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Introduction

Modern medicine relies increasingly on massive technological solutions to meet
the health needs expressed by the population. Drugs, devices, medical equip-
ment along with diagnostic and therapeutic procedures identify an exception-
ally broad and diversified concept of "health technology". The advancement
of scientific knowledge, combined with the development of skills in the field
of medicine, now offer the foundation for seemingly unstoppable technological
advancement. With such innovation, we are witnessing increasing develop-
ment of imaging techniques related to physiological activity. In the last fifty
years, attention has focused on the analysis of the behavior of the human
body, not at the level of movement or architecture, but under the point of
view of its inner functionalities. This remarkable improvement is due to the
birth of PET (Positron Emission Tomography) equipment that allows analysis
of parameters of physiological interest by detecting the radiation emitted by
a radiopharmaceutical injected into the patient’s body, that would otherwise
not be accessible and therefore not analyzed.

The data provided by this analysis are of fundamental importance but
they have to be selected because only some of them are of interest (the signal
acquired needs to be processed). Then it is necessary to correlate the data
obtained with the actual, functional mechanism of the area of the body under
examination. This is described by the branch of pharmacology called pharma-
cokinetics, which investigates the kinetics of the processes through which the
action of the organism on drugs is carried out (i.e. absorption, distribution,
metabolism and excretion). The final goal is to develop useful models to pre-
dict the evolution in time of concentrations in plasma and tissue, following the
administration of a drug.

To achieve this goal one develops compartmental approaches, which are a
type of modeling that combines the use of mathematical equations correlated to
physical phenomena occurring in the body parts affected by the radiopharma-
ceutical. The limitation of this approach is due to the fact that it is necessary
to define the type of model suitable to describe the kinetics of the drug in
advance. Therefore a new approach was proposed (Cunningham and Jones,
1993; Turkheimer et al., 1994) which identifies the components of data on the
radioactivity, without any a priori information on the kinetics of the model
and on how the tracer reaches equilibrium or is dispersed. This technique
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viii INTRODUCTION

is known as Spectral Analysis. Spectral Analysis characterizes the systems
impulse response function (h(t)) as a positive sum of exponentials; Schmidt
showed that in many plasma input models the observation that all compart-
ments lead to only positive coefficients is valid (Schmidt, 1999). However, it
is straightforward to deduce that for reference tissue input models negative
coefficients can be encountered and that the Spectral Analysis approach is not
valid (Gunn et al., 2001). In this thesis we will refer to plasma input models, so
it will be possible to work with the Spectral Analysis technique; this transpar-
ent modeling technique has application to a wide range of PET radiotracers
but the emphasis in this thesis is for the tracer

[
11C

]
WAY100635, which is

a selective antagonist with affinity and selectivity for serotonin 5–HT1A re-
ceptors. The analysis of the tracer was performed both at region of interest
level and at voxel level plus, to extract the useful information from the data,
different approaches were used.

Despite the great advantage of not requiring a priori information, there are
some aspects of the Spectral Analysis technique which, if they are not studied
with particular attention, may lead to inaccurate results. First of all it has been
demonstrated that the choice of the grid, on which the linear Spectral Analysis
relies its basis to be solved with a linear estimator, is critical for the goodness
of the results obtained (Turkheimer et al., 1994). Secondly, this technique can
be heavily affected by the presence of noise in the data. Observing that this
technique permits obtaining results very close to those obtained with the non
linear analysis, which when the analysis is performed at voxel level it becomes
inadequate for its computational cost and for its high rate of failure, the goal
of this thesis is the definition of a new linear method capable of improving the
existent linear Spectral Analysis.

The methodologies studied are oriented specifically to the improvement of
the grid that, as previously stated, make it possible to estimate the parameters
of the model using a linear estimator. What is proposed is the automatic
creation of grids that will be customized for the input data. This should led
to a more robust method of analysis.

A Matlab®’s environment was utilized to implement these concepts. The
following sections illustrate the theoretical basis necessary for conducting this
study, the various steps executed for the implementation and the results ob-
tained. Some comparisons between the new methods and the methods al-
ready existing (linear and non linear Spectral Analysis) are then proposed and
proven. The goal is to verify the plausibility of new methods and their eventual
ability to provide superior results from those found in literature.



Chapter 1

PET: Positron Emission
Tomography

One of the most important imaging systems that has been created in the last
fifty years for the use in biomedical researches and clinical applications is the
PET scanner (part of those non optical systems that map object properties
associated with invisible radiation into visible images). This particular system
makes use of the electromagnetic spectrum capturing gamma rays and provid-
ing an extension to the range of vision into the realm of object properties that
are totally inaccessible to natural, unaided vision.

Examples of these properties are the local value of blood volume, the tissue
metabolism, the receptor binding, all of which can be obtained from images
of the distribution of an administered radiotracer. In the case of PET anal-
ysis, it is the spatiotemporal distribution in vivo of the radioactive material
that is imaged; it may be described by the local concentration of the material
averaged over the observation period. This is possible today thanks to the
advance in digital computer technology: now one can deal with any image as
an array of numbers and make quantitative measurements of object properties
from their images.

It has just been said that PET images can represent the spatial distri-
bution of parameters such as glucose metabolism (Reivich et al., 1979), blood
flow (Kety, 1951) and receptor concentration (Mintun et al., 1984); for this
reason this imaging system can be used to detect tumors, locate areas affected
by disease and identify regions influenced by drugs. This method is iden-
tified as a functional imaging approach to distinguish it from methods that
study the structure of the body, intended as the architecture (some examples
are conventional radiography, computed tomography (CT) and magnetic res-
onance (MR) imaging systems); this form of imaging, the functional one, is
the result of the union of two basic principle: the tracer principle (Hevesy,
1962) explains how it uses the gamma-ray emission and the tomography that
refers to the volumetric imaging of the body’s interior. The tracer principle

1



2 CHAPTER 1 PET: Positron Emission Tomography

explains how radioactive compounds behave exactly in the same way as non-
radioactive materials when speaking of an organism’s physiological process.
Thus, radioactive materials can be detected as they emit gamma rays, they
can be used to track the flow and distribution of different substances in the
body. The agents, used to create the images, are called radiopharmaceuticals
or radiotracers and they can be designed to function as markers for a large
variety of substances that participate in the body’s natural processes.

1.1 How it works

Figure 1.1 provides a schematic representation of the steps made to obtain a
PET image. It shows that there is an annihilation process during which two
photons are emitted in diametrically opposite directions. The PET registers
these photons as soon as they arrive at the detector ring. After this step,
the data is forwarded to a processing unit which decides if two registered
events are, so-called, coincidence event. All coincidences are then sent to the
image processing unit where the final image data is produced by mathematical
reconstruction procedures.

Figure 1.1: Diagram of a PET acquisition process
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1.1.1 Radiopharmaceutical production

The first thing that is needed in a PET study is the radiotracer: it must be ap-
propriate for imaging the disease (or the physiological process) in question and
it needs to be produced. A limitation of this imaging system is due precisely to
this last observation, in fact most of the positron-emitting radioisotopes have
a short half-life and need to be produced using a cyclotron in close proximity
to the PET imaging facility.

A radiotracer is a radioactive isotope that replace a stable chemical element
in a compound or, more specifically, into a biologically active molecule, such
as glucose (or its analogues), water, ammonia or into molecules that bind
receptors or other sites of drug action, normally used by the body. The typical
isotopes that are used in this kind of studies are those with short half-lives
such as [11C] (∼20 min), [13N ] (∼10 min), [15O] (∼2 min), and [18F ] (∼110
min). It is important to notice that any kind of molecule can be radiolabeled
with a PET isotope; this implies that we can trace the biological pathway of
any compound in living humans (specific processes that can be tested with
PET are then virtually limitless).

1.1.2 Administration of radiotracer and data acquisition

The next step is the introduction of the radiotracer into the body; usually
this is done by injection but sometimes can be done by inhalation (it depends
on the radiotracer and on the purpose of the exam). Speaking of the dose of
radiotracer that can be used thee are two limitations to take on account: the
first that impose a safety limit on the dose so the internal organs won’t be
exposed to a dangerously high radiation (Budinger, 1998) and the second that
there is an inner limit of the scanner, it is not able to detect information over
a certain count/rate. The time lapse between the administration of the radio-
tracer and the beginning of the acquisition has to be established accordingly
to the purpose of the study and the type of tracer used.

The theory behind the acquisition of the data is that at a certain moment
(that can be precisely known) the radioisotopes distributed inside the body
start their decay process and emit positrons (positive beta decay). A positron
is a form of antimatter; it has the same mass as an electron but an opposite
charge. When a positron encounters an electron the two completely annihilate
and release energy; in order for this to occur the positron must travel into the
surrounding tissue, losing kinetic energy until it reaches a velocity that allows
it to interact with the electron. This interaction produces a pair of gamma
photons, that are anti-parallel (emitted at 180° relative to one another) and
so move in opposite directions.

After this, those photons travel through the tissue since they reach the scin-
tillator where the incident ones strike the surface called photocathode; here,
due to the photoelectric effect, there is an emission of electrons. Following
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their passage through the scintillator, they lose energy and excite other elec-
trons in the process, that decay back to their ground state and give off light.
The scintillator is coupled to a photomultiplier tube (PMT) which generates an
electrical signal when light hits it. Then there is an electronic circuit that al-
lows one to determine the position the crystal has undergone with scintillation.
The last circuit permits recognition of the energy of the incident radiation, to
select the signals that are useful to reconstruct the image and to localize the
precise coordinates of the point where the event took place.

1.1.3 Image reconstruction

The next necessary step is to reconstruct the image starting from the projection
data acquired; the PET machine provides a list of events that took place at
almost the same time (the timing window allowing to affirm that two events
are coincident is typically assumed to be of a few nanoseconds) and so have
been registered by a pair of detectors in the same Line Of Response (LOR),
a straight line of coincidence. With this data it is possible to obtain the
sinograms, groups of projection images organized by the angle of each view
and inclination (when required).

Algorithms of reconstruction can be principally of two types:

• analytic strategies: The approach used with higher frequency is based on
the filtered backprojection (FBP) principles, or its modification (Ollinger
and Fessler, 1997). It is based on the inversion of the Radon transform
through the central slice theorem (Deans, 1983); it has the advantage
of speed, since it operates linearly on the data but it has two main
disadvantages. The first is that statistical noise in the data manifests as
high-frequency components and, since it uses the ramp filter, it amplifies
high-frequency components in the back-projection, so the process of FBP
amplifies noise in the image. The second is that the images produced
are of a poor quality. This poor quality is due to the fact that it doesn’t
use the information about the spatially-variant response and it treats the
measurement noise in a post-hoc manner.

• iterative statistical methods: Two of the main examples of this approach
are the maximum likelihood−expectation maximization (ML−EM) (Shepp
and Vardi, 1982) and the maximum a posteriori (MAP) (Hebert and
Leahy, 1989) algorithms. Those methods are based on models that de-
scribe the physical systems and the statistics of the measurements, giving
the possibility to improve the performance of the bias-variance.

Once PET machines were designed with a single ring of detector and this
was a limitation because it didn’t allow acquisition of data from other planes.
Today PET systems are composed of multiple rings: any ring create a to-
mographic image of the correspondent plane and assembling all the images
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together it is possible to reconstruct a 3D distribution of the radiotracer in the
organ under study. Data can be reconstructed utilizing two approaches:

• 2D : There are partitions of lead or tungsten that are interposed between
the different rings of crystal, that allow coincidences to be registered only
between detectors situated on the same ring or on rings very near to the
other one.

• 3D : There is no requirement for any type of partitions and so coincidences
can be detected from any combination of rings, this allows reconstruction
of the entire volume.

One problem of the 2D approach is that the partitions create a shadow effect
that implies a reduction of over 50% of the events that are truly utilized.
The other approach, where the partitions are removed, allows the utilization
of a higher number of LOR, increasing the sensitivity to true coincidences
but making the system more sensitive to the effects of scatter and random
coincidences (it detects scatter photons with an higher angle of deviation).
True coincidences occur when both photons from an annihilation event are
detected by detectors in coincidence, scattered coincidences are those in which
at least one of the detected photons has undergone one Compton scattering
event prior to detection and random coincidences occur when two photons, not
arising from the same annihilation event, are incident on the detectors within
the coincidence time window of the system (Figure 1.2 represents these three
types of coincidences). Another limitation of this last method is that increasing
the FOV (Field of View) for single events it also increase the sensitivity to
random events.

