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Abstract

Internet of Things applications are driving the need for better and advanced solu-
tions to connect and manage sensors communicating into a smarter world. In this
thesis we present preliminary results derived from tests on dual-band Low Power
Wide Area Networks, trying to solve both effectiveness and efficiency challenges
from a data science point of view. In the former case, by applying machine learning
models with high performances while keeping the load of sensor networks as low as
possible in terms of acknowledgements requested by single nodes, in the latter by
storing a simple model in a small device while providing fast and accurate predic-
tions. Statistical inference techniques and online learning algorithms are investigated
under non-stationary conditions and adopted for testing multiple practical scenar-
ios, with the aim of estimating the network status in the licensed and unlicensed
bands, i.e. NB-IoT and LoRaWAN respectively.
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Chapter 1

Introduction

The rise of new technological trends in the Internet of Things (IoT) industry is
promising to revolutionize our user-experience by providing us with a set of incredi-
ble smart devices, which will assist us everywhere and at any time. Several research
communities have actively studied how to manage and develop the IoT devices, in-
cluding the field of network technologies that are having an important role in the
success of IoT since they are responsible for the connection between the objects.

From a computational point of view, specific wireless sensor networks (WSNs)
have to handle a large number of potential devices. In practice, multiple sensors
must satisfy precise requirements, for example only small chunks of data can be
intermittently transmitted, without power supply, implying to operate by adopting
battery with reasonable lifetimes while often being installed in places with poor
coverage.

From a data science point of view, the characteristics of ubiquity and pervasive-
ness of those technologies sets industry practitioners and academic researchers both
effectiveness and efficiency challenges. On one hand, it is required to design ma-
chine learning models with high predictive performances (effectiveness) on a given
set of tasks. On the other hand, these models are required to be stored on a de-
vice (space-efficiency) and produce fast predictions (time-efficiency). In addition,
the prevalence of machine-machine communications and networks of sensors has led
to an enormous and ever increasing amount of data that are now more commonly
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Chapter 1. Introduction

available in a streaming fashion. Traditional machine learning and statistical tools
have been developed to deal with batches of data and only in recent studies have
been adapted to cope with data streams or big data problems, addressing issues in
data availability and resource scarcity respectively.

The sequential data acquisition process has lead to establishing the online learn-
ing paradigm, a framework that can be naturally adapted to the IoT context, since
online learning algorithms are fast and often make few statistical assumptions, mak-
ing them suitable for the majority of IoT applications. Online learning is based
on the acquisition of a representative training data, which is expensive and time
consuming. In such settings, it is necessary to update an existing model in an incre-
mental fashion to accommodate new data without compromising the performance
on old data, i.e. learning new information without forgetting previously acquired
knowledge. This idea is commonly based on the assumption that the probability
function generating the data is not changing over time, i.e. the process under study
is stationary.

The stationarity has lead to the construction of mathematical models that have
good theoretical properties, but it is hardly verified in practical applications. Phe-
nomena can evolve or merely change during time intervals and if machine learning
models do not consider the evolving and varying data flow - also called concept drift
in the literature - they can become obsolete and perform poorly after the alteration.
In the IoT context, the non-stationarity can be caused, for example, by seasonality
or periodicity effects, variations in the external environment, changes in the sensor
locations or aging effects in the sensors performances. Machine Learning in non-
stationary environments is a topic acquiring increasing attention in recent years; in
this work we investigate how they practically behaves and how they are trying to
encompass more effective and efficient algorithms.

The objective of this thesis is studying how to include adaptive learning and con-
cept drift detection techniques in the Long Range Wide Area Network (LoRaWAN)
technology, a data-link layer with long range, low power, and low bit rate, appeared
as a promising solution for IoT in which end-devices use LoRa to communicate with
gateways through a single hop. The algorithms developed in this work are designed
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to be appropriate for real life applications where training data becomes gradually
available over time or their size is out of system memory capability. Therefore, the
tools presented require the sensors to dynamically employ LoRaWAN in order to
improve the packet delivery ratio of the whole network. In the end, it is shown
that the designed procedure is effective also in practice, when no information on the
external environment, noise and sensor’ locations is available. The structure of the
rest of this thesis is as follows.
In Chapter 2 we present the technologies studied and a brief summary of the learn-
ing in non-stationary conditions. In Chapter 3 all the mathematical instruments
required to tackle the problem of the thesis are presented. In Chapter 4 the prob-
lem and its solution are formally proposed. Finally, in Chapter 5 we present the
results of the analysis and in Chapter 6 the conclusion.
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Chapter 2

Background

This Chapter is intended to present what is the LoRaWAN through an high level
description, which includes the motivation beside the rise and the diffusion of this
technology, its main technical and practical characteristics as well as some use-cases
examples and limitations. The background concerning learning in non-stationary
conditions literature is also reported via a brief survey of actual methods.

2.1 Wireless Sensor Networks

Issues with resources like water and energy, as well increasing awareness of safety
security and efficiency are driving the need for more information and better options
to connect and manage advanced sensors to build a smarter world. In a few years,
global, national and regional networks will connect trillions of wireless devices. Hun-
dreds of objects will be connected and send and receive hundreds of messages every
day even at home. We will be able to monitor and control all the devices connected
to the Internet. The Internet of Things is going to connect the world and create lots
of efficiencies and new business opportunities.
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2.1.1 IoT Challenges

The rising of new scenarios for Internet of Things introduces new challenges that
cannot be addressed by already available connectivity protocols, since the diffusion
and development of IoT applications has increased the performance demand required
by nodes in WSNs.

One of the first aspect to take into account in order to enhance network perfor-
mances is finding the optimal transmission power for each network node, i.e. increas-
ing the lifetime and improving energy efficiency by minimizing wasted power of single
nodes [1]. Due to economical reasons, most sensors are powered by non-rechargeable
batteries. However, the need for replacement and ecological implications will become
a severe problem when powering billions of IoT devices employing non-rechargeable
batteries as the primary energy storage. Nevertheless, keeping communication ef-
fective while reducing energy consumption has been an open research point [3] and
could be the first point to extend the work of this thesis. Other aspects such as
throughput, range coverage and bandwidth are also important features to support
the massive number of expected nodes connecting to the Internet.

2.1.2 Overview of LoRaWAN

To avoid some of these problems and to solve some of them, LoRa (Long Range), a
low-power wide-area network protocol developed by Semtech, identifies end-devices
that have limited energy and transmit few bytes every time [2]. Both a sensor (end-
device) and an external entity (gateway) can initiate a communication, i.e. a data
transfer. LoRa is an excellent candidate for being used in many applications in
smart environments given its long range and low power features.

LoRa exploits a physical layer based on spread spectrum modulation techniques
derived from chirp spread spectrum (CSS) technology, and a MAC layer protocol
yielding access to the LoRa architecture itself: the LoRaWAN. To maximize the
lifetime of the final device batteries, the LoRaWAN server controls the Radio fre-
quency output and an output rate through an adaptive scheme for each end-device,
achieving an average battery life time longer than any other technology.
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LoRa provides a throughput, i.e. the rate of successful message delivery over
a communication channel, greater than technologies based in ALOHA, with low
complexity in the Medium Access Control. Throughput is usually measured in bits
per second and LoRa offers a data rate between 290 bps and 50 kbps.

New technologies have the objective to provide information access to the Internet
to people/things away from the big metropolis. To achieve greater distances, the
power of the radio should be increased, causing greater consumption of the battery.
Hence, new protocols aim to obtain greater distances while maintaining lower en-
ergy consumption. Currently, LoRaWAN obtains multi-kilometers communication,
about 2-5 km of range coverage in urban perimeters and about 10-15 km in rural
areas. Bandwidth and data rate are used to determine the amount of data being
transferred (bit rate) in a given time unit, normally, seconds. Bandwidth means
the spectrum range in Hertz that a system can use for digital communication. Data
rate depends on the bandwidth of the Internet connection. If the bandwidth is high,
the bit rate tends to be high whether adequate digital communication technologies
are employed. In LoRaWAN, the data rate is selected by a trade-off between the
communication range and the duration of the messages, thus lower bit rate are
considered the best solution for IoT applications.

2.1.3 LoRaWAN

LoRaWAN employs LoRa as physical layer. It features low-power operation, guar-
anteeing around 10 years of battery lifetime, low data rate, such as 27 kb/s with
spreading factor 7 and long communication range, i.e. 2-5 km in urban areas and 15
km in suburban areas.

LoRaWAN networks are organized in a star-of-stars topology, in which gateway
nodes relay messages between end-devices and a central network server. End de-
vices send data to gateways over a single wireless hop, and gateways are connected
to the network server through a non-LoRaWAN network (e.g., IP over cellular or
Ethernet) [8]. Communication is bidirectional, although uplink communication from
end-devices to the network server is strongly favored, as explained in the following [9]
LoRaWAN defines three types of devices (Classes A, B, and C) with different ca-
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pabilities. Class A devices use pure ALOHA access for the uplink. After sending a
frame, a Class A device listens for a response during two downlink receive windows.
Each receive window is defined by the duration, an offset time, and a data rate.
Although offset time can be configured, the recommended value for each receive
window is 1 s and 2 s, respectively. Downlink transmission is only allowed after a
successful uplink transmission. The data rate used in the first downlink window is
calculated as a function of the uplink data rate and the receive window offset. In the
second window the data rate is fixed to the minimum, 0.3 kb/s. Therefore, downlink
traffic cannot be transmitted until a successful uplink transmission is decoded by the
gateway. The second receive window is disabled when downlink traffic is received
by the end-device in the first window. Class A is the class of LoRaWAN devices
with the lowest power consumption.

