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Abstract

Pointfree topology is an approach to topology that takes the notion of open set as

primitive, rather than that of point. There exists a dual adjunction between the category

of topological spaces and that of complete lattices satisfying a certain distributivity law.

These are called frames, and in pointfree topology they are regarded as topological spaces.

One of the functors involved in the adjunction mentioned above assigns to each topolog-

ical space its ordered collection of open sets, which is always a frame. The fixpoints of

this adjunction are spatial frames on one side and sober spaces on the other. All Hausdorff

spaces are sober, and all sober spaces are 𝑇0. One of the great advantages of pointfree

topology is that the category of frames is algebraic, unlike that of sober spaces. In this

category, we can prove constructively results that classically require some choice princi-

ple, such as the Tychonoff Theorem or the Hofmann-Mislove Theorem (useful in domain

theory). This is why the fact that the category of frames is an extension, and not a per-

fect representation, of that of sober spaces is an advantage; and this is why in pointfree

topology we work in this category, and not in the smaller one of spatial frames.

In this thesis, we propose to extend the dual adjunction at the core of pointfree topol-

ogy in order to capture not only sober spaces but all 𝑇0 spaces. A similar approach had

already been outlined: Raney duality establishes a dual equivalence of categories between

the category of 𝑇0 spaces and that of the so-called Raney algebras. But Raney algebras are

not a generalization of 𝑇0 spaces; they are a perfect representation. Therefore, rather than

working in a pointfree setting, we are working in an order-theoretical rephrasing of the

classical point-set approach. With our approach, we obtain a representation of 𝑇0 spaces

that is entirely pointfree, and a category that generalizes that of 𝑇0 spaces in the same way

frames generalize sober ones. We call the pointfree structures we introduce Raney exten-

sions. In this thesis, we prove new results in pointfree topology using Raney extensions.

In particular, we see how various structures that have captured researchers’ interest in

pointfree topology recently are actually special cases of Raney extensions. This holds, for

example, for the concept of a canonical extension of a frame. Primarily, therefore, we will

use Raney extensions to prove new results regarding these structures.
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Introduction

This thesis presents some new results in the field of pointfree topology. The main idea behind

pointfree topology is that the study of topology should take the lattice of the open sets, not

the points, as being the primitive notion. The first foundational result connecting lattice the-

ory with topology is Stone’s Representation Theorem, see [49]. It states that spaces which are

compact, Hausdorff, and zero-dimensional are completely determined by their Boolean alge-

bras of clopen sets. Thus, for these spaces, lattice theory can replace topology. A topological

space is not in general completely determined by its lattice of open sets, but nonetheless the

study of this lattice can give information on the space, and this was the approach followed by

Wallman, for example in [52]. Later, Ehresmann and his student Bénabou (see [20] and [12])

adopted the more radical approach to replace topological spaces with complete lattices satis-

fying a certain distributivity law as their main object of study. This is the current approach to

pointfree topology. For texts on this, we refer the reader to Johnstone’s famous book [32], or

to the more recent book [40].

The current approach considers a dual adjunction Ω : Top ⇆ Frm𝑜𝑝 : pt between the

categoryTop of topological spaces and the categoryFrm of frames, complete lattices where the

infinitary distributivity law
∨

𝑖(𝑏∨𝑎𝑖) = (
∨

𝑖 𝑎𝑖)∨𝑏 holds. The functorΩ assigns to each space

its ordered collection of open sets. The main idea in pointfree topology is to study topology

working in Frm𝑜𝑝 as if it were a category of pointfree topological spaces. When working in

the category Frm𝑜𝑝 , usually, its objects are called locales. The dual adjunction restricts to a

dual equivalence between spatial frames and sober spaces. Sober spaces, then, are completely

determined by their frame of opens. This means that, even if we do not commit to replacing

spaces with frames, if we restrict ourselves to sober spaces, topology can be replaced by frame

theory without loss of information. This is not very restrictive: for example, all Hausdorff

spaces are sober.

Because not all locales are spatial, locales generalize sober spaces, and this is an important

strength of pointfree topology. Isbell, in [28], points out that pointfree topology has several

advantages with respect to classical point-set topology. For a discussion of these advantages,

we refer the reader to [31] and [41]. One example is that the category of frames is algebraic,

and this means that we can construct frames from generators and relations. Another advan-

tage comes from the fact that in pointfree topology often we can prove constructively results

which in the usual setting require choice principles. Such an example is the pointfree version

of Tychonoff’s Theorem, stating that the product of compact spaces is compact. Another ex-
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ample is the Hofmann-Mislove Theorem, a result connecting sobriety in topology with domain

theory, of which the localic version is proven in [32].

In the category of topological spaces, regular monomorphisms are exactly the subspace

inclusions. In the category of locales, regular monomorphisms are called sublocales, and these

are the pointfree counterparts of subspaces. The pointfree theory of spaces has some inter-

esting features that contrast decidedly with point-set topology. Consider, for instance, that

Isbell’s famous Density Theorem (see [28]) shows that every locale has the smallest dense

sublocale and, in fact, in the localic setting dense sublocales are closed under arbitrary inter-

sections. Furthermore, the ordered collection S(𝐿) of sublocales of a locale is the opposite of

a locale, meaning that in pointfree topology the collection of all subspaces has a topological

structure. This is in contrast with the usual setting, where the collection of all subspaces of a

space 𝑋 are just the powerset of 𝑋 . The fact that for a locale S(𝐿)𝑜𝑝 is a locale means that this

construction can be iterated. This is studied in [53].

Purpose of this thesis

In this thesis, we introduce an extension of the classical dual adjunction between frames and

spaces at the core of pointfree topology. We study an extension of the category of frames

which captures all the 𝑇0 spaces. A duality for 𝑇0 spaces already exists, it is Raney duality, as

illustrated in [14]. Here, rather than mapping a space 𝑋 to the frame Ω(𝑋) of its open sets,

we map it to the embedding Ω(𝑋) ⊆ U(𝑋) of its open sets into the lattice saturated1 sets.

The limitation of Raney duality is that, on the algebraic side, our objects are all of the form

(Ω(𝑋),U(𝑋)) for some space 𝑋 , and this means that this category does not generalize 𝑇0
spaces in the way that frames generalize sober spaces. In order to gain a more pointfree per-

spective, we consider as objects of our category pairs (𝐿, 𝐶)where𝐶 is a coframe and 𝐿 ⊆ 𝐶 is

a frame which meet-generates 𝐶 and such that the embedding preserves the frame operations

together with strongly exact meets2, and the frame 𝐿 meet-generates 𝐶. Let us illustrate some

of the themes which we can contribute to explore with the tool of Raney extensions.

The study of separation axioms in pointfree topology has been quite active, and recently

the results on the matter have been published in a book, see [43]. In pointfree topology, the 𝑇1

1Saturated sets are intersections of open sets.
2Strongly exact meets are the pointfree version of those intersections of open sets which are open. Because

a meet of a collection {𝑈𝑖 : 𝑖 ∈ 𝐼} of opens in general is calculated as the interior of
⋂

𝑖𝑈𝑖 , these are exactly the

meets that are preserved by the embedding Ω(𝑋) ⊆ U(𝑋).

5



axiom has several different translations, the most common ones being fitness and subfitness,

see for example Chapter V of [40] or Chapter II of [43]. In point-set topology, 𝑇1 spaces are

characterized by all their subspaces being saturated, and this means that for a space 𝑋 the

embedding of the opens into the saturated sets is Ω(𝑋) ⊆ P(𝑋). This leads us to defining a

Raney extension (𝐿, 𝐶) to be 𝑇1 if and only if 𝐶 is Boolean. We prove that a frame admits a

𝑇1 Raney extension if and only if it is subfit, giving a precise sense in which subfitness is the

weakest possible frame version of the 𝑇1 axiom. We also explore Raney versions of sublocales,

and characterize 𝑇1 Raney extensions in terms of these.

Another important separation axiom in pointfree topology is the 𝑇𝐷 axiom. This was first

introduced in [2], and it is stronger than 𝑇0 and weaker than 𝑇1. For the importance of this

axiom in pointfree topology, see [11]. The axiom 𝑇𝐷 is a mirror image of sobriety in the

following sense. A space 𝑋 is sober if and only if there can be no nontrivial subspace inclusion

𝑖 : 𝑋 ⊆ 𝑌 such that Ω(𝑖) is an isomorphism; and a space 𝑋 is 𝑇𝐷 if and only if there can be no

nontrivial subspace inclusion 𝑖 : 𝑌 ⊆ 𝑋 such that Ω(𝑖) is an isomorphism. In [11], the pt𝐷(𝐿)

spectrum of a frame is introduced, an alternative to the classical spectrum which is always

a 𝑇𝐷 space. In this thesis, we add to this, showing that for a frame 𝐿 the possible spectra

of a Raney extension over 𝐿 are the interval [pt𝐷(𝐿), pt(𝐿)] of the powerset of the classical

spectrum pt(𝐿) of the frame 𝐿.

Recently, the collection S𝔠(𝐿) has received quite a lot of attention in pointfree topology.

See [8], [42], [36], [6], [4]. This is the collection of joins of closed sublocales, and it is a frame

such that the subset inclusion S𝔠(𝐿) ⊆ S(𝐿) preserves the frame operations. Functoriality

of the assignment 𝐿 ↦→ S𝔠(𝐿) is explored in [6] for subfit frames, and the authors identify

some ways of restricting the objects so that all frame morphisms 𝑓 : 𝐿 → 𝑀 lift to frame

morphisms. We use some of our results for Raney extensions to find conditions on morphisms

𝑓 : 𝐿 → 𝑀 between arbitrary frames (not necessarily subfit) to lift, and find that a morphism

lifts if and only if for an exact meet
∧

𝑖 𝑥𝑖 ∈ 𝐿 we have both that
∧

𝑖 𝑓 (𝑥𝑖) is exact and that it

equals 𝑓 (
∧

𝑖 𝑥𝑖).

An important structure in pointfree topology is the subcoframe S𝔬(𝐿) ⊆ S(𝐿) of fitted

sublocales, that is, intersections of open sublocales. See, for instance, [19], [36]. The structures

S𝔠(𝐿) and S𝔬(𝐿) are compared in [36] and in [35]. In this thesis we show that, for a frame 𝐿,

S𝔬(𝐿) and S𝔠(𝐿) are, respectively, the largest and smallest Raney extensions, showing that

these two structures have universal properties which are dual to each other.

Finally, another axiom which has been studied quite extensively is scatteredness. Simmons,
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in [48], characterizes the scattered spaces 𝑋 as being those such that S(Ω(𝑋)) is a Boolean

algebra, and these turn out to be exactly the spaces such that subspaces of 𝑋 are perfectly

represented by the sublocales of Ω(𝑋). Scatteredness for a frame 𝐿 is defined in [45] and [46]

as the property that S(𝐿) is Boolean. The relation between scatteredness and the 𝑇𝐷 property

is studied in [39]. In [4], the authors characterize the frames for which S𝔠(𝐿) = S(𝐿) as those

subfit frames such that they are scattered. Here, we show that subfit frameswhich are scattered

coincide with those subfit frames with unique Raney extensions. Following the work in [48]

and [37], it is known that scattered spatial frames are exactly those frames such that there is a

perfect correspondence between S(𝐿) and the collection of subspaces of the spectrum pt(𝐿).

We will see that for a spatial Raney extension (𝐿, 𝐶) to satisfy the analogue of this it suffices

for 𝐿 to be a fit frame.

Outline of the thesis

The purpose of Section 1 is to give context for the results in the rest of the thesis. We give

the necessary background in the field of pointfree topology and frame theory.

In Section 2 we define Raney extensions. We shall see that every frame has the largest

and the smallest Raney extension, that is, that for a Raney extension (𝐿, 𝐶), we always have

two surjections

(𝐿, FiltSE(𝐿)
𝑜𝑝)↠ (𝐿, 𝐶)↠ (𝐿, FiltE(𝐿)

𝑜𝑝),

where FiltSE(𝐿) is the frame of strongly exact filters and FiltE(𝐿) that of exact filters. We then

introduce the category Raney of Raney extensions. For Raney extensions (𝐿, 𝐶) and (𝑀, 𝐷),

we characterize those frame maps 𝑓 : 𝐿 → 𝑀 which can be lifted to maps of Raney extensions

(𝐿, 𝐶)→ (𝑀, 𝐷). In particular, we explore conditions for the assignment 𝐿 ↦→ (𝐿, FiltE(𝐿)
𝑜𝑝)

to be functorial. We come show that frame maps 𝑓 : 𝐿 → 𝑀 which can be extended to frame

maps FiltE(𝐿)→ FiltE(𝑀) are exactly the exact ones.

In Section 3, where we define the dual adjunction between the categoryRaney and that of

topological spaces. We define the spectrum of a Raney extension, and we come to proving that

for a frame 𝐿, the spectra of all possible Raney extensions on it are the interval [pt𝐷(𝐿), pt(𝐿))]

of the powerset of pt(𝐿), where pt𝐷(𝐿) is the 𝑇𝐷 spectrum of 𝐿. We look at a Raney version

of sobriety, and for each Raney extension we define its sobrification, i. e. its sober coreflection

in Raney. We look at an analogue of the 𝑇𝐷 and of the 𝑇1 axiom, too. We prove that a frame

has a 𝑇1 Raney extension if and only if it is subfit.
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Section 4 is devoted to canonical extensions of frames seen as Raney extensions. In this

short section, we show that canonical extensions of frames are kinds of Raney extensions. We

show that the canonical extension of a pre-spatial frame, as defined in [29], is the free Raney

extension over it which is algebraic, that is, such that the coframe component is generated by

its compact elements.

In Section 5 we look at the fact that several structures in pointfree topology are Raney

extensions. We study the fact that every Raney extension corresponds to some subcolocale of

the coframe S𝔬(𝐿) of fitted sublocales of a frame. We characterize several collections of filters

of a frame 𝐿 as kernels of certain sublocales of 𝐿.

Finally, in Section 6, we begin to outline a theory of pointfree subspaces of Raney ex-

tensions. We simply regard these as subcolocales of the coframe component of the Raney

extension. We will revisit the 𝑇1 axiom and characterize it in terms of pointfree Raney sub-

spaces. Finally, we use this notion of pointfree subspace of a Raney extension to explore the

relation between pointfree and point-set subspaces.

1 Background

We first recall some background on point-free topology. For more information on this subject,

we refer the reader to Johnstone’s book [30] or to more recent book [40] by Picado and Pultr.

1.1 Frames as spaces

A frame is a complete lattice 𝐿 satisfying

𝑎 ∧
∨

𝐵 =
∨

{𝑎 ∧ 𝑏 : 𝑏 ∈ 𝐵}

for all 𝑎 ∈ 𝐿 and 𝐵 ⊆ 𝐿. Frames form a category Frm, whose morphisms are functions

preserving arbitrary joins (including the bottom element 0) and finite meets (including the

top element 1). Because for each 𝑎 the map 𝑎 ∧ − preserves arbitrary joins, it has a right

adjoint 𝑎 → −, making 𝐿 a complete Heyting algebra. This right adjoint is called the Heyting

operator, or the Heyting implication. In particular, the pseudocomplement of an 𝑎 ∈ 𝐿 is the

element ¬𝑎 = 𝑎 → 0 and it can be characterized as the largest 𝑏 ∈ 𝐿 such that 𝑎 ∧ 𝑏 = 0.

Even though all frames are complete Heyting algebras, morphisms of frames do not in general

preserve the Heyting operator.
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Example 1.1. To see that frame maps in general do not preserve the Heyting implication, it

suffices to consider the map 𝑓 : 𝐶3 → 𝐶2 from the three-element to the two-element chain, defined

as 𝑓 (1) = 1, 𝑓 (0) = 0, and 𝑓 (𝑎) = 0, where 𝑎 ∈ 𝐶3 is the middle element. This preserves all

meets and all joins. However, in 𝐶3 we have that ¬𝑎 = 0, and 𝑓 (¬𝑎) = 0 ̸= 1 = ¬ 𝑓 (𝑎).

Morphisms of frames preserve all joins, and as such they have right adjoints. For a frame

map 𝑓 : 𝐿 → 𝑀 , we will denote as 𝑓∗ its right adjoint. Concretely, this acts as 𝑚 ↦→
∨

{𝑥 ∈

𝐿 : 𝑓 (𝑥) ≤ 𝑚}. In this thesis, we will also consider the category CoFrm. This is the category

whose objects are coframes, complete lattices where the distributivity law dual to that of frames

holds, and whose morphisms are functions preserving finite joins and arbitrary meets. In a

coframe 𝐶 we have the co-Heyting operator, or difference, defined for two elements 𝑐, 𝑑 ∈ 𝐶 as

𝑐\𝑑 =
∧

{𝑥 ∈ 𝐶 : 𝑐 ≤ 𝑥 ∨ 𝑑}. The supplement of an element 𝑐 ∈ 𝐶 is the element 𝑐∗ = 1\𝑐.

Morphisms of coframes, as they preserve all meets, have left adjoints. For a coframe map

𝑓 : 𝐶 → 𝐷, we denote as 𝑓 ∗ its left adjoint.

Frames as spaces

Given a topological space 𝑋 , its lattice of open setsΩ(𝑋) is always a frame, and this assignment

is the object part of a functor Ω : Top→ Frm𝑜𝑝 which sends a continuous map 𝑓 : 𝑋 → 𝑌

to the preimage map 𝑓 −1 : Ω(𝑌) → Ω(𝑋). For a topological space Ω(𝑋), the arbitrary joins

in the frame Ω(𝑋) correspond to set-theoretical unions, whereas the finite meets correspond

to set-theoretical intersections. Because a frame is a complete lattice, this means that in Ω(𝑋)

infinite meets exist, too. The meet of a collection 𝑈𝑖 ∈ Ω(𝑋) is computed as the interior of
⋂

𝑖𝑈𝑖 .

The correspondence between frames and topological spaces at the core of pointfree topol-

ogy is an adjunction Ω : Top ⇆ Frm𝑜𝑝 : pt with Ω ⊣ pt. Let us now describe the functor pt.

For a frame 𝐿, an element 𝑝 ∈ 𝐿 is said to be prime if whenever 𝑥 ∧ 𝑦 ≤ 𝑝 for 𝑥, 𝑦 ∈ 𝐿, then

𝑥 ≤ 𝑝 or 𝑦 ≤ 𝑝. The collection of all primes of 𝐿 will be denoted by pt(𝐿). This will be the set

of points of the space associated with the frame 𝐿.

In order to topologize the set pt(𝐿), we consider a map 𝜑𝐿 : 𝐿 → P(pt(𝐿)) defined for

each 𝑎 ∈ 𝐿 as 𝜑𝐿(𝑎) = {𝑝 ∈ pt(𝐿) : 𝑎 ≰ 𝑝}. By exploiting primality of the elements of pt(𝐿),

it is easy to see that for 𝑎, 𝑏, 𝑎𝑖 ∈ 𝐿

1. 𝜑𝐿(𝑎 ∧ 𝑏) = 𝜑𝐿(𝑎) ∩ 𝜑𝐿(𝑏),

2. 𝜑𝐿(
∨

𝑖 𝑎𝑖) =
⋃

𝑖 𝜑𝐿(𝑎𝑖).
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Thus, the elements of the form 𝜑𝐿(𝑎) for some 𝑎 ∈ 𝐿 form a topology on pt(𝐿), and in fact

we define the spectrum of a frame 𝐿 to be the set of primes pt(𝐿) topologized in this way. It

remains to define the assignment on morphisms. For a frame map 𝑓 : 𝐿 → 𝑀 , we note that

the right adjoint 𝑓∗ maps prime elements to prime elements. Therefore, we may extend the

definition of pt to morphisms as 𝑓 ↦→ 𝑓∗, thus obtaining a functor pt : Frm𝑜𝑝 → Top. We

have the following theorem.

Theorem 1.1. There is an adjunction Ω : Top ⇆ Frm𝑜𝑝 : pt with Ω ⊣ pt. This adjunction is

idempotent, and for each space the unit of adjunction is the map

𝜓𝑋 : 𝑋 → pt(Ω(𝑋)),

𝑥 ↦→ 𝑋\cl({𝑥}).

For each frame 𝐿 the counit of adjunction, seen as a map in Frm, is defined as

𝜑𝐿 : 𝐿 → Ω(pt(𝐿)),

𝑎 ↦→ 𝜑𝐿(𝑎).

For a frame 𝐿, the map 𝜑𝐿 : 𝐿 → Ω(pt(𝐿)) is always a surjective frame map, by definition

of the topology on its spectrum. Frame maps are isomorphisms whenever they are bijective,

and this gives us the characterization of the fixpoints in Frm as the frames for which 𝜑𝐿(𝑎)

is injective. We say that a frame 𝐿 is spatial when for 𝑎, 𝑏 ∈ 𝐿 such that 𝑎 ≰ 𝑏 there is some

𝑝 ∈ pt(𝐿) such that 𝑏 ≤ 𝑝 and 𝑎 ≰ 𝑝. We call the map 𝜑𝐿 the spatialization of the frame 𝐿. The

map 𝜓𝑋 , instead, is not in general injective or surjective. It turns out that this is a bijection, and

thus a homeomorphism, precisely when the space 𝑋 is sober : that is, when every irreducible

closed set is the closure cl({𝑥}) of a unique point 𝑥. Sobriety is an axiom stronger than 𝑇0,

weaker than 𝑇2, and incomparable with 𝑇1. We call the map 𝜓𝑋 the sobrification of the space

𝑋 .

Alternative definitions of the spectrum of a frame

There is also an alternative view of the spectrum of a frame. It is well-known that prime

elements of a frame are in bijective correspondence with completely prime filters, that is, filters

inaccessible by any join. We note that for a completely prime filter 𝑃 ⊆ 𝐿 we have
∨

(𝐿\𝑃) /∈

𝑃, and as 𝑃 is a filter, the element
∨

𝐿\𝑃 must additionally be prime. The assignment 𝑃 ↦→
∨

𝐿\𝑃 is in fact the bijection mentioned above. One may then identify the points of a frame 𝐿
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with the collection FiltCP(𝐿) of its completely prime filters. The sobrification map of a space

𝑋 , under this identification, becomes the map

𝑥 ↦→ 𝑁(𝑥),

assigning to each point the collection of its open neighborhoods, the so-called neighborhood

filter. We see every point of a space as being encoded in Ω(𝑋) as the collection of its open

neighborhoods. If we view FiltCP(𝐿) as the collection of points of the frame 𝐿, the opens are

the sets of the form {𝑃 ∈ FiltCP(𝐿) : 𝑎 ∈ 𝑃} for some 𝑎 ∈ 𝐿.

There is a third, equivalent way of defining the spectrum of a frame 𝐿. Since every frame

map 𝑓 : 𝐿 → 2 preserves all joins, the set {𝑥 ∈ 𝐿 : 𝑓 (𝑥) = 1} is a completely prime filter of

𝐿. This, in fact, establishes a bijection between maps 𝑓 : 𝐿 → 2 and completely prime filters

of 𝐿. When we view the set Frm(𝐿, 2) as the set of points of 𝐿, the opens being the sets of

the form { 𝑓 ∈ Frm(𝐿, 2) : 𝑓 (𝑎) = 1}. This view of the spectrum exhibits 2 as the dualizing

object for the adjunction between frames and spaces. On the space side, we have the Sierpinski

space 𝑆 = {0, 1}, whose collection of opens is {∅, {1}, 𝑆}. We observe that continuous maps

Top(𝑋, 𝑆) may be identified with the opens of 𝑋 by considering the preimage of {1}.

