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Abstract

This thesis comprehensively explores visual distortions in 360° images and their con-
sequential impacts on Quality of Experience (QoE). Leveraging insights from exist-
ing literature, a meticulously curated 360° Image Quality Dataset is introduced, fa-
cilitating nuanced analysis of distortion impacts on QoE. A detailed subjective eval-
uation involving 161 participants unravels the perceptual intricacies influenced by
various distortions and image content. Employing Mean Opinion Scores (MOS) and
ANOVA analysis, the study quantitatively assesses the perceptual impact of distor-
tions across various types and intensity levels. The findings highlight the importance
of customized image processing strategies to mitigate distortion effects. In addition,
the performance of existing image quality metrics is evaluated in the context of 360-
degree images, providing information on their suitability and limitations. Synthe-
sizing key findings, this thesis advances understanding of image quality assessment
methodologies for this growing medium, guiding the development of algorithms and
optimization strategies to enhance user experience and satisfaction with visual con-
tent.

Index Terms—Omnidirectional image; 360°- image; Visual Distortions; Artifacts; per-
ception; Annoyance; Dataset; Feature extraction; Visual attention; Regions of inter-

est; Saliency; scene interpretation; Attention; Visual Perception
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Chapter 1

Introduction

In recent years, there has been a notable proliferation of immersive technologies in various as-
pects of our daily existence, covering entertainment, education, professional training, safety
protocols, and security measures. The widespread adoption of immersive media can be at-
tributed to its ability to generate a deep sense of physical presence within virtual environ-
ments, facilitating interactive engagement with the digital world. This capability enables the
delivery of experiences that closely mimic those encountered in the tangible world, thus en-
hancing the efficacy and appeal of immersive technologies across diverse domains.

It should be noted that the technology required to capture and present immersive content
has undergone substantial advancement, allowing users to enjoy immersive experiences at
accessible price points. Furthermore, an expanding array of services are harnessing this tech-
nology to their advantage, exemplified by the proliferation of online panoramic images. These
platforms enable users to seamlessly interact with the system, effortlessly manipulating their
perspective by employing intuitive actions, such as clicking and dragging the cursor, to navi-
gate in their desired viewing direction.

Among the array of technologies designed to facilitate immersive experiences, omnidirec-
tional, or 360°, imaging stands out for its profound impact. Through the utilization of an om-
nidirectional acquisition configuration and a specialized rendering system, it becomes feasible
to recreate virtual environments with remarkable fidelity. 360-degree imagery encapsulates
the visual information that encompasses the recording point, giving viewers the freedom to
observe the scene from any desired vantage point. Typically, multiple cameras or paired fish-
eye cameras serve as the primary acquisition devices in this set-up. Crucially, the cameras
within the omnidirectional apparatus operate in synchrony, obviating the need for additional

processing to stitch together video feeds.



The recorded data can be presented to users through a variety of devices, spanning from
budget-friendly 2D displays and Head-Mounted Displays (HMDs) to more sophisticated and
costly cave systems. Although cave systems offer an unparalleled level of immersion, render-
ing solutions such as HMDs still provide an acceptable Quality of Experience (QoE). Specifi-
cally, HMDs facilitate viewing of egocentric scenes, empowering users to dynamically adjust
their perspective simply by moving their head or body. This intuitive interaction enhances
the sense of immersion and engagement, even when utilizing more accessible rendering solu-
tions.

The primary challenge facing the omnidirectional framework stems from its novelty, as the
full scope of its intricacies and capabilities remain incompletely understood. One such chal-
lenge arises from the considerable size of omnidirectional images or videos compared to their
2D counterparts. Consequently, specialized processing and compression algorithms are im-
perative for efficient storage and transmission. Drawing from past experiences, such as the
fluctuating trajectory of stereo entertainment systems and the limited integration of certain
frameworks into everyday life, it becomes evident that assessing end-user appreciation and
evaluating the impact of various processing steps on perceived quality are crucial endeavors.
In essence, addressing the QoE factor is paramount in ensuring the successful adoption and
utilization of omnidirectional technologies.

In this context, the principal contributions of this thesis encompass:

+ 360°Image Quality Dataset: Although there are numerous quality assessment systems
and test datasets for 2D images and videos, the availability of such resources for 360°
content is relatively scarce. Currently, some quality assessment metrics tailored to 360°
images have been introduced and tested on specially curated test datasets. However, dis-
parate methods for quality assessment are validated using varying testing data, compli-
cating direct performance comparisons and the elucidation of methodological nuances.
To address this gap, this thesis introduces a dataset comprising omnidirectional images
annotated with the corresponding Mean Opinion Scores (MOS), facilitating benchmark-

ing of image quality metrics and analysis of the impact of different distortions on QoE.

« Subjective Evaluation of 360° Images: There is a great deal of literature on the study of
distortions that affect both 2D and 3D content throughout various phases of distribution.
Consequently, the effects of such distortions on perceived quality have been thoroughly
investigated. However, 360° media represent a relatively new frontier, and research on

the distortions that may occur during its distribution is still an ongoing endeavor. In



[9], the authors present a comprehensive list of artifacts that can manifest during the
distribution process and potentially influence the user’s quality of experience. Building
on this analysis, our study delves into the effects of various distortions and image content
on the subjective quality of 360° images, contributing to a deeper understanding of the

perceptual intricacies inherent to this emerging medium.

+ Performance Evaluation of Existing Image Quality Metrics for 360° Images: An
essential aspect that merits investigation is the assessment of image quality in omnidi-
rectional images. A prevalent approach involves applying image quality metrics orig-
inally designed for 2D content to the realm of 360° images. In this contribution, we
examine the efficacy of state-of-the-art metrics when applied to distortions typical of
omnidirectional images. Through this analysis, the objective is to elucidate the suitabil-
ity and limitations of existing metrics in the context of 360° imagery, thus facilitating the
refinement and development of customized assessment methodologies for this evolving

medium.

The thesis is structured as follows: In Section I (Introduction), an overview of the research
topic and the study’s objectives are provided, setting the stage for the subsequent sections.
Section II (Literature Review) offers a comprehensive survey of existing work, focusing on
studies related to visual distortions in 360° images. The subsections of this section dive into
specific aspects such as datasets used to understand visual distortions and the evaluation of
image quality metrics. Section III (Dataset Description) provides detailed information on the
dataset designed for the study, including the methodology employed and the rationale behind
the selection of specific data. In Section IV (Experimental results), the findings of the con-
ducted experiments are presented. This section comprises three subsections: analysis of mean
opinion scores for different types of distortion, in-depth examination of ANOVA results, and
evaluation of the performance of existing image quality metrics. Finally, Section V (Conclu-
sions) summarizes the key findings of the study and draws conclusions based on the results
obtained, highlighting the implications of the research and suggesting potential avenues for

future work.






Chapter 2

Literature Review

Immersive media, particularly 360-degree content, have presented novel challenges to visual
distortions and their implications on QoE. A significant contribution to this field comes from

Azevedo et al.[9], who offer an in-depth exploration of visual artifacts in 360° images.

2.1 Studies on Visual Distortions in 360° Images

The study of visual distortions in 360° images has received a lot of attention in the literature,
indicating a growing interest in immersive media experiences. This section summarizes the
main works that have studied the complexities of visual distortions in the context of panoramic
imaging. Understanding the intricacies of these distortions is critical for improving the overall
visual integrity of immersive media, as the demand for high-quality 360° material continues
to increase. It presents an overview of research activities devoted to finding and character-
izing visual distortions, revealing technological issues related to the capture and production
of panoramic images. The literature has, for the first time, extensively reviewed the prevalent
visual distortions altering signals in 360° as they traverse through various processing stages of
the visual communication pipeline [9]. These distortions significantly impede the objectives
of acquiring, transmitting, compressing and displaying high-quality 360° content. Therefore,
it becomes crucial to understand these distortions and their potential impacts on the viewing
and display quality of 360° content. In the work of Chen et al. [5], they constructed a more com-
prehensive database that includes both traditional picture distortions and VR-specific stitching
distortions and offers six different types of distortion with varying degrees of severity. The six
types of distortion are VP9 compression, H.265 compression, stitching distortion, down-
sampling distortion, Gaussian blur, and Gaussian noise. In [11] they introduce two new

distortions on top of Gaussian blur and Gaussian noise, which are JPEG compression, and



JPEG2000 compression. Most of these distortions arise from either stitching or camera lens
distortion. In practice, a mosaicking algorithm, known as stitching, produces the omnidi-
rectional output signal. This algorithm combines the overlapped field-of-view signals of all

dioptric sensors to create a wide-view panorama image [46].

2.1.1 Datasets and Understanding Visual Distortions

Recently, there has been a surge in interest in evaluating 360-degree image quality. Con-
sequently, several efforts have been made to produce 360° image quality datasets. Table 2.1
provides further details on the referenced datasets, highlighting their key characteristics and
contributions to the field.

