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Abstract

Semantic segmentation, thanks tomultimodal datasets, canbemademore reliable and accurate
bymixing heterogeneous data, e.g. RGB images with LIDAR sequences or depthmaps. How-
ever, it requires a large amount of annotated data to train neural networks able to solve the task
effectively. Obtaining accurate and complete annotations for every image and LIDAR sample
in a dataset (i.e. a label for each pixel or 3D point) can be a significant challenge, particularly
when dealingwith complex problems. To tackle the lack of annotation, UnsupervisedDomain
Adaptation (UDA) was studied and developed in recent years assuming labels are not available
for the target dataset and supervising the training of the model using the labels of the source
dataset. Using multimodal data in the UDA context is challenging since the different domains
canbe impacteddifferently bydomain shifts. In thiswork, the explorationof autonomous driv-
ing datasets is undertaken to address the challenge of developing UDA techniques with a spe-
cific emphasis on adaptingbetweenRGBandDepth (RGB-D) andRGB-Lidar data. For all the
datasets considered, the information from 2D images and 3D data (RGB-D or LIDAR-RGB)
were used. The results demonstrate the effectiveness of adapting between different datasets and
highlight how the accuracy of 3Ddata can be enhanced by leveraging the information provided
by the images.
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1
Introduction

Themain tasks of computer vision are a set of problems aimed at teaching computers to under-
stand, analyze, and interpret visual information obtained from images or videos. Nowadays,
machine learning and deep learningmodels are frequently used to improve performance in var-
ious tasks.
Computer vision techniques have come a long way, allowing us to perform recognition tasks
with ease, such as image classification and object detection. Thanks to these advancements, we
can now applymore complex techniques, such as semantic segmentation, to understand scenes
better. Moreover, thanks to the presence of various sensors, machine learning techniques can
be implemented using multimodal data, which provide different information and are, there-
fore, more challenging to process. However, with a proper design of such algorithms, they
can lead to more reliable results. Semantic segmentation finds practical applications in diverse
fields, including autonomous driving, medical image analysis, robotics, and augmented reality.
In this thesis, the focus lies within the context of autonomous driving, where semantic segmen-
tation is employed using multimodal data containing both 2D and 3D information.
However, one of the major challenges in applying these techniques to real-world scenarios is
the requirement for large amounts of labeled data. Collecting and annotating such data can
be time-consuming and expensive. This is where Unsupervised Domain Adaptation (UDA)
comes into play. UDA is a subfield of machine learning and computer vision that address
the problem of adapting models trained on a source domain to work well in a target domain
where labeled data is scarce or unavailable. In other words, it focuses on transferring knowl-
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edge learned from one domain (Source) to another domain (Target) without requiring labeled
data in the target domain. In recent years, UDA has become an active area of research within
the computer vision community. Various methods, including domain adaptation neural net-
works, adversarial training, anddomain-invariant representations, havebeenproposed to tackle
the challenges of domain shift and reduce the need for labeled target domain data.
Focusing on these concepts, the aim of this thesis is to adapt a model trained on RGB-D infor-
mation to data containing LIDAR-RGB information. Specifically, a data preprocessing step is
introduced to transform the RGB-D information in the source dataset into LIDAR-like data
that is the format of the target dataset. The segmentation is based on a modified version of
UNet architecture, allowing the implementation of Sparse Convolution, and a feature extrac-
tion method using the VGG16 network is also employed. As source both real and synthetic
datasets are considered in order to test the framework in different scenarios, while as target a
real dataset is taken into account.
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2
Background

2.1 Semantic Segmentation

Computer Vision plays a crucial role in enabling machines to perceive and understand the
world through visual data, much like how our own eyes process information. By equipping
machines with the ability to analyze images and videos, we empower them to perform tasks
that were once limited to human perception. This has significant implications across various
industries, including healthcare, automotive, surveillance, robotics, and entertainment.
Image classification is one of the foundational tasks in Computer Vision, and it involves teach-
ing machines to recognize and categorize objects in images. For instance, a trained model can
distinguish between cats and dogs or identify different types of fruits. By building on the suc-
cess of image classification, researchers and engineers have ventured into more complex chal-
lenges, paving theway for applications like object detection, wheremachines can not only iden-
tify objects but also locate them within an image.
Semantic segmentation represents a remarkable advancement in this field, taking image analy-
sis to a pixel-level understanding. Instead of just recognizing objects in their entirety, semantic
segmentation delves into the finer details of an image, outlining the boundaries and regions
of each object. This capability has found practical uses in various real-world scenarios. For
example, in autonomous vehicles, semantic segmentation assists in road scene understanding,
enabling the car to differentiate between roads, pedestrians, other vehicles, and obstacles.
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In practice, the main objective of semantic segmentation is to take an image and produce an
output that includes a segmentation map. In this map, the initial pixel values are transformed
into specific class label values, such as [0, 1,..., N-1], whereN is the number of classes. In Figure
2.1 an example of an image with its ground truth, representing the semantic segmentation, is
reported.

Figure 2.1: Example of semantic segmentation in Cityscapes dataset.

Formally, if we have an image of sizeHxW pixels P(i,j) with in general k channels (e.g k = 3
in case of RGB images), ∀i, j : 0 ≤ i ≤ H− 1, 0 ≤ j ≤ W− 1:

P(i,j) = (x0, x1, ..., xk−1) → l(i,j), l(i,j) ∈ [0,N− 1] (2.1)

In general, we can extend the definition to different types of data, such as a series of 3D
points in a pointcloud.

2.2 Multimodal

Multimodal data refers to information that is captured through multiple sensory modalities,
such as images, audio, text, or sensor readings. Each modality carries unique insights and con-
text about the data, making it richer and more comprehensive. For instance, a video contains
both visual information and corresponding audio, which, when combined, provide a more
profound understanding of the content.
The use of multimodal data has become increasingly popular in the field of machine learning.
Traditional machine learning models typically worked with data that had only one type of in-
formation, known as unimodal data. However, it’s worth mentioning that sometimes these
models also encountered data with multiple types of information, although they weren’t very
effective at handling it. However, with the development of more advanced neural networks,
data processing has improved significantly. This improvement allows the models to better use
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the strengths of each type of information and combine them effectively, resulting in more ac-
curate predictions.
Applications of multimodal data in machine learning are abundant. In natural language pro-
cessing, combining text with images can lead to better sentiment analysis or image captioning.
In autonomous vehicles, integrating data from cameras, LIDAR, and other sensors enables a
more robust perception of the environment, ensuring safer and more reliable driving.
The use of multimodal data is highly advantageous in the field of machine learning and neural
networks. By incorporating information fromdifferent sensorymodalities, we can createmore
adaptable and intelligent systems that can better understand the complexities of our world. As
we further explore the possibilities of multimodal learning, we can anticipate significant break-
throughs in AI and its revolutionary impact on various industries. An example of multimodal
data is the disparity map associated with an RGB image, Figure 2.2.

(a) RGB image. (b) Disparity map.

Figure 2.2: Example of disparity map.

2.3 Domain Adaptation

In the realm of machine learning and artificial intelligence, one of the critical challenges we
face is adapting models to new and unseen data distributions. This process is known as do-
main adaptation, and it plays a crucial role in building robust and generalizable AI systems.
Domain adaptation refers to the process of using knowledge acquired from a source domain,
where there is labeled data available for training, to enhance the performance of a model in a
target domain, where labeled data may be scarce or not exist. The main goal of domain adap-
tation is to reduce the differences between the source and target domain distributions, which
allows themodel to perform effectively in the target domain, evenwith limited labeled samples.
Domain adaptation becomes an essential topic to explore, as it addresses the challenges faced
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when deploying AI models in real-world scenarios. For instance, in computer vision, a model
trained on images from a specific dataset might not generalize well to different lighting con-
ditions, camera angles, or environmental variations. Domain adaptation techniques seek to
mitigate such discrepancies, allowing the model to adapt and maintain high performance in
diverse operational environments.
Oneof theprominent subfields of domain adaptation is unsuperviseddomain adaptation (UDA).
While traditional domain adaptation assumes access to labeled data in the target domain, UDA
takes a more challenging scenario where only unlabeled data is available in the target domain.
This setting is particularly relevant in situations where manually labeling data in the target do-
main is expensive, time-consuming, or impractical.

2.3.1 Test Time Adaptation

Test-time adaptation is a powerful technique used in artificial intelligence to help models per-
form effectively on new and unseen data in real-world scenarios. It allows the model to contin-
ually learn and adapt, much like how humans learn from experiences and adjust their under-
standing accordingly. One common approach to test-time adaptation is fine-tuning, where a
pre-trained model is further trained with new data related to the specific task at hand. How-
ever, it is essential to note that fine-tuning cannot always be done using the same loss function
used during the initial training. Using the same loss function often leads to catastrophic for-
getting, a phenomenonwhere themodel forgets its previous knowledge when adapting to new
data. Moreover, during fine-tuning, there may be limitations in accessing the original training
data due to privacy or proprietary concerns. This makes it challenging to maintain a balance
between incorporating new information and preserving the knowledge obtained during the
initial training. Furthermore, test-time adaptation becomes particularly difficult when done
in an unsupervised manner, such as in the context of unsupervised domain adaptation. In un-
supervised domain adaptation, the target domain lacks labeled data, and themodelmust adapt
to the new domain without explicit guidance from labeled samples. This adds an extra layer
of complexity to the adaptation process, as the model must learn to generalize effectively from
the source domain to the target domain without access to explicit target labels. In conclusion,
test-time adaptation is a critical aspect of AI research, allowing models to adapt and perform
well on new and diverse data in real-world scenarios. While fine-tuning is a common approach,
it requires careful consideration to prevent catastrophic forgetting and handle limitations in

6



accessing training data. Additionally, performing test-time adaptation in an unsupervised con-
text, such as unsupervised domain adaptation, presents further challenges that researchers are
actively addressing to improve the adaptability and performance of AI models.
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3
Related works

3.1 3D Semantic Segmentation

3D semantic segmentation methods aim to assign semantic labels to individual points in a 3D
point cloud. These methods can be broadly categorized into traditional methods and deep
learning methods.