Class B devices are designed for applications with additional downlink traffic
needs. These devices are synchronized using periodic beacons sent by the gateway
to allow the scheduling of additional receive windows for downlink traffic without
prior successful uplink transmissions. Obviously, a trade-off between downlink traffic
and power consumption arises.

Finally, Class C devices are always listening to the channel except when they
are transmitting. Only Class A must be implemented in all end devices, and the
other classes must remain compatible with Class A. In turn, Class C devices cannot
implement Class B. The three classes can coexist in the same network, and devices
can switch from one class to another. However, there is not a specific message
defined by LoRaWAN to inform the gateway about the class of a device; this is up
to the application.

The underlying PHY of the three classes is the same. Communication between
end-devices and gateways start with a Join procedure that can occur on multiple
frequency channels by implementing pseudo-random channel hopping.

Each frame is transmitted with a specific spreading factor (SF), defined as SF =

log2(Rc/Rs), where Rs is the symbol rate and Rc is the chip rate. Accordingly, there
is a trade-off between SF and communication range. The higher the SF (i.e., the
slower the transmission), the longer the communication range. The codes used in
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the different SFs are orthogonal. This means that multiple frames can be exchanged
in the network at the same time, as long as each one is sent with one of the six
different SFs (from SF = 7 to SF = 12). Depending on the SF in use, LoRaWAN
data rate ranges from 0.3 kb/s to 27 kb/s.

The maximum duty cycle, defined as the maximum percentage of time during
which an end device can occupy a channel, is a key constraint for networks operating
in unlicensed bands. Therefore, the selection of the channel must implement pseudo-
random channel hopping at each transmission and be compliant with the maximum
duty cycle.

The LoRa physical layer uses chirp spread spectrum (CSS) modulation, a spread
spectrum technique where the signal is modulated by chirp pulses (frequency varying
sinusoidal pulses), hence improving resilience and robustness against interference,
Doppler effect, and multipath. Packets contain a preamble (typically with 8 sym-
bols), a header (mandatory in explicit mode), the payload (with a maximum size
between 51 and 222 bytes, depending on the SF), and a cyclic redundancy check
(CRC) field (with configurations that provide a coding rate from 4/5 to 4/8). Typ-
ical bandwidth (BW) values are 125, 250, and 500 kHz in the HF ISM 868 and 915
MHz band, while they are 7.8, 10.4, 15.6, 20.8, 31.2, 41.7, and 62.5 kHz in the LF 160
and 480 MHz bands. The raw data rate varies according to the SF and the BW, and
ranges between 22 b/s (BW = 7.8 kHz and SF=12) to 27kb/s (BW=500kHzandSF
= 7) [10]. Frequency hopping is exploited at each transmission in order to mitigate
external interference [11].

2.1.4 Examples of LoRaWAN use-cases

We propose three examples of LoRaWAN use-cases. The first is Loadsensing, i.e. the
global leader product for connecting and wirelessly monitoring infrastructures in re-
mote locations. Construction and mining companies and operators of bridges, tun-
nels, dams, railways and many other inaccessible assets can exploit this technology
to work with reliable data. Having access to this information and real-time insights
enables operators to anticipate needs, manage their workforce, diminish risks, and
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even prevent disasters. This technology is battery-powered, characterized by a long
range and developed by low-power wide-area Networks devices.

Wireless sensors play an important role in today’s agriculture. There is a need to
optimize production while minimizing the environmental impact. Sensors make this
possible, since help monitor nutrients in the soil, humidity, temp, density of weeds
and also help reduce the use of chemicals such as fertilizers and herbicides and yield
safer corps. Hence, the second example is represented by Sol-Chip’s everlasting
IoT platform, which uses compact, embedded panels that require no maintenance
and allow data transmission via LoRa. It’s long-range two-way wireless commu-
nications collects sensory data from the field and allows operating valves or other
devices remotely. By receiving real-time data, users can make optimal irrigation
and treatment decisions in their fields.

Finally, we conclude by citing Urbiotica, a company that has reached the leader
position of smart parking solutions, strengthening its leadership position in the sec-
tor and opening up new opportunities to penetrate new markets thanks to the ac-
quisition of Fastprk’s technology, based on dual detection and LoRa communication
protocol.

2.1.5 Limitations and open issues

The LoRaWAN protocol has several advantages over other LPWA technologies,
namely the data rate ranges from 300 bps up to 5 kbps (with 125 kHz bandwidth)
and 11 Kbps (with 250 kHz bandwidth) allowing for better time-on-air and better
battery life, furthermore communication is bidirectional and unlimited. Research
works comparing several long-range technologies and LoRa are presented in [12].
This latter article provides an overview and functional description of LoRaWAN.
Continuing this work, performance analysis studies of the protocol may consider the
estimation of the collision rate, total capacity, channel load, single device maximal
throughput and maximum transmission unit, scaling networks to a massive number
of devices, and mobility/roaming proposing possible solutions for performance en-
hancement. All research topics that are currently carried out from both academic
and industry researchers and experts of internet and sensor technologies.
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2.2 State of the Art

2.2.1 Non-stationary environments

In data science modelling and statistical estimation procedures, either implicitly or
explicitly, both researchers and practitioners assume that the process generating
the distribution of interest is stationary, i.e. the data are drawn from a fixed and
unknown probability distribution.

However, in many empirical application and natural phenomena this assumption
is not satisfied. Hence, in order to avoid a decrease in the performances of the trained
models it is convenient to employ methods able to deal with distributions that can
drift over time. This condition is known as learning in non-stationary environments.
Generally, it is assumed that the probabilistic properties of the data change over
time or that the parameters describing the phenomenon of interest scale according to
changes in the external environment. Machine learning models can effectively deal
with these kind of scenarios by adopting an adaptive learning algorithm, since models
trained under the false stationarity assumption are intended to become obsolete in
time, as well as to present sub-optimally performances with respect to an adaptive
model.

When coping with non-stationary environments, it is possible to consider two
different scenarios affecting the active learning process.

Let P be the probability distribution generating tuples (xt, yt), which are sampled
from an unknown probability distribution pt(x, y), and let pt(y|x) and pt(x) be the
posterior and the marginal distributions, respectively, at some arbitrary time stamp
t. We can distinguish between the real-drift case, in which the posterior distribution
varies over time, independently from variations in the marginal one; and the virtual-
drift case, where the marginal distribution of the data changes without affecting the
posterior probability of classes.

The drift in the probability distribution can be further decomposed with respect
to the rate at which the change is accomplished and then be defined as permanent
if the effect of the variation is not limited in time, or transient, in case the change is
maintained for a certain amount of time, after which the effect of the drift disappears.
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Other assumptions can be made based on the nature of the data, for instance the
change in the distribution could be recurrent, data on which the model is trained
could be available only for a certain amount of time and, most importantly, the
process could be subjected to the so called verification latency, in which the labels
do not become available immediately as the next batch of data arrives - assumption
at the basis of the online learning paradigm -, and in the most complex case of which
true labels are never revealed for certain associated instances.

In this work, all the assumptions on the data generating process changing over
time are not taken into account, since due to the loss of information on the external
processes we do not know neither the rate of the change nor the properties of its
nature. Thus, we simply define the concept drift as an external agent influencing the
learning procedure, that can be perceived from the model under certain conditions.
Rather than actual, in this scenario the drifting distribution is caused by insufficient,
unknown and unobserved attributes [4].

Having the capacity of observing the hidden parameters would remove the non-
stationarity. Since the hidden context can never be known, the learner must rely
on the above mentioned probabilistic definition to describe non-stationary environ-
ments. Due to this lack of knowledge, in the next applications we will constantly
track the external environment, trying to detect eventual changes in both the prob-
ability distribution and the classifier performance. To this aim, the adopted active
approach for learning a classifier in non-stationary environments will be based on
a feature extraction process extracting features from the data generating process
both for change detection and classification. The change detectors inspect features
extracted for change detection purposes and/or the classification error evaluated
over labeled samples. Once a change has been detected, the adaptation phase is
activated to update or rebuild the classifier. The majority of authors working in
this field provide solutions based on replacing an already trained classifier with a
new one, restarting the learning procedure as soon as a change in the environment
is warned or detected. This approach, although useful and efficient in many appli-
cations, turns out to be disastrous when applied to our use-case. Indeed, since we
are dealing with a problem characterized from both class imbalance and verification
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latency problems, the replacement of the learner caused the loss of all the precious
information slowly gathered.

For this reason, we preferred to simply update the classifier with respect to the
change, and as will be further described later, modify the rate of the sampling from
the unknown probability distribution generating the data, in order to accelerate the
adaptation phase and to limit the availability of labels if not strictly necessary. This
allows us to avoid a decrease in the final performances.