The Compressed VR Image Quality dataset (CVIQ) [44] comprises 16 reference 360° images
and 528 compressed images. Three encoding techniques were used, namely JPEG, H.264, and
H.265. Chen et al. [5] introduced the 3D Virtual Reality (VR3D) dataset, which includes 450
distorted images derived from 15 pristine 3D VR images. These distorted images were created
using six types of distortion with varying severity and were evaluated by 42 subjects, with
MOS collected from 20 subjects. In [11], the authors proposed the Omnidirectional Database
(OIQA), which contains 16 sources (SRC) and 320 hypothetical reference circuits (HRC) gener-
ated by compression, blurring, and noise effects. Scores from 20 subjects were also recorded in
this dataset. It should be noted that these datasets were specifically developed for 360° Image
Quality Assessment (IQA).

In this study, the main focus lies on the artifacts that can affect a 360° image throughout its
distribution process. In particular, artifacts that manifest themselves in all four phases of the
distribution pipeline( capture, encoding, transmission, and display). As such, they exert a sub-
stantial influence on the perceived visual quality of a 360° image.

While existing datasets such as CVIQ primarily address artifacts arising from compression,
others like VR3D and OIQA explore a broader spectrum, encompassing compression, blur,
and noise effects. However, the dataset expands on this by considering seven types of artifacts
with varying levels of severity. This comprehensive approach allows the capture of a more
nuanced understanding of the factors impacting the visual quality of 360° images across dif-
ferent stages of their distribution pipeline.

It has been demonstrated that image saliency can play a crucial role in assessing the objective
quality of a 360° image. In recent years, there has been a growing interest in studying image

saliency in the context of omnidirectional images. However, standard 2D saliency detection



models often fail to maintain the same performance for 360° images due to their unique char-
acteristics. Consequently, dedicated datasets have been developed to address this challenge.
The 360-SOD dataset [25] comprises 500 equirectangular images extracted from five 360° video
datasets, which include indoor and outdoor scenes. This dataset has been specifically designed
to study the detection of salient objects in 360-degree images, with existing neural network-
based models benchmarked against it. From the spatial distribution of salient objects in this
dataset, it has been observed that typical 360° distortions significantly impact human visual
attention.

Similarly, Zhang et al.. [64] introduced the F-360iSOD dataset, which consists of 107 equirect-
angular images for the detection of salient objects based on fixation. The reference images
in this dataset are a combination of images from Salient360! [36] and Stanford360 [42]. Eye
gaze data are utilized to manually annotate salient objects, resulting in the identification of
1165 salient objects belonging to 72 categories across various aspects of real scenes. In this
dataset, the performance of standard saliency estimation models is evaluated, highlighting the
challenges posed by omnidirectional images.

Additionally, the ICME’17 Grand Challenge introduced Salient360! dataset [17], which com-
prises 85 reference images. During the test session, subjects viewed the images while their
head movements and gazes were recorded. The corresponding saliency maps were gener-
ated based on the recorded head movements and fixation maps that were produced using the
recorded eye gazes. This dataset provides valuable information on how viewers interact with
360° images.

Furthermore, Sitzmann et al.. [42] captured gaze and head orientation data from 169 users
while viewing 22 omnidirectional images. This dataset, called Stanford360, analyzes the view-
ing behaviors of VR users under various conditions, providing information on factors such
as similarity in viewing behavior between users, fixation bias in VR, and the impact of scene
content on viewing behavior.

Furthermore, Upenik et al.. [47] proposed a tool to perform subjective evaluations of 360°
images and videos, including a software application suitable for mobile devices and HMDs.
This tool enables the viewing of omnidirectional images and videos with different projection
formats, and the dataset consists of six Source Reference Circuits (SRCs) projected using both
equirectangular and cube map projections and compressed using the JPEG encoder at varying
compression rates.

In addition to the plethora of 360° image datasets tailored for IQA, there is also a significant

body of literature dedicated to 360° video datasets. These datasets serve as invaluable resources



for evaluating video quality metrics in a range of scenarios and content types.

Some notable examples of 360° video datasets include 360-VHMD [8], VR-VQA438 [54], Sports-
360 [20], IVQAD [12], PVS-HM [55], VQA-OV [24], VR-scene [56], 360-saliency [65], and Wild-
360 [7]. These datasets cover diverse content genres and scenarios, allowing for comprehensive
evaluations of video quality metrics. Researchers have benchmarked various quality metrics
on these datasets to assess their performance in different contexts and under different types
of distortions.

However, it is important to note that the work in this study primarily focuses on understand-
ing the distortions encountered by 360° images throughout the distribution pipeline. Although
these video datasets offer valuable insight into video quality assessment, the emphasis lies
specifically on addressing the challenges posed by distortions in the context of 360° images.
Moving beyond technical considerations, it is essential to explore how visual distortions affect
the Quality of Experience (QoE) of consumers who engage with 360-degree content. Studies
by Chen et al. [5] and Duan et al. [11] explore the subjective dimensions of the viewer ex-
perience, evaluating distorted images within controlled virtual reality settings. These studies
underscore the importance of developing VR quality models and benchmarking VR quality
prediction algorithms using representative subjective VR quality databases.

Moreover, salient object detection (SOD) has emerged as a crucial aspect in understanding
viewer attention in panoramic images. Datasets like the 360-SOD dataset[25], F-360iSOD
dataset [64], and Salient360! dataset [36] provides valuable resources for studying how vi-
sual distortions impact human visual attention in 360° images.

The goal of image-based salient object detection (SOD) is to identify and classify items that
draw human attention. This is a crucial first step in several tasks, including object identifi-
cation [37], tracking [19], and image parsing [23]. fia Li et al. [25] propose a 360 degree
image-based SOD dataset of 500 high-resolution equirectangular pictures in their work. Se-
lecting typical equirectangular pictures from five popular 360° video datasets, they manually
label every item and location on these images using exact masks in a free-viewpoint manner.
Through analysis of this information, they discover that the most notable features are tiny

salient objects, large-scale complex scenes, and projection distortion.
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2.1.2 Image quality metrics

In recent years, significant progress has been made in the development of objective metrics
to evaluate image quality. This section presents a review of the 2D image quality metrics that
have been applied to 360° images and of new metrics, specifically designed for omnidirectional

media.

1. 2D Image Quality Metrics: Quality assessment algorithms can be divided into Full
Reference (FR), Reduced Reference (RR), and No Reference (NR) algorithms. The FR,
NR, and RR models require the original reference image, some information about it, and
only the distorted image, respectively. The list of FR and NR quality metrics that are
compared in this work is provided in Table 2.2.

The structural similarity index (SSIM) [50] computes the luminance, contrast, and struc-
tural similarity between the reference image and the distorted image. The multiscale
structural similarity index (MS-SSIM) incorporates variations in viewing conditions. In
the IW-SSIM metric [51], the SSIM is modified by introducing the weighted local in-
formation content pool. Similarly, the weighted mean squared error of the information
content (IW-MSE) and the weighted PSNR of the information content (IW-PSNR) are
also calculated in [51], incorporating information from the Laplacian pyramid transform
domain. However, Visual Information Fidelity (VIF) [40]combines two parameters: in-
formation on the reference image and the amount of similar information that can be
extracted from the distorted image.

Phase congruence and low-level image features of gradient magnitude are combined
to estimate the complete reference feature similarity metric (FSIM) [63]. However, the
Information Fidelity Criterion (IFC) metric uses statistics from the natural world [41].
The Universal Image Quality Index (UQI) exploits image distortion as a combination
of three factors: correlation loss, luminance, and contrast distortion [49]. Noise injec-
tion is another technique that is adopted in Noise Quality Measure (NQM) [10]. Itis a
human-visual system-inspired metric that depends on the viewing distance of the im-
age, the variance of the luminance, and the contrast effect. Efforts have also been made
to involve saliency and image content in the quality estimation task. Zhang et al. in
[61] studied the influence of saliency on the evaluation of image quality. Distortions
in an image affect visual attention, and thus estimating the saliency of the image can
potentially help in predicting the quality score. The Visual Saliency-Based Index (VSI)

metric first computes the local quality map of the distorted image using the saliency

10



map. Then, when estimating the quality score, a weighting function defined by visual
saliency is used to show the influence of a local region. A content-based metric (CBM)
proposed in [13] is based on fuzzy measures and the fuzzy integral quality assessment
method [43]. The CBM merges the local information with the structural similarity of the
image.