1.2 Sublocales

In this thesis, we will work in the category Frm. It is sometimes custom in pointfree topol-

ogy to work in a category isomorphic to Frm𝑜𝑝 , in order to have a covariant correspondence

with Top. This is the category Loc of locales. The category Loc is defined as the category

whose objects are frames, which are referred to as locales when adopting this approach. The

morphisms of Loc are the right adjoints to frame maps. Hence, a frame map 𝑓 : 𝐿 → 𝑀

will correspond to the morphism 𝑓∗ : 𝑀 → 𝐿 in Loc. In the category of topological spaces,

subspace inclusions are, up to isomorphism, the regular monomorphisms. This is the motiva-

tion behind the definition of a sublocale as a regular monomorphism in Loc. It turns out that

a morphism 𝑓∗ : 𝑀 → 𝐿 in Loc is a regular monomorphism precisely when 𝑓 : 𝐿 → 𝑀

is a frame surjection. Frame surjections are, in fact, both the regular epimorphisms and the

extremal epimorphisms in Frm. Even when working with frames, the term sublocale is still

used. We follow Picado and Pultr in [40] in defining a sublocale of a frame 𝐿 to be a subset

𝑆 ⊆ 𝐿 such that:

1. It is closed under all meets;
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2. Whenever 𝑠 ∈ 𝑆 and 𝑥 ∈ 𝐿 we have 𝑥 → 𝑠 ∈ 𝑆.

These requirements are equivalent to stating that 𝑆 ⊆ 𝐿 is a regular monomorphism in

Loc. Observe that the collection of sublocales of a frame is closed under all intersections. It is

a great advantage to be able to work with sublocales as concrete subsets of frames. Consider,

for instance, the concept of density. A frame surjection 𝑠 : 𝐿 ↠ 𝑆 is dense if 𝑠(𝑥) = 0

implies 𝑥 = 0, this definition follows naturally from the fact that this condition holds for the

dualization Ω(𝑖) : Ω(𝑌)→ Ω(𝑋) of a subspace inclusion 𝑖 : 𝑋 ⊆ 𝑌 if and only if the subspace

is dense. A frame surjection being dense is equivalent to the corresponding sublocale 𝑆 ⊆ 𝐿

containing 0, and this gives us an immediate proof of Isbell’s theorem.

Theorem1.2 (Isbell’s Density Theorem, see [28]). Every frame has the smallest dense sublocale,

and this is the intersection of all its sublocales which contain 0.

We also have the following useful fact.

Lemma 1.3. If 𝑆 and 𝑇 are sublocales of 𝐿 such that 𝑆 ⊆ 𝑇 , then 𝑆 is a sublocale of 𝑇 .

The family S(𝐿) of all sublocales of 𝐿 ordered by inclusion is a coframe. Meets in S(𝐿) are

set-theoretical intersections. The top element is 𝐿 and the bottom element is {1}. The frame

S(𝐿)𝑜𝑝 is always zero-dimensional. Since S(𝐿) is a coframe, it has a difference operation on

it. We shall freely use some its properties, for example the ones listed below.

1. 𝑆\𝑇 ⊆ 𝑆;

2. 𝑆\𝑇 = 0 if and only if 𝑆 ⊆ 𝑇 ;

3. (
∨

𝑖 𝑆𝑖)\𝑇 =
∨

𝑖(𝑆𝑖\𝑇);

4. 𝑆\
⋂

𝑖 𝑆𝑖 =
∨

𝑖(𝑆\𝑆𝑖);

5. (𝑆\𝑇)\𝑅 = (𝑆\𝑅)\𝑇 ;

for each 𝑆, 𝑇, 𝑅, 𝑆𝑖 ∈ S(𝐿). A comprehensive list of its properties may be found in [22].

12



Open and closed sublocales

We now focus on the pointfree versions of open and closed subspaces. For a space 𝑋 and a

subspace inclusion 𝑖 : 𝑈 ⊆ 𝑋 where 𝑈 is open, we know that the opens of 𝑈 are the inter-

sections of the opens of 𝑋 with 𝑈. The functor Ω maps the inclusion to the frame surjection

− ∩ 𝑈 : Ω(𝑋) → Ω(𝑈). By definition of the Heyting implication, the right adjoint 𝑖∗ of this

map acts as 𝑍 ↦→ 𝑈 → 𝑍 . This means that the sublocale of Ω(𝑋) corresponding to this map,

𝑖∗[Ω(𝑈)], is

{𝑈 → 𝑉 : 𝑉 ∈ Ω(𝑋)} ⊆ Ω(𝑋).

For the inclusion of a closed set 𝐶 ⊆ 𝑋 , the frame map associated with it is − ∩ 𝐶 : Ω(𝑋) →

Ω(𝐶). Its right adjoint is 𝑍 ↦→ 𝑍 ∪ 𝐶𝑐. The sublocale of Ω(𝑋) determined by this map is then

{𝑉 ∪ 𝐶𝑐 : 𝑉 ∈ Ω(𝑋)} = ↑𝐶𝑐 ⊆ Ω(𝑋).

This is the motivation behind the following definitions. For each 𝑎 ∈ 𝐿, there are an open

sublocale and a closed sublocale associated with it. These are, respectively,

𝔬(𝑎) = {𝑎 → 𝑏 : 𝑏 ∈ 𝐿}, 𝔠(𝑎) =↑ 𝑎.

Open and closed sublocales behave like open and closed subspaces in many respects; we list a

few of them below.

Proposition 1.4. For every frame 𝐿 and 𝑎, 𝑏, 𝑎𝑖 ∈ 𝐿 we have

1. 𝔬(1) = 𝐿 and 𝔬(0) = {1};

2. 𝔠(1) = {1} and 𝔠(0) = 𝐿;

3.
∨

𝑖 𝔬(𝑎𝑖) = 𝔬(
∨

𝑖 𝑎𝑖) and 𝔬(𝑎) ∩ 𝔬(𝑏) = 𝔬(𝑎 ∧ 𝑏);

4.
⋂

𝑖 𝔠(𝑎𝑖) = 𝔠(
∧

𝑖 𝑎𝑖) and 𝔠(𝑎) ∨ 𝔠(𝑏) = 𝔠(𝑎 ∧ 𝑏);

5. The elements 𝔬(𝑎) and 𝔠(𝑎) are complements of each other in S(𝐿): we have 𝔬(𝑎)∩ 𝔠(𝑎) =

and 𝔬(𝑎) ∨ 𝔠(𝑎) = 𝐿;

6. 𝔠(𝑎) ⊆ 𝔬(𝑏) if and only if 𝑎 ∨ 𝑏 = 1, and 𝔬(𝑎) ⊆ 𝔠(𝑏) if and only if 𝑎 ∧ 𝑏 = 0.

The ordered collection of closed sublocales of a frame 𝐿 is a subcoframe of S(𝐿). In fact,

this coframe is anti-isomorphic to 𝐿. Open sublocales form a subframe of S(𝐿), and this is

isomorphic to 𝐿. The sublocales which are intersections of open sublocales are called fitted.
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Proposition 1.5. Every sublocale 𝑆 can be written in canonical form as an intersection of finite

joins of open and closed sublocales, as follows:

𝑆 =
⋂

{𝔬(𝑎) ∨ 𝔠(𝑏) : 𝑆 ⊆ 𝔬(𝑎) ∨ 𝔠(𝑏)}.

Boolean sublocales

For a complete lattice 𝐿 and a subset 𝑆 ⊆ 𝐿, we denote asM(𝑆) its closure under arbitrary

meets and J (𝑆) its closure under arbitrary joins. For a frame 𝐿 and each 𝑎 ∈ 𝐿, there is

a sublocale 𝔟(𝑎) = {𝑏 → 𝑎 : 𝑏 ∈ 𝐿} which turns out to be Boolean. This is the smallest

sublocale containing the element 𝑎. The smallest dense sublocale of a frame 𝐿, then, is the

Boolean sublocale 𝔟(0), called its Booleanization. This coincides with the set of all regular

elements of 𝐿, that is, those elements of the form ¬𝑎 for some 𝑎 ∈ 𝐿. Despite what the name

might suggest, this is not a Boolean reflection of the frame 𝐿, and in fact the assignment of

a frame to its Booleanization is not in general functorial, as studied in [10]. Every Boolean

sublocale of 𝐿 is of the form 𝔟(𝑎) for some 𝑎 ∈ 𝐿. A special role is played by the Boolean

sublocales from prime elements.

Lemma 1.6. For a frame 𝐿 and prime elements 𝑝, 𝑝𝑖 ∈ 𝐿, and 𝑥 ∈ 𝐿, and 𝑆 ⊆ 𝐿 a sublocale, we

have:

1. 𝑥 → 𝑝 = 𝑝 if and only if 𝑥 ≰ 𝑝,

2. pt(𝔬(𝑎)) = pt(𝔠(𝑎))𝑐,

3. 𝔟(𝑝) = {𝑝, 1},

4.
∨

𝑖 𝔟(𝑝𝑖) =M({𝑝𝑖 : 𝑖 ∈ 𝐼}),

5. pt(𝑆) = pt(𝐿) ∩ 𝑆,

6. pt(S(𝐿)𝑜𝑝) = {𝔟(𝑝) : 𝑝 ∈ pt(𝐿)}.

Sublocales of the form 𝔟(𝑝) for some prime 𝑝 ∈ 𝐿 are usually referred to as two-element

sublocales, as they are the only sublocales which contain exactly two elements (the only sublo-

cale containing only one element is {1}). For a frame 𝐿, we may identify its spatialization

with a sublocale of 𝐿. A frame is spatial if and only if all its elements are meets of primes. By

the universal property of the spatialization, then, this is the largest sublocale of 𝐿 all whose
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elements are meets of primes. By point (4) of Lemma 1.6 above, this is
∨

{𝔟(𝑝) : 𝑝 ∈ 𝐿}.

By point (4) of the same lemma, for any sublocale 𝑆 ⊆ 𝐿, its spatialization sublocale is
∨

{𝔟(𝑝) : 𝑝 ∈ pt(𝐿) ∩ 𝑆}. The spatial sublocales coincide with the joins of two-element

sublocales. We denote as S𝑠𝑝(𝐿) the collection of the spatial sublocales of 𝐿. The inclusion

S𝑠𝑝(𝐿)
𝑜𝑝 ⊆ S(𝐿)𝑜𝑝 is a sublocale inclusion. By point (6) of Lemma 1.6 above, it is the spatial-

ization sublocale.

Notable subcollections of S(𝐿)

In our work, we will look at several subcollections of S(𝐿). We have already mentioned

the frame S𝔠(𝐿) of joins of closed sublocales, the coframe S𝔬(𝐿) of fitted sublocales, and

the coframe S𝑠𝑝(𝐿) of spatial sublocales. Additionally, we will look at the Booleanization

S𝑏(𝐿) ⊆ S(𝐿). This consists of the collection of smooth sublocales, that is, sublocales of

the form
∨

𝑖 𝔠(𝑥𝑖) ∩ 𝔬(𝑦𝑖). These are studied in [1], and they coincide with the joins of com-

plemented sublocales. We also consider the collection S𝑘(𝐿) of joins of compact sublocales,

where a sublocale 𝑆 ⊆ 𝐿 is said to be compact if for each directed collection 𝐷 ⊆ 𝐿 we have

𝑆 ⊆
∨

{𝔬(𝑑) : 𝑑 ∈ 𝐷} implies 𝑆 ⊆ 𝔬(𝑑) for some 𝑑 ∈ 𝐷.

1.3 Saturated sets and fitted sublocales

For a 𝑇0 topological space 𝑋 we have the specialization order, an order ≤ on its points defined

as 𝑥 ≤ 𝑦 whenever 𝑥 ∈ 𝑈 implies 𝑦 ∈ 𝑈 for all open sets 𝑈 ⊆ 𝑋 . For a space 𝑋 , we denote as

U(𝑋) the lattice of its upsets (upper-closed sets) under the specialization order.

Proposition 1.7. For a 𝑇0 topological space 𝑋 , a subset is an upset in the specialization order if

and only if it is saturated.

Proof. It is clear that a saturated subset is an upset. For the converse, suppose that 𝑌 ⊆ 𝑋 is

an upset. Suppose that 𝑥 ∈ 𝑋 is such that whenever 𝑌 ⊆ 𝑈 for an open 𝑈 we have 𝑥 ∈ 𝑈.

Suppose towards contradiction that 𝑥 /∈ 𝑌 . As 𝑌 is an upset, this means that for all 𝑦 ∈ 𝑌 we

cannot have 𝑦 ≤ 𝑥, that is, there is some open𝑈𝑦 with 𝑦 ∈ 𝑈𝑦 and 𝑥 /∈ 𝑈𝑦 . Consider
⋃

𝑦∈𝑌 𝑈𝑦 .

We have both 𝑌 ⊆
⋃

𝑦𝑈𝑦 and 𝑥 /∈
⋃

𝑦𝑈𝑦 , and this is a contradiction. □

We observe that a space is 𝑇1 if and only if the specialization order on it is discrete. Let us

see what the specialization order translates to in the various definitions of the spectrum of a

frame.
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1. The collection pt(𝐿) comes equipped with the order inherited from 𝐿. This is opposite

to the specialization order, as for primes 𝑝, 𝑞 ∈ pt(𝐿) we have that 𝑝 ≤ 𝑞 implies that

𝑎 ≰ 𝑞 implies 𝑎 ≰ 𝑝 for all 𝑎 ∈ 𝐿. Hence, 𝑞 ∈ 𝜑𝐿(𝑎) implies 𝑝 ∈ 𝜑𝐿(𝑎).

2. For the spectrum FiltCP(𝐿) of completely prime filters, the specialization order is subset

inclusion.

3. For the collection of frame morphisms to 2, the specialization order coincides with the

point-wise order.

The following is an important theorem by Hofmann and Mislove. A filter of a frame 𝐿 is

Scott-open if it is not accessible by directed joins. We call FiltSO(𝐿) the ordered collection of

Scott-open filters of a frame 𝐿.

Theorem 1.8. ([27], Theorem 2.16) If the Prime Ideal Theorem holds, then for each sober space

𝑋 there is an anti-isomorphism between FiltSO(Ω(𝑋)) and the ordered collection of compact sat-

urated sets of 𝑋 , assigning to each filter 𝐹 the set
⋂

𝐹.

The pointfree version of this theorem does not rely on choice principles, and is due to

Johnstone.

Theorem 1.9. ([32], Lemma 3.4) For a frame 𝐿, there is an anti-isomorphism between FiltSO(𝐿)

and the ordered collection of compact fitted sublocales of 𝐿, assigning to each filter 𝐹 the sublocale
⋂

{𝔬( 𝑓 ) : 𝑓 ∈ 𝐹}.

Subfitness and fitness

A frame is subfit if whenever 𝑥, 𝑦 ∈ 𝐿 are such that 𝑥 ≰ 𝑦, there is some 𝑢 ∈ 𝐿 such that 𝑥∨𝑢 =

1 and 𝑦∨𝑢 ̸= 1. A frame is fit if whenever 𝑥, 𝑦 ∈ 𝐿 are such that 𝑥 ≰ 𝑦, there is some 𝑢 ∈ 𝐿 such

that 𝑥∨𝑢 = 1 and 𝑢 → 𝑦 ̸= 𝑦. Both properties have been used as pointfree analogues of the 𝑇1
axiom. It is apparent that both fitness and subfitness are separation properties for sublocales

if we consider the following characterization. A frame is subfit if and only if, whenever 𝔠(𝑦) ⊈

𝔠(𝑥) for 𝑥, 𝑦 ∈ 𝐿, there is some 𝑢 ∈ 𝐿 such that

{

𝔠(𝑥) ⊆ 𝔬(𝑢)

𝔠(𝑦) ⊈ 𝔬(𝑢).
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On the other hand, a frame is fit if and only if whenever 𝔟(𝑦) ⊈ 𝔠(𝑥) for 𝑥, 𝑦 ∈ 𝐿, there is

some 𝑢 ∈ 𝐿 such that
{

𝔠(𝑥) ⊆ 𝔬(𝑢)

𝔟(𝑦) ⊈ 𝔬(𝑢).

We have the following characterizations of fitness and subfitness.

Theorem 1.10. For a frame 𝐿, the following are equivalent.

1. 𝐿 is subfit.

2. Every open sublocale of 𝐿 is a join of closed sublocales.

3. For each 𝑎 ∈ 𝐿 we have 𝔬(𝑎) =
∨

{𝔠(𝑏) : 𝑏 ∨ 𝑎 = 1}.

Theorem 1.11. For a frame 𝐿, the following are equivalent.

1. 𝐿 is fit.

2. Every closed sublocale of 𝐿 is fitted.

3. For each 𝑎 ∈ 𝐿 we have 𝔠(𝑎) =
⋂

{𝔬(𝑏) : 𝑏 ∨ 𝑎 = 1}.

4. All sublocales of 𝐿 are fitted.

5. All sublocales of 𝐿 are fit frames.

Exact and strongly exact filters

For a frame 𝐿, we call S𝔬(𝐿) the coframe of its fitted sublocales. For a fitted sublocale
⋂

𝑖 𝔬(𝑎𝑖),

its supplement is
∨

𝑖 𝔠(𝑎𝑖). We have that the collection {𝐹∗ : 𝐹 ∈ S𝔬(𝐿)} is a frame, and it

coincides with the collection S𝔠(𝐿) of joins of closed sublocales. Both the collections S𝔬(𝐿)

and S𝔠(𝐿) are isomorphic to ordered collections of filters of 𝐿. For every frame 𝐿 we have an

adjunction ker ⊣ fitt defined as

fitt : Filt(𝐿)𝑜𝑝 → S(𝐿) : ker

{𝑥 ∈ 𝐿 : 𝑆 ⊆ 𝔬(𝑥)} ←� 𝑆,

𝐹 ↦→
⋂

{𝔬( 𝑓 ) : 𝑓 ∈ 𝐹}.
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This maximally restricts to an anti-isomorphism between fitted sublocales and strongly exact

filters (see [36]). Recall that a filter is strongly exact if it is closed under strongly exact meets,

and that a meet
∧

𝑖 𝑥𝑖 is strongly exact if for all 𝑦 ∈ 𝐿 we have that 𝑥𝑖 → 𝑦 = 𝑦 implies

(
∧

𝑖 𝑥𝑖) → 𝑦 = 𝑦. We call FiltSE(𝐿) the ordered collection of strongly exact filters. This is a

frame where meets are computed as intersections, and additionally it is a sublocale of Filt(𝐿).

The following is shown in [36].

Lemma 1.12. For a filter 𝐹 ⊆ 𝐿, the following are equivalent.

1. 𝐹 is strongly exact.

2.
⋂

𝑓 ∈𝐹 𝔬( 𝑓 ) ⊆ 𝔬(𝑥) is equivalent to 𝑥 ∈ 𝐹.

3. 𝐹 is a fixpoint of the adjunction ker ⊣ fitt .

4. 𝐹 = {𝑥 ∈ 𝐿 : 𝑆 ⊆ 𝔬(𝑥)} for some sublocale 𝑆 ⊆ 𝐿.

A meet
∧

𝑖 𝑥𝑖 of a frame 𝐿 is exact if for every 𝑎 ∈ 𝐿 we have (
∧

𝑖 𝑥𝑖) ∨ 𝑎 =
∧

𝑖(𝑥𝑖 ∨ 𝑎).

Exact filters are studied in [36]. There, it is also shown that the exact filters form a frame, and

in particular the frame FiltE(𝐿) of exact filters is a sublocale of FiltSE(𝐿). The main theorem

that we will need is the following.

Theorem 1.13. We have an isomorphism of coframes

fitt : FiltSE(𝐿)
𝑜𝑝 ∼= S𝔬(𝐿),

𝐹 ↦→
⋂

{𝔬( 𝑓 ) : 𝑓 ∈ 𝐹}.

We also have an isomorphism of frames

cl : FiltE(𝐿) ∼= S𝔠(𝐿),

𝐹 ↦→
∨

{𝔠( 𝑓 ) : 𝑓 ∈ 𝐹}.

The two isomorphisms are connected by the following diagram:

FiltSE(𝐿)
𝑜𝑝 FiltE(𝐿)

𝑜𝑝

S𝔬(𝐿) S𝔠(𝐿)
𝑜𝑝,

cl E

(−)∗

ker cl
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where clE(𝐹) =
⋂

{𝐺 ∈ FiltE(𝐿) : 𝐹 ⊆ 𝐺}.

Yet another characterization of subfit frames relates this property with the frame S𝔠(𝐿).

Theorem 1.14. A frame 𝐿 is subfit if and only if S𝔠(𝐿) is a Boolean algebra. When this holds,

S𝔠(𝐿) ⊆ S(𝐿) is the Booleanization sublocale.

1.4 Canonical extensions: Stone duality and frames

Stone duality

Stone’s landmark Representation Theorem, proven in 1936 (see [49]), establishes what nowa-

days we call a dual equivalence between the category Bool of Boolean algebras and the cat-

egory Stone of Stone spaces, topological spaces 𝑋 which are compact, Hausdorff, and zero-

dimensional. The functor in one direction is Clop : Stone→ Bool𝑜𝑝 , and it assigns to a Stone

space its Boolean algebra of clopen sets. We observe that, under continuousmaps, preimages of

clopen sets are clopen, and furthermore the preimage map preserves intersections and unions.

Thus, the assignment 𝑓 ↦→ 𝑓 −1 is a well-defined assignment Mor(Stone) → Mor(Bool𝑜𝑝);

this is the extension of Clop to morphisms. In the other direction we have the functor pf :

Bool𝑜𝑝 → Stone, assigning to each Boolean algebra 𝐵 the collection pf(𝐵) of its prime filters,

suitably topologized. This functor, too, sends morphisms to their corresponding preimage

maps. Stone duality relies on the Prime Ideal Theorem. Intuitively: as the Stone dual of a

Boolean algebra is a space of prime filters, in order for the assignment 𝐵 ↦→ pf(𝐵) to preserve

enough information we need there to be sufficiently many prime filters.

The importance and impact of this theorem is hard to overstate. Among other things, it was

the starting point of a large variety of results connecting ordered structures and logical theories

to topological spaces. Stone later proved (see [50]) that the category Distr of distributive

lattices is equivalent to the category CohTop of coherent spaces. A space is coherent if it is

sober, compact, and if the compact open elements are closed under finite intersections, and

generate the whole topology. Note that morphisms in CohTop are not the continuous maps,

but those continuous maps 𝑓 : 𝑋 → 𝑌 such that 𝑓 −1(𝐾) is compact whenever 𝐾 ⊆ 𝑌 is

compact. The equivalence generalizes his previous result. In one direction, we have the functor

Comp : CohTop → Distr𝑜𝑝 assigning to each space the ordered collection of its compact

elements. In the other direction, we have a functor 𝐷 ↦→ pf(𝐷), once again assigning to a

distributive lattice the collection of its prime filters, suitably topologized.
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Remark 1.2. The duality of coherent spaces has been re-interpreted in several ways. Priestley

(see [47]) proved that Distr𝑜𝑝 is equivalent to a category of spaces equipped with an order, with

morphisms being continuous monotone maps. This is usually known as Priestley duality. An

alternative approach is to regard the duals of distributive lattices as being certain bitopological

spaces, for this approach see [38] and [15]. The advantage of this approach is that we do not have

to restrict the morphisms or equip topological spaces with extra structure. Yet another approach is

to regard the duals of distributive lattices as being Pervin spaces, special kinds of uniform spaces,

as introduced in [44]. For an illustration of this approach and the connection with the bitopological

one, see [18].