Traditionalmethods typically followaprocess of over-segmenting thepoint cloud into smaller
regions, extracting features from these regions, and then classifying them into semantic cat-
egories. Representative methods using this process include [1], [2], [3]. Another approach
in traditional methods is to directly design feature vectors for each point without prior over-
segmentation, as seen in [4]. Some traditional methods, such as [5] use Conditional Random
Fields (CRF) to aggregate contextual information.

On the other hand, deep learning methods utilize deep neural networks to learn feature rep-
resentations and directly map input data to semantic labels. These methods can be further
divided into four groups based on the formats of input data:

Point-based methods: Methods like Pointnet[6] take raw point clouds as input and output
point-wise labels. They can process arbitrary unstructured point clouds. The main challenge
in processing raw point clouds is extracting local contextual features from the unstructured
data.

Image-basedmethods: Thesemethods project 3DLiDARdata onto a surface to generate 2D
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images, which are then used as inputs for deepmodels. The output predictions with pixel-wise
labels are reprojected to the original 3D LiDAR points. Multi-view segmentation and range
image segmentation [7] are two common strategies in image-based methods.

Voxel-basedmethods: Thesemethods divide the 3D space into regular grids called voxels con-
verting the pointcloud into a voxel grid representation. The voxel grid is then fed into a 3D
convolutional neural network (CNN) for semantic segmentation. One example is the method
proposed by Choy et all.[8].

Graph-basedmethods: Thesemethods represent the point cloud as a graph,where eachpoint
is a node and the edges represent the spatial relationships between points. Graph convolutional
networks (GCNs) or graph neural networks (GNNs) are used to process the graph structure
and perform semantic segmentation. An example is RG-GCN [9].

3.2 Multimodal Semantic Segmentation

In recent years, there’s been a growing interest in creating multi-modal 3D semantic segmenta-
tion models for autonomous driving. Different techniques have been proposed to tackle this
challenge, like combining data from various sensors, using prior knowledge, and transferring
learning from one domain to another.
Among the models for LiDAR point cloud segmentation, the Randla-Net[10] focuses on 3D
information but ignores valuable 2D information from RGB images.
To overcome these limitations, Yan et al. [11] proposed a method that uses 2D information
as priors to improve semantic segmentation accuracy on LiDAR data. It performs better than
other techniques that combine data or use prior knowledge while being faster than domain
transfer methods.
In the broader context, other works have also been proposed, achieving good performance on
certain benchmarks but still facing challenges in handling different sensor data effectively.
To address these issuesMSeg3D[12] was proposed, a newmulti-modal 3D semantic segmenta-
tionmodel. It generates pseudo-camera views fromLiDAR andmulti-camera images using an
asymmetric data augmentation technique. The model combines features from different sen-
sors and generates pixel-wise semantic labels. Experiments on benchmarks show thatMSeg3D
performs exceptionally well, especially in challenging scenarios like occlusions and limited cam-
era field of view.
Additionally, in an early work Eitel et al.[13] proposed a fusion method based on deep neural
networks.
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Other works like JSIS3D[14] andMFNet[15] also tackledmultimodal segmentation but were
limited to a specific number of modalities and didn’t address the challenge of fusing diverse
information.
To tackle these challenges, CMNEXT[16] model was introduced, using an asymmetric fu-
sion structure and a universal fusion model. It can handle multiple modalities flexibly and
achieve state-of-the-art performance on various benchmarks, including the DELIVER bench-
mark (proposed by the same authors [16]) with multiple modalities and adverse weather con-
ditions. Some works, like the one proposed by Barbato et al.[17], used as modality the depth
instead of LIDAR. An exhaustive survey written by Rizzoli et al. [18] presented a series of
proposed methods in the context of semantic segmentation in autonomous driving.

3.3 Domain Adaptation

In the realm of computer vision, particularly in the context of complex perception tasks such as
object detection and semantic segmentation, the domain of unsupervised domain adaptation
(UDA) has garnered significant attention in recent years. This surge in interest has prompted
the exploration and development of various UDA techniques, exemplified bymethods like the
one proposed by Luo et al.[19].
One notable avenue in pursuingUDA involves adversarial training, a strategic approach aimed
at minimizing the distributional discrepancies between source and target domains. These dis-
crepancies may manifest across different levels, ranging from subtle pixel-level variations to
more pronounced feature-level disparities and even extending to differences in output spaces.
Remarkable UDAmethods like Deep Domain Adaptation [20], Generalized adversarial adap-
tation [21], and the algorithm introduced by Tsai et al.[22] highlight the effectiveness of lever-
aging adversarial alignment to address these challenges.
Within this dynamic landscape, an essential contribution comes from the work of Wu et al.,
who introduced SqueezeSegV2[23]. This pioneering work not only presented an improved
model structure but also demonstrated the potential of unsupervised domain adaptation for
road object segmentation using LIDAR point clouds.
Taking a significant step forward, a recentbreakthroughhas led to the emergenceof xMUDA[24].
This approach represents a paradigm shift by capitalizing on the inherent synergies between 2D
images and 3Dpoint clouds. By incorporating insights frombothmodalities, xMUDAapplies
UDA tomultimodal data, with the potential to significantly enhance the accuracy and robust-
ness of segmentation models, even in the presence of substantial domain differences.
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While xMUDAmarks an important stride, it is crucial to recognize its limitations. Specifically,
xMUDA’s ability to fully harness the complementary information from different modalities
remains underexplored, leading to performance constraints, particularly when domain dispari-
ties are significant. In response, researchers have introducedMx2M[25], an innovativemethod
that employs masked cross-modality modeling to effectively bridge domain gaps. Comprising
components such as cross-modal removal and prediction (xMRP) and dynamic cross-modal
filter (DxMF), Mx2M dynamically aligns and matches features from diverse modalities, ulti-
mately enhancing model performance.
Amidst this landscape of advancements, the transformative influence of Transformers stands
out. These models, initially harnessed for natural language processing, have transcended disci-
plinary boundaries, leaving an indelible impact on diverse domains, including computer vision.
The works ofWolf et al.[26] and Rizzoli et al. [27] serve as proof of the versatility and state-of-
the-art performance that Transformers bring to the table. Their integration has paved the way
for researchers to explore novel avenues within the realm of UDA, fostering innovative strate-
gies to address challenges posed by domain adaptation.
Further augmenting this evolution is the emergence of themethod proposed byXing et al.[28].
Thismethod introduces a novel cross-modal contrastive learning scheme, leveraging correspon-
dences between2Dpixel features and 3Dpoint features. By fostering interactionbetween these
modalities, the approach enhances feature representations within both the labeled source do-
main and the unlabeled target domain. Additionally, the method introduces a neighborhood
feature aggregation module to further enrich pixel features, effectively utilizing 2D contextual
information for domain adaptation through cross-modal learning. Furthermore, it’s impor-
tant tomention thatToldo et al.[29] have presented a comprehensive survey that analyzesmany
of the known UDA techniques, also considering many of those mentioned earlier.

3.3.1 Test time adaptation

In recent years, deep learning has made remarkable strides in various domains, such as image
classification, object detection, and natural language processing. However, one of the major
challenges in deploying deep learning models in real-world applications is their limited ability
to generalize to new and different data distributions, a problem known as dataset shift.
To address this issue, severalmethods have been proposed, including domain adaptation, trans-
fer learning, and meta-learning. Domain adaptation aims to generalize a model to a new do-
mainby leveragingknowledge froma sourcedomain,while transfer learning initializes amodel’s
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weights using a pre-trained model on a large dataset for a specific task. Meta-learning focuses
on enabling a model to quickly adapt to new tasks with limited data.
Despite the success of thesemethods, they have limitations in fully test-time adaptation, where
themodel must adapt to new data distributions during inference without access to source data
or supervision. To tackle this challenge, the TENT[30] method is proposed.
TENToptimizes amodel for confidence during testing byminimizing the entropy of its predic-
tions. It estimates normalization statistics and optimizes channel-wise affine transformations
during test-time adaptation. The proposedmethod has achieved state-of-the-art results on var-
ious benchmarks for image classification and domain adaptation tasks, providing a promising
solution to fully test-time adaptation in deep learning. By optimizing for confidence during
testing, TENT can adapt to new data distributions without access to source data or supervi-
sion, potentially improving the accuracy, efficiency, and availability of deep learning models in
real-world applications.
On the other hand, the EcoTTA[31] addresses the problem of performance degradation in
deep neural networks due to domain shifts between train and test distributions. This issue
has been tackled by research fields like unsupervised domain adaptation and domain general-
ization, and various methods have been proposed, such as [32], [33], [34] for unsupervised
domain adaptation, and [35], [36], [37] for domain generalization.
To address this issue, EcoTTA introduces a novel approach to continual test-time adaptation
(TTA) that outperforms other state-of-the-art methods. It utilizes lightweight meta-networks
trained on the source domain and adapted to the target domain duringTTA,minimizingmem-
ory consumption by using frozen original networks and discarding intermediate activations.
The proposed approach achieves stable performance even in long-term TTA.
Additionally, the authors propose self-distilled regularization to prevent overfitting and catas-
trophic forgetting during long-term adaptation with unsupervised loss. This regularization
uses the architecture of the lightweightmetanetworks to preserve well-trained knowledge from
the source domain.

