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Abstract

This dissertation outlines the bene�ts that sensor fusion brings in the mobile
robotics problem of incrementally constructing a consistent map of an un-
known environment with a moving robot, while simultaneously determining
its location within this map.

It focuses on outdoor localization of autonomous vehicles, and aims to use
raw GPS pseudorange data to establish geometric constraints to be added
in the localization problem. This problem can be constrained by constraints
imposed by di�erent kind of sensor, achieving sensor fusion.

We applied the expertise acquired from an introductory study on the GPS
technology to develop a software framework that permits to interface with
a real GPS receiver, process the raw data captured with all the corrections
needed, and build the optimization problem.

We integrated our work in Wolf, a software framework for managing
SLAM, enriching its sensor fusion capabilities. Then we tested our inte-
gration fusing raw GPS measurements with the odometry produced by the
wheels of a robot.

Thanks to the sensor fusion, we are able to give an absolute positioning
to the robot's trajectory, which is smoother than the trajectory estimated
using only raw GPS. The GPS constraints remove the drift of the odometry,
�xing one of its biggest �aw. On the other hand, odometry adds robustness
to the localization system in case of interruption of GPS data, due to sensor
breakage, temporary obstructed line of sight with satellites or also poor re-
ception, when only few satellites are available, and they are not enough to
calculate a GPS �x.

In the end we draw future developments we could do to improve our
solution. The most important aspect we have to tackle is to enhance the
outlier detection, to discard or improve faulty GPS measurements, especially
taking into account multi-path interference in GPS signals.



Summary

This dissertation outlines the bene�ts that sensor fusion brings in the mobile
robotics problem of incrementally constructing a consistent map of an un-
known environment with a moving robot, while simultaneously determining
its location within this map.

The work of this Master's Thesis focuses on outdoor localization of au-
tonomous vehicles, and aims to use raw GPS pseudorange data to establish
geometric constraints to be added in the localization problem. This localiza-
tion problem will solve for the optimal vehicle localization state, satisfying
these pseudorange constraints, but also other geometric constraints imposed
by other sensor measurements.

This project has been developed in the context of the European project
Cargo-ANTS, devoted to investigate and develop novel techniques for au-
tonomous navigation of wheeled vehicles in port terminal areas.

We conducted an introductory study on the GPS technology, focusing on
the mathematical concepts used in the process of determining a position, and
on the signals sent by GPS satellites, in order to be able to extract from raw
data the geometrical constraints needed for the localization problem.

Each geometrical constraint depends principally from the range between
the satellite and the receiver, and the position of the satellite in the moment
when it sends this data. The GPS concept is based on time, and the range
between the satellite and the receiver is calculated from the propagation
time of the signal. In this calculation, we must take into account that there
is an unknown bias between the receiver's internal clock and the one in the
satellite. Pseudorange measurements need also to be corrected from errors
introduced by ionospheric perturbations and other relativistic issues.

To estimate the position of the satellites, in the precise moment they sent
the signal used by the receivers to compute the pseudorange measurements,
we need to know all their orbital parameters. These parameters are contained
in data blocks called ephemerides, and they are sent in di�erent messages
respect to the pseudoranges, and at a lower rate.

With the obtained data we are able to build a non-linear least squares
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optimization problem that minimizes the sum of the squared di�erences be-
tween the received and expected range for each satellite observed in a deter-
mined time. The values found from this problem corresponds to the receiver
three-dimensional position and the clock bias.

We applied the expertise acquired from this preliminary study to develop
a software framework that permits to interface with a real GPS receiver,
process the raw data captured with all the corrections needed, and build the
optimization problem. To solve this optimization problem we use an external
tool called Ceres-Solver.

We tested the developed software components acquiring real data in an
urban environment and comparing the receiver three-dimensional position
estimate with the GPS �x produced by the receiver. The obtained results
are correct, in fact the estimated trajectory has the same shape of the one
produced by the GPS �xes. The estimated trajectory is, as we expected, more
noisy than the receiver's �x. This is due to the techniques implemented in
the receiver's software to �lter the results using the velocity of the receiver
to predict the next position as long as other GNSS augmentations.

The second main part of this Master's Thesis project deals with sensor
fusion in the SLAM (Simultaneous Localization And Mapping) problem. The
Mobile Robotics Group of the institute where this Thesis has been carried out
is developing Wolf, a C++ software framework to manage SLAM and sensor
fusion. The philosophy behind Wolf is to automate the basic functionality
needed in a SLAM problem, which is setting the geometrical constraints
imposed by sensor measurements. This allows the developers to focus on the
engineering of localization solutions and not on the low level coding.

The main structure in Wolf is a tree of base classes that describe the
common elements of a SLAM problem: a robot, with its sensors, its trajectory
formed by key-frames (state of the robot at a given time), and the map with
its landmarks. These base classes can be derived to use Wolf in the particular
SLAM problem needed.

Wolf provides also a set of sensor classes that are available or are being
developed right now. We integrated in Wolf our work with GPS, extending
the corresponding base class in order to describe the GPS sensor, with its
intrinsic and extrinsic parameters. Each sensor needs a processor, that is
a set of procedures used to operate on the raw data captured and extract
geometrical constraints for the optimization problem. In the GPS case, each
capture of data represents a di�erent GPS observation, with all the satel-
lite positions and pseudoranges observed in a precise moment. From each
pseudorange measurement a constraint is created.

To de�ne the GPS constraints we had to specify a set of coordinate frames
that de�ne the problem, as long as the GPS works in the ECEF coordinate
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system and the robot refers to a map, and not to an absolute position. Four
of these frames are necessary to correctly model our problem: the ECEF

frame that refers to the center of the Earth; the Map frame, the one in which
the robot is located and tries to incrementally construct and simultaneously
determine its location within it; the Base frame, that represents the robot;
and GPS frame, that is the antenna position with respect to the robot. In
Wolf we have implemented all the math required to manage transformations
between these frames and create GPS pseudorange constraints to the opti-
mization problem.

The second part of this work has been implemented by developing a
software package that fuses raw GPS measurements with the odometry using
Wolf. In this step we had to add another coordinate frame to our structure,
Odom, which represents the origin of the odometry trajectory. We tested this
implementation doing an experiment using Teo, a four-wheeled Unmanned
Ground Vehicle of the laboratory. Thanks to the sensor fusion, we are able
to give an absolute positioning to the robot's trajectory, which is smoother
than the trajectory estimated using only raw GPS. The GPS constraints
remove the drift of the odometry, �xing one of the biggest �aw of odometry
sensors. On the other hand, odometry adds robustness to the localization
system in case of interruption of GPS data, due to sensor breakage, temporary
obstructed line of sight with satellites or also poor reception, when only few
satellites are available, and they are not enough to calculate a GPS �x.

In the end we draw future developments we could do to improve our so-
lution, based on results of our experiments. In order to improve the quality
of our implementation, the most important aspect we have to tackle is to en-
hance the outlier detection, to discard or improve faulty GPS measurements,
especially taking into account multi-path interference in GPS signals.
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CHAPTER 1. INTRODUCTION

1. Introduction

1.1 Motivations and Objectives

Navigation is de�ned as the science of getting a craft or person from one place
to another. In a broader sense, it can refer to any skill or study that involves
the determination of position and direction. In every movements we make
everyday we use some form of navigation and localization. All navigational
techniques involve locating the navigator's position with respect to known
locations or patterns. Modern techniques of navigation involve electronic
sensors to perceive the surrounding environment and act accordingly to the
information received.

One of the most widely distributed technology to achieve localization is
the GPS. It is freely accessible all-over the world with cheap devices. However
GPS presents some disadvantages that makes this technology not su�cient
for all the applications and in every environmental situation.

To overcome this problem, di�erent kinds of sensors can be used concur-
rently, originating localization through sensor fusion.

Mobile robotics is an area of robotics that heavily uses localization and
navigation to drive robot movements. Nowadays this science is becoming
more and more important and integrated in our life. Applications began in
the military �eld, as often happens with new technologies, but now mobile
robotics is used also in industrial and domestic settings.

The work of this Master's Thesis is in the context of outdoor localiza-
tion of autonomous vehicles. The aim of this project is to use raw GPS
pseudorange data in the localization problem by creating the corresponding
geometric constraint for each measurement. Thereafter the localization prob-
lem will try to satisfy these constraints, as well as other constraints coming
from measurements provided by other sensors, to produce a vehicle pose es-
timate (position and orientation). This sensor fusion approach gives a degree
of robustness to the �nal localization estimate.

This Master's Thesis has been carried out at the mobile robotics labora-
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CHAPTER 1. INTRODUCTION

tory of the Institut de Robòtica i Informàtica industrial of Barcelona (IRI) 1,
in the context of the European project Cargo-ANTS, devoted to investigate
and develop novel techniques for autonomous navigation of wheeled vehicles
in port terminal areas. This European project, introduced in the next sec-
tion 1.2, represents a use case instance for the work developed through this
Master's Thesis, which could be applied to other projects requiring robust
outdoor localization of autonomous vehicles.

1.2 Cargo-ANTs Project

Cargo handling by Automated Next generation Transportation Systems, in
short Cargo-ANTs [1], is an European project that aims to create smart
Automated Guided Vehicles (AGVs) and Automated Trucks (ATs) that can
cooperate to achieve an e�cient and safe freight transportation in shared
workspaces, such as ports and freight terminals.

Cargo-ANTs goals are to increase throughput of freight transportation,
maintaining a high level of safety for workers and goods. Each smart vehicle
must employ robust planning, decision, control and safety strategies.

To achieve these goals a reliable and accurate positioning system is re-
quired, as well as an environmental perception system that allows to detect
moving and stationary objects, and to position them in a relative and abso-
lute way. To coordinate the vehicle movements, dynamic path planning and
docking point detection capabilities are also essential components.

Figure 1.1: Vehicles used to move containers in a freight terminal.

The project is funded by the European Community and involves �ve
partners from three di�erent countries: TNO and ICT Automatisering from

1http://www.iri.upc.edu/
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CHAPTER 1. INTRODUCTION

Netherlands, Volvo Technology and Halmstad University from Sweden, and
the Spanish National Research Council (CSIC), the largest public institution
dedicated to research in Spain. Within Spain, research on this project is
carried out at the Institut de Robòtica i Informàtica industrial of Barcelona
(IRI), which is a Joint Research Institute that hosts researchers both from
the Universitat Politècnica de Catalunya (UPC) and from the CSIC.

1.3 Structure of the Master's Thesis report

This document is structured as follows: in Chapter 2 we will present the
SLAM problem, a key component in mobile robotics projects such as Cargo-
ANTs. In the end of the same chapter we will introduce Wolf, the software
framework that is being developed at IRI to solve SLAM.

In Chapter 3 we will overview the GPS, with a conceptual and mathe-
matical explanation of how it works, and an overview on the communication
between receivers and satellites.

The practical work done for this Master's Thesis is divided in two main
parts. Firstly, Chapter 4 shows how raw GPS data is captured and processed
in order to create useful constraints for solving a generic SLAM problem that
fuses measurements from di�erent kinds of sensors. In the end of the chapter
it is also shown how to compute a GPS �x with these constraints, and there
are some practical results from experiments with real data.

The second main part has been to integrate the raw GPS pseudorange
constraints in Wolf, and to solve SLAM fusing GPS raw measurements with
odometry. This will be shown in Chapter 5, followed by results from real
experiments with a wheeled mobile robot.

In Chapter 6, conclusions of this Master's Thesis are discussed, with some
possible future developments.