We now illustrate how these dualities are tied to the dual adjunction between frames and

spaces. For a frame 𝐿, an element 𝑎 ∈ 𝐿 is compact if whenever 𝐷 ⊆ 𝐿 is a directed family,

𝑎 ≤
∨

𝐷 implies 𝑎 ≤ 𝑑 for some 𝑑 ∈ 𝐷. We say that a frame 𝐿 is compact if the top ele-

ment 1 is compact. A frame 𝐿 is coherent if its compact elements form a sublattice of 𝐿 which

join-generates it. In particular, 1 is a compact element, and so coherent frames are compact.

Coherent frames are also characterized by them being isomorphic to Idl(𝐿) for some distribu-

tive lattice 𝐷. This, in fact, is a functor Idl : Distr→ CohFrm from the category of coherent

frames to that of distributive lattices. Note that CohFrm is not a full subcategory of Frm, as

its morphisms are those frame morphisms 𝑓 : 𝐿 → 𝑀 where 𝑓 (𝑎) is compact whenever 𝑎 is

compact. The functor Idl is, in fact, part of an equivalence of categories, and its inverse is the

functor 𝐾 : CohFrm→ Distr sending each frame to its sublattice of compact elements.

Proposition 1.15. The following commute, up to natural isomorphism.

CohTop CohFrm𝑜𝑝

Distr𝑜𝑝 .

Ω

Comp
𝐾Idl

CohTop CohFrm𝑜𝑝

Distr𝑜𝑝 .

𝐾

pt

pf
Idl

A frame is zero-dimensional if it is join-generated by its complemented elements. The

equivalence 𝐾 : CohFrm ∼= Distr : Idl restricts to an equivalence between the category

FrmK,0 compact, zero-dimensional frames and that of Boolean algebras.

Proposition 1.16. The following commute, up to natural isomorphism.
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Stone FrmK,0
𝑜𝑝

Bool𝑜𝑝 .

Ω

Clop
𝐾Idl

Stone FrmK,0
𝑜𝑝

Bool𝑜𝑝 .

𝐾

pt

pf
Idl

Canonical extensions

Canonical extensions for Boolean algebras were introduced by Jónsson and Tarski (see [33]

and [34]) in dealing with Boolean algebras with operators. The main idea behind canonical

extensions of Boolean algebras is that they are pointfree representations of the embedding of

the lattice of clopen sets of a Stone space into the powerset of this space. In fact, if we assume

the Prime Ideal Theorem, the canonical extension of a Boolean algebra is the powerset of its

Stone spectrum. Without assuming the Prime Ideal Theorem, the canonical extension of a

Boolean algebra may be seen as the Booleanization ofU(Filt(𝐵)\{𝐵}) – or, equivalently, the

Booleanization of U(Idl(𝐵)) – as shown in [13]. Canonical extensions have also been intro-

duced for distributive lattices. On this topic, we refer the reader to [25], [24], and [26]. For a

distributive lattice, the canonical extension represents the embedding of the lattice of compact

opens into the saturated sets. The canonical extension of a distributive lattice, provided the

Prime Ideal Theorem holds, is isomorphic to the lattice of saturated sets of the corresponding

coherent space.

We may ask ourselves what is the canonical extension of a frame, that is, what is the

algebraic representation of the embedding of the frame of opens of an arbitrary space into the

lattice of saturated sets. We shall see that our answer to this is that the question is so general

that there is no unique way of extending a frame in such a way. In [29], the question of what

is the canonical extension of a frame is tackled for locally compact frames. The canonical

extension of a frame is defined as follows. It is a monotone map 𝑓 𝛿 : 𝐿 → 𝐿𝛿 to a complete

lattice 𝐿𝛿 such that the following two properties hold:

1. Density: every element of 𝐿𝛿 is a join of elements in {
∧

𝑓 [𝐹] : 𝐹 ∈ FiltSO(𝐿)};

2. Compactness: for every Scott-open filter 𝐹 we have
∧

𝑓 [𝐹] ≤ 𝑓 (𝑎) implies 𝑎 ∈ 𝐹, for

each 𝑎 ∈ 𝐿.
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That the two properties above are satisfied by the embedding Ω(𝑋) ⊆ U(𝑋), for a sober

space 𝑋 , follows from the Hofmann-Mislove Theorem (Theorem 1.8 in this work). In [29],

the canonical extension of a frame is proven to be unique. Let us see the theorem more in

detail. Here,M(FiltSO(𝐿)) denotes the closure of FiltSO(𝐿) under meets in the frame Filt(𝐿),

namely, set-theoretical intersections.

Theorem 1.17. ([29], Theorem 4.2) For a frame 𝐿, its canonical extension is unique, up to iso-

morphism. This is the map

𝐿 →M(FiltSO(𝐿))
𝑜𝑝,

𝑎 ↦→
⋂

{𝐹 ∈ FiltSO(𝐿) : 𝑎 ∈ 𝐹}.

We also have the following fact. A frame 𝐿 is pre-spatial if whenever 𝑎 ≰ 𝑏 there is a

Scott-open filter containing 𝑎 and omitting 𝑏, for all 𝑎, 𝑏 ∈ 𝐿.

Proposition 1.18. ([29], Proposition 5.1) The map 𝑓 𝛿 : 𝐿 → 𝐿𝛿 is an injection if and only if the

starting frame is pre-spatial.

Our work stems from a generalization of this notion of canonical extension. We require

that a Raney extension is an embedding into a coframe, that it preserves the frame operations,

that the frame 𝐿 meet-generates this coframe, and we further ask for it to preserve strongly

exact meets. In that respect, our definition is more restrictive. But we do not regard the be-

havior of Ω(𝑋) ⊆ U(𝑋) with respect to Scott-open filters as being a defining property of

this embedding. In fact, we do not impose any other additional restrictions apart from the

properties we mentioned. This is why a frame admits several Raney extensions.

2 Raney extensions

For a complete lattice𝐶, we say that 𝐿 ⊆ 𝐶 is a subframe of𝐶 if 𝐿 equipped with the inherited

order is a frame, and if the embedding 𝐿 ⊆ 𝐶 preserves all joins and finite meets. A Raney

extension is a pair (𝐿, 𝐶) such that 𝐶 is a coframe and 𝐿 is a subframe of 𝐶 such that:

• The frame 𝐿 meet-generates 𝐶;

• The embedding 𝐿 ⊆ 𝐶 preserves strongly exact meets.
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. We will sometimes use the expression Raney extension to refer to the coframe component of

the pair, and for a pair (𝐿, 𝐶) we will say that this is a Raney extension of 𝐿, or that it is a

Raney extension over 𝐿. The following is the motivating example behind the introduction of

Raney extensions.

Example 2.1. For a topological space 𝑋 , the pair (Ω(𝑋),U(𝑋)) is a Raney extension. That

strongly exact meets are preserved is the content of Proposition 5.3 of [3].

For a collection F ⊆ Filt(𝐿), we introduce the following two properties.

1. F -density: the collection {
∧

𝐹 : 𝐹 ∈ F } join-generates 𝐶;

2. F -compactness: whenever
∧

𝐹 ≤ 𝑎 we also have 𝑎 ∈ 𝐹 for every 𝐹 ∈ F and every

𝑎 ∈ 𝐿.

We say that a Raney extension is F -canonical if and only if it is both F -dense and F -

compact. The name comes from the fact that, in an F -canonical Raney extension, every ele-

ment can be written in a unique (canonical) way as a meet of a filter inM(F ). Existence and

uniqueness of weaker versions of F -canonical Raney extensions are well-known, and these

results stem from the theory of polarities by Birkhoff (see [17]). For a general version of the

existence and uniqueness result for general polarities, see for instance Section 2 of [23], see

[24] for its application to distributive lattices. From particularizing the analysis of [24] to the

case where we start from a frame, we directly obtain the following.

Theorem 2.1. (see for example [24], in particular Remark 2.8) For a frame 𝐿 and a collection

F ⊆ 𝐿 of its filters containing the principal ones, there is a unique injective monotone map

𝑓 F : 𝐿 → 𝐿F to a complete lattice 𝐿F which is F -canonical. Concretely, this is the embedding

𝐿 ⊆ M(F )𝑜𝑝 of the principal filters into F . This embedding preserves the frame operations.

We now wish to refine this result to our case, where we have as an extra requirement that

𝑓 ought to preserve strongly exact meets and that 𝐿F ought to be a coframe. An extension as

required will not exist for all choices of F . In our account, we will consider several different

choices of F . The first example that we shall see corresponds to the collection FiltSO(𝐿) of

Scott-open filters. For brevity, in the following we will refer to FiltSO(𝐿)-canonicity simply as

SO-canonicity, and analogously for all other similarly denoted collections of filters.

Example 2.2. For a sober space 𝑋 , the pair (Ω(𝑋),U(𝑋)) is a SO-canonical Raney extension,

as already observed in Example 3.5 of [29]. In fact, for every Scott-open filter 𝐹 we have that the
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intersection
⋂

𝐹 is a compact saturated set, by the Hofmann-Mislove theorem (Theorem 1.8). It is

a straightforward calculation that this implies SO-canonicity. Recall that the Hofmann-Mislove

theorem is dependent on the Prime Ideal Theorem. As we shall see, this means thatSO-canonicity

of the pair (Ω(𝑋),U(𝑋)), too, is dependent on this. We will prove that if we replace Scott-open by

completely prime, we have an analogous result which does not rely on the Prime Ideal Theorem.

Every Raney extension (𝐿, 𝐶) may be seen as a lattice embedding of a distributive lattice

𝐿𝑜𝑝 into a frame 𝐶𝑜𝑝 . The universal property of the ideal completion of a distributive lattice

means that there is a coframe map F( 𝑓 ) : Filt(𝐿)𝑜𝑝 → 𝐶 which extends this embedding.

This means that all Raney extensions of a frame 𝐿 are coframe quotients of Filt(𝐿)𝑜𝑝 . For a

Raney extension (𝐿, 𝐶), we may consider the collection of filters which are fixpoints of the

adjunction F( 𝑓 )∗ ⊣ F( 𝑓 ). We will abbreviate it as 𝐶∗ ⊆ Filt(𝐿)𝑜𝑝 . For a collection of filters

F and an arbitrary filter 𝐺 of a frame, we introduce the following closure operator in Filt(𝐿),

defined for any arbitrary filter 𝐺 as

clF (𝐺) =
⋂

{𝐹 ∈ F : 𝐺 ⊆ 𝐹}.

In case F = FiltSO(𝐿), as an abbreviation we will denote this closure operator as clSO , and

similarly for similarly named collections of filters. Additionally, for a Raney extension (𝐿, 𝐶)

and for 𝑥 ∈ 𝐶, we will denote ↑𝑥 ∩ 𝐿 simply as ↑𝐿𝑥.

Lemma 2.2. For a Raney extension (𝐿, 𝐶), we have an adjunction

∧

: Filt(𝐿)𝑜𝑝 ⇆ 𝐶 : ↑𝐿 ,

which restricts to a pair of mutually inverse isomorphisms

∧

: 𝐶∗ ⇆ 𝐶 : ↑𝐿 .

These are also isomorphisms of Raney extensions
∧

: (𝐿, 𝐶∗)⇆ (𝐿, 𝐶) : ↑𝐿 .

Proof. Let 𝑒 : 𝐿 ⊆ 𝐶 be the subset embedding and consider the adjunction F(𝑒) : Filt(𝐿)𝑜𝑝 ⇆

𝐶 : F(𝑒)∗. Because F(𝑒) is a surjection, all elements of 𝐶 must be fixpoints, and the fixpoints

in Filt(𝐿) are the filters in 𝐶∗. Therefore, the adjunction restricts to an isomorphism F(𝑒)∗ :

𝐶 ⇆ 𝐶∗ : F(𝑒). We have that F(𝑒)(𝐹) =
∧

𝐹 for every filter 𝐹 ⊆ 𝐿. Let us check that the

left adjoint is as required. Applying the general definition of the left adjoint of a
∧

-preserving

morphism to our case yields the following (the first meet is computed in Filt(𝐿)𝑜𝑝):

F(𝑒)∗(𝑐) =
∧

{𝐹 ∈ Filt(𝐿) : 𝑐 ≤
∧

𝐹} = ↑𝐿𝑥.
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It remains to show that the isomorphisms ↑𝐿 : 𝐶 ⇆ 𝐶∗ :
∧

restrict correctly to the frame

components. We notice that for 𝑎 ∈ 𝐿, indeed, the filter ↑𝐿𝑎 is a principal filter of 𝑎. Similarly,

for a principal filter ↑𝑎 ⊆ 𝐿 it is easy to check that 𝑎 =
∧

↑𝐿𝑎. Finally, it is well-known that

the embedding 𝑎 ↦→ ↑𝑎 of 𝐿 into Filt(𝐿)𝑜𝑝 preserves the frame operations, hence so does its

inverse. □

Proposition 2.3. For any Raney extension (𝐿, 𝐶) and any collection F ⊆ Filt(𝐿),

1. (𝐿, 𝐶) is F -dense if and only if 𝐶∗ ⊆ M(F );

2. (𝐿, 𝐶) is F -compact if and only if F ⊆ 𝐶∗.

In particular, (𝐿, 𝐶) is F -canonical if and only ifM(F ) = 𝐶∗, and every Raney extension (𝐿, 𝐶)

is 𝐶∗-canonical.

Proof. In light of the isomorphism given by 2.2, the claim about F -density is clear. To see the

equivalence stated in the second claim, we observe that for any filter 𝐹 ⊆ 𝐿 we always have

𝐹 ⊆ ↑𝐿
∧

𝐹. For any collection F ⊆ Filt(𝐿) it is the case that for all 𝐹 ∈ F we have the reverse

set inclusion if and only if the Raney extension is F -compact. But this is also equivalent to

having that all filters in F are fixpoints of ↑𝐿 ⊣
∧

, i.e. them being elements of 𝐶∗. □

Lemma 2.4. Suppose that (𝐿, 𝐶) is a Raney extension. All the following hold.

• 𝐶∗ contains all principal filters;

• 𝐶∗ ⊆ Filt(𝐿)𝑜𝑝 is a subcolocale inclusion;

• All filters in 𝐶∗ are strongly exact.

Proof. For the first item, we only notice that it is clear that 𝑎 =
∧

↑𝐿𝑎 for all 𝑎 ∈ 𝐿. For the

second item, it is known that whenever we have a frame surjection 𝑠 : 𝐿 ↠ 𝑆 the inclusion

𝑠∗[𝑆] ⊆ 𝐿 is a sublocale inclusion. Let us show the third item. Suppose that 𝐹 ∈ 𝐶∗, and that

𝑥𝑖 ∈ 𝐹 is a family such that the meet
∧𝐿
𝑖 𝑥𝑖 , as calculated in 𝐿, is strongly exact. By definition

of Raney extension, this meet is preserved by the embedding 𝑒 : 𝐿 ⊆ 𝐶. This means that
∧𝐿
𝑖 𝑥𝑖 =

∧

𝑖 𝑥𝑖 , where the second meet is computed in 𝐶. Therefore, since
∧

𝐹 ≤ 𝑥𝑖 for all

𝑖 ∈ 𝐼 , we also have
∧

𝐹 ≤
∧

𝑖 𝑥𝑖 . Since 𝐹 ∈ 𝐶
∗, we have 𝐹 = ↑𝐿

∧

𝐹, and so
∧𝐿
𝑖 𝑥𝑖 ∈ 𝐹. □

In light of Proposition 2.3, Lemma 2.4 above is telling us that, for a frame 𝐿, the existence

of an F -canonical Raney extension requires three properties: (1) thatM(F ) contains all prin-

cipal filters, (2) thatM(F ) ⊆ Filt(𝐿) is a sublocale inclusion, (3) thatM(F ) ⊆ FiltSE(𝐿). We

shall now see that these are also sufficient conditions.
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Theorem 2.5. For any collection F such that:

1. M(F ) contains all principal filters;

2. M(F ) ⊆ Filt(𝐿) is a sublocale inclusion;

3. M(F ) ⊆ FiltSE(𝐿);

the F -canonical Raney extension exists. It is unique, up to isomorphism. Concretely, it is described

as the structure coming from the theory of polarities, that is, the pair (𝐿,M(F )𝑜𝑝).

Proof. We will first show that for a collection F ⊆ Filt(𝐿)𝑜𝑝 satisfying the three properties

above the pair (𝐿,M(F )𝑜𝑝) is a Raney extension. We know from Theorem 2.1 that 𝐿 ⊆

M(F )𝑜𝑝 preserves the frame operations (and this is also easy to check), and that 𝐿 meet-

generates the coframe component. We show that the embedding 𝐿 ⊆ M(F )𝑜𝑝 preserves

strongly exact meets. Suppose that 𝑥𝑖 ∈ 𝐿 is a family such that their meet
∧𝐿
𝑖 𝑥𝑖 is strongly

exact. As all filters inM(F ) are strongly exact, any such filter which contains ↑𝑥𝑖 for all 𝑖 ∈ 𝐼

must also contain
∧𝐿
𝑖 𝑥𝑖 . This means that in the frameM(F ) the least upper bound of the

family {↑𝑥𝑖 : 𝑖 ∈ 𝐼} is the principal filter ↑
∧𝐿
𝑖 𝑥𝑖 . This means that the meet

∧𝐿
𝑖 𝑥𝑖 is preserved.

Uniqueness follows from Theorem 2.1. □

2.1 Notable examples of Raney extensions

We now introduce the concrete constructions at the center of this work. We would now like

to introduce for a generic frame 𝐿 several collections F of filters, and study F -canonical ex-

tensions for each instance. Since the collection Filt(𝐿) is a frame, there is a Heyting operation

→ on it. In the following, whenever we write 𝐹 → 𝐺 for two filters 𝐹 and 𝐺 , it will be un-

derstood that we are referring to this operation. Notice that for a frame 𝐿 and for 𝑎, 𝑏 ∈ 𝐿 we

have

↑𝑎 → ↑𝑏 = {𝑥 ∈ 𝐿 : 𝑏 ≤ 𝑥 ∨ 𝑎}.

Lemma 2.6. A filter is exact if and only if it is the intersection of filters of the form ↑𝑎 → ↑𝑏 for

some 𝑎, 𝑏 ∈ 𝐿. In particular, if 𝐹 is an exact filter,

𝐹 =
⋂

{𝑎 → 𝑏 : 𝑏 ≤ 𝑎 ∨ 𝑓 for all 𝑓 ∈ 𝐹}.

Proof. Straightforward calculations show that each filter of the form ↑𝑎 → ↑𝑏 is exact, and this

together with the fact that exact filters are closed under intersections shows one part of the
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claim. Let us consider, now, an arbitrary exact filter 𝐹. If 𝑥 ∈ 𝐹 and if 𝑏 ≤ 𝑎 ∨ 𝑓 for all 𝑓 ∈ 𝐹

then in particular 𝑥 ∈ ↑𝑎 → ↑𝑏. For the other inclusion, suppose that whenever 𝑏 ≤ 𝑎 ∨ 𝑓 for

all 𝑓 ∈ 𝐹 we also have that 𝑏 ≤ 𝑎∨𝑥. We claim that 𝑥 =
∧

(↑𝑥∩𝐹) =
∧

{𝑥∨ 𝑓 : 𝑓 ∈ 𝐹} =: 𝑚,

and that this is an exact meet. Notice that we have 𝑚 ≤ 𝑥 ∨ 𝑓 for all 𝑓 ∈ 𝐹, and by hypothesis

on 𝑥 this implies that 𝑚 ≤ 𝑥. Therefore, 𝑥 = 𝑚. It remains to show that this meet is exact. Let

𝑦 ∈ 𝐿. To show exactness of the meet
∧

{𝑥 ∨ 𝑓 : 𝑓 ∈ 𝐹} it suffices to show that

∧

{𝑥 ∨ 𝑓 ∨ 𝑦 : 𝑓 ∈ 𝐹} ≤ 𝑥 ∨ 𝑦,

given that 𝑚 = 𝑥. Notice that for all 𝑓 ∈ 𝐹 we have

∧

{𝑥 ∨ 𝑓 ∨ 𝑦 : 𝑓 ∈ 𝐹} ≤ 𝑓 ∨ 𝑦 ∨ 𝑥

By hypothesis on 𝑥, this implies

∧

{𝑥 ∨ 𝑓 ∨ 𝑦 : 𝑓 ∈ 𝐹} ≤ 𝑥 ∨ 𝑦 ∨ 𝑥 = 𝑥 ∨ 𝑦,

and this completes the proof. □

We say that a filter is regular if it is a regular element in the frame of filters (that is, if it is

of the form 𝐹 → {1} for some filter 𝐹). Let us call FiltR(𝐿) the ordered collection of regular

filters. Note that FiltR(𝐿) ⊆ Filt(𝐿) is the Booleanization of the frame of Filt(𝐿).

Proposition 2.7. The regular filters coincide with the intersections of filters of the form {𝑥 ∈ 𝐿 :

𝑥 ∨ 𝑎 = 1} for some 𝑎 ∈ 𝐿.

Proof. We claim that for a principal filter ↑𝑎 we have ↑𝑎 → {1} = {𝑥 ∈ 𝐿 : 𝑥 ∨ 𝑎 = 1}. The

pseudocomplement, in fact, is calculated as

↑𝑎 → ↑1 = {𝑥 ∈ 𝐿 : 1 ≤ 𝑎 ∨ 𝑥}.

An arbitrary pseudocomplement is of the form 𝐹 → {1} for some filter 𝐹, and because Heyting

implication reverses all joins on the first component, this is the intersection of all the filters

↑ 𝑓 → {1} for 𝑓 ∈ 𝐹. □

From the characterization in Proposition 2.7 above, together with that of exact filters in

Lemma 2.6, it is immediate that every regular filter is exact. As sublocales are closed under all

meets this gives a sublocale inclusion FiltR(𝐿) ⊆ FiltE(𝐿). Let us now look at how the other

collections of filters we are interested in are related between each other.
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Lemma 2.8. Suppose that for a frame 𝐿 the subcollection 𝑆 ⊆ 𝐿 is such that 𝑥 → 𝑠 ∈ M(𝑆) for

all 𝑥 ∈ 𝐿 and 𝑠 ∈ 𝑆. Then, the inclusionM(𝑆) ⊆ 𝐿 is a sublocale.

Proof. Suppose that for a frame 𝐿 the subcollection 𝑆 ⊆ 𝐿 is such that 𝑥 → 𝑠 ∈ M(𝑆) for all

𝑥 ∈ 𝐿. Then, as Heyting implication preserves meets on the second component, we have that

the collectionM(𝑆) is stable under the operation 𝑥 → −, as for a collection 𝑇 ⊆ 𝑆 we have

𝑥 →
∧

𝑇 =
∧

{𝑥 → 𝑡 : 𝑡 ∈ 𝑇},

and this is inM(𝑆) by our hypotheses. □

Lemma 2.9. For a frame 𝐿, if a collection F ⊆ Filt(𝐿) is stable under the operation ↑𝑥 → − for

each 𝑥 ∈ 𝐿, the inclusionM(F ) ⊆ Filt(𝐿) is a sublocale.

