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Abstract

This work is devoted to the study and the application of the Chopped RAndom
Basis (CRAB) control algorithm as an efficient, versatile optimal control technique
to be used for the purpose of enhancing the quality of quantum processes. In order
to show its principal aspects, the method is here applied to different systems, in
particular one-qubit and two-qubit system. Finally, the dressed CRAB algorithm
is presented as a valid alternative to the standard method, as it comes with the
additional property of guaranteed convergence to the global optimum.
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Introduction

Optimal Control Theory (OCT) is an outcome of the calculus of variations, dealing
with the identification of a feasible scheme, policy, program, strategy, or campaign,
in order to achieve the optimal outcome of a system, so as to minimize a certain
cost or, equivalently, to maximize a certain profit [18].
Its history dates back to hundreds of years: in 1696, Johann Bernoulli’s brachis-
tochrone curve problem was one of the earliest examples of the field. Many other
mathematicians were involved and an important step in the development of the
theory was the formulation of the Pontryagin’s maximum Principle by L. S. Pon-
tryagin, providing the necessary conditions for (constrained) optimal control [36].
Today, OCT is a mature mathematical discipline, with numerous applications in
both science and engineering.
Likewise, Quantum Optimal Control Theory (QOCT) is concerned with active ma-
nipulation of physical and chemical processes on the atomic and molecular scale.
The first important step was taken in the late 1980s, with great progresses following
in the last three decades: from its early applications in the design of electromag-
netic field profiles [36], many sophisticated QOC techniques has been introduced,
such as Krotov [17] or GRAPE (GRadient Ascent Pulse Engineering)[16] methods,
whose examples of recent applications are superconducting circuits [22], ion traps
[21], molecular dynamics [33], and nuclear magnetic resonance (NMR) [15, 35]. The
development of QOCT is based on many converging theoretical progresses, such
as mathematical control theory or numerical mathematics, and technological ad-
vances, in particular some crucial ones, as intense femtosecond laser sources and
pulse shapers [18].
Nowadays, this theory contributes to quantum engineering, e.g., allowing coher-
ence and open system control, as well as quantum information, providing practical
means to explore decoherence-free subspaces or other noise-avoiding strategies [12,
1]. QOCT provides recipes to achieve quantum operations with high accuracy and
speed, succeeding where other techniques fail, such as adiabatic quantum control:
indeed, adiabatic protocols require long-duration fields, making the quantum pro-
cess prone to decoherence or noise effects induced by the unavoidable interaction
with the external environment [36].
However, some limitations can occur in the application of QOC procedure, such as
the need for an accurate knowledge of the system in order to estimate the optimal
fields or the incompatibility between the level of tunability required for the driving
fields and the existing experimental means. Moreover, since standard OC algorithms
compute the optimal control fields by solving a set of Euler-Lagrange equations, it
turns out that the equation for the correction to the driving field is highly dependent
on the choice of the cost function and on the constraints the system is subjected to,
making these methods less versatile.
In this contest, the CRAB (Chopped RAndom Basis) algorithm has been introduced
as a possible solution to the aforementioned problems [5, 30]. More precisely, it con-
sists of the truncation and randomization of the function basis chosen to parametrize
the time-dependent control fields that drive the evolution of the system. Therefore,
the problem is recast into a functional minimization with respect to the parame-
ters that define the Hamiltonian and the target state. The extremization of the
multivariable function is then numerically realized by proper approaches, such as
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INTRODUCTION v

direct search methods. Examples of important current applications of the CRAB
algorithm are the autonomous calibration of electron spin, quantum operations in
diamond [10], state engineering of Bose-Einstein condensates [14], and entanglement
creation and manipulation with Rydberg atoms [28].
This thesis intends to analyze this algorithm, presenting advantages and possible
applications.



Theory

The theoretical framework of OC is presented in this chapter. First, an insight into
the theory of quantum optimal control is reported, along with its main concepts;
second, the CRAB algorithm is described as a numerical method applied to solve
QOC problems.

1.1 Quantum Optimal Control Theory

An optimal control problem is formulated in terms of searching for the best control
laws in order to drive the evolution of a system in a fixed time T, so that a cost
functional J is extremized. We focus on systems whose dynamics is described by
the Schrödinger equation 1 and whose controls consist of a set of time-dependent
driving fields ~γ(t) = (γ1(t), γ2(t), ..., γm(t)), so that

ı
d

dt
|ψ(t)〉 = H(~γ(t)) |ψ(t)〉 (1.1)

Typically, the Hamiltonian considered in QOC problems is H(~γ(t)) = Hd + ~γ(t)Hc,
where Hd and Hc are the drift and control Hamiltonian respectively. Generally,
the space the set of the control fields belongs to is the space of locally bounded,
sufficiently smooth, square integrable functions of time defined on some interval [0,
T], with T fixed [3]. We focus on finite-level quantum systems, so that the Hilbert
space the Hamiltonian acts on is H = CN . Moreover, we consider pure states: mixed
states can be included and controlled, but they fall beyond the scope of this thesis.
The cost functional is typically expressed as