Another important aspect to take into account when dealing with adaptation
algorithms for learning in the presence of concept drift is that they are primarily
based on either an active or on a passive approach [5, 6]. Algorithms following the
active approach try to detect concept drift using techniques suited for this task, while
algorithms following the passive one continuously update the model every time new
data are presented, regardless whether drift is present or not. Both active and passive
approaches expect to provide an up-to-date model. However, the mechanisms used
by each to succeed in this purpose are not the same.

Both active and passive approaches can be successful in practice, but the rea-
son for choosing one approach over the other is typically specific to the application.
As a matter of fact, before choosing a specific algorithm for learning in a non-
stationary environment, it is important to consider the dynamics of the learning
scenario, e.g. drift rates and whether the data arrive online or in batches of sam-
ples. Other aspects to consider are the computational resources available, such as
limited memory sensors or high-performance machines, and any assumption that
can be made about the distributions of the data. In general, passive approaches
have been shown to be quite effective in prediction settings with both gradual and
recurring drifts [4]. Furthermore, passive approaches generally perform better for
batch learning, whereas active approaches have been shown to work well in online
settings, i.e. when only one instance is presented at each time stamp t. [7].

As anticipated, in this work we consider an online learner constantly trained
and updated on the available data pairs. Hence, we start from a passive approach
based on the loss induced from the machine learning process, but also consider active
learning procedures to detect changes in the external environment. This procedure
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yields to an hybrid algorithm mixing the two paradigms. The model embedding this
method is able to interact with the sampling procedure by accelerating or decreasing
it according to its own requirements. We started from an online approach and
exploiting the non-stationary assumptions on the external environment we end up
with models employing active learning strategies.

14



Chapter 3

Mathematical Instruments

3.1 Learning Paradigms

In this chapter, we present a comprehensive catalog of the learning methods adopted
to solve the problem of the thesis. As statistician, my exposition will naturally reflect
my background, but I preferred to use the modern language of machine learning
which highly influenced my thinking in the last two years.

Hence, in the following the more classically called independent variables may also
be named predictors, inputs or features, as they are mostly known in the pattern
recognition literature [13]. The features are usually presented by examples of a set
of variables and stored in the data matrix X ∈ Rn×d. For each example, the goal
is to use the inputs to predict the values of the output. This technique is called
supervised learning in the statistical learning field [14]. It goes without saying that
also in this case the output might be called responses or, traditionally, dependent
variables.

3.1.1 Supervised Learning

The outputs, indicated by yi, vary in nature among the examples.
In this thesis the output is qualitative and assumes values in the finite set

Y = {packet received, packet not received}. Thus, there is no explicit ordering in
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the classes, and in fact descriptive labels rather than numbers are often used to
denote the classes, nevertheless we represented them numerically by using codes.
We are in the easiest case, since only two categories are inferred and from now on
they will be represented as −1 and 1, or else by 1 0 and 1. For reasons that are
apparent, such numeric codes are sometimes referred to as targets.

As already stated in Section 3.1, we will denote an input variable by the symbol
X, indicating a matrix with n rows (examples or empirical observations) and d

columns (variables). If X is a vector, it is denoted as x and its components can
be accessed by subscripts xj. Qualitative outputs will be denoted by Y. We use
uppercase letters such as X or Y when referring to the generic aspects of a variable,
random variable or finite set. Observed values are written in lowercase. We will
also use script lettering to indicate vector spaces. Matrices are represented by bold
uppercase letters; it is clear that a set of n input d-vectors xi, i = 1, ..., n would be
represented by the n× d matrix X.

In general, vectors will not be bold, except when they have d components; this
convention distinguishes a n-vector of inputs xj for the jth observation from the d-
vector xi consisting of one example of all variables Xj, j = 1, ..., d. Since all vectors
are assumed to be column vectors, the ith row of X is x⊤

i , i.e. the vector transpose
of xi.

Now that the notation has carefully been explained, the supervised learning
framework is formally introduced from a mathematical point of view. Consider
a functional dependency that maps points from an input space X ∈ Rdin into an
output space Y ∈ Rdout . In a typical supervised learning task we are given a training
set T of n input-target pairs (xi, yi), i.e.

T = {(xi, yi) : xi ∈ X, yi ∈ Y and i = 1, ..., n}. (3.1)

The goal of supervised learning is to define a mapping f or hypothesis h and produce
a prediction ŷ = f(x) = h(x), which correctly predicts the true output y. When

1Notice that this is just a transformation of the previous yold ∈ {−1, 1}. Now we set
ynew = 1 + yold ∈ {0, 1}
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dealing with classification problems, the input space X is divided into K subsets
X1, ..., XK ∈ X such that Xi ∩Xj = ∅ for all i, j = 1, ..., K and i ̸= j. Now the task
is to assign a given input vector x to the subset it belongs to. The basic form of any
classification task is the binary classification, where there are two sets X1, X2 ∈ X

such that X1∩X2 = ∅ and we want to determine whether the input vector x belongs
to X1 or X2. In this case, the training set is formally defined as

Tbinary = {(xi, yi) : xi ∈ X, yi ∈ {−1,+1} and i = 1, ..., n}, (3.2)

with the two subsets X1 and X2 labelled by +1 and −1, respectively.
We need data to construct prediction rules, often a lot of it. We thus suppose

we have available the training data (xi, yi), i = 1, ..., n, with which building our
prediction rule.

3.1.2 Online Learning

The notation introduced in Section 3.1.1 for a binary classification task is typically
adopted when the training data, i.e. the data matrix X, is presented as a batch set.
Thus, all the pairs (xi, yi) for all i = 1, ..., n are available from the beginning of the
analysis.

This is a common setup for many practical analysis and research problems; how-
ever, it is also possible to cope with a problem whose data instances are not totally
available from the beginning, but instead revealed by time. In this case, retrieving
the mapping f is usually more challenging and in many situations it stands for a
more realistic analysis, since the batch dataset is usually collected at different inter-
vals of times and studied without considering this aspect. The learning algorithms
studied within this framework are known as online learning algorithms because they
operate on a sequence of data examples with time stamps.

At each step t, the learner h receives an incoming example xt ∈ X in a d-
dimensional vector space, that is, X ∈ Rd. Then, it first attempts to predict the
class label of the incoming instance, which could be done by adopting a classical
machine learning model. For example, we could choose the sign function ŷt =
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Algorithm 1 Online Learning Framework for Binary Classification
Input: an initialized vector w0

Output: a sequence of predicted labels
1: for each time stamp t do
2: the learner receives an incoming instance xt ∈ X
3: the learner predicts the class label ŷt

4: the genuine class label is revealed from the external environment yt ∈ Y
5: the learner calculates the suffered loss L(h(xt;wt), yt)
6: if L(h(xt;wt), yt) > 0 then
7: the learner updates the classification model, i.e.

wt+1 ← wt +∆(wt; (xt, yt)) (3.3)

sgn(f(xt;wt)) = sgn(wt · xt) ∈ Y, and Y = {−1,+1}. Only after making the
prediction, the true label yt ∈ Y is revealed and the learner computes the loss
L(ŷt, yt) based on some criterion, e.g. a function or a metric measuring the difference
between the learner’s prediction and the true label yt. Finally, based on the result
of the loss, the learner decides whether, when and how to update the classification
model at the end of step t. We define ∆(wt; (xt, yt)) to be a general update of the
model and present in the Algorithm 1 the algorithmic framework giving an overview
of the majority of the online learning algorithms.

Notice that when adopting this kind of learning paradigm, the pair (xt, yt) is
available only at time t. When considering the successive time stamp, both inputs
and output are vanished and must be embedded in the model’s parameters wt,
which tries to adapt to the new available information while keeping track of the
previous instances. It goes without saying that different online learning algorithms
are distinguished in terms of various definitions and designs of both the loss function
L(·) and updating rule ∆(·).

3.1.3 Function Approximations

The learning paradigm of the previous sections has been the motivation for research
into the supervised learning problem in the fields of machine learning, with analo-
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gies to human reasoning, and neural networks, with biological analogies to the brain.
The approach developed in applied mathematics and statistics has been from the
perspective of function approximation and estimation. Herein, the data pairs (xt, yt)

are viewed as points in a (d + 1)-dimensional Euclidean space. The function f(xt)

has domain equal to the d-dimensional input subspace, and is related to the data
via a model such as yt = f(xt) + εt, where ε is a noise satisfying some precise as-
sumptions. The goal is to obtain a useful approximation of f(xt) for all t in some
region of Rd, given the representations in X . Although somewhat less glamorous
than the learning paradigm, treating supervised learning as a problem in function
approximation encourages the mathematical concepts of probabilistic inference to
be applied to the problem and, as will be described in Section 4, to combine this
formulation with optimization techniques based on gradient descent strategies. In-
vestigating the problem by exploiting the geometrical properties of the Euclidean
space allows us to exploit non linear function approximation before applying lin-
ear models. This is one of the main strategy adopted in this thesis, since it yields
to learners that are simple, fast and hopefully more accurate than classical linear
models; characteristics that are essential for IoT industry and smart sensors. As a
matter of fact, notice that f(xt) could be a function of any type when we do not
treat the problem as a function approximation on. For example, we could retrieve
a Multi Layer Perceptron if we consider f(·) to be a chain of functions, or also a
more advanced non-linear learner of the inputs xt, such as a Convolutional Neural
Network. These models are characterized by an high level of complexity, both in the
training and prediction phases, resulting in being not optimal for IoT applications.
In this thesis, we want to exploit models that are simple, since they have to be
applied to practical scenarios and satisfy strict requirements of both computational
complexity and storage, but that at the same time are able to capture the non linear
structures of the input space, in case they are presented. For this reason, combining
a non linear basis transformation with a linear model is attempted to be a good trick
to maintain simplicity and gain higher performances. The approximations studied
have associated a set of parameters θ that can be modified to suit the data at hand.
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For example, the linear model

f(xt) = x⊤
t wt (3.4)

has θ = wt. Furthermore, a model of this kind can easily be adapted to fit also a
bias term (intercept) w0 by considering xt = [1, x1, · · · , xd]

⊤ and by including the
term w0 into the vector wt at the first entry.