13



14



4
Pipeline

The proposed framework for this researchwork is based on a series of key steps aimed at leverag-
ing multimodal data for semantic segmentation and test-time adaptation. The main objective
is to demonstrate that using multimodal data can improve performance both during training
on source data and during the test-time adaptation phase, following the approach outlined by
the authors of TENT [30]. While in this chapter a high-level description of the pipeline is pre-
sented, in Chapters 6 and 7 a better description of themodels used and the various steps, along
with the results, are reported.

4.1 Preprocessing

The first step in our framework is data preprocessing as explained in Section 5.3. RGB images
and LiDAR-like data from various sources, for example, Cityscapes as the source dataset and
SemanticKITTI as the target dataset are preprocessed to standardize the data format to make
them compatible with each other. This phase includes transforming images into LiDAR-like
data, ensuring that information is represented in a common format.
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4.2 Network Training

In the next phase, preliminary training of the neural network is performed using only the 3D
data from the source dataset. Subsequently, RGB information is introduced into the segmen-
tation process. Initially using raw RGB information to evaluate performance improvement.
Additionally, further preprocessing to RGB images was applied, using the first two layers of
the VGG16 network to extract features. This feature extraction can be done both without fur-
ther training and by training theVGG16 layers, depending on the cases. In practice, during the
backpropagation phase, the update of the layers responsible for feature extraction was blocked,
even if those layers were part of the networks.

4.3 Selection of Optimal Features

After incorporating RGB information into the segmentation process, it is necessary to deter-
mine which features are most useful for performance improvement. In this context, several
options are considered:

• RGB Raw (3D+RGB): Direct use of RGB information without further processing.

• Feature Layer 1 without training (3D + Feats1(PT)): Using features extracted from the
first layer of VGG16 without further training.

• Feature Layer 1 with training (3D + Feats1(T)): Using features extracted from the first
layer of VGG16 with additional training.

• Feature Layer 2 without training (3D + Feats2(PT)): Using features extracted from the
second layer of VGG16 without further training.

• FeatureLayer 2with training (3D+Feats2(T)):Using features extracted from the second
layer of VGG16 with additional training.

These steps allow us to explore which types of RGB information or features extracted from
VGG16 are most effective in improving semantic segmentation on source data and on target
data before the TTA.
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4.4 Test Time Adaptaion

To complete the framework, TTA is performed on the target data. The method used for TTA
is based on the approach presented in [30]. Prior to TTA, the data is preprocessed and the
same features selected in the previous step are used. Then, since in the context of TTA the
target labels are not available, the model, previously trained on the source dataset, is retrained
on target data in an unsupervised manner using the Shannon entropy loss.

Figure 4.1: Pipeline: first of all both the source and target dataset are preprocessed as defined in Section 5.3, then the
model is trained using a specific set of features using the Cross‐Entropy loss computed on the ground truth of the source
dataset: if the raw RGB data was used, they are retrieved directly from the image, otherwise the image is passed through
the features extraction network (VGG16) in order to create a series of features for each point of the pointcloud. When the
model is trained, TTA is applied to the target dataset using the entropy minimization on the Shannon entropy.
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5
Dataset

This chapter focuses on the datasets used in this thesis for working with multimodal data and
unsupervised domain adaptation. Three datasets containing bothRGBand three-dimensional
information were carefully selected and considered for the study.

5.1 RGBD

5.1.1 Real dataset: Cityscapes

The Cityscapes dataset [38] is a widely-used benchmark in computer vision for understanding
urban scenes. It contains high-resolution images taken from a car’s perspective while driving
through different cities in Germany. The dataset includes various urban environments, such
as city centers, neighborhoods, and suburbs, with complex traffic scenarios, diverse buildings,
pedestrians, and different weather conditions.

• Semantic SegmentationAnnotations: Thedataset provides pixel-level annotations for
object classes, such as pedestrians, vehicles, roads, buildings, traffic signs, and vegetation.
This allows for tasks like object detection and semantic segmentation.

• Instance-level Annotations: Cityscapes includes annotations that distinguish individ-
ual instances within the same class. This information is useful for tasks like instance
segmentation and tracking.
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• Fine and Coarse Annotations: The dataset offers both fine and coarse annotations.
Fine annotations havehighly detailedpixel-wise labels for a subset of images, while coarse
annotations have lower-resolution labels for the entire dataset, allowing for less compu-
tationally intensive experiments.

• Stereoscopic Information: In some scenes, Cityscapes includes a stereo pair of images,
providing depth information for tasks like depth estimation and 3D scene reconstruc-
tion.

• Training, Validation, and Test Sets: To ensure fair evaluation, the dataset is split into
training, validation, and test sets. The training set is used for model training, the valida-
tion set for hyperparameter tuning, and the test set for unbiased evaluation.

In conclusion, the Cityscapes dataset is a valuable resource for researchers in computer vi-
sion, enabling them to develop and evaluate algorithms for urban scene analysis effectively in
German cities.

5.1.2 Synthetic dataset: Synthia

The SYNTHIA dataset[39] stands as a valuable asset in the realm of computer vision, utilized
for gaining enhanced insights into urban scenes. It encompasses synthetic images simulating re-
alistic urban landscapes andhas been formulated to train and assess computer vision algorithms
effectively.

• Synthetic Images: The dataset comprises images that resemble real city scenes. These
images are generated using specialized software that imparts themwith detailed and con-
vincing attributes.

• Semantic Labels: Each image is equipped with labels that indicate the presence and
location of objects. This aids in teaching computers to recognize objects and features
within urban settings.

• Depth Information: Certain imageswithin thedataset includedepth information. This
informationprovesuseful for estimatingdistances andunderstanding the three-dimensional
arrangement of objects within the scene.

The dataset’s images are generated through advanced rendering software. This process facili-
tates the creation of realistic three-dimensional scenes, rendering synthetic images akin to those
found in the real world. Annotations, which are labels describing objectswithin the images, are
accurately added.
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A noteworthy feature of the SYNTHIA dataset is its compatibility with Cityscapes. This
compatibility was devised to streamline comparisons between the two datasets and enable algo-
rithms trained on SYNTHIA to function seamlessly on images from Cityscapes.
This compatibilitywas achievedby aligning categories and annotations across the twodatasets.

Practically, it means that models trained on SYNTHIA can be employed on Cityscapes. This
proves advantageous, as it allows researchers to test their algorithms on both synthetic and real-
world scenarios using the same models.

In essence, the SYNTHIA dataset constitutes a vital resource for computer vision, offer-
ing synthetic data useful for training algorithms. Its compatibility with Cityscapes expands
research possibilities, enabling the testing of ideas across diverse scenarios. This advancement
continually propels the understanding of computers’ visual perception capabilities forward.

5.2 RGB + LIDAR

The Semantic KITTI dataset [40] is a widely used dateset in computer vision for semantic
segmentation tasks in autonomous driving scenarios. It is an extension of the original KITTI
dataset, with additional semantic labels for urban street scenes captured from amoving vehicle
in Germany.

• Dataset Extension: Semantic KITTI extends the original KITTI dataset by providing
pixel-level semantic labels for each captured LiDAR point. This semantic information
enhances the dataset’s usefulness for various scene-understanding tasks, particularly se-
mantic segmentation.

• LiDAR-basedAnnotations: Unlike traditionalRGB-based semantic segmentationdatasets,
SemanticKITTI utilizes LiDAR sensors to capture 3D point cloud data. Each point in
the point cloud is associatedwith a semantic label, allowing for the study of 3D semantic
understanding and object recognition in urban environments.

• Outdoor Driving Scenarios: The dataset consists of urban street scenes captured from
a moving vehicle equipped with LiDAR and cameras in Germany. It includes a wide
range of driving scenarios, such as busy city streets, highways, and residential areas, en-
abling comprehensive analysis of autonomous driving challenges.

• Large-scale and Diverse: Semantic KITTI comprises sequences of point clouds, with
each sequence containing thousands of LiDARsweeps. The dataset covers several urban
areas in Germany, making it diverse and suitable for training and evaluating large-scale
models.
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• Training, Validation, and Test Sets: The dataset is divided into training, validation,
and test sets, following the original KITTI dataset split.

In conclusion, the Semantic KITTI dataset is a valuable resource for researchers in com-
puter vision and autonomous driving, providing rich LIDAR-based annotations for urban
street scenes captured in Germany. It enables the development and evaluation of algorithms
for semantic segmentation and other related tasks in the context of autonomous vehicles.