Figure 1.2: Types of coincidences in PET
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1.1.4 Image analysis

The amount of data collected from thousands of coincidence events allows re-
construction of the total activity for each voxels (a volume element) and so
obtain a map of radioactivity as a function of space distribution. A computer
uses the data obtained to create multi-dimensional (normally 3-dimensional
volumetric or 4-dimensional time-varying) images that show the distribution
of the radiotracer in the part of the body under study. PET studies can be
categorized by the manner in which time variations of the radiotracer distri-
bution are treated in the data-acquisition process, and the type that we are
going to analyze is a dynamic study, which aims is to capture the radiotracer
distribution as a function of time.

1.2 Applications

PET imaging systems have assumed a fundamental role in many clinical ap-
plications in different fields of interest, like for example cardiology, oncology
and almost every neurologic disease or disorder (Volkow et al., 1996). The
study of physiological parameters and their pathological variation has been
carried out also to investigate brain function in normal volunteer with the goal
of developing experimental models for various human diseases, studying the in
vivo pharmacokinetics of drugs and the efficacy of disease treatment.

Concerning the brain, which is the organ of interest for our work, we can
see that the application of PET images is wide; this type of analysis is part of
the broader discipline called neuroimaging (Nilsson and Markowitsch, 1999).
The advent of sophisticated radiotracer, that can be specifically targeted, has
enabled us to study the biochemistry of the brain in terms of blood flow, oxy-
gen, glucose metabolism and many other parameters, and to also study tissues
of the working brain. These measurements reflect the amount of brain activity
in the various regions of the brain and, thanks to an improved resolution, it
permits to study precisely which area of the brain is activated by a particular
task. This is still limited from the fact that the radioactivity decays rapidly
permitting one to monitor only short tasks (Nilsson and Markowitsch, 1999).

As previously stated, PET scanning is used for the diagnosis of brain dis-
ease and, in particular, it has notable use in brain tumors, strokes and neuro-
damaging diseases which cause dementia. All those diseases have a thing in
common: they cause changes in brain metabolism which in turn causes de-
tectable changes in PET scans. This is one of the reasons why in early cases of
certain dementias PET is more useful than CT and MRI in which there are too
few differences in brain volume and gross structure to detect any differences
from the normal subject (Pietrzyk et al., 1996).



Chapter 2

I/O Quantitative methods

When speaking of tracer kinetic modeling there are two main approaches,
which return biological based parameter estimates, that can be taken in con-
sideration:

• The model-driven approaches:

Different model-driven approaches have been proposed over the years
(Kety, 1951; Sokoloff et al., 1977; Phelps et al., 1979; Gunn et al., 2001)
and they use a particular compartmental structure to describe the be-
havior of the tracer and allow for an estimation of either micro or macro
system parameters. In order to interpret the observed PET data over
time, it has been assumed that there are physiologically separate pools
of tracer substance known as compartment. A compartment is charac-
terized by one variable, the concentration of the tracer in it, which is
described as a function of time. These parameters are defined by ordi-
nary differential equations which show the equilibrium between the input
quantity and the output quantity for each compartment. Solving these
equations it is possible to obtain the quantities of interest for our study.
In the studies that have been done with PET systems, the models that
described the activity of the tracers were in many cases with one, two or
three compartment (Gunn et al., 2002). In many cases, the model’s in-
put function was assumed to be the measured blood curve or, with other
words, the concentration of the radiotracer in the blood as a function
of time. With the right assumptions it is possible to calculate the out-
put of the model and make a comparison with the data obtained by the
PET system. This comparison will result in an estimate of the kinetic
parameters and, with it, it will be possible to extract information about
delivery, binding or any process that is still unknown, or not completely
known.

7
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• The data-driven approaches:
Data-driven analysis, on the other hand, require no a priori decision
about the most adequate model structure (and the connections between
the different compartments); instead, this information, is obtained di-
rectly from the data. This permits to avoid problems like for example if
the data for all subjects should be forced into a single model, equal to all,
or if every subject should be modeled upon the fit of their own plasma
concentration data (Nilsson and Markowitsch, 1999). Some examples of
these methods are graphical approaches such as the Patlak and Logan
plots (Logan et al., 1990; Patlak et al., 1983), Spectral Analysis (Cun-
ningham and Jones, 1993; Turkheimer et al., 1994) and Basis Pursuit
method (Gunn et al., 2002)

Let us examine, with more detail, the second approach by referring specif-
ically to the Spectral Analysis technique, that is a powerful tool for the de-
tection of components in PET dynamic data. In the early ’90s, Cunningham
and Jones (Cunningham and Jones, 1993) developed a new technique able to
identify the components in PET tissue radioactivity data without requiring
any prior assumptions, like for example information about the kinetic model
or the tissue equilibration or the product loss. Because the technique provides
a spectrum of the kinetic components in the data, it has been called "Spectral
Analysis" (Turkheimer et al., 1994). Spectral analysis is applicable to hetero-
geneous as well as homogeneous tissues and, despite the fact that it has been
created to determinate local metabolic rate of glucose in the brain, it is now
applicable to a wide range of tracer compounds and so to a large number of
different physiological systems (Schmidt, 1999).

It is possible to observe that kinetic modeling techniques are used to
estimate biological parameters by fitting a mathematical model to the time-
activity curve (TAC) either for an anatomical region of interest (ROI) drawn
on the image or otherwise for each image voxel. Calculations at the voxel
level combined to the classical non linear least−squares (NLS) is impractical
because the computational speed is not adequate (Feng et al., 1995) and con-
vergence of the global optimum may be problematic at high noise levels typical
of pixel time-course (Maltz, 2002). For these reasons are now presented both
approaches, linear and non linear SA, in terms of model equations and param-
eters estimation.

2.1 Linear Spectral Analysis

The linear spectral analysis technique allows the description of the radioactiv-
ity curve in the tissue in terms of a subset of kinetic components. Instead of
basing it on the a priori definition of a kinetic model and on the non linear
least-squares algorithms to estimate the parameters, this new approach de-
scribes the measured data by choosing, from a large set, a linear combination
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of components. The larger set is chosen in order to cover the range of possible
components that may be detectable in the data. To relate the system under
consideration to an appropriate compartmental model, the set is composed
by convolution integrals of the input function with decaying exponentials (see
Equation (2.1)). This allows use of the compartmental model for interpreting
the kinetic data and the estimation of the parameters of interest (Turkheimer
et al., 1998).

2.1.1 Equations and parameters

In most kinetic models used with PET tracer, the exchange of material among
different compartments is assumed to follow a first-order kinetics. What hap-
pens is that the tracer delivered to the tissue, exchanges, by the arterial blood,
with one or more components and there can be an exchange of material be-
tween different components as well. The model in the linear SA for the total
concentration of the tracer in the tissue can be written as the convolution
integral:

CT (T ) =

n∑
j=1

aj

∫ T

0
Cp(t)e

−bj(T−t) dt (2.1)

where CT (T ) is the tissue activity at time T, Cp(t) denotes the plasma concen-
tration (t minutes after injection of tracer), n is the number of compartments
in the tissue, and aj and bj are the parameters describing exchange of tracer
among the compartments, the values of which have to be estimated. aj and bj
are assumed to be positive or zero; this constrain derives from the assumption
that we are dealing with first-order tracer kinetics (Turkheimer et al., 1998).

The estimation problem is nonlinear in the parameters bj but, fixing their
number, i.e. N = 100, and their value, we can build the same number of basis
functions

fj(T ) =

∫ T

0
Cp(t)e

−bj(T−t) dt, j = 1, 2, ..., N (2.2)

and with them obtain a linear estimation problem that can be solved in the
linear coefficients aj . The model, therefore, becomes

CT (T ) =

N∑
j=1

ajfj(T ) (2.3)

where the mathematical process now consists of estimating the N-vector a =
[a1, a2, ..., aN ]. We can observe that if the basis function fj(T ) is not included
in the model the relative coefficient aj is zero.

The selection of the best set of exponents (bj) consists of choosing an upper
and a lower bound for the values of bj , as well as their distribution within the
chosen interval. The distribution which is commonly used is the one suggested
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by DiStefano (DiStefano, 1981)(used also in part of this work) and it is given
by

bj =
1

τj
, τj = τj−1

[
τN
τ1

][1/(N−1)]
(2.4)

where τ1 is the fastest time constant of the distribution, τk is the slowest,
and N is the number of the points in the distribution. Generally speaking we
can affirm that the equilibrating component of tissues with very high rates of
efflux and/or metabolism, i.e., bj → ∞, may become indistinguishable from
the plasma compartment itself. That is,∫ T

0
Cp(t)e

−bj(T−t) dt→ 1

bj
Cp(T ) (2.5)

as bj becomes large. On the other hand, compartments that are equilibrating
very slowly may become indistinguishable from the integrated plasma activity,
i.e., ∫ T

0
Cp(t)e

−bj(T−t) dt→
∫ T

0
Cp(t) (2.6)

as bj → 0. The last component can be considered the "low-frequency" one be-
cause it accounts for the irreversible trapping of the tracer. There are compo-
nents that assume intermediate values of bj , "intermediate frequency", which
reflect the extravascular activity of the tracer (Turkheimer et al., 1998).

Returning to the equation of the total concentration of the tracer (Eq. (2.3)),
one notices that, due to the impossibility of continuous time measurements of
the concentration, the equation for CT (T ) is replaced by the discrete time
counterpart. If the tissue data are sampled at times t1, t2, ..., tM , the model
equation becomes:

CT (tk) =
N∑
j=1

ajfj(tk), k = 1, 2, ...,M (2.7)

whereM is the number of data points (frames). It is now important to be aware
of the fact that measured tissue concentrations always includes noise, or errors
in the measurements; if X(tk) represents the measured tissue concentration at
time tk, and εk is the error in the measurement, we have

X(tk) = CT (tk) + εk =
N∑
j=1

ajfj(tk) + εk (2.8)

(the errors are assumed to have zero mean). Estimation of the vector a is
usually carried out with the non-negative least squares (NNLS) algorithm: for
a given set of weights, wk, the NNLS determines the linear coefficients that
minimize

‖r(a1, a2, ..., aN )‖22 =
M∑
k=1

[
X(tk)− CT (tk)

wk

]2
(2.9)
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where r is the residual vector and the constrain aj ≥ 0, j = 1, 2, ..., N still
exists. The result of minimization of that is aN -vector of estimated coefficients
â = [â1, â2, ..., âN ] which usually contains only a few values different from zero.

Components detected with spectral analysis can be combined to obtain
parameters of physiologic interest. We will use, as proposed by Cunningham
et al. (Cunningham et al., 1993), the detected components (âj , bj) to obtain
an estimate of the impulse response function (h(t)) of the tissue:

ĥ(t) =

N∑
j=1

âje
−bjt (2.10)

From this equation, the parameters K1, the unidirectional clearance of tracer
from blood to tissue, and Vd, the volume of distribution of the tracer in tissue
relative to blood, were determined as:

K1 = h(t = 0) =
N∑
j=1

âj (2.11)

Vd =

∫ ∞
0

h(t) dt =

N∑
j=1

âj/bj (2.12)

(Turkheimer et al., 1998).
This method shows both advantages and disadvantages. It is capable of

fitting well the data and, using a linear estimator, is really fast computationally
speaking. But it has some problems too: the first limitation is the requirement
of imposing non-negativity constraints on the parameters aj . Secondly, to the
aj which show very poor precision, it rises their values and even if one can
improve the estimation by using new grids of bj to avoid line doubling, some
bias may occur in any case. This because the ”true” bj is not necessarily the
arithmetic mean of the doubled line eigenvalues (Bertoldo et al., 1998). So it
can be heavily penalized by the choice of the grid and by the noise in the data.

2.2 Non Linear Spectral Analysis

In this work the nonlinear approach has been implemented both as a reference
method and as the starting point for the implementation of a new method.

2.2.1 Equations and parameters

The model in the NLSA (Non Linear Spectral Analysis) for the total con-
centration of the tracer in the tissue can be rewritten as for the linear SA
(see Eq. (2.1)) and then solved with a non linear estimator. This approach
is proposed by revisiting the classical SA as an exponential impulse response
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identification problem. From compartmental theory it is known that the coef-
ficients of the impulse response do not have to be positive, so the restriction
that aj have to be positive is not necessary (Carson et al., 1983). Then since
SA doesn’t want to impose any structure but has the aim of finding the num-
ber of exponential components of the system impulse, also the definition of
the grid is unnecessary. This new approach proposes to estimate the number
of exponentials necessary for the impulse response

h(t) =

N∑
j=0

aje
−bjt (2.13)

to develop a good fit to the data; this can be obtained by using models of
increasing order and, once that all the parameters have been estimated, one
can choose the best one by using criteria of parsimony and other considerations.