Kernel Transformations

The model f(xt) = x⊤
t wt is linear since it performs a dot product between vectors.

When taking into account a polynomial kernel transformation on xt, we get a model
that is linear only in the coefficients, but not linear in the variables, cause the
transformation is applied only to the vector of features. It is well known that linear
models fitted to a basis expansion of the original inputs allow arbitrarily complex
models [14].

We consider a polynomial kernel transformation of order 2. It is defined as k(·),
and it takes in input xt and returns as output a transformation of the original
vector, whose entries include for each term j, j = 1, ..., d the entry xj itself, the
single products with all the others input xi ̸=j and the square term x2

j . For example,
after fixing t, consider the polynomial model given by

y = w0 + w1x1 + w2x
2
1 + w3x2 + w4x

2
2 + w5x1x2 + ε, (3.5)

i.e. a complete model of second order over the variables X1, X2. Notice that w0 is
multiplied by 1.

In the following a basis transformation of this type will be considered. In addi-
tion, the degree of the transformation has been fixed to 2 in order to avoid a huge
number of computations that can easily heavy the hardware performance and slow
down the speed of the learner’s prediction, since the number of coefficients that has
to be fitted in this way grows at a polynomial rate.

Finally, notice that with a change of notation, also the previous model can be
restated as a linear one, since it is said to be linear in the coefficients. As a matter
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of fact, by fixing xt ∈ Rd we can apply the polynomial basis transformation of the
second order and obtain a vector k(xt) ∈ R22(d+1). In practice, in every program we
can reassign xt = k(xt) and apply the same dot product of equation (3.4). It goes
without saying that also wt is now in the space of dimension 22(d + 1).

3.2 Statistical Decision Theory

So far, we have been talking about a general learner h. In this Section we will
present two families of machine learning models usually studied in the literature
and describe which one has been used to tackle the thesis problem. In Chapter 4,
we will analyse how they have been trained and slightly modify to operate in an
online setting, characterized by non-stationary environments.

3.2.1 Discriminative vs Generative Classifiers

In the statistical learning theory, a common practice for training learning machines
is to assume that there is a fixed but unknown probability distribution P over X ×Y
such that pairs of examples (xt, yt) are i.i.d. samples from it.

Then, we define

p(Y = yt|X = xt) =
p(X = xt, Y = yt)

p(X = xt)
(3.6)

=
p(X = xt|Y = yt)p(Y = yt)

p(X = xt)
(3.7)

=
p(xt|yt)p(yt)

p(xt)
(3.8)

∝ p(xt|yt)p(yt), (3.9)

where p(Y = yt|X = xt), for short p(yt|xt), denotes the conditional probability of
observing yt given xt, i.e. the probability of classifying yt given the observed instance
xt. In equation (3.6), the first term is retrieved by exploiting the Bayes theorem and
then by further decomposing the joint probability p(xt, yt) = p(xt|yt)p(yt). Based
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on this decomposition, the generative and discrimnative learning methods are intro-
duced. Generative classifiers learn a model of the joint probability p(xy, yt), their
predictions are retrieved by using Bayes rules to calculate p(yt|xt) and selecting the
most likely label yt. Discriminative classifiers model the posterior p(yt|xt) directly,
or learn a direct map from inputs xt to the class labels [15]. Among the differences
between these two methods, we report first of all that in general generative classifiers
are found to be simpler and easier to train, in particular from a computational point
of view, since they avoid the intermediate step of modelling p(xt, yt) [16].

Moreover, discriminative learning has lower asymptotic error while a generative
classifier may also approach its higher asymptotic error much faster [15]. This is
usually true when the number of training examples is increased. However, since we
are operating in an online setup in which observations are presented by time stamps,
i.e. the training examples are slowly observed by the learner and sometimes are never
available, generative classifiers have been preferred. In addition, a discriminative
classifier yields to high performances only when assumptions on the data generating
process (DGP) P are correct. Although in many practical cases it is possible to study
the phenomena under investigation, in this thesis multiple scenarios of the same
problem are tested, hence different DGPs are expected to be presented yielding to
an higher level of complexity when trying to identify the underlined changing DGP
and adapting the model according to it.

As we will see in Section 4.2, a Logistic Regression Classifier with a stochastic
gradient descent update and an online version of Support Vector Machines (SVMs)
are implemented to cope with the thesis problem. In particular, the former learner
is also adapted to deal with processes that are changing through time, while the
latter already embeds this feature. Finally, as anticipated in Section 2, this kind of
models belong to the literature of learning in non stationary environments [4], from
which two methods are retrieved and formally presented in the next Section 3.2.2.

3.2.2 Learning in non Stationary Conditions

The aim of this section is to develop systematic tools to promote interplay between
theory and practice. We introduce general-purpose change detection methods that
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can be easily deployed across different domains, yet adapted to our problem-specific
structure.

Jeffreys Confidence Intervals

As reported in [17], the erratic behavior of the coverage probability of the standard
Wald confidence interval for a binomial proportion is too risky if applied to deal with
a probabilistic problem whose proportion is close to 0 or to 1 or also when dealing
with intervals estimation of small samples, which are both common situations in
our problem setup. This leads us to take into consideration an alternative inter-
val, i.e. the Jeffreys Confidence Intervals (JCI), which have a Bayesian derivation
framework.

In statistics, two kinds of estimands can be distinguished. The first are un-
observed quantities for which statistical inferences can be made, i.e. potentially
observable quantities, for instance think at future observations of a probabilistic
process. The second are quantities that are not directly observable, that is, parame-
ters that govern the hypothetical process leading to the observed data (for example,
regression coefficients). To the first group of estimands belong the so called posterior
distributions p(θ|y), which combines the background information with information
in data. To the second belong the prior distribution p(θ), which attempts to quan-
tify the epistemic uncertainty before observing the process. The process of Bayesian
inference involves passing from a prior to a posterior distribution, in general trying
to exploit mathematical relations that hold between these two distributions.

Conjugacy is one of this relation, formally defined as follows. If F is a class of
sampling distributions p(y|θ), and P is a class of prior distributions for θ, then the
class P is conjugate for F if

p(θ|y) ∈ P for all p(·|θ) ∈ F and p(·) ∈ P . (3.10)

This definition is formally vague [18], since if we choose P as the class of all
distributions, then P is always conjugate no matter what class of sampling distri-
butions is used. We are most interested in natural conjugate prior families, which
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arise by taking P to be the set of all densities having the same functional form as
the likelihood p(y|θ). Conjugate prior distributions have the practical advantage,
in addition to computational convenience, of being interpretable as additional data,
but this aspect is not of interest for our approach.

Beta distributions are the standard conjugate priors for binomial distributions
and it is quite common to use beta priors for inference on a proportion p [19]. Hence,
we suppose that a generic random variable is Bernoulli distributed, i.e. X ∼ Bin(T, p)

and suppose p has a prior distribution Beta(a1, a2). Then, the posterior distribution
of p is Beta(X + a1, T −X + a2) and a 100(1− α)% equal-tailed Bayesian interval
is straightforwardly given by

[︄
B

(︄
α

2
;X + a1, T −X + a2

)︄
, B

(︄
1− α

2
;X + a1, T −X + a2

)︄]︄
, (3.11)

where B(α, m1, m2) denotes the α quantile of a Beta(m1, m2) distribution.
The well-known Jeffreys prior and the uniform prior are each a beta distribution.

The non informative Jeffreys prior is of particular interest to us, in fact historically,
Bayes procedures under non informative priors have a track record of good frequen-
tist properties [20].

In this problem, the Jeffreys prior is Beta(1/2, 1/2). We will adopt this initial-
ization and retrieve

CIJ = [LJ(x), UJ(x)], (3.12)

where LJ(0) = 0, UJ(T ) = 1 and otherwise

LJ(x) = B

(︄
α

2
;X +

1

2
, T −X +

1

2

)︄
, (3.13)

UJ(x) = B

(︄
1− α

2
;X +

1

2
, T −X +

1

2

)︄
. (3.14)

In practice, the computation of the interval can be easily performed by sam-
pling from a beta distribution, i.e. an operation fast and feasible even for an IoT
device, although computationally more expensive than the classical Wald test for
proportions, which must be excluded since not optimal for our problem, as already
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Algorithm 2 Page Hinkley test (PH)
Input: values a1, ...at, magnitude threshold δ, detection threshold ϵ.
Output: a detection time stamp tPH.