J(~γ, T ) = F (ψ~γ(T ), T ) +

ˆ T

0
L(t, ψ~γ(t), ~γ(t))dt (1.2)

where the end cost term F (ψ~γ(T ), T ), called Mayer term, usually yields the distance
between the final evolution state according to the Schrödinger equation ψ~γ(T ) and
a goal state ψG in some metric, while the second term, the Lagrange term, adds up
running costs L(t, ψ~γ(t), ~γ(t)) over the whole time interval of the process. Generally,
the representation of Eq. (1.2) is referenced as Bolza form [36].
More specifically, three types of problems corresponding to different choices of F are
the most commonly studied: evolution-operator control, state control and observable
control.
In evolution-operator control, the objective is to generate U~γ(T ) so that the dis-
tance to the target unitary transformation W is minimized, therefore F1 = 1 −∥∥U~γ(T )−W

∥∥2
. A common choice for the normalized matrix norm ‖·‖ is the squared

Hilbert–Schmidt norm with an appropriate normalization 2, so that the Mayer-type
cost functional results

F1 =
1

N
Re
{
Tr[W †U~γ(T )]

}
(1.3)

1Hereafter, reduced Planck constant is set to ~ = 1.
2‖·‖ = 1

2N
Re
{
Tr[X†X]

}
, where N is the size of the basis.

1



CHAPTER 1. THEORY 2

On the other hand, the aim for state control problems is to generate a final state∣∣ψ~γ(T )
〉

so that it is as close as possible to the target one |ψG〉. Therefore, the Mayer
term typically is

F2 = 1− |
〈
ψG
∣∣ψ~γ(T )

〉
|2 (1.4)

Finally, observable control goal consists of extremizing the expectation value of a
target quantum observable, that might either be evaluated at the final time T , e.g.
Eq. (1.5), or averaged over the whole time interval [0, T ], as in Eq. (1.6)

F3 =
〈
ψ~γ(T )

∣∣O ∣∣ψ~γ(T )
〉

(1.5)

F4 =
1

T

ˆ T

0

〈
ψ~γ(t)

∣∣O ∣∣ψ~γ(t)
〉
dt (1.6)

It is also possible to include additional constraints on the pulse or accessible states,
such as maximum pulse amplitude, maximum bandwidth of the pulse or highest
populated energy.
Generally, the necessary condition for a solution of the extremization problem sub-
ject to the dynamical constraint expressed in Eq. (1.1) is that the first-order func-
tional derivatives of J with respect to ψ~γ , U~γ and ~γ are equal to zero [30]. As a re-
sult, optimal controls can be obtained by solving the corresponding Euler–Lagrange
equations. Usually, such problems are nonlinear and therefore do not have analytic
solutions, so it is necessary to employ numerical methods whose main examples
could be categorized in direct search methods, indirect search methods, function
expansion methods and miscellaneous methods [3].
The main characteristics of QOCT are listed in the following paragraphs.

1.1.1 Controllability

A system is said to be controllable if for any pair of configurations ζ1, ζ2 ∈ Γ there
exists a set of time-dependent control ~γ(t) that can drive the system from the initial
configuration ζ1 to the final one ζ2 in a finite time T, where Γ = {ζ} is the set of
configurations. Here, the notion of configuration refers to the state of the system,
the expectation value of an observable or the evolution operator U, depending on
the specific control problem. For an N-level closed system, it has been demonstrated
[31, 2], that a necessary and sufficient condition for evolution-operator controllabil-
ity (that is equivalent to state controllability) is that the the Lie group generated
by the system’s Hamiltonian is U(N) (or SU(N) for a traceless Hamiltonian) [3].
Nevertheless, even if a system is controllable, finding the optimal driving field could
be arbitrary difficult. On the contrary, it might still be possible to identify a specific
transformation after a given time although a system is not controllable. Indeed, the
controllability criterion states that any transformation is possible [36].

1.1.2 Quantum speed limit

This limit refers to an energy-time uncertainty relation. As theoretical esteem, there
exist two independent relations that define the minimal time needed for a system to
evolute from an initial state to an orthogonal one: the Mandelstam-Tamm bound [23]
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τQSL = π~
2∆E and Margolus-Levitin bound [24] τQSL = π~

2E , where E = 〈ψ0|H |ψ0〉
and ∆E =

√
〈ψ0| (H − E)2 |ψ0〉, so a possible definition of the minimal evolution

time is [36]

τQSL ≥ max
{

π~
2∆E

,
π~
2E

}
(1.7)

Otherwise, an experimental bound could be provided by analyzing the esteem of
the cost functional resulting from the optimization process as a function of T and
proving that the objective functional reaches values arbitrarily close to the desired
ones only when T is fixed above a certain threshold τQSL [7].
Anyway, these relations shows that there exist a fundamental bound in the time
needed for a quantum system to evolve in its Hilbert space which is not attributed
to numerical or experimental limits nor our lack in finding a better solution.

1.1.3 Field information

The dimension of a quantum OC problem is defined by the minimal number of in-
dependent degrees of freedom D in the OC field necessary to achieve the desired
transformation up to precision ε, that could be the minimal number of sampling
points ns, of the frequencies in the control field, or the dimension of the subspace
of functions the control field has nonzero projection on [20]. It has been demon-
strated that the number of independent degrees of freedom in the pulse scales only
polynomially with the dimension of the set of time-polynomial reachable states from
an initial state [36]. These theorems show how the information content of typical
quantum optimal control problems is very limited.