5.3 Datasets preprocess

5.3.1 Cityscapes

The main objective of the preprocessing pipeline is to obtain LiDAR-like data from stereo
images. This involves simulating 3D point clouds from the provided disparity information
and camera calibration. By leveraging the disparity maps and intrinsic camera parameters, a
representation similar toLiDARdata is achieved. The approachutilizes only the left image and
computes 3D points to generate LiDAR-like data, enabling further processing and analysis for
various computer vision applications.

• Disparity Calculation: For the given stereo images, we used the Cityscapes dataset,
which already provides pre-calculated disparity maps. A disparity map is a visual rep-
resentation used in the field of computer vision and stereoscopy. It is obtained by com-
paring two images captured by cameras with slightly different angles. Disparity refers to
the difference in the position of a point in one of these images compared to its counter-
part in the second image. The disparity map visualizes these differences as a map, where
each point represents a disparity. This map is commonly used to determine the depth
of objects in the scene because the disparity between corresponding positions in the two
images can be used to calculate the distance from objects in a three-dimensional scene.
In the absence of pre-calculated disparities, stereo-matching techniques could be em-
ployed. Stereo matching aims to find corresponding points between the left and right
images and calculate the disparity as the horizontal difference between these correspond-
ing points.
Common stereo matching algorithms, such as Sum of Absolute Differences (SAD) or
Normalized Cross-Correlation (NCC), involve sliding a small window or block across
the left image and searching for the bestmatching block in the right image. The disparity
is then determined based on the shift between the two matching blocks.
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• Conversion of Disparity to Depth: Once the disparity map is available, the depth of a
3D point from its disparity is calculated using the following formula:

Z =
b · f
d

(5.1)

Where:

– Z represents the depth of the 3D point concerning the camera.
– b denotes the distance between the two cameras (baseline), representing the hori-

zontal distance between their viewpoints.
– f signifies the focal length of the camera, which is the distance between the camera’s

focal point and the image plane. In this preprocessing, we only consider the focal
length for converting disparity to depth.

– d represents thedisparity valueobtained fromthe stereo imagesusing stereomatch-
ing techniques or provided in the Cityscapes dataset.

• Projection from Image to 3D: Toproject a point froma2Dposition in the left image to
a 3D position in space, we utilize the camera’s intrinsic parameters. The 2D coordinates
of the point in the left image are denoted as (u, v), and its 3D coordinates are represented
by (X,Y,Z).

Z

uv
1

 = K
[
I|0
] 

X
Y
Z
1

 (5.2)

Where:

– (u, v) represents the coordinates of the point in the left image.
– (X,Y,Z) represents the 3D coordinates of the point in space.
– K is the intrinsic parameters matrix, which includes the focal length and other in-

trinsic parameters. In this preprocessing, we only consider the focal length for the
projection.

In the context of the 3D reconstruction process, it is important to note that the gen-
erated data results in a dense representation of the scene. Unlike sparse LIDAR data,
which contains discrete points obtained from laser measurements, the 3D reconstruc-
tion yields a high density of points densely covering the surfaces of the scene. This dif-
ference in data density between 3D reconstruction and LIDAR data is a crucial consid-
eration during the subsequent stages of processing.
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Generation of Lidar-like Data

The objective of the following steps is to generate LIDAR-like data starting from the
dense 3D reconstruction. This means that a subsampling of the points must be per-
formed.
The 3D points are first of all converted into spherical coordinates using the following
formulas:

– The horizontal distance dx,y from the point P(x, y, z) to the origin in the xy plane
is given by:

dx,y =
√
x2 + y2 (5.3)

– The radial distance rad from P to the origin in 3D space is given by:

dradial =
√

d2x,y + z2 (5.4)

– The polar angle θ, representing the angle between the position vector P and the
z-axis, is calculated as:

θ = arccos
z
rad

(5.5)

– The azimuthal angle φ, representing the angle between the projection of P onto
the xy plane and the x-axis, is calculated as:

φ = arccos
x
dx,y

(5.6)

Next, we define a set of horizontal planes with quantized polar angles. We call this set
thetas, and the values of the quantized polar angles are given by:

Sθ = linspace
(π
2
− π

8
,
π
2
+

π
8
, 64
)

(5.7)

Finally, we select the points whose absolute difference between the polar angle θ and the
quantized values t in the set of thetas is less than a certain threshold. Formally, we have:

|θ− t| < threshold, t ∈ Sθ (5.8)

This process enables the generation of 3Dpoints with information about their spatial lo-
cations in spherical coordinates, as well as the associated RGB color. By selecting points
based on the polar angle condition, a sparse LiDAR-like representation enriched with
color information is achieved.
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(a) RGB image

(b) Pointcloud

Figure 5.1: Image and pointcloud at the end of preprocessing, Cityscapes,

5.3.2 Synthia

The preprocessing for the SYNTHIA dataset was similar to Cityscapes, with one differ-
ence. SYNTHIA already had disparity maps converted into depth maps, making the
preprocessing smoother as depth information was readily available without extra steps.

5.3.3 SemanticKITTI

In the context of the SemantiKITTI dataset, a valuable collection of 3D points captures
a detailed representation of the environment. To effectively correlate this 3D data with
the associated LiDAR measurements and RGB information, a crucial step is required:
projecting the 3D points into the 2D image space and selecting only the points that lie
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(a) RGB image.

(b) Pointcloud.

Figure 5.2: Image and pointcloud at the end of preprocessing, Cityscapes.
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within the boundaries of the corresponding 2D image.
The camera calibration parameters are utilized for the projection of each 3D point onto
the image plane, establishing a direct correspondence between the 3D points and their
corresponding 2D pixel coordinates in the image. By aligning the 3D points with the
2D image, the transfer of RGB color information from the image to the associated 3D
points is achieved in a straightforward manner.
Following the projection, a careful selection process is performed to retain only the 3D
points that fall within the dimensions of the image. This refined selection ensures that
the 3D points are spatially aligned with the captured LiDAR data and RGB color infor-
mation from the image.

(a) RGB image.

(b) Pointcloud.

Figure 5.3: Image and pointcloud at the end of the preprocess, SemanticKITTI.

5.3.4 Classes re-mapping

Class remapping is importantbecause the SemantiKitti andCityscapes (or Synthia) datasets
use different class labels, although, in most cases, they represent the same element.
A mapping (Table 5.1) was created to establish clear connections between class names
and their corresponding numeric IDs in the SemantiKitti and Cityscapes datasets. This
process ensures precise alignment of each class name and numeric ID in one datasetwith
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their counterparts in the other.
In cases where certain classes are not suitable for the LiDAR-like data format, such as
”sky,” these classes and their corresponding numeric IDs were intentionally mapped to
a class considered ”unlabeled.”

Table 5.1: Cityscapes/Synthia‐SemanticKITTI class re‐mapping

City Name City Raw ID Kitti Name Kitti Raw ID Join Name Join ID
Unlabeled 0 Unlabeled 0 Unlabeled -100

Outlier 1
Ego Veh. 1
Rect. Bor. 2
Out of ROI 3
License P. 34
Sky 23
Guard Rail 14
Bridge 15
Tunnel 16
Rail Track 10 Other Struct. 52
Car 26 Car 10 Vehicle 0

Mov. Car 252
Truck 27 Truck 18

Mov. Truck 258
Bus 28 Bus 13

Mov. Bus 257
Caravan 29 Other Veh. 20
Trailer 30

Mov. Other. 259
Train 31 On Rails 16

Mov. On Rails 256
Motorcycle 32 Motorcycle 15 Two-wheels 1
Bicycle 33 Bicycle 11
Rider 25 Bicyclist 31

Mov. Bicycle. 253
Motorcyclist 32
Mov. Motorc 255

Person 24 Person 30 Person 2
Mov. Person 254

Road 7 Road 40 Road 3
LaneMark. 60

Continues on the next page
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Table 5.1 – Continuation from previous page
City Name City Raw ID Kitti Name Kitti Raw ID Join Name Join ID
Parking 9 Parking 41
Sidewalk 8 Sidewalk 48 Sidewalk 4
Building 11 Building 50 Building 5
Vegetation 21 Vegetation 70 Nature 6

Trunk 71
Terrain 22 Terrain 72
Ground 6 Other Ground 49
Pole 17 Pole 80 Pole 7
Pole Group 18
Fence 13 Fence 51 Structures 8
Wall 12
T. Sign 20 T. Sign 81 T. Sign 9
Static 4 Other Obj. 99 Objects 10
Dynamic 5
T. Light 19

5.3.5 Distribution of the 3D coordinates

To ensure a consistent 3D scene representation, a threshold of 0.00025 was chosen (re-
ferring to the Equation 5.8). This value was determined after analyzing the results, as ex-
plained inChapter 7. Using this threshold, the 3Dcoordinates inboth the SemanticKITTI
and Cityscapes datasets appear very similar. This similarity is important for making the
generated LiDAR-like data compatible. The examination encompassed all three spatial
coordinates as well as the distance from the origin (Figure 5.5).
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Figure 5.5: Comparison between the spatial coordinates and distances in Cityscapes (left column) and SemanticKITTI
datasets (right column): these plots show how the prepress helps to obtain a similar PDF for the x,y,z coordinates and the
PDF of the distances (computed as the norm of the x,y,z coordinates of the points in the point clouds).