Blind no-reference quality metrics have recently been developed [5]. Blind image in-
tegrity using the DCT statistics metric (BLIINDS) [38] uses a machine learning-based
approach that considers local discrete cosine transform coefficients. The advantage of
BLIINDS is that it is not specific to any particular type of distortion. The referenceless
image quality evaluation engine based on feature maps (FRIQUEE) [14] explores percep-
tually relevant statistics from natural scenes of distorted images in different color spaces
and transform domains. The image integrity and iNtegrity assessment metric based on
distortion identification (DIIVINE) [33] is based on natural scene statistics. The model
first identifies the type of distortion, and, subsequently, a distortion-specific quality as-
sessment is made.

However, unlike BLIINDS and FRIQUEE, DIIVINE depends on the type of distortion in
the image. Mittal et al. [30] introduced a blind referenceless image spatial quality eval-
uator (BRISQUE) that uses scene statistics of locally normalized luminance coefficients
to analyze image quality degradation.

In [38], a blind image quality index is proposed based on DCT statistics. The blind mul-
tiple pseudoreference image-based metric (BMPRI) [28] performs a quality assessment
by aggravating distortions and subsequently computing similarity to the distorted im-
ages. Integrated Local Natural Image Quality Evaluator (ILNIQE) [62] uses a multivariate
Gaussian model of natural image patches that integrates various image features derived
from multiple cues. A no-reference perceptual quality assessment of JPEG compressed
images (JPEGSNR) is presented in [52]. The blind image quality index (BIQI) [32] is a
popular no-reference metric that uses a two-step framework based on statistics of the
natural scene. Here, the first step is to classify the type of distortion and the second step
is to employ a quality assessment technique based on the identified distortion type. The
novel blind IQA method (NBIQA) [35] explores features in both the spatial and transform
domains. Gu et al. [16] propose visual saliency-guided sampling and Gabor filtering
(IQVG). The perception-based image quality assessor (PIQE) [34] estimates blockwise
distortion in image patches, and the estimated quality score is inversely proportional

to image distortion. The spatial-spectral-entropy-based quality index (SSEQ) [26] uses

11



Full Reference No Reference
Year Metric Type | Year Metric Type
2021 FGIQA 2D/360° | 2023 | PW-360IQA | 360°

2021 BL 360° 2022 MFILGN 360°
2018 S-SSIM 360° 2019 | MC360IQA | 360°
2018 | NCP-PSNR 360° 2020 VMAF 2D

2018 | CP-PSNR 360° 2019 Voronoi 2D
2016 | WS-PSNR 360° 2019 NBIQA 2D
2016 | CPP-PSNR 360° 2018 BMPRI 2D
2015 S-PSNR 360° 2017 | FRIQUEE 2D

2011 FSIM 2D | 2016 PSS 2D
2010 | IW-MSE 2D | 2015 PIQE 2D
2010 | IW-PSNR 2D | 2015 | ILNIQE 2D
2010 | IW-SSIM 2D | 2014 SSEQ 2D
2006 VIF 2D | 2013 IQVG 2D
2005 IFC 2D | 2012 NIQE 2D
2005 CBM 2D | 2012 | BRISQUE | 2D
2004 SSIM 2D | 2012 | BLINDS | 2D
2004 | PSNR 2D | 2011 | DIVINE 2D
2003 | MS-SSIM 2D | 2010 BIQI 2D
2002 U0l 2D | 2010 DCT 2D
2000 |  NQM 2D | 2002 | JPEGSNR | 2D

Table 2.2: List of full reference and no reference quality metrics and the corresponding image
type.

both local spatial and spectral entropy features in distorted images. It is capable of as-
sessing the quality of a distorted image in multiple categories of distortion. Similarly, a
pseudo-structural similarity metric (PSS) is introduced in [27].

Another subsequent research in [31] introduces a completely blind natural image qual-
ity evaluator (NIQE) that does not learn from distortions. Instead, it takes advantage
of the deviations from the statistical regularities in natural images. The quality assess-
ment of single and multiple distorted images is performed using a six-step blind metric
(SISBLIM) [[15]. This model estimates image quality based on individual distortions and

also the joint effects of different distortions.

2. 360° Image Quality Metrics: It can be seen that the above-mentioned quality metrics
have been designed for assessing 2D images. However, the peculiarities of a 360° content
require the assessment metric to be more flexible in understanding how and on what fac-
tors image quality depends. Especially during the capture, encoding, and transmission

phase, several distortions can affect the 360° content, thus modifying the visual quality.
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Assessing the effect of such 360° specific distortions on quality is a challenging problem.
Interestingly, quality assessment metrics for 360° media are mostly developed for videos
such as full reference metrics (e.g., SSSIM, NCP-PSNR, WS-PSNR) and the no-reference
metric, M360IQA. S-PSNR [58] evaluates the quality between the different projections.
Sample a set of points from the spherical surface and compute their PSNR to estimate
the generalized quality of the images. However, S-PSNR uses the equirectangular pro-
jection, which accounts for distortions along the peripheral regions of the image. In this
direction, Zakharchenko et al. [60] use the Craster parabolic projection (CPP) format
and subsequently use a gamma-corrected pixel value to calculate PSNR. The weighted-
to-spherically uniform quality metric (WS-PSNR) [59], [45]does not perform sampling
of points in the spherical domain for the calculation of PSNR. Instead, the error in pixel
values is computed, and different weights are assigned to the error pixels depending on
the observed spherical area. Xu et al. [53] exploit the region of interest in videos to
define two objective quality metrics, non-content-based perceptual PSNR (NCP-PSNR)
and content-based perceptual PSNR (CP-PSNR). NCP-PSNR uses the viewing direction
frequency close to the equator of each viewport. However, the viewing direction is usu-
ally driven by the content. In this regard, the CP-PSNR that uses content information
has shown better performance than the NCP-PSNR.

Recently, a full reference structural similarity in the spherical domain (S-SSIM) was pro-
posed in [6], which is related to the traditional SSIM measure for 2D images.

Sun et al. presented two variants of a non-reference quality metric (MC360IQA) [44].
In both variants, a ResNet34 architecture is used for extracting the features, and subse-
quently, hyper-ResNet34 merges the extracted features. The first variant uses the quality
score of individual viewports, whereas the other variant uses the mean of quality scores
for each viewport.

The PW-360IQA (Perceptually Weighted Multichannel CNN for 360 degree image qual-
ity assessment), introduced in [39], utilizes a multichannel CNN with a weight-sharing
strategy to evaluate 360 degree image quality. By extracting visually significant view-
ports based on visual scan path predictions and integrating human visual system proper-
ties, PW-360IQA achieves robust performance on CVIQ and OIQA datasets while main-
taining reduced computational complexity. This approach represents a novel fusion of
machine learning and perceptual understanding, effectively capturing the importance
of different image regions in the evaluation of 360-degree image quality.

On the contrary, MFILGN (Multifrequency Information and Local Global Naturalness for
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No-Reference Omnidirectional Image Quality Assessment), proposed in [68], combines
multifrequency information and local global naturalness measurements using wavelet
decomposition and natural scene statistics. By leveraging insights from human visual
perception and VR viewing processes, MFILGN offers an effective quality assessment
method for 360-degree images. Its superior performance in no-reference quality assess-
ment, demonstrated in publicly available OIQA databases, highlights its significance in
considering both global and local image characteristics.

Furthermore, the compressed IQA metric presented in [66] addresses the need for a
fine-grained evaluation of compressed images. Although the main full reference (FR)
metrics excel at predicting quality at coarse-grained levels, the proposed FR-IQA met-
ric focuses on structural and textural differences to offer improved QoE and guidance
for compression algorithms. Validation in the fine-grained compression IQA (FGIQA)
database showcases its superiority over standard FR-IQA metrics, with competitive per-
formance in coarse-grained compression IQA databases.

Lastly, the reference image-based objective blur level (BL) metric proposed in [1] accu-
rately assesses image quality degraded by motion blur. Unlike traditional metrics such
as SSIM and PSNR, the BL metric utilizes point spread function/blur kernel analysis to
provide more reliable quality assessments. Experimental results demonstrate its supe-
rior performance in describing perceived image quality, particularly in challenging low-
light and low-texture conditions, thus offering promise for effective image-deblurring
processes. In the following section, a detailed description of the proposed database is

presented.
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Chapter 3

Dataset Description

A. Source Reference Circuits (SRC)

The proposed dataset comprises 10 equirectangular Source Reference Circuits (SRCs), chosen
from the pool of 85 images available in Salient360! dataset presented in the ICME Grand Chal-
lenge [36], [17]. The selection process mainly focused on two key features: Spatial Information
(SI) and Colorfulness (C), which are commonly used criteria for SRC selection [5].

Spatial information serves as an indicator of edge energy and helps to estimate the complexity
of an image [44], [57]. A higher SI value corresponds to a more intricate scene. On the other

hand, colorfulness is measured by the intensity and diversity of colors present within an image

[5]. [18].

The 10 SRCs chosen for inclusion in this thesis are depicted in Figure3.1.