In this work the models tested are the following, where the term Vb (unit-
less) accounts in the brain data for the vascular volume present in the tissue
ROI and the term Cb(t) for the whole-blood time activity (kBq/ml):

• model with only trapping component

Ci(t) = VbCb(t) + a0

∫ t

0
Cp(τ) dτ (2.14)

• one-exponential model

Ci(t) = VbCb(t) + a1

∫ t

0
Cp(τ)e−b1(t−τ) dτ (2.15)

• one-exponential model plus trapping component

Ci(t) = VbCb(t) + a0

∫ t

0
Cp(τ) dτ

+a1

∫ t

0
Cp(τ)e−b1(t−τ) dτ (2.16)

• two-exponential model

Ci(t) = VbCb(t) + a1

∫ t

0
Cp(τ)e−b1(t−τ) dτ

+a2

∫ t

0
Cp(τ)e−b2(t−τ) dτ (2.17)
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• two-exponential model plus trapping component

Ci(t) = VbCb(t) + a0

∫ t

0
Cp(τ) dτ

+a1

∫ t

0
Cp(τ)e−b1(t−τ) dτ

+a2

∫ t

0
Cp(τ)e−b2(t−τ) dτ (2.18)

• three-exponential model

Ci(t) = VbCb(t) + a1

∫ t

0
Cp(τ)e−b1(t−τ) dτ

+a2

∫ t

0
Cp(τ)e−b2(t−τ) dτ

+a3

∫ t

0
Cp(τ)e−b3(t−τ) dτ (2.19)

For each model it has been assumed the same input function and the param-
eters were estimated by weighted non linear least squares (WNLLS); weights
were chosen optimally as

wk =
∆tk

Cobsi (tk)
(2.20)

where ∆tk is the length of the scanning interval and Cobsi (tk) is the description
of each tissue activity curves, defined as follow:

Cobsi (tk) = Ci(tk) + e(tk), k = 1, 2, ...,M (2.21)

where tk is the midscan time, e(tk) is the measurement error at time tk, and
M is the number of data points (frames). So, the cost function that has to be
be minimized is

WRSS(p) =

M∑
k=1

wk

[
Cobsi (tk)− Ci(p, tk)

]2
(2.22)

with WRSS that denotes the weighted residual sum of squares, wk is the
weight of the kth datum and p is the vector of unknown model of dimension P.
The measurement error was assumed to be addictive, uncorrelated, Gaussian,
zero mean and with a variance equal to

σ2(tk) = γ
Cobsi (tk)

∆tk
(2.23)
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where ∆tk is the length of the scanning interval relative to Cobsi (tk) and γ
is an unknown proportionality constant. The scale factor γ was estimated a
posteriori as

γ =
WRSS(p̂)

M − P
(2.24)

where WRSS(p̂) is the value of the cost function evaluated at the minimum,
i.e., for p equal to the vector of estimated model parameters p̂. With this
new SA model it was possible, in an easy way, to obtain also the precision (or
uncertainty) of the parameter estimates calculated in the form of Coefficient
of Variation (CV) as

CV = 100 ∗ σ(p̂)

p̂
(2.25)

where σ(p̂) is the standard deviation defined as the square root of the variance
of the estimates of the parameters, calculated a posteriori. The residuals and
the weighted residuals have also been calculated because they allowed us to
check two things: that the model describes the data correctly and that the
assumptions made on the measurement error (i.e. zero mean and uncorrelated
samples) are verified; at time tk these parameters are defined as:

res(tk) = Cobs(tk)− C(p̂, tk), k = 1, ...,M (2.26)

wres(tk) =
Cobs(tk)− C(p̂, tk)

σ(tk)
k = 1, ...,M (2.27)

Then the Akaike Information Criterion (AIC) was evaluated, as a parsimony
criterion useful to compare different models. Its definition is:

AIC = M · ln(WRSS(p̂)) + 2P (2.28)

Also this method have advantages and disadvantages; it gives informations
about the model that better describes the data but it requires a non linear
estimator that makes the time of computation inadequate for the analysis at
voxel level. It has also an high tax failure rate since convergence of the global
optimum is problematic at high noise levels.



Chapter 3

Novel approaches to improve
I/O model performances

The goal that this study wants to achieve is to propose new methods capable
of overcome the limitations of the existent methods. Since is not possible to
use non linear approaches when the analysis has to be done at voxel level,
for the computational time necessary and for the high failure rate, the lin-
ear approaches are the only possible choice. The existent linear SA approach
presents high sensitivity to the noise and its results are really dependent on the
grid that has been defined. Are now proposed four alternative methods having
the purpose of making the existent SA more robust, improving the results at
voxel level.

3.1 SA with impulse response linearized

The first idea that we tried to develop was based on the linearization of the
impulse response

h(t) =
N∑
j=0

aje
−bjt (3.1)

using the Series of Taylor. This mathematic tool is a representation of a
function as an infinite sum of terms that are calculated from the values of the
function’s derivatives at a single point:

∞∑
n=0

f (n)(a)

n!
(x− a)n (3.2)

where n! denotes the factorial of n and f (n)(a) denotes the nth derivative of f
evaluated at the point a. We sought to obtain models (starting from the easiest
model with one convolution term and arriving to the more complex model with

15
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two or three convolution terms) solvable with linear least of squares. Once
estimated the parameters a and b, we would take advantage of the information
given by the b values by defining a new grid, that can be specifically constructed
around the expected value for that voxel.

The reasons why we wanted to linearize the model in the first instance are
that we couldn’t afford the analysis at voxel level, computationally speaking,
with the nonlinear approach and also because with this method the conver-
gence of the global optimum may be problematic at high noise levels typical
of pixel time-course. Then, the reason why once that we obtain the parame-
ters with the linear estimation we wanted to modify the grid, instead of using
them directly as parameters of the model, is that the linear method perfor-
mance shows poor results at high noise levels (i.e. as is typical for the TACs
derived for each single voxel). Knowing that the choice of the grid can heavily
penalize the final results, the best choice was to find a way of defining the grid
based on a priori information.

The calculations performed are the following:

• We started with the easiest model with just one convolution term: h(t) =
a1e
−b1t, its development with the series of Taylor approximated at the

second order around the point t = 0 is: a1−a1b1t+a1b21t2 = A−Bt+Ct2.
The model that needs to be estimated with the Spectral Analysis method
is: CT = h(t) ∗ Cp(t) that becomes:

CT = [A B C]

 ∫
Cp(t)

−Cp(t) ∗ t
Cp(t) ∗ t2

 (3.3)

Using the liner least squares it is possible to estimate the observable
parameters A, B, C from which it is possible to derive the parameters
of the model: 

A = a1
B = a1b1
C = a1b

2
1

→
{
a1 = A
b1 = B/a1

(3.4)

The model linearized in this way is a priori identifiable.

• The second model that we tried to linearize was one with one convolution
term plus the component of trapping; the impulse response is: h(t) =
a0 +a1e

−b1t which becomes a0 +a1−a1b1t+a1b
2
1t

2 = A−Bt+Ct2 after
the linearization. The model that requires estimation this time is:

CT = [A B C]

 ∫
Cp(t)

−Cp(t) ∗ t
Cp(t) ∗ t2

 (3.5)

Using the liner least squares it is possible to estimate the observable
parameters A, B, C from which it is possible to derive the parameters
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of the model: 
A = a0 + a1
B = a1b1
C = a1b

2
1

→


b1 = C/B
a1 = B/b1
a0 = A− a1

(3.6)

Also this model, linearized in this way, is a priori identifiable.

• When we linearized the model with higher complexity, that is the one
with two convolution terms h(t) = a1e

−b1t+a2e
−b2t, we needed to use the

series of Taylor approximated at the third order (always around the point
t = 0); the result is a1

[
1− b1t+ b21t

2 − b31t3
]
+a2

[
1− b2t+ b22t

2 − b32t3
]

=
A−Bt+ Ct2 −Dt3. The model becomes:

CT = [A B C D]


∫
Cp(t)

−Cp(t) ∗ t
Cp(t) ∗ t2
−Cp(t) ∗ t3

 (3.7)

Also in this case it is possible to estimate the observable parameters
A, B, C, D 

A = a1 + a2
B = a1b1 + a2b2
C = a1b

2
1 + a2b

2
2

D = a1b
3
1 + a2b

3
2

(3.8)

and from these estimated parameters it is possible to obtain the kinetic
micro-parameters (equations not presented).

Despite that the linearized models are a priori identifiable, a short simula-
tion (not presented) demonstrated how is not possible to properly describe a
decaying exponential function with a Taylor series approximation. Thus, we
decided not to proceed with this method and tried other approaches.

3.2 SA with prior from ROI

As a second alternative approach, we chose a hierarchical approach, in which
the image is clustered into K clusters then, on the curves obtained, we ap-
plied the non linear Spectral Analysis thus obtaining the optimal model and
estimates for the parameters aj and bj . At this point we decided to keep the
dense grid of beta (number of b = 100), as in the original version, but imposing
a priori information on the exponents, obtained with the nonlinear SA. This
method relies then on the hypothesis that the parameter estimates derived at
cluster level are representative of the expected model parameters values of the
voxels composing the cluster itself.

The first step was the implementation of a clustering on the PET image;
the meaning of which was to use functional information, instead of anatomical,
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to segment the image, allowing us to obtain kinetically homogeneous regions.
The algorithm chosen to define the clusters was the K-Means partitioning
method (MacQueen, 1967), implemented using the Euclidean distance as a
metric to separate the TACs (Time Activity Curve) into different clusters.
The algorithm is based on the principle of maximizing the distance between the
various clusters and to minimize the variance within each cluster. It consists
of the following steps:

1. Place K points into the space represented by the objects that are being
clustered; these points represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the K
centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move; this produces
a separation of the objects into groups from which the metric to be
minimized can be calculated.

Matlab provides a function that allows to implement this method (kmeans)
and gives the opportunity of specifying many parameters, like:

• The data: we first tried to use the TACs but the result was not physio-
logically corrected, so instead of passing the TACs directly to the kmean,
we passed to it some parameters that represent the TACs: we chose the
area under the curve (AUC) and the slope from the peak to the midpoint
(where the middle point is the point at the time in the middle between
the time of the peak and the end time);

• The number K of clusters: we use K = 8 because we were able to
describe all significantly different kinetics within the brain;

• The number n of replicates: this number, we chose n = 5, indicates
that the algorithm has to repeat the clustering n times with different
starting points and choose the replica where it benefits from the best
cost function’s minimization;

• The type of distance: in this work we chose the Euclidean distance to
measure the distance between each element of the ”population”;

• The maximum number i of iterations: this number, fixed in our work at
the value i = 200, indicates the maximum number of iterations that the
algorithm can compute.

The function gave as results a vector that for each voxel associates a number
that identifies the cluster to which it has been assigned and also a matrix
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that contains the medium trend of each cluster. Figure 3.1 shows the kmeans
clustering where each color is representative of one cluster.

Figure 3.1: Slice 45: Image showing the 8 different clusters

Once we obtained the TACs that correspond to the centroid of the eight
clusters, we implemented the nonlinear SA (explained in the previous chapter,
section 2.2) in order to obtain parameters that better describe those curves.
The method tested all the six models previously presented and then, based on
parsimony criterion (AIC), best fit and best coefficient of the estimates, we
decided which one gave the best result for each curve. With the b estimated
and their standard deviations (SD) we built 8 new grids of 100 elements: the
idea for constructing each grid was to generate two Gaussian distribution, one
with mean equal to the value of b1 specific of the cluster under study and
standard deviation equal to its SD, composed by 50 elements. The second
with mean equal to the value of b2 and SD equal to that obtained for the
parameter on that cluster, with the remaining 50 elements (the example for
one cluster is shown in Figure 3.2).
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Figure 3.2: Grid of b obtained for one specific cluster

In this way grids were generated densely distributed around the values that
should gave the best fit of the data. The procedure used after obtaining these
grids was to evaluate each voxel within the mask with the linear SA (explained
in the former chapter, section 2.1), using the grid correspondent to the cluster
of belonging of the voxel and so obtaining the parameters Vb, aj , bj which best
describe its curve of activity.

3.3 SA with prior from voxel

Still interested in creating a grid that is more specific for the problem under
study, we examined the distribution in the whole brain of the chosen b, previ-
ously obtained with linear SA referring to a grid with logarithmic distribution
(instead of the DiStefano distribution used in the previous method). So, a
code was implemented that counted the number of times that a specific value
of b was found to have a nonzero value of a, and that was developed for each
voxel within the mask. We obtained the histogram in Figure 3.3 (removing the
first and the last b value for reasons explained in chapter 2 where we addressed
b → ∞ and b → 0 Eq. (2.5) and Eq. (2.6)), where it is easy to recognize
two Gaussian distributions. The concept under review was to extrapolate the
information about mean and standard deviation of the two Gaussians directly
from the histogram obtained.