31



32



Figure 5.7: Comparison between the spatial coordinates and distances in Synthia (left column) and SemanticKITTI datasets
(right column): these plots show how the prepress helps to obtain a similar PDF for the x,y,z coordinates and the PDF of
the distances (computed as the norm of the x,y,z coordinates of the points in the point clouds).
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5.4 Conversion of Point Cloud to Voxel Repre-
sentation

The three-dimensional point cloud data has been transformed into voxels using a voxel
size of 5 cm and a maximum voxel count of 4096 along each axis. This conversion was
performed to simplify the spatial representation of the data and prepare it for further
processing.
To achieve the voxelized representation, a scaling operation was applied to the points,
where eachmeasurement unit in the points corresponds to 5 cm in the voxels. Addition-
ally, the entire point cloud underwent a translation so that the minimum coordinate
value for each axis was shifted to the origin point (0,0,0). This translation was carried
out to ensure proper alignment of the point cloud with the voxel grid.
The outcome is a voxelized representation of the point cloud, where the data is aligned
with a regular grid of voxels, aiding in subsequent analysis andmanipulations. This data
preparation is essential for applications that require a structured and uniform represen-
tation of three-dimensional data, such as 3D image processing, machine learning, and
other applications in the field of computer vision.
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6
Models

In the field of computer vision, segmenting images to understand them better is crucial.
This chapter dives deep into the segmentation design used in this research. We’ll explore
the main features of the network used, with a focus on why we chose to use an existing
network and added a special feature called ”sparse convolution” to the UNet structure.
We’ll also look at the challenges in creating a newnetwork design andwhy certain choices
were made.

6.1 Introduction toNeuralNetworks andCon-
volutional Neural Networks (CNNs)

In the vast landscape of signal processing and machine learning, artificial neural net-
works (ANNs) stand as one of the foundational pillars. These models, inspired by the
structure of biological neural networks, provide a potent toolset for addressing a wide
range of prediction and classification problems. At the heart of ANNs lies the percep-
tron, which performs a weighted sum of inputs xi with weightswi considering a specific
number n of neurons, followed by an activation function f:

y = f

(
n∑
i=1

wi · xi + b

)
(6.1)
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6.2 ConvolutionalNeuralNetworks (CNNs)and
Convolution

Convolutional Neural Networks (CNNs) constitute a pivotal stage in the evolution of
structured data analysis, particularly in the realm of images. The hallmark feature of
CNNs is their ability to harness the convolution operation. This process entails the
application of a filter (kernel) to the input, enabling the detection of local patterns. The
output C(i, j) is computed using the formula:

C(i, j) =
M∑

m=1

N∑
n=1

X(i+m, j+ n) ·W(m, n) (6.2)

WhereC(i, j) represents the output element at position (i, j),X is the input,W is the fil-
ter, andM andN are the filter dimensions. This operation could highlight local features
like edges and textures in images, but in general, permit to analysis the images, maintain-
ing the spatial relation between the input pixels.

6.3 Stride and Padding

In the convolution operation, one can apply a stride S and padding P to influence the
output dimension. Stride represents the step by which the filter moves across the input,
while padding extends the area of the input (in most of the case cases, adding zeros) to
maintain dimensions.

6.4 Formula for Output Calculation

The formula to compute the output dimension O of the convolution operation, ac-
counting for stride and padding, is given by:

O =
I− F+ 2P

S
+ 1 (6.3)

Where I is the input dimension, F is the filter dimension (kernel), P is the padding, and
S is the stride. This formula helps determine the output dimension based on the stride
and padding configurations used.

36



6.5 Role of Pooling Layers

In addition to the convolution operation, pooling layers play a significant role in CNNs.
These layers focus on reducing the input dimensions, contributing to efficiency and con-
trol over overfitting. The pooling operation involves aggregating information within lo-
cal regions, extracted through max pooling, which selects the maximum value within a
pooling window. Pooling layers have several key roles:

1. Dimension Reduction: Gradually reduce input dimensions, simplifying the net-
work and optimizing computation.

2. Increase of the receptive field: reduce input dimensions allows subsequent neu-
rons to cover a larger area of the original input.

3. Feature Extraction: Highlight significant features from local regions, enabling
the network to focus on relevant aspects of the image.

4. Translation Invariance: Enhance robustness to small translations in the input,
enabling the network to recognize patterns regardless of their position.

6.6 BatchNormalization Layer

In addition to the convolution, pooling operations, and considerations of stride and
padding, Batch Normalization (BatchNorm) layers play a fundamental role in neural
network architectures. These layers normalize inputs for each layer within a mini-batch,
calculating means μ and standard deviations σ:

μ =
1
m

m∑
i=1

x(i) (6.4)

σ =

√√√√ 1
m

m∑
i=1

(x(i) − μ)2 (6.5)

Normalized inputs x̂ are then scaled and shifted using learnable parameters γ and β:

x̂ =
x− μ√
σ2 + ε

(6.6)

y = γx̂+ β (6.7)
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These parameters contribute to better fitting themodel to the data and improving train-
ing stability.
The interplay between convolution, pooling operations, and the use of BatchNorm lay-
ers presents a powerful approach for image analysis through CNNs and other neural
network architectures. This combination of techniques empowers neural networks to
recognize complex patterns, reduce the risk of overfitting, and effectively adapt to data.
By acknowledging the importance of each component, from convolution operations to
data normalization, a solid foundation is established for creating neural models capable
of learning meaningful representations and generating accurate predictions.

6.7 CommonRegularization Techniques

Regularization techniques aim to strike a balance between fitting the training data well
while preventing the model from becoming overly complex. Some common regulariza-
tion methods include:

1. L2Regularization (Weight Decay): Thismethod involves adding a penalty term
to the loss function based on the squaredmagnitudes of the weights. This encour-
ages the model to use smaller weights, leading to a simpler model.

2. Dropout: Dropout involves randomly setting a fraction of the neurons’ outputs
to zero during training. This prevents the network from relying too heavily on any
single neuron and encourages the network to learn more robust features.

3. Early Stopping: Early stopping involves monitoring the validation error during
training and stopping the training process once the validation error starts to in-
crease, thus preventing overfitting.

4. Data Augmentation: Data augmentation involves applying random transforma-
tions to the training data, such as rotations, flips, and translations. This artificially
increases the size of the training dataset and improves the model’s ability to gener-
alize.

6.8 Skip Connections

Skip connections are a distinctive type of architectural design that helpsmitigate the van-
ishing gradient problem and improve information flow in deep networks. They involve
creating shortcut connections that bypass one or more layers in the network. The most
famous example is the ”residual block,” introduced by ResNet. In a residual block, the
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output of one layer is added to the output of a deeper layer, effectively creating a ”short-
cut” for the gradient during backpropagation. This addresses the vanishing gradient
issue and enables easier training of deep networks. The formula for the skip connection
is:

Output = Input+ F(Input) (6.8)

Where F represents the residual mapping introduced by the skipped layers. This in-
novation has enabled the training of extremely deep networks with hundreds of layers,
leading to substantial performance improvements. Skip connections not only facilitate
training but also enable the network to learn hierarchical features effectively. These con-
nections allow the network to retain and propagate essential information while learning
incremental transformations. As a result, skip connections have become a fundamental
component of modern architectures, contributing to their success in various tasks such
as image classification, object detection, and semantic segmentation.

6.9 Sparse Convolution and Submanifold Sparse
Convolution

In traditional neural networks based on classic convolution, the convolution operation
is applied across the entire input. This approach can be computationally expensive and
inefficient when dealing with sparse data or data with many irrelevant regions, such as
3Dmodels where relevant information may be concentrated only in specific parts.
To address this issue, sparse convolutionwas introduced. In this case, amask is used or it
is assumed that empty regions have a value of zero in the input. The formula for sparse
convolution is as follows:

Output(i, j, k) =
M−1∑
m=0

N−1∑
n=0

O−1∑
o=0

Input(i+m, j+n, k+o)×Kernel(m, n, o)×Mask(i+m, j+n, k+o)

(6.9)
where:

– Output(i, j, k) is the value of the output feature map at position (i, j, k).
– Input(i + m, j + n, k + o) is the input value at position (i + m, j + n, k + o) in

the feature map.
– Kernel(m, n, o) is the weight (or filter coefficient) at position (m, n, o) in the con-

volutional kernel.
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– Mask(i +m, j + n, k + o) is the sparse mask, taking the value of 1 if the input at
position (i+m, j+ n, k+ o) is non-empty, and 0 otherwise.

– M,N andO are the dimensions of the convolutional kernel.

Sparse convolution computes the output only when the kernel is centered on a non-
empty region, avoiding unnecessary computations on empty regions and making the
operation more efficient.