Proof. Suppose that F ⊆ Filt(𝐿) is stable under ↑𝑥 → −. Because Heyting implication reverses

all joins on the first component, for every 𝐹 ∈ F we have

𝐺 → 𝐹 =
⋂

{↑𝑔 → 𝐹 : 𝑔 ∈ 𝐺}.

Therefore the conditions of Lemma 2.8 are satisfied, and this means that the inclusionM(F ) ⊆

Filt(𝐿) is a sublocale. □

Lemma 2.10. The collectionM(FiltSO(𝐿)) is a sublocale of Filt(𝐿).

Proof. By Lemma 2.9, it suffices to prove that the collection FiltSO(𝐿) is stable under the op-

eration ↑𝑥 → − for all 𝑥 ∈ 𝐿. Let 𝐹 be a Scott-open filter and let 𝑥 ∈ 𝐿. We have that

↑𝑥 → 𝐹 = {𝑦 ∈ 𝐿 : 𝑥∨ 𝑦 ∈ 𝐹}. Let 𝐷 ⊆ 𝐿 be a directed family, and suppose that 𝑥∨
∨

𝐷 ∈ 𝐹.

Then, as 𝐹 is Scott-open, there is 𝑑 ∈ 𝐷 such that 𝑦 ∨ 𝑑 ∈ 𝐹, which means 𝑑 ∈ ↑𝑥 → 𝐹. □

Lemma 2.11. The collectionM(FiltCP(𝐿)) is a sublocale of Filt(𝐿).

Proof. By Lemma 2.9, it suffices to show that whenever 𝑃 is a completely prime filter and 𝑥 ∈ 𝐿,

the filter {𝑦 ∈ 𝐿 : 𝑥 ∨ 𝑦 ∈ 𝐹} ∈ 𝑃 is completely prime. It is a straightforward calculation to

show that this filter is indeed inaccessible by arbitrary joins. □

The following is a consequence of Theorem 1.9

Theorem 2.12. Every Scott-open filter is strongly exact.

We immediately deduce the following.
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Lemma 2.13. We have a sublocale inclusionM(FiltSO(𝐿)) ⊆ FiltSE(𝐿).

We come to the following theorem, which gathers the results we have got so far on the

notable collections of filters. By Lemma 1.3, we obtain the following.

Theorem 2.14. For any frame 𝐿, we have the following poset of sublocale inclusions:

FiltR(𝐿) FiltE(𝐿)

FiltSE(𝐿).

M(FiltCP(𝐿)) M(FiltSO(𝐿))

⊆

⊆

⊆

⊆

ByTheorem 2.5, for any of the collectionsF of filters above it is sufficient that it contains all

principal filters for (𝐿, F 𝑜𝑝) to be a Raney extension, where we have identified each element of

𝐿 with the principal filter it determines. Thus, (𝐿, FiltSE(𝐿)
𝑜𝑝) and (𝐿, FiltE(𝐿)

𝑜𝑝) are Raney

extensions for any frame 𝐿. Let us study when the other collections in the diagram above

define Raney extensions similarly. In the following, for a frame 𝐿 and a collection of filters F ,

we say that it is F -separable if whenever 𝑎, 𝑏 ∈ 𝐿 are such that 𝑎 ≰ 𝑏 then there is 𝐹 ∈ F

such that 𝑎 ∈ 𝐹 and 𝑏 /∈ 𝐹.

Lemma 2.15. For a frame 𝐿 and a collection of filters F ⊆ Filt(𝐿), we have thatM(F ) con-

taining all principal filters is equivalent to the property of 𝐿 being F -separable.

Proof. The equivalence holds because the property of being F -separable may be rephrased as

having clF (↑𝑎) ⊆ ↑𝑎 for all 𝑎 ∈ 𝐿, and because the reverse set inclusion always holds. □

Proposition 2.16. For a frame 𝐿 we have the following.

• 𝐿 is pre-spatial if and only ifM(FiltSO(𝐿)) contains all principal filters.

• 𝐿 is spatial if and only ifM(FiltCP(𝐿)) contains all principal filters.

• 𝐿 is subfit if and only if FiltR(𝐿) contains all principal filters.

Proof. Notice that all three statements are special cases of Lemma 2.15, with F chosen to be the

collection FiltSO(𝐿) in the first case, the collection FiltCP(𝐿) in the second, and the collection

of filters of the form {𝑥 ∈ 𝐿 : 𝑥 ∨ 𝑎 = 1} in the third. Indeed, closing the collection of filters

of the last form under intersections yields FiltR(𝐿), by Proposition 2.7. □

29



We now prove a point-set version of the result of Theorem 1.13 on strongly exact filters,

with subsets of the spectrum of 𝐿 replacing sublocales of 𝐿. In the following 𝜑 is the spatial-

ization map of the frame 𝐿.

Theorem 2.17. For a frame 𝐿, there is an adjunction

fittsp : Filt(𝐿)𝑜𝑝 ⇆ P(pt(𝐿)) : kersp

𝐹 ↦→
⋂

𝜑[𝐹],

{𝑎 ∈ 𝐿 : 𝑋 ⊆ 𝜑(𝑎)} ←� 𝑋,

with kersp ⊣ fittsp which maximally restricts to an isomorphismM(FiltCP(𝐿))
𝑜𝑝 ∼= U(pt(𝐿)).

Proof. Let 𝑋 ⊆ pt(𝐿) and 𝐹 ∈ Filt(𝐿). We have that 𝐹 ⊆ kersp(𝑋) if and only if for all

𝑓 ∈ 𝐹 we have 𝑋 ⊆ 𝜑( 𝑓 ), and this holds if and only if for each prime 𝑝 ∈ 𝑋 and all 𝑓 ∈ 𝐹

we have 𝑓 ≰ 𝑝. This holds if and only if 𝑋 ⊆ fittsp(𝐹). It is clear that the fixpoint on the

P(pt(𝐿)) side are the saturated sets, as any saturated set can be written as
⋂

𝜑[𝐹] for some

filter 𝐹 ⊆ 𝐿. On the other side, first we show that any fixpoint is an intersection of completely

prime filters. We observe that for 𝑋 ⊆ pt(𝐿) the set {𝑎 ∈ 𝐿 : 𝑋 ⊆ 𝜑(𝑎)} is the intersection
⋂

{𝐿\↓𝑝 : 𝑝 ∈ 𝑋}. On the other hand, given a family 𝐿\↓𝑝𝑖 of completely prime filters, this is

{𝑎 ∈ 𝐿 : {𝑝𝑖 : 𝑖 ∈ 𝐼} ⊆ 𝜑(𝑎)}. □

Let us now consider the motivating example behind the definition of Raney extension.

Lemma 2.18. For every topological space 𝑋 the pair (Ω(𝑋),U(𝑋)) is CP-dense.

Proof. Let 𝑋 be a topological space. Consider some family𝑈𝑖 ⊆ 𝑋 of open sets. We will show

that the filter ↑Ω(𝑋)
⋂

𝑖𝑈𝑖 is an intersection of completely prime filters. It suffices to notice that

the filter may be written as
⋂

{𝑁(𝑥) : 𝑥 ∈
⋂

𝑖

𝑈𝑖},

where 𝑁(𝑥) denotes the neighborhood filter of a point 𝑥 ∈ 𝑋 . □

Proposition 2.19. A topological space 𝑋 is sober if and only if (Ω(𝑋),U(𝑋)) is CP-compact.

In particular, a space 𝑋 is sober if and only if the pair (Ω(𝑋),U(𝑋)) is a CP-canonical Raney

extension.
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Proof. Suppose that 𝑋 is a sober space, and let 𝑃 ⊆ Ω(𝑋) be an intersection of completely

prime filters. We have to show that 𝑃 ⊆ 𝑈 implies that 𝑈 ∈ 𝑃 for every open 𝑈 ⊆ 𝑋 . By

sobriety, each completely prime filter is the neighborhood filter of some point, and so we may

assume

𝑃 =
⋂

{𝑁(𝑥) : 𝑥 ∈ 𝑌 } = {𝑈 ∈ Ω(𝑋) : 𝑌 ⊆ 𝑈}

for some subset 𝑌 ⊆ 𝑋 . Notice that an open set contains 𝑌 precisely when it contains its

saturation
⋂

{𝑈 ∈ Ω(𝑋) : 𝑌 ⊆ 𝑈} =
⋂

𝑃. Therefore
⋂

𝑃 ⊆ 𝑈 implies 𝑈 ∈ 𝑃 for every

open 𝑈 ⊆ 𝑋 , and this means that we have CP-compactness. Finally, assume that for some

space 𝑋 the pair (Ω(𝑋),U(𝑋)) is CP-compact. Let 𝑃 ⊆ Ω(𝑋) be a completely prime filter.

We prove that there is 𝑥 ∈
⋂

𝑃 such that
⋂

𝑃 = ↑𝑥. Observe that for all 𝑦 ∈
⋂

𝑃 we have

↑𝑦 ⊆
⋂

𝑃. Towards contradiction, assume that for all 𝑦 ∈
⋂

𝑃 we have that
⋂

𝑃 ⊈ ↑𝑦. This

means that for all 𝑦 ∈
⋂

𝑃 there is an open 𝑈𝑦 ⊆ 𝑋 such that 𝑦 ∈ 𝑈𝑦 and
⋂

𝑃 ⊈ 𝑈𝑦 . As 𝑃 is

completely prime, this implies that
⋃

{𝑈𝑦 : 𝑦 ∈
⋂

𝑃} /∈ 𝑃. By CP-compactness, this implies

that
⋂

𝑃 ⊈
⋃

𝑦𝑈𝑦 . This is a contradiction, as for each 𝑦 ∈
⋂

𝑃 we have ↑𝑦 ⊆ 𝑈𝑦 , and taking

unions on both sides yields
⋂

𝑃 ⊆
⋃

𝑦𝑈𝑦 . Thus, 𝑋 must be sober. The last part of the claim

follows by combining this characterization of sobriety with Lemma 2.18. □

2.2 The category of Raney extensions

It is now time to consider Raney extensions as objects of a category. A morphism 𝑓 : (𝐿, 𝐶)→

(𝑀, 𝐷) is a coframe map 𝑓 : 𝐶 → 𝐷 such that whenever 𝑎 ∈ 𝐿 we have 𝑓 (𝑎) ∈ 𝑀 and

such that the restriction 𝑓 |𝐿: 𝐿 → 𝑀 is a frame map. We call Raney the category of Raney

extensions with Raney maps. We would now like to explore the question of when we can

extend a certain assignment Obj(Frm) → Obj(Raney) to a functor. The question of when

frame maps can be extended to maps of Raney extensions amounts to when frame maps can

be lifted to maps between collections of filters. For frames 𝐿 and 𝑀 , and for sublocales F ⊆

Filt(𝐿) and G ⊆ Filt(𝑀) such that they contain all the principal filters, we say that a morphism

𝑓 : 𝐿 → 𝑀 lifts to a morphism 𝐹 : F 𝑜𝑝 → G𝑜𝑝 when a coframe morphism 𝐹 exists such that

the following square commutes:

F 𝑜𝑝 G𝑜𝑝

𝐿 𝑀.

𝐹

𝑓
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If such lifting exists then by commutativity of the diagram it has to be defined as 𝐹 ↦→

clG( 𝑓 [𝐹]). As G is closed under arbitrary intersections, this map always exists. It is, however,

not a coframe map in general.

Lemma 2.20. Suppose that we have coframes 𝐶 and 𝐷, such that 𝐿 ⊆ 𝐶 is a subframe that

meet-generates 𝐶. Suppose that a map 𝑓 : 𝐶 → 𝐷 preserves all meets, as well as all the joins of

𝐿. Then it is a coframe map.

Proof. To show that it is a coframe map, it suffices to show that it preserves finite joins. Con-

sider 𝑥, 𝑦 ∈ 𝐶. We have 𝑥 =
∧

𝑖 𝑥𝑖 and 𝑦 =
∧

𝑗 𝑦 𝑗 for families 𝑥𝑖, 𝑦 𝑗 ∈ 𝐿. Then

𝑓 (𝑥 ∨ 𝑦) = 𝑓 (
∧

𝑖

𝑥𝑖 ∨
∧

𝑗

𝑦 𝑗) =
∧

𝑖, 𝑗

𝑓 (𝑥𝑖) ∨ 𝑓 (𝑦 𝑗) = 𝑓 (𝑥) ∨ 𝑓 (𝑦). □

Lemma 2.21. Suppose that we have a frame map 𝑓 : 𝐿 → 𝑀 and that F ⊆ Filt(𝐿) and

G ⊆ Filt(𝑀) are sublocale inclusions where F and G contain all principal filters. If the map

clG( 𝑓 [−]) : F
𝑜𝑝 → G𝑜𝑝 preserves all meets, then it is a coframe map.

Proof. It suffices to observe that we are in the situation described by Lemma 2.20. This is

because the map clG( 𝑓 [−]) lifts a frame map 𝑓 : 𝐿 → 𝑀 , and so its restriction to 𝐿 is the

composition of this join-preserving map with the join-preserving inclusion 𝑀 ⊆ M𝑜𝑝 . □

For a poset map to preserve all meets, it suffices for it to have a left adjoint. Let us consider

clG( 𝑓 [−]) : F → G as a frame map, so that the order is simply set inclusion, as clG(𝐹) ⊆ 𝐺 if

and only if 𝑓 [𝐹] ⊆ 𝐺 , and this holds if and only if 𝐹 ⊆ 𝑓 −1(𝐺). The issue with the preimage

map is that it is not guaranteed to map filters of G to filters of F .

Lemma 2.22. Suppose that 𝑓 : 𝐿 → 𝑀 is a frame map and that we have sublocales F ⊆ Filt(𝐿)

and G ⊆ Filt(𝑀) containing all principal filters. Then there is a frame map 𝐹 making the

following commute:

F G

𝐿𝑜𝑝 𝑀𝑜𝑝 .

𝐹

𝑓

if and only if 𝑓 −1(𝐹) ∈ G for every 𝐹 ∈ F . If this map exists, it is clG( 𝑓 [−]).
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More generally, given a map 𝑓 : 𝐿 → 𝑀 of frames we ask when is it that we can extend

it to a map 𝑓𝐶 : (𝐿, 𝐶) → (𝑀, 𝐷) of Raney extensions. If we have a coframe morphism

𝑓𝐶∗ : 𝐶∗ → 𝐷∗ such that 𝑓𝐶∗(↑𝑎) = ↑ 𝑓 (𝑎) for every 𝑎 ∈ 𝐿, then we also have a coframe

morphism 𝑓𝐶 : 𝐶 → 𝐷 such that the following commutes. Recall that the morphisms
∧

are

isomorphisms:

𝐶 𝐷

𝐶∗ 𝐷∗

𝐿𝑜𝑝 𝑀𝑜𝑝 .

𝑓𝐶

∧

(∼=)

𝑓𝐶∗

∧

(∼=)

𝑓

Proposition 2.23. A framemap 𝑓 : 𝐿 → 𝑀 can be extended to a map between Raney extensions

𝑓𝐶 : (𝐿, 𝐶) → (𝑀, 𝐷) if and only if preimages of filters in 𝐷∗ are in 𝐶∗. In case this holds, the

map is defined as

(𝐿, 𝐶)→ (𝑀, 𝐷),

𝑐 ↦→
∧

𝑓 [↑𝐿𝑐].

Proof. It remains to show that this definition is equivalent to the definition in 2.22, in the sense

that the two definitions are the same when we identify elements of 𝐷 with their isomorphic

image under ↑𝐿 : 𝐷 ∼= 𝐷∗. We show, then, that clF ( 𝑓 [↑
𝐿𝑐]) = ↑𝐿

∧

𝑓 [↑𝐿𝑐]. Expanding

definitions

clF ( 𝑓 [↑
𝐿𝑐]) =

⋂

{↑𝐿𝑑 : 𝑑 ∈ 𝐷, 𝑓 [↑𝐿𝑐] ⊆ ↑𝐿𝑑}

=
⋂

{↑𝐿𝑑 : 𝑑 ∈ 𝐷, 𝑑 ≤ 𝑓 (𝑎) for all 𝑎 ∈ ↑𝐿𝑐}

= ↑𝐿
∨

{𝑑 ∈ 𝐷 : 𝑑 ≤ 𝑓 (𝑎) for all 𝑎 ∈ ↑𝐿𝑐}

= ↑𝐿
∧

𝑓 [↑𝐿𝑐]. □

We apply Proposition 2.23 above to some of the Raney extensions that we have seen.

Lemma 2.24. Any frame morphism 𝑓 : 𝐿 → 𝑀 lifts to a coframe morphism

𝑓SE : FiltSE(𝐿)
𝑜𝑝 → FiltSE(𝑀)𝑜𝑝 .
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Proof. By Proposition 2.23, a frame morphism 𝑓 : 𝐿 → 𝑀 lifts as required if preimages of

strongly exact filters are strongly exact. Suppose, then, that 𝐹 ⊆ 𝑀 is strongly exact. Suppose

that 𝑥𝑖 ∈ 𝐿 is a family such that the meet
∧

𝑖 𝑥𝑖 is strongly exact, such that 𝑓 (𝑥𝑖) ∈ 𝐹. Because

all frame morphisms preserve strongly exact meets, as well as strong exactness of meets, we

have
∧

𝑖 𝑓 (𝑥𝑖) = 𝑓 (
∧

𝑖 𝑥𝑖) ∈ 𝐹, as desired. □

Lemma 2.25. Any frame morphism 𝑓 : 𝐿 → 𝑀 between spatial frames lifts to a coframe

morphism

𝑓CP :M(FiltCP(𝐿))
𝑜𝑝 →M(FiltCP(𝑀))𝑜𝑝 .

Proof. By Proposition 2.22, it suffices to show that if 𝑓 : 𝐿 → 𝑀 is a frame map, preimages

of completely prime filters are completely prime. Suppose, than, that 𝑃 ⊆ 𝑀 is a completely

prime filter, and that 𝑓 (
∨

𝑖 𝑥𝑖) ∈ 𝑃. We then have
∨

𝑖 𝑓 (𝑥𝑖) ∈ 𝑃, therefore 𝑓 (𝑥𝑖) ∈ 𝑃 for some

𝑖 ∈ 𝐼 . Indeed, then, 𝑓 −1(𝑃) is completely prime. □

Lemma 2.26. Any frame morphism 𝑓 : 𝐿 → 𝑀 between pre-spatial frames lifts to a coframe

morphism 𝑓SO :M(FiltSO(𝐿))
𝑜𝑝 →M(FiltSO(𝑀))𝑜𝑝 .

Proof. By Proposition 2.22, it suffices to show that for a frame morphism 𝑓 : 𝐿 → 𝑀 between

pre-spatial frames preimages of Scott-open filters are Scott-open. Suppose that 𝐹 ⊆ 𝐿 is a

Scott-open filter, and that {𝑥𝑖 : 𝑖 ∈ 𝐼} ⊆ 𝐿 is a directed family such that 𝑓 (
∨

𝑖 𝑥𝑖) =
∨

𝑓 (𝑥𝑖) ∈

𝐹. Observe that the family { 𝑓 (𝑥𝑖) : 𝑖 ∈ 𝐼} is directed, and so by Scott-openness of 𝐹 we must

have 𝑓 (𝑥𝑖) ∈ 𝐹 for some 𝑖 ∈ 𝐼 , as desired. □

It is clear that there is a forgetful functor 𝜋1 : Raney → Frm which forgets about the

second component of the extension. We know already that for a frame 𝐿 the Raney ex-

tension (𝐿, FiltSE(𝐿)
𝑜𝑝) is in a certain sense the largest. We observe that the assignment

𝐿 ↦→ (𝐿, FiltSE(𝐿)
𝑜𝑝) on objects can be extended to a functor by mapping each frame mor-

phism to the morphism 𝑓SE whose existence is established by Lemma 2.24. Let us see that this

is the left adjoint of 𝜋1.

Theorem 2.27. For a frame 𝐿, the pair (𝐿, FiltSE(𝐿)
𝑜𝑝) is the free Raney extension over it. In

particular, the category of frames is a full coreflective subcategory of Raney.

Proof. Suppose that we have a framemap 𝑓 : 𝐿 → 𝑀 . Let (𝑀, 𝐷) be a Raney extension. By the

characterization in Theorem 2.5 we have 𝐷∗ ⊆ FiltSE(𝑀)𝑜𝑝 , and by Lemma 2.24, preimages

of strongly exact filters are strongly exact. Therefore, preimages of elements in 𝐷∗ are in

FiltSE(𝐿). By Proposition 2.23, the frame map lifts as required. □
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Remark 2.3. In light of the isomorphism fitt : FiltSE(𝐿) ∼= S𝔬(𝐿) in Theorem 1.13, this suggests

that the embedding 𝔬 : 𝐿 ↩→ S𝔬(𝐿) is to be interpreted as the most general way to extend a

frame to a coframe of saturated sets. This comes from the requirement that a Raney extension

should be such that 𝐿 ⊆ 𝐶 preserves strongly exact meets. One can check that if we drop this

requirement the equivalent of this result is that the free coframe generated by a frame (such that

the embedding preserves the frame operations) is simply Filt(𝐿).

2.3 The assignment 𝐿 ↦→ (𝐿, FiltE(𝐿)
𝑜𝑝)

We already have seen that each frame has the largest Raney extension. Every frame also has

the smallest Raney extension.

Lemma 2.28. For a frame 𝐿 the collection FiltE(𝐿) is the smallest sublocale of Filt(𝐿) containing

all the principal filters.

Proof. Let S ⊆ Filt(𝐿) be the smallest sublocale containing all the principal filters. For any

𝑥, 𝑦 ∈ 𝐿, wemust have ↑𝑥 → ↑𝑦 ∈ S. As sublocales are closed under all meets, all intersections

of filters of the form ↑𝑥 → ↑𝑦 must be in S. Therefore, by the characterization in Lemma 2.6,

FiltE(𝐿) ⊆ S. □

The following result is already implicitly in the literature. In [7], Theorem 3.7, it is shown

that for a meet-semilattice 𝑆 the smallest frame generated by it is J 𝑒(𝑆), the collection of all

downsets which are closed under those joins of 𝑆 that distribute over all finite meets. Recently

the same result has been re-proven for frames with bases of meet-semilattices in [16].

Proposition 2.29. For all Raney extensions (𝐿, 𝐶) we have a surjection

(𝐿, 𝐶)→ (𝐿, FiltE(𝐿)
𝑜𝑝),

𝑐 ↦→ clE(↑
𝐿𝑐).

Proof. The collection 𝐶∗ contains all principal filters, and so FiltE(𝐿) ⊆ 𝐶
∗ by Lemma 2.28.

Then by Proposition 2.23 we have a surjection 𝑐 ↦→ clE(↑
𝐿𝑐). □

We finally reach the following boundary conditions for Raney extensions.