All the software developed in this Master's Thesis project is Open Source,
and the code is hosted in di�erent repositories, that are all listed in Ap-
pendix A.
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CHAPTER 2. SENSOR FUSION IN MOBILE ROBOTICS

2. Sensor Fusion in Mobile Robotics

2.1 Simultaneous Localization And Mapping

Simultaneous Localization And Mapping (SLAM) is the computational prob-
lem of incrementally constructing a consistent map of an unknown environ-
ment with a moving robot, while simultaneously determining its location
within this map.

The SLAM problem is a key factor in all mobile robotics �elds, in fact
a solution to this problem would provide the means to make a robot truly
autonomous [2].

The problem of robot localization in unknown environments is essential
in any task that require motion, and the capability to build a map helps the
robot to plan its movements according to the environment (obstacle avoid-
ance, motion planning, robot learning etc.).

Nowadays SLAM is employed in domestic, industrial, health-care, mili-
tary and security settings. Some examples are self-driving cars, unmanned
aerial vehicles, autonomous underwater vehicles, planetary rovers, human
body inspection, until domestic tasks such as vacuuming or gardening.

When a mobile vehicle traverses an unknown environment, it measures its
own movements, and detects external objects or features in this environment.
These detections are called relative observations of landmarks. Using this
data the vehicle builds a map and use it to get localized in it.

In SLAM both the trajectory of the platform and the location of all
landmarks are estimated on-line without the need of any prior knowledge of
location.

Figure 2.1 represents the essential SLAM problem: a mobile robot, repre-
sented as a triangle, moving through the environment using a sensor to take
relative observations (red arrows) of landmarks (stars) [3, 4, 5].

At time k, the following quantities can be de�ned:

� xk: State vector that describe the pose of the robot. Pose means
position and orientation.
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xk

xk+2
lj

xkxk-1

xk+1

li

zk-1,i

zk,j

uk

uk+1

uk+2

Robot Landmark

Estimated

True

Figure 2.1: Simultaneous estimation of both robot trajectory and landmarks
locations. It also shows how landmarks location is a�ected by the error in
vehicle positioning.

� li: A vector describing the location of the i-th landmark.

� uk: The control vector applied at time k − 1 to drive the robot to the
state xk at time k from its previous state xk−1.

� zik: Observation of the i-th landmark at time k.

SLAM problem can be formalized in a probabilistic form [5, 6]. Each of the
just de�ned quantities is a random variable, and they can be grouped in the
following sets:

� X = {x0,x1 . . . ,xk}: The history of robot's poses. X0..k represents the
robot's states from time 0 to time k, and it is also called trajectory of
the robot.
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CHAPTER 2. SENSOR FUSION IN MOBILE ROBOTICS

� L = {l1, l2 . . . , ln}: The sets of all landmarks (also known as map).

� U = {u1,u2 . . . ,xk}: The history of control inputs.

� Z = {z1, z2 . . . , zk}: The sets of all landmark observations.

The pose of the robot at time k, xk, depends on the pose of the robot at
the previous time, xk−1, and of the control uk given at the robot.

P (xk | xk−1,uk) (2.1)

An observation of a landmark, zi, depends on the pose the robot had
when the measurement has been taken, xk, and on the pose of the observed
landmark, li.

P (zi | xk, li) (2.2)

The joint probability of trajectory, controls and measurements is the prod-
uct of all these probabilities.

P (X,L, U, Z) ∝ P (x0)
∏
k

P (xk | xk−1,uk)
∏
i

P (zi | xk, li) (2.3)

A SLAM problem consists in maximizing the likelihood of the trajectory
and landmark poses, so it means �nding the sets X∗ and L∗ that maximize
equation 2.3 which implies to �nd that state (poses and landmarks) that
explains better all the measurements gathered during the movement.

{X∗, L∗} = arg max
X,L

(
P (x0)

∏
k

P (xk | xk−1,uk)
∏
i

P (zi | xk, li)

)
(2.4)

These dependencies can be well represented by a factor graph (Figure 2.2).
A factor graph is a bipartite graph representing the factorization of a func-
tion. In this graph there are two kind of vertices: variable vertices, that
represent the state of the variables we want to estimate, and factor vertices,
which are the constraints between the states.

Each state block is constrained to a small number of other blocks com-
pared to the cardinality of the graph, so the resulting graph is called sparse.
This sparsity is taken into account to solve the associated non-linear op-
timization problem with the most appropriate algorithms for this kind of
problems, such as the incremental Cholesky factorization method [5].
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x0 x1 x2 x3

u3u2u1

z1 z2 z3 z7

l1 l2 l3 l4

X

U

Z

L

�� �
�� �

� �� ��

�

�

�

�

� �

�

�

z4 z5 z6

Figure 4.2: Factor graph for the landmark-based SLAM of Fig. 4.1-right. Left : Nodes rep-
resenting known data have been replaced by factors (squares) that depend on the unknown
variables or states (circles) they are connected to. Right : The same graph, where all states
(poses and landmarks) are labeled equal, with a unique running index i ∈ {0, · · · , 7}, and
all factors (controls and measurements) too, with the index k ∈ {1, · · · , 10}.

whose aggregation with the motions (4.1) leads to the DBN of Fig. 4.1-right. This is
precisely the case we illustrated in Fig. 1.1, where measurements to individual landmarks
are clearly visible. In the following, and without loss of generality, we will concentrate on
the case with landmarks.

A DBN contains all dependencies between the variables. This means that all that is
not represented in the graph is independent. Therefore, the joint probability of trajectory,
map, controls and measurements can now be written as a product of all the conditionals,

P (X,L, U, Z) ∝ P (x0)
M�

i=1

P (xi |xi−1,ui)
K�

k=1

P (zk |xik , ljk) . (4.4)

Finally, the goal of the SLAM estimator is to find the variables X∗, L∗ that maximize this
probability,

{X∗, L∗} = argmax
X,L

P (x0)
M�

i=1

P (xi |xi−1,ui)
K�

k=1

P (zk |xik , ljk) . (4.5)

4.1.2 SLAM as a factor graph

The joint probability (4.4) is a product of a number M+K of factors, of the type (4.1) and
(4.3), all of them independent. These factors come from measurements made, each one
depending on a small number of state nodes (poses or landmarks or a mixed set of them).
It is then appealing to transform our graph into a graph making these factors explicit: the
factor graph, see Fig. 4.2.

A factor graph is a bipartite graph that has two kinds of nodes: the variable nodes,
which constitute our states, and the factor nodes, which represent the constraints between
the states. The factors encode all the information entering the system, whereas the graph
captures the way this information is propagated to the hidden states we wish to estimate.

Figure 2.2: Factor graph of a SLAM problem [5]. Capital letters on the left
of the graph indicate the set of random variables in which the nodes belong.

Figure 2.3: Example of SLAM in Cargo-ANTs. The vehicle, represented by
a yellow rectangle, is moving in a freight terminal. During the time it builds
a map, discovers landmarks (in blue) and creates constraints (yellow lines)
between landmarks and the poses in its trajectory.
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CHAPTER 2. SENSOR FUSION IN MOBILE ROBOTICS

2.2 Sensor Fusion

When the robot moves in the map, it tries to localize itself in it observing
landmarks and sensing its own motion. These observations, also called mea-
surements, can be done with one sensor, but also with more sensors of the
same kind, or with di�erent types of sensors.

Sensor fusion means combining data from a set of heterogeneous or
homogeneous sensors into a coherent and enhanced description of the sur-
rounding environment.

A system that uses sensor fusion expects a series of advantages with
respect to a single sensor system:

� Improved accuracy: When multiple independent measurements of the
same property are fused, the accuracy of the resulting value is better
than the one achieved with a single sensor.

� Robustness and reliability: Multiple sensor suites have an inherent re-
dundancy which enables the system to provide information even in case
of partial failure.

� Robustness against measurements outliers: By increasing the dimen-
sionality of the measurement space the system becomes more robust to
outliers (non coherent measurements).

� Reduced ambiguity and uncertainty: Joint information reduces the set
of ambiguous interpretations of the measured value.

� Extended spatial and temporal coverage: One sensor can look where
others cannot, or respectively can perform a measurement while others
cannot.

� Increased con�dence: A measurement of one sensor is con�rmed by
measurements of other sensors covering the same domain.

Sensor fusion is not a new concept, and theoretically exists from a long
time, but nowadays the advances in sensor technology and processing tech-
niques, combined with improved hardware, make real-time fusion of data
possible in complex applications such as SLAM.
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CHAPTER 2. SENSOR FUSION IN MOBILE ROBOTICS

2.3 Windowed Localization Frames (WOLF)

The e�ort required to build and manage SLAM and sensor fusion is often
huge. For that reason Wolf has been created. The acronym Wolf stands for
Windowed Localization Frames and it is a versatile software framework for
the localization of a mobile robot and mapping of the environment around
it [7].

Wolf has been created in the IRI's group of mobile robotics, where it
is currently being designed, improved and developed to o�ers solutions to a
wide range of SLAM problems. Wolf development started at the same time of
the Cargo-ANTs project, which is one of the possible applications. Anyway,
Wolf is thought to be as general as possible, to address SLAM problem in
many di�erent contexts.

The philosophy behind Wolf is providing a framework that automates the
basic functionality needed in a SLAM problem, freeing developers to focus
on the engineering of localization solutions and not on the low level coding.

Wolf allows to con�gure a robotic system with virtually any number of
sensors, of any kind, an make them work together.

The main structure in Wolf is a tree of base classes that describe the
common elements of a SLAM problem (see Figure 2.4). The root of the
tree is the Wolf Problem, from where three main branches start: Hardware,
Trajectory and Map.

The Hardware branch contains a list of the utilized sensors with their
parameters. The parameters that describe a property of the sensor, like time
bias for an internal clock or focal length for a camera, are called intrinsic.
Instead, the parameters that are not proper of the sensor, like the mounting
3D pose on-board a vehicle, are called extrinsic. The Hardware branch does
not manage real sensor data acquisition, which is out of the the Wolf scope.

Each sensor is associated with one or more Processor, which is a class
appointed to process the received raw data (called Capture, see below).

Another important branch is the Map. A map is composed by a set of
Landmarks, that are features that describe the surrounding environment.

Every Wolf problem has a Trajectory, that is a list of reference Frames

that de�ne the state of the robot at a di�erent time. Each frame has a list
of Captures, that are objects where the raw data captured is stored.

The signal processor associated to the sensor that took a capture process
the capture itself, and extract a set of metric measurements, called Features.

Each Feature leads to a list of Constraints for the optimization problem.
With a Constraint it is possible to compute a residual, that is a discrepancy
between the received measurement and the prediction of this measurement

9
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Figure 2.4: WOLF tree: a structure for storing all the information of the
SLAM problem. Base classes are Sensor, Processor, Landmark, Capture,
Feature and Constraint. For illustrative purposes, this diagram shows a case
where the problem is solved with cameras and IMU, but Wolf is generic to
which sensor modality is fused.
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we can make based on the robot estimated state.
Wolf is said windowed because the optimization problem can be restricted

to only a subset of all the frames in the whole trajectory. The frames in this
window, that are the ones that enter into the optimization problem, are
called Key-Frames. By minimizing with a solver all the residuals associated
to these key-frames we can compute the optimal state of the robot, that is
the goal of the localization problem.