1: for each time stamp t do
2: Compute

āt = 1/T
∑︁t

t=1 at

UT =
∑︁T

t=1(at − āT − δ)

mT = min(UT , t = 1, ..., T )

3: if PHT = UT −mT > ϵ then
4: return tPH

stated.
Consider that sampling a value b associated to a probability distribution density

fB(b) is an operation that can be implemented in O(T ) operations. In a simple
implementation, generating quantiles from a beta distribution is a trivial task in
this way. But as we will see in Section 4, when the sensor is not memory demanding
and the sample size T is given as input to the proposed algorithms, we can sample
both lower and upper bounds by storing only the required values from the statistical
table presented in [17], a cheaper operation performed in O(1) complexity.

When we assume that a learner h is operating in non stationary conditions, the
Jeffreys confidence intervals will be exploited in order to infer changes in the DGPs.

Page Hinkley Test

The Page-Hinkley test (PH) [21,22] is a sequential analysis technique typically used
for monitoring change detection. This method can be easily implemented, as re-
sumed in Algorithm 2.

It allows efficient detection of changes in the normal behaviour of a process which
is established by a model, although it was originally designed to detect a change in
the average of a Gaussian signal. This test considers a cumulative variable UT

defined as the cumulated difference between the observed values and their mean till
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the current moment:

UT =
T∑︂

t=1

(at − āT − δ), (3.15)

where āt = 1
T

∑︁t
t=1 at and δ corresponds to the magnitude of changes that are al-

lowed.
It computes the minimum value of Ut : mT = min(Ut, t = 1, ..., T ) and monitors

the difference between UT and mT : PH = UT − mT . When the difference PH
is greater than a given threshold ϵ a change in the distribution is assigned. The
threshold ϵ depends on the admissible false alarm rate. Increasing ϵ will entail
fewer false alarms, but might miss or delay some changes. Controlling this detection
threshold parameter makes it possible to establish a trade-off between the false
alarms and the miss detections.

The PH test will be adopted in this thesis to monitor and detect variations in
the performance of a learner.
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Chapter 4

Problem definition and solution

In this chapter we first describe the problem experiment, its architectures and for-
mally introduce the objective of this thesis.

Then, the algorithms that have been implemented to tackle the problem are
presented.

4.1 Experiments Setup

The goals of the experiments are multiple, first of all we are looking for the opti-
mal selection of a communication interface according to the network status, user
and traffic requirements and constraints imposed by the application. We would
also enable devices with more than one LPWAN/Cellular interface and select the
most appropriate to use at runtime, allowing guarantees needed by the data to be
transmitted and opportunistically benefit from low-cost, i.e. license free network
technologies, when possible.

To achieve these results, an outcome function that specifies the interface to be
used for transmission have to be implemented. In this thesis we do not investigate
whether simultaneous transmissions among more than one interface should be pre-
ferred. Finally, the benefits of this approach are tested in a real implementation
concentrate on NB-IoT and LoRaWAN technologies given that commercial off-the-
shelf hardware is already available in the market.
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Figure 4.1: Test experiment

4.1.1 Architecture diagram

An IoT sensor, formally a Raspberry pi 3 model B with a dragino LoRa GPS Hat
and an ublox NB-IoT evaluation kit, able to send packages both via NB-IoT and
LoRaWAN tries to communicate with a single LoRaWAN gateway.

The experiments are conducted to replicate a realistic scenario, for this reason a
jammer, i.e. a second sensor, is concurrently trying to send data to the same gateway
to which the first sensor is connected. As shown in Figure 4.1, in the first experiment
setup the jammer is located very near to the sensor, in particular at a distance less
than one meter. Such a short space implies taking into account a distance equal to
zero when dealing with network sensors configurations.

In this thesis, we will analyse this scenario and another one in which the jammer
is located far away from the sensor, approximately at twenty meters of distance.
Both can be considered realistic configurations. However, since the experiment tests
are still in a development phase, many others configurations will be studied, such as
via using more than one jammer and having each one of these located at different
and changing distances. Those scenarios are not part of this thesis and will be
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investigated once the data will be available. Nevertheless, as it will be shown in
Section 4.2, the algorithms proposed for the former two scenarios are expected to
generalize well when considering other configurations, given the high level of variance
and adaptation of the machine learning techniques employed.

As already stated, both sensor and jammer are sending packets of data to the
same LoRaWAN gateway, indeed notice that in Figure 4.1 the dotted lines indicating
the occurrence of this communications are the thinnest, since they are not guaran-
teed and packets loss or collisions can actually happen in both jammer-gateway and
sensor-gateway channels. On the other hand, the communications from the gateway
to the sensor and from the sensor to the base station, i.e. the NB-IoT channel, is
given for granted. With this approach, we ensure that whenever possible a packet
containing an acknowledgment (ACK), positive or negative, can be correctly sent
from the gateway to the sensor. We also assume that the communication with
the base station is a service provided under payment every time it has been used.
Thus, for this kind of network we would like to avoid using it and preferring the
free of charge LoRaWAN gateway. Nevertheless, differently from the license free
communication, it is guaranteed to work well and with a negligible error rate.

Finally, both LoRaWAN gateway and NB-IoT base station send the received
information from the sensor to an application, that is considered to be a generic app
installed on a mobile phone, a personal laptop or computer. This communication
phase is not studied in the analysis and it is given for granted that can be performed
without errors. Before proceeding, it is important to underline that the experiments
described are all deployed under total control of the user.

The target variable used for tuning the decision function consists of the labels
assumed by the acknowledgment send from the LoRaWAN gateway to the sensor.
Notice that as stated in Algorithm 1, the learner can see the true label only after
making its own prediction, i.e. after selecting the channel through which communi-
cating. The definition of a learner (the decision function) in this case is based on
the sensor’ parameters, described in the next Section 4.1.2.

The objective of the thesis is to build a learner able to choose the LoRaWAN
channel by favouring a trustworthy communication, so constantly exploiting as much
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as possible the free-license service. We attempt to build a machine learning model
having high performances also when multiple sensors are adopting our decision func-
tion, i.e. in a network scenario. Consequently, we assume that the learner cannot
see all the targets, which is highly unrealistic and possible only on a controlled sce-
nario. In this way, we also avoid to ending into a network with high load, which
is inefficient and characterized from a huge number of packets collisions, i.e. a low
packet delivery ratio.

As defined in the LoRaWAN protocol, each sensor selects whether requesting the
ACK from the gateway. This feature will be exploited to develop active learning
strategies and combined with those described in the previous Chapter 3.

4.1.2 Feature Extraction

At each time stamp t, the sensor present the input parameters vector xt. Specifically,
we consider the logarithm of the absolute value of the Received Signal Strength
Indicator (RSSI), x1, the Spreading Factor (SF), x2, the Trasmitting Power (TP),
x3, and the Signal to Noise Ratio (SNR), x4. As explained in Section 2.1.2, the SF
is a LoRaWAN based-parameter. We also measure the RSSI, i.e. a measurement
of the power present in a received radio signal, in fact, the greater the RSSI value,
the stronger the signal. This metric is usually used in sensor networks to determine
when the amount of radio energy in the channel is below a certain threshold at
which point the sensor could clearly transmit. Then we consider the TP of the
sensor in decibel, when sending a new packet, and the SNR, defined as the ratio of
signal power to the noise power, again in decibels. The former is a measure of the
sensor power in transmitting a new packet, so the larger the higher the probability
of packet delivery, the latter can be considered as an estimate of the external noise,
for which again a large value is associated to an high probability of successful packet
transmission.

In addition, we also apply a min-max transformation to x1 and x4, that is

x̄j =
xj −min(xj)

max(xj)−min(xj)
. (4.1)
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This is possible since both min(xj) and max(xj) are known values for RSSI and
SNR. This standardization method allows the learner to take in input entries that
lies in the interval [0, 1].

On the other hand, we perform a dummy transformation to x2 and x3. For
instance, consider x2 to be a categorical variable with g labels, a dummy transfor-
mation creates g − 1 indicator variables, each one notifying whether the label g is
observed or not, the excluded label is automatically included in the intercept term
and can be retrieved by exclusion.

Finally, a polynomial kernel of degree 2 is applied to the resulting vector. Since
x2 and x3 have both three labels, we get a vector xt ∈ Rdin with din = 7 and
after applying the polynomial transformation we obtain xt ∈ Rdout with dout = 28,
by following the bias inclusion procedure and the basis transformation described in
Section 3.1.3.

4.2 Modelling Framework

In order to build a working decision function, at every time stamp t the vector of
features xt is used to predict whether we can transmit via LoRaWAN. This goal
is challenging mainly due to lack of information about jammer’s parameters, other
external noise and how these two both change in time.