6.9.1 Submanifold Sparse Convolution

The key innovation of Submanifold Sparse Convolution (SSC) [41] lies in its extension
of the efficiency and accuracy of sparse convolution to 3D data by leveraging the intrin-
sic geometric properties of 3D data.
In the context of 3D data, SSC operates under the assumption that the data lies on a
continuous submanifold within the 3D space. A submanifold is a lower-dimensional
structure embedded within a higher-dimensional space, in this case, the 3D space. The
fundamental idea behind Submanifold Sparse Convolution is to perform the convolu-
tion operation exclusively on this lower-dimensional submanifold rather than consider-
ing the entire 3D space.
Mathematically, Submanifold Sparse Convolution can be defined as follows:

Output(i, j, k) =
M−1∑
m=0

N−1∑
n=0

O−1∑
o=0

Input(i+m, j+ n, k+ o)× Kernel(m, n, o) (6.10)

The key distinction is in the way the input feature map is sampled. In Submanifold
Sparse Convolution, the input is sampled solely from the points that lie on the subman-
ifold, rather than considering all possible positions in the 3D space.
By focusing only on the points residing on the submanifold, Submanifold Sparse Con-
volution achieves amore targeted and effective computation, concentrating solely on the
relevant parts of the 3D data. This preserves the geometric structures and relationships
within the data, leading to enhanced performance in 3D semantic segmentation tasks,
particularly when dealing with sparse 3D datasets.
In conclusion, Submanifold Sparse Convolution represents a significant advancement,
as it efficiently handles 3D data by operating exclusively on the lower-dimensional sub-
manifold, capitalizing on the geometric properties of the data and achieving state-of-the-
art performance in 3D semantic segmentation tasks.
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6.10 Challenges inMaking aNewDesign

Designing a network for segmentation from scratch is a tough job. It requires a good
understanding of howmachines learn and how images work. It can be complicated and
risky because every design choice affects how well the network works. Making the net-
work work well takes a lot of time and resources.
In this specific thesis work, it is essential to address challenges related to handling mul-
timodal data (3D + RGB) and tackle the issue of domain shift introduced by the pres-
ence of data from both Lidar sensors and depthmaps. Hence, opting for a pre-designed
segmentation network provides a robust foundation for applying UDA techniques be-
tween the source dataset and the target dataset.

6.11 Benefits of Using Ready-Made Networks

Using networks that are already trained, like the UNet, has some big advantages for seg-
mentation. These networks have learned from many different pictures, so they know
how to find important parts of images automatically. This means we don’t have to start
from scratch, which makes building the network faster. Even if we don’t have a lot of
pictures to train on, using a pre-trained network can still give us good results. These net-
works also start with some good settings, which helps them learn faster when we teach
them new things.

6.12 Segmentation network

6.12.1 TheUNetStructure: CombiningEncoderandDecoder

The core of our segmentation network is the UNet architecture[42], which looks like a
”U.” This design brings together two essential parts: the encoder and the decoder. The
encoder, located at the top of the ”U,” extracts complex details from the initial image
using layers that do special calculations. This helps us capture important details of dif-
ferent sizes, so we understand both the overall picture and specific parts.

On the other hand, the decoder is responsible for putting together the segmented image.
It does this by using special layers that work oppositely to the encoder. These layers help
mix the details from the encoder and recreate the final segmented image. The ”U” shape
is chosen tomake sure the encoder and decoder work well together, creating an accurate
segmentation result that doesn’t lose important details.
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Feature Concatenation

A distinctive aspect of the UNet architecture is the use of feature map concatenation
from different depths. During the up-sampling process in the decoder, feature maps are
combinedwith those corresponding to the encoder, creating a fusionof details at various
scales and contexts. This mechanism allows the network to maintain an awareness of
lower-level details and higher-level semantic features, optimizing segmentation accuracy.

Activation Functions and Finalization

In each convolutional layer, the UNet architecture employs activation functions, often
using the Rectified Linear Unit (ReLU), to introduce non-linearity in the processing.
This helps capture the complex relationships present in the data and enhances the net-
work’s discrimination ability.
For the final layer, it’s common to use an appropriate activation function based on the
nature of the segmentation problem. For instance, in binary segmentation applications,
the sigmoid function can be employed to produce an output between 0 and 1 for each
pixel, representing the probability of belonging to the target class.

Figure 6.1: UNet architecture.

6.13 Features extraction network

Within the framework of the conducted research, the VGG16 (Simonyan et al.[43]) ar-
chitecture has proven to be of paramount importance for accurate image analysis and for
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linking the extracted features with their corresponding three-dimensional (3D) points.
TheVGG16 convolutional neural network, developed byKaren Simonyan andAndrew
Zisserman, was selected due to its depth and strategic use of convolutional filters.
The primary focus of the thesis was the utilization of the initial two convolutional layers
of the VGG16 network. These early layers are responsible for capturing fundamental
features from images, such as edges, angles, and textures. This serves as a fundamental
basis for subsequent analysis and interpretation.
The objective was to extract pertinent information from the original images and estab-
lish a connectionbetween these features and their correspondingpoints in three-dimensional
space. To facilitate this linkage,maintaining the output’s (featuremap) dimensions iden-
tical to the input’s (original image) dimensions was essential.
To achieve this goal, a convolution technique with a stride of 1 was employed, ensuring
a one-to-one mapping between the input and output pixels. This strategy preserved the
image’s dimensions during convolution, providing a direct correspondence between the
extracted features and the corresponding 3D points in the real environment.
This approach had the purpose of effectively linking the features extracted from the im-
ages with the respective 3D points, thus paving the way for enhanced analysis and com-
prehension of three-dimensional scenes. The methodology grounded in the VGG16 ar-
chitecture demonstrated its effectiveness in extracting significant information and estab-
lishing abridgebetween the two-dimensionalworld of images and the three-dimensional
realm of reality.

Figure 6.2: VGG16 architeture.

6.14 IntersectionoverUnion (IoU) inSemanticSeg-
mentation

IoU, or Intersection over Union, is a critical metric in the field of computer vision, es-
pecially for segmentation and detection tasks. This metric provides an accurate way to
evaluate how well machine learning models are able to segment objects of interest in
an image. Its significance arises from its ability to consider the spatial overlap between
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model predictions and ground truth, overcoming the limitations of simpler metrics like
accuracy.
The formula to calculate IoU is as follows:

IoU =
AreaIntersection
AreaUnion

Where:

– AreaIntersection represents the area where model predictions and ground truth over-
lap.

– AreaUnion represents the total area covered by both model predictions and ground
truth.

The result is a value ranging from 0 to 1, where 0 indicates no overlap and 1 indicates a
perfect overlap between the segmented areas.
Let’s consider an example where a segmentationmodel identifies a car in an image. Sup-
pose the area segmented by the model and the ground truth area of the car have an in-
tersection of 300 square pixels and a union area of 500 square pixels. The calculation of
IoU would be as follows:

IoU =
300
500

= 0.6

In this case, the IoU would be 0.6, indicating that 60% of the segmented area coincides
with the ground truth area.
The IoU’s ability to evaluate the overlap between segmented areas makes it preferable
over simple accuracy when assessing segmentation models. Accuracy could be mislead-
ing in situations where small details or objects are missed due to their size or position.
IoU, on the other hand, considers the precision in object localization and penalizes in-
correct or dispositioned predictions.
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7
Expreriments and results

In this chapter, the procedure for selecting the optimal thresholdwill be explained, and a
series of experiments conducted to evaluate the impact of integrating RGB image infor-
mation into semantic segmentation processes will be presented. This section is divided
into two main parts: the first part describes the experiments conducted using only 3D
information without the inclusion of RGB images, and then introduces RGB visual in-
formation demonstrating how it has improved performance in bothOracle training and
source-only scenarios. In the second part, test time adaptation is applied to the selected
model to be adapted to the target dataset.
To conduct these experiments, two different source datasets were utilized. Initially, re-
liance was placed on a real-world dataset, Cityscapes, to assess the model’s performance
in an authentic urban context. Subsequently, a synthetic dataset, Synthia, was intro-
duced to evaluate themodel’s robustness in virtual scenarios. In both cases, the ultimate
goal was an adaptation on target data from SemanticKITTI.

7.1 Threshold selection

During the initial experiment, theprimary aimwas todetermine themost suitable thresh-
old value for producing a dataset with LIDAR-like characteristics using Cityscapes im-
ages (see section 5.3).
To tackle this challenge, the approach used the Intersection over Union (IoU) calcu-
lation in the SemanticKITTI dataset, which was the reference. We examined several
threshold values, such as 0.0005, 0.00025, 0.0001, 0.000075, and 0.00005. Our pri-
mary objective was to identify the threshold that maximized the IoU value on the target
dataset. To achieve this, we trained five models using five source datasets (Cityscapes)
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created with these thresholds. These models were then tested on the target dataset to
evaluate their performance.
It’s important to mention that we chose the threshold directly by considering data that
includes RGB information because our main focus in this study is to use data that com-
bines different types of information.

7.2 Semantic Segmentation

7.2.1 Unimodal segmentation: 3D only

Utilizing the dataset generated with the designated threshold and training the network
solely with 3D point cloud data, a foundational benchmark was established. This ap-
proach provided a basis for evaluating the benefits derived from the integration of vari-
ous data sources, encompassing both 3D and RGBmodalities.
Since the network utilizes the 3D information only to capture the spatial relationships
between points and the absolute position of each point is not directly utilized in the
convolution operations, a dummy feature was introduced for all points, in particular,
following the methodology employed by the authors of xMUDA [24], a value of 1 was
assigned to all points.