Theorem 2.30. For a frame 𝐿, the collection of Raney extensions with base 𝐿 is isomorphic to

the section [FiltE(𝐿), FiltSE(𝐿)] of the coframe of sublocales of FiltSE(𝐿).
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Proof. That every Raney extension belongs to the section [FiltE(𝐿), FiltSE(𝐿)] follows from

Theorem 2.27 and Proposition 2.29. Suppose that we have a sublocale F ⊆ FiltSE(𝐿) such

that FiltE(𝐿) ⊆ F . By Lemma 2.22, there are two surjections

(𝐿, FiltSE(𝐿)
𝑜𝑝) (𝐿, F 𝑜𝑝) (𝐿, FiltE(𝐿)

𝑜𝑝).
clF clE

□

Remark 2.4. We have seen in Remark 2.3 that the embedding 𝔬 : 𝐿 ↩→ S𝔬(𝐿) is the free Raney

extension over 𝐿. Recall (Theorem 1.13) that the frame FiltE(𝐿) is isomorphic to the frame S𝔠(𝐿).

Therefore, the embedding 𝔠 : 𝐿 ↩→ S𝔠(𝐿)
𝑜𝑝 has the dual property that it is the smallest Raney

extension over 𝐿.

The assignment 𝐿 ↦→ (𝐿, FiltE(𝐿)
𝑜𝑝) is not always functorial, as shown in [6]). In [6], the

authors study conditions under which every morphism 𝑓 : 𝐿 → 𝑀 between subfit frames

lifts to a morphism S𝔠(𝐿) → S𝔠(𝑀). We will now seek to reach a natural restriction on the

category Frm so that Proposition 2.29 may be refined to the existence of a right adjoint to 𝜋1
for a certain subcategory of Raney. In the following, for a frame morphism 𝑓 : 𝐿 → 𝑀 , we

will say that it is exact if whenever the meet of a family {𝑥𝑖 : 𝑖 ∈ 𝐼} ⊆ 𝐿 is exact, so is the meet

of { 𝑓 (𝑥𝑖) : 𝑖 ∈ 𝐼}, and furthermore
∧

𝑖 𝑓 (𝑥𝑖) = 𝑓 (
∧

𝑖 𝑥𝑖).

Lemma 2.31. Amorphism 𝑓 : 𝐿 → 𝑀 is exact if and only if preimages of exact filters are exact.

This holds if and only if the morphism can be extended to a morphism

𝑓E : (𝐿, FiltE(𝐿)
𝑜𝑝)→ (𝑀, FiltE(𝑀)𝑜𝑝).

Proof. Suppose that 𝑓 : 𝐿 → 𝑀 is an exact frame map, and that 𝐺 ⊆ 𝑀 is an exact filter.

Suppose that
∧

𝑖 𝑥𝑖 ∈ 𝐿 is an exact meet such that 𝑓 (𝑥𝑖) ∈ 𝐺. By exactness of this map, themeet
∧

𝑖 𝑓 (𝑥𝑖) is exact and so
∧

𝑖 𝑓 (𝑥𝑖) ∈ 𝐺 . Again, by exactness of 𝑓 , we have
∧

𝑖 𝑓 (𝑥𝑖) = 𝑓 (
∧

𝑖 𝑥𝑖).

Indeed, then,
∧

𝑖 𝑥𝑖 ∈ 𝑓 −1(𝐺). Conversely, suppose that we have a frame map 𝑓 : 𝐿 → 𝑀

such that it is not exact. This means that either we have an exact meet
∧

𝑖 𝑥𝑖 ∈ 𝐿 such that it

is not preserved by 𝑓 , or we have an exact meet
∧

𝑖 𝑥𝑖 ∈ 𝐿 such that
∧

𝑖 𝑓 (𝑥𝑖) is not exact. We

consider these two cases in turn. In the first case, we consider the principal filter ↑
∧

𝑖 𝑓 (𝑥𝑖).

This is exact, as it is closed under all meets. We notice that by our hypothesis 𝑓 (
∧

𝑖 𝑥𝑖) is not

an element of this filter. Let us call 𝐹 the preimage of this filter. We have that 𝑥𝑖 ∈ 𝐹 but
∧

𝑖 𝑥𝑖 ∈ 𝐹, and so 𝐹 is not exact. In the second case, consider an exact meet
∧

𝑖 𝑥𝑖 ∈ 𝐿 such

that
∧

𝑖 𝑓 (𝑥𝑖) is not exact. In particular, let 𝑦 ∈ 𝑀 be such that
∧

𝑖( 𝑓 (𝑥𝑖)∨ 𝑦) ≰ (
∧

𝑖 𝑓 (𝑥𝑖))∨ 𝑦.

We now consider the exact filter

↑𝑦 → ↑
∧

𝑖

( 𝑓 (𝑥𝑖) ∨ 𝑦) = {𝑚 ∈ 𝑀 :
∧

𝑖

( 𝑓 (𝑥𝑖) ∨ 𝑦) ≤ 𝑦 ∨ 𝑚}.
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That this is an exact filter follows from the characterization of Lemma 2.6. Let 𝐹 be the preim-

age of this filter. We have that 𝑥𝑖 ∈ 𝐹 for each 𝑖 ∈ 𝐼 . We claim that
∧

𝑖 𝑥𝑖 /∈ 𝐹. This follows from

the fact that by our hypothesis
∧

𝑖( 𝑓 (𝑥𝑖) ∨ 𝑦) ≰ (
∧

𝑖 𝑓 (𝑥𝑖)) ∨ 𝑦 and 𝑓 (
∧

𝑖 𝑥𝑖) ≤
∧

𝑖 𝑓 (𝑥𝑖). □

Let us call FrmE the subcategory of Frm determined by restricting the morphisms to those

preserving exactness of meets. Let us also call RaneyE the subcategory of Raney determined

by the morphisms such that their restriction to the frame component preserves exactness of

meets.

Theorem 2.32. The forgetful functor 𝜋1 : RaneyE → FrmE has a right adjoint, and this is the

functor acting on objects as 𝐿 ↦→ (𝐿, FiltE(𝐿)
𝑜𝑝) and acting on morphisms as 𝑓 ↦→ 𝑓E .

Proof. Suppose that we have an exact frame map 𝑓 : 𝐿 → 𝑀 , and that (𝐿, 𝐶) is a Raney

extension. By Lemma 2.31, as 𝑓 is exact, preimages of filters in FiltE(𝑀) are in FiltE(𝐿).

Furthermore, 𝐶∗ must contain all principal filters, and so by Lemma 2.28 this implies that

FiltE(𝐿) ⊆ 𝐶
∗. Then, preimages of exact filters of 𝑀 are in 𝐶∗. By Proposition 2.23, then, we

have a map of Raney extensions (𝐿, 𝐶)→ (𝑀, FiltE(𝑀)𝑜𝑝). □

3 Generalizing Raney duality

3.1 Spectra of Raney extensions

We now extend Raney duality, as illustrated in [14], to our setting. For a Raney extension

(𝐿, 𝐶) we define pt𝑅(𝐶) to be the collection of its completely join-prime elements and we

topologize it as follows. We first define the function 𝜑(𝐿,𝐶) : 𝐶 → P(pt𝑅(𝐶)) as

𝜑(𝐿,𝐶)(𝑎) = {𝑥 ∈ pt𝑅(𝐶) : 𝑥 ≤ 𝑎}.

It is easy to see that the following two properties hold:

1. 𝜑(𝐿,𝐶)(
∧

𝑖 𝑎𝑖) =
⋂

𝑖 𝜑(𝐿,𝐶)(𝑎𝑖),

2. 𝜑(𝐿,𝐶)(
∨

𝑖 𝑎𝑖) =
⋃

𝑖 𝜑(𝐿,𝐶)(𝑎𝑖),

for each family 𝑎𝑖 ∈ 𝐿. This implies that the elements of the form 𝜑(𝐿,𝐶)(𝑎) for 𝑎 ∈ 𝐿 form a

topology. We refer to the topological space we obtain as pt𝑅(𝐿, 𝐶), and we call it the spectrum

of the Raney extension (𝐿, 𝐶). By property 1 it also follows that the elements of the form

𝜑(𝐿,𝐶)(𝑐) with 𝑐 ∈ 𝐶 are the saturated sets of this space.

37



Lemma 3.1. For a Raney extension (𝐿, 𝐶), an element 𝑥 ∈ 𝐶 is completely join-prime if and

only if ↑𝐿𝑥 is a completely prime filter.

Proof. It is immediate that if 𝑥 ∈ 𝐶 is completely join-prime then ↑𝐿𝑥 is completely prime. For

the converse, suppose that we have 𝑥 ∈ 𝐶 such that ↑𝐿𝑥 is completely prime. Suppose that

𝑥 ≤
∨

𝐷 for 𝐷 ⊆ 𝐶. This means that ↑𝐿
∨

𝐷 ⊆ ↑𝐿𝑥. Observe that ↑𝐿
∨

𝐷 =
⋂

{↑𝐿𝑑 : 𝑑 ∈ 𝐷}.

As ↑𝐿𝑥 is assumed to be completely prime, there must be some 𝑑 ∈ 𝐷 such that ↑𝐿𝑑 ⊆ ↑𝐿𝑥.

This implies that 𝑥 ≤ 𝑑. □

Lemma 3.2. For a morphism 𝑓 : (𝐿, 𝐶) → (𝑀, 𝐷) of Raney extensions, we have that if 𝑥 ∈

pt𝑅(𝐷) then 𝑓
∗(𝑥) ∈ pt𝑅(𝐶).

Proof. By Lemma 3.1, it suffices to show that for a morphism 𝑓 : (𝐿, 𝐶) → (𝑀, 𝐷) of Raney

extensions, if 𝑥 ∈ pt𝑅(𝐷) then ↑
𝐿 𝑓 ∗(𝑥) is a completely prime filter of 𝐿. If 𝑓 ∗(𝑥) ≤

∨

𝐴

for 𝐴 ⊆ 𝐿, then as 𝑓 respects the frame operations of 𝐿, and because 𝑓 ∗ ⊣ 𝑓 , we have that

𝑥 ≤
∨

{ 𝑓 (𝑎) : 𝑎 ∈ 𝐴}. Since 𝑥 is completely join-prime, there is some 𝑎 ∈ 𝐴 such that

𝑥 ≤ 𝑓 (𝑎), that is 𝑓 ∗(𝑥) ≤ 𝑎. □

Lemma 3.3. The assignment pt𝑅 : (𝐿, 𝐶) ↦→ pt𝑅(𝐿, 𝐶) is the object part of a functor pt𝑅 :

Raney𝑜𝑝 → Top which acts on morphisms as 𝑓 ↦→ 𝑓 ∗.

Proof. That every morphism is mapped to a well-defined function between the set of points

follows from Lemma 3.2. Continuity follows from the fact that the 𝑓 ∗-preimage of some 𝜑(𝑎)

for 𝑎 ∈ 𝐿 is, expanding definitions,

{𝑥 ∈ pt𝑅(𝐷) : 𝑓
∗(𝑥) ≤ 𝑎} =

{𝑥 ∈ pt𝑅(𝐷) : 𝑥 ≤ 𝑓 (𝑎)} = 𝜑( 𝑓 (𝑎)),

and this set is indeed open in pt𝑅(𝐷) as by definition of Raney morphism 𝑓 (𝑎) ∈ 𝑀 . □

For a topological space 𝑋 we define Ω𝑅(𝑋) as the pair (Ω(𝑋),U(𝑋)). The assignment

𝑋 ↦→ Ω𝑅(𝑋) is the object part of a functor Ω𝑅 : Top → Raney𝑜𝑝 which acts on morphisms

as 𝑓 ↦→ 𝑓 −1, this fact is easy to check from basic set-theoretical properties of preimages. The

following follows from the definition of the topologizing map 𝜑(𝐿,𝐶).

Lemma 3.4. For every Raney extension (𝐿, 𝐶) the assignment 𝑐 ↦→ 𝜑(𝐿,𝐶)(𝑐) is a surjective map

of Raney extensions (𝐿, 𝐶)→ Ω𝑅(pt𝑅(𝐿, 𝐶)).
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The map we have just defined will be the evaluation at an object of the natural transforma-

tionΩ𝑅◦pt𝑅 ⇒ 1Raney𝑜𝑝 . Let us now define the other natural transformation 1Top ⇒ pt𝑅◦Ω𝑅.

Lemma 3.5. For every topological space 𝑋 the map 𝜓𝑋 : 𝑋 → pt𝑅(Ω𝑅(𝑋)) defined as 𝑥 ↦→ ↑𝑥

is a continuous map.

Proof. That the map is well-defined follows from the observation that the completely join-

prime elements ofU(𝑋) are precisely the principal upsets. Let us now abbreviate 𝜑(Ω(𝑋),U(𝑋))

as simply 𝜑. For continuity, we observe that the 𝜓𝑋-preimage of an open set 𝜑(𝑈) is the set

{𝑥 ∈ 𝑋 : ↑𝑥 ∈ 𝜑(𝑈)} = 𝑈. □

Remark 3.1. In Lemma 3.4 above, as usualU(pt𝑅(𝐿, 𝐶)) denotes the ordered collection of satu-

rated sets of the space pt𝑅(𝐿, 𝐶). Note that these sets are not upsets according to the order inherited

from 𝐶, as the order or 𝐶 is the opposite of the specialization order in pt𝑅(𝐿). The situation is

analogous for frames, as seen in the discussion after Proposition 1.7.

Theorem 3.6. The pair (Ω𝑅, pt𝑅) constitutes an idempotent adjunction Top⇆ Raney𝑜𝑝 .

Proof. We claim that the two maps defined in Lemmas 3.4 and 3.5 are the required natural

transformations, as defined for each component. Suppose that (𝐿, 𝐶) is a Raney extension,

and that there is a space 𝑋 such that there is a map of Raney extensions 𝑓 : (𝐿, 𝐶) →

(Ω(𝑋),U(𝑋)). We denote the topologizing map simply as 𝜑. Let us define a map 𝑓𝜑 such

that the following commutes:

(𝜑[𝐿], 𝜑[𝐶])

(𝐿, 𝐶) (Ω(𝑋),U(𝑋)).

𝑓𝜑𝜑

𝑓

We observe that on the coframe component the map 𝜑 is such that for all 𝑐, 𝑑 ∈ 𝐶 we have

𝜑(𝑐) ⊆ 𝜑(𝑑) if and only if for every completely join-prime element 𝑥 ∈ 𝐶 we have 𝑥 ≤ 𝑐

implies 𝑥 ≤ 𝑑. The map 𝑓 , then, factors through this map if and only if 𝑓 (𝑐) ≤ 𝑓 (𝑑)whenever

the second condition holds for 𝑐, 𝑑 ∈ 𝐶. Suppose, then, that this holds. Suppose, now, that

𝑦 ∈ 𝑓 (𝑐). This implies that ↑𝑦 ⊆ 𝑓 (𝑐), and so 𝑓 ∗(↑𝑦) ≤ 𝑑. As by Lemma 3.2 the element 𝑓 ∗(↑𝑦)

is completely join-prime, we have 𝑓 ∗(↑𝑦) ≤ 𝑑, that is, 𝑦 ∈ 𝑓 (𝑑). For spaces, consider a space 𝑋

and a Raney extension (𝐿, 𝐶), and suppose that there is a continuous map 𝑓 : 𝑋 → pt𝑅(𝐿, 𝐶).

We show that there is a map 𝑓𝜓 making the following commute.
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pt𝑅(Ω(𝑋),U(𝑋))

𝑋 pt𝑅(𝐿, 𝐶).

𝑓𝜓𝜓𝑋

𝑓

For a completely join-prime element ↑𝑥, we define 𝑓𝜓(↑𝑥) = 𝑓 (𝑥). Routine calculations show

that this map is continuous. □

Proposition 3.7. The fixpoints of the adjunction Ω𝑅 ⊣ pt𝑅 in Top are precisely the 𝑇0 spaces.

The map 𝜓𝑋 is the 𝑇0 reflection for each space 𝑋 .

Proof. For a space 𝑋 , we consider the map 𝜓𝑋 : 𝑋 → pt𝑅(Ω𝑅(𝑋)) defined as 𝑥 ↦→ ↑𝑥. By

Lemma 3.5 this is a continuous map. As all completely join-prime elements of U(𝑋) are of

the form ↑𝑥 for some 𝑥 ∈ 𝑋 , it follows that the map is always surjective. The only way it

can fail to be a homeomorphism, then, is when it is not injective. In general, ↑𝑥 = ↑𝑦 for

𝑥, 𝑦 ∈ 𝑋 means that 𝑥 ∈ 𝑈 if and only if 𝑦 ∈ 𝑈 for all opens 𝑈 ∈ Ω(𝑋). Therefore, the map is

a homeomorphism precisely when the space is 𝑇0. To check that this is a 𝑇0 reflection, notice

that any map 𝑓 : 𝑋 → 𝑌 to a 𝑇0 space must identify all points identified by 𝜓𝑋 , and that the

topology on pt𝑅(Ω𝑅(𝑋)) is the coarsest one that makes 𝜓𝑋 continuous. □

Let us now look at the fixpoints of the adjunction Ω𝑅 ⊣ pt𝑅 in the category Raney.

Proposition 3.8. A Raney extension (𝐿, 𝐶) is a fixpoint of the Ω𝑅 ⊣ pt𝑅 adjunction if and only

if the coframe 𝐶 is join-generated by its completely join-prime elements.

Proof. Suppose that a Raney extension (𝐿, 𝐶) is join-generated by its completely join-prime

elements. Consider the spatialization map

𝜑(𝐿,𝐶) : (𝐿, 𝐶)→ (Ω(pt𝑅(𝐿, 𝐶)),U(pt𝑅(𝐿, 𝐶))).

This is a map of Raney extensions, and by its definition it is always a surjection. Therefore, it

is an isomorphism if and only if it is injective. By definition of the map 𝜑(𝐿,𝐶), we have that

it is injective exactly when for 𝑐, 𝑑 ∈ 𝐶 we have that 𝑐 ≰ 𝑑 implies that 𝑥 ≤ 𝑐 and 𝑥 ≰ 𝑑 for

some completely join-prime element 𝑥 ∈ 𝐶. □

Because of Proposition 3.8 above, we define a Raney extension (𝐿, 𝐶) to be spatial if the

coframe𝐶 is join-generated by its completely join-prime elements. We note that Raney duality,

as illustrated in [14], is a restriction of the dual adjunction Ω𝑅 ⊣ pt𝑅.
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Proposition 3.9. For a sublocale F ⊆ Filt(𝐿) containing all principal filters we have

pt𝑅(𝐿, F
𝑜𝑝) = F ∩ FiltCP(𝐿).

The opens of this space are the sets of the form {𝑃 ∈ FiltCP(𝐿) ∩ F : 𝑎 ∈ 𝑃} for some 𝑎 ∈ 𝐿.

Proof. The first part of the statement follows from the characterization of completely join-

prime elements in Lemma 3.1: adapting the result to our case we see that, in the coframe F 𝑜𝑝 ,

for a filter 𝐹 ∈ F ,

↑𝐿𝐹 = {↑𝑎 : 𝑎 ∈ 𝐹},

this collection is the filter 𝐹 itself, under the identification of elements of 𝐿 with their principal

filters. For the second part of the statement, it suffices to unravel the definition of the topology

on pt𝑅(𝐿, F
𝑜𝑝). □

Lemma 3.10. A Raney extension (𝐿, 𝐶) is spatial if and only if 𝐶∗ ⊆ M(𝐶∗ ∩ FiltCP(𝐿)).

Proof. Because of the isomorphism ↑𝐿 : 𝐶 ∼= 𝐶∗, a Raney extension (𝐿, 𝐶) is spatial pre-

cisely when all elements of 𝐶∗ are intersections of completely join-prime elements in 𝐶∗, as

by Lemma 3.9 we have pt𝑅(𝐶
∗) = FiltCP(𝐿) ∩ 𝐶

∗. □

Theorem 3.11. For a spatial frame 𝐿, the pair (𝐿,M(FiltCP(𝐿))
𝑜𝑝) is the free spatial Raney

extension over it. In particular, the category of spatial frames is a full coreflective subcategory of

that of spatial Raney extensions.

Proof. The assignment 𝐿 ↦→ (𝐿,M(FiltCP(𝐿))
𝑜𝑝) from objects of spFrm to objects of Raney

can be extended to morphisms as 𝑓 ↦→ 𝑓CP , as shown in Lemma 2.25. The assignment, then,

is functorial. Let us show that it is left adjoint to 𝜋1 : spRaney → spFrm. Suppose that we

have a map 𝑓 : 𝐿 → 𝑀 between spatial frames, and that (𝑀,𝐶) is a spatial Raney exten-

sion. By spatiality, we must have 𝐶∗ ⊆ M(FiltCP(𝑀)), by Proposition 3.10. By Proposition

2.25, preimages under 𝑓 of completely prime filters are completely prime. This means that

preimages of filters in 𝐶∗ are in M(FiltCP(𝐿)). By Proposition 2.31, we have a morphism

(𝐿,M(FiltCP(𝐿))
𝑜𝑝)→ (𝑀,𝐶) which extends the frame map 𝑓 : 𝐿 → 𝑀 . □

We are now in a condition to analyze the spectra of the examples of Raney extensions seen

before. Recall that for a frame 𝐿 a prime 𝑝 ∈ 𝐿 is covered if whenever
∧

𝑖 𝑥𝑖 = 𝑝 for some

family 𝑥𝑖 ∈ 𝐿 then 𝑥𝑖 = 𝑝 for some 𝑖 ∈ 𝐼 . In [11], the authors define the 𝑇𝐷 spectrum of a frame

𝐿 to be the collection of covered primes of a frame, with the subspace topology inherited from

pt(𝐿). This space is denoted as pt𝐷(𝐿). This turns out to always be a 𝑇𝐷 space.
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Lemma 3.12. For a frame 𝐿, for any 𝑎 ∈ 𝐿 the meet
∧

{𝑥 ∈ 𝐿 : 𝑎 < 𝑥} is exact.

Proof. Let 𝐿 be a frame and let 𝑎 ∈ 𝐿. Let us consider the meet
∧

{𝑥 ∈ 𝐿 : 𝑎 < 𝑥}. Let 𝑏 ∈ 𝐿.

We claim that
∧

{𝑥 ∨ 𝑏 : 𝑎 < 𝑥} ≤
∧

{𝑥 ∈ 𝐿 : 𝑎 < 𝑥} ∨ 𝑏. We consider two cases. First, let us

assume that 𝑏 ≤ 𝑎. If this is the case, then 𝑏 ≤ 𝑥 whenever 𝑎 < 𝑥, and so both the left hand

side and the right hand side equal
∧

{𝑥 ∈ 𝐿 : 𝑎 < 𝑥}. Now, let us assume instead that 𝑏 ≰ 𝑎.

This is equivalent to saying that 𝑎 < 𝑎 ∨ 𝑏. This means that we have the chain of inequalities

∧

{𝑥 ∨ 𝑏 : 𝑎 < 𝑥} ≤ 𝑎 ∨ 𝑏 ≤
∧

{𝑥 ∈ 𝐿 : 𝑎 < 𝑥} ∨ 𝑏. □

Lemma 3.13. A completely prime filter 𝐿\↓𝑝 is exact if and only if the prime 𝑝 is covered.