ImageName | Spatial Information | Colorfulness
Image 16.jpg 7.36 0.79
Image 18.jpg 7.45 0.19
Image 19.jpg 7.23 0.49
Image 2.jpg 7.79 0.78
Image 20.jpg 7.72 0.32
Image 24.jpg 7.60 0.51
Image 28.jpg 7.50 0.20
Image 4.jpg 7.34 0.36
Image 42.jpg 7.55 0.23
Image 47.jpg 7.65 0.39

Table 3.1: Spatial Information and Colorfulness for Each Reference Image.

B. Hypothetical Reference Circuits (HRC)

Creating a dataset for Image Quality Assessment (IQA) requires the definition of Hypothetical
Reference Circuits (HRC) derived from the available Source Reference Circuits (SRC) [22].

Throughout the 360-degree media distribution pipeline, various distortions may occur during
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the capture, encoding, transmission, and display phases [9]. Existing datasets such as CVIQ
employ encoding techniques such as JPEG, H.264, and H.265 to generate HRC. On the contrary,
data sets such as VR3D and OIQA utilize a combination of encoding techniques (e.g., JPEQ,
H.265, VP9), noise, and blurring distortions. Currently, there is no standardized procedure
for determining which encoding/rendering/distortion techniques to adopt when generating
HRCs.

In this thesis, I have chosen three types of artifacts: distortion, blur, and noise, to generate

(h) Image 24 (i) Image 19 (j) Image 20

Figure 3.1: The list of images used as reference images in our dataset.

my hypothetical reference circuits (HRCs). The rationale for selecting these artifacts stems
from their potential appearance during three of the four phases of the 360° media distribu-
tion pipeline[9], namely acquisition, encoding, and rendering. These artifacts represent com-
mon challenges encountered throughout the distribution process and are therefore relevant

for evaluating image quality across various stages of the pipeline.

« Distortion: Photographic lenses commonly introduce optical aberrations during image
acquisition, such as pincushion and barrel distortions. Pincushion distortion causes the
magnification of the image to increase with distance from the optical axis, resulting in
the inward folding of peripheral regions towards the center while leaving the central
region unaffected. On the contrary, barrel distortion causes magnification to decrease
with distance from the optical axis, causing the central region to protrude outward. Both
artifacts create distinct spatial patterns in the acquired image and have a significant

impact during the capturing phase of omnidirectional images.

« Blur: Blur effects are observed during both the image acquisition and the display phases.
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Figure 3.2: Scatter plot showing the relationship between Spatial Information and Colorfulness
for the 10 reference images.

We investigate the effects of motion blur and Gaussian blur on the perceived quality of
distorted 360° images. During image capture, discontinuities between different cameras
can lead to motion blur in the captured scene. Similarly, when viewing omnidirectional
images using a Head-Mounted Display (HMD), there is often a delay between the move-
ment of the user’s head and the response of the display, resulting in motion blurring
that may cause motion sickness in end users[67]. Additionally, the coding phase in-
volves projection and reprojection between spherical and planar representations, which

can inherently cause blurring effects, particularly Gaussian blurring.

+ Noise: The limitations of sensors in 360-degree multicamera rigs lead to noise during
the capture phase. For this dataset, we considered three types of noise: salt and pepper,
Gaussian, and Poisson noise, as mentioned in [2]. These types of noise introduce distur-

bances into the captured images, affecting their overall quality and fidelity.

The effect of each artifact is studied systematically by considering various intensity levels.
With the exception of Poisson noise, all other artifacts are evaluated at three severity levels:
low, average, and high. Table 3.2 provides a summary of the distortions considered in this
document, along with the corresponding stage in the 360° content distribution pipeline where
they occur. Furthermore, the table outlines the parameter settings for each distortion level to

achieve the desired severity levels.

In Figure3.3, an example of hypothetical reference circuits (HRC) generated from a sample
Source Reference Circuit (SRC) is presented, illustrating the impact of these distortions on
image quality.

To collect Mean Opinion Scores (MOS) for each stimulus, a comprehensive subjective test is
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Transformation Type Content Distribution Stage Parameters
Capturing | Capturing, Display

Barrel Distortion 3 - 1,3,5

Pincushion Distortion 3 3 0.3, 0.6, 0.9

Motion Blur 3 3 10, 15, 25

Gaussian Blur - 3 4,7, 10

Salt and Pepper Noise 3 - 1,3,5

Gaussian Noise 3 - 1,2,3

Poisson Noise 1 - 1

Table 3.2: Transformations and Parameters for Content Distribution Stages.

conducted. Details of the subjective test methodology and the MOS collection strategy are

elaborated in the following section.

(a) Reference(IMG 2) (b) Barrel Low (c) Barrel Avg (d) Barrel High

(o) Salt&Pep. Avg  (p) Salt&Pep. High

(q) Gauss. N Low (r) Gauss. N Avg (s) Gauss. N High (t) Poisson Noise

Figure 3.3: List of images depicting all the types of distortion (and their level of severity) used
in this work. We used Image # 2 as a sample image for this example

3.1 Subjective Test

A. Subjective experiment methodology

According to the ITU-R BT500-11 recommendation [21], subjective testing methodologies typ-
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ically encompass three basic types: single stimulus (SS), double stimulus (DS), and paired com-
parison (PC). Given that 360° images are viewed using a Head-Mounted Display (HMD), where
subjects can only see a portion of the image known as the Field of View (FOV), we opted for
the SS method in our test setup.

The test protocol was organized into distinct sections, including instructions, visual acuity
test, color vision test, training session, rest period, and the main test session. Clear instruc-
tions were provided to the participants, which outline the purpose of the experiment and how
to accurately score the stimuli. Subsequently, visual acuity and color vision tests were con-
ducted to ensure the suitability of the participants for the study.

The participants then underwent a training session to familiarize themselves with the experi-
mental environment and the task at hand. Following the training session, a two-minute break
was provided to allow the participants to rest before beginning the actual test session. This
structured approach ensured that the participants were adequately prepared and comfortable
throughout the subjective evaluation process.

B. Subjects

A total of 161 subjects participated in the test, consisting of 117 men and 44 women, according
to the estimates provided in [3]. The age range of the subjects ranged from 18 to 61 years, with
an average age of 27 years. Participants with comorbid conditions such as vertigo, anxiety, and
amblyopia were excluded from the test to ensure the reliability and validity of the results.

C. Experiment Duration

The total duration of the experiment for each subject was 15 minutes. Specifically, the instruc-
tions provided to the subjects prior to starting the test and the visual acuity and color tests
were completed in less than 5 minutes. The training session lasted approximately 3 minutes,
while the actual test session lasted approximately 6 minutes. This duration covers the time
required to record the scores provided by the subjects.

D. Training

At the beginning of the experiment, subjects were briefed on the purpose of the test and
detailed instructions were provided regarding the test procedure. The test consisted of two
phases: training and testing.

During the training phase, subjects were assigned to view images using the HMD device. This
phase aimed to familiarize participants with the HMD and the free viewing feature of the 360°
content. Subjects were instructed to provide image quality scores during the training phase
on a scale of 1 to 5, where 1 corresponds to poor quality and 5 to excellent. The purpose of this

exercise was to familiarize participants with the rating system and the experimental setup. In

19



particular, scores collected during the training phase were not recorded for analysis.

It is important to note that the image used in the training phase was identical for all partici-
pants. Furthermore, the images used for training purposes were different from those used in
the subsequent test phase to ensure unbiased evaluation during the testing session.

E. Apparatus and Environment

The image stimuli were presented using an HTC Vive Head-Mounted Display (HMD). The
Witoo VR photo viewer application for HTC Vive facilitated the display and manipulation of
images through a controller. Each test session comprised 20 images, 19 distorted, and one as
a reference.

The experiment was conducted in a quiet environment to minimize external distractions. Sub-
jects were seated on swivel chairs to facilitate free viewing of 360-degree content. Participants
were allowed to wear glasses or contact lenses if necessary.

Test conditions such as viewing distance and luminance were not controlled, as the experi-
ments were conducted using an HMD rather than traditional displays. Most of the subjects
were unexperienced with the use of HMDs and had no previous experience in video quality
assessment.

Throughout training and test sessions, a gray image always followed each test stimulus. This
protocol, according to [21], aimed to mitigate any bias arising from factors such as color, con-
trast, and brightness. During viewing the gray image, subjects were instructed to rate the
perceptual quality of the stimuli they had just viewed using a rating scale ranging from 1 to

5.
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Chapter 4

Experimental Results

The analysis carried out in this thesis delves into various aspects of image quality evaluation,
including MOS for distortion types, and ANOVA analysis. Each component offers valuable
insight into the perceptual quality of images and sheds light on the influence of different dis-
tortions and characteristics on visual perception. Through a comprehensive exploration of
these factors, the objective is to deepen the understanding of image quality metrics and guide
the development of image processing algorithms and compression techniques.