Wolf is mainly a structure to store data in an organized way. The task
of solving an optimization problem is left to an external solver, that can be
integrated with Wolf through a wrapper. Natively, Wolf provides a ready-
to-use wrapper for Ceres-Solver [8], a solver created by Google that will be
further described in section 4.1.

Chapter 5 of this report presents in detail how Wolf base classes have
been specialized to solve the fusion problem of interest in this work, which is
the fusion of an odometry source with raw GPS pseudorange measurements.
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3. Global Positioning System (GPS)

3.1 GPS Fundamentals

The GPS is a Global Navigation Satellite System (GNSS) that provides
worldwide accurate three-dimensional position, velocity and time informa-
tion to users.

It was created, and it is maintained, by the United States government.
Currently GPS and the Russian GLONASS (GLObal NAvigation Satellite
System) are the only fully operational GNSS. European Union is developing
another GNSS called Galileo and it is scheduled to be fully operational by
2020.

GPS is a dual-use system: it provides separate services for civil and mili-
tary users. These are called the Standard Positioning Service (SPS) and the
Precise Positioning Service (PPS) respectively. The SPS is designated for the
civil community, whereas the PPS is intended for U.S. authorized military
and select government agency users. Civilian use is permitted, but only with
special U.S. Department of Defense approval.

The SPS is available to all users worldwide free of direct charges. There
are no restrictions on SPS usage: it is freely accessible to anyone with a GPS
receiver. This service is speci�ed to provide accuracies of better than 13m
(95%) in the horizontal plane and 22m (95%) in the vertical plane (global
average; signal-in-space errors only). However, SPS measured performance
is typically much better than speci�cation, [9].

In order to provide this information, the GPS system leans against a
constellation of satellites, also called Space Vehicles (SVs). The satellite
constellation nominally consists of 24 satellites arranged in 6 orbital planes
with 4 satellites per plane. A worldwide ground control/monitoring network
monitors the health and status of the satellites. This network also uploads
navigation and other data to the satellites, [10, p.382].

GPS is available everywhere on the Earth and in all weather condition,
provided that there is a line of sight to four or more GPS satellites in order
to calculate a precise 3D position. There are techniques to obtain a position
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in situation where less satellites are available to the receiver, and we touch
upon later on that aspects. GPS can provide service to an unlimited number
of users since the user receivers operate passively.

The GPS concept is based on time. The satellites carry very stable atomic
clocks that are synchronized to a GPS time base. The synchronism between
all the satellites' clock with a unique time base is maintained from ground
clocks, and any drift from GPS time base is corrected daily from them. GPS
receivers have clocks as well. Usually a crystal clock is employed to minimize
the cost, complexity, and size of the receiver, so it is less accurate than the
satellites' clock.

GPS satellites continuously broadcast their current time and navigation
data. The navigation data provides the means for the receiver to determine
the location of the satellite at the time of signal transmission, whereas the
ranging code enables the user's receiver to determine the transit time of the
signal and thereby determine the satellite-to-user range.

A GPS receiver monitors multiple satellites and from them creates and
solves a system of equations to determine the exact three-dimensional user's
position. If the receiver's clock were synchronized with the satellites' clock,
only three range measurements would be required. But, because of the lower
precision of crystal clocks, the receiver is not synchronized with true GPS
time. Thus, four satellites must be in line of sight with the receiver for
computing the user's three-dimensional position and receiver's clock bias
from GPS time. If either GPS time bias or height is accurately known, less
than four satellites are required.

The three-dimensional position is calculated in Cartesian coordinates with
origin in the Earth's center. The reference coordinate system chosen to rep-
resent both the satellite and the receiver is the Earth-Centered Earth-Fixed

Coordinate System (ECEF). The receiver's Earth-centered solution location
is usually converted to geodetic coordinates.

The peculiarity of ECEF is that the x-, y-, and z-axes rotate with the
Earth and no longer describe �xed directions in inertial space. The +x-axis
points in the direction of 0° longitude and 0° latitude, the +y-axis points in
the direction of 90°E longitude and 0° latitude, and the z-axis is chosen to
be normal to the equatorial plane in the direction of the geographical North
Pole, thereby completing the right-handed coordinate system.
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3.2 Position Determination

3.2.1 Concepts of Trilateration

To solve the user's position a trilateration technique is used, and it requires
the user-to-satellite distances to be measured. These measurements are com-
puted using time information.

The satellites embed in their signals the time of transmission. That en-
ables the receivers to calculate the time of �ight subtracting the time of
transmission from the time of arrival.

Multiplying the signal's time of �ight by the speed of light, the pseudor-
ange measurement is obtained.

With only one satellite's measurement, the user would be located some-
where on the surface of a sphere centered on the satellite, as shown in Fig-
ure 3.1

a user on the Earth’s surface, it is apparent that the lower point will be the true posi-
tion. However, users that are above the Earth’s surface may employ measurements
from satellites at negative elevation angles. This complicates the determination of an
unambiguous solution. Airborne/spaceborne receiver solutions may be above or
below the plane containing the satellites, and it may not be clear which point to
select unless the user has ancillary information.

2.2 Reference Coordinate Systems

To formulate the mathematics of the satellite navigation problem, it is necessary to
choose a reference coordinate system in which the states of both the satellite and the

26 Fundamentals of Satellite Navigation

(a)

(b)

R

Plane of intersection

Figure 2.6 (a) User located on surface of sphere. (b) User located on perimeter of shaded circle.
(Source: [2]. Reprinted with permission.) (c) Plane of intersection. (d) User located at one of two
points on shaded circle. (Source: [2]. Reprinted with permission.) (e) User located at one of two
points on circle perimeter.

Figure 3.1: The user is located on the surface of the sphere with center on
the satellite position and radius equal to the pseudorange.

Using simultaneously the pseudorange of a second satellite, another sphere
of possible results is found. The intersection of the two spheres shrinks the
set of possible user positions to the perimeter of the shaded circle in Fig-
ure 3.2, that denotes the plane of intersection of these spheres, or at a single
point tangent to both spheres (i.e., where the spheres just touch). This latter
case is highly unlikely and could only occur if the user were collinear with
the satellites, which is not the typical case on the Earth surface.

The plane of intersection is perpendicular to a line connecting the satel-
lites, as shown in Figure 3.3

Adding a third satellite to this measurement process permits to complete
the trilateration and determine the user position. The set of possible posi-
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a user on the Earth’s surface, it is apparent that the lower point will be the true posi-
tion. However, users that are above the Earth’s surface may employ measurements
from satellites at negative elevation angles. This complicates the determination of an
unambiguous solution. Airborne/spaceborne receiver solutions may be above or
below the plane containing the satellites, and it may not be clear which point to
select unless the user has ancillary information.

2.2 Reference Coordinate Systems

To formulate the mathematics of the satellite navigation problem, it is necessary to
choose a reference coordinate system in which the states of both the satellite and the

26 Fundamentals of Satellite Navigation

(a)

(b)

R

Plane of intersection

Figure 2.6 (a) User located on surface of sphere. (b) User located on perimeter of shaded circle.
(Source: [2]. Reprinted with permission.) (c) Plane of intersection. (d) User located at one of two
points on shaded circle. (Source: [2]. Reprinted with permission.) (e) User located at one of two
points on circle perimeter.

Figure 3.2: The user is located somewhere on the perimeter of the shaded
circle.

receiver can be represented. In this formulation, it is typical to describe satellite and
receiver states in terms of position and velocity vectors measured in a Cartesian
coordinate system. Two principal Cartesian coordinate systems are inertial and
rotating systems. In this section, an overview is provided of the coordinate systems
used for GPS.

2.2.1 Earth-Centered Inertial Coordinate System

For the purposes of measuring and determining the orbits of the GPS satellites, it is
convenient to use an Earth-centered inertial (ECI) coordinate system, in which the
origin is at the center of the mass of the Earth and whose axes are pointing in fixed
directions with respect to the stars. A GPS satellite obeys Newton’s laws of motion
and gravitation in an ECI coordinate system. In typical ECI coordinate systems, the
xy-plane is taken to coincide with the Earth’s equatorial plane, the +x-axis is per-
manently fixed in a particular direction relative to the celestial sphere, the +z-axis is
taken normal to the xy-plane in the direction of the north pole, and the +y-axis
is chosen so as to form a right-handed coordinate system. Determination and subse-
quent prediction of the GPS satellite orbits are carried out in an ECI coordinate
system.

2.2 Reference Coordinate Systems 27

Plane of intersection

Surface of
sphere 1

Surface of
sphere 2

SAT 1 SAT 2

Earth surface

Note: Circle tilted for illustration

(c) (d)

Plane of satellite
locations

(e)

Figure 2.6 (continued.)

Figure 3.3: Plane of intersection between the two spheres.

tions is now shrunk to the intersection of the perimeter of the circle and the
surface of the third sphere.

With the intersection between the perimeter of the circle represented in
Figure 3.4 as shaded, and the surface of the third sphere, we obtain two
points. However, only one of this two points is the correct user position.
With the visual aid of the intersection given by Figure 3.5 we can observe
that the candidate locations are mirror images of one another with respect
to the plane generated by the 3 involved satellites.
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receiver can be represented. In this formulation, it is typical to describe satellite and
receiver states in terms of position and velocity vectors measured in a Cartesian
coordinate system. Two principal Cartesian coordinate systems are inertial and
rotating systems. In this section, an overview is provided of the coordinate systems
used for GPS.

2.2.1 Earth-Centered Inertial Coordinate System

For the purposes of measuring and determining the orbits of the GPS satellites, it is
convenient to use an Earth-centered inertial (ECI) coordinate system, in which the
origin is at the center of the mass of the Earth and whose axes are pointing in fixed
directions with respect to the stars. A GPS satellite obeys Newton’s laws of motion
and gravitation in an ECI coordinate system. In typical ECI coordinate systems, the
xy-plane is taken to coincide with the Earth’s equatorial plane, the +x-axis is per-
manently fixed in a particular direction relative to the celestial sphere, the +z-axis is
taken normal to the xy-plane in the direction of the north pole, and the +y-axis
is chosen so as to form a right-handed coordinate system. Determination and subse-
quent prediction of the GPS satellite orbits are carried out in an ECI coordinate
system.

2.2 Reference Coordinate Systems 27

Plane of intersection

Surface of
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Surface of
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Earth surface

Note: Circle tilted for illustration

(c) (d)

Plane of satellite
locations

(e)

Figure 2.6 (continued.)

Figure 3.4: The user is in one of the two points on the shaded circle.

receiver can be represented. In this formulation, it is typical to describe satellite and
receiver states in terms of position and velocity vectors measured in a Cartesian
coordinate system. Two principal Cartesian coordinate systems are inertial and
rotating systems. In this section, an overview is provided of the coordinate systems
used for GPS.

2.2.1 Earth-Centered Inertial Coordinate System

For the purposes of measuring and determining the orbits of the GPS satellites, it is
convenient to use an Earth-centered inertial (ECI) coordinate system, in which the
origin is at the center of the mass of the Earth and whose axes are pointing in fixed
directions with respect to the stars. A GPS satellite obeys Newton’s laws of motion
and gravitation in an ECI coordinate system. In typical ECI coordinate systems, the
xy-plane is taken to coincide with the Earth’s equatorial plane, the +x-axis is per-
manently fixed in a particular direction relative to the celestial sphere, the +z-axis is
taken normal to the xy-plane in the direction of the north pole, and the +y-axis
is chosen so as to form a right-handed coordinate system. Determination and subse-
quent prediction of the GPS satellite orbits are carried out in an ECI coordinate
system.