This goal was achieved thanks to the Matlab tool cftool (Figure 3.4). So
we exported the data in this tool and fitted them with a Gaussian curve that
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Figure 3.3: Distribution of b in the wholebrain

is best described as a sum of two terms:

a1 ∗ e

(
−
(

(x−b1)
c1

)2
)

+ a2 ∗ e

(
−
(

(x−b2)
c2

)2
)

(3.9)

Figure 3.4: Fit of the Gaussian distributions

Knowing that a normal (or Gaussian) distribution is a continuous probabil-
ity distribution, that has a bell-shaped probability density function, described
as follow:

f(x : µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (3.10)
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where the parameter µ is the mean and σ2 is the variance, we derived the
mean and the SD of our two curves with those equations:{

µ1 = b1
σ1 = c1√

2

{
µ2 = b2
σ2 = c2√

2

(3.11)

The observation required is that these histograms have on the x-axis a
linear scale, where each number represents the position of the correspondent
b in the grid. Due to this reason values of mean and SD of the two Gaussians
were obtained in terms of positions in the grid; the next step was to correlate
these values with the correspondent values of b, then obtaining the consequent
lognormal distribution following these steps:

1. We refer to the aleatory variable as "position" so described: pos ∈
N(µ, σ) and we describe b as b = i · ej·pos: we can obtain the system:{

bmin = i · ej·posmin = i · ej·1 = i · ej = 0.005
bmax = i · ej·posmax = i · ej·100 = i · e100j = 10

→
{
i = 0.0046
j = 0.0768

(3.12)
where the values 0.005 and 10 are the lower and the upper bounds,
respectively, of the logarithmic distribution.

2. We call x = j ·pos and we define its expectation and its variance as: E[j ·
pos] = µx, var[j ·pos] = σ2x; if we elaborate this equations, remembering
that pos is an aleatory variable, we obtain:

µx = j · E[pos] = j · µpos (3.13)

σx =
√
E[(x− µx)2] =

√
E[x2 − 2µxx+ µ2x]

=
√
E[x2]− 2µxE[x] + µ2x = j · σpos (3.14)

3. Now that we know the mean and SD of x we can easily see that defining
b = i · ej·pos = i · ex as the curve that represents the distribution of the b
back to the logarithmic grid, it is possible to calculate these distributions
just passing to the Matlab function lognrnd µ and σ, that are the mean
and standard deviation, respectively, of the associated normal distribu-
tions. Thus, the function returns an array of random numbers (as many
as desired; we sought 50 elements for each curve) generated from the log-
normal distribution. We used this approach for both curves, obtaining a
final grid of 100 elements composed of two lognormal distributions; the
histogram of the final distribution is shown in Figure 3.5.

Once this new grid was generated, we implemented the linear SA, obtaining
the parameters Vb, aj , bj and all the variables required to compare the different
methods.
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Figure 3.5: Grid of b composed by two lognormal distributions

3.4 SA using an empirical Bayesian estimation
approach

In the fourth method, it was decided to change procedure, so we used com-
partmental analysis and identification of the model obtained using an empirical
Bayesian estimation approach. A Bayesian estimator considers as known the
a priori probability of the parameters and then, proceeding with the imple-
mentation, it updates the prior probability using the measured data. In this
approach, the prior was extrapolated from the nonlinear SA executed on the
eight different ROI; thus, using the parameters estimated for each cluster and
their SD, we created the information a priori for the vectors of the parameters
p1 ∈ N(µp1 ,Σp1), p2 ∈ N(µp2 ,Σp2), etc.. as:

µp1 =

[
µa1
µb1

]
Σp1 =

[
σ2a1 0
0 σ2b1

]
(3.15)

µp2 =

[
µa2
µb2

]
Σp2 =

[
σ2a2 0
0 σ2b2

]
(3.16)

The procedure follows these steps:

• The linear SA was implement obtaining the vector of parameters a, while
the b grid was obtained with the DiStefano distribution.

• Observing that our data are describable with two components, was de-
cided to identify the information about the cutoff b, i.e. the b value
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that represents the point from which lower b values can be associated
to the first component while higher b values can be associated to the
second component. This was done by exploiting the curve of Figure 3.4
and identifying the value of bcutoff as the point of minimum between
the two Gaussians. So, once its value was obtained, it has been used to
reconstruct the contribution of the two components as follows:

CT1(t) =

bcutoff∑
j=1

aj · e−bjt ⊗ Cp(t) (3.17)

CT2(t) =

N∑
j=bcutoff+1

aj · e−bjt ⊗ Cp(t) (3.18)

• Deciding to consider and estimate the two component (CT1 and CT2)
separately, one sees that to describe the kinetic behavior of each one, the
model with one exponential of equation (2.15) can be used (a schematic
representation is showed in Figure 3.6) where there are the arterial

Figure 3.6: Model describable with one exponential

plasma compartment (Cp) and a tissue compartment (CT ) that incor-
porated the free fraction plus a non specifically bound fraction and a
specific bound fraction. The equation that describes this kinetic behav-
ior is:

ĊT (t) = aCp(t)− bCT (t) CT (t) = 0 (3.19)

where ĊT is the first time derivative of the tissue compartment; the
measurement equation is given by:

Ci(t) = (1− Vb)CT (t) + VbCb(t) (3.20)

where Vb is the vascular volume in the ROI, Cb is the concentration
of the tracer in the whole blood, and a and b are the constant rates
for transport of the tracer from plasma to tissue and back, respectively.
Since the data were affected by a measurement error, also in this case
it has been considered additive, uncorrelated, coming from a Gaussian
distribution with zero mean and a matrix of covariance obtained as the
inverse of the weights vector. It has been previously explained why, when
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the analysis is conducted at voxel level, it is appropriate to use a linear
approach, thus we linearize the model, obtaining the following equation:

CT (t) = a

∫ t

0
Cp(τ) dτ − b

∫ t

0
CT (τ) dτ (3.21)

After these considerations, it was decided to use a MAP (Maximum A
Posteriori) estimator, which was the preferred choice since it allowed us
to take account of the bias introduced by the linearization, for obtain-
ing the parameters (we implemented the MAP two times, once for each
component). The cost function to be minimized was:

J(p) = [CT −G(p)]TΣ−1v [CT −G(p)] + (p− µp)TΣ−1p (p− µp) (3.22)

where CT is the vector obtained before for each component (respectively
Eq. (3.17) and Eq. (3.18)), G(p) is the predicted model output, Σv is
the covariance matrix of the measurement error and p is the unknown
parameter vector that has a prior normally distributed with mean µp and
matrix of covariance Σp. The information a priori is updated from the
observed data, generating the a posteriori probability density function,
that is the probability density function of the parameters given the data.
The estimate has an expression that is analytically solvable as:

p̂MAP =
(
GTΣ−1v G+ Σ−1p

)−1 (
GTΣ−1v CT + Σ−1p µp

)
(3.23)

where G is defined as:

G =


∫ t1
0 Cp(τ) dτ −

∫ t1
0 CT (τ) dτ∫ t2

0 Cp(τ) dτ −
∫ t2
0 CT (τ) dτ

...
...∫ tM

0 Cp(τ) dτ −
∫ tM
0 CT (τ) dτ

 (3.24)

where M is the number of the tissue measures, (Rizzo et al., 2012).

• Once the MAP estimation for both components was executed , we de-
rived the total concentration of the tracer, for each voxel, as sum of the
contributions:

CTtot = G1 · p̂MAP1 +G2 · p̂MAP2 (3.25)

remembering that the blood component was considered negligible at
voxel level. We were also able to assess the CV of the estimates re-
membering that for linear models the covariance of the estimates has
this expression:

cov(p̂MAP ) =
(
GTΣ−1v G+ Σ−1p

)−1 (3.26)

with which we can obtain:

CV = 100 ∗
√
cov(p̂MAP )

p̂MAP
(3.27)





Chapter 4

Data Set

In the first chapter of this work we described the general principles and func-
tions of Positron Emission Tomography explaining how and why it is such an
important imaging system; one of its main applications is that it allows the
illustration of some particular brain functions. Depending on which functions
the investigator is interested in, it is necessary to utilize different kinds of trac-
ers: for example

[
18F

]
FDG is commonly used to obtain the regional metabolic

rate of glucose by estimating the tissue fractional uptake of
[
18F

]
FDG and

then by using a scale factor between it and glucose metabolism (Bertoldo
et al., 1998). There is then the [15O]H2O that has been used to estimate the
cerebral blood flow, and so on, with many other tracers that are used to inves-
tigate different activities. One of these is the

[
11C

]
WAY100635 that permits

evaluation of specific receptors implicated in the pathophysiology of neuropsy-
chiatric conditions and that we are going to describe in more detail since is
the tracer used in this work.

4.1 Tracer

We start this dissertation by presenting the theory concerning the receptors
to which the radiotracer is capable of binding; these receptors are specific for
the serotonin (5–HT ) considered a modulatory neurotransmitter with general
inhibitory effects and with an important role in the regulation of psychobio-
logical processes. Serotonin projections, arising from the dorsal and median
raphe nuclei, innervate virtually all regions of the brain (Steinbusch, 1981).
There are seven known receptors, one of which is the 5–HT1A that is a so-
matodendritic autoreceptor in the raphe nuclei and a postsynaptic receptor in
the neocortex, hippocampus and other limbie structures (Wright et al., 1995).
This type of receptors is of central interest in research on the pathophysiol-
ogy and treatment of psychiatric disorders, for example they are thought to
be involved in phenomena as anxiety, depression, dementia and schizophrenia
(Gurevich and Joyce, 1997).

27
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Initially, WAY100635 (a selective antagonist with affinity and selectivity
for serotonin 5–HT1A receptors) was labeled in the methoxy position with
carbon−11 obtaining

[
O −methyl −11 C

]
WAY100635 that successfully delin-

eated 5–HT1A receptors. This compound, however, rapidly forms labeled
metabolites which cross the BBB (Blood Brain Barrier) (Osman et al., 1996);
to solve this problem, WAY100635 was labeled in the carbonyl position ob-
taining

[
carbonyl −11 C

]
WAY100635 (from now on we will refer to it just

with
[
11C

]
WAY100635) which showed a strong signal in humans, consistent

with reduced uptake of labelled metabolites in the brain (Lammertsma et al.,
1996).

4.1.1 PET studies

A dataset of four healthy male subjects was made available by the Imperial
College. Each subject underwent a 90-min dynamic PET study in a CTI ECAT
EXACT3D tomography after a bolus injection

[
11C

]
WAY100635. All PET

data were acquired in 3-dimensional mode, corrected for attenuation, detector
efficiency, random events, and scatter, and reconstructed into tomographic
images using filtered back-projection. Acquisition was performed in list-mode
(event by event) and scans were rebinned into 23 time frames of increasing
duration (two variable length background frame, 3x5s, 2x15s, 4x60s, 7x300s,
5x600s). The reconstructed voxel sizes were 2.096 x 2.096 x 2.43 mm3. After
injection of

[
11C

]
WAY100635, the radioactivity concentration in blood was

measured continuously and, in addition, serial discrete blood samples were
taken at increasing time intervals throughout the study for the measurement
of the radioactivity in blood and plasma. Nine of these samples were also used
for quantification of the fraction of radioactivity attributable to unmetabolized
parent radiotracer, generating the metabolite-corrected arterial plasma input
function.

4.2 Image

For the subject under examination, PET image was imported in Matlab®’s
environment, obtaining a 4D matrix, 128x128x95x23 where 95 is the number
of slices obtained by the PET scan and 23 are the time frames of increasing
duration. Since the image was already corrected for movement we applied just
a decay correction in each region of interest, generating the tissue-time activity
curves (TACs); this was done using the formula:

A0 = At × eλt (4.1)

where At and A0 are respectively the uncorrected and corrected value of con-
centration at time t, which is expressed in minute, λ = ln2

T1/2
with T1/2 half-life

of the radioactive isotope (in our case 20.4min). All blood signals were cor-
rected for the delay, which is caused by the difference in time between the
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tracer arrival in the brain and the arterial sampling site. The input function,
moreover, was fitted using a sum of three exponentials from the time of the
peak to the last data point, whereas the rising part of the curve was fitted as
a straight line between the first point and the peak. After that we selected the
voxel of interest by applying a mask (see the section below for details) (Parsey
et al., 2000).