7.2.2 Multimodal segmentation: 3D + RGB

Incorporating RGB data into the semantic segmentation process has played a crucial
role in this study, leading to significant enhancements in various aspects of model per-
formance. Notably, the use ofRGB informationhas not only resulted in small butmean-
ingful improvements inmean Intersection over Union (mIoU) scores during theOracle
training, but it has also proven effective in boosting the model’s performance on both
the source and target datasets in source-only runs.
The inclusion ofRGBdata represents a significant advancement inmultimodal segmen-
tation. It allows themodel to leverage the rich visual information found inRGB images,
complementing the 3D data. This integration of modalities facilitates a more compre-
hensive understanding of the environment, resulting in improved segmentation accu-
racy.

7.2.3 Features extracted using VGG16

An additional experiment was conducted involving the utilization of features extracted
from the first and second layers of the VGG16 network. The results of these experi-
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ments reveal that, although these features did not surpass the results achievedusingRGB
information directly, this technique nonetheless led to an enhancement inmodel perfor-
mance.

Specifically, two experiments were carried out for each of the aforementioned layers.
In the first experiment, a pre-trained network available in the PyTorch library was em-
ployed, without updating the weights of the layers. In the second experiment, the layers
were updated, starting from the pre-trained ones, during the training to adapt feature
extraction to the source dataset used for training.

While the improvements observedusingVGG16 featureswere not as substantial as those
achievedwithRGBdata, the potential of leveraging feature extractionmodels for feature
extraction was demonstrated.

In this case, the imagesusedunderwent the samepreprocessing steps requiredbyVGG16.
They were normalized to the range of 0-1, followed by subtracting the mean of Ima-
geNet [44] and dividing by its standard deviation, with the following values for each
RGB channel:

– Mean (R, G, B): (0.485, 0.456, 0.406)

– Standard Deviation (R, G, B): (0.229, 0.224, 0.225)

7.3 Test time adaptation

In the context of this thesis work, three distinct scenarios have been considered for test
time adaptation. The choice was made to employ the model trained with the features
yielding the highest mIoU on the target dataset. In the case of the source dataset being
Cityscapes, TTA was performed using the raw RGB data.

7.3.1 Case 1 (BN): Forward PassWithout Backward Loss

In the first case, a straightforward forward pass was implemented without computing
the gradient of the loss function concerning the network’s parameters. The focus was
solely on updating the parameters of the batch normalization layers. This approach
aims tomaintain data distribution stability through batch normalization, enhancing the
model’s generalization capability during testing.
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7.3.2 Case 2 (BN + EM): Using Shannon Entropy Loss with
Backward on BatchNormalization

In the second case, the utilization of Shannon entropy loss during test time adaptation
was introduced, following the approach proposed by the authors of TENT [30]. This
loss function was employed to minimize model uncertainty in an unsupervised fashion.
However, gradient computation was performed exclusively concerning the batch nor-
malization parameters. This approach was designed to optimize class probability cali-
bration, enabling the model to express uncertainty in predictions.

7.3.3 Case 3 (EM): Backward of Shannon Entropy Loss with
FullWeight Update

In the third case, a more aggressive strategy was adopted, where the gradient compu-
tation of Shannon entropy loss was executed across all neural network weights. This
encompassed both the batch normalization layer and convolutional layer weights dur-
ing test time adaptation. The aim was to maximize prediction accuracy during testing,
allowing the model to fully adapt to the specifics of the target input.

7.3.4 Fine-Tuning and Validation

Furthermore, to assess the effectiveness of the various test time adaptation strategies,
fine-tuning processes were conducted. During fine-tuning, cross-entropy loss was used
in conjunction with ground truth target data to retrain the model. Initially, fine-tuning
involved updating all network weights. Subsequently, a second phase of fine-tuning was
carried out, limiting weight updates to only the batch normalization layers. This ap-
proach facilitated an evaluation of the specific role of batch normalization in the model
adaptation process.

7.4 Threshold selection results

The experiment demonstrated that the best threshold value was 0.00025 (Table 7.1).
This showed that this specific threshold effectively optimized the alignment between
the generated data and the SemanticKITTI dataset.
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Table 7.1: Horizontal Channel Error ablation: the error defines how far from the ”theoretical” angle, a point is considered
valid (i.e. the smaller the margin the fewer are the valid points).

Ho.-Channel
Error

Steps
(best/final)

Train
(best/final)

Val
(best/final) Test Target

5e-4 71k/80k 57.58/57.80 56.20/55.80 52.65 22.28
2.5e-4 67k/80k 56.88/55.83 55.41/55.07 52.08 22.38
1e-4 77k/80k 52.05/51.91 51.19/49.42 47.28 21.60
7.5e-5 78k/80k 50.36/49.73 48.87/50.06 46.54 22.36
5e-5 78k/80k 47.92/47.73 47.33/47.56 44.34 19.94

7.5 Real dataset results

Table 7.2 reports the IoU values for all the classes and the final mIoU values for all the
experiments. In conclusion, when using the Cityscapes dataset as the target, it has been
observed that the most significant improvement is achieved using raw RGB data (Ta-
ble 7.3). During the Test Time Adaptation (TTA) phase, all three cases yield similar
results, both with a substantial increase of about 8-9% in the target data and the values
are not too far from the fine-tuning results (Table 7.2), which can be considered themax-
imum value we can reach using the entropyminimization technique on this model. It is
worth noting that, to ensure greater stability of the model, especially in the source data,
the preferable solution is undoubtedly to update only the batch normalization layers as
shown in Table 7.4.
Some examples of comparison in the outputs between ground truth andOracle training
and between source-only and TTA are provided in Figure 7.1 and Figure 7.2.
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Table 7.2: Adaptation Cityscapes→ SemanticKITTI. FT = fine‐tuning, BN = batch norm., EM = entropy minimization.

Method Mode ro
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mIoU
Oracle 3D 94.05 82.93 92.11 88.94 53.33 58.88 44.24 34.06 93.91 51.65 30.48 65.87
Oracle 3D+RGB 93.84 82.25 92.78 90.59 58.27 60.04 45.16 36.71 93.98 47.72 27.85 66.29
Oracle 3D+Feats1(PT) 94.10 83.00 92.48 89.59 53.36 59.26 44.50 37.35 94.37 53.18 31.62 66.62
Oracle 3D+Feats1(T) 93.85 82.55 92.37 89.88 54.72 58.40 43.28 34.03 94.16 52.24 32.70 66.20
Oracle 3D+Feats2(PT) 93.89 82.59 92.95 89.72 54.64 60.02 45.21 33.50 94.24 48.09 30.82 65.97
Oracle 3D+Feats2(T) 94.48 83.74 92.53 90.14 55.25 58.65 47.86 41.98 94.26 49.62 33.10 67.42

Source-only 3D 16.74 10.29 36.99 19.24 12.38 12.69 3.50 13.02 29.78 7.19 3.42 15.02
Source-only 3D+RGB 67.81 29.77 19.07 27.98 11.04 18.29 11.30 3.44 41.83 5.64 10.03 22.38
Source-only 3D+Feats1(PT) 58.28 23.87 27.07 13.29 11.14 15.47 4.20 1.58 27.64 3.20 5.52 17.39
Source-only 3D+Feats1(T) 64.04 9.90 22.38 22.31 4.68 20.55 4.57 1.19 31.42 2.49 5.12 17.17
Source-only 3D+Feats2(PT) 61.46 17.78 18.45 20.85 11.53 19.73 5.97 1.96 26.97 3.28 4.35 17.47
Source-only 3D+Feats2(T) 62.53 21.61 30.65 41.22 12.06 25.47 4.12 1.43 35.99 1.51 9.35 22.36

FT 3D+RGB 93.51 81.59 92.68 90.86 56.96 59.91 41.20 42.62 94.60 58.47 31.09 67.59
FT (only BN) 3D+RGB 74.57 38.80 59.42 68.99 21.82 27.09 15.56 8.91 70.71 4.21 2.35 35.68

BN update 3D+RGB 75.40 40.67 49.39 66.26 24.92 19.67 2.31 4.91 58.97 2.52 4.86 31.81
BN update + EM 3D+RGB 74.43 39.77 38.73 50.88 23.70 30.19 6.10 7.24 55.83 2.15 4.88 30.36
EM 3D+RGB 76.71 33.52 75.39 69.50 2.20 2.56 0.70 11.14 78.49 0.00 0.52 31.89

Table 7.3: Ablation on different RGB feature integrations. PT = pre‐trained, T = trained.(Cityscapes‐Semantickitti)

Mode mIoU
Source

mIoU
Target

Plain 3D 45.09 15.02
3D+RGB 52.08 22.38

Layer 1 PT 51.20 17.39
T 53.89 17.17

Layer 2 PT 51.87 17.47
T 55.31 22.36

Table 7.4: Comparison of the UDA approaches in source and target datasets (Cityscapes→ SemanticKITTI, 3D+ RGB)

UDAmethod mIoU Source mIoU Target
BN 42.18 31.81
BN+EM 47.49 30.36
EM 28.93 31.89
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Groud truth Oracle

Figure 7.1: Comparison between ground truth and the oracle training in the semanticKITTI dataset with the raw RGB
information.
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Source only Test time adaptation

Figure 7.2: Comparison between source only and TTA using Cityscapes dataset as source and semanticKITTI dataset as
target with the raw RGB information.
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7.6 Syntethic dataset results