1.1.4 Landscape

The control landscape is defined as

J(~γ) = F (
∣∣ψ~γ(T )

〉
) (1.8)

that is a function of the final state
∣∣ψ~γ(T )

〉
or, equivalently, a functional of the set

of control fields ~γ(t). The topology of the control landscape, that is the character
of its critical points, including local and global extrema, determines whether local
search algorithms will converge to globally optimal solutions to the control problem
or it will get stuck in the so called traps, that is local optimal solutions. It has been
shown that, for controllable systems with no constraint on the pulse, all known traps
only occur for constant control fields [9, 29]. Therefore, it is commonly accepted
that unconstrained control landscapes for all practical purposes have no traps. A
more detailed analysis is presented in section 3.1.

1.2 Chopped random basis algorithm

The idea behind the CRAB algorithm is to expand the control fields γj in a function
basis fi(t)i=1,...,Nc

that is truncated to a finite number Nc of elements, which are
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usually picked from an orthonormal basis and then randomized:

γj(t) =

Nc∑
i=1

cijf
i
j(ω

i
j , r

i
j , t) (1.9)

where ~ωj are parameters the function basis depends on and ~rj are random numbers.
As a consequence, the orthonormalization of the basis is broken, but the effective
search volume in terms of the function space is enlarged, enhancing the algorithm
convergence while keeping constant the number of optimization parameters.
The optimization is performed by starting from an initial pulse guess γ0

j (t) and then
looking for the best correction as shown in the following:

γCRABj (t) = ξ+
j γ

0
j (t) + [1 + ξxj (γ0

j (t)− 1)]γj(t) (1.10)

where the two binaries ξ+
j , ξ

x
j ∈ {0, 1} set how the correction should be applied on the

initial guess. The most common choices are (ξ+
j , ξ

x
j ) = (1, 0) and (ξ+

j , ξ
x
j ) = (1, 1).

For the option (ξ+
j , ξ

x
j ) = (1, 0) the algorithm is not able to shift or remove any of

the roots that γ0
j (t) might exhibit [36].

The choice of the function basis could be completely arbitrary, unless there exists
a physical motivation behind it. For example, if the experimental apparatus poses
bandwidth constraints, the Fourier basis with respective limited highest frequency
proportional to Nc can be selected [10]. Other possible bases are Hermite, Lagrange
polynomials, or Gaussian bell curve.
The optimization consists in the extremization of the multivariable cost function
J(T,~cj), which can be numerically approached with any suitable method, as gra-
dient methods (e.g. steepest descent, conjugate gradient) or direct search methods
[32]. The success of gradient methods to find global solutions in quantum control
problems [8] is largely due to the fact that local minima are very rare in the control
landscapes of a large class of systems, as mentioned in Sec. 1.1.4 previously. How-
ever, the numerical computation of the gradient of the control objective might be
quite inefficient and, in an increasing number of interesting applications, the control
objective does not allow for an analytical calculation of the gradient [6]. Moreover,
CRAB optimization does not necessarily fulfill the condition of rare local minima in
the optimization process anyway, as the restriction of the search basis to Nc dimen-
sions leads to the formation of the so-called false traps [30]. For instance, usually
CRAB optimal control algorithm operates by means of gradient-free minimization,
directly evaluating the cost functional in carefully selected points. A particularly
prevalent example in QOC is the Nelder- Mead algorithm [11, 27].
The reason why reduced-basis methods are mathematically consistent is based on
the fact that quantum optimal control problems have a limited information content,
as reported in the paragraph 1.1.3 of the previous section. In other words, the high-
quality solutions often lie in some lower dimensional subspace of the full control
space, so a proper low dimensional parametrization of the control space can a priori
steer the optimization in the correct direction.



Applications

Few examples of possible applications of the CRAB method are presented in the
following sections. In this context, several particular choices for the construction
of the algorithm are made: a single control field expanded in the Fourier basis is
considered, with the binary coefficients in Eq. (1.10) set as ξ+

j = 0 and ξxj = 1,
hence

γCRAB(t) =

Nc∑
i=1

(Aicos(ωit) +Bisen(ωit)) (2.1)

where {Ai, Bi}Nc
i=1 are the parameters the optimization refers to, while the frequen-

cies ωi are generally fixed to relevant values if there is some physical information
available, otherwise they are randomized either in a whole interval, such as in Eq.
(2.2), or around the principal harmonics in Eq. (2.3), with ri and ci random numbers
with flat distribution in the respective intervals.

ωi =
2πri
T

ri ∈ [rmin, rmax] (2.2)

ωi =
2πi(1 + ci)

T
ci ∈ [cmin, cmax] (2.3)

The cost function to be minimized corresponds here to the infidelity F2 (see Eq.
(1.4)), eventually summed to a constraint on the power of the control field (as
reported in the paragraph 2.1.1)

J(T, ~A, ~B) = 1−
∣∣∣〈ψG∣∣∣ψ~γ(T, ~A, ~B)

〉∣∣∣2 (2.4)

where
∣∣ψ~γ〉 is computed through Runge Kutta method, while J is minimized using

the Nelder-Mead method.