2.2 Reference Coordinate Systems 27
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Figure 2.6 (continued.)Figure 3.5: The user is in one of the two points on circle perimeter.

Assuming that the user is on the Earth's surface we can immediately
discard the upper point and use the lower one as the true position of the
receiver.

For spaceborne receiver the trilateration process is more complex, because
they may be above or below the plane containing the satellites, and it may not
be clear which point to select unless the user has supplementary information,
such as tracking [11, pp. 21�26]. Anyway it is out of the scope of this thesis
and will not be investigated.

In all of these examples the receiver clock is assumed perfectly synchro-
nized to system time. With real GPS receivers this assumption never holds,
because there are a number of error sources that a�ect range measurement
accuracy (e.g., measurement noise and propagation delays). These can gener-
ally be considered negligible when compared to the errors experienced from
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non-synchronized clocks. Therefore, in the explanation of basic concepts,
errors other than clock o�set are omitted.

3.2.2 Mathematical Formulation

In order to deepen the analysis of position determination into mathematical
terms, we can make reference to Figure 3.6.

  

xE yE

zE

ECEF

u

s

r

GPS satellite

User

Figure 3.6: Relations between Earth, user and GPS satellite represented
through vectors.

Our goal is to determine the vector u, which represents a user receiver
position with respect to the ECEF coordinate system origin. Thus, the user
position coordinates xu, yu, zu are considered unknowns.

Vector s represents the position of the satellite relative to the coordinate
origin, and the coordinates xs, ys, zs are computed using navigation data
broadcasted by the satellite.
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Vector r represents the vector o�set from the user to the satellite and can
be calculated as

r = s− u (3.1)

Let r represent the magnitude of vector r.

r = ‖r‖ = ‖s− u‖ (3.2)

The user-to-satellite distance r is computed by measuring the propagation
time required by the signal sent from the satellite to reach the receiver. The
propagation time is represented by ∆t and in the ideal case is:

∆tideal = tRx − tTx (3.3)

If the satellite clock and the receiver clock were perfectly synchronized,
the correlation process would yield the true propagation time. By multiply-
ing this propagation time, ∆t, by the speed of light, the true (i.e., geometric)
satellite-to-user distance could be computed. This is the ideal case as de-
scribed in Section 3.2.1, but, as stated before, the satellite and receiver clocks
are generally not synchronized. The receiver clock will usually have a bias
error from system time that we will call tb, which is unknown. Taking into
consideration this quantity we obtain the propagation time in the non-ideal
case:

∆t = tRx − tTx + tb (3.4)

Thus, the range determined by the correlation process is denoted as the
pseudorange ρ, because it is the range determined by multiplying the signal
propagation velocity, c, by the time di�erence between two non-synchronized
clocks (the satellite clock and the receiver clock).

This ρ, calculated as ρ = ∆t·c, is considered as the measurement received
from the satellite.

Calculation of User Position

In order to determine user position in three dimensions (xu, yu, zu) and the
time bias tb, pseudorange measurements ρj are required from four satellites
resulting in the next system of equations, where j references each current
satellite.

Given the user position u, the receiver bias tb and the j-th satellite posi-
tion sj, the expected pseudorange ρ̂j is

ρ̂j = ‖sj − u‖+ c · tb (3.5)
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This equation can be expanded in xu, yu, zu and tb:

ρ̂j =
√

(xsj − xu)2 + (ysj − yu)2 + (zsj − zu)2 + c · tb (3.6)

After that we can compute the error as the di�erence between received
and expected measurement, ρj and ρ̂j:

ej = ρj − ρ̂j j ∈ {Currently tracked satellites} (3.7)

Note that in this equation the unknowns are four: the user position xu, yu,
zu and the time bias tb.

To �nd the optimal result for this four unknowns, we have to minimize
the sum of squared errors corresponding to the satellites observed in that
epoch.

(xu, yu, zu, tb)
∗ = arg min

(xu,yu,zu,tb)

∑
j

(ρ̂j − ρj)2

= arg min
(xu,yu,zu,tb)

∑
j

(√
(xj − xu)2 + (yj − yu)2 + (zj − zu)2 + c · t− ρj

)2

(3.8)

where xj, yj, zj denote the j-th satellite's position in three dimension.
When more than four satellites are available, we can choose if using only

the four more reliable measurements or use more than four simultaneously.

3.3 GPS Signals

In the previous section we assumed to know satellites' position and pseu-
doranges every time we want to trilaterate the receiver position. In order
to provide these information satellites broadcast two di�erent signals, called
respectively observation and navigation data.

3.3.1 Observation Data

Observation data contains a ranging code that enables the user's receiver
to determine the propagation time of the signal, and thereby determine the
satellite-to-user pseudorange. In order to do that, GPS observables include
three fundamental quantities that need to be de�ned:
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� Time: The time of the measurement is the receiver's time of the re-
ceived signals. It is identical for all the satellites observed in a obser-
vation, and it is also called epoch. It is expressed with respect to GPS
time and not to Coordinated Universal Time UTC.

� Pseudorange: The pseudorange is the measured distance from the re-
ceiver antenna to the satellite antenna, including receiver clock bias
and other error sources such as atmospheric delays. It is measured
comparing two clocks but it is converted and stored in units of meters,
multiplying the time measurement by the speed of light.

� Phase: The phase is the carrier-phase measured in whole cycles at
the frequencies used to transit the signal. The original civil signal
is transmitted using two di�erent bands: 1575.42 MHz called L1 and
1227.60 MHz called L2 [12]. Anyway, not all the receivers track both
signals.

Observation data messages are kept very small for the sake of being com-
puted at a high rate by the receiver.

3.3.2 Navigation Message

In addition to the pseudoranges, a receiver needs to know detailed infor-
mation about each satellite's position and the full GPS constellation. This
information is sent to receivers from satellites through the navigation mes-
sage, and allows the users to compute the satellite's orbit and the precise
position at each moment, to perform the positioning calculus when observa-
tion message arrives.

The navigation message includes:

� Time Parameters and Clock Corrections : to compute satellite clock
bias and time conversions.

� Ephemeris Parameters : to precisely estimate the satellite's orbit during
time and compute the satellite coordinates with enough accuracy. Each
satellite transmits its own ephemeris.

� Service Parameters : that contain satellite health information.

� Ionospheric Parameters Model : to correct the ionospheric e�ect on
single frequency observations.
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� Almanacs : permit the computation of the position of the satellites
constellation with the reduced accuracy of 1-2 km of 1-sigma error,
which assists the receiver in determining which satellites search for.
Each satellite transmits almanac data for several satellites.

In order to being able to describe almanacs and to maintain a highly
accurate time synchronization between the space vehicles, every satellite ex-
changes information with �xed ground stations on Earth's surface. GPS
ephemeris message includes not only parameters to calculate satellites po-
sition, but also the time of their applicability. The ephemerides and clock
parameters are usually updated every two hours, but anyway they are con-
sidered still valid for four hours. Instead the almanac is valid for six days. [13]

Navigation data is heavier than observation data, and it changes every
two hours. For these reasons it has been chosen to send this data in a di�erent
message, separated from observables, and at the considerably slower rate of
one every thirty seconds. Thus, when a GPS sensor is turned on, it have to
wait maximum thirty seconds in order to be able to start trilaterating the
user position, if at least four satellites are visible.

The whole navigation message consists of 25 frames of 30 seconds each.
A frame is 1500 bit long, and is subdivided in 5 sub-frames of 300 bits,
numbered 1 to 5. In turn each sub-frame consists of 10 words of 30 bit
each and requires 6 seconds to transmit (see Figure 3.7). Each sub-frame
has the GPS time. The �rst sub-frame contains the GPS week number
and information to correct the satellite's time to GPS time, plus satellite
status and health. Sub-frames 2 and 3 together contain the transmitting
satellite's ephemeris data. Sub-frames 4 and 5 contain only 1/25th of the
complete almanac. A receiver must process 25 whole frames to retrieve the
entire 15,000 bit almanac message. At this rate, 12.5 minutes are required
to receive the entire almanac from a single satellite.

A short discussion is needed to justify the ionospheric parameters. The
signals from the GPS satellites are perturbed as they transit the ionosphere.
Pseudorange measurements are increased in value because an additional delay
is added to the time of �ight. For this reason a correction is needed, otherwise
the positioning would not be accurate.

If the receiver works with both frequencies L1 = 1575.42MHz and L2 =
1277.60MHz, a linear combination of the measurements removes almost all
of the ionospheric perturbations [14]. Lets call ρL1 and ρL2 the pseudoranges
measured respectively on L1 and L2, it is possible to correct the measure-
ments applying a ionospheric correction ∆ionospheric in this way:

τ =

(
L1

L2

)2

(3.9)
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Figure 3.7: Structure of the navigation message.

∆ionospheric =
ρL1 − ρL2

1− τ
(3.10)

ρcorrected = ρL1 −∆ionospheric (3.11)

If the receiver works with only one frequency it is relevant to apply a
precise ionospheric model. This model can be built from the parameters
included in the navigation message.

The navigation message format described previously is called L1 C/A
navigation message, and represents the legacy message. Nowadays the system
has been modernized and new type of messages has been introduced: L2-
CNAV, CNAV-2, L5-CNAV and MNAV. Anyway, in modernized GPS, the
legacy navigation message is still used, but transmitted at a higher rate and
with improved robustness, and the new messages contains additional data
for civil or military users [13].
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4. Software Development I. GPS Data
Processing

In this chapter we will present the implementation of the satellites' orbit
estimation and the trilateration of the user position. The programming lan-
guage chosen for this project is C++, for performance reason and because of
compatibility with other tools that we will use. One of these tools is ROS,
and now we are going to introduce it. This will help the reader to understand
the architecture of this project solution.

ROS (Robot Operating System) [15] is a framework for robot software
development. It is a collection of tools, libraries, and conventions that aim
to simplify the task of creating complex and robust robot behavior across a
wide variety of robotic platforms. Its libraries are in C++ and Python, but
also other languages are supported. ROS is an open source software released
under the terms of the BSD license. It was originally developed in 2007 by
the Stanford Arti�cial Intelligence Laboratory, and now is maintained by the
Open Source Robotics Foundation.

A key concept in ROS are the nodes. A node is a process that performs
some computation. A node can publish or subscribe to data streams called
topics, which allow communication between them. A robot application usu-
ally is composed by many nodes, each one responsible of a di�erent aspect.
The use of nodes in ROS provides several bene�ts to the overall system, like
improving fault tolerance and diminishing the code complexity.

One relevant node provided by ROS is RVIZ. This node is specialized in
visualization. It can visualize various data format that are published from
other nodes through topics, such as coordinates frames and visual markers
to visualize the robot and the surrounding environment.

In order to have a general overview of the contents that are presented
later on in this chapter, in Figure 4.1 we illustrate the �nal architecture,
contained in the package raw_gps_ros, and in the following we will brie�y
describe the goal of each node.
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Figure 4.1: Architecture of the raw_gps_ros package. The arrows without
names represent sets of relations, that are detailed in Figures 4.3 and 4.6.

raw_gps_ros can use alternatively two kinds of inputs. The �rst option
is to read the raw GPS data stored in speci�c datasets, called RINEX �les
(see section 4.2). The second option is to capture it directly through a real
GPS receiver, that is controlled from driver_node (see section 4.3).

The raw GPS data is processed respectively from rinex_processor and
raw_gps_processor. These nodes publish in the /sat_pseudoranges topic
a vector of satellite positions and their corresponding pseudoranges for every
epoch.