Moreover, we need to maintain the load of the network as low as possible in terms
of acknowledgements requested by the sensor. Thus, the true label yt is not always
available, but can be requested when necessary: a trade-off between performances
and number of ACKs have to be studied.

To carry out this job, we employ statistical inferences techniques. Statistical in-
ference is the branch of statistics concerned with drawing conclusions and/or making
decisions concerning a population based only on sample data, as shown in Figure 4.2.

Since we want to estimate when the sensor can transmit using LoRaWAN, we
will exploit both internal information (sensor’s features) and external information
(targets), cause the feature vector xt is not sufficient, in fact it does not summa-
rize the jammer behaviour and only partially describe the external noise. When

31



4.2. MODELLING FRAMEWORK Chapter 4. Problem definition and solution

Figure 4.2: Inference at first glance.

the target variable yt is not available it can be requested, but in cases in which
it is not possible and with the aim of helping the learning activity, we apply sta-
tistical inference to estimate p(yt) and adopting some forms of smart requests for
the acknowledgment. We further assume that the external environment can change
during time, i.e. the DGP is not stationary. In the IoT context the non-stationarity
can be caused, for example, by seasonality or periodicity effects, variations in the
external environment, i.e. changes in p(yt), changes in the sensor locations or aging
effects in the sensors performance. In order to minimize the load of the network,
we choose to define the process to ask for the label yt. Hence, a simple but effec-
tive sampling technique must be implemented, in otder to catch the autocorrelation
of the DGP. Statistical and machine learning models can be trained using random
sampling. Thus, we impose to ask a label at random with probability pu at time t

and increase pu if necessary. This means adopting active learning strategies to get
a robust and reliable estimate p̂(yt).
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The external environment

We assume that the sequence of target variables y0, y1, ..., yt−1, yt are independent
and identically distributed Bernoulli random variables generated with probability p0,
i.e. Y ∼ Bin(T, p0). The main idea of the thesis is checking whether p0 is constant
over the time, if not we have an empirical evidence that the external environment
is changing. Hence, we estimate p(yt) using p0, so, observing non overlapping and
consecutive sample windows Ik, with k ∈ Z, made of T observations, and use a
Jeffreys Confidence Interval to assess p0 due to its robustness when T is small (we
set T = 10). If two consecutive JCI are not overlapping, we evaluate p0 as constant,
otherwise a change in the environment is occurred and the learner should be adapted
to the new DGP. We formalize the problem as follows.

Expected Risk Minimization

Given two spaces of objects X and Y we wish to learn the function which outputs
an object yt ∈ Y given xt ∈ X. xt and yt ∈ {0, 1} are random input/output data
sampled via ut ∼ Be(pu).

We already explained that the goal in this case is finding the prediction function
h(xt;w) (for convenience we omit t from the parameters vector), that has fixed form
and is parameterized by a vector w over which our optimization will be performed.
The goal in this case is finding the prediction function h(xt;w) (i.e., the parameters
wi defining it) that minimizes the losses incurred by inaccurate predictions (also
called prediction losses or prediction errors).

As already stated, a loss function indicated with L(h(xt;w), yt), where h(xt;w)

and yt respectively represent predicted and true outputs, measures the difference
between predicted and reals output.

Ideally, the parameters in w of our function are chosen in such a way so as to
minimize the expected loss for any input-output pair. Anyway, the problem with
expected risk is that we assume to know the probability distribution P describing
the relationship between input and outputs. In practice, we never have that P .

This is the reason why we try to just estimate the expected risk R. In supervised
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learning, the problem we deal with is inferring a function from labeled data. We
then want to solve the following stochastic optimization problem

min
w

R(w) = E(xt,yt)∼p[L(h(xt;w), yt)], (4.2)

yielding to Classifiers based on Stochastic Gradient Descent (SGDC).

4.2.1 Stochastic Gradient Descent Classifier

A gradient based approach

Besides being gradient based, stochastic gradient descent usually works under a
specific type of online setting: the i.i.d. setting, where the assumption is that data
are random samples from a fixed but unknown distribution. The goal is to optimize
an objective function with respect to this unknown distribution. In order to gain
performance guarantee, the type of objective function adopted is usually convex,
leading to the so-called online convex programming setting [23].

Besides online learning, SGD can also be applied in the batch case, where instead
of feeding the entire data set to the algorithm, sequentially samples of data from
the batch are retrieved, by assuming this results are i.i.d.

This type of application is usually termed as the large-scale learning framework,
where SGD has the advantage of a cheap computational cost. Under this framework,
SGD is usually used to find the Empirical Risk Minimizer of the batch data, without
having to sample all of the data set. We assume that the batch is composed of only
one example and that there is a temporal dependence between observations, as well
as that the sampling procedure could change through time. Online learning by
itself has many different variants in terms of paradigms, such as do not assume
any distributional assumption, or that data instances are generated from a drifting
distribution. We are in this latter case, therefore we will adapt the SGDC to drifting
distributions, that in practice are generated by changes in the external environments
in which the sensor is located, via JCI estimations.

We have multiple choice for h and L. During the project development, a variety
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of options have been tested, for short herein we present the combination that better
performed at the end. We select a logistic loss function with l1 norm as regularization
parameter, which is formally defined as

L(h(xt;w), yt) = log
(︂
1 + e−yth(xt;w)

)︂
+ λ ∥w∥1 , (4.3)

where h(xt;w) = x⊤
t w is a simple dot product, as explained in Section 4.1.2, and

λ is the regularization parameter.

Regularization terms are usually considered to improve the generalization per-
formance, i.e. the performance on new, unseen data. Intuitively, we can think of
regularization as a penalty against complexity. Increasing the regularization param-
eter penalizes large weight coefficients. Our goal is to prevent that our model picks
up peculiarities, i.e. noise coming from the given data. Again, we don’t want the
learner to memorize each pair of instances, we want a model that generalizes well
to new, unseen data.

In more specific terms, we can think of regularization as adding, or increasing
the already present bias if our model suffers from high variance (i.e., it overfits the
training data). On the other hand, too much bias will result in underfitting. An
indicator of high bias, in our case, is that the model shows a low performance for
both the seen and future pairs of observations. The introduction of the l1 norm
as a regularization term is of particular importance for us. In mathematics and
signal processing it is usually known as a type of Tikhonov regularization, but this
technique has been formally introduced and applied to statistical and data science
problems by [24], with the name LASSO (Least Absolute Shrinkage and Selection
Operator). The l1 norm is a special and useful trick which induce sparsity by
shrinking the vector of parameters w.

A sparse statistical model is one having only a small number of nonzero weights.
This is a valuable feature for our problem setup, cause a sparse model can be much
easier to estimate than a dense model. Therefore, the sparsity assumption allows
us to perform an automatic features selection. This could seem strange, since we
initially moved to an higher dimensional space Rdout with dout = 28. However, it is
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a well known practice in statistics to fit a model only with data variables that are
explanatory and try to avoid useless independent variables. The initial polynomial
trick allowed us to move from a linear to a non linear model, but it could have
added independent variables that are not helpful for the learner. We will avoid this
problem by inducing sparsity into the vector w, after which only some entries wi are
nonzero, depending on the choice of the regularization parameter. A usual practice
to tune the learner and find the optimal regularization parameter λ is to implement
a cross validation technique. This process cannot be adopted when dealing with
our online setup since we would loose the autocorrelation of the process. Hence, as
it is common in the training process of the neural networks field, we proceeded by
trials and errors and end up finding λ = 0.001 to be a good value, yielding to higher
performances and reducing the dimensionality of xt to dout = 18, on average. Notice
that the LASSO procedure is classically studied in a batch setup, which is not our
case. We propose the following online training from an optimization perspective,
which is particularly suited for IoT applications.

Online LASSO

The learner h has a fixed form, but it is updated every time a new pair (xt, yt) is
available, using a batch of size one. A trivial update would be

wt+1 = wt + ηt
∂

∂w

[︃
Lt(h(xt;w), yt)− λ

∑︂
i

|wi|
]︃
, (4.4)

where ηt is the step size and should be carefully chosen.
When applied feature-wise the last term on the right side is not differentiable

in case of an entry equal to zero, so we use a gradient truncated method with a
cumulative formulation [25] defined as

wi
t+ 1

2
= wi

t + ηt
∂Lt(h(xt;w), yt)

∂w

⃓⃓⃓⃓
⃓⃓
w=wt

, (4.5)

wi
t+1 =

⎧⎪⎨⎪⎩
max(0, wi

t+ 1
2

− (ut + qi
t−1)) if wi

t+ 1
2

> 0

min(0, wi
t+ 1

2

+ (ut − qi
t−1)) otherwise

, (4.6)
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Algorithm 3 Online Logistic Regression with LASSO update
Input: u = 0 and η = 0.9, wi = 0 and qi = 0 for all i.
Output: Updated values of u, wi, qi for all i.