In Figure 4.1 we show in the left part the total blood curve (Cb(t)) and
the parent plasma curve (Cp(t)), which are corrected for delay and decay as
said before, while in the right part there are the decay corrected ROI TACs
obtained by cluster analysis for a representative subject (subject 1).

Figure 4.1: Left column: blood and unmetabolized plasma activity curves.
Right column: tissue-time activity curves for 8 ROIs

4.2.1 Mask

In order to eliminate the noise present in the image, we applied a binary mask
(i.e. the mask assumes the value 0 on the pixels that need to be eliminated
because represent noise, and assumes value 1 on all the other pixel); the mask
used in this work has been taken from the anatomical atlas made available by
the PET centre, Division of Experimental Medicine, of the Imperial College of
London (Hammers et al., 2003)
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Figure 4.2: Summed image of slice 45 and the mask that has been applied to
it, for a representative subject



Chapter 5

Results

This chapter presents the results of all the new proposed methods; it is then
necessary to compare these results with those obtained by the existent methods
(presented in Chapter 2) in order to verify if they are physiologically corrected
and if they reached the established goal of improving the quantification at
voxel level. As terms of comparisons are used the non linear SA in terms
of the macro-parameter of interest, the distribution volume, and the results
obtained by the linear SA in terms of fit, residuals, WRSS and parameters
estimated. The results obtained for these methods will be firstly described
separately using a representative voxel for each cluster, and then comparing
them all in terms of medium values within the clusters.

All the methods will be analyzed separately but, since the same vector of
weights has been used in all methods, its trend is now introduced. It has been
calculated following the equation defined in Chapter 2 Eq. (2.20) but using
as Cobsi (tj) the description of the tissue activity curve obtained as mean of all
those within the mask. Moreover its first four elements have been forced at
the zero value. In Figure 5.1 the trend of the weights is shown, before and
after modification.

Figure 5.1: Vector of weights: left picture, weights without correction and
right picture, weights with correction
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(a) Cluster 1. (b) Cluster 2.

(c) Cluster 3. (d) Cluster 4.

(e) Cluster 5. (f) Cluster 6.

(g) Cluster 7. (h) Cluster 8.

Figure 5.2: Results of clustering, for a representative subject
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Figure 5.2 shows the eight clusters obtained with the kmeans tool; this
allows association with the voxel, used as a reference for showing the results
obtained for each method, with the anatomical region to which it belongs to.

5.1 I/O model results

5.1.1 Non linear SA

During this study the non linear SA, both at voxel level and at ROI level,
was implemented, but for different reasons. The first one has been used as a
reference to understand whether the new methods implemented were correct,
in terms of signal amplitudes, referring specifically to the volume of distri-
bution. The second one has been used for creating a new b grid developed
starting from the values of its estimates, as already discussed in Chapter 3
(see Section 3.2. The implementation of the non linear SA has been executed
for models of increasing order in both cases; then, using criteria of parsimony
(Akaike Criterion), looking to the fits and to the precision of the estimates, a
comparison has been made in order to understand which was the best model
to describe our data. Both at ROI level and at voxel level, the NLSA identify
model of Equation (2.2.1) as the best model. The following is a presentation
of the results achieved following the steps presented in the previous chapters.

1. Voxel analysis
The map of the volume of distribution obtained with the non linear
analysis at voxel level is shown in Figure 5.3

Figure 5.3: Slice 45: Image showing the volume of distribution, obtained with
NLSA at voxel level
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Figure 5.4 presents some fits and their relative weighted residuals ob-
tained with non linear SA applied at voxel region. It was decided to
represent one voxel belonging to each clusters. This leads to a better
understanding of the results obtained.

(a) Fit vs Data for a voxel of Cluster 1. (b) Fit vs Data for a voxel of Cluster 2.

(c) Fit vs Data for a voxel of Cluster 3. (d) Fit vs Data for a voxel of Cluster 4.

(e) Fit vs Data for a voxel of Cluster 5. (f) Fit vs Data for a voxel of Cluster 6.

(g) Fit vs Data for a voxel of Cluster 7. (h) Fit vs Data for a voxel of Cluster 8.

Figure 5.4: Model estimated curves with NLSA applied at voxel level and rel-
ative weighted residuals
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In order to compare the results obtained with the different methods, it
is useful to present other variables of interest. Those chosen for this
study were formally presented in previous chapters, where the calcula-
tions made to determine their value are also presented. They are: Vd
Eq. (2.12), K1 Eq. (2.11), AIC Eq. (2.28) and WRSS Eq. (2.22). In this
chapter they will be presented (Table 5.1) referring to each voxel chosen
as representative of its cluster of belonging, while in the next chapter they
will be presented as mean value of all voxel of each cluster. The units of
the variables presented are Vd[ml g−1],K1[ml g

−1 min−1], AIC[unitless]
and WRSS[unitless].

Belonging cluster Vd K1 AIC WRSS
[ml g−1] [ml g−1 min−1] [unitless] [unitless]

1 3.227 0.104 97 44
2 2.127 0.077 63 10
3 3.694 0.075 67 12
4 1.414 0.069 78 19
5 1.279 0.043 97 45
6 0.665 0.071 56 7
7 1.888 0.107 69 13
8 2.855 0.128 66 11

Table 5.1: Table of variables calculated for one voxel representative of each
cluster, obtained with NLSA at voxel level

For the same voxels for which have been presented fits and weighted
residuals (Figure 5.4), is shown the value of the parameters estimated,
presented with the following units Vb[unitless], a1 and a2[ml g−1 min−1],
b1 and b2[min

−1] in Table 5.2.
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2. ROI analysis

The value of the parameters estimated for each cluster at ROI level, that
generate the best fit for the data, are presented with the following units
Vb[unitless], a1 and a2[ml g

−1 min−1], b1 and b2[min
−1] in Table 5.3.

For the parameters b1 and b2 are shown also their precision of estimates,
since these are the values used in one of the new approaches proposed in
this study (see Section 3.2).

Cluster Vb a1 b1 ± σ a2 b2 ± σ
[unitless] [ml g−1 min−1] [min−1] [ml g−1 min−1] [min−1]

1 0.017 0.038 0.0092± 0.0003 0.036 0.358± 0.051
2 0.020 0.022 0.0112± 0.0006 0.036 0.264± 0.031
3 0.036 0.042 0.0074± 0.0005 0.029 0.284± 0.086
4 0.019 0.017 0.0115± 0.0009 0.031 0.214± 0.027
5 0.015 0.012 0.0153± 0.0014 0.029 0.209± 0.028
6 0.003 0.015 0.0466± 0.0072 0.027 0.284± 0.097
7 0.018 0.028 0.0109± 0.0005 0.033 0.283± 0.043
8 0.017 0.033 0.0098± 0.0003 0.035 0.301± 0.033

Table 5.3: Table of estimated parameters for each cluster, obtained with NLSA
at ROI level
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5.1.2 Linear SA

The map of the volume of distribution obtained with the linear analysis, the
standard one presented on Chapter 2, is shown in Figure 5.5.

Figure 5.5: Slice 45: Image showing the volume of distribution, obtained with
LSA

The value of the parameters estimated for each representative voxel is pre-
sented with the following units Vb[unitless], a1, a2, a3, a4 and a5[ml g−1 min−1],
b1, b2, b3, b4 and b5[min

−1] in Table 5.4 on the next page. The reason why there
are up to five components is that this method presents a problem called ”line
doubling”: some couples of bj are actually next to each other on the grid. The
poor precision of the aj stems from the fact that the approach cannot attribute
to a certain bj the right aj , and so it divides the aj between two bj next to
each other.
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The variables of interest are presented in Table 5.5 and their units are
Vd[ml g

−1],K1[ml g
−1 min−1], AIC[unitless] and WRSS[unitless].

Belonging cluster Vd K1 AIC WRSS
[ml g−1] [ml g−1 min−1] [unitless] [unitless]

1 4.699 0.136 95 41
2 2.125 0.089 57 9
3 3.665 0.108 65 11
4 1.422 0.082 76 19
5 1.288 0.045 95 45
6 0.961 0.068 54 7
7 1.897 0.147 66 12
8 2.868 0.142 65 12

Table 5.5: Table of variables calculated for one voxel representative of each
cluster, obtained with LSA

The linear Spectral Analysis implemented with the standard method make
use of a grid based on the DiStefano distribution (2.4) and gives this histogram
showed in Figure 5.6:

Figure 5.6: Image showing the DiStefano distribution of the b in the grid
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In Figure 5.7 the fits of the same voxel selected previously, as representative
of each cluster, and their relative weighted residual are presented.

(a) Fit vs Data for a voxel of Cluster 1. (b) Fit vs Data for a voxel of Cluster 2.

(c) Fit vs Data for a voxel of Cluster 3. (d) Fit vs Data for a voxel of Cluster 4.

(e) Fit vs Data for a voxel of Cluster 5. (f) Fit vs Data for a voxel of Cluster 6.

(g) Fit vs Data for a voxel of Cluster 7. (h) Fit vs Data for a voxel of Cluster 8.

Figure 5.7: Model estimated curves with linear SA and relative weighted resid-
uals



42 CHAPTER 5 Results

5.1.3 Linear SA with prior from ROI

The map of the volume of distribution, obtained with the linear analysis that
uses the prior from ROI, is shown in Figure 5.8.

Figure 5.8: Slice 45: Image showing the volume of distribution, obtained with
LSA with prior from ROI

The variables of interest are presented in Table 5.6 and their units are
Vd[ml g

−1],K1[ml g
−1 min−1], AIC[unitless] and WRSS[unitless]

Belonging cluster Vd K1 AIC WRSS
[ml g−1] [ml g−1 min−1] [unitless] [unitless]

1 4.116 0.094 97 52
2 2.523 0.065 70 15
3 4.872 0.064 77 22
4 1.596 0.049 78 21
5 1.387 0.047 95 45
6 0.673 0.061 54 8
7 2.454 0.075 85 32
8 3.531 0.089 75 20

Table 5.6: Table of variables calculated for one voxel representative of each
cluster, obtained with LSA with prior from ROI
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In Figure 5.9 we present the fits of the same voxel selected previously as
representative of each cluster and their relative weighted residual.

(a) Fit vs Data for a voxel of Cluster 1. (b) Fit vs Data for a voxel of Cluster 2.

(c) Fit vs Data for a voxel of Cluster 3. (d) Fit vs Data for a voxel of Cluster 4.

(e) Fit vs Data for a voxel of Cluster 5. (f) Fit vs Data for a voxel of Cluster 6.

(g) Fit vs Data for a voxel of Cluster 7. (h) Fit vs Data for a voxel of Cluster 8.

Figure 5.9: Model estimated curves with LSA obtained with prior from ROI
and relative weighted residuals
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The linear Spectral Analysis implemented with the prior obtained by the
information extracted from the non linear analysis made at ROI level (as de-
scribed in Section 3.2), makes use of a grid specific for each cluster where the
histograms are those showed in Figure 5.10:

(a) Distribution of b for cluster 1. (b) Distribution of b for cluster 2.

(c) Distribution of b for cluster 3. (d) Distribution of b for cluster 4.

(e) Distribution of b for cluster 5. (f) Distribution of b for cluster 6.

(g) Distribution of b for cluster 7. (h) Distribution of b for cluster 8.

Figure 5.10: Histograms of the 8 different grids obtained one for each cluster
in the LSA method with prior from ROI

The value of the parameters estimated for each representative voxel is
presented with the following units Vb[unitless], a1, a2, a3[ml g−1 min−1], b1, b2,
b3[min

−1] in Table 5.7 presented on the next page. In this case the number
of exponential components are less then those found with the linear SA and,
looking at the values obtained, it seems like if the problem is in the first
component. This problem can be related with the standard deviation used to
construct the grid that is very low (see Table 5.3 and Figure 5.10).
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5.1.4 Linear SA with prior from voxel

The map of the volume of distribution obtained with the linear analysis that
uses the prior from voxel is shown in Figure 5.11

Figure 5.11: Slice 45: Image showing the volume of distribution, obtained with
LSA with prior from voxel

The variables of interest are presented in Table 5.8 and their units are
Vd[ml g

−1],K1[ml g
−1 min−1], AIC[unitless] and WRSS[unitless]

Belonging cluster Vd K1 AIC WRSS
[ml g−1] [ml g−1 min−1] [unitless] [unitless]

1 0.809 0.127 95 44
2 3.251 0.088 59 10
3 1.998 0.107 63 11
4 1.483 0.078 76 19
5 1.463 0.051 95 47
6 2.230 0.084 55 9
7 3.663 0.107 78 23
8 2.866 0.142 63 12

Table 5.8: Table of variables calculated for one voxel representative of each
cluster, obtained with LSA with prior from voxel
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In Figure 5.12 the fits of the same voxel previously selected as represen-
tative of each cluster and their relative weighted residual are presented.