On the top right we can see the trilaterator node. Its task is to listen
to the /sat_pseudoranges topic and, every time some pseudoranges are
published, starting to trilaterate the user position. As soon as it computes a
position and a clock bias, it publishes the result in the /estimated_position
topic.

Another node, called viz_manager, listens to all the topics and produces
the visualization objects, that will be visualized through the rviz node.
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4.1 Trilateration with Ceres-Solver

To trilaterate the user position as described in section 3.2.2 we have to opti-
mize the non-linear least squares problem described in equation 3.8. To solve
this problem e�ciently we use a speci�c solver called Ceres-Solver.

Ceres-Solver is a library for modeling and solving large, complicated
optimization problems [8]. It is an open source C++ library created by
Google in 2010 in order to estimate the pose of Street View cars and aircrafts.
Ceres is still used by Google and other important companies and during its
life span it has been extensively tested and optimized. The code is portable
and can run on di�erent operating systems, like Linux, Windows, Mac OS
X, Android and iOS.

Ceres accepts non-linear least squares problems with bounds constraints,
structured like

min
x

1

2

∑
i

ξi
(
‖ fi (xi1 , ..., xik) ‖2

)
lj ≤ xj ≤ uj (4.1)

where ξi (‖ fi (xi1 , ..., xik) ‖2) is called ResidualBlock and is composed
with the CostFunction fi (·) and the LossFunction ξi. The LossFunction
is used to reduce the in�uence of the outliers on the solution of non-linear
least squares problems.

As we saw in section 3.2.2, the positioning problem is exactly in the same
form of ours (see equation 3.8), with:

LossFunction ξi ≡ 2 (4.2)

CostFunction fi (·) =
√

(xj − x)2 + (yj − y)2 + (zj − z)2 + c · t− ρj (4.3)

The �rst step to �nd an optimized solution through Ceres is to write a
cost functor class, that will be used by the solver to evaluate our formula.

The core of this class is the operator() method, in which the error is
estimated subtracting the real measurement from the expected measurement,
and saved in residual[0]. It is important to notice that operator() is a
templated method, and T can be a double or a special type called Jet that
let us use the automatic di�erentiation o�ered by Ceres, without having to
write manually the Jacobian computation code.
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c l a s s CostFuncto r
{
pub l i c :
Cos tFuncto r ( const Sa t e l l i t eMea su r emen t sm_, const double

speed_ ) : sm(sm_) , speed ( speed_ )
{}

template <typename T>
bool operator ( ) ( const T* const pos , const T* const b i a s , T*

r e s i d u a l ) const

{
T square_sum = T(0) ;

f o r ( i n t i = 0 ; i < sm . pos . coo rd s . s i z e ( ) ; ++i )
square_sum += pow( pos [ i ] − T(sm . pos . coo rd s [ i ] ) , 2) ;

T d i s t a n c e = ( square_sum != T(0) ) ? s q r t ( square_sum ) : T(0 ) ;
r e s i d u a l [ 0 ] = ( d i s t a n c e + b i a s [ 0 ] * speed ) − sm . pseudorange ;
return true ;

}

pr i va te :
S a t e l l i t eMea su r emen t sm ;
const double speed ;

} ;

When we want to trilaterate a position we create a ResidualBlock based
on this CostFunction class for each satellite visible in that moment, and
then we ask the optimizer to try to �nd the solution that minimizes the sum
of errors of all pseudoranges currently measured.

To test the trilateration through Ceres, we have created a library called
Trilateration. To trilaterate a position are needed at least four satellites and
the pseudoranges between the receiver and them. To specify that data it is
possible to directly insert in the command line each satellite's position s and
pseudorange ρ. Instead of specifying the pseudoranges, it is possible to insert
the real receiver position u, the clock bias tb and a value for the standard
deviation σ of the noise. If the second input type is chosen, the pseudoranges
ρj will be simulated considering the true range rj = ‖rj‖ between the j -th
satellite and the real receiver, the clock bias tb and a Gaussian white noise
N (0, σ2) will be applied.

ρj = rj + c · (tb + tn) ; tn ∼ N (0, σ2) (4.4)

After this step the pseudoranges will be available, and it is possible to
start to build the problem and then optimize. A ResidualBlock is added
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to the problem for each satellite. The minimization behaviour chosen to
be used from the solver is the Trust Region. This approach approximates
the objective function using a quadratic model function over a subset of the
search space, called trust region. If the model function applied lower the cost
of the objective function the trust region expanded, otherwise is contracted.

To help the convergence of the solution it is possible to provide an initial
guess of the solution, and this leads to more fast convergence and accurate
results.

In Figure 4.2 we can see the output screen of an execution of the tri-
lateration. At the beginning it simulates some pseudorange measurements,
knowing that the real receiver's position is u = (200, 200, 20) and clock bias
tb = 2.5ms, and applying a white Gaussian noise N (0, σ2) with standard
deviation σ = 5 · 10−9 to the clock bias. After that Ceres begins the op-
timization, starting from an initial guess of u = (0, 0, 0) for the receiver's
position and 1µs of clock bias. After twelve iterations the result converges,
leading to a position that is 0.57m far from the real position. The estimated
clock bias is almost perfect, given that the original one is 2.5ms and the
estimated one is only 1.07ns more.

Figure 4.2: Output screen of a test of the trilateration library.
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4.2 Compute Satellite Position from Ephemeris

A fundamental step in the user positioning process is to calculate the posi-
tion of the satellites in a certain moment, usually when a GPS observation
has been sent. As described in subsection 3.3.2, the information needed to
compute this data is sent in the GPS navigation messages. To calculate the
orbit of a single satellite we use a C++ library called GPSTk.

GPSTk (GPS Toolkit) [16] is an open source C++ library that provides a
wide range of functions that solve processing problems associated with GNSS,
such as manage and convert time representations, ephemeris calculations,
compute a position solution and processing standard formats like RINEX.
The GPSTk is developed by Space and Geophysics Laboratory, within the
Applied Research Laboratories at the University of Texas at Austin.

With GPSTk we can compute the satellites' position in a certain mo-
ment of the day, given that we know the corresponding ephemerides. In this
library ephemerides are stored in objects of the GPSEphemeris class. Each
object contains all the parameters needed to compute the evolution of a single
satellite in its orbit.

In the following of this section we will discuss about how to �ll these ob-
jects, because it can be done in di�erent ways and needs a longer discussion.

From each ephemeris it is possible to compute the corresponding satellite
position at the given time through the method GPSEphemeris::svXvt(time).
This method implements the equations of orbital motion as de�ned in IS-
GPS-200 [17]. It returns an Xvt object that contains the satellite's Earth-
Centered, Earth-Fixed Cartesian position, velocity, clock bias and drift.
From now on we will refer to this Position, Velocity and Time object as
PVT.

Before explaining how to �ll the ephemerides, it is necessary to introduce
the RINEX �le format.

RINEX (Receiver Independent Exchange Format) [18] is a data inter-
change format for raw satellite navigation system data. RINEX can store
data from di�erent GNSS, like GPS (including GPS modernization signals
e.g. L5 and L2C), GLONASS, Galileo, Beidou, etc. The RINEX standard
allows to store data in a format independent from the receiver used. This
allows the user to easily exchange the receiver device and also to post-process
it with other data unknown to the original receiver, like using an accurate
atmospheric model.

Three di�erent RINEX �le types exist: Observation data �le, Navigation
message �le and Meteorological data �le. Each �le type consists of a header
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section and a data section. The format has been optimized for minimum
space requirements and there is no maximum record length limitation for
the observation records.

Observation data �le contains a list of observation messages as described
in section 3.3.1.

Navigation message �le contains a list of all the epochs in which observa-
tions are made and the corresponding ephemerides. In order to keep the �le
small, ephemerides are saved only when a new satellite is seen or when they
are no more valid, and not every thirty seconds as they are sent by satellites.

Meteorological data �le contains information about the weather. They
can not be produced by the receiver itself, but they must be provided by an
external source. The use of this data is out of the scope of this project.

We can �ll an ephemeris reading from a RINEX navigation �le or receiving
data directly from a GPS sensor. With GPSTk it is straightforward to read
ephemerides contained in a RINEX nav �le, by means of using the class
Rinex3NavStream and extract all the ephemerides through the overloaded
operator<<(). Instead, if we want to use a real device, we need a GPS
sensor capable to provide the raw data received from the satellites, and not
only the GPS �x. In this work we used a Septentrio AsteRx1 GPS/Galileo
Single-frequency receiver. In section 4.3 we will discuss about the custom
driver needed to publish the raw data and �ll a GPSEphemeris object.

Figure 4.3: Architecture of orbit_estimation node that reads data from
RINEX �les.

In our representation through the ROS node RVIZ there is a frame called
world, that represent the center of the Earth in the ECEF coordinates.
Around this point we can see a green sphere that represents the Earth, to
better visualize the satellites' evolution. In Figure 4.4 we can see eight satel-
lites, each of them in its own frame, moving around the Earth. The light
blue arrows represent the velocity of each space vehicle. The red line we can
see behind one of the satellites is its orbit. It doesn't appear circular only
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because the ECEF coordinate system is not inertial, since it moves with the
Earth rotation.

Figure 4.4: Representation on RVIZ of the satellite positioning around the
Earth.
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4.3 Custom Driver for Septentrio AsteRx1

The device we used to get the real GPS data is a Septentrio AsteRx1 GPS/-
Galileo single-frequency receiver. It is composed by a compact OEM board
with low power consumption integrated in the receiver platform and an active
high-gain antenna. These components can be seen in Figure 4.5, the receiver
platform on the left and the external antenna on the right, respectively. The
antenna is external so it can be placed in the best position to guarantee vis-
ibility of satellites. The platform provides an USB interface that allows to
connect AsteRx1 to a computer. Once connected, the receiver can be con�g-
ured through a command line interface [19], and it is compatible both with
Linux and Windows operating systems.

Figure 4.5: Septentrio AsteRx1 GPS/Galileo single-frequency receiver. On
the left there is the receiver device and on the right the external antenna.

The binary output format of Septentrio receivers is SBF, that straight-
forwardly comes from Septentrio Binary Format [20]. In this format, data
is arranged in binary blocks. Copious di�erent SBF blocks exist, but we are
interested only in few of them.

This receiver contains 24 hardware channels for simultaneous tracking
all the visible GPS and Galileo satellites. Each visible satellite in a certain
moment is automatically allocated in a channel.

For each measurement epoch, AsteRx1 creates an output SBF block called
MeasEpoch that contains a measurement for each tracked satellite. All the
measurement set of a single MeasEpoch block refers to the same time.

The reference time in AsteRx1 is kept as close as possible to the currently
used GNSS time, in our case GPS time. Anyway, as explained in subsection
3.2.2, the receiver's clock irremediably contains a time bias with respect to
the GPS time. AsteRx1's time is stored in the SBF block TimeStamp and
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it is composed by two numbers: the time-of-week TOW and the week number
counter WNc. TOW is expressed in milliseconds and refers to the milliseconds
elapsed from the beginning of the current week, and the WNc refers to the
number of complete weeks elapsed since January 6, 1980.

The GPS �x produced by AsteRx1 is contained in PVTCartesian and
PVTGeodetic blocks, that respectively refer to ECEF coordinate system and
latitude, longitude and altitude in the Geodetic coordinate system.

Anyway, for the scope of our project, we want to focus on the raw data
sent by GPS satellites and not on the �x produced by the receiver.