The primary objective of these analyses is to comprehensively evaluate the image quality met-
rics and their implications for image processing and analysis. Through MOS and ANOVA re-
sults, the perceptual impact of distortions and image characteristics is explained, guiding the
development of algorithms prioritizing high perceptual quality. In addition, the analysis aims
to contribute to understanding image quality assessment methodologies and their diverse ap-

plications.

4.1 Analysis of Mean Opinion Scores for Distortion Types

The MOS for distortion types measures the perceived image quality of participants at different
distortion levels. Contrasting the MOS of each distortion type with the original image (Figure
4.1) allows one to assess the extent of perceptual degradation induced by various distortions.
Scrutinizing the variability in MOS and confidence intervals provides insight into the consis-
tency and reliability of participants’ judgments, crucial for interpreting perceptual differences.
Moreover, MOS serves as a crucial metric for evaluating the effectiveness of image processing
techniques and distortion reduction algorithms. By comparing MOS across different types of
distortion and severity levels, we can assess the relative perceptual impact of each distortion

and identify areas for improvement in image processing pipelines.
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Statistical analysis was aimed at assessing the MOS associated with various image distortions.
It involved loading the dataset from an Excel file and computing summary statistics, including
mean, standard deviation, and 95% confidence interval for each type of distortion; see Tables
4.1 and 4.2.

After importing the data into R using the readx1 package, summary statistics were cal-
culated for each column in the dataset, excluding non-numeric identifiers. These statistics
provided insight into the central tendency and variability of MOS for each type of distortion.
Furthermore, the distortion types were grouped on the basis of their characteristics, facilitat-
ing the visualization of MOS trends across different categories. Individual plots were generated
for each distortion group using the package ggplot2, displaying the mean MOS along with
error bars representing the confidence interval 95%.

Arranging the plots into a grid layout enabled a comprehensive comparison of MOS across var-
ious distortion types, facilitating the identification of significant differences in perceived im-

age quality and contributing to a deeper understanding of the impact of distortions on viewer

perception.

Distortion Type Distortion Level | Code
Pincushion High PH
Pincushion Average PA
Pincushion Low PL

Barrel High BH

Barrel Average BA

Barrel Low BL
Motion Blur High MBH
Motion Blur Average MBA
Motion Blur Low MBL
Gaussian Blur High GBH
Gaussian Blur Average GBA
Gaussian Blur Low GBL
Gaussian Noise High GNH
Gaussian Noise Average GNA
Gaussian Noise Low GNL
Salt and Pepper Noise High SPH
Salt and Pepper Noise Average SPA
Salt and Pepper Noise Low SPL

Poisson Noise - PN

No Distortion - ND

Table 4.1: Distortion types and levels with corresponding codes.

Original Image (OR):
+ The original image serves as the baseline reference for comparing the perceptual qual-
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ity of distorted images. It has a mean opinion score of 3.95, indicating a high level of

perceived quality among the participants.
Impact of Distortion Types:

« Pincushion Distortions: Distortions characterized by a pincushion effect (PH, PA,
PL) generally exhibit lower mean opinion scores compared to the original image. This
suggests that these distortions introduce perceptual degradation, especially at higher

levels of distortion.

« Barrel Distortions: Barrel distortion types (BH, BA, BL) also show a decrease in mean
opinion scores relative to the original image. However, the Barrel Low (BL) demonstrates
a slightly higher mean opinion score, indicating a less severe impact compared to other

barrel distortions.

Variable | Mean | Standard Deviation
PH 2.57 +1.27
PA 2.89 +1.27
PL 3.18 +1.19
BH 2.22 +1.06
BA 2.39 +1.19
BL 2.98 +1.15
MBH 1.71 +0.96
MBA 2.06 +0.88
MBL 2.57 +0.96
GBH 1.38 +0.84
GBA 1.38 +0.70
GBL 1.76 +0.90
GNH 2.53 +0.98
GNA 2.93 +0.98
GNL 3.07 +0.98
SPH 2.65 +0.98
SPA 2.86 +1.03
SPL 3.34 +0.99
PN 3.60 +0.98
OR 3.95 +1.07

Table 4.2: Summary Statistics.

« Motion Blur: Distortions related to motion blur (MBH, MBA, MBL) are perceived to
have a significant impact on image quality, as indicated by their lower mean opinion
scores. Motion blur tends to reduce image clarity and detail, resulting in lower perceived

quality.
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« Gaussian Blur: Gaussian blur distortions (GBH, GBA, GBL) exhibit the lowest mean
opinion scores among all types of distortion, indicating substantial degradation in image

quality. These distortions often result in a loss of sharpness and detail.

» Noise Distortions: Distortions caused by noise (GNH, GNA, GNL, SPH, SPA, SPL, PN)
show varying levels of impact on perceived quality. Gaussian Noise Low (GNL), Salt and
Pepper Noise Low (SPL), and Poisson Noise (PN) have comparatively higher mean opin-

ion scores, suggesting less perceptual degradation compared to other noise distortions.
Variability in Perceptual Quality:

+ The standard deviations associated with mean opinion scores provide insights into the
variability of participants’ opinions. Higher standard deviations indicate a wider range

of perceptions among participants for a given distortion type.

The confidence intervals, represented by the upper and lower bounds, offer a range
within which the true mean opinion score lies with a certain level of confidence. They

help to assess the reliability of the mean opinion scores obtained from the study.
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Figure 4.1: Mean Opinion Scores for Different Distortion Types.

In comparing Pincushion distortions (PH, PA, PL) with Gaussian blur distortions (GBH, GBA,
GBL), we can recognize slight differences in their impact on perceived image quality and their

adherence to the Just Noticeable Difference (JND) threshold.
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Pincushion distortions manifest as geometric distortions resembling a pincushion effect, while
Gaussian blur distortions primarily affect image sharpness and clarity. When analyzing the
mean opinion scores (MOS) for both distortion types:

Pincushion Distortions:

« PH (Pincushion High): It shows a lower mean opinion score compared to the original
image, indicating perceptual degradation. Being categorized as "High,” PH introduces a
significant level of distortion, likely exceeding the JND threshold, resulting in a notice-

able degradation in perceived quality.

« PA (Pincushion Average): Similarly to PH, PA also shows a lower mean opinion score,
suggesting perceptual degradation, although potentially less severe. Classified as "Av-
erage,” PA introduces a moderate level of distortion, likely noticeable but possibly less

pronounced than PH.

« PL (Pincushion Low): Although it still exhibits a lower mean opinion score than the
original image, PL may have a relatively higher score compared to PH and PA, implying
potentially less severe degradation. Classified as "Low,” the PL introduces minimal dis-
tortion, possibly less noticeable to participants compared to higher levels of pincushion

distortion.

(a) Pincushion High (b) Pincushion Average (c) Pincushion Low

Figure 4.2: Picushion Distortion

Gaussian Blur Distortions:

« GBH (Gaussian Blur High): It displays the lowest mean opinion score among all types
of distortion, indicating substantial perceptual degradation. Classified as "High,” GBH
introduces a significant level of blur distortion, likely highly noticeable to participants,

and surpassing the JND threshold.

« GBA (Gaussian Blur Average): Similar to GBH, GBA also shows a low mean opinion

score, suggesting perceptual degradation, although potentially less severe. Classified as
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“Average,” GBA introduces a moderate level of blur distortion, noticeable but potentially

less pronounced than GBH.

+ GBL (Gaussian Blur Low): Although still showing a lower mean opinion score than the
original image, GBL may have a relatively higher score compared to GBH and GBA, im-
plying potentially less severe degradation. Classified as "Low,” GBL introduces minimal

blur distortion, possibly less noticeable compared to higher levels of Gaussian blur.
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(a) Gaussian Blur High (b) Gaussian Blur Average (c) Gaussian Blur Low

Figure 4.3: Gaussian Blur Distortions

The analysis reveals the perceptual impact of various types of distortion on image quality rel-
ative to the original image. Understanding how different distortions affect perceived quality is
essential for developing image processing algorithms and compression techniques that prior-
itize maintaining high perceptual quality. By addressing the identified perceptual challenges
associated with specific distortion types, developers can improve the overall user experience
and satisfaction with visual content across various applications and platforms.

Both Pincushion and Gaussian blur distortions lead to perceptual degradation compared to
the original image, with higher mean opinion scores generally indicating less degradation.
However, at higher levels of distortion, both PH and GBH exhibit pronounced degradation,
likely surpassing the JND threshold. Pincushion distortions may have more noticeable effects
at lower levels compared to Gaussian blur distortions, which exhibit significant degradation
even at minimal levels. Integrating this understanding into the development of image process-
ing algorithms can help prioritize maintaining image quality above the perceptual threshold,

thus enhancing user experience and satisfaction with visual content.