(a) Fit vs Data for a voxel of Cluster 1. (b) Fit vs Data for a voxel of Cluster 2.

(c) Fit vs Data for a voxel of Cluster 3. (d) Fit vs Data for a voxel of Cluster 4.

(e) Fit vs Data for a voxel of Cluster 5. (f) Fit vs Data for a voxel of Cluster 6.

(g) Fit vs Data for a voxel of Cluster 7. (h) Fit vs Data for a voxel of Cluster 8.

Figure 5.12: Model estimated curves with LSA with prior from voxel and rel-
ative weighted residuals

The value of the parameters estimated for each representative voxel is pre-
sented with the following units Vb[unitless], a1, a2, a3, a4[ml g−1 min−1], b1, b2,
b3, b4[min

−1] in Table 5.9.
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The linear SA implemented with the prior obtained by the information
extracted from the distribution of b in the whole brain (as explained in Sec-
tion 3.3), makes use of the grid showed in Figure 5.13:

Figure 5.13: Image showing the distribution of the b in the grid for the method
LSA with prior from voxel
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5.1.5 Linear SA implemented with MAP estimator

After trying this method, an unusual behavior in the disposal of the b values
and their relative a was noticed (shown in Figure 5.14), and, hypothesizing
that it was due to an high correlation between the a and b estimated, it was
decided to repeat the method again, fixing the prior just on the b value. The
different disposal obtained is shown in Figure 5.15.

Figure 5.14: Distribution of the parameters a and b for the method with prior
on both

Figure 5.15: Distribution of the parameters a and b for the method with prior
just on b
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The modification made in order to achieve this goal was deleting the con-
tribution of the prior on the a, raising the value of its covariance. In this way,
when the term Σp of the equation was inverted, the weight associated at the
prior of a became nearly zero. The results have improved significantly and the
unusual behavior was no longer present.

The map of the volume of distribution obtained with the linear analysis is
shown in Figure 5.16

Figure 5.16: Slice 45: Image showing the volume of distribution

The value of the parameters estimated for each representative voxel is
presented with the following units a1, a2[ml g−1 min−1], b1, b2[min−1] in Ta-
ble 5.10; parameter Vb is not present because it has been considered negligible.

Cluster a1 b1 a2 b2
[ml g−1 min−1] [min−1] [ml g−1 min−1] [min−1]

1 0.025 0.009 0.045 0.045
2 0.030 0.012 0.018 0.267
3 0.042 0.008 0.017 0.303
4 0.020 0.012 0.018 0.219
5 0.023 0.016 0.014 0.211
6 0.008 0.041 0.025 0.062
7 0.029 0.012 0.028 0.297
8 0.035 0.010 0.032 0.311

Table 5.10: Table of estimated parameters for each representative voxel, ob-
tained with LSA with MAP estimator
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Figure 5.17 presents the fits of the same voxel chosen previously as repre-
sentative of each cluster and their relative weighted residual.

(a) Fit vs Data for a voxel of Cluster 1. (b) Fit vs Data for a voxel of Cluster 2.

(c) Fit vs Data for a voxel of Cluster 3. (d) Fit vs Data for a voxel of Cluster 4.

(e) Fit vs Data for a voxel of Cluster 5. (f) Fit vs Data for a voxel of Cluster 6.

(g) Fit vs Data for a voxel of Cluster 7. (h) Fit vs Data for a voxel of Cluster 8.

Figure 5.17: Model estimated curves with linear SA using a MAP estimator
with prior on b and relative weighted residuals
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The variables of interest are presented in Table 5.11 and their units are Vd[ml g−1],
K1[ml g

−1 min−1], AIC[unitless] and WRSS[unitless]

Belonging cluster Vd K1 AIC WRSS
[ml g−1] [ml g−1 min−1] [unitless] [unitless]

1 3.694 0.069 100 54
2 2.638 0.048 80 23
3 5.027 0.058 94 41
4 1.741 0.038 83 27
5 1.512 0.037 97 49
6 0.590 0.033 71 15
7 2.595 0.057 103 61
8 3.627 0.068 87 31

Table 5.11: Table of variables calculated for one voxel representative of each
cluster

5.2 Results comparisons

The previous section introduced all the results obtained for each method taken
into consideration during this study both just as a reference and as new meth-
ods proposed. It is necessary to compare these results to understand if the
methods proposed give results physiologically corrected and if they introduce
improvements to those existent.

Due to high levels of noise presented by the tissue-time activity curves
at voxel level, before making any comparisons, it was necessary to extrapolate
only the voxel for which the estimated parameters have physiological meaning.
This means that we did not consider voxel for which Vd < 0, Vd > 10[ml g−1]
and the estimates for this parameter, in terms of Coefficients of Variation (in-
troduced previously in chapter 2 by Eq. (2.25)), were higher than 50%. These
values were decided considering that a negative Vd value has no biological ex-
planation and Vd over 10 are, for this tracer, non-physiological (Gunn et al.,
1998). This operation induced a reduction in the number of voxel, which can
be used to compute the comparisons, of more than 50%.

Distribution Volume Vd

As previously stated, the method selected as gold standard, in order to
compare the volume of distribution, is the non linear analysis (see section 2.2)
made at voxel level. Is in its results that the voxel having parameters with
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physiological plausibility have been selected and it is for these voxel that com-
parisons have been made between different methods. Once the voxel have been
extrapolated the first parallel has been made in terms of volume of distribu-
tion, both using parametric maps (Figure 5.18) and using mean values for each
cluster and for the whole brain (Table 5.12).

(a) Map of the NLSA.

(b) Map of the LSA. (c) Map of the LSA with prior from ROI.

(d) Map of the LSA with prior from voxel. (e) Map of the LSA implemented with MAP
estimator.

Figure 5.18: Maps showing the Volume of Distribution [ml g−1] in all methods
tested, for a representative subject.
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From the comparison of these maps is easy to observe that both the LSA
methods with prior from ROI and with MAP estimator show good resemblance
with the gold standard method. The LSA implemented in the classical way
gives good results but shows an higher noise level. Instead the LSA method
with prior from voxel shows the lowest values in terms of volume of distribution.
In Table 5.12, for each cluster, the mean values and the standard deviations
representative of the variability of the parameter Vd within the cluster, are
shown.

Belonging cluster NLSA Vd ± σ LSA Vd ± σ LSA with prior from ROI Vd ± σ
[ml g−1] [ml g−1] [ml g−1]

1 5.79± 1.21 4.15± 0.88 4.19± 0.31
2 2.95± 0.63 2.20± 0.54 2.17± 0.25
3 6.99± 1.29 5.02± 0.92 5.40± 0.56
4 2.33± 0.55 1.80± 0.47 1.72± 0.29
5 1.72± 0.47 1.35± 0.41 1.18± 0.24
6 1.37± 0.48 1.07± 0.40 0.77± 0.16
7 3.84± 0.85 2.90± 0.65 2.73± 0.25
8 4.71± 1.01 3.45± 0.75 3.41± 0.25

Whole Brain 3.57± 1.74 2.65± 1.24 2.58± 1.20

Belonging cluster LSA with prior from voxel Vd ± σ LSA with MAP estimator Vd ± σ
[ml g−1] [ml g−1]

1 3.50± 0.27 4.14± 0.24
2 1.99± 0.23 2.17± 0.22
3 4.14± 0.33 5.47± 0.43
4 1.60± 0.24 1.72± 0.24
5 1.22± 0.23 1.16± 0.21
6 1.00± 0.24 0.77± 0.20
7 2.47± 0.24 2.69± 0.21
8 2.96± 0.26 3.39± 0.21

Whole Brain 2.29± 0.89 2.56± 1.19

Table 5.12: Table representing the mean values of the Volume of Distribution
for each cluster and in the whole brain
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For better understanding the differences in the macro-parameter Vd be-
tween the methods proposed, is shown now an explicative chart (Figure 5.19).

Figure 5.19: Chart of Vd values estimated using all the methods proposed.

The goal of this thesis was to define a new method that would give results
more similar to those given by the NLSA, with respect to those given by the
LSA already existent. From this chart is easy to see that (in terms of mean
and variability) the new methods proposed don’t introduce any improvements.
This chart shows clearly that the linear methods underestimate the volume of
distribution values when referring to the gold standard method (NLSA).

Another important way to evaluate the goodness of the parameter of inter-
est Vd, with respect to the reference method, is obtaining the scatterplot. It
aids the interpretation of the correlation coefficient or regression model, which
are useful for us to numerically interpret the differences between methods. To
show these results are utilized Vd calculated as mean of the Vd of all voxel be-
longing to the specific cluster. In Figure 5.20 there are four scatterplots of Vd
values; each one was obtained with the values of the non linear SA analysis in
the x axis and those obtained with the other methods in the y axis. There was
good agreement and strong correlation among the NLSA and other methods
estimates (R2 > 0.99 for all models tested) but the regression line was quite far
from the bisector almost in all cases (this result confirm the underestimation
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given by the linear methods). These values are summarized in Table 5.13 as
well.

Figure 5.20: Scatterplots of Vd values estimated using NLSA (x axis) as gold
standard method and all four other methods tested (y axis). In
each scatterplot the value of slope and intercept of the fitted
regression line and Pearson’s R2 value are reported.
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Correlation Regression
coefficient (R2) line (slope)

NLSA vs LSA 0.999 0.698
NLSA vs LSA with prior from ROI 0.996 0.784
NLSA vs LSA with prior from voxel 0.999 0.557
NLSA vs LSA with MAP estimator 0.993 0.790

Table 5.13: Table of statistics (Pearson’s value R2 and slope of the fitted re-
gression line) for the NLSA versus the four methods tested

It is now possible to make some observations based on the results just pre-
sented. All the methods proposed underestimate the value of this parameter
of interest but, even so, it is important to notice that they show results that
are comparable and in agreement with the expectation (the regional distribu-
tion of Vd was consistent with known 5–HT1A receptor distributions (Gunn
et al., 1998)). Looking at the coefficient of correlation, the best method is
the one with prior from voxel, but at the same time it is the one with slope
furthest from unity. The other two methods show similar results, even if the
parametric map of the method with prior from ROI seems the more consistent.

Fits and weighted residuals

Our goal is to evaluate the goodness of the methods proposed and this can
be achieved also analyzing the fits that each method present for the data. To
compare the fits, the best choice is to plot all the curves, referring to the same
voxel, in one figure (as seen in Figures 5.21) and showing the correspondent
weighted residuals together in another figure (see Figures 5.22). The figures
presented here are representative for a voxel representative of cluster 1, the
results for the other clusters are presented in Appendix A.
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Figure 5.21: Fits for all the methods tested for the voxel selected as represen-
tative of the cluster 1

(a) Weighted residuals for LSA standard. (b) Weighted residuals for LSA with prior
from ROI.

(c) Weighted residuals for LSA with prior
from voxel.

(d) Weighted residuals for LSA imple-
mented with MAP estimator.

Figure 5.22: Weighted residuals for all methods tested on this voxel represen-
tative of cluster 1.
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Evaluating the comparisons of these results indicates that the method that
makes use of the MAP estimator is the one that presents the worst fits. This
behavior is confirmed reviewing the weighted residuals. In fact, thinking that
the residuals are an estimate of measurement error, if the model (structure
plus numerical value of the parameters) is "good" it is logical to expect that
the residuals are consistent with the statistical properties of the measurement
error. This means they should have zero mean, they should be uncorrelated
(alternatively positive and negative) and they should have amplitude between
−1 and 1. This is primarily true for all the methods, except for the method
LSA with MAP estimator where, for some clusters, it presents residuals that
are correlated.

WRSS and AIC

The final parameters used in this study to compare the proposed methods
are WRSS (see Eq. (2.22)) and AIC (see Eq. (2.28)). The first can be consid-
ered as the weighted error between the observed and predicted value for each
sample time. Therefore it is a number that represent the information given
visually by the weighted residuals. The second is a parsimony criterion that
can be useful to understand which method gives the best balance between ac-
curacy and complexity of the model. The smaller its value, the better results
in terms of no information loss when it is used. These parameters, shown in
Table 5.14 and in Table 5.15, are calculated as medium values of all those
belonging to each cluster and then as mean value of all voxel within the mask.