In order to get the raw data from AsteRx1, a custom driver was needed.
This driver uses the command line interface provided by Septentrio in order
to retrieve the desired data, and o�ers an API to manage the receiver from
outside 1. We will refer to this part of the driver as the low-level driver for
the GPS receiver.

To use the GPS receiver in our architecture, a ROS node has been cre-
ated. This node wraps the low-level driver and, using the provided API,
receives data from AsteRx1 and publishes the information we need in di�er-
ent topics. In Figure 4.6 we can see the driver node, called driver_node, and
its most signi�cant topics. The /gps and /gps_ecef topics contain a ROS
message with the GPS �x computed by AsteRx1, respectively in Geodetic
coordinates and ECEF. /gps_meas contains the observation data described
in subsection 3.3.1.

Figure 4.6: Architecture of the driver node for the GPS receiver AsteRx1.

1The code of this low-level driver can be found at https://devel.iri.upc.edu/
labrobotica/drivers/asterx1_gps
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To compute the satellite position in a certain moment, the corresponding
ephemeris must be known. AsteRx1 can publish a GPS decoded message
with clock and ephemeris data through the SBF block GPSNav. This block
contains more than forty parameters needed to reconstruct the ephemeris.
The ROS node driver_node publishes this set of parameters in the /gps_nav
topic. As we wrote in the previous section, another node will listen to this
topic in order to build the GPSTk's GPSEphemeris object. To construct it,
all the parameters contained in the GPSNav block must be assigned to the
GPSEphemeris object.

After some weeks of attempts without good result, we found out that
GPSTk permits to construct another ephemeris object, EngEphemeris, using
the �rst three sub-frames of the navigation data (see 3.3.2). For this reason
we changed the low-level driver in order to publish the raw navigation data
in the /gps_raw topic.

Each sub-frame is composed by ten words of 30 bits each. To construct the
EngEphemeris we need to instantiate an empty object and call the method
addSubframe(..) for three times to add the sub-frames. After that it is
possible to convert the EngEphemeris into a GPSEphemeris and use it in the
same way as one read from a RINEX navigation �le.

4.4 Computing GPS Fix from Pseudoranges

Now that we know how to trilaterate with Ceres and how to estimate the
satellite's position in a certain moment, we can compute a GPS �x from
the data received from satellites. In order to do it, �rstly it is necessary
to compute the satellite positions from ephemerides, and then to apply a
correction to the received pseudoranges. Now, if we have four or more satellite
we can prepare the Ceres-problem as described in the section 4.1 and then
�nd an optimized solution. and then it is possible to trilaterate. In the
following of the section we will explore these steps.

4.4.1 Correct Raw Pseudorange Measurements

Every time we receive a GPS observation, that means a vector of satellites and
their respective pseudoranges, we have to check if we have already received
the corresponding ephemeris in order to calculate the satellite's position. If
the correct ephemeris is unknown we cannot use that satellite, and we simply
discard it.

Anyway, this process is not as straightforward as it seems, because we
need the satellite position at the transmit time tTx, and with the GPS obser-
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vation received we only have the receiving time tRx. To calculate it precisely,
we have a two-step process: we �rstly calculate a raw estimation of the
transmit time t1Tx:

t1Tx = tRx −
ρraw
c

(4.5)

Now we need to get the PVT of the satellite in that moment:

PV T 1 = svXvt(t1Tx) (4.6)

From this �rst guess of PV T , PV T 1, we can obtain the satellite's clock bias
and calculate the relativistic clock correction. The rate of advance of two
identical clocks, placed respectively one on the terrestrial surface and the
other in the satellite, will di�er due to the di�erence of the gravitational
potential (general relativity) and to the relative speed between them (special
relativity) [11, p. 306].

The relativistic clock correction tPV T
1

γ can be calculated as

tPV T
1

γ = −2 · s
PV T 1 · vPV T 1

c2
(4.7)

where sPV T
1

= PV T 1.pos and vPV T
1

= PV T 1.vel refer respectively to the
satellite position (m) and velocity (m/s) vectors.

Using the satellite's clock bias tPV T
1

b = PV T 1.clockBias we can calculate
the true transmit time tTx:

tTx = t1Tx − tPV T
1

b − tPV T 1

γ (4.8)

and �nally the satellite PVT at that time:

PV T = svXvt(tTx) (4.9)

From the PV T we can correct the raw pseudorange received considering the
satellite's clock bias and the relativistic clock correction.

ρcorrected = ρraw + c · (tPV Tb + tPV Tγ ) (4.10)

4.4.2 Receiver Autonomous Integrity Monitoring

Now that we have calculated the corrected pseudorange we could directly
publish the satellite positions and pseudoranges and let the trilateration node
work. Anyway, if we have at least �ve satellites in line of sight, we can apply
a Receiver Autonomous Integrity Monitoring (RAIM) algorithm.
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RAIM is a technique that uses an overdetermined solution to perform a
consistency check on the satellite measurements. The RAIM algorithm com-
pares the smoothed pseudorange measurements among themselves to ensure
that they are all consistent. A pseudorange that di�ers signi�cantly from
the expected value may indicate a fault of the associated satellite or another
signal integrity problem usually caused by ionospheric dispersion [11, p. 347].

If an outlier is found, it can be detected and excluded. GPSTk o�ers an
implementation of this algorithm in PRsolution2.

RAIM algorithm is used by both our GPS data processors nodes and the
GPS receiver AsteRx1 [21].

4.4.3 Trilaterate from Real Data

Pseudoranges correction and RAIM technique are implemented in the ROS
nodes rinex_processor and raw_gps_processor. They act as receivers,
with the only di�erence that one reads the raw data from RINEX �les and
the other one receives it from the driver node as described in section 4.3.
When they receive a GPS measurement they calculate the satellite position
in ECEF coordinates, correct the pseudoranges and eventually apply RAIM
algorithm. In the end they publish a vector of satellite measurements in a
topic called /sat_pseudoranges and they keep listening for new observations
(see Figure 4.1).

One of the nodes that subscribes the /sat_pseudoranges topic is the
node trilaterator. It uses the trilateration library described in section
4.1 to estimate the receiver's position and bias and publish this results to
viz_manager node, that will visualize all the data it received through RVIZ.

4.5 Trilateration Results

In this section we analyze the estimation of the user position done by the
trilaterator node, using the raw pseudorange measurements and ephemerides
processed by the processor nodes previously described. Figure 4.7 shows the
results obtained, with a blue dot for every GPS �x computed 2.

To compare the results obtained, in Figure 4.8 are shown the GPS �xes
produced directly by the receiver, doing the same path. As we can see, the
red path is much more neat compared to the blue one, but the shape of the
entire path is correct.

2Figures 4.7 and 4.8 are created using an on-line utility called GPS Visualizer http:
//www.gpsvisualizer.com/

35

http://www.gpsvisualizer.com/
http://www.gpsvisualizer.com/


CHAPTER 4. SOFTWARE DEVELOPMENT I. GPS DATA PROCESSING

Figure 4.7: GPS �xes produced from raw GPS measurements by
raw_gps_ros's nodes.

Figure 4.8: GPS �xes produced directly by AsteRx1 receiver.

To produce such a smooth path AsteRx1 receiver uses a series of tech-
niques to �lter results [21]. One of these is the dynamic of the receiver, that
is set to pedestrian. This means that the receiver for every new estimation
will check the distance traveled, using the position of the last known �x as
a reference. If the distance between these two spots is not compatible with
the distance a pedestrian can cover in the same time, the estimation will be
considered faulty.

Furthermore, AsteRx1 takes advantages of GNSS augmentation such as
Satellite-Based Augmentation System (SBAS) [11, 22] to increase accuracy
of the satellite positioning.

The only outlier rejection technique we are applying is the RAIM algo-
rithm described in section 4.4.2. Analyzing the behaviour of the obtained
results we noticed that our solution, but also the GPS �x produced by the
receiver itself, are very sensible to multipath interference, and this is the
main cause of outliers.

We created a three dimensional representation of the two path overlap-
ping, using the viz_manager node and RVIZ. In Figure 4.9 we can see the two
paths overlapped, to better understand the di�erences. On two dimensions
the estimated positions are close to the GPS �x, with some estimate that
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Figure 4.9: Three-dimensional representation of the two paths. In blue it
is represented the path estimated by our implementation, in red the path
estimated by the receiver. The size of the image is proportional to the grid,
whose cells are squares with sides of 10 meters.

Figure 4.10: Lateral view of the estimated paths, to show the altitude �aw.
The size of the image is proportional to the grid, which lies on the XZ plane,
and whose cells are squares with sides of 5 meters.

distance itself a pair of meters.
The least accurate estimation regards the altitude, as we can see from

Figure 4.10. Altitude is always the �aw of the GPS positioning because of
the geometrical structure of the problem. To overcome to this weak point,
the software of commercial GPS receivers reference altitude measurements
to the altitude of the ground in the geodetic model of the Earth and on the
last known position [23].
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5. Software Development II. Wolf
Specialization

5.1 Wolf Integration

The second main step of the work for this thesis has been to integrate the GPS
functionalities in Wolf (see section 2.3). To do that, it has been necessary to
specialize most of the base classes present in the Wolf tree.

A SensorGPS class has been created to represent the GPS sensor, from the
point of view of the SLAM problem. In this class there are all the parameters
needed to describe a GPS sensor. Among them, there is the sensor position,
that represents the mounting point of the GPS antenna with respect to the
robot. The only intrinsic parameter of a GPS receiver is its clock bias with
respect to the GPS time. Two other values saved in this class are the position
and orientation of the Map frame. The concept of frame is very important,
and in the next section will be exhaustively explained.

With the GPS sensor, it is associated a signal processor, implemented
in the ProcessorGPS class. This class is mainly composed by a method
to process a GPS capture, extract the features from there and create from
each feature a constraint for the optimization problem. In the GPS case,
a CaptureGPS corresponds to a GPS observation with a vector of pseudor-
anges and satellite positions, as published from the raw_gps_processor or
the rinex_processor nodes. That means that every satellite position and
pseudorange received are already corrected, as explained in subsection 4.4.1.

In the GPS case, we chose to create a di�erent feature for every re-
ceived pseudorange, so the class FeatureGPSPseudorange contains only a
three-dimensional vector for the satellite position and a real number for the
pseudorange. To each feature it is associated a single constraint. The class
ConstraintGPSPseudorange2D is the most complex class of the specialized
one for the GPS, as it is the templated class that have to work with Ceres-
Solver. Basically, the operations that must be done to compute the residual
are the same implemented in the trilateration library and described in
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section 4.1. The small but substantial di�erence is that we don't know and
don't want to estimate the sensor position in the ECEF coordinates, but we
want to localize the robot with respect to the Map.

In the next section we will introduce the concept of reference frame and
how a set of these frames is structured in our work. After that we will show
the important di�erence between the simple operator() of the implementa-
tion in the node described in the chapter 4 and the operator() in Wolf.

5.2 Reference Frames Structure

An essential concept in mobile robotics is the notion of reference frame. A
reference frame consists of an abstract coordinate system and it is uniquely
�xed in the space by the position of its origin of coordinates and its orienta-
tion with respect to its parent frame. The parent of all the frames is called
global frame and it is considered static and �xed somewhere in the space.

The position pFB and orientation ΦF
B of a rigid body B relatively to the

frame F together are called pose of B in F , which is noted as BF = (pFB,Φ
F
B).