Suppose that the completely prime filter 𝐿\↓𝑝 is exact. To show that the prime 𝑝 is covered,

we prove that
∧

{𝑥 ∈ 𝐿 : 𝑝 < 𝑥} ≰ 𝑝. By Lemma 3.12, the meet on the right-hand side is

exact. The result follows by our assumption that 𝐿\↓𝑝 is closed under exact meets. For the

converse, we suppose that 𝑝 is a covered prime and that 𝑥𝑖 ≰ 𝑝 for the members of some

family {𝑥𝑖 : 𝑖 ∈ 𝐼} such that their meet is exact. We then have that 𝑥𝑖 ∨ 𝑝 ̸= 𝑝 for every 𝑖 ∈ 𝐼 ,

and as 𝑝 is covered, this implies that
∧

𝑖(𝑥𝑖 ∨ 𝑝) ̸= 𝑝. By exactness of the meet
∧

𝑖 𝑥𝑖 , we also

have (
∧

𝑖 𝑥𝑖) ∨ 𝑝 ̸= 𝑝, that is
∧

𝑖 𝑥𝑖 ≰ 𝑝, as required.

Lemma 3.14. For any frame 𝐿, the spectrum of (𝐿, FiltE(𝐿)
𝑜𝑝) is homeomorphic to the space

pt𝐷(𝐿). The spectrum of (𝐿, FiltSE(𝐿)
𝑜𝑝) is homeomorphic to pt(𝐿).

Proof. By Proposition 3.9, the points of (𝐿, FiltE(𝐿)
𝑜𝑝) are the completely prime filters which

are also exact. By Lemma 3.18 these are the filters of the form 𝐿\↓𝑝 for some covered prime

𝑝 ∈ 𝐿. Indeed, then, we have a bijection between the points of pt𝑅(𝐿, FiltE(𝐿)
𝑜𝑝) and those of

pt𝐷(𝐿). This is a restriction of the standard homeomorphism between the spectrum pt(𝐿) and

its space of completely prime filters, and so it is a homeomorphism. For (𝐿, FiltSE(𝐿)
𝑜𝑝), it suf-

fices to notice that since all completely prime filters are strongly exact, FiltCP(𝐿)∩FiltSE(𝐿) =

FiltCP(𝐿), and the result then follows from Proposition 3.9. □

The following results may be seen as point-set analogues of Theorem 2.30.

Lemma 3.15. For a Raney extension (𝐿, 𝐶) we have subspace inclusions

pt𝐷(𝐿) ⊆ pt𝑅(𝐿, 𝐶) ⊆ pt(𝐿).
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Proof. In the following proof, we identify prime elements with the completely prime filters that

they determine. Suppose that (𝐿, 𝐶) is a Raney extension. We have FiltE(𝐿) ⊆ 𝐶
∗ ⊆ FiltSE(𝐿),

by Theorem 2.5 and by Lemma 2.28. Therefore, we also have

FiltCP(𝐿) ∩ FiltE(𝐿) ⊆ FiltCP(𝐿) ∩ 𝐶
∗ ⊆ FiltCP(𝐿) ∩ FiltSE(𝐿).

By Proposition 3.9, this means that we have a chain of subspace inclusions

pt𝑅(𝐿, FiltE(𝐿)
𝑜𝑝) ⊆ pt𝑅(𝐿, 𝐶) ⊆ pt𝑅(𝐿, FiltSE(𝐿)

𝑜𝑝).

The result follows from Lemma 3.14. □

We introduce the closure operator S on a frame 𝐿: for a subset 𝑋 ⊆ 𝐿 we define S(𝑋) to

be the smallest sublocale of 𝐿 such that it contains 𝑋 . We will now consider the case in which

our frame is Filt(𝐿) for some frame 𝐿.

Lemma 3.16. For a frame 𝐿 and a subset X ⊆ Filt(𝐿) we have that S(X) is the setM({↑𝑎 →

𝐹 : 𝑎 ∈ 𝐿, 𝐹 ∈ X}).

Proof. As sublocales are stable under left implication and closed under all meets, we have the

inclusionM({↑𝑎 → 𝐹 : 𝑎 ∈ 𝐿, 𝐹 ∈ X}) ⊆ S(X). For the reverse inclusion, it suffices to show

that the setM({↑𝑎 → 𝐹 : 𝑎 ∈ 𝐿, 𝐹 ∈ X}) is a sublocale. It is clearly closed under all meets.

For stability under left implication, it suffices to observe that for a filter 𝐺 ∈ Filt(𝐿), and for

𝐹 ∈ X, we have 𝐺 → 𝐹 =
⋂

{↑𝑔 → 𝐹 : 𝑔 ∈ 𝐺}. □

Theorem 3.17. The spectra of Raney extensions over 𝐿 coincide with the interval

[pt𝐷(𝐿), pt(𝐿)]

of the powerset of pt(𝐿).

Proof. In the following proof, we identify primes and completely prime filters, in particular

by Lemma 3.13 we identify pt𝐷(𝐿) with FiltE(𝐿) ∩ FiltCP(𝐿). That for a Raney extension

(𝐿, 𝐶) its spectrum is contained in the [pt𝐷(𝐿), pt(𝐿)] interval is the content of Lemma 3.15.

Conversely, suppose that we have a collection of completely prime filters P ⊆ Filt(𝐿) such

that FiltE(𝐿) ∩ FiltCP(𝐿) ⊆ P. We now consider the Raney extension (𝐿,S(P ∪ 𝐿)𝑜𝑝). It is

clear that all the elements of 𝑃 are points of this Raney extension. Let us show the reverse
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set inclusion. Suppose that there is a completely prime filter 𝐹 such that 𝐹 ∈ S(P ∪ 𝐿). By

Lemma 3.16, this means that

𝐹 ∈ M({↑𝑎 → 𝑃 : 𝑃 ∈ P} ∪ {↑𝑎 → ↑𝑥 : 𝑎, 𝑥 ∈ 𝐿}).

Because 𝐹 is a completely prime filter, it is completely prime in the frame Filt(𝐿), and so we

must have

𝐹 ∈ {↑𝑎 → 𝑃 : 𝑃 ∈ P} ∪ {↑𝑎 → ↑𝑥 : 𝑎, 𝑥 ∈ 𝐿}.

First, suppose that 𝐹 ∈ {↑𝑎 → 𝑃 : 𝑃 ∈ P}. Each element ↑𝑎 → 𝑃 in this set must equal either

𝑃 or 𝐿, as completely prime filters are prime elements of Filt(𝐿). This means that 𝐹 must be a

completely prime filter in P, already. Secondly, suppose 𝐹 ∈ {↑𝑎 → ↑𝑥 : 𝑎, 𝑥 ∈ 𝐿}. Then, by

the characterization in Lemma 2.6, the filter 𝐹 must be exact. But by Lemma 3.13 this means

that the prime associated with it is covered, and so this filter is in pt𝐷(𝐿) ⊆ P, already. Indeed,

then, pt𝑅(𝐿,S(P ∪ 𝐿)
𝑜𝑝) = P, as desired. □

Remark 3.2. It may be surprising that the spectrum pt𝑅(𝐿, 𝐶) does not contain all points of

pt(𝐿), as this may be seen as a spectrum construction that forgets about too much information.

However, it is the coframe 𝐶 that ought to be seen, alone, as the ordered structure of which we are

taking the points. The frame 𝐿 (just like in Raney duality) is nothing but a carrier of information

on how to topologize such set of points. Furthermore, from the result above we may see that this

is what makes Raney extensions more expressive than frames: if all points of 𝐿 were points of

pt𝑅(𝐿, 𝐶), then Raney extensions would only be able to capture the sober spaces.

We shall now refine the result above to the case of subfit frames. We call maxpt(𝐿) the

collection of maximal primes of a frame 𝐿, equipped with the subspace topology inherited

from pt(𝐿).

Lemma 3.18. Let 𝐿 be a frame. A prime 𝑝 ∈ 𝐿 is maximal if and only if 𝐿\↓𝑝 is a regular filter.

Proof. Suppose that we have a maximal prime 𝑝 ∈ 𝐿. Because it is maximal, we have ↑𝑝 =

{𝑝, 1}. We claim that the completely prime filter 𝐿\↓𝑝 is its pseudocomplement in the frame of

filters. Indeed, we have 𝐿\↓𝑝∩{1, 𝑝} = {1}. Furthermore, if for a filter 𝐹 we have 𝐹∩{1, 𝑝} =

{1} then 𝑝 /∈ 𝐹, and so for 𝑓 ∈ 𝐹 wemust have 𝑓 ≰ 𝑝. For the converse, suppose that we have

a prime 𝑝 ∈ 𝐿 such that 𝐿\↓𝑝 is a regular filter. By Proposition 2.7, this is the intersection of

a collection of filters of the form {𝑥 ∈ 𝐿 : 𝑥 ∨ 𝑎 = 1} for some 𝑎 ∈ 𝐿. As 𝐿\↓𝑝 is completely

prime, it must be {𝑥 ∈ 𝐿 : 𝑥 ∨ 𝑎 = 1} for some 𝑎 ∈ 𝐿. This means that for all 𝑥 ∈ 𝐿 the
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conditions 𝑥 ≤ 𝑝 and 𝑥 ∨ 𝑎 ̸= 1 are equivalent. In particular, because the filter is not all of 𝐿

(as it is completely prime), we must have 𝑎 ≤ 𝑝 since 𝑎 ∨ 𝑎 = 𝑎 ̸= 1. This means that if 𝑥 ≰ 𝑝

we have 𝑥 ∨ 𝑝 = 1 for all 𝑥 ∈ 𝐿, and this means that 𝑝 must be maximal. □

Proposition 3.19. For a subfit frame 𝐿, the spectrum of the Raney extension (𝐿, FiltR(𝐿)
𝑜𝑝) is

homeomorphic to the 𝑇1 space maxpt(𝐿).

Proof. Suppose that 𝐿 is a subfit frame. We claim that all its exact filters are regular. By

Lemma 2.16 we have that FiltR(𝐿) contains all principal filters, and so by Lemma 2.28 we

must have FiltE(𝐿) ⊆ FiltR(𝐿). The reverse inclusion holds for all frames. By Lemma 3.9,

then, the points of (𝐿, FiltE(𝐿)
𝑜𝑝) are the regular completely prime filters, which by Lemma

3.18 are those corresponding to maximal primes of 𝐿. The fact that this is a homeomorphism

comes from the fact that this is a restriction of the standard homeomorphism between the

spectrum pt(𝐿) and its space of completely prime filters. The space maxpt(𝐿) is a 𝑇1 space,

since whenever 𝑝, 𝑞 ∈ maxpt(𝐿) we have both 𝑝 ≰ 𝑞 and 𝑞 ≰ 𝑝 by maximality, and so the

open set {𝑎 ∈ 𝐿 : 𝑎 ≰ 𝑝} contains 𝑞 and omits 𝑝, and the open set {𝑎 ∈ 𝐿 : 𝑎 ≰ 𝑞} contains

𝑝 and omits 𝑞. □

3.2 Sobriety, the 𝑇1 axiom, and the 𝑇𝐷 axiom

Following the authors of [14] (see for example Theorem 4.8), we define a Raney extension

(𝐿, 𝐶) to be sober if every completely prime filter 𝑃 ⊆ 𝐿 is ↑𝐿𝑥 for some 𝑥 ∈ 𝐶. Notice that

if this holds we must have 𝑥 =
∧

𝑃 and 𝑥 ∈ pt𝑅(𝐶). Let us prove some characterizations for

sobriety of Raney extensions.

Proposition 3.20. The following are equivalent for a Raney extension (𝐿, 𝐶).

1. (𝐿, 𝐶) is sober.

2. (𝐿, 𝐶) is CP-compact.

3. The inclusion pt𝑅(𝐿) ⊆ pt(𝐿) given by 𝑥 ↦→
∨

{𝑎 ∈ 𝐿 : 𝑥 ≰ 𝑎} is a homeomorphism.

Proof. The equivalence of the first two conditions is clear by Lemma 2.2. Suppose that the

Raney extension (𝐿, 𝐶) is sober. This means that all prime elements 𝑝 ∈ 𝐿 are such that

𝐿\↓𝑝 = {𝑎 ∈ 𝐿 : 𝑥 ≤ 𝑎} for some element 𝑥 ∈ 𝐶, and by Lemma 3.1 this must be completely

join-prime. This implies that for this same 𝑥 ∈ pt𝑅(𝐿) we have 𝑝 =
∨

{𝑎 ∈ 𝐿 : 𝑥 ≰ 𝑎}.

Finally, suppose that the third condition holds, and that 𝑝 ∈ 𝐿 is prime. We will show that
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↑𝐿
∧

(𝐿\↓𝑝) ⊆ 𝐿\↓𝑝. By our hypothesis, there must be some completely join-prime element

𝑥 ∈ 𝐶 such that 𝑝 =
∨

{𝑎 ∈ 𝐿 : 𝑥 ≰ 𝑎}. Therefore, since 𝑥 is completely join-prime, 𝑥 ≰ 𝑝, and

this implies that whenever 𝑎 ∈ 𝐿 is such that 𝑥 ≤ 𝑎 then 𝑎 ≰ 𝑝. This means that 𝑥 ≤
∧

(𝐿\↓𝑝),

and so whenever 𝑎 ∈ ↑𝐿
∧

(𝐿\↓𝑝), we also have 𝑥 ≤ 𝑎 and as a consequence 𝑥 ∈ 𝐿\↓𝑝. Indeed,

then, ↑𝐿
∧

(𝐿\↓𝑝) ⊆ 𝐿\↓𝑝. □

We work towards proving that any Raney extension admits a sobrification, a completion

to a sober space. For a Raney extension (𝐿, 𝐶) we call a map 𝜎 : 𝑆(𝐿, 𝐶) → (𝐿, 𝐶) of the

category Raney a sobrification if 𝑆(𝐿, 𝐶) is sober, and if whenever 𝑓 : (𝑀, 𝐷) → (𝐿, 𝐶) is a

morphism from a sober Raney extension, we have a commuting diagram

𝑆(𝐿, 𝐶) (𝐿, 𝐶).

(𝑀, 𝐷)

𝜎

𝑓𝜎
𝑓

Theorem 3.21. For a Raney extension (𝐿, 𝐶), the map

𝜎 : (𝐿,M(𝐶∗ ∪ FiltCP(𝐿))
𝑜𝑝)→ (𝐿, 𝐶)

𝐹 ↦→
∧

𝐹

is its sobrification.

Proof. Observe that, as𝐶∗ ⊆ Filt(𝐿) is a sublocale and the elements of FiltCP(𝐿) are prime ele-

ments of Filt(𝐿), we have thatM(𝐶∗∪FiltCP(𝐿)) is a sublocale. First, we show that (𝐿,M(𝐶∗∪

FiltCP(𝐿))
𝑜𝑝) is sober. The completely join-prime elements ofM(𝐶∗ ∪ FiltCP(𝐿))

𝑜𝑝 are the

completely prime filters, by Lemma 3.9. Indeed, under the identification of 𝐿 with {↑𝑥 : 𝑥 ∈ 𝐿},

every completely prime filter 𝑃 ⊆ 𝐿 is {↑𝑥 : ↑𝑥 ⊆ 𝑃} for 𝑃 itself. This Raney extension is then

sober. By definition, we have 𝐶∗ ⊆ M(𝐶∗ ∪ FiltCP(𝐿)), by Proposition 2.23 it means that we

have a surjective map of Raney extensions

(𝐿,M(𝐶∗ ∪ FiltCP(𝐿))
𝑜𝑝)↠ (𝐿, 𝐶)

𝐹 ↦→
∧

𝐹.

Let us show that this map has the required universal property. Suppose that 𝑓 : (𝑀, 𝐷) →

(𝐿, 𝐶) is a Raney map from a sober Raney extension. We then have a frame map 𝑓 |𝑀 : 𝑀 → 𝐿.

By Proposition 2.23, to show that the map lifts it suffices to show that the preimage of each
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filter in FiltCP(𝐿) as well as each filter in𝐶∗ is in 𝐷∗. For filters in𝐶∗, this holds because there

is a map 𝑓 : (𝑀, 𝐷)→ (𝐿, 𝐶). For a completely prime filter 𝑃 ⊆ 𝐿, recall that by Lemma 2.25

we have 𝑓 −1(𝑃) ∈ FiltCP(𝑀), and by Lemma 3.20 we also have FiltCP(𝑀) ⊆ 𝐷∗. Thus, the

desired universal property is satisfied. □

Let us now compare sobriety with spatiality for Raney extensions.

Lemma 3.22. A Raney extension (𝐿, 𝐶) is sober and spatial if and only if it is CP-canonical.

Proof. It follows from Propositions 3.20 and 3.10 that a Raney extension (𝐿, 𝐶) is sober and

spatial if and only if 𝐶∗ = M(FiltCP(𝐿)). By Proposition 2.3, this holds if and only if the

Raney extension is CP-canonical. □

Proposition 3.23. A spatial frame 𝐿 admits a unique sober and spatial Raney extension, up to

isomorphism. This is (𝐿,U(pt(𝐿))).

Proof. By Lemma 3.22, when a sober and spatial Raney extension exists, it is unique, up to

isomorphism. If 𝐿 is a spatial frame, then (𝐿,M(FiltCP(𝐿))
𝑜𝑝) is a Raney extension. By

Lemma 2.17, this is isomorphic to (𝐿,U(pt(𝐿))). □

Let us now look at the Raney version of the 𝑇𝐷 axiom. We say that a Raney extension

(𝐿, 𝐶) is 𝑇𝐷 if for every completely join-prime element 𝑥 ∈ pt𝑅(𝐶) the filter ↑
𝐿𝑥 is exact. We

shall use the following characterization of 𝑇𝐷 spaces.

Proposition 3.24. ([11], Proposition 2.3.2) A space 𝑋 is 𝑇𝐷 if and only if all elements of the form

𝑋\{𝑥} are covered primes in Ω(𝑋).

Proposition 3.25. The following are equivalent for a Raney extension (𝐿, 𝐶).

1. (𝐿, 𝐶) is 𝑇𝐷 .

2. The space pt𝑅(𝐿, 𝐶) is the 𝑇𝐷 spectrum pt𝐷(𝐿).

3. We have FiltCP(𝐿) ∩ 𝐶
∗ ⊆ FiltE(𝐿).

Proof. The equivalence between (1) and (2) is clear. Suppose that (𝐿, 𝐶) is a 𝑇𝐷 Raney exten-

sion. We first consider the isomorphic Raney extension (𝐿, 𝐶∗). Its points are the elements in

FiltCP(𝐿)∩𝐶
∗, by Lemma 3.9. As the map ↑𝐿 : 𝐶 → 𝐶∗ is an isomorphism, these are precisely

the filters of the form ↑𝐿𝑥 for some completely join-prime element 𝑥 ∈ 𝐶. Because (𝐿, 𝐶) is
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𝑇𝐷 , all these are exact. Suppose, now, that (3) holds. This means that whenever 𝑃 ⊆ 𝐿 is

a completely prime filter in 𝐶∗, it is exact. Because we have mutually inverse isomorphisms

↑𝐿 : 𝐶 ⇆ 𝐶∗ :
∧

, all completely prime filters of 𝐶∗ being exact means that all completely

join-prime elements of 𝐶 are such that ↑𝐿𝑥 is exact. Thus, the Raney extension (𝐿, 𝐶) is 𝑇𝐷 ,

by definition. □

We obtain the following result relating the 𝑇𝐷 axiom for Raney extensions and classical

𝑇𝐷-spatiality of frames.

Proposition 3.26. A Raney extension (𝐿, 𝐶) is 𝑇𝐷 and sober if and only if every prime of 𝐿 is

covered.

Proof. In the following, we use the characterization of completely prime exact filters of Lemma

3.13. By the characterizations in Propositions 3.20 and 3.25, a Raney extension (𝐿, 𝐶) is sober

and𝑇𝐷 if and only if both FiltCP(𝐿)∩𝐶
∗ ⊆ FiltE(𝐿) and FiltCP(𝐿) ⊆ 𝐶

∗. These two conditions

imply that FiltCP(𝐿) ⊆ FiltE(𝐿). Conversely, if FiltCP(𝐿) ⊆ FiltE(𝐿), then because 𝐶∗ ∩

FiltCP(𝐿) ⊆ FiltE(𝐿) the Raney extension is 𝑇𝐷 by the characterization in Proposition 3.25.

On the other hand, we also have FiltCP(𝐿) ⊆ FiltE(𝐿) ⊆ 𝐶
∗. □

Let us now look at the 𝑇1 axiom. A topological space is 𝑇1 if and only if all subspaces are

intersections of open subspaces. Motivated by this, we define a Raney extension (𝐿, 𝐶) to be

𝑇1 if and only if 𝐶 is a Boolean algebra.

Lemma 3.27. For a frame 𝐿, the Booleanization 𝔟(0) is maximal among the Boolean sublocales,

meaning that for each 𝑥 ∈ 𝐿 we have that 𝔟(0) ⊆ 𝔟(𝑥) implies 𝑥 = 0.

Proof. If we have 𝔟(0) ⊆ 𝔟(𝑥) then we must have that 0 ∈ 𝔟(𝑥), and this means that 𝑎 → 𝑥 = 0

for some 𝑎 ∈ 𝐿. But the assignment 𝑎 → − is inflationary, and so 𝑥 ≤ 0. □

Theorem 3.28. For a frame 𝐿, the following are equivalent.

1. 𝐿 is subfit.

2. All exact filters of 𝐿 are regular.

3. (𝐿, FiltE(𝐿)
𝑜𝑝) is a 𝑇1 Raney extension.

4. There exists a 𝑇1 Raney extension (𝐿, 𝐶).
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5. There is a unique 𝑇1 Raney extension on 𝐿, up to isomorphism. This is (𝐿, FiltR(𝐿)
𝑜𝑝).

Proof. Suppose that 𝐿 is a subfit frame. By Proposition 2.16, all principal filters are regular

filters. By Lemma 2.28, this implies that FiltE(𝐿) ⊆ FiltR(𝐿), and as the reverse set inclusion

holds for every frame, the desired result is proven. Now, suppose that we have FiltE(𝐿) ⊆

FiltR(𝐿). This implies that (𝐿, FiltE(𝐿)
𝑜𝑝) = (𝐿, FiltR(𝐿)

𝑜𝑝). Indeed, by Proposition 2.7 the

coframe FiltR(𝐿)
𝑜𝑝 is a Boolean algebra. It is clear that condition (3) implies condition (4).

Let us show that (4) implies (5). If (𝐿, 𝐵) is a Raney extension such that 𝐵 is Boolean, as 𝐵∗

contains all principal filters, we must have FiltE(𝐿) ⊆ 𝐵
∗. We also have FiltR(𝐿) ⊆ FiltE(𝐿),

as this holds for all frames, and so by Lemma 3.27 we must have FiltR(𝐿) = FiltE(𝐿) = 𝐵∗.

Now, suppose that (5) holds. Then, (𝐿, FiltR(𝐿)
𝑜𝑝) is a Raney extension. This means that all

principal filters are regular, and so by Proposition 2.16 the frame 𝐿 must be subfit. □

Let us call sfRaneyE the full subcategory ofRaneyE determined by those objects such that

the frame component is subfit.

Proposition 3.29. The category of𝑇1 Raney extensions is a full reflective subcategory of sfRaneyE .