The same procedures were applied using a synthetic dataset, Synthia, generated with the
same threshold (0.00025) used for the Cityscapes dataset. In this case, the best features
were found to be those derived from the first layer of the VGG16 network without up-
dating its respective weights during training, excluding cases where the data contained
only 3D information. It is noteworthy that, even in this scenario, the use of RGB infor-
mation contributes to the improvement of mIoU in the source dataset (Table 7.6).
As for testing on target dataset (without any form of test-time adaptation), it is highly
likely that due to the significant domain shift present in RGB images, which is not com-
pensated for by the method utilizing the threshold to generate LIDAR-like data, this
may result in inferior performance. Infact, looking at the Table 7.6, the results mIoU on
the source-only training with the integration of the RGB information, leads to lowers
values w.r.t. the result obtained with the 3D only information.
This is further confirmed by the fact that when applying Test Time Adaptation (TTA)
techniques, the performance improvements are found to be quite limited compared to
the ”source-only” results. Specifically, it has beenobserved that by applyingTTAtoboth
the best-identified feature (i.e., the first layer of the VGG16 network) and the raw RGB
information, the performance gains were modest. Considering also the fine-tuning case
(Table 7.5) the results are lower w.r.t. the results obtained in the adaptation Cityscapes
→ SemanticKITTI (Table 7.2) confirming the fact that the domain shift in this case is
higher.
In this case, even if the results are limited, it can be observed that the TTA applied to the
model trained with the best features had a performance increase bigger than the model
trained with the rawRGB data. In particular, in the first case, the gain in mIoU is equal
to 26.87 − 25.40 = 1.4%, while in the second case is 25.54 − 24.47 = 1.07 (Table
7.5). This showed how the utilization of the VGG16 features is a good starting point to
increase the model performance on target data and reduce the domain shift in the RGB
space.
Moreover, the results in the TTA confirmed the fact that the best way to proceed is to
update only thebatchnorm layers during the training, since, updating the entire network
reduces the performance of the model in both source and target datasets (Table 7.7).
These findings highlight the complexity of the challenge posed by the synthetic domain
in contrast to the real LIDAR world, suggesting that the intrinsic differences between
synthetic RGB-Ddata and real LIDAR-RGBdatamay require additional domain adap-
tation efforts to achieve better performance on the target dataset.
Some examples of comparison in the outputs between ground truth and oracle training
and between source-only and TTA are provided in Figure 7.3 and Figure 7.4.
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Table 7.5: Adaptation Synthia→ SemanticKITTI. FT = fine‐tuning, BN = batch norm., EM = entropy minimization.
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mIoU
Oracle 3D 94.05 82.93 92.11 88.94 53.33 58.88 44.24 34.06 93.91 51.65 30.48 65.87
Oracle 3D+RGB 93.84 82.25 92.78 90.59 58.27 60.04 45.16 36.71 93.98 47.72 27.85 66.29
Oracle 3D+Feats1(PT) 94.10 83.00 92.48 89.59 53.36 59.26 44.50 37.35 94.37 53.18 31.62 66.62
Oracle 3D+Feats1(T) 93.85 82.55 92.37 89.88 54.72 58.40 43.28 34.03 94.16 52.24 32.70 66.20
Oracle 3D+Feats2(PT) 93.89 82.59 92.95 89.72 54.64 60.02 45.21 33.50 94.24 48.09 30.82 65.97
Oracle 3D+Feats2(T) 94.48 83.74 92.53 90.14 55.25 58.65 47.86 41.98 94.26 49.62 33.10 67.42

Source-only 3D 60.94 32.73 16.71 71.74 2.06 31.22 5.35 12.43 43.76 24.64 0.06 27.42
Source-only 3D+RGB 61.42 22.84 17.11 61.38 5.72 55.03 9.74 8.68 39.96 13.16 0.06 24.47
Source-only 3D+Feats1(PT) 52.37 22.80 21.73 71.50 2.60 35.85 6.85 7.52 43.39 14.79 0.02 25.40
Source-only 3D+Feats1(T) 60.65 21.43 18.28 69.09 1.37 34.89 8.34 4.64 39.48 13.83 0.06 24.73
Source-only 3D+Feats2(PT) 60.07 18.39 9.61 66.05 0.89 33.32 3.71 13.99 39.96 13.22 0.12 23.58
Source-only 3D+Feats2(T) 42.27 23.17 33.41 67.74 1.21 31.29 6.87 6.86 33.28 13.17 0.13 23.58

FT 3D+Feats1(PT) 93.18 80.85 92.60 89.66 53.80 58.29 47.66 33.21 93.84 40.67 31.50 65.02
FT (only BN) 3D+Feats1(PT) 71.93 23.02 47.66 68.94 12.68 30.43 12.33 14.17 60.38 4.94 1.75 31.66

BN update 3D+Feats1(PT) 64.07 28.29 31.15 69.29 4.06 30.80 7.14 5.20 43.24 3.84 0.12 26.11
BN update + EM 3D+Feats1(PT) 67.00 27.51 30.85 69.83 1.56 32.77 9.45 6.94 44.45 5.19 0.01 26.87
EM 3D+Feats1(PT) 71.40 2.21 30.37 47.84 0.00 0.03 0.00 6.40 24.78 0.07 0.00 16.65
BN update 3D+RGB 58.82 25.13 39.77 63.33 6.95 24.00 2.08 3.79 52.76 2.17 0.06 25.35
BN update + EM 3D+RGB 63.39 26.14 25.97 61.24 4.43 31.97 8.81 8.21 46.68 4.04 0.00 25.54
EM 3D+RGB 67.76 4.81 48.61 51.40 0.00 0.72 0.16 3.66 48.65 0.00 0.00 20.53

Table 7.6: Ablation on different RGB feature integrations. PT = pre‐trained, T = trained.(Synthia‐Semantickitti)

Mode mIoU
Source

mIoU
Target

Plain 3D 63.63 27.42
3D+RGB 66.35 24.47

Layer 1 PT 65.50 25.40
T 67.01 24.73

Layer 2 PT 66.75 23.58
T 68.70 23.58

Table 7.7: Comparison of the UDA approaches in source and target datasets (Synthia→ SemanticKITTI, 3D+Feats1(PT))

UDAmethod mIoU Source mIoU Target
BN 58.05 26.11
BN+EM 54.71 26.87
EM 26.89 16.65
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Groud truth Oracle

Figure 7.3: Comparison between ground truth and the oracle training in the semanticKITTI dataset with the features
extracted from the first layer of VGG16 without training.
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Source only Test time adaptation

Figure 7.4: Comparison between source only and TTA using Synthia dataset as source and semanticKITTI dataset as target
with the raw RGB information.
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8
Conclusion

In the research conducted,we explored the integrationof variousmultimodal data sources,
such as RGB and 3D point clouds, alongside the application of Unsupervised Domain
Adaptation (UDA) techniques to enhance the accuracy of semantic segmentationmod-
els on target dataset. This approach proves particularly advantageouswhen dealingwith
complex issues that may make the acquisition of labeled data challenging.
The objectives were achieved through a series of experiments employing two distinct
datasets: Cityscapes, a real-world dataset representing an authentic urban context, and
Synthia, a synthetic dataset that allowed for the evaluation of the model’s robustness in
virtual scenarios. Both datasets served as the foundation for assessing the effectiveness
of the deep-learning techniques employed in the research.
One of the primary steps in the framework involved data preprocessing. RGB images
and LiDAR-like data from various sources, such as Cityscapes as the source dataset and
SemanticKITTI as the target dataset, were subjected to preprocessing to standardize
their data formats, ensuring compatibility. This phase encompassed the transformation
of images into LiDAR-like data, thereby ensuring uniform representation of informa-
tion. In particular, the proposed preprocessing proved to be effective in establishing an
initial alignment between the source data and the target data PDFs.
In the subsequent phase, preliminary training of the neural network was initiated us-
ing exclusively the 3D data from the source dataset. Subsequently, RGB information
was incorporated into the segmentation process. Initially, raw RGB data was utilized to
assess performance improvements. Furthermore, additional preprocessing was applied
to RGB images, and feature extraction was performed using the first two layers of the
VGG16 network. Depending on the context, this feature extraction could be executed
with or without further training of the VGG16 layers.
To establish an effective link between the features extracted from images and their corre-
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sponding 3D points, a convolution technique with a stride of 1 was employed, guaran-
teeing a one-to-onemapping between input and output pixels. This approach preserved
thedimensions of the images during convolution, facilitating adirect correspondencebe-
tween the extracted features and the corresponding 3D points in the real environment.
Themethodology rooted in the VGG16 architecture proved to be effective in extracting
meaningful information and bridging the gap between the two-dimensional world of
images and the three-dimensional real world.
It was observed that the utilization of multimodal data sources, such as RGB and 3D
point clouds, not only elevates the precision of the segmentation process within the
source dataset but also extends these gains to the target dataset. Moreover, an evalua-
tion of the model’s performance in scenarios where there is no labeled data highlights
the potential of Unsupervised Domain Adaptation (UDA) in adapting segmentation
models to new domains.
To sum up, the results obtained, although limited, demonstrate that the proposed pre-
processing and feature extraction technique serves as a good starting point to mitigate
the domain shift between data with different distributions and containing distinct in-
formation (LIDAR vs Depth and Synthetic vs Real). This lays a strong foundation for
the development of more advanced domain adaptation techniques, particularly in the
context of test time adaptation.
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