In the three-dimensional space, a position p is a 3D point and an orienta-
tion Φ can be represented with a quaternion or with a 3x3 rotation matrix.

In our problem, we can identify four di�erent frames. The global frame
is called ECEF and corresponds to the ECEF coordinate system. A robot
moves into a limited area of the world. This area is represented through a
frame named Map, and it is a child of the ECEF frame, as we can see in
Figure 5.1.

This transforms the relative positioning of the robot with respect to the
Map to an absolute positioning on Earth, in ECEF coordinates.

Inside this Map we can see the robot's frame, called Base frame, that
represents the robot position and orientation with respect to the Map. In
turn, Base frame is the reference frame of all the sensor mounted in the
robot, and in our case we have another frame called GPS. In the GPS case
particularly, the orientation of this frame is not important, because a GPS
antenna is omnidirectional.

If Figure 5.2 we can see in detail the Map and the trajectory the robot
had respect to Map frame.

Now we can see the substantial di�erence between this situation and
the simpler problem of localizing the GPS antenna directly in the ECEF
coordinates. In this latter case we know the sensor position with respect to
the Base frame, and we have to express it in the ECEF frame.

Formalizing mathematically this problem, we can call the GPS sensor
position with respect to the Base frame SB, and we want to calculate it with
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Figure 5.1: Map and ECEF frames. TEM transforms the relative positioning
of the robot with respect to the Map to an absolute positioning on Earth, in
ECEF coordinates.

respect to the ECEF frame, SE.
This frame transformation can be done using quaternions or homogeneous

transformation matrices, and we chose the latter option. Such homogeneous
transformation matrix for 3D points is a 4x4 matrix composed like this:

T =

R t

0 1


where R is the rotation matrix and t the translation of the origin. Note that
a generic 3D point x is padded with a 1, so it is represented as x = (x y z 1)T .

This is in order to work with the 4x4 transformation matrices with both
rotation and translation.

Going back to our problem, we need to �nd a transformation matrix that
transforms a point from Base frame to ECEF frame, that is noted as T E

B .
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Figure 5.2: Trajectory of the robot inside the Map.

Knowing that matrix, we can transform the point between frames through

SE = T E
B · SB (5.1)

This transformation can be split into two di�erent partial transformations:

T E
B = T E

M · TM
B (5.2)

We �rst calculate the sensor respect to Map frame SM = TM
B · SB and

then we transform it in the ECEF frame with T E
M .

Lets use Figure 5.3 to help us analyze the �rst transformation TM
B . In this

�gure we are in the plane de�ned by the axes xM and yM . The Base frame
is translated bM from the Map origin and rotated θM , so the transformation
matrix TM

B will be:

TM
B =


cos(θM) − sin(θM) 0 bMx

sin(θM) cos(θM) 0 bMy

0 0 1 0

0 0 0 1

 (5.3)

The second transformation, T E
M , is conceptually similar, but it involves a
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Figure 5.3: Representation in 2D of the robot's frame Base in theMap frame.

conversion between ECEF and geodetic coordinates and �ve di�erent frame
transformations.

First of all lets see how to convert mE, the origin of the frame Map, from
ECEF to Geodetic. We use WGS84 as a reference ellipsoid to describe the
Earth, which de�ne the following constants:

semi-major axis: a = 6378137 (5.4a)

�rst eccentricity: e = 8.1819190842622 · 10−2 (5.4b)

semi-minor axis: b =
√
a2 · (1− e2) (5.4c)

second eccentricity: e′ =

√
a2 − b2
b2

(5.4d)
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Then we de�ne the following auxiliary values:

p =
√

(mE
x )2 + (mE

y )2 (5.5a)

ψ = atan
a ·mE

z

b · p
(5.5b)

and �nally we calculate the Geodetic coordinates of the Map origin:

longitude: φ = atan
mE
y

mE
x

(5.6a)

latitude: λ = atan
mE
z + e′2 · b · sin(ψ)3

p− e2 · a · cos(ψ)3
(5.6b)

radius of curvature: N =
a√

1− e2 · sin(φ)2
(5.6c)

altitude: h =
p

cosφ
−N (5.6d)

Remembering that T E
M means representing the pose of Map with respect

to ECEF, we can describe visually how we compute this computation. The
visual description is followed by the associated homogeneous transform ma-
trix.
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Figure 5.4: Geoid and relations between ECEF and Map frames [24]

The �rst thing we have to do is to translate the frame from the center of
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the Earth to the origin of the frame Map.

T E
A =


1 0 0 mE

x

0 1 0 mE
y

0 0 1 mE
z

0 0 0 1

 (5.7)

After that we have to rotate the frame on the z-axis of an angle equivalent
to the longitude φ of the frame Map,

T A
φ =


cos(φ) − sin(φ) 0 0

sin(φ) cos(φ) 0 0

0 0 1 0

0 0 0 1

 (5.8)

and then rotate it on the y-axis of an angle equivalent to latitude λ.

T φ
λ =


cos(λ) 0 − sin(λ) 0

0 1 0 0

sin(λ) 0 cos(λ) 0

0 0 0 1

 (5.9)

Now we want to exchange the axes in order to transform to East-North-
Up (ENU) coordinate systems, that means to having the x-axis pointing to
the East, the y-axis to the North, and the z-axis normal to the ground.

T λ
U =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 (5.10)

Finally it is necessary to apply a last rotation about the z-axis in order
to align the ENU frame with the orientation of the Map frame.

T U
M =


cos(αU) − sin(αU) 0 0

sin(αU) cos(αU) 0 0

0 0 1 0

0 0 0 1

 (5.11)
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In the end we have obtained the second transformation T E
M as a chain

multiplication of the presented matrices.

T E
M = T E

A · T A
φ · T

φ
λ · T

λ
U · T U

M (5.12)

Knowing this homogeneous transformation matrix we can express a generic
point in Map pM into ECEF coordinates.

pE = T E
M · pM (5.13)

5.3 Pseudorange Constraints in Wolf

The class ConstraintGPSPseudorange2D implements in the method operator()
the math needed to add a constraint to the optimization problem.

Each parameter (or unknown) to be estimated by the optimization prob-
lem is called a State Block, and it is contained in aWolf class called StateBlock.
This class is composed by a vector of variables that have to be estimated.
A state block contains also the �ag fixed that allows to enable or disable
on-line the parameter in the optimization problem. The solver considers only
non-�xed state blocks, and if the �ag is activated the values in the state block
are considered like constants by the solver.

In table 5.1 all the state blocks involved in GPS's operator() are listed.

Quantity State block name Dimension Reference

bM vehicle_p 2D Frame Map

θM vehicle_o 1D Frame Map

mE map_p 3D Frame ECEF

αU map_o 1D Frame ENU

SB sensor_p 3D Frame Base

tb bias 1D GPS time

Table 5.1: List of state blocks involved in GPS constrains.

Applying the transformations matrices 5.3 and 5.12 seen in section 5.2,
we can compute the sensor position with respect to the ECEF frame.

SE = T E
M · TM

B · SB = T E
B · SB (5.14)

Then we can use this quantity to compute the expected pseudorange:

ρ̂j = ‖SE − SV E
j ‖+ c · tb (5.15)
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where SV E
j refers to the position of the j-th satellite with respect to the

ECEF frame.
Afterwards we compute the residual as the di�erence between the ob-

served pseudorange and the expected one, dividing everything by the stan-
dard deviation of the measurement.

ej =
ρ̂j − ρj
σ

=
‖SE − SV E

j ‖+ c · tb − ρj
σ

(5.16)

Note that this residual involves all the quantities that we want to optimize,
listed in table 5.1, because SE = f(bM , θM ,mE, αU ,SB).

For each pseudorange measurement available, a constraint is added to
the overall optimization problem, possibly with other constraints created
by di�erent sensors. All the constraints refer to a state of the robot in a
precise time. The solver tries to �nd the state that minimize the overall
mean squared error of the constraints connected to key-frames of the actual
window 1.

5.4 Teo Robot and Wheel Odometry

In order to get some real measurements we used an IRI's mobile robot
named Teo. Teo Robot [25] is a four-wheeled Unmanned Ground Vehicle
(UGV) based on the mobile robotic platform Segway RMP 400. The robot
is equipped with the electrical system, two Ubuntu-based computers, a bat-
tery, a wireless interface etc. At perception level, Teo is equipped with a set
of sensors that allow it to observe the environment. The main ones are a
front and a rear laser scanners, a pair of stereo cameras, a 3D laser, a GPS
receiver, a shaft encoders and an Inertial Measurement Unit (IMU).

A shaft encoder is not an �absolute� encoder, but it is just a �relative�
encoder. So the raw measurements are counts of pulses caused by angular
increments of the shaft, which jointly with vehicle kinematics allow to esti-
mate the 2D twist (vx, vy, ω). Integrating the twist over time allows us to
estimate a position of the robot. Using the data produced by these devices
it is possible to estimate changes in position over time.

Wheel odometry is the process of integrating the 2D twist produced by
shaft encoders, which results in a track of vehicle 2D poses referenced to an
initial origin frame, usually called odometry frame.

Teo is ROS-based robot and there is a ROS package [26] that contains all
the nodes needed to handle it, in terms of hardware acquisition and driving.

1The concepts of key-frame and window have been introduced in section 2.3

46



CHAPTER 5. SOFTWARE DEVELOPMENT II. WOLF SPECIALIZATION

It is manually teleoperated by a human with a Wii controller and the
structure with big wheels (Figure 5.5) permits to use it also in rough grounds.

The Segway platform provides wheel odometry measurements, improved
by using an IMU. The IMU sensor uses accelerometers to accurately detect

(a) (b)

Figure 5.5: Teo Robot. In (a) we can see its RVIZ model, in (b) there is a
photo taken during the experiments, where it is possible to see the mounting
point of the external GPS antenna.

Figure 5.6: Scheme of Teo Robot with dimensions.
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the current rate of acceleration, and gyroscopes to detect changes in rota-
tional attributes like pitch, roll and yaw.

In Teo's two-dimensional current odometry implementation, the straight
movement ∆x is estimated by wheel odometry, and the yaw ∆θ from the
IMU's gyros.

All the data received by the sensors is published on di�erent ROS topics,
and the two computers mounted on board allows to process it on-line or
record it for o�-line processing.

5.5 Fusion Between Raw GPS and Odometry

Wheel odometry o�ers a good estimation of movements in short time, but
pose error irremediably drifts with time, due to integration of noisy data
with time. On the other hand, GPS accuracy is poorer, but it is bounded
over time. The fusion of these two sensors overcomes the performance issues
found in each individual sensor, and produces a better localization than the
one o�ered individually during the time.

The GPS can bound the error produced by odometry in the long term,
and also positions the trajectory in an absolute way with respect to the
Earth, and not only with respect to the Map frame.

Odometry instead overcomes GPS weaknesses like integrity of the solu-
tion or interruption of the satellite signal due to obstructed line of sight or
multipath re�ections.

Moreover, with the approach of not using GPS �x but raw pseudorange
data, the system is robust also in case of shading of some satellites. In fact,
also if we don't receive enough pseudoranges for computing a GPS �x, they
can still constrain the optimization problem, at least partially.

For these reasons, and also to be ready to fuse with other sensor modal-
ities such as lasers or cameras, we decided to use Wolf to fuse the raw GPS
pseudorange measurements with Teo's odometry. We created a ROS node,
wolf_ros_gps, that uses the Wolf library to fuse these two sensing modali-
ties.