4.2 In-depth Analysis of ANOVA Results

The ANOVA, or one-way analysis of variance, is a statistical test used to assess whether the
means of three or more populations are equivalent, contrasting this notion with the proposi-

tion that not all the means of the population share this uniformity. For the ANOVA test, the
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(a) Pincushion Distortion (b) Barrel Distortion (c) Motion Blur

PL | PA | PH BL | BA | BH MBL | MBA | MBH
PL | NA | 0.03 | 0.00 BL | NA | 0.00 | 0.00 MBL NA | 0.00 | 0.00
PA | 0.03 | NA | 0.02 BA | 0.00 | NA | 0.18 MBA | 0.00 NA | 0.00
PH | 0.00 | 0.02 | NA BH | 0.00 | 0.18 | NA MBH | 0.00 | 0.00 NA

(d) Gaussian Blur (e) Gaussian Noise
GBL | GBA | GBH GNL [ GNA | GNH
GBL | NA | 0.00 | 0.00 GNL NA | 0.21| 0.00
GBA | 0.00 NA 1.00 GNA | 0.21 NA 0.00
GBH | 0.00 | 1.00 NA GNH | 0.00 | 0.00 NA

(f) Salt and Pepper Noise

SPL | SPA | SPH
SPL | NA | 0.00 | 0.00
SPA | 0.00 | NA | 0.06
SPH | 0.00 | 0.06 | NA

Table 4.3: ANOVA P-Value Differences Tables.

samples must maintain consistent variances, indicated by o2 [4]. This test is particularly rele-
vant in the context of analyzing image quality metrics in different levels of distortion, where
the objective is to determine if there are significant differences in the variables measured be-
tween various types of distortion.

Complementing the MOS assessment, ANOVA quantitatively evaluates the statistical signif-
icance of differences in variables measured between distortion levels. The P-values in Table
4.3 distinguish whether the observed differences are likely due to random chance or are at-
tributable to distortion effects. Lower p-values underscore distortions that significantly impact
perceived image quality, which warrants attention in image processing algorithms.

ANOVA is essential because it provides a formal statistical framework for the following.

« Quantifying Differences: ANOVA allows us to quantify the degree of variation in
MOS between different distortion levels. By calculating the p-values, we can determine
whether the observed differences are likely due to chance or if they represent true dis-

parities in the perception of image quality.

« Comparison of multiple groups: With ANOVA, we can compare the means of mul-
tiple groups simultaneously, rather than making pairwise comparisons between each
pair of distortion levels. This comprehensive approach helps identify general trends and

patterns in perception of image quality.

+ Controlling Type I Error: ANOVA helps control the risk of Type I error, which occurs
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when we mistakenly conclude that there is a significant difference between groups when
there is actually not much difference. Setting a significance level (such as o = 0.05),
ANOVA allows us to draw statistically valid conclusions about differences in image qual-

ity perception.

« Interpreting Results: The ANOVA test provides valuable information on which distor-
tion types have a significant impact on image quality perception and which may be less
influential. This information is essential to prioritize areas of focus in image processing
algorithms and optimization strategies.

In general, ANOVA is a powerful statistical tool that helps researchers rigorously an-
alyze and interpret differences in image quality perception between various types of
distortion, contributing to the advancement of image processing techniques and opti-

mization algorithms.

The ANOVA statistical analysis provided above in Table 4.3 provides valuable information
on the effects of various image distortions on the variables measured in different types of
distortion. Each distortion type, such as Pincushion Distortion, Barrel Distortion, Motion Blur,
Gaussian Blur, Gaussian Noise, Salt and Pepper Noise, Poisson Noise, and Original Image
(serving as the baseline), is represented by three levels: Low, Average, and High. Here is an

integrated analysis:

« Pincushion Distortion (PH, PA, PL):

— Significant differences are observed between high, average, and low levels of pin-
cushion distortion, indicating a notable impact on the measured variables. For
example, the degree of pincushion distortion applied to the images significantly

affects the image quality, as seen in the ANOVA results (p < 0.05).

— Comparison of the PL, PA, and PH groups confirms these findings, revealing sub-
stantial variations in the measured variable at different levels of pincushion distor-

tion.
« Barrel Distortion (BH, BA, BL):

— Similarly, there are statistically significant differences between high, average, and
low levels of barrel distortion, suggesting different impacts on the measured vari-
ables. These effects are evident in the ANOVA results (p < 0.01), highlighting the

importance of barrel distortion correction in image processing.
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- The BL, BA, and BH group analysis further emphasizes these distinctions, under-
lining the need to consider different levels of barrel distortion when optimizing

image quality.

. Motion Blur (MBH, MBA, MBL):

- Significant distinctions are noted between high, average, and low levels of motion
blur, indicating varying influences on the measured variables. The results of the
ANOVA (p < 0.001) underscore the importance of motion blur reduction tech-

niques in enhancing image clarity.

- The MBL, MBA, and MBH group analysis supports these observations, demonstrat-
ing substantial variations in the measured variable across different levels of motion

blur.

« Gaussian Blur (GBH, GBA, GBL):

- The analysis reveals statistically significant differences between high, average and
low levels of Gaussian blur, suggesting varying impacts on the measured variables.
The ANOVA results (p < 0.001) highlight the importance of Gaussian blur reduc-

tion in preserving the details of the image.

— Comparison of the GBL, GBA, and GBH groups further elucidates these differences,
emphasizing the need for careful adjustment of Gaussian blur levels for optimal

image quality.

« Gaussian Noise (GNH, GNA, GNL):

- Significant differences are detected between high, average, and low levels of Gaus-
sian noise, emphasizing the differential effects on the measured variables. The re-
sults of the ANOVA (p < 0.001) underscore the importance of controlling Gaussian

noise for accurate image analysis.

— The analysis of the GNL, GNA, and GNH groups reinforces these findings, high-
lighting the distinct impacts of different levels of Gaussian noise on the measured

variable.

« Salt and Pepper Noise (SPH, SPA, SPL):
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— Similarly to other distortions, statistically significant differences are observed be-
tween high, average, and low levels of salt and pepper noise, indicating varying im-
pacts on the measured variables. The ANOVA results (p < 0.001) suggest marked
disparities in the measured variable between different levels of salt and pepper

noise.

— The comparison of the SPL, SPA and SPH groups provides further insight into these
differences, highlighting the need to mitigate the noise from salt and pepper for

accurate image analysis.
« Poisson Noise (PN):

— Although not included in the pairwise comparison tables, Poisson noise likely in-
troduces unique effects on the measured variables, necessitating further investiga-

tion to understand its impact fully.
« Original Image (OR):

- Serving as a baseline, the original image condition provides a reference point to as-
sess the impact of distortions on the measured variables. Although not subjected
to specific distortion levels, the original image is crucial to understanding the mag-

nitude of distortion effects.

In summary, ANOVA analysis provides valuable insight into the significance of distortion in-
tensity across different types in influencing the measured variables. These findings are essen-
tial to refine image processing techniques and optimize image quality in various applications.
By integrating MOS and ANOVA, this analysis advances our understanding of image qual-
ity assessment and informs the development of more effective image processing techniques.
Taking into account both subjective and objective metrics facilitates the development of algo-
rithms that prioritize high perceptual quality, thus improving the user experience and satis-

faction with visual content in various applications and platforms.

4.3 Existing Metrics Performance

The performance of existing IQA metrics in the data set is evaluated using the evaluation tech-
nique recommended by VQEG [48]-[29]. This technique calculates the correlation between the

predicted scores by the objective metrics and the Mean Opinion Scores (MOS) provided by the
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subjects. The three metrics used in this evaluation are the Spearman correlation coefficient
(SRCC), Pearson linear correlation coefficient (PLCC), and the root mean square error (RMSE).
SRCC measures the strength and direction of the association between the predicted scores
generated by the IQA metrics and the MOS provided by human subjects. It assesses how well
the predicted scores rank image quality compared to human judgments. A higher SRCC indi-
cates better alignment between the predicted and human-assigned scores.

PLCC, similar to SRCC, measures the correlation between the predicted scores and MOS. How-
ever, it specifically evaluates the linear relationship between the two sets of scores. A higher
PLCC value signifies a stronger linear relationship between predicted and human scores.
RMSE measures the average magnitude of the differences between predicted and actual scores.
It indicates how accurately the IQA metrics predict the MOS values. A lower RMSE indicates
a better accuracy of the IQA metrics in predicting human judgments.

Several state-of-the-art quality metrics (both full reference and no reference) are tested on the
dataset. The full reference metrics include UQI, PSNR, SSIM, MS-SSIM, IFC, VIF, NQM, CBM,
IW-MSE, IW-PSNR, IW-SSIM, and FSIM. No-reference metrics include BIQI, BLIINDS, IQVG,
NIQE, DIVINE, BRISQUE, PIQE, BMPRI, FRIQUEE, JPEGSNR, DCT, NBIQA, PSS, SSEQ, and
ILNIQE.