1: for each time stamp t do
2: u← u + ηλ
3: for i in each feature of the current instance do
4: Compute wi

t+ 1
2
← wi

t + ηt
∂Lt(h(xt;w), yt)

∂w
5: z ← wi

6: if wi > 0 then
7: wi ← max(wi − (u + qi))
8: else if wi < 0 then
9: wi ← min(wi + (u− qi))

10: qi ← qi + (wi − z)

where ut = λ
∑︁t

0 ηt and qi
t =

∑︁t
0(w

i
t+1 − wi

t+ 1
2

) are the total l1 penalty that each
weight could have received up to t and the total l1 penalty wi has actually received.
We set ηt = η since the model needs to constantly learn, in particular η = 0.9.
Also in this case, a trial and errors procedure has been adopted to optimize this
parameter.

The updating process is divided into two steps. First, the weight is updated
without considering the l1 penalty term. Then, the l1 penalty is applied to the
weight to the extent that it does not change its sign. In other words, the weight is
clipped when it crosses zero. According to [25] the obvious advantage of using this
method is that we can expect many of the weights of the features to become zero
during training.

Another important advantage of this method, especially for our problem, is that
it allows us to perform the application of l1 penalty in a lazy fashion, so that we
do not need to update the weights of the features that are not used in the current
sample. This leads to a way faster training when the dimension of the feature space
is large, or in our case, without a huge feature dimension, but performed by an IoT
sensor with cheap computational capacity.

Finally, this update procedure can be easily implemented by following the pseu-
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docode presented in Algorithm 3.

4.2.2 Passive Aggressive Classifier

Instead of a gradient based approach, in this Section we present a model retrieved
by exploiting the margin separation method, a technique introduced by [16] which
eventually revolutionized the Statistics literature. The proposed method is known
as Passive Aggressive Classifier [26] and belong to the class of online learning algo-
rithms that do not make any assumption on the DGP governing the experiment.
As it will be soon evident, a model belonging to this paradigm is characterized by
high performances while usually being much simpler, in particular from the compu-
tational point of view. In this thesis, we choose to present one algorithm for each
paradigm, leading to an interesting comparison that will be presented in Section 5.
We evaluate the instantaneous Hinge loss function

L(h(xt;w), yt)) =

⎧⎪⎨⎪⎩0 if yt(x
⊤
t w) ≥ 1

1− yt(x
⊤
t w) otherwise

, (4.7)

notice that yt ∈ {−1, 1} now. We proceed by solving the constrained optimization
problem

wt+1 = argmin
w∈Rp

1

2
∥w −wt∥2 + Cξ2,

s.t. L(h(xt;w), yt)) ≤ ξ.

(4.8)

Equation (4.8) can be solved using the Lagrangian

L(w, ξ, τ) =
1

2
∥w −wt∥2 + Cξ2 + τ(1− ξ − yt(x

⊤
t w)), (4.9)

where τ ≥ 0 is a Lagrange multiplier. Differentiating this equation with respect to
each component wi and later to ξ it can be proven [26] that

τt =
1− yt(x

⊤
t w)

∥xt∥2 + 1
2C

, (4.10)
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Algorithm 4 Passive Aggressive Classifier
Input: an initialized vector w0

Output: a sequence of predicted labels
1: for each xt - incoming instance do
2: predict the class label ŷt and wait for the true target yt

3: set
L(h(xt;w), yt))← max(0, 1− yt(x

⊤
t w))

4: set
τt ←

1− yt(x
⊤
t wt)

∥xt∥2 + 1
2C

5: set wt+1 ← wt + τtytxt

so that the update is simply

wt+1 = wt + τtytxt. (4.11)

In Equation (4.10) the parameter C implies a more aggressive update step and
we therefore refer to C as the aggressiveness parameter. We set C = 104, favouring a
model with a fast adaptation behaviour. The described method can be implemented
by following the Algorithm 4.

4.3 Active Learning

We have to assume that the true target is not always available and can be requested
when necessary. In order to limit the number of AKCs in a network, we generate a
random variable ut from a Bernoulli distribution with probability pu. This process
leads to a Poisson sampling and in this way we try to mitigate the probability that
more than a sensor is requesting the true target at the same time.

In order to improve the performance of the classifiers, we will increase the sam-
pling rate pu of requesting the target variable, for the window Ik+1, when a decrease
in the performance or a change in the external environment is detected. At the
beginning of every window Ik, whose length T must be given as input, both JCI and
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Algorithm 5 Active Learning Strategy
Input probability pu; classifier h; length T of Ik; conf. level α; thresholds θ, ε
Output a sequence of predicted labels

1: for each xt - incoming instance do
2: generate ut ∼ Be(pu)
3: if ut = 1 then
4: request the true label yt of instance xt

5: if new window warning is signaled then
6: start to update PHIk

and JCIIk

7: if current window Ik is completed then
8: compute JCI Ik

on p0, T = |Ik|, α and PHIk
on ε

9: if JCI Ik−1
∩ JCI Ik

̸= 0 or PHIk
is not activated then

10: maintain pu as in input
11: else ▷ concept drift/change in the performance detected
12: increase pu

13: add yt to Ik and train h on (xt, yt) to update wt

14: if h < θ then ▷ h is not confident on its prediction
15: increase pu

16: apply h on xt to predict yt

17: return ŷt

PH methods are initialized.

Then, an higher number of targets will be requested when consecutive Jeffrey
Confidence Intervals, based on a certain confidence α and the estimation of the
proportion p0 are not overlapping, and when 1 − θ < p(ŷt = 1|xt) < θ for the
logistic model and |x⊤

t wt| < θ for the passive aggressive one, with θ ∈ (0, 1]. We
choose θ = 0.9 and θ = 0.2, respectively. This reasoning comes from the fact that
for the logistic regression, we would like to keep the learner as much as possible
confident on its prediction, i.e. assigning probability of classifying a label higher
than a certain threshold value θ, which should be large. A similar procedure is
attributed to the PAC [26], since |x⊤

t wt| can be used to quantify the uncertainty
of the model when it comes to classify a new instance. In our experiments, the
Page-Hinkley test is applied to the estimation of the accuracy based on windows
composed of one-hundred estimated labels ŷt with an overlap of ninety, so that the
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performance of the classifier is assessed every new T = 10 observations of the target
variable, when considering an accuracy estimated on one-hundred labels.

The proposed active learning strategy is finally summarized in Algorithm 5.
Notice that the active learning phase can correctly start after 2T instances and
ninety targets should be available for the Page Hinkley test, the former is mandatory,
for this we suggest to pre-train the model on an already available dataset, also from
simulated scenarios, or simply to wait for 2T ACKs, which should be an easy task
since T is set to be small. On the other hand, PH can be activated once the
observations are available without losses in the performance. We choose to wait
for one hundred true labels in order to stat the Page Hinkley estimation once the
learner has presumably reached a stable accuracy.
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Chapter 5

Results

In this Section we present the results of the proposed algorithms, discussing both
pros and cons and eventually we give an interpretation of the outcome achieved in
this work.

5.1 Active Learning in practice

In the previous Section 4.3, we presented the algorithm 5, in which all the mathe-
matical instruments and learning models presented in the work are used to tackle
the thesis problem. We would like to know whether at time t the sensor can transmit
via LoRaWAN, in conditions that are not stationary and in a network scenario in
which the load of packets transmitted from the gateway to end-devices should be
as low as possible. We choose to exploit inference techniques and change detection
methods, as well as to constantly assess the awareness of the learner in order to
reduce the number of ACKs requested, that are now sent on a smart way instead of
a random fashion, but increasing the rate of request if necessary.

This method necessary reduces the performance, since the sensor is never able
to fully monitor the external environment. However, as we will shortly describe,
the loss in the performance is negligible when compared to the reduction in ACKs
requested for certain tests. We specify that we are looking for the optimal solution
on a huge parameter space. We have already stated how the majority of values have
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been set exploiting testing performance. However, we noticed when changing the
parameter pu could lead to a drastic change in the final behaviour of the algorithm.
Hence, this chapter turns out to be particular important to investigate what would
happen when the initializations of the sampling parameter are different and the
thresholds modified. First of all, we would like to assess whether active learning is
effectively working. In the following, we refer to a model embedding active learning
when its behaviour is affected by JCI, PH and from the threshold on the confidence
θ. If the model is learning without employing these methods, it is not working with
any active learning strategy, i.e. it has been tested as a classical online learning
algorithm, as described in Algorithm 1.

To investigate whether active learning strategies are truly working, we choose a
simple metric, i.e. the accuracy. Let V = {y1, ..., yV } be the generic set containing
the V acknowledgments associated with the true event (notice that we know V only
because we are operating in a controlled scenario) and let P = {ŷ1, ..., ŷP} be the
set containing the P predicted labels, found using the learner chosen before running
the test analysis. Each element ŷp ∈ P is individually analyzed with respect to the
true target and then marked as either a True Positive (TP), a False Positive (FP),
a True Negative (TN) or a False Negative (FN). Once all the TP, FP TN and FN
cases have been found the accuracy can be defined as

Accuracy =
NT P + NT N

NT P + NF P + NT N + NF N

, (5.1)

where NT P , NF P , NT N and NF N are the total number of TP, FP TN and FN,
respectively. In the following, we will consider the cumulative accuracy computed
up to the time stamp t. Before starting any test, one should declare the initial value
of pu, i.e. the initial probability of requesting the true target at each time stamp
t. This the most important parameter whose value can basically change the entire
scenario. In Figure 5.1 we show the performance of a SGDC when pu = 0.15 and
compared with a SGDC not adopting active learning strategies, while in Figure 5.2
we show the performance of a PAC when pu = 0.15 and compared with a PAC not
adopting active learning strategies. Due to the randomness of the procedure, we
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Figure 5.1: Comparison between models with Active Learning and models without
it: SGDC with pu = 0.15.

performed ten experiments for each approach and retrieve the average performance
and its standard deviations, as shown in the confidence areas of the same plots.