The standard deviations calculated for each value refer to the variability
within the cluster and within the whole brain. The results confirm what was
already shown with the plots of the fits and the weighted residuals, i.e. the
method that uses the MAP estimator gives the worst description of the data
(its WRSS are higher than the others).
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Chapter 6

Discussion

In the previous chapter (Chapter 5) we presented the results found with the
I/O models, both the existent ones (linear and non linear Spectral Analysis)
and the new methods proposed (LSA with prior from ROI, LSA with prior
from voxel, LSA with MAP estimator). In this chapter the goal is to explain
the strengths and weaknesses of all these methods.

• NLSA:

The non-linear approach used in the analysis at voxel level is not ap-
propriate since it requires computational time that is too high and there
are problems of failure rate caused by the high noise that characterizes
the curves of activities specific for each voxel. In fact, due to noise, the
estimator is not able to converge and generates values of the parameters
inappropriately.

• LSA:

The linear analysis rectifies to the limitations just listed, not presenting
any outliers and having a limited computing time. In turn, it introduces
other problems. It remains in fact very sensitive to noise and provides
results heavily dependent on the starting grid provided.

The goal of this thesis was to propose methods that remedy the limitation
presented above of these existent methods. The proposed solutions are all
linear and designed in such a way to make more robust the solution provided
by this type of methods and as close as possible to the solution provided by
the non-linear ones.

• LSA with prior from ROI :

The results obtained with this method demonstrate a problem: using as
inputs the results obtained by the NLSA method implemented on the
ROI TACs, which mean to curves of activity characterized by a good

63
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signal to noise ratio, the precision of estimates that are obtained have
values very low. This is generally a very positive aspect, but has a nega-
tive impact on our results. This happened because we built the Gaussian
with medium equal to the values of model parameters and standard de-
viation equal to the parameter estimates themselves. Having very good
estimates, the Gaussians are generated with values very concentrated
around the mean. This is found in the results where the parameters b
tend to take the limit values of the Gaussian, as if trying to have values
lower or higher respectively. This effect is very evident in the first of
the two Gaussians, since, working on small values (around 0.01), it is
more affected by the low standard deviation. The results provided are
still very good, both in terms of fit and then weighted residuals, and in
terms of macro-parameter of interest (the volume of distribution). This
method appears more robust in terms of number of given components
and therefore less sensitive to noise than the LSA.

• LSA with prior from voxel :

This method does not present the same problem as the previous one. In
fact the grid constructed according to the idea of analyzing the distri-
bution of values on the grid of b used by the LSA, in order to create
a specific grid which respects the typical aspects of it, covers a good
range of values. In this case, however, there is a slight underestimate
of the value of the parameter of interest (the volume of distribution).
One limitation of this technique may be the use of the same grid for all
voxels inside the mask, without distinction of their belonging to different
ROIs. Since the TACs identified for the different regions of interest have
values of the parameters that are also quite different, it might be wise
to evaluate a solution taking account of these differences, thus creating
different grids for different ROIs.

• LSA with MAP estimator :

The last method provided the worst results in terms of adherence of the
model to the data in question, even if it has supplied values of volume of
distribution that were very good. A possible explanation for these results
is due to the choice of the critical parameter, the cutoff b, which is used
as the value for identifying the two components in the kinetics of the
tracer and then to rebuild them as sums of convolution integrals. In the
method investigated, this value is identified by analyzing the distribution
of b in the whole brain in which we clearly distinguish two Gaussian
distributions. Once extrapolated, the value of the minimum between the
two distributions is used to reconstruct the two components. A different
choice of this parameter, considering such distributions in terms of ROI
instead of the whole brain, may provide different values of the cutoff b
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and consequently different results in estimates of the parameters that
best describe the TACs at voxel level.

All proposed methods require running the data analysis twice. Then, in
spite of good results, this is something that must not be underestimated. It
must be said that they are all linear methods and thus do not require high
computational time, but this is still an evaluation that has to be done case by
case. After analyzing the results and making all these observations it can be
said that the proposed methods do not introduce substantial improvements to
the linear SA currently in use.





Chapter 7

Conclusions and future
developments

In the analysis of models in which one considers the plasma function operat-
ing as input, one can refer to a data-driven approach that takes the name of
Spectral Analysis. It was showed that this method has two major problems:
noise sensitivity and the high dependence of the goodness of the results from
the grid. For this reason, and starting from the purpose of wanting to make
more robust this method, four alternative methods have been proposed, only
three of which were actually implemented since the first proved to be inade-
quate. Aware that the choice of the grid can be fundamental in these types
of analysis, our work has focused on developing a new way to define it. Once
these grids were obtained our goal became the study of the results provided in
order to understand if they were physiologically correct and if they obtained
better results compared to existent methods.

The tracer used for this work is
[
11C

]
WAY100635, which is a selective

antagonist with affinity and selectivity for serotonin 5–HT1A receptors. The
analysis of the tracer was performed both at region of interest level and at voxel
level and, to extract the useful information from the data, different approaches
were used (linear and non linear Spectral Analysis). These input-output tech-
niques were used both to quantify some variables of interest and, especially,
to have models on which basing our comparison to understand whether the
methods proposed were correct. The non linear approach gave good results for
the voxel where the convergence of the global optimum were not problematic,
but the computational cost was really high and the failure rate was more than
50%. The linear SA approach instead, gave good results on all data, giving a
good description of the data and values of the variables of interest with phys-
iological meaning. But, as previously stated, we observed that the use of a
fixed b grid and the presence of noise created some problems to this approach
too, i.e. double lines close to the real value.

The first method evaluated (LSA with prior from ROI) extrapolates in-
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formation from a preliminary nonlinear analysis performed at ROI level to
generate a grid that has distribution densely distributed around the values
that we expect as the parameter of the model. This is based on the concept
that the parameter estimates derived at ROI level are representative of the ex-
pected model parameters’ values of the voxels composing the ROI itself. The
second method instead (LSA with prior from voxel) performs a first analysis
based on the LSA and with the results obtained in terms of distribution of
b values on the grid, generates a new grid that reflects the truly distribution
assumed by b. The third proposed method (LSA with MAP estimator) fol-
lows a slightly different path: run first an LSA analysis and analyze the point
that separates the two Gaussian distributions of b. Then obtains these two
component separately as sums of the integrals of convolution from zero to the
cutoff value and from the cutoff value onwards. Finally, it implements an MAP
estimator for each of the two curves obtained, using as prior the information
obtained from the non linear analysis made at ROI level.

The results of these three methods, physiologically speaking, are correct
but they don’t improve the results of the existent linear SA method. The third
method, even if it provided values of distribution volume macro-parameter
correlated with the physiological information about the selective distribution
of 5–HT1A receptors within the brain, was the method that provided the worst
fits of the data. Instead the first and the second methods proposed, presented
precise concordance with the results of LSA, both in terms of distribution
volume and of fits of the data. One problem observed in the first method was
due to the low value of the standard deviation obtained from the non linear
analysis at ROI level. This is not a problem generally speaking since a low
SD indicates a good estimate of the parameters, but in our study it resulted
in a grid too concentrated around the two mean values. This implied values
too near one to the other, showing that the parameters estimated tended to
assume the two values of the bounds, as if they were trying to find a lower
and a higher value respectively. Despite this, methods one and two are those
that demonstrated behavior, generally speaking, closer to the one presented
by the linear SA. Evaluating all the results and the performance of the various
methods proposed, the preferred method to obtain a grid that is specific for the
case under examination is the linear method that constructs a prior starting
from the non linear analysis executed at ROI level.

Further studies, involving a larger number of subjects and different types
of tracers, are required to confirm the reliability of these methods. Moreover,
noting the good performance obtained it would be of interest to test these
methods modifying the critical parameter chosen for each method. For ex-
ample in the first method should be interesting to maintain the same idea of
constructing the grid with Gaussian distributions, but find a way to enlarge
their standard deviation. For the second method, it would be interesting to
evaluate the distribution of b not at level of the whole brain but at ROI level,
in order to obtain a more specific grid. For the last method, the critical value
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is the b of cutoff, so it would be interesting to evaluate changes between the
different regions of interest and determine if a different choice of it for each
ROI can affect the results.





Appendix A

In this appendix are shown the results, in terms of fits (see Figures A.1, A.3, A.5,
A.7, A.9, A.11, A.13) and weighted residuals (see Figures A.2, A.4, A.6, A.8, A.10,
A.12, A.14), for the same voxel chosen as representative of each cluster in
Chapter 5.
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Figure A.1: Fits for all the methods tested for the voxel selected as represen-
tative of the cluster 2

(a) Weighted residuals for LSA standard. (b) Weighted residuals for LSA with prior
from ROI.

(c) Weighted residuals for LSA with prior
from voxel.

(d) Weighted residuals for LSA imple-
mented with MAP estimator.

Figure A.2: Weighted residuals for all methods tested on this voxel represen-
tative of cluster 2.
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Figure A.3: Fits for all the methods tested for the voxel selected as represen-
tative of the cluster 3

(a) Weighted residuals for LSA standard. (b) Weighted residuals for LSA with prior
from ROI.

(c) Weighted residuals for LSA with prior
from voxel.

(d) Weighted residuals for LSA imple-
mented with MAP estimator.

Figure A.4: Weighted residuals for all methods tested on this voxel represen-
tative of cluster 3.
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Figure A.5: Fits for all the methods tested for the voxel selected as represen-
tative of the cluster 4

(a) Weighted residuals for LSA standard. (b) Weighted residuals for LSA with prior
from ROI.

(c) Weighted residuals for LSA with prior
from voxel.

(d) Weighted residuals for LSA imple-
mented with MAP estimator.

Figure A.6: Weighted residuals for all methods tested on this voxel represen-
tative of cluster 4.
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Figure A.7: Fits for all the methods tested for the voxel selected as represen-
tative of the cluster 5

(a) Weighted residuals for LSA standard. (b) Weighted residuals for LSA with prior
from ROI.

(c) Weighted residuals for LSA with prior
from voxel.

(d) Weighted residuals for LSA imple-
mented with MAP estimator.

Figure A.8: Weighted residuals for all methods tested on this voxel represen-
tative of cluster 5.
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Figure A.9: Fits for all the methods tested for the voxel selected as represen-
tative of the cluster 6

(a) Weighted residuals for LSA standard. (b) Weighted residuals for LSA with prior
from ROI.

(c) Weighted residuals for LSA with prior
from voxel.

(d) Weighted residuals for LSA imple-
mented with MAP estimator.

Figure A.10: Weighted residuals for all methods tested on this voxel represen-
tative of cluster 6.
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Figure A.11: Fits for all the methods tested for the voxel selected as represen-
tative of the cluster 7

(a) Weighted residuals for LSA standard. (b) Weighted residuals for LSA with prior
from ROI.

(c) Weighted residuals for LSA with prior
from voxel.

(d) Weighted residuals for LSA imple-
mented with MAP estimator.

Figure A.12: Weighted residuals for all methods tested on this voxel represen-
tative of cluster 7.
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Figure A.13: Fits for all the methods tested for the voxel selected as represen-
tative of the cluster 8

(a) Weighted residuals for LSA standard. (b) Weighted residuals for LSA with prior
from ROI.

(c) Weighted residuals for LSA with prior
from voxel.

(d) Weighted residuals for LSA imple-
mented with MAP estimator.

Figure A.14: Weighted residuals for all methods tested on this voxel represen-
tative of cluster 8.



Bibliography

Bertoldo A., Vicini P., Sambuceti G., Lammertsma A.A., Parodi O. and
Cobelli C. Evaluation of compartmental and spectral analysis models of
[18F]FDG kinetics for heart and brain studies with PET. IEEE transac-
tions on bio-medical engineering, 1998.

Budinger T.F. PET instrumentation: What are the limits? Seminars in
Nuclear Medicine, 1998.

Carson E.R., Cobelli C. and Finkelstein L. The mathematical modeling of
metabolic and endocrine systems : model formulation, identification, and
validation. J. Wiley, 1983.

Cunningham V., Ashburner J., Byrne H. and Jones T. Use of spectral analysis
to obtain parametric images from dynamic PET studies. (In) Quantification
of Brain Function. Tracer Kinetics and Image Analysis in Brain PET. El-
sevier Science Publishers, 1993.

Cunningham V. and Jones T. Spectral analysis of dynamic PET studies.
Journal of Cerebral Blood Flow & Metabolism, 1993.

Deans S.R. The Radon Transform and Some of Its Applications. John Wiley
& Sons, 1983.

DiStefano J.J. Optimized blood sampling protocols and se quential design of
kinetic experiments. American Journal of Physiology - Regulatory, Integra-
tive and Comparative Physiology, 1981.