In general, these metrics collectively provide a comprehensive evaluation of the performance
of IQA metrics by assessing correlation, linearity, and prediction accuracy, thus facilitating the
selection of appropriate IQA metrics for specific applications.

Table 4.4 below presents the performance of various full reference IQA metrics in the proposed
data set. The metrics evaluated include Universal Image Quality Index (UQI), Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM), Multiscale Structural Similarity Index
(MS-SSIM), Image Fidelity Criterion (IFC), Visual Information Fidelity (VIF), Complexity-Based
Metric (CBM), Noise Quality Measure (NQM), Improved PSNR (IW-PSNR), Improved SSIM
(IW-SSIM), Improved Mean Squared Error IW-MSE) and Feature Similarity Index (FSIM). Ob-

servations on the table are captured as follows after applying the various metrics.

« SRCC: The highest correlation coefficient is observed for VIF (0.43), indicating a rela-
tively strong alignment with human judgments. On the contrary, the lowest correlation
coefficient for IW-MSE is observed (-0.34), indicating a negative correlation and poor

alignment with human judgments.

« PLCC: VIF demonstrates the highest linear correlation (0.48) with human judgments,

indicating a strong linear relationship, while IW-MSE exhibits the lowest linear correla-
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Metric | UQI | PSNR | SSIM | MS-SSIM | IFC | VIF | CBM | NOM | IW-PSNR | IW-SSIM | IW-MSE | FSIM
SRCC | 0.30 | 0.39 0.22 0.04 0.40 | 0.43 | 0.22 0.22 0.34 0.18 -0.34 0.36
PLCC | 0.26 | 0.25 0.15 0.03 0.46 | 0.48 | 0.21 0.09 0.28 0.06 0.03 0.04
RMSE | 1.31 1.26 1.54 0.93 1.08 | 1.21 | 1.33 1.42 1.26 2.12 1.62 2.08

Table 4.4: State-of-the-art Full reference metrics performance on the proposed dataset.

tion (0.03), suggesting a weak linear relationship with human judgments.

« RMSE: MS-SSIM has the lowest prediction error (0.93), indicating higher precision to
predict image quality, while IW-SSIM has the highest prediction error (2.12), suggesting

lower precision to predict image quality.

Metrics such as VIF and CBM consistently perform well across all evaluation criteria, show-
ing higher correlation coefficients, stronger linear relationships, and lower prediction errors.
These metrics are promising for accurately assessing image quality. In contrast, metrics such as
IW-MSE and IW-SSIM exhibit poorer performance, with lower correlation coefficients, weaker
linear relationships, and higher prediction errors, making them less suitable for precise image
quality assessment. The selection of an appropriate IQA metric depends on specific application
requirements, with metrics such as VIF and CBM, known for their robust performance across
various evaluation criteria, being preferred in applications where accurate image quality as-

sessment is crucial.

Table 4.5 presents the performance of various no-reference IQA metrics on the proposed
dataset. The metrics evaluated include blind image quality index (BIQI), blind/referenceless
image spatial quality assessor (BLIINDS), image quality visual grader (IQVG), natural image
quality assessor (NIQE), deep image quality assessor (DIVINE), blind/referenceless image spa-
tial quality assessor (BRISQUE), perceptual image quality assessor (PIQE), blockiness measure
for perceived ringing image (BMPRI), reliable quality evaluation (FRIQUEE), JPEG signal-to-
noise ratio (JPEGSNR), discrete cosine transform (DCT), natural blind image quality assess
(NBIQA), pixel-based sharpness score (PSS), spatial structural entropy quality assessor (SSEQ),
and [llumination and naturalness invariant image quality assessor (ILNIQE). Observations on
the table are captured as follows after applying the various metrics.

SRCC ranges from -0.70 (NIQE) to 0.64 (FRIQUEE), indicating varying degrees of alignment
with human judgments in grading image quality, since a higher SRCC indicates better agree-
ment with human perception. Similarly, PLCC ranges from -0.74 (NIQE) to 0.72 (FRIQUEE),

suggesting varying levels of linear relationship with human judgments; Metrics with higher
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Metric | BIQI | BLIINDS | IQVG | NIQE | DIVINE | BRISQUE | PIQE | BMPRI | FRIQUEE | JPEGSNR | DCT | NBIQA | PSS | SSEQ | ILNIQE
SRCC | -0.66 -0.52 0.43 -0.70 -0.62 -0.61 -0.55 -0.59 0.64 0.47 -0.27 -0.48 -0.40 | -0.39 -0.52
PLCC | -0.69 -0.54 0.47 -0.74 -0.63 -0.67 -0.65 -0.69 0.72 0.57 -0.23 -0.56 -0.53 | -0.40 -0.57
RMSE | 1.64 1.67 1.39 1.69 1.50 1.58 1.59 1.73 1.30 1.85 1.53 1.61 136 | 1.26 1.63

Table 4.5: State-of-the-art No reference metrics performance on the proposed dataset.

PLCC demonstrate stronger alignment. RMSE ranges from 1.26 (SSEQ) to 1.85 (JPEGSNR),
indicating varying prediction errors. As highlighted above, lower RMSE values indicate better
predictive accuracy.

Metrics such as FRIQUEE demonstrate relatively higher correlation coefficients (SRCC: 0.64,
PLCC: 0.72), indicating better alignment and stronger linear relationship with human judg-
ments. On the contrary, metrics such as NIQE and DIVINE exhibit lower correlation coef-
ficients and higher prediction errors, suggesting poorer performance in predicting human
judgments. Thus, the choice of IQA metric depends on the specific application requirements,

considering factors such as correlation, linearity, and prediction accuracy.

Table 4.6 presents the performance of various full-reference IQA metrics for different types
of distortions used in the dataset. The metrics evaluated include UQI, PSNR, SSIM, MS-SSIM,
IFC, VIF, FI, NOM, IW _PSNR, IW _SSIM, IW_MSE, and FSIM.

Different types of distortion exhibit varying levels of correlation coefficients (SRCC and PLCC)
and prediction errors (RMSE) across IQA metrics; for example, distortions like Motion Blur and
Gaussian Blur generally have higher correlation coefficients and lower prediction errors com-
pared to distortions like Salt and Pepper, and Poisson Noise. Performance metrics are often
classified into high, average, and low severity levels for each type of distortion. In many cases,
the severity of the distortion directly affects the performance of the IQA metrics. For example,
higher levels of distortion severity tend to result in lower correlation coefficients and higher
prediction errors. Metrics such as VIF and NQM consistently demonstrate higher correlation
coefficients and lower prediction errors in multiple types of distortion. These metrics are par-
ticularly effective at assessing image quality across a wide range of types of distortion and
severity levels. Some distortions may exhibit inconsistencies in performance across different
IQA metrics. For example, while one metric may perform well for a particular distortion type,
another metric may show poor performance. The data highlight the importance of compre-
hensive evaluation and selection of IQA metrics based on the specific characteristics of the
distortion and the requirements of the application. Different distortions may require different
sets of metrics for an accurate assessment, and a one-size-fits-all approach may not be suit-