It is possible to see that in particular between the two hundredth and the four
hundredth packets sent, adopting the suggested active learning strategies lead to
an increment in the performance, that on average is higher than 85% for SGDC.
It is also evident that the SGDC is the model which benefits most from the active
learning approach, while the PAC is increasing its performance but not at the same
rate.

Finally, notice that SGDC with AL is achieving an higher average accuracy with
respect to PAC with AL. On the contrary of the previous case, in Figure 5.3 we
do not show the average results of multiple experiments, but instead one single test
reporting the distribution of ACKs that have been additionally requested from the
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Figure 5.2: Comparison between models with Active Learning and models without
it: PAC with pu = 0.15.

stochastic gradient descent classifier.

It is important to highlight that in some occasions even if the model is trained
on more targets values, there is an inevitable loss in the performance. However,
there are some critical conditions, such as the first one hundred packets, where the
additional requests completely change the final performance. Finally, notice that
when adopting the active learning strategy we train the model on only thirty-six
additional ACKs, in this way we guarantee the accuracy to be never lass than 80%
and an evident improvement in the final performance. From the graphical analysis
reported herein, but also from the same tests ran for different values of pu, we
concluded that active learning strategies is increasing the predictive accuracy of
the classifiers, in particular of SGDC. In Figure 5.4 we present the performance of
SGDC at different level of pu. We state that the performance of the classifier when
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Figure 5.3: SGDC with pu = 0.2 and with distribution of ACKs sampled and
requested.

trained on half of the target values is basically the same of the full acknowledgment
scenario. Decreasing pu yields to an evident loss in the final accuracy, hence we
further investigate the behaviour of this parameter.

5.2 Initialization of the sampling parameter

As shown in Figure 5.4, the accuracy at the end of the test is very similar among
different pu initializations. Such behavior is due to the fact that the tests investigated
are characterized from a class imbalance in the target variable. When comparing
SGDC and PAC among multiple pu levels, in order to get a clearer interpretation
of the output, we prefer to use the Matthews correlation coefficient (MCC), known
as Pearson ϕ coefficient in statistics. This coefficient is a measure which can be
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Figure 5.4: Logistic Classifier at different pu.

used even if the classes are of very different size and is able to guarantee a fair and
balance metric for the performances. It if formally defined as

MCC =
NT P NT N −NF P NF N√︂

(NT P + NF P )(NT P + NF N)(NT N + NF P )(NT N + NF N)
, (5.2)

with NT P , NF P , NT N and NF N defined as in Equation (5.1). It takes into account the
balance ratios of the four confusion matrix categories (true positives, true negatives,
false positives, false negatives), this makes it more informative than F1 score and
accuracy in evaluating binary classification problems [27]. We stated that an active
learning approach yields to an improvement in the accuracy. Now, we would like
to choose which one between SGDC and PAC should be preferred according to
different values of pu. In Figure 5.5 we show the comparison between SGDC and
PAC for different levels of pu based on the MCC metric to evaluate the predictive
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Figure 5.5: Comparison of SGDC vs PAC performance distributions at different
levels of pu

performance.
The performance of the SGDC when accessing all the targets is considered the

benchmark for this analysis and is represented by the blue dashed line. In this case,
every model has been tested on fifty different samples from the same test. We choose
a box-plot to properly summarize the distributions of the achieved performances. In
this way, we have a more informative representation, which includes both the median
MCC, the interquantile range and eventually the presence of possible outliers. As
anticipated, the smaller pu the worst the MCC; but the lower the load of the network
in managing the acknowledgments. We clearly see the presence of some anomalies
when pu ∈ {0.1, 0.15, 0.2} and in particular a very high variance in the scored MCC,
that for pu = 0.1 ranges from 0.60 to 0.88. It is important to state that SGDC
is performing better than PAC only for smaller values of pu, as confirmed from a
T-test on the two samples, assuming unequal variances and the MCCs values to be
normally distributed for each model and pu. This latter hypothesis is also confirmed
from a Shapiro-Wilk test. For both tests the α level has been set to 0.05. Starting
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Figure 5.6: SGDC vs PAC when considering the median rate of ACKs sampled and
requested for different levels of pu.

from pu = 0.35 there is no difference on the performance between the two classifier,
in fact the T-test is no more significant.

Finally, we suggest to set pu = 0.25 or pu = 0.30 and select the logistic classifier
in order to guarantee a small variance and avoid anomalies in the expected perfor-
mance, but in particular to get a median MCC higher than 0.85. Smaller values of
pu should not be considered, since characterized from an high variability. When pu

is larger that 0.35, we suggest to pick the PAC classifier. The reason of this choice
is motivated from both Figure 5.6 and Figure 5.7.

In the former, we plot the median rate of ACKs asked versus different pu, in the
latter the median loss in the final performance with respect to the benchmark at
different values of pu, when considering the two classifiers.

From Figure 5.6, we conclude that SGDC is requesting more ACKs if com-
pared to PAC. In addition, by fitting a simple linear regression on the two lines,
we retrieved the incremental rate of pu when adopting an active learning strat-
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Figure 5.7: SGDC vs PAC when considering the median loss for different levels of
pu.

egy, i.e. what is the final median percentage of ACKs that are requested from each
classifier for each pu investigated. We have pu,t=T = 0.1309 + 0.8783pu,t=0 and
pu,t=T = 0.0419 + 1.0268pu,t=0 for SGDC and PAC, respectively. Hence, for exam-
ple if we initialize pu = 0.35, we can expect that SGDC requires 43.83% of the total
ACKs, while PAC the 40.13%, at the end of the test.

As anticipated from the analysis of the box-plots, in Figure 5.7 we see that PAC
has an higher median loss in the performance, due to the fact that it is requesting a
lower ratio of ACKs. Indeed, we highlight that for pu ∈ {0.45, 0.50} PAC has a lower
loss, hence this classifier should be preferred with respect to SGDC, in particular
if considering that it is able to achieve this performance when requesting a smaller
number of ACKs. In conclusion, we report some confusion matrices to state that a
MCC higher than 0.8 is associated to a classifier performing very well, e.g.

Λ1 =

⎡⎣1185 12

14 162

⎤⎦
pu=1.0, MCC=0.91

, Λ2 =

⎡⎣1183 14

23 153

⎤⎦
pu=0.5, MCC=0.88

, (5.3)
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Λ3 =

⎡⎣1175 22

19 157

⎤⎦
pu=0.35, MCC=0.86

, Λ4 =

⎡⎣1168 29

26 150

⎤⎦
pu=0.2, MCC=0.82

. (5.4)

Notice that the accuracy associated to Λ1, Λ2, Λ3, Λ4 are respectively 0.9810, 0.9731,
0.9701 and 0.9599. Hence, a decrease of 2% in the accuracy is associated to a decrease
of 9% in the MCC of our analysis, confirming that a fair metric is necessary when
facing class imbalance in a binary classification problem, but in particular that a
decrease of 9% in the performance is associated to a reduction of approximately 70%
of the ACKs requested for a test.
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Chapter 6

Conclusion

In this thesis we have shown how dual-bands sensors can exploit a particular category
of online learning algorithms, i.e. those employing active learning strategies, to get
an high reduction in the number of feedback packet requests and, consequently,
reducing the traffic when considering multiple end-devices into a low-power wide-
area network.

This task was achieved using a Bernoulli distribution and Bayesian confidence
intervals to determine what is the best moment to request an acknowledgement mes-
sage. In addition, also the Page-Hinkley statistical test derived from drift-detection
methods has been considered in order to monitor the predictive performance. Then,
a passive aggressive algorithm and a logistic regression model having a stochastic
gradient descent derivation are built to decide whether the channel status is good
enough to use it. To further increase the final performance of the algorithm, a simple
threshold on the performance of the model has been adopted with the aim of testing
its awareness in the prediction of new instances.

All these methods considered together yield to an algorithm characterized by
simplicity, robustness and high predictive performances. We have coped with a
challenge based on the trade-off between effectiveness and efficiency. The former
induced by the necessity of keeping high performances while maintaining as small
as possible rates of acknowledgments requests. The latter imposed from the sensor
capacity to store a simple model in a small device, while providing fast predictions.
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Chapter 6. Conclusion

The past decades have been characterized by communications of two kinds, either
human-human or human-device, but the new IoT technologies promise a great future
for a machine-machine communication. With this work, we hope to contribute to
the new revolution of the Internet, providing a new example of more and more
intelligent devices.

We conclude by stating that this work is based on data derived from experiments
that are still in progress, the investigation of the proposed methods is limited to the
available datasets and is not completed. The algorithms must be validated on more
datasets and multiple scenarios, studying whether the performances reported in this
work are confirmed when employed into new tests.
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