Feng D., Hu D., Chen K., Wu L.C., Wang J.K., Liu R.S. and Yeh S.H. An
evaluation of the algorithms for determining local cerebral metabolic rates
of glucose using positron emission tomography dynamic data. IEEE Trans-
actions on Medical Imaging, 1995.

Gunn R.N., Gunn S.R. and Cunningham V.J. Positron emission tomography
compartmental models. Journal of Cerebral Blood Flow & Metabolism,
2001.

79



80 BIBLIOGRAPHY

Gunn R.N., Gunn S.R., Turkheimer F.E., Aston J.A.D. and Cunningham V.J.
Positron emission tomography compartmental models: A basis pursuit strat-
egy for kinetic modelling. Journal of Cerebral Blood Flow & Metabolism,
2002.

Gunn R.N., Sargent P.A., Bench C.J., Rabiner E.A., Osman S., Pike V.W.,
Hume S.P., Grasby P.M. and Lammertsma A.A. Tracer kinetic modeling of
the 5-HT 1Areceptor ligand [carbonyl-11C]WAY-100635 for PET. NeuroIm-
age, 1998.

Gurevich E.V. and Joyce J.N. Alterations in the cortical serotonergic system
in schizophrenia: A postmortem study. Biological psychiatry, 1997.

Hammers A., Allom R., Koepp M.J., Free S.L., Myers R., Lemieux L., Mitchell
T.N., Brooks D.J. and Duncan J.S. Three-dimensional maximum probability
atlas of the human brain, with particular reference to the temporal lobe.
Human Brain Mapping, 2003.

Hebert T. and Leahy R. A generalized EM algorithm for 3-D Bayesian re-
construction from Poisson data using Gibbs priors. IEEE Transactions on
Medical Imaging, 1989.

Hevesy G.v. Adventures in Radioisotope Research. New York, Pergamon
Press, 1962.

Kety S.S. The theory and applications of the exchange of inert gas at the lungs
and tissues. Pharmacological Reviews, 1951.

Lammertsma A.A., Bench C.J., Hume S.P., Osman S., Sargent P., McCarron
J.A., Pike V.W. and Grasby P.M. Kinetic analysis of [C-11]WAY-100635
studies. European Journal of Nuclear Medicine, 1996.

Logan J., Fowler J.S., Volkow N.D., Wolf A.P., Dewey S.L., Schlyer D.J.,
MacGregor R.R., Hitzemann R., Bendriem B., Gatley S.J. and Christman
D.R. Graphical analysis of reversible radioligand binding from time-activity
measurements applied to [n- 11c-methyl]-(âĹŠ)-cocaine pet studies in human
subjects. Journal of Cerebral Blood Flow & Metabolism, 1990.

MacQueen J.B. Proc. of the fifth Berkeley Symposium on Mathematical Statis-
tics and Probability. University of California Press, 1967.

Maltz J.S. Parsimonious basis selection in exponential spectral analysis.
Physics in Medicine & Biology, 2002.

Mintun M.A., Raichle M.E., Kilbourn M.R., Wooten G.F. and Welch M.J.
A quantitative model for the in vivo assessment of drug binding sites with
positron emission tomography. Annals of Neurology, 1984.



BIBLIOGRAPHY 81

Nilsson L.G. and Markowitsch H.J. Cognitive Neuroscience of Memory.
Hogrefe & Huber Publishers, 1999.

Ollinger J.M. and Fessler J.A. Positron emission tomography. IEEE Signal
Processing Magazine, 1997.

Osman S., Lundkvist C., Pike V.W., Halldin C., McCarron J.A., Swahn C.,
Ginovart N., Luthra S.K., Bench C.J., Grasby P.M., Wikström H., Barf T.,
Cliffe I.A., Fletcher A. and Farde L. Characterization of the radioactive
metabolites of the 5-HT1A receptor radioligand, [o-methl-11c]WAY-100635,
in monkey and human plasma by HPLC: Comparison of the behaviour of an
identified radioactive metabolite with parent radioligand in monkey using
PET. Nuclear Medicine and Biology, 1996.

Parsey R.V., Slifstein M., Hwana D.R., Abi-Dargham A., Simpson N.,
Mawlawi O., Guo N.N., Heertum R., Mann J.J. and Laruelle M. Validation
and reproducibility of measurement of 5-HT1A receptor parameters with
[carbonyl-11C]WAY-100635 in humans: comparison of arterial and reference
tisssue input functions. Journal of Cerebral Blood Flow &Metabolism, 2000.

Patlak C.S., Blasberg R.G. and Fenstermacher J.D. Graphical evaluation of
blood-to-brain transfer constants from multiple-time uptake data. Journal
of Cerebral Blood Flow & Metabolism, 1983.

Phelps M.E., Huang S.C., Hoffman E.J., Selin C., Sokoloff L. and Kuhl D.E.
Tomographic measurement of local cerebral glucose metabolic rate in hu-
mans with (f-18)2-fluoro-2-deoxy-d- glucose: validation of method. Annals
of Neurology, 1979.

Pietrzyk U., Herholz K., Schuster A., Stockhausen H.M.v., Lucht H. and Heiss
W.D. Clinical applications of registration and fusion of multimodality brain
images from PET, SPECT, CT, and MRI. European Journal of Radiology,
1996.

Reivich M., Kuhl D., Wolf A., Greenberg J., Phelps M., Ido T., Casella
V., Fowler J., Hoffman E., Alavi A., Som P. and Sokoloff L. The
[18F]fluorodeoxyglucose method for the measurement of local cerebral glu-
cose utilization in man. Circulation Research, 1979.

Rizzo G., Turkheimer F.E., Keihaninejad S., Bose S.K., Hammers A. and
Bertoldo A. Multi-scale hierarchical generation of PET parametric maps:
Application and testing on a [11C]DPN study. NeuroImage, 2012.

Schmidt K. Which linear compartmental systems can be analyzed by spectral
analysis of pet output data summed over all compartments? Journal of
Cerebral Blood Flow & Metabolism, 1999.



82 BIBLIOGRAPHY

Shepp L. and Vardi Y. Maximum likelihood reconstruction for emission to-
mography. IEEE Transactions on Medical Imaging, 1982.

Sokoloff L., Reivich M., Kennedy C., DesRosiers M.H., Patlak C.S., Pettigrew
K.D., Sakurada O. and Shinohara M. The 14C-deoxyglucose method for
the measurement of local cerebral glucose utilisation: theory, procedure and
normal values in the conscious and anaesthetized albino rat. Journal of
Neurochemistry, 1977.

Steinbusch H.W.M. Distribution of serotonin-immunoreactivity in the central
nervous system of the rat—Cell bodies and terminals. Neuroscience, 1981.

Turkheimer F.E., Moresco R.M., Lucignani G., Sokoloff L., Fazio F.
and Schmidt K. The use of spectral analysis to determine re-
gional cerebral glucose utilization with positron emission tomography and
[18F]Fluorodeoxyglucose: theory, implementation and optimization proce-
dures. Journal of Cerebral Blood Flow & Metabolism, 1994.

Turkheimer F.E., Sokoloff L., Bertoldo A., Lucignani G., Reivich M., Jaggi
J.L. and Schmidt K. Estimation of component and parameter distributions
in spectral analysis. Journal of Cerebral Blood Flow & Metabolism, 1998.

Volkow N.D., Fowler J.S., Gatley S.J., Logan J., Wang G.J., Ding Y.S. and
Dewey S. PET evaluation of the dopamine system of the human brain.
Journal of nuclear medicine, 1996.

Wright D.E., Seroogy K.B., Lundgren K.H., Davis B.M. and Jennes L. Com-
parative localization of serotonin 1A, 1C, and 2 receptor subtype mRNAs
in rat brain. The Journal of Comparative Neurology, 1995.



Acknowledgments

The first thanks, coming from the heart, goes to Professor Alessandra Bertoldo.
Who beside the unquestionable preparation, has always shown me patience,
attention and gave me the opportunity to develop part of my thesis at the
Imperial College of London. This wonderful experience enabled me to enjoy
a different lifestyle, expanding my professional knowledge and improving my
English, while surrounded by great people with a huge passion for their work
combined with an unquestioned ability to make you feel at ” home”. Therefore,
special thanks to Federico Turkheimer, Gianpaolo Tomasi, Elisabetta Grecchi
and Shazi Singh for their hospitality, for their help and friendship.

Gaia and Mattia, THANKS! Thanks for your patience, thanks for the help
and thanks for the understanding you have shown me.

To my parents, Nori and Nino. You are the parents who all children should
have! Your only concern is the welfare, health and success of your daughters.
I think you can be proud of you, you succeeded. I sincerely hope to always be
able to make you proud of me because, at any place in the world where I will
be, your teachings will accompany me and help me build my future on healthy
principles and important values. You have my gratitude forever.

To my sister, who over the years has put up with my changes, my dark
moments and my wickedness and yet she has always been close to me! You’re
the best sister one could wish to have. I hope that despite the miles that may
separate us in life, we still maintain a relationship of love, esteem and mutual
support!

To Simone, who despite being entered into my life recently has already
won my heart completely. I think the way we love each other is special, giving
oneself totally to the other to receive everything in return. I hope this will
be the theme of the future that awaits us. Thanks for your patience and
understanding, you have been a key support in recent months that have been
so difficult.

To Andrea, that in the college years spent together helped me to move on,
to hold on and to make me understand many of my faults. If I became what
I am is also because of you.

Jeannine! Dear Jeannine! She came into my life for some coincidences, but
it was a gift to know her. She has supported, promoted and encouraged me,
and now she is here to fix my thesis! Thanks will never be enough!

83



84 ACKNOWLEDGMENTS

To all my relatives and my friends, people who believed in me and took
me to this path, THANKS!

Il primo grazie che mi nasce dal cuore va alla Professoressa Alessandra
Bertoldo, che oltre all’indiscutibile preparazione, mi ha sempre dimostrato
pazienza ed attenzione e mi ha dato la possibilità di svolgere parte della mia
tesi presso l’Imperial College di Londra. Quest’esperienza meravigliosa mi
ha consentito di vivere una realtà diversa dalla nostra, di allargare il mio
bagaglio culturale e di migliorare il mio inglese, il tutto circondata da persone
fantastiche con una passione enorme per il loro lavoro ed un’indiscussa capacità
di farti sentire a ”casa”. Un grazie speciale quindi anche a Federico Turkheimer,
Gianpaolo Tomasi, Elisabetta Grecchi e Shazi Singh per la loro accoglienza,
per il loro aiuto e per la loro amicizia.

Gaia e Mattia, GRAZIE! Grazie per la pazienza, grazie per l’aiuto e grazie
per la comprensione che mi avete dimostrato.

Ai miei genitori, Nori e Nino. Siete i genitori che tutti i figli dovrebbero
avere; l’unica vostra preoccupazione è il benessere, la salute ed il successo delle
vostre figlie. Credo che ci siate riusciti alla grande. Spero di cuore di essere
sempre capace di rendervi orgogliosi di me perché, in qualsiasi posto al mondo
sarò, i vostri insegnamenti mi accompagneranno e mi aiuteranno a costruire
il mio futuro su principi sani e valori importanti. Avrete per sempre la mia
gratitudine.

A mia sorella, che negli anni ha sopportato i miei cambiamenti, i miei
momenti bui e le mie cattiverie e nonostante questo mi è sempre stata vicina!
Sei la sorella migliore che si possa desiderare e spero che nonostante i chilometri
che probabilmente ci separeranno nella vita, riusciremmo sempre a mantenere
un rapporto di amore, di stima e di aiuto reciproco!

A Simone, che nonostante sia entrato nella mia vita da poco tempo ha già
conquistato interamente il mio cuore. Credo che il nostro modo di amare sia
speciale, donarsi completamente all’altro per ricevere tutto in cambio. Spero
sarà questo il filo conduttore del futuro che ci aspetta. Grazie della pazienza
e della comprensione, sei stato un sostegno fondamentale in questi mesi cosí
difficili.

Ad Andrea, che negli anni di università trascorsi assieme mi ha aiutata ad
andare avanti, a tener duro e a capire tanti miei difetti. Se sono diventata ciò
che sono è anche per merito tuo.

Jeannine! Cara Jeannine! Sei entrata nella mia vita per alcune coincidenze,
ma è stato un dono conoscerti. Mi hai sostenuta, incoraggiata e spronata ed
ora sei qui che mi correggi la tesi! Un grazie non sarà mai abbastanza!

A tutti i miei parenti ed i miei amici, alle persone che hanno creduto in me
e mi hanno accompagnata in questo percorso, GRAZIE!