Nelder-Mead method This algorithm belongs to the class of direct search meth-
ods, since it uses only function values at some points in Rn and does not try to
compute the gradient at any of these points. Since it is simplex-based, it itera-
tively creates a sequence of simpleces 1 to approximate an optimal point of the
function to be minimized. The choice of the initial simplex depends on the nature
of the problem but, generally, a too small starting simplex can lead to a local search
and, consequently, the algorithm might get stuck. Therefore, a possible choice is a
nondegenerate simplex [19]: it is made by generating points with a fixed step along
each dimension starting from an initial one x0, which in the following examples is set
equal to the origin. At each iteration, the vertices {xj}n+1

j=1 of the current simplex are
ordered according to the objective function values J(x1) ≤ J(x2) ≤ ... ≤ J(xn+1),
where x1 is referred to as the best vertex, and to xn+1 as the worst vertex. Then, a
new working simplex from the current one is computed and a sequence of transfor-
mations, reflection, expansion and contraction, is performed, in order to replace only

1A simplex is a geometric figure in n dimensions that is the convex hull of n + 1 vertices.

5
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the worst vertex with a better point. If this succeeds, the accepted point becomes
the new vertex of the working simplex and at most two new points have been com-
puted. If this fails, the simplex shrink towards the best vertex so that, in this case, n
new vertices are computed. Therefore the Nelder-Mead algorithm typically requires
only one or two function evaluations at each step (the shrink transformation rarely
appears in practice [11]), while most search methods use n or even more function
evaluations.
The iterative cycle is then stopped when a given number of iterations is exceeded,
the simplex reaches some minimum size limit or the current best solution reaches
an acceptable limit. These values are here fixed to 2000 maximum number of iter-
ations and the absolute tolerance between iterations for the vertices and function
evaluations is set equal to 10−3 , in other words, the iterations stop when the value
of the vertices or the current best solution in consecutive steps are equal up to the
third decimal place.

2.1 One-qubit optimization

Let’s consider a single qubit evolution from an initial state |ψ0〉 = |0〉 to a target
one |ψG〉 = 1

2(|0〉+ |1〉) 2 driven by the Hamiltonian 3

H = σ̂z + σ̂xγ
CRAB(t) (2.5)

In the following examples, the total evolution time is fixed to T = π, the total
number of frequencies is set to Nc = 2 and the frequencies are chosen randomly as
stated in Eq. (2.2), where ri is a random number with flat distribution in [0, 2]. The
choice of such interval is led by many tests carried out in order to identify the range
of the optimal frequencies for the analyzed system.
The infidelity evaluation at the end of each iteration of the Nelder-Mead algorithm
is shown in Fig. 2.1: specifically, the dashed line represents the mean value 〈JIter〉
of the infidelity over 30 different runs of the CRAB algorithm, that means thirty
different sets of random frequencies and initial simpleces, while the coloured space
represents the cost function oscillations between the maximum and minim value per
each iteration number over the several runs.
The control field as a function of time t ∈ [0, π], related to the minimization that
provides the lower optimized infidelity value among the 30 iterations, is presented
in Fig. 2.2.

2.1.1 Control pulse amplitude

Bounds on the control pulse amplitude frequently occurs in the practice due to
experimental limitations. This could be taken into account in many different ways.
Let’s say bl and bu are the upper and the lower bound respectively, so that bl ≤
γ(t) ≤ bu ∀t ∈ [0, π]. In the following examples, bl = −1 and bu = 1.

2|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
is the computational basis in H = C2.

3σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −ı
ı 0

)
and σ̂x =

(
1 0
0 −1

)
are the Pauli’s matrices.
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10-7
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10-3

10-1
JIter 〈

JIter
〉

Figure 2.1: cost function (infidelity) evaluation per
iteration for one-qubit system, where the number
of frequencies is fixed to Nc = 2; the dashed line

corresponds to the mean value over 30 runs of the
algorithm and the coloured space shows the

maximum and minimum variation of the function
along the repetitions.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
t

0

1

2

3

4

5γCRAB(t)

Figure 2.2: control field corresponding to the lower
infidelity esteem provided among 30 repetitions of
the algorithm for one-qubit system; the number of

frequencies is set equal to Nc = 2;

A possible approach is to cut any excursion beyond bl or bu to the respective limit,
as shown in Fig. 2.3.