The constructor of wolf_ros_gps is appointed to create and initialize
the Wolf tree. It has to create the root node WolfProblem and add in the
hardware branch the two sensor models we want to use, SensorGPS and
SensorOdom, and the corresponding processors.

To help the solver converging, it is better to initialize the Map position
with respect to ECEF with a value close to the real one. This can be done
using the GPS �x, if available, otherwise it is possible to discover it using a
map, such as Google Maps.
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The constructor initializes also Ceres-Solver through the CeresManager

class. This object is responsible to keep the Ceres optimization problem up-
dated, with all the �xed and non-�xed state blocks inside the actual window.

When GPS or odometry measurements are published by the sensors, the
respective callbacks deal with the creation of the capture objects and the
addition of them in the current Wolf frame.

Odometry is published by Teo in a speci�c topic in the form of transfor-
mations between the parent frame Odom and the frame Base.

When we create a new frame, to help the convergence of the solution we
want to have an initial pose guess as close as possible to the real pose of the
robot in that moment. In order to do that, if there is a previous key-frame,
we select its pose as a guess for the new one. If it also has an odometry
capture, we integrate it through time until the current timestamp and we
have a better pose guess. Every time a new frame is added to the trajectory
we have to move the window and, if the window is not big enough, we have
to remove the oldest frame. This frame is only removed from the window,
and not from the wolf problem. This means that its position and orientation
will be considered estimated, and the constraints associated to it will not
a�ect the following optimizations.

Every time we want to process the arrived data we have to update the
optimization problem and then solve it. Both operations are done with
CeresManager.

The obtained solution after the optimization is the robot pose with respect
to Map frame, TM

B . This pose is represented by frame Base. This frame can
only have a parent, that is the Odom frame, because it is published by Teo.
Because of that, we cannot publish directly the pose of Base with respect to
Map. For this reason we have to make Odom child of Map, and publish a
transform between this two frames in order to have Base in the same pose.
In Figure 5.7 we can see the relation between these frames. The pose of Base
published by the odometry is TO

B .
Through Ceres-Solver we calculate the pose of Base with respect to the

map, TM
B . To move frame Odom from Map, in order to have SO = SM , we

need to calculate
TM
O = TM

B · TB
O = TM

B · (TO
B )−1

At the beginning of the experiment the frame Map will perfectly overlap
the Odom frame, and during the time they may separate. The space between
this two frames represents the drift of the odometry positioning respect to
the positioning estimated with sensor fusion.

To connect these frames to ECEF frame we need also to publish a trans-
form between ECEF and Map frames. To do that we use the Map position
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Figure 5.7: Relations between Map, Odom and Base.

and orientation estimated and, with the math we have seen in equations 5.3
and 5.12, we can publish the transformation T E

M

RVIZ will listen to the transformations published for every key-frame and
visualize it, as we will see in the section 5.6,

In Figure 5.8 we can see the Wolf's tree specialized in the implementation
of raw GPS pseudoranges and odometry.
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Figure 5.8: WOLF tree specialized with raw GPS and odometry. We are not
mapping, so the Map branch is dashed.
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5.6 Sensor Fusion Results

In the experiments we made, we assumed to be able to estimate the ECEF
coordinates where the experiment starts, in order to initialize correctly the
map position mE. This assumption is not too much restrictive, because in
outdoor vehicle localization we can obtain a GPS �x, and if it is not available
it is possible to have a guess of the initial position using other instruments,
such as Google Maps.

If the initial position is easy to obtain precisely, the map orientation αU

is de�nitely not. Using an incorrect value for this state block leads to a
bad estimation of the vehicle position with respect to the ECEF coordinates.
With the sensor fusion we did through Wolf, the map orientation αU can
be estimated correctly, and even if it has been initialized randomly or with
a value really far from the real one, it immediately converge to the correct
orientation, as we can see in Figure 5.9.

(a) (b)

Figure 5.9: Correction of αU . These �gures plot the trajectory of the robot,
in blue, and the GPS �xes produced by the GPS receiver mounted on the
robot, in red. (a) shows a comparison between the two positioning without
using an optimized value of αU , (b) shows the positioning obtained using
sensor fusion.

The �rst goal we achieved is the absolute positioning of the map frame
and the trajectory with respect to the Earth.

Figure 5.10(a) shows the whole trajectory, computed using only odometry,
but �xing the map orientation αU with the correct angle we estimated before.
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(a) Robot trajectory obtained using only odometry measurements.

(b) Robot trajectory obtained fusing odometry and raw GPS measurements.

Figure 5.10: In blue is represented the robot's trajectory estimated by Wolf.
In red there are represented the GPS �xes as comparison. The trajectory is
proportional to the grid, whose cells are squares with sides of 1 meter.

At the end of the path the estimated position of the robot is more that 5
meters far from the GPS �x produced by AsteRx1.

In Figure 5.10(b) we can see the trajectory computed by Wolf fusing
odometry with raw GPS. Here the GPS constraints remove the drift of the
odometry, and the �nal part of the trajectory is approximately 2.5 meters
far from the GPS �x.

We have noticed that the distance covered according to the odometry
sensor is in general shorter than the distance we obtain relying on GPS
�x. In our experiment the trajectory is dominated by the odometry, but
gradually merges to the measurements produced by GPS. Fusing these kind
of discording data possibly leads to problems in the estimation of the fused
trajectory. A more appropriate calibration of robot odometry system would
also be necessary to improve results.

The restriction on a plane we made in section 5.2 is fundamental to make
cooperate a sensor like the GPS, that produce a three-dimensional position-
ing, with a sensor like wheel odometry that lie in a bi-dimensional space.
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Anyway, the assumption of working on a plane tangent to the WGS84
geoid has proved to be too restrictive and creates errors in the estimation
of the trajectory. This is accentuated because in the surrounding of the
laboratory, where we did the experiment, there is a slope. As we can see
from Figure 5.11 the GPS �xes start in the correct position 2 but soon they
assume negative values in zM and they go under the Map plane.

Figure 5.11: Focus on the altitude problem, caused by the plane of the
experiment di�erently inclined with respect to Map plane.

The sensor fusion we did is robust against interruption of GPS data, due
to sensor breakage or obstructed line of sight between satellites and GPS
antenna.

We arti�cially limited the number of satellites available during our ex-
periments, to see how it deals in situations where reception is not perfect
for the GPS antenna, but still can receive some GPS data. In these cases,
if less that 4 satellites were available, a computation of the GPS �x would
be impossible. With our sensor fusion this problem overcame, because we
can rely on the wheel odometry. We did a lot of tests, from which emerged
that even from only two satellites measurements we still can notice a slow
convergence of the trajectory to the path indicated by the GPS �xes. With
only one measurements, in our experiments, we didn't noticed any e�ect, and
the trajectory is completely dominated by odometry measurements.

2The GPS antenna is mounted in Teo 110 centimeters high from the ground.
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6. Conclusions

In this thesis we learned the importance of simultaneous localization and
mapping in mobile robotics. We focused on the localization part and we
deepen on the GPS, learning how geometrical constraints created by GPS
pseudorange measurements can be added to a SLAM optimization problem.

With this Master's Thesis work we achieved the following results:

� We developed a software framework that processes raw GPS data pro-
duced by a real receiver and creates geometrical constraints for a local-
ization problem.

� We integrated our work in Wolf, a software framework for managing
SLAM, enriching its sensor fusion capabilities with the possibility of
including geometric constraints related to GPS pseudorange measure-
ments.

� With this software environment we have been able to test the fusion
between data coming from wheel odometry and raw GPS pseudorange
measurements. This sensor fusion produced some positive results:

� It has been possible to position the robot in an absolute way re-
spect to ECEF coordinates, and to estimate a trajectory that
depends on both sensors.

� The GPS allows to bound the error of the wheel odometry, that
otherwise will irremediably drift during time.

� On the other hand, odometry allows to continue the estimation of
the vehicle's trajectory in zones where the GPS reception is poorly
or not available.

� The trajectory produced with this sensor fusion is smoother com-
pared to the one produced by trilaterating raw GPS pseudoranges.
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6.1 Future developments

The solution we proposed can still be improved. We identify some points in
which we should work in future developments, in order to further improve
this solution:

� We observed during the fusion experiments that our solution is still
sensitive to outliers. Some wrong estimations of satellite positions or
the associated pseudorange measurements can cause a wrong pose in
Wolf's trajectory that the odometry is not able to overcome yet. We
must enhance outlier detection, to ensure that the solver discards the
faulty measurements.

� If a sensor is producing a high number of outliers it is also possible
to assume that this particular sensor is in a faulty situation (i.e. it
is obstructed or there are high interferences), and rely more on the
measurements produced by the other sensors. This should be done in
the Wolf implementation and in the solver settings.

� Diminish the number of outliers, improving satellites positioning and
pseudoranges correction:

� We can intervene at raw GPS data processor nodes level, apply-
ing advanced techniques used in commercial devices for decrease
errors in GPS measurements, such as SBAS augmentation cited
in section 4.5 and multi-path correction.

� We should use a dual-frequency GPS receiver. Using two frequen-
cies we could eliminate (to the �rst order) the ionospheric delay
through a linear combination of the L1 and L2 observations (see
equation 3.10).

� The environment where we want to localize our vehicles must be taken
in account too, because the proposed solution assumes to work in a
plane. If the the environment where the robot is moving is steep, or
not �at, it must be considered in the formulation of the map. In this
latter case we should fuse with 3D odometry.

� Use informations about the user velocity: we could estimate the velocity
from the raw data produced by the GPS receiver, using Doppler mea-
surements related to user-satellite motion. Doppler frequency shifts of
the received signal, produced by user-satellite relative motion, enables
velocity accuracy of a few centimeters per second. When we started
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our work, Wolf did not take into account the velocity state of the ve-
hicle, but now this functionality has been implemented and we could
use the above-cited method to take advantage also of these Doppler
measurements.
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SOURCE CODE REPOSITORIES

Source Code Repositories

All the software nominated in this thesis is open-source and hosted in various
repositories online.

� Software fully developed by me for this Master's Thesis:

Name Description Repository

wolf_ros_gps ROS wrapper of wolf with GPS

and wheel odometry

https://github.com/

IRI-MobileRobotics/wolf_

ros_gps

trilateration Trilateration library https://github.com/pt07/

trilateration

raw_gps_ros GPS tools ROS https://github.com/pt07/raw_

gps_ros

raw_gps_utils External library with data struc-

tures used by Wolf for GPS data

https://github.com/pt07/raw_

gps_utils

rinex_reader Library that parse rinex �les and

manage the data

https://github.com/pt07/

rinex_reader

trilat_node ROS wrapper of rinex reader li-

brary

https://github.com/pt07/

trilat_node

� Repositories where I contributed:

Name Description Repository

wolf Wolf library https://github.com/

IRI-MobileRobotics/wolf

iri_asterx1_gps ROS wrapper of the low

level driver for Septentrio

AsteRx1 GPS receiver

https://devel.iri.upc.edu/

labrobotica/ros/iri-ros-pkg_

hydro/metapackages/iri_common_

drivers/iri_asterx1_gps/
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iri_common_

drivers_msgs

ROS messages used for GPS

data

https://devel.iri.upc.edu/

labrobotica/ros/iri-ros-pkg_

hydro/metapackages/iri_common_

drivers/iri_common_drivers_

msgs/

teo_robot ROS nodes for control Teo

Robot

https://devel.iri.upc.edu/

labrobotica/ros/iri-ros-pkg_

hydro/metapackages/teo_robot/
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