able. Distortions like Gaussian Noise and Poisson Noise pose unique challenges due to their
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Distortion Metric | UQI | PSNR | SSIM | MS-SSIM | IFC | VIF FI | NOM | IW PSNR | IW SSIM | IW MSE | FSIM
SRCC | -0.08 | 0.20 0.00 0.22 0.31 | 0.14 | 0.20 | 0.12 -0.21 0.06 0.21 0.00
Pincushion PLCC | -0.01 | 0.13 0.04 0.26 0.37 | 0.23 | 0.19 | 0.16 -0.22 0.08 0.19 0.02
RMSE | 1.62 1.19 1.02 0.73 1.83 | 1.81 | 0.91 | 1.40 1.56 1.06 0.87 0.85
SRCC | -0.29 | 0.46 0.03 0.31 -0.08 | -0.16 | 0.05 | 0.12 -0.09 -0.12 0.09 0.14
Barrel PLCC | -0.08 | 0.52 | -0.06 0.47 -0.05 | -0.11 | 0.02 | 0.13 0.02 -0.10 -0.02 0.13
RMSE | 1.53 1.24 1.17 0.69 1.59 | 1.58 | 1.08 | 1.44 1.39 1.51 1.47 1.13
SRCC | 0.82 | 0.67 0.66 0.49 0.89 | 092 | 0.63 | 0.53 0.88 0.52 -0.88 0.90
Motion Blur PLCC | 0.79 | 0.69 0.62 0.44 0.82 | 091 | 0.62 | 0.50 0.86 0.51 -0.63 0.71
RMSE | 1.73 1.56 2.35 1.06 0.72 | 1.13 | 2.10 | 1.88 1.50 2.82 1.20 2.82
SRCC | 0.78 | 0.52 0.58 0.66 0.80 | 0.79 | 0.60 | 0.50 0.68 0.72 -0.68 0.79
Gaussian Blur | PLCC | 0.78 | 0.49 0.49 0.59 0.90 | 0.89 | 0.53 | 0.45 0.79 0.67 -0.51 0.61
RMSE | 1.34 1.74 2.28 1.57 0.44 | 0.63 | 1.96 | 2.05 1.53 291 0.60 3.07
SRCC | 0.70 | 0.62 0.77 -0.03 0.76 | 0.70 | 0.74 | 0.33 0.60 0.40 -0.60 0.75
Gaussian Noise | PLCC | 0.68 | 0.57 0.73 0.00 0.70 | 0.70 | 0.69 | 0.34 0.54 0.51 -0.55 0.73
RMSE | 0.66 | 0.87 0.82 0.66 0.54 | 0.70 | 0.55| 0.79 0.67 2.16 1.86 2.10
SRCC | 0.66 | 0.61 0.69 0.18 0.76 | 0.67 | 0.66 | 0.59 0.64 0.31 -0.64 0.67
Salt and Pepper | PLCC | 0.60 | 0.61 0.67 0.18 0.62 | 0.66 | 0.66 | 0.59 0.62 0.36 -0.61 0.64
RMSE | 0.85 1.01 1.11 0.49 0.55 | 1.00 | 0.84 | 0.93 0.82 2.09 1.98 2.03
SRCC | -0.26 | 0.58 0.05 0.39 -0.43 | 0.48 | 0.04 | 0.24 0.78 0.43 -0.78 0.13
Poisson Noise | PLCC | -0.36 | 0.61 0.31 0.33 -0.32 | 0.38 | 0.30 | 0.29 0.75 0.45 -0.79 0.23
RMSE | 0.91 0.81 1.15 0.69 0.81 | 1.08 | 0.95| 0.74 0.71 1.46 2.61 1.44

Table 4.6: State-of-the-art Full reference metrics performance for each type of distortions used
in the dataset.

stochastic nature. Metrics may perform differently for these distortions compared to deter-

ministic distortions such as Blur, and Salt and Pepper.

Table 4.7 presents the performance of various no-reference IQA metrics for each type of
distortion used in the dataset. Distortion types include Pincushion, Barrel, Motion Blur, Gaus-
sian Blur, Gaussian Noise, Salt and Pepper, and Poisson Noise. The table evaluates IQA metrics
such as BIQI, BLIINDS, IQVG, NIQE, and others as seen in the table.

SRCC ranges from negative to positive values, indicating the strength and direction of as-
sociation between predicted IQA scores and human-assigned scores for each distortion type.
Negative SRCC values suggest a reverse correlation, while positive values indicate a positive
correlation.

PLCC varies between negative and positive values, representing the linear relationship be-
tween predicted and human-assigned scores for each type of distortion.

RMSE represents the average magnitude of the prediction errors for each distortion type and
IQA metric combination.

Each distortion type exhibits unique characteristics, leading to varying performance of IQA
metrics across different distortions. Motion Blur distortion poses significant challenges for
many IQA metrics, as indicated by low SRCC and PLCC values and high RMSE values. This
suggests that accurately assessing image quality under motion blur remains a complex task
for no-reference IQA metrics. On the other hand, distortions like Gaussian Noise and Salt

and Pepper show relatively higher correlation coefficients (SRCC and PLCC) for certain IQA
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Distortion Metric | BIQI | BLIINDS | IQVG | NIQE | DIVINE | BRISQUE | PIQE | BMPRI | FRIQUEE | JPEGSNR | DCT | NBIQA | PSS | SSEQ | ILNIQE
SRCC | -0.02 -0.01 -0.04 | 0.21 0.35 0.12 0.31 0.06 0.12 -0.06 -0.08 0.29 -0.35 | 0.23 -0.15
Pincushion PLCC | 0.04 0.00 0.02 0.18 0.33 0.13 0.35 0.09 0.10 0.01 -0.02 0.28 -0.36 | 0.32 -0.23
RMSE | 1.39 0.77 1.43 1.46 0.75 0.72 0.82 1.24 1.53 1.61 1.09 0.56 1.12 | 0.93 1.63
SRCC | -0.06 -0.21 -0.30 | -0.09 -0.11 -0.26 0.28 0.11 0.23 0.12 0.15 -0.24 0.06 | 0.00 0.00
Barrel PLCC | -0.10 -0.20 -0.47 | -0.20 -0.25 -0.33 0.24 0.10 0.21 0.15 0.23 0.08 -0.13 | 0.09 -0.05
RMSE | 1.13 0.94 2.03 1.26 0.82 0.92 0.68 1.00 1.79 1.89 0.94 0.64 0.89 | 0.92 1.39
SRCC | -0.56 -0.29 -0.11 | -0.82 -0.65 -0.62 -0.63 | -0.44 0.78 0.06 -0.31 | -0.71 | -0.48 | -0.14 -0.75
Motion Blur PLCC | -0.57 -0.33 -0.20 | -0.81 -0.63 -0.63 -0.66 | -0.50 0.79 0.09 -0.26 | -0.72 | -0.47 | -0.20 -0.73
RMSE | 0.73 1.68 1.30 0.90 1.57 1.47 1.34 0.91 0.73 2.39 1.85 1.84 1.01 | 0.81 0.98
SRCC | -0.76 -0.37 0.52 | -0.76 -0.57 -0.66 -0.73 | -0.63 0.47 0.52 -0.50 | -0.83 | -0.81 | 0.01 -0.82
Gaussian Blur PLCC | -0.78 -0.67 0.70 | -0.85 -0.60 -0.84 -0.82 | -0.72 0.76 0.54 -0.47 | -0.89 | -0.80 | -0.09 -0.68
RMSE | 2.42 2.92 0.73 2.46 2.69 3.04 2.75 2.69 0.61 1.70 2.67 2.93 252 | 175 1.53
SRCC | -0.70 -0.15 031 | -0.81 -0.73 -0.47 -0.37 | -0.31 0.43 -0.25 0.26 0.37 -0.19 | -0.14 -0.68
Gaussian Noise | PLCC | -0.69 -0.11 0.04 | -0.78 -0.71 -0.47 -0.39 | -0.40 0.41 -0.30 0.17 0.40 -0.12 | -0.17 -0.72
RMSE | 1.35 1.45 1.37 1.39 1.07 0.96 1.42 1.55 1.52 1.94 1.08 135 0.60 | 1.18 1.54
SRCC | -0.42 0.46 030 | -0.74 -0.38 0.13 -0.03 0.00 0.19 -0.39 0.21 0.50 -0.09 | 0.05 -0.47
Salt and Pepper | PLCC | -0.47 0.41 0.03 | -0.70 -0.43 0.16 -0.13 | -0.12 0.13 -0.41 0.20 0.49 -0.04 | 0.02 -0.51
RMSE | 1.54 1.48 1.47 1.57 1.04 1.04 1.48 1.72 1.46 1.91 1.08 1.19 0.68 | 1.19 1.70
SRCC | 0.02 0.77 0.02 0.28 -0.12 0.05 0.54 0.13 -0.37 0.19 0.52 0.61 -0.42 | 0.67 0.31
Poisson Noise PLCC | 0.07 0.67 -0.26 | 0.12 -0.15 -0.04 0.55 0.18 -0.40 0.17 0.35 0.57 -0.32 | 0.65 0.45
RMSE | 2.27 1.55 1.00 2.25 1.46 1.49 1.76 2.28 0.92 1.17 1.14 1.21 1.35 | 1.59 2.35

Table 4.7: State-of-the-art No reference metrics performance for each type of distortions used
in the dataset.

metrics, indicating better alignment with human judgments under these types of noise. Some
IQA metrics, such as BRISQUE and PSS, demonstrate relatively consistent performance across
multiple distortion types, with moderate to high correlation coefficients and lower predic-
tion errors. This suggests that these metrics may be more robust and reliable in a range of
distortion scenarios. Other metrics, such as BLIINDS and ILNIQE, exhibit more variability
in performance in different types of distortion, with fluctuating correlation coefficients and
RMSE values. This indicates that the effectiveness of these metrics may be more dependent on
the specific characteristics of the distortion being evaluated. Evaluating IQA metrics across
various types of distortion highlights the complexity of image quality assessment in real-world

scenarios.

Table 4.8 presents the performance of various full reference IQA metrics categorized by
three levels of distortions. High, Average, and Low. The metrics evaluated include UQI, PSNR,
SSIM, MS-SSIM, IFC, VIF