γCRABcut (t) =


γCRAB(t) if bl ≤ γCRAB(t) ≤ bu
bl if γCRAB(t) < bl

bu if γCRAB(t) > bu

∀t ∈ [0, π] (2.6)

However, this method often introduces high frequencies in the pulse due to the
emerging edges [36]. Therefore, usually the limited pulse is obtained from the un-
constrained one γCRAB(t) by choosing a smooth function φ(·), such as tanh(·), that
maps R→ [−1, 1] and computing

γCRABshrink =

(
bl + bu

2

)
+

(
bl − bu

2

)
φ
(
γCRAB(t)

)
(2.7)

The cost function and optimized field are presented in Fig. 2.5 and Fig. 2.6.
Another possible way for the pulse amplitude to be controlled is to introduce a
constraint on the power of the driving field in the cost function, so that

J = (1− |
〈
ψG
∣∣ψ~γ(T )

〉
|2) + β

ˆ T

0
|γ(t)|2 dt (2.8)

where β is a parameter that expresses the weigh of the constraint on the cost func-
tion. In the following example, it is fixed to 0.1, since, in this context, it results the
right value to make the infidelity be equal to zero within the error (see Fig. 2.7) and
also to reduce the field amplitude between bl = −1 and bu = 1 (see Fig. 2.8).
However, the introduction of such amplitude constraints “decreases” the search vol-
ume in terms of the function space, which means that less possible solutions are
explored and the success of the algorithm is affected, as the figures 2.3, 2.5 and 2.7
show with respect to figure 2.1.
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Figure 2.3: cost function (infidelity) evaluation per
iteration (see caption of Fig. 2.1) estimated

through a field whose amplitude has been cut
between bl = −1 and bu = 1.
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Figure 2.4: control field with cut amplitude
between bl = −1 and bu = 1 that provides the

lower infidelity esteem (see caption of FIg. 2.2).
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Figure 2.5: cost function (infidelity) evaluation per
iteration (see caption of Fig. 2.1) estimated

through a field that has been shrunk so that its
amplitude is constrained between bl = −1 and

bu = 1.
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Figure 2.6: control field shrunk between bl = −1
and bu = 1 that provides the lower infidelity

esteem (see caption of Fig. 2.2).
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Figure 2.7: cost function (blue) and infidelity (red)
evaluation per iteration (see caption of Fig. 2.1),
where the cost function consists of the sum of the

infidelity and a field amplitude constraint.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00γCRAB(t)

Figure 2.8: control field corresponding the lower
infidelity esteem (see caption of Fig. 2.2) obtained
by minimizing the Eq. (2.8), so that its amplitude

results confined in bl = −1 and bu = 1.
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2.1.2 Function basis

The choice of the function basis is arbitrary, as stated at the beginning of this section.
Let’s consider a control field expanded in a chopped Fourier basis that depends on
Nc parameters instead of 2Nc parameters (as shown previously in Eq (2.1)), so that

γCRAB(t) =

Nc∑
i=1

Aicos(ωit+ θi) (2.9)

where {Ai}Nc
i=1 are the parameters the minimization now refers to, while both the

frequencies ωi and the phases θi are randomized, the former ones according to Eq.
(2.2) and the second ones are picked with a flat distribution in [0, 2π].
In the following graphics, the two possible optimizations are presented, both of them
referring to the same randomized frequencies for each of the 30 runs of the algorithm.
The total number and the range of the frequencies, the total evolution time, and the
target state are the same specified at the beginning of Sec. 2.1. As expected, the
minimization with respect to Nc parameters oscillates more and presents a greater
infidelity mean value than the 2Nc parameter case, since the optimization provides
better results as the parameter space dimension increases.

0 10 20 30 40 50 60 70
Iter

10-11

10-9

10-7

10-5

10-3

10-1
JIter

〈
JIter

〉

Figure 2.9: cost function (infidelity) evaluation per
iteration (see caption of Fig. 2.1) corresponding to

the optimization through the field expansion
reported in Eq. (2.9).
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10-2
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Figure 2.10: cost function (infidelity) evaluation
per iteration (see caption of Fig. 2.1)

corresponding to the optimization through the field
expansion reported in Eq. (2.1).

2.2 Two-qubit optimization

In this section, a system made of two capacitively coupled Josephson charge qubits
is considered. The Hamiltonian that drives the evolution is

H = H1 +H2 +HINT (2.10)

H1,2 = EC σ̂
1,2
z + EJ σ̂

1,2
x (2.11) HINT = Ecc(t)σ̂

1
z σ̂

2
z (2.12)

where Eq. (2.11) is the Hamiltonian of the single qubit, Eq. (2.12) is the Hamiltonian
describing the interaction between the qubits, Ec is the charging energy, EJ is the
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Josephson energy and finally Ecc is the charging energy associated to the Coulomb
interaction between the qubits.
In particular, in the following example, EJ

EC
= −1 is set, together with Ecc(t)

EC
= γ(t).

The evolution for three different target states
∣∣ψ1
G

〉
= |11〉,

∣∣ψ2
G

〉
=
∑1

i,j=0 |ij〉,∣∣ψ3
G

〉
= 1

2(|00〉+ |11〉) is presented, starting from |ψ0〉 = |00〉 for a time evolution set
equal to T = 5π 4. Moreover, the frequencies are picked randomly as stated in Eq.
(2.2), where ri ∈ [0, 8].
As previously done for one-qubit system, figure 2.11 shows the cost function trend
in the number of iterations of the algorithm for each different target state, with
the dimension of the parameter space set to Nc = 4. On the other hand, Fig. 2.12
proves that the cost function esteem, calculated as mean value over 30 different runs,
improves exponentially as the dimension of the parameter space increases. This is
one of the main advantages CRAB algorithm provides, that is the need for just few
parameters to reach the final optimization.