In particular, the reflector acts on objects as (𝐿, 𝐶) ↦→ (𝐿, FiltR(𝐿)
𝑜𝑝).

Proof. The assignment in the claim is functorial, as for subfit frames, by Theorem 3.28, regular

filters coincide with the exact ones, and by Lemma 2.31 exact morphisms lifts to coframes of

exact filters. Suppose that 𝐿 is a subfit frame, and that we have a map 𝑓 : (𝐿, 𝐶) → (𝑀, 𝐵)

in sfRaneyE , such that (𝑀, 𝐵) is a 𝑇1 Raney extension. By Lemma 3.28, 𝑀 is subfit and 𝐵∗ =

FiltR(𝑀)𝑜𝑝 . Since 𝑓 is exact, preimages of filters in FiltR(𝑀) are in FiltR(𝐿). Furthermore, as

𝐶∗ contains all principal filters, FiltE(𝐿) = FiltR(𝐿) ⊆ 𝐶
∗, and this means that preimages of

filters in 𝐵∗ are in 𝐶∗. By Proposition 2.23, the map 𝑓 lifts as required. □

4 Canonical extensions as Raney extensions

We now look at the notion of canonical extension of a frame from [29], and see how it relates

to Raney extensions. We will also look at how the Prime Ideal Theorem relates to some of

our results. In [21] the Prime Ideal Theorem – PIT hereon – is shown to be equivalent to

the statement that every pre-spatial frame is also spatial. A classical duality result is that

spatiality of coherent frames is equivalent to the Prime Ideal Theorem. The so-called Strong

Prime Element Theorem – which we will abbreviate as SPET – states that for every complete

distributive lattice 𝐷, and any Scott-open filter 𝐹 ⊆ 𝐷, for every element 𝑎 ∈ 𝐷 not in 𝐹 there
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is a prime element 𝑝 ∈ 𝐷 above 𝑎 with 𝑝 /∈ 𝐹. In [9] (Proposition 1) it is shown that PIT

implies SPET. It is also known that SPET implies PIT. For a pre-spatial frame 𝐿, we will call

its canonical extension the Raney extension

(𝐿,M(FiltSO(𝐿))
𝑜𝑝).

This is indeed a Raney extension, by Lemma 2.16. For a Raney extension (𝐿, 𝐶), we say that

an element 𝑐 ∈ 𝐶 is compact if, for every directed collection 𝑥𝑖 ∈ 𝐿, we have that 𝑐 ≤
∨

𝑖 𝑥𝑖

implies that 𝑐 ≤ 𝑥𝑖 for some 𝑖 ∈ 𝐼 . We say that a Raney extension (𝐿, 𝐶) is algebraic if every

element of 𝑐 is the join of compact elements.

Lemma 4.1. A Raney extension (𝐿, 𝐶) is algebraic if and only if 𝐶∗ ⊆ M(𝐶∗ ∩ FiltSO(𝐿)).

Proof. Notice that an element 𝑥 ∈ 𝐶 is compact if and only if the filter ↑𝐿𝑥 is Scott-open.

Because we have an isomorphism ↑𝐿 : 𝐶 ∼= 𝐶∗, this means that the Raney extension (𝐿, 𝐶) is

algebraic of and only every filter in 𝐶∗ is an intersection of Scott-open filters of the form ↑𝐿𝑥

for some 𝑥 ∈ 𝐶. □

Lemma 4.2. A frame admits an algebraic Raney extension if and only if it is pre-spatial.

Proof. First, we observe that if a frame admits an algebraic Raney extension this means that

principal filters must all be intersections of Scott-open filters, by Lemma 4.1. By Proposition

2.16 the frames with this property are exactly the pre-spatial ones. For a pre-spatial frame 𝐿,

an algebraic Raney extension is (𝐿,M(FiltSO(𝐿))
𝑜𝑝). □

We are now ready to characterize canonical extensions of frames as free algebraic Raney

extensions.

Theorem 4.3. For a pre-spatial frame 𝐿, its canonical extension is the free algebraic Raney

extension over it. That is, whenever we have a frame map 𝐿 → 𝑀 and (𝑀,𝐶) is an algebraic

Raney extension, the map 𝑓 can be extended to a map of Raney extensions

(𝐿,M(FiltSO(𝐿))
𝑜𝑝)→ (𝑀,𝐶).

Proof. The assignment is functorial, by Proposition 2.26. Suppose that 𝐿 is a pre-spatial frame,

and that (𝑀,𝐶) is an algebraic Raney extension. Suppose that we have a frame map 𝑓 :

𝐿 → 𝑀 . Consider the canonical extension (𝐿,M(FiltSO(𝐿))
𝑜𝑝). We have that, as (𝑀,𝐶)

is algebraic, 𝐶∗ ⊆ M(FiltSO(𝑀))𝑜𝑝 , by Lemma 4.1. By Lemma 2.26, preimages of Scott-open
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filters are Scott-open. Then, preimages of filters in𝐶∗ are inM(FiltSO(𝐿)). By Proposition 2.23

this means that there is a map of Raney extensions (𝐿,M(FiltSO(𝐿))
𝑜𝑝)→ (𝑀,𝐶) extending

the frame map 𝑓 : 𝐿 → 𝑀 . □

We introduce the following notion in order to highlight, with the following proposition, a

parallel between canonical extensions and spatial, sober Raney extensions. We say that a space

𝑋 is post-sober if every proper Scott-open filter of its frame of opens is {𝑈 ∈ Ω(𝑋) : 𝐹 ⊆ 𝑈}

for some compact saturated set 𝐹. We notice that post-sobriety is stronger than sobriety. This

holds because for a post-sober space 𝑋 , a completely prime filter 𝑃 ⊆ Ω(𝑋) is Scott-open, then

it must be the set of neighborhoods for some 𝐹 ∈ U(𝑋). As 𝑃 is completely prime, 𝐹 must

be a completely join-prime element ofU(𝑋). It must then be of the form ↑𝑥 for some 𝑥 ∈ 𝑋 .

The motivation behind this name is to highlight a parallel with pre-spatiality for frames. A

pre-spatial frame is spatial if and only if the Prime Ideal Theorem holds. A sober space is

post-sober if and only if the Prime Ideal Theorem holds (as we shall see with the next results).

Example 4.1. As we will see, given PIT sobriety implies post-sobriety. If we do not assume this,

this implication does not hold. Let 𝐵 be a Boolean algebra which contains at least a prime filter,

such that we have a proper filter 𝐹 ⊆ 𝐵 which is not contained in any prime filter. Let us now

consider the Stone dual of 𝐵, namely, the space pf(𝐵) of prime filters of 𝐵. It is known that Scott-

open filters of Ω(pf(𝐵)) are in bijective correspondence with proper filters of {𝜑(𝑏) : 𝑏 ∈ 𝐵},

where 𝜑 is the topologizing map. The correspondence maps a proper filter of 𝜑[𝐵] to the filter

generated by it. Let us then consider the filter generated by 𝜑[𝐹]. By our hypothesis,
⋂

{𝜑( 𝑓 ) :

𝑓 ∈ 𝐹} is empty. As the space pf(𝐵) is nonempty by hypothesis, this means that 𝜑[𝐹] cannot be

the neighborhood filter of any compact saturated set.

We say that a Raney extension (𝐿, 𝐶) is post-sober if every Scott-open filter 𝐹 ⊆ 𝐿 is ↑𝐿𝑐 for

some 𝑐 ∈ 𝐶, for which, necessarily, 𝑐 =
∧

𝐹. Observe that a Raney extension is post-sober if

and only if it isSO-compact. Furthermore, a space 𝑋 is post-sober if and only if (Ω(𝑋),U(𝑋))

is a post-sober Raney extension.

Proposition 4.4. A space is post-sober if and only if (Ω(𝑋),U(𝑋)) is the canonical extension

of Ω(𝑋).

Proof. If 𝑋 is post-sober, (Ω(𝑋),U(𝑋)) is a post-sober Raney extension, hence SO-compact.

Because it is spatial, it is also CP-dense, and as completely prime filters are Scott-open it is

also SO-dense. Conversely, if 𝑋 is a space such that (Ω(𝑋),U(𝑋)) is a canonical extension,

in particular this Raney extension is SO-compact, hence post-sober. □
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Lemma 4.5. The Prime Ideal Theorem is equivalent to the statement that every Scott-open filter

is an intersection of completely prime filters.

Proof. We need to show that every Scott-open filter being an intersection of completely prime

filters is equivalent to SPET. Suppose that SPET holds, and that 𝐿 is a frame and 𝐹 ⊆ 𝐿 a

Scott-open filter. Suppose, towards contradiction, that there is some 𝑎 /∈ 𝐹 such that 𝑎 ∈ 𝑃

whenever 𝑃 is a completely prime filter with 𝐹 ⊆ 𝑃. By SPET, there is a prime element 𝑝 ∈ 𝐿

with 𝑎 ≤ 𝑝 and 𝑝 /∈ 𝐹. The completely prime filter 𝐿\↓𝑝 contains 𝐹 but not 𝑎, and this

is a contradiction. Conversely, suppose that every Scott-open filter is inM(FiltCP(𝐿)). Let

𝐹 ⊆ 𝐿 be a Scott-open filter, and suppose that 𝑎 /∈ 𝐹. There has to be a prime 𝑝 ∈ 𝐿 such that

𝐹 ⊆ 𝐿\↓𝑝 and such that 𝑎 /∈ 𝐿\↓𝑝. □

Proposition 4.6. The following are equivalent.

1. The Prime Ideal Theorem holds.

2. We have FiltSO(𝐿) ⊆ M(FiltCP(𝐿)) for every frame 𝐿.

3. Sober Raney extensions are post-sober.

4. Sober spaces are post-sober.

5. For a sober space 𝑋 , the canonical extension of its frame of opens is (Ω(𝑋),U(𝑋)).

Proof. That (1) and (2) are equivalent follows from Lemma 4.5. If (2) holds, all sober Raney

extensions are post-sober by definition. Suppose, now, that (3) holds. For a sober space 𝑋 , the

Raney extension (Ω(𝑋),U(𝑋)) is sober, as each completely prime filter of Ω(𝑋) is ↑𝐿(↑𝑥) for

some 𝑥 ∈ 𝑋 . Therefore, (Ω(𝑋),U(𝑋)) is post-sober, by hypothesis. If (5) and (6) are equivalent

by Proposition 4.4. Finally, (5) implies (1) by Example 4.1. □

Finally, we essentially re-prove, using Raney extensions, the result in [13] that the canon-

ical extension of a Boolean algebra 𝐵 is the Booleanization ofU(Idl(𝐵)).

Proposition 4.7. ([29], Proposition 8.1) For a coherent frame 𝐿, its canonical extension is the

canonical extension of the distributive lattice 𝐾(𝐿).

Lemma 4.8. For a compact, zero-dimensional frame 𝐿, we haveM(FiltSO(𝐿)) ⊆ FiltR(𝐿).
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Proof. Let 𝐿 be a compact, zero-dimensional frame. We claim

𝐹 =
⋂

{𝑎 ∈ 𝐿 : 𝑎 ∨ ¬𝑘 = 1 : 𝑘 ∈ 𝐾(𝐿) ∩ 𝐹}.

Because 𝐿 is compact and zero-dimensional, the elements of 𝐾(𝐿) coincide with the comple-

mented elements. So, for 𝑘 ∈ 𝐾(𝐿), the condition 𝑎 ∨ ¬𝑘 = 1 is equivalent to 𝑘 ≤ 𝑎. Let

𝑓 ∈ 𝐹. Let {𝑘𝑖 : 𝑖 ∈ 𝐼} be the collection ↓ 𝑓 ∩ 𝐾(𝐿); by zero-dimensionality 𝑓 =
∨

𝑖 𝑘𝑖 . As

this is a directed collection, 𝑘𝑖 ∈ 𝐹 for some 𝑖 ∈ 𝐼 . For the reverse inclusion, suppose that

¬𝑘 ∨ 𝑓 = 1 for some 𝑘 ∈ 𝐾(𝐿) ∩ 𝐹. This means that ¬¬𝑘 = 𝑘 ≤ 𝑓 , hence 𝑓 ∈ 𝐹. □

Lemma 4.9. For a compact, zero-dimensional frame 𝐿, we have FiltR(𝐿) ⊆ M(FiltSO(𝐿)).

Proof. In light of Proposition 2.7, we show that every filter of the form {𝑥 ∈ 𝐿 : 𝑥 ∨ 𝑎 = 1}

for some 𝑎 ∈ 𝐴 is Scott-open. By zero-dimensionality and compactness, for 𝑥, 𝑎 ∈ 𝐿, we have

𝑥 ∨ 𝑎 = 1 if and only if 𝑥 ∨ 𝑘 = 1 for some 𝑘 ∈ ↓𝑎 ∩ 𝐾(𝐿). This is equivalent to having that

𝑥 is in the filter generated by {¬𝑘 : 𝑘 ∈ ↓𝑎 ∩ 𝐾(𝐿)}, which is Scott-open by compactness of

each ¬𝑘 . □

Proposition 4.10. Let 𝐿 be a compact, zero-dimensional frame. Its canonical extension is

(𝐿, FiltR(𝐿)
𝑜𝑝).

This is also the canonical extension of the Boolean algebra 𝐾(𝐿).

Proof. The first part of the claim follows from Lemmas 4.8 and 4.9. The second part of the claim

follows from Proposition 4.7, and the fact that FiltR(𝐿) is the Booleanization of Filt(𝐿). □

5 Constructions in pointfree topology asRaney extensions

Because of there being isomorphism between the collection of strongly exact filters and that

of fitted sublocales (see Theorem 1.13), many of the collections of filters that we have seen

in the previous sections correspond to subcollections of the coframe of fitted sublocales. In

the following, we use the closure operator cl𝔬 on the collection of sublocales, defined as 𝑆 ↦→
⋂

{𝔬(𝑥) : 𝑆 ⊆ 𝔬(𝑥)} for all sublocales 𝑆 ⊆ 𝐿. The following is a direct consequence of the fact

that the map ker : S(𝐿)→ Filt(𝐿)𝑜𝑝 , as it is a left adjoint, preserves all joins.

Lemma 5.1. For a collection S ⊆ S(𝐿) of sublocales, we have that ker [J (S)] =M(ker [S]).
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Lemma 5.2. For a frame 𝐿, and for 𝑥, 𝑦 ∈ 𝐿, we have

ker(𝔠(𝑥) ∩ 𝔬(𝑦)) = ↑𝑥 → ↑𝑦,

with the Heyting implication→ computed in the frame of filters.

Proof. For this, it suffices to unravel definitions, using the fact that open and closed sublocales

are mutual complements. We have ker(𝔠(𝑥) ∩ 𝔬(𝑦)) = {𝑧 ∈ 𝐿 : 𝔬(𝑦) ⊆ 𝔬(𝑥) ∨ 𝔬(𝑧)} = {𝑧 ∈

𝐿 : 𝑦 ≤ 𝑥 ∨ 𝑧}. □

Proposition 5.3. For a frame, its exact filters are precisely the kernels of smooth sublocales. In

particular, there is an isomorphism

ker : cl𝔬[S𝑏(𝐿)] ∼= FiltE(𝐿)
𝑜𝑝 .

Proof. Let F ⊆ Filt(𝐿) be the collection of filters of the form ↑𝑥 → ↑𝑦 for some 𝑥, 𝑦 ∈ 𝐿. By

Lemma 5.2,

F = ker [{𝔠(𝑥) ∩ 𝔬(𝑦) : 𝑥, 𝑦 ∈ 𝐿}].

We haveM(F ) = FiltE(𝐿) by Lemma 2.6, and on the other hand smooth sublocales are those

of the form
∨

𝑖 𝔠(𝑥𝑖) ∩ 𝔬(𝑦𝑖) for 𝑥𝑖, 𝑦𝑖 ∈ 𝐿. So, Lemma 5.1 gives us the desired result. Finally,

the rest of the claim follows from the fact that exact filters are strongly exact, and so they are

fixpoints of the adjunction ker ⊣ fitt . □

Proposition 5.4. For a frame, its regular filters are precisely the kernels of joins of closed sublo-

cales. In particular, there is an isomorphism

ker : cl𝔬[S𝑐(𝐿)] ∼= FiltR(𝐿)
𝑜𝑝 .

Proof. By Proposition 1.4, for 𝑥, 𝑦 ∈ 𝐿 we have that 𝔠(𝑦) ⊆ 𝔬(𝑥) if and only if 𝑥 ∨ 𝑦 = 1. This

immediately gives us that the kernels of closed sublocales coincide with the regular filters. The

first part of the claim follows from Lemma 5.1. The rest of the claim follows from the fact that

all regular filters are strongly exact, so they are fixpoints of the adjunction ker ⊣ fitt . □

Proposition 5.5. For a frame, the intersections of its completely prime filters are precisely the

kernels of spatial sublocales. In particular, there is an isomorphism

ker : cl𝔬[S𝑠𝑝(𝐿)] ∼=M(FiltCP(𝐿))
𝑜𝑝 .
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Proof. By Lemma 5.1, it suffices to show that the kernels of the two-element sublocales 𝔟(𝑝)

coincide with the completely prime filters. For an element 𝑥 ∈ 𝐿, indeed, we have 𝔟(𝑝) ⊆ 𝔬(𝑥)

if and only if 𝑥 → 𝑝 = 𝑝, and by Lemma 1.6 this holds if and only if 𝑥 ≰ 𝑝, that is, 𝑥 ∈ 𝐿\↓𝑝.

The rest of the claim follows from the fact that all intersections of completely prime filters are

strongly exact. □

Proposition 5.6. For a frame, the intersections of its Scott-open filters are precisely the kernels

of joins of compact sublocales. In particular, there is an isomorphism

ker : cl𝔬[S𝑘(𝐿)] ∼=M(FiltSO(𝐿))
𝑜𝑝 .

Proof. By Theorem 1.9, Scott-open filters coincide with the kernels of compact fitted sublo-

cales. We claim that a sublocale of 𝐿 is compact and fitted if and only if it is cl𝔬(𝐾) for some

compact sublocale 𝐾 . It is clear that every compact fitted sublocale is of this form. Conversely,

suppose that 𝐾 is a compact sublocale. We claim that cl𝔬(𝐾) is still compact. This holds be-

cause 𝐾 ⊆ 𝔬(𝑥) if and only if cl𝔬(𝐾) ⊆ 𝔬(𝑥) for all 𝑥 ∈ 𝐿. Therefore, Scott-open filters are

exactly the kernels of compact sublocales. The rest of the claim follows from Lemma 5.1, and

the fact that Scott-open filters are strongly exact, thus fixpoints of ker ⊣ fitt . □

We gather our results in the following theorem.

Theorem 5.7. For any frame 𝐿, we have the following poset of sublocale inclusions:

cl𝔬[S𝑐(𝐿)] cl𝔬[S𝑏(𝐿)]

S𝔬(𝐿).

cl𝔬[S𝑠𝑝(𝐿)] cl𝔬[S𝑘(𝐿)]

⊆

⊆

⊆

⊆

Proof. The result follows from Propositions 5.3, 5.4, 5.5, and 5.6; as well as Theorem 2.14. □

Fit frames are characterized by all their sublocales being fitted. This means that several of

the results in this section become stronger in this particular case.

Lemma 5.8. If 𝐿 is a fit frame, the adjunction ker ⊣ fitt restricts to the following isomorphisms.

• fitt :M(FiltCP(𝐿)) ∼= S𝑠𝑝(𝐿).
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• fitt :M(FiltSO(𝐿)) ∼= S𝑘(𝐿).

Proof. This follows from Propositions 5.5 and 5.6, and from the fact that, for a fit frame, the

map cl𝔬 is the identity. □

Theorem 5.9. For a fit frame 𝐿, we have the following diagram of subcolocale inclusions.

S𝑏(𝐿) = S𝔠(𝐿)

S𝔬(𝐿) = S(𝐿).

S𝑠𝑝(𝐿) S𝑘(𝐿)

⊆

⊆

⊆

Proof. This follows from Lemma 5.8 above, and Theorem 5.7. □

5.1 Scatteredness: frames with unique Raney extensions

A frame is said to be scattered if the coframe S(𝐿) is Boolean. As proven in [5], a frame is subfit

and scattered if and only if all its sublocales are joins of closed sublocales. Subfit scattered

frames are also fit, and so S(𝐿) = S𝔬(𝐿), from which we obtain that for 𝐿 subfit and scattered

the equality FiltR(𝐿) = FiltE(𝐿) = FiltSE(𝐿) holds (see Proposition 3.28).

Proposition 5.10. For a subfit frame 𝐿, the following are equivalent.

1. The frame 𝐿 is scattered.

2. FiltSE(𝐿) = FiltE(𝐿).

3. The frame has a unique Raney extension, up to isomorphism.

4. We have S𝔬(𝐿) = S𝔠(𝐿).

5. The frame has a unique Raney extension, up to isomorphism, and this is (𝐿, S(𝐿)).

Proof. Suppose that 𝐿 is a scattered subfit frame. Since every sublocale of S(𝐿) is comple-

mented, all fitted sublocales of 𝐿 are fittings of complemented sublocales. Therefore,

FiltSE(𝐿) ⊆ FiltE(𝐿),
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by Proposition 5.3. Let us show that (2) implies (3). The inclusion FiltE(𝐿) ⊆ FiltSE(𝐿) holds

for every frame. Now, suppose that in 𝐿 every strongly exact filter is exact. For any Raney

extension (𝐿, 𝐶), we must have FiltE(𝐿) ⊆ 𝐶
∗ ⊆ FiltSE(𝐿). Our assumption, then, implies

FiltE(𝐿) = 𝐶∗ = FiltSE(𝐿). This proves (3), by the isomorphism ↑𝐿 : (𝐿, 𝐶) ∼= (𝐿, 𝐶∗): it

means that whenever (𝐿, 𝐶) and (𝐿, 𝐷) are such that 𝐶∗ = 𝐷∗, they must be isomorphic.

Suppose, now, that 𝐿 has a unique Raney extension, up to isomorphism. As 𝐿 is subfit, this

must be a Boolean extension, by Theorem 3.28. The pair (𝐿, S𝔬(𝐿)) is always a Raney ex-

tension. Therefore, S𝔬(𝐿) is Boolean. As S𝔬(𝐿) is a subcoframe of S(𝐿), this means that in

S(𝐿) every fitted sublocale has a complement, which is itself a fitted sublocale. In particular,

all joins of closed sublocales are fitted and so S𝔠(𝐿) ⊆ S𝔬(𝐿). Finally, recall that the lattice

S𝑏(𝐿) of joins of complemented sublocales is S𝔠(𝐿) for subfit frames. We then also have the

reverse set inclusion S𝔬(𝐿) ⊆ S𝔠(𝐿). If (4) holds, by subfitness we have that (𝐿, S𝔬(𝐿)) is a

Boolean extension. Since this is the largest Raney extension, all its Raney extensions must be

Boolean. By Theorem, 3.28, when Boolean extensions exist they are unique. Suppose, finally,

that (5) holds. Because all fit frames have a Boolean extension, by Theorem 3.28, S(𝐿)must be

Boolean, and so 𝐿 is scattered. □

6 Subcolocales of Raney extensions: pointfree subspaces

We now introduce several analogues of types of sublocales of pointfree topology. Let (𝐿, 𝐶)

be a Raney extension. We define a subcolocale of (𝐿, 𝐶) to be simply a subcolocale of 𝐶. For

a Raney extension (𝐿, 𝐶), let us denote as RS(𝐿, 𝐶) the ordered collection of all its Raney

subcolocales. This is nothing but the coframe S(𝐶𝑜𝑝) of classical sublocales of 𝐶𝑜𝑝 . The mo-

tivation behind the following names will be obvious if we consider that a Raney extension

(𝐿, 𝐶) represents the embedding 𝐿 ⊆ 𝐶 of the frame open sets into the coframe of saturated

sets.

