature, id est that the most
important features in the prediction of a CV failure are the clinical ones. However,
retinal features have been selected with a high percentage in the bootstrap analysis,
suggesting their importance in outcome prediction. After finishing this experiment,
we moved inside the Safe Haven environment to implement the cornerstone of this
thesis: the application of a neural network to retinal images of diabetic patients to
predict the cumulative glycated haemoglobin.

We used the Efficient Net B2, a convolutional neural network widely used in image
recognition and classification tasks. It allows reaching higher performance with a
significantly lower number of parameters in comparison with the other ConvNets.
Eight models of Efficient exist, from B0 to B7. We chose the B2 because it was used
by Ghouse et all. in their work, with which they obtain excellent performance in
predicting the age of a patient from retinal images of the same GoDARTS dataset.
The training process was made with the Nesterov-accelerated Adaptive Momentum
Estimation algorithm, an algorithm based on the stochastic gradient descent which
adapts the learning rate at each parameters update and makes use of a momentum
to reduce the oscillations and fasten the reaching of the solution.

All the experiments were carried out inside the Safe Haven environment, which
is a virtual desktop environment created by the Health Informatics Centre of the
University of Dundee. It allows the safe use of research data by regulating their
use and protecting the patient’s identity. Only data that do not contain sensitive
information and patient-level data, therefore all the images and data shown in this
thesis, can be extracted from the Safe Haven and used by the user in their report
and further analysis.

In the first experiment, we tried to predict from the first retinal image available for
each patient his/her last value of cumulative glycated haemoglobin. The idea was
to use the first image to predict a future value which represents the exposure to
HbA1c. However, that is not possible and this approach contrasts with the already
existing approaches to the prediction of some medical outcomes of interest.

Therefore, we moved to Experiment 2, in which we predict the baseline value
from the baseline image, and to Experiment 3. It concerned the prediction of the
cumulative glycated haemoglobin from each available image. We trained the neural
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network by proving the retinal image and the corresponding cumulative HbA1c
value, which has been calculated as a trapezoidal sum as an approximation of the
integral of the glycated haemoglobin curve.

6.2 Key achievements

The third experiment concerned the prediction of the cumulative HbA1c for
each available image. However, the performance obtained with the Efficient Net-
B2 on the test set is not the expected one. The distribution of the actual and
predicted values are quite different, in particular, the range of the predicted values
is significantly narrower than the actual range. Moreover, it seems that the error is
linearly dependent on the actual measurement of HbA1c.

Nevertheless the discouraging results, we performed the same experiment on two
different subsets of data: the left-eye and the right-eye datasets. We noted that the
average predicted values for all right eyes and all left eyes are very similar (303075.2
versus 301050.1 mmol/mol). We demonstrated that in this experiment left eye and
right eye images can be given indistinguishably as input of the Efficient Net-B2 in
predicting the cumulative glycated haemoglobin.

The further analysis concerned the trend of the cumulative HbA1c for each patient.
We considered the predicted values and the actual values for each patient and
interpolated them with two lines. Then we considered their slopes and intercepts
and compared them to see if the average trend for each patient was correctly
captured by the neural network. The average predicted slope is smaller than the
actual slope (34.71 versus 58.86 mmol/mol/day), indicating a lower increase in
the cumulative HbA1c. However, the intercept is bigger (158917 versus 196364
mmol/mol) indicating a predicted baseline value higher than the actual one. We
saw also that the distributions of the actual and predicted slopes and the ones of
the actual and predicted intercepts are quite different.

As the last step, we considered the position of the predicted line with respect to
the actual line. We aimed to study if an above-predicted line was associated with
a higher risk of mortality, death due to cardiovascular disease or experiencing a
MACE. In all our qualitative analyses, we did not notice significant differences
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in the positions of the lines between the group that experienced the outcome of
interest (e.g. yes MACE) and the control group (e.g. no MACE). Moreover, we
investigated the distribution of the two groups with respect to the slope, i.e. if a
group had on average a higher predicted slope than its control group, but we did
not find significant differences.

For each task of risk assessment, we studied if there were differences between males
and females. Thus, we investigated if males have a higher risk of mortality, death
due to cardiovascular disease or experiencing a MACE than females and vice versa.
We noted that the two sexes have the same distributions in the actual versus
predicted slope plots in all three subtasks.

6.3 Limitations and future works

Despite the originality and innovation of this research work, it has some limita-
tions that are presented in this section.

First of all, the GoDARTS dataset used in our experiments and analysis contains
only patients suffering from type 2 diabetes. Diabetic patients have some charac-
teristics which make them different from healthy people and they can be detectable
from retinal images. In fact, their cardiovascular system and their retina too can
be damaged by diabetes and the human retina has been proven to store important
information about a patient’s cardiovascular health. One possible future work can
be repeating the prediction of the cumulative glycated haemoglobin from retinal
images in a healthy population to evaluate if there are differences between non-
diabetic and diabetic retinas. Moreover, the model performance can be assessed
and compared with the aim to see if there is an improvement in the predictions.

The population of the GoDARTS dataset is a Scotland population living in the
Tayside region. Habits and genetic factors, as well as geography and lifestyle, can
influence the retinal images of our patients. Therefore, the ability to generalize
this model can not be assessed now. Different populations should be studied
and the neural network should be trained with their retinal images to assess the
generalization ability of the model and investigate potential differences between
various populations around the world.
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Another limitation is the small numerousness of the dataset. Of the entire initial
dataset, we choose 20% of the data for the test set, reducing significantly the initial
numerousness. This choice was fundamental because we need to train the neural
network on a large training set. As a consequence, we will assess the performance of
the model on a small test set. All the analyses carried out in the previous chapter
were performed on tiny datasets.

In our experiments, we used the Efficient Net B2 neural network. We choose it
because Ghouse et all. [9] demonstrated on the same GoDARTS dataset that age
can be accurately predicted from retinal images. Therefore, we use the same neural
network with the same characteristic, e.g. the number of layers and number of neu-
rons per layer, on the same retinal images to try to predict the cumulative glycated
haemoglobin. Future improvements could concern the tuning and modification of
the hyper-parameters of this neural network to improve the performance in the
outcome prediction. The use of different neural networks could be explored too in
order to find the optimal model for the prediction of the cumulative HbA1c.

Moreover, a Grad-CAM algorithm can be applied to our third experiment to investi-
gate which are the regions of the retinal image on which the neural network focuses
more during the training process. It would be very interesting to understand which
parts of the human retina are more critical in predicting exposure to glycated
haemoglobin. A further step could be studying if there is any association between
these regions and the regions more affected by diabetic retinopathy.

Moreover, in the GoDARTS dataset, more than one image per patient is available.
In the first phase of our experiment, when we predicted the cumulative HbA1c
from retinal images, we gave one image at a time as input to our neural network,
neglecting the fact that multiple images belonged to the same patient. Only when
we calculated the actual and the predicted trend, we put together the values of
cumulative glycated haemoglobin of the same patient. We did not let the neural
network exploit this information during the training process. Future work can
explore the possibility of using all the images available for the same patients as
input, for example, by concatenating them or making a collage.
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The team CVIP of the University of Dundee, with whom we worked for the
development of this thesis, has been the first to explore neural networks applied to
retinal images to predict the cumulative glycated haemoglobin. No one did this
experiment before. Despite the limitations just presented, it is greatly innovative
and deserves future works and implementations in order to find the optimal model
able to predict accurately the cumulative HbA1c. It could become a beneficial
instrument for the evaluation of the cardiovascular risk in non- and diabetic patients,
useful for doctors and healthcare systems.
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