0 200 400 600 800 1000 1200
Iter

10-9

10-7

10-5

10-3

10-1

JIter

〈
J1Iter

〉
〈
J2Iter

〉
〈
J3Iter

〉

Figure 2.11: cost function (infidelity) evaluation
per iteration for each target state

∣∣ψ1
G

〉
(blue),∣∣ψ2

G

〉
(red) and

∣∣ψ3
G

〉
(green) of a two-qubit

system, where the number of frequencies is fixed to
Nc = 4; the dashed line corresponds to the mean

value over 30 runs of the algorithm and the
coloured space shows the maximum and minimum

variation of the function along the repetitions.

cN

Figure 2.12: optimized cost function (infidelity) as
a function of the dimension of the parameter space

estimated over 30 runs of the algorithm for each
target state

∣∣ψ1
G

〉
(blue),

∣∣ψ2
G

〉
(red) and

∣∣ψ3
G

〉
(green) of a two-qubit system.

Successively, a comparison between an optimization executed with randomized fre-
quencies and non-randomized frequencies is presented. In the first case, the frequen-
cies are chosen as reported in Eq. (2.2), while in the second case they correspond
to the principal harmonics, e.g. ωi = 2πi/T . The optimization runs 30 times, cor-
responding to 30 different random frequency configurations if the randomization is
applied, and 30 different values of the starting point of the initial simplex differently.
The first figure 2.13 refers to the evolution towards the target state

∣∣ψ1
G

〉
= |11〉.

It is clear that the optimization made with randomized frequencies (green lines)

4|00〉 =


1
0
0
0

 , |10〉 =


0
1
0
0

 , |01〉 =


0
0
1
0

 , |11〉 =


0
0
0
1

 is the computational basis in H = C4.
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provides better results than the other method (blue lines), as the respective cost
function reaches lower values. The same conclusion can be extrapolated from the
graphic 2.14 which compares the two methods by showing the trend of the infidelity
in the number of parameters for each target state.

Figure 2.13: cost function (infidelity) evaluation
per iteration obtained through random frequency

(green) and non-random frequency (blue)
optimization, corresponding to 30 different

configurations of the set of random frequencies and
30 different initial points of the initial simplex

respectively; the optimizations refers to the
∣∣ψ1

G

〉
target state and the number of frequencies is set

equal to Nc = 4.

Nc

Figure 2.14: optimized cost function (infidelity) as
a function of the dimension of the parameter space

estimated as a mean value over 30 runs of the
algorithm with randomized frequencies (green) and

non-randomized frequencies (blue); the
optimization for each target state

∣∣ψ1
G

〉
(circle),∣∣ψ2

G

〉
(square) and

∣∣ψ3
G

〉
(diamond) is here

presented.



Alternative: dCRAB

In the following chapter, dressed Chopped RAndom Basis algorithm is introduced
as an efficient alternative to the standard method. Initially, an in-depth analysis in
control landscape is presented; then, the dCRAB algorithm is applied to the same
two-qubit system as previously done for the CRAB method, in order to provide a
fair comparison.

3.1 Insight in control landscape

In this section, a more detailed study about what has been already mentioned in the
paragraph 1.1.4 is reported. Analysis of quantum control landscapes determines the
existence of optimal control solutions and their types, e.g. global or local maxima
(minima) and true maxima (minima) or saddle points, but also it allows to identify
necessary conditions for algorithm convergence to global maxima (minima). It has
been proved that these properties are independent from the considered Hamilto-
nian, which makes the results of landscape analysis relevant across a wide range of
controlled quantum phenomena [3].
Properties of the search space associated to Mayer-type cost functionals are par-
ticularly important in this context. In order to characterise these properties, it is
convenient to express the cost functional in a form where the dynamical constraints
are implicitly satisfied. Let’s consider a closed quantum system with unitary evolu-
tion in [0, T ] and indicate by VT : ~γ →

∣∣ψ~γ(T )
〉

the map from the space of control
functions K to the space of unitary states, induced by the Schrödinger equation 1.1,
so that

∣∣ψ~γ(T )
〉

= VT (~γ). A Mayer-type cost functional F (
∣∣ψ~γ(T )

〉
) itself describes

a map F from the space of the states to the space of real-valued costs. Thus the
composition of J = F ◦ VT : K→ R, is a map from the space of control functions to
the space of real-valued costs. This map generates the functional J(~γ) = F (VT (~γ)),
defined as control landscape. This is where the definition of control landscape for
state transfer problem given in section 1.1.4 comes from. The optimal control prob-
lem may then be expressed as the unconstrained search for Jopt = max~γ {J(~γ)}
[3].
As already mentioned, the topology of the control landscape determines whether
local search algorithms will converge to globally optimal solutions to the control
problem. So, the optimization usually leads to the critical points of the landscape,
that is the points at which the first-order functional derivative of J(~γ) with respect
to the control field is zero for all time

δJ(~γ)

δ~γ(t)
= 0 ∀t ∈ [0, T ] (3.1)

and whose collection is defined as critical manifold M of the control landscape

M =
{
~γ | δJ(~γ)

δ~γ(t) = 0 ∀t ∈ [0, T ]
}

.