• For an element 𝑎 ∈ 𝐿 we call 𝔯𝔬(𝑎) the subcolocale ↓𝑎 ⊆ 𝐶, and we say that the sub-

colocales of this form are Raney-open.

• For an element 𝑐 ∈ 𝐶 we call 𝔯𝔣(𝑐) the subcolocale ↓𝑐 ⊆ 𝐶, and we say that subcolocales

of this form are Raney-fitted.

• For an element 𝑎 ∈ 𝐿 we call 𝔯𝔠(𝑎) the subcolocale {𝑐\𝑎 : 𝑐 ∈ 𝐶}, and we say that the

subcolocales of this form are Raney-closed.
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• For an element 𝑐 ∈ 𝐶, we call 𝔯𝔧𝔠(𝑐) the sublocale
∨

{𝔯𝔠(𝑎) : 𝑐 ≤ 𝑎, 𝑎 ∈ 𝐿}.

• For an element 𝑐 ∈ 𝐶 we call 𝔯𝔟(𝑐) the subcolocale {𝑐\𝑑 : 𝑑 ∈ 𝐶}, and we say that

subcolocales of this form are Boolean.

We have the following facts, direct translations of the standard facts of pointfree topology

in Proposition 1.4.

Proposition 6.1. For every Raney extension (𝐿, 𝐶) and 𝑎, 𝑏, 𝑎𝑖 ∈ 𝐶 we have

1. 𝔯𝔬(1) = 𝐶 and 𝔯𝔬(0) = {0};

2. 𝔯𝔠(1) = {0} and 𝔯𝔠(0) = 𝐶;

3.
⋂

𝑖 𝔯𝔣(𝑐𝑖) = 𝔯𝔣(
∧

𝑖 𝑐𝑖) and 𝔯𝔣(𝑐) ∨ 𝔯𝔣(𝑑) = 𝔯𝔣(𝑐 ∨ 𝑑);

4.
∨

𝑖 𝔯𝔧𝔠(𝑐𝑖) = 𝔯𝔧𝔠(
∧

𝑖 𝑐𝑖) and 𝔯𝔧𝔠(𝑐) ∩ 𝔯𝔧𝔠(𝑑) = 𝔯𝔧𝔠(𝑐 ∨ 𝑑);

5. The elements 𝔯𝔣(𝑐) and 𝔯𝔧𝔠(𝑐) are complements of each other in RS(𝐿, 𝐶);

6. 𝔯𝔣(𝑐) ⊆ 𝔯𝔧𝔠(𝑑) if and only if 𝑐 ∧ 𝑑 = 0, and 𝔯𝔧𝔠(𝑐) ⊆ 𝔯𝔧𝔠(𝑑) if and only if 𝑑 ∨ 𝑐 = 1.

We also have that the coframe RS𝔯𝔣(𝐿, 𝐶) of Raney-fitted subcolocales is isomorphic to 𝐶,

and that the frame RS𝔯𝔧𝔠(𝐿, 𝐶) of join of Raney-closed subcolocale is anti-isomorphic to it.

Proposition 6.2. The collection of Raney-open subcolocales together with that of joins of Raney-

closed subcolocales generate RS(𝐿, 𝐶), in the sense that for each subcolocale 𝑆 ⊆ 𝐶 we have:

𝑆 =
⋂

{𝔯𝔬(𝑎) ∨ 𝔯𝔧𝔠(𝑐) : 𝑆 ⊆ 𝔯𝔬(𝑎) ∨ 𝔯𝔧𝔠(𝑐)}.

Proof. By Proposition 1.5, adapted to our terminology, for each subcolocale 𝑆 ⊆ 𝐶 we have

𝑆 =
⋂

{𝔯𝔣(𝑐) ∨ 𝔯𝔧𝔠(𝑑) : 𝑆 ⊆ ∨𝔯𝔣(𝑐) ∨ 𝔯𝔧𝔠(𝑑)},

and as 𝔯𝔣(𝑐) =
⋂

{𝔯𝔬(𝑎) : 𝑎 ∈ 𝐿, 𝑐 ≤ 𝑎}, and by the coframe distributivity of RS(𝐿, 𝐶), the

result follows. □

Remark 6.1. One may ask what the connections are between sublocales of a frame 𝐿 and sub-

colocales of some Raney extension (𝐿, 𝐶) over it. A first step in answering this question is the

consideration that because of S𝔬(𝐿) and S𝔠(𝐿)
𝑜𝑝 being, respectively, the largest and the smallest

Raney extensions of a frame 𝐿, we have a diagram in CoFrm as follows.
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RS𝔯𝔣(𝐿, 𝐶) RS𝔯𝔧𝔠(𝐿, 𝐶)
𝑜𝑝

S𝔬(𝐿) S𝔠(𝐿)
𝑜𝑝

(−)∗(∼=)

(−)∗

We leave it as an open question to give an exhaustive account of the connections between

classical sublocales of 𝐿 and Raney subcolocale of a Raney extension (𝐿, 𝐶).

We shall now characterize the 𝑇1 property in terms of subcolocales.

Proposition 6.3. For a Raney extension (𝐿, 𝐶), the following are equivalent.

1. (𝐿, 𝐶) is 𝑇1.

2. The map 𝔯𝔣 : 𝐶 → RS(𝐿, 𝐶) is an isomorphism.

3. All subcolocales of (𝐿, 𝐶) are fitted.

4. All subcolocales of (𝐿, 𝐶) are joins of closed subcolocales.

5. All joins of closed subcolocales of (𝐿, 𝐶) are fitted.

Proof. Suppose, first, that (𝐿, 𝐶) is a 𝑇1 Raney extension. Because 𝐶 is Boolean, the frame

𝐶𝑜𝑝 is Boolean. Therefore, the map 𝔠 : 𝐶𝑜𝑝 → S(𝐿) is an isomorphism. This equals the map

𝔯𝔣 : 𝐶 → RS(𝐿, 𝐶). Therefore, all subcolocales of (𝐿, 𝐶) are fitted. By taking complements,

it is clear that (3) and (4) are equivalent. It is clear that (3) implies (5). If all joins of closed

subcolocales of (𝐿, 𝐶) are fitted, for any 𝑐 ∈ 𝐶, we have 𝔯𝔧𝔠(𝑐) = 𝔯𝔧𝔠(𝑑)∗ for some 𝑑 ∈ 𝐶, and

this implies that each 𝑐 ∈ 𝐶 is complemented, hence (𝐿, 𝐶) is 𝑇1. □

Remark 6.2. A more categorical approach would be to consider for a Raney extension (𝐿, 𝐶) the

surjections (𝐿, 𝐶) ↠ (𝑀, 𝐷). We have not explored this direction yet, and we leave this, too, as

an open question. An initial difficulty is that, for instance, for 𝑐 ∈ 𝐶 it is not in general the case

that the coframe surjection 𝑥 ↦→ 𝑥 ∧ 𝑐 (corresponding to 𝔯𝔣(𝑐) in our approach above) preserves

the joins of 𝐿.
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6.1 Subspaces and sublocales for Raney extension

In [51], it is proven that for every frame 𝐿 we have a diagram as below, in the category of

coframes. The map sp : S(𝐿) → S𝑠𝑝(𝐿) maps each sublocale 𝑆 ⊆ 𝐿 to its spatialization

M(pt(𝑆)) ⊆ 𝐿. This turns out to be the spatialization map of the frame S(𝐿)𝑜𝑝 . The collection

sob[P(pt)(𝐿)] is the ordered collection of sober subspaces of pt(𝐿), which is known to be a

coframe. The upper horizontal arrow is an isomorphism.

S𝑠𝑝(𝐿) sob[P(pt(𝐿))]

S(𝐿) P(pt(𝐿))

pt(∼=)

pt

sp

We now seek to adapt the diagram to our case. As all 𝑇0 spaces are fixpoints of our adjunc-

tion, and as all subspaces of 𝑇0 spaces are 𝑇0, in our case the analogue of the inclusion of the

coframe of sober subspaces into the powerset is simply the identity.

For a Raney extension (𝐿, 𝐶), we say that a subcolocale 𝑆 ⊆ 𝐶 is Raney-spatial if 𝑆 =
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ pt𝑅(𝐶) ∩ 𝑆}. For a Raney extension (𝐿, 𝐶), we denote as RS𝑠𝑝(𝐿, 𝐶) the

ordered collection of Raney-spatial subcolocales of 𝐶. We call the assignment 𝑆 ↦→
∨

{𝔟(𝑥) :

𝑥 ∈ 𝑆 ∩ pt𝑅(𝐶)} the Raney-spatialization of the subcolocale 𝑆.

Remark 6.3. We note that Raney-spatiality on a subcolocale 𝑆 ⊆ 𝐶 is a condition stronger than

having 𝑆 =
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ pt𝑅(𝑆)}. In fact, while it is true that every element in pt𝑅(𝐶) ∩ 𝑆 is

also completely join-prime in the coframe 𝑆, the converse does not hold. We leave it as an open

question to develop a theory of spatial subcolocales of Raney extensions.

Lemma 6.4. In the coframe RS(𝐿, 𝐶), the completely join-prime elements are the subcolocales

of the form 𝔟(𝑥) = {0, 𝑥} for some completely join-prime element 𝑥 ∈ 𝐶.

Proof. It is clear that all subcolocales of that form are completely join-prime. For the converse,

suppose that a subcolocale 𝑆 is not of the form 𝔟(𝑥) for some 𝑥 ∈ pt𝑅(𝐶). Then, there are

𝑥, 𝑦 ∈ 𝑆, with 𝑥 ≰ 𝑦, and both distinct from 0. We have 𝑆 ⊆ 𝔯𝔣(𝑦) ∨ 𝔯𝔧𝔠(𝑦) = 𝐶. However, we

have 𝑥 /∈ 𝔯𝔣(𝑦), and 𝑦 /∈ 𝔯𝔧𝔠(𝑦). Therefore, 𝑆 is not completely join-prime. □

Lemma 6.5. The inclusion of Raney-spatial subcolocales into all subcolocales RS𝑠𝑝(𝐿, 𝐶) ⊆

RS(𝐿, 𝐶) is a subcolocale. Therefore, Raney-spatialization of subcolocales is a coframe surjection

sp : RS(𝐿, 𝐶)→ RS𝑠𝑝(𝐿, 𝐶),
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and this is the Raney-spatialization of the coframe RS(𝐿, 𝐶).

Proof. Closure under joins is clear. Consider a Raney-spatial subcolocale 𝑆 and an arbitrary

subcolocale 𝑇 . We have 𝑆\𝑇 =
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ pt𝑅(𝑆)}\𝑇 =
∨

𝑥∈pt𝑅(𝑆)
(𝔯𝔟(𝑥)\𝑇) =

∨

{𝔯𝔟(𝑥) :

𝑥 ∈ pt𝑅(𝑆), 𝑥 /∈ pt𝑅(𝑇)}. The rest of the claim follows by Lemma 6.4. □

Lemma 6.6. For a Raney extension (𝐿, 𝐶) and for 𝑋 ⊆ pt𝑅(𝐿), we have that

pt𝑅(
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ 𝑋}) = 𝑋.

Proof. Suppose that (𝐿, 𝐶) is a Raney extension and that 𝑋 ⊆ pt𝑅(𝐶). We prove the nontrivial

inclusion pt𝑅(
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ 𝑋}) ⊆ 𝑋 . We have
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ 𝑋} = J (𝑋), where recall

that J (−) maps a subset of a complete lattice to its closure under arbitrary joins. Because

all elements in 𝑋 are completely join-prime, every element which is in J (𝑋) must be in 𝑋 ,

already. □

Proposition 6.7. For a Raney extension (𝐿, 𝐶), we have an isomorphism

RS𝑠𝑝(𝐿, 𝐶)→ P(pt(𝐿, 𝐶))

𝑆 ↦→ pt𝑅(𝐶) ∩ 𝑆.

Proof. We claim that the inverse of the assignment is the map 𝑋 ↦→
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ 𝑋}.

Consider a Raney-spatial subcolocale 𝑆 ⊆ 𝐶. We have
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ pt𝑅(𝐶) ∩ 𝑆} = 𝑆.

Consider a subspace 𝑋 ⊆ pt𝑅(𝐿, 𝐶). We have pt𝑅(𝐶) ∩
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ 𝑋} = 𝑋 , by Lemma

6.6. □

We come to the desired adaptation of our diagram.

Theorem 6.8. For every Raney extension (𝐿, 𝐶), we have a diagram as follows in the category

of coframes:

RS𝑠𝑝(𝐿, 𝐶) P(pt𝑅(𝐿))

RS(𝐿),

pt𝑅(𝐶)∩−

pt𝑅
𝑠𝑝

where pt𝑅(𝐶) ∩ − is an isomorphism.
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Proof. By Proposition 6.7, the horizontal arrow is an isomorphism. By Lemma 6.5, the vertical

arrow is a coframe surjection. Finally, to see that the diagram commutes, notice that for a

subcolocale 𝑆 its Raney-spatialization is
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ pt𝑅(𝑆)}, and that by Lemma 6.6 its

points are, indeed, the elements of pt𝑅(𝑆). □

Next, we will prove versions of Niefield and Rosenthal’s famous results on total spatiality

of frames (see [37]). We observe that, because of Proposition 6.1, for Raney extension total spa-

tiality suffices for the subcolocales of (𝐿, 𝐶) to represent the subspaces of pt𝑅(𝐿, 𝐶) perfectly.

We shall soon see that in the case of Raney extensions it suffices for the frame component to

be fit for total spatiality to collapses to spatiality.

Remark 6.4. Let us sketch right away the reason why we have this lack of symmetry with frame

theory. An essential prime for an element 𝑎 of a frame 𝐿 is a prime 𝑝 ∈ 𝐿 with 𝑎 ≤ 𝑝 and such

that 𝑝 ∈ 𝑆 whenever 𝑎 ∈ 𝑆 for any sublocale 𝑆 ⊆ 𝐿. Total spatiality, in [37], amounts to every

element being a meet of essential primes. In our case, because the points of a Raney extension are

completely join-prime elements, it suffices for a completely join-prime element to be maximal for

it to satisfy the analogue of essentiality.

In the following, for a coframe 𝐶 and 𝑐 ∈ 𝐶 we denote {𝑥 ∈ pt𝑅(𝐶) : 𝑥 ≤ 𝑐} simply

as pt𝑅(𝑐). In [37] the authors observe that for a frame 𝐿 if we assume Zorn’s Lemma every

element 𝑎 which is a meet of primes it is a meet of primes which are minimal in ↑𝑎 ∩ 𝐿. The

analogue of this does not hold in our case. It is not true in general that for an element 𝑐 ∈ 𝐶 the

collection pt𝑅(𝑐) is such that all chains have an upper bound
3. Let us callmaxpt𝑅(𝑐) the collec-

tion of maximal elements of pt𝑅(𝑐). We say that a completely join-prime element 𝑥 ∈ pt𝑅(𝑐)

is essential for 𝑐, or simply essential, should 𝑐 be clear from the context, if
∨

pt𝑅(𝑐)\{𝑥} ≠ 𝑐.

Lemma 6.9. For a coframe 𝐶 and for 𝑐 ∈ 𝐶 such that 𝑐 =
∨

pt𝑅(𝑐), an element 𝑥 ∈ pt𝑅(𝑐) is

essential if and only if it is maximal in pt𝑅(𝑐).

Proof. We observe that for an element 𝑥 ∈ pt𝑅(𝑐) the condition 𝑐 ≰
∨

pt𝑅(𝑐)\{𝑥} is equivalent

to 𝑥 ≰
∨

pt𝑅(𝑐)\{𝑥}. In turn, by complete join-primality of 𝑥, this condition is equivalent to

𝑥 ≰ 𝑦 for all 𝑦 ∈ pt𝑅(𝑐) with 𝑥 ̸= 𝑦, that is, maximality of 𝑥 in pt𝑅(𝑐). □

Lemma 6.10. For a coframe 𝐶 and for 𝑐 ∈ 𝐶 such that 𝑐 =
∨

pt𝑅(𝑐), an element 𝑥 ∈ pt𝑅(𝑐) is

essential if and only if for every subcolocale 𝑆 ⊆ 𝐶 we have 𝑐 ∈ 𝑆 implies 𝑥 ∈ 𝑆.

3To see this, it suffices to consider the element 𝜔 in the coframe 𝜔 + 1: this is the join of the collection of

completely join-prime elements of natural numbers, which does not have an upper bound.
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Proof. Suppose that 𝑥 ∈ pt𝑅(𝑐) is essential, and that 𝑆 ⊆ 𝐶 is a subcolocale with 𝑐 ∈ 𝑆. We

claim that 𝑑 :=
∨

pt𝑅(𝑐)\{𝑥} is such that 𝑥 = 𝑐\𝑑. Computing this expression:

𝑐\𝑑 =
∨

{𝑦\𝑑 : 𝑦 ∈ pt𝑅(𝑐)} =
∨

{𝑦 ∈ pt𝑅(𝑐) : 𝑦 ≰ 𝑑}.

We observe that {𝑦 ∈ pt𝑅(𝑐) : 𝑦 ≰ 𝑑} = {𝑥}, by essentiality of 𝑥. To conclude the proof of the

first part of the claim, we observe that 𝑥 = 𝑐\𝑑 implies that 𝑥 ∈ 𝔯𝔟(𝑐), the smallest subcolocale

containing 𝑐. For the converse, suppose that 𝑥 ∈ 𝔯𝔟(𝑐), that is, 𝑥 = 𝑐\(𝑐\𝑥). Observe that 𝑑,

defined as above, is 𝑐\𝑥. Therefore, we have 𝑥 =
∨

{𝑦 ∈ pt𝑅(𝑐) : 𝑦 ≰ 𝑑}. Observe that this

means that 𝑥 ≰ 𝑑, and this means (by definition of 𝑑) that 𝑥 ≰ 𝑦 whenever 𝑦 ∈ pt𝑅(𝑐) is such

that 𝑦 ̸= 𝑥. So, 𝑥 must be maximal, hence essential by Lemma 6.9. □

We say that a Raney extension (𝐿, 𝐶) is totally spatial if all its subcolocales are Raney-

spatial.

Proposition 6.11. A Raney extension is totally spatial if and only if for every element 𝑐 ∈ 𝐶 we

have 𝑐 =
∨

maxpt𝑅(𝑐).

Proof. Suppose that (𝐿, 𝐶) is spatial, and that 𝑆 ⊆ 𝐶 is a subcolocale. We show that 𝑆 ⊆
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ pt𝑅(𝐶) ∩ 𝑆}. By spatiality 𝑎 =
∨

pt𝑅(𝑎). If 𝑎 =
∨

maxpt𝑅(𝑎), by Lemma

6.10, we must then have that maxpt𝑅(𝑎) ⊆ 𝑆. In particular, maxpt𝑅(𝑎) ⊆ pt𝑅(𝐶) ∩ 𝑆, and so

J (pt𝑅(𝑎)) ⊆
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ pt𝑅(𝐶) ∩ 𝑆}, as subcolocales are closed under arbitrary joins.

In particular, 𝑎 ∈
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ pt𝑅(𝐶) ∩ 𝑆}. Conversely, suppose that (𝐿, 𝐶) is such that

for each subcolocale 𝑆 ⊆ 𝐶 we have 𝑆 =
∨

{𝔯𝔟(𝑥) : 𝑥 ∈ pt𝑅(𝐶) ∩ 𝑆}. In particular, for each

𝑐 ∈ 𝐶, the subcolocale 𝔯𝔟(𝑐) is Raney-spatial, and thus by Lemma 6.10 we have that for each

𝑥 ∈ pt𝑅(𝑐) the condition 𝑥 ∈ 𝔯𝔟(𝑐) is equivalent to 𝑥 being essential. By Raney-spatiality of

𝔯𝔟(𝑐) we have 𝑐 =
∨

pt𝑅(𝐶) ∩ 𝑆 ∩ pt𝑅(𝑐) =
∨

maxpt𝑅(𝑐). The required result follows from

Lemma 6.9. □

Theorem 6.12. For a Raney extension (𝐿, 𝐶), the following are equivalent.

1. (𝐿, 𝐶) is totally spatial.

2. 𝑐 =
∨

maxpt𝑅(𝑐) for all 𝑐 ∈ 𝐶.

3. The map pt𝑅 : RS(𝐿, 𝐶)→ P(pt𝑅(𝐿, 𝐶)) is an isomorphism.

4. The coframe RS(𝐿, 𝐶) is Raney-spatial.
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Proof. That (1) is equivalent to (2) is the content of Proposition 6.11. That (2) implies (3) follows

from the diagram in Theorem 6.8. It is clear that (3) implies (4), as powersets are atomic Boolean

algebras and these are spatial as coframes. Finally, suppose that RS(𝐿, 𝐶) is spatial. By Lemma

6.5, (1) holds. □

For a coframe 𝐶, we say that the collection pt𝑅(𝐿) is discretely ordered as a short-hand

for saying that the collection pt𝑅(𝐶) with the order inherited from 𝐶 is such that for each

𝑥, 𝑦 ∈ pt𝑅(𝐶) we have 𝑥 ≤ 𝑦 implies 𝑥 = 𝑦. We note that for a Raney extension (𝐿, 𝐶) the

collection pt𝑅(𝐿, 𝐶) is discretely ordered if and only if the space pt𝑅(𝐿, 𝐶) is a 𝑇1 space.

Corollary 6.13. If a Raney extension (𝐿, 𝐶) is such that pt𝑅(𝐿, 𝐶) is discretely ordered, then

(𝐿, 𝐶) is totally spatial whenever it is spatial.

Proof. Suppose that (𝐿, 𝐶) is such that the collection pt𝑅(𝐿, 𝐶) is discretely ordered. Then, for

each 𝑐 ∈ 𝐶, we have pt𝑅(𝑎) = maxpt𝑅(𝑎). The required conclusion follows from Proposition

6.11. □

Corollary 6.14. If a frame 𝐿 is such that all primes of 𝐿 are maximal, every spatial Raney

extension (𝐿, 𝐶) is totally spatial. In particular, this holds for 𝐿 fit.

Proof. Suppose that 𝐿 is such that pt(𝐿) = maxpt(𝐿). Then, in the collection of completely

prime filters of 𝐿, too, we have 𝑃 ⊆ 𝑄 implies 𝑃 = 𝑄. In particular, then, for completely

join-prime elements 𝑥, 𝑦 ∈ 𝐶 we have that 𝑥 ≤ 𝑦 implies that ↑𝐿𝑦 ⊆ ↑𝐿𝑥, and as these are

completely prime filters, we have ↑𝐿𝑥 = ↑𝐿𝑦, that is, 𝑥 = 𝑦. Thus, pt𝑅(𝐿, 𝐶) is discretely

ordered, and we have the required result by Corollary 6.13. □
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