By definition and applying the chain rule, Eq. (3.1) is equivalent to

δJ =
〈
5F (ψ~γ(T ))

∣∣δψ~γ(T )
〉

= 0 ∀~γ (3.2)

12
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As a result, two constituents emerge: the fidelity gradient with respect to final
state variation 5F (ψ~γ(T ))/δψ~γ(T ) and the final state variation as a function of the
control variation δψ~γ(T )/δ~γ.
As a necessary condition for a global maximum, minimum or saddle point, the
gradient 5F (ψ~γ(T ))/δψ~γ(T ) has to be equal to zero [3]; particularly, if F (ψ~γ(T ))
corresponds to the (in)fidelity, there are no saddle points since 5F = 0 corresponds
to F = 0 (the global minimum) or F = 1 (the global maximum), that is the second
order variation is nonzero. Since the aim is exactly looking for a global maximum
or minimum, it has to be understood under which conditions the second constituent
also implies 5F (ψ~γ(T )) = 0. Now, critical points can be classified as singular or
regular ones, where regular means that for every

∣∣δψ~γ(T )
〉

in the Hilbert space of the
problem there is a change in the control δ~γ that generates it, while, on the contrary,
this does not happen for singular points. So, for critical regular points, Eq. (3.2)
implies that 〈

5F (ψ~γ(T ))
∣∣δψ~γ(T )

〉
= 0 ∀

∣∣δψ~γ(T )
〉
⇒5F = 0 (3.3)

As a result, a regular point is not a trap, and all traps are singular points. However,
as already stated in Eq. (1.1.4), numerical studies suggest that for non-constant
pulses in controllable systems and in the absence of any constraints on the pulses,
the landscape is free of any traps if enough process time is given, although no rigorous
proof has been conducted for general systems.
Anyway, it has to be reminded that, for every realistic system, constraints on the
pulses cannot be completely removed and also, in order to limit decoherence effects,
it is necessary to consider short transfer time, so that the aforementioned conditions
are not always fulfilled [36].

3.2 dCRAB

As already mentioned in Sec. 1.2, CRAB algorithm might converge to a non-optimal
fixed point. Indeed, what stated in the previous section assumes that the control
fields ~γ are general functions in L2, so it cannot be a priori applied to functions
expanded in a chopped basis: it is possible that the CRAB algorithm landscape
includes points where δJ vanishes for all δ~γ allowed by the truncated basis expansion,
but not for all variations of the entire control space. This leads to the appearance
of the so called false-traps, suboptimal points defined as

δJ = 0 ∀δ~γ ∧ ∃δ~γ | ~γ + δ~γ ∈ L2, δJ 6= 0 (3.4)

As a cure, the dressed CRAB method has been introduced: when the algorithm get
stuck in a false trap, the optimization is halted and the pulse information is kept,
which is then resumed after employing a different set of basis functions {fi(t)}. So,
the algorithm works in an iterative way and the search per set of basis functions is
referred to as a single super-iteration. Therefore, the expansion of each field of the
set of control pulses {γj(t)} results

γdCRAB =

Nb∑
k=1

Nc∑
i=1

c∗k,ifk,i(t) (3.5)
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where the index i and k runs over the basis functions and the super-iterations re-
spectively, and the asterisk c∗k,i indicate that those coefficients have been optimized.
In particular, Nb, which set the maximum number of single super-iteration, can be
fixed so that a certain threshold ε of the infidelity value is overcome.
Specifically, the kth super-iteration optimizes the coefficients ck,i of

fk = fk−1 +

Nc∑
i=1

ck,ifk,i(t) (3.6)

As a consequence, the old pulse is dressed with new search directions in each super-
iteration.
The mathematical reason why this method actually works is explained in the fol-
lowing lines. Starting from the obvious result

δJ =
〈
5F (ψ~γ(T ))

∣∣·〉 = 2Re[
〈
ψ~γ(T )

∣∣ψG〉 〈ψG|·〉] (3.7)

for a false trap, Eq. (3.7) becomes

δJ =
〈
5F (ψ~γ(T ))

∣∣·〉 = Re[〈φT |·〉], φT 6= 0 (3.8)

Since δU(T )/δ~γ(t) can be written as ıU(T )U †(t)HcU(t) [4], it results

∣∣δψ~γ(T )
〉

= −ıU(T )

ˆ T

0
U †(t)HcU(t) |ψ0〉 δ~γ(t)dt (3.9)

Then, by substituting Eq. (3.8) in Eq. (3.9)

δJ =

ˆ T

0
k(t)δ~γ(t)dt, k(t) = −Im[〈φ(T )|U(T )U †(t)HcU(t) |ψ0〉] (3.10)

where k(t) is continuous and necessarily 6= 0 since it has to satisfy Eq. (3.4). If,
for example, the control pulses variations are set equal to sine or cosine functions,
δγ(t) = sin(ωt)δc or δγ(t) = cos(ωt)δc, then the integral in Eq. (3.10) is equal to
zero only in a null set of probability measure [30]. Therefore, it results δJ 6= 0 and
the false trap is overcome.
In the following examples, the dCRAB algorithm is applied to the same two-qubit
system presented in Sec. 2.2, and the success of an optimization is measured by a
certain threshold ε = 10−5 of the infidelity value.
The figure 3.1 can be compared to the figure 2.11, since the dimension of the pa-
rameter space is set to Nc = 4 in both cases. In the former one, the target tolerance
is achieved in only one over three evolutions presented, while in Fig. 2.11 the de-
sired threshold is always achieved. In particular, the evolutions related to the target
states

∣∣ψ2
G

〉
and

∣∣ψ3
G

〉
need two super-iterations in order to overcome ε.

Actually, the dCRAB algorithm can always (if there is no additional constraints)
reach the target tolerance regardless of the dimension of the parameter space Nc [30].
On the contrary, false traps in the standard CRAB algorithm tend to disappear for
Nc > 2 · 2N − 2, which is an empirical rule for unconstrained optimization where N
is the number of qubits [25].
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For instance, figure 2.12 shows how the infidelity esteem gets lower as Nc increases in
case of the standard CRAB method, while figure 3.2, representing the same system
as the previous one, shows that the the infidelity threshold ε = 10−5 is overcome for
every Nc value if the dCRAB is applied. Moreover, since the CRAB cost function
final evaluation strongly depends on the random frequencies, it is convenient to
compute a mean value of the cost function evaluation over many different runs in
order to provide a fair esteem, as it has been actually done in the previous chapter.
Indeed, the frequencies randomly chosen might be more or less close to the optimal
ones, so that the cost function final value results highly affected. On the contrary,
thanks to his capacity to always reach the desired value, the dCRAB method does
not need for such expedient, so that’s why there is no mean value provided in the
following graphics.
Finally, another important difference between the methods is about the computa-
tional effort required to join the optimal solution. In terms of number of function
evaluation, it turns out that the computational effort highly depends on Nc for the
standard CRAB, which can be problematic as the best choice of Nc is not known
in advance, while this does not happen for the dCRAB algorithm. Furthermore, it
has been proved that, even for the best choice of Nc, CRAB can never have a better
result than dCRAB [30].

0 200 400 600 800 1000 1200 1400 1600
Iter
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10-4

10-2

100JIter

J1iter

J2iter

J3iter

Figure 3.1: cost function (infidelity) evaluation per
iteration for each target state
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〉
(blue),

∣∣ψ2
G

〉
(red) and

∣∣ψ3
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〉
(green) of a two-qubit system

through the dCRAB algorithm; the number of
frequencies is fixed to Nc = 4.
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Figure 3.2: optimized cost function (infidelity) as a
function of the dimension of the parameter space
for each target state
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(red) and∣∣ψ3

G

〉
(green) of a two-qubit system through the

dCRAB algorithm; the infidelity esteems for every
Nc value are below the fixed threshold ε = 10−5.



Conclusion

In this thesis, properties and effectiveness of the CRAB algorithm are presented.
First of all, the method was applied to a system made of one qubit. This was done
in several ways so as to show properties the algorithm holds: different forms of the
Fourier decomposition were used, stressing that the choice of the function basis as
well as the optimization parameters is arbitrary; moreover, three different ways of
imposing constraints on the pulse amplitude were shown. Successively, the algorithm
was applied to a more complex system, that is two capacitively coupled Josephson
charge qubits. Here, two considerations were made: an exponential dependence of
the cost function on the number of optimization parameters was presented, under-
ling the fast convergence of the algorithm; a comparison between a randomized and
non-randomized frequency optimization was reported, proving that the former one
actually provides lower cost function evaluations, since randomizing the frequencies
of the field, expanded in a truncated basis, enlarges the search volume for the opti-
mal solution in terms of the function space. Finally, the dressed CRAB (dCRAB)
method was shown as a solution to avoid false traps where the algorithm might get
stuck even in case of unconstrained pulse, due to the restriction of the search basis to
Nc dimensions given by the CRAB expansion. This version of the algorithm success-
fully achieves the target cost function value regardless of the number of parameters
in the field expansion, so it consist of a valid alternative to standard CRAB algo-
rithm. To conclude, the main features of the Chopped RAndom Basis algorithm
were presented, such as efficiency in the use of just few optimization parameters,
suitability in the application to different systems as well as in the definition of the
cost function and high probability of success in terms of achieving a target threshold
for the cost function esteem.
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[35] Zdeněk Tošner et al. “Optimal control in NMR spectroscopy: Numerical im-
plementation in SIMPSON”. In: Journal of Magnetic Resonance 197.2 (2009),
pp. 120–134.

[36] Jonathan Zoller. “Optimal quantum engineering”. PhD thesis. Universität
Ulm, 2018.


	Introduction
	Theory
	Quantum Optimal Control Theory
	Controllability
	Quantum speed limit
	Field information
	Landscape

	Chopped random basis algorithm

	Applications
	One-qubit optimization
	Control pulse amplitude
	Function basis

	Two-qubit optimization

	Alternative: dCRAB
	Insight in control landscape
	dCRAB

	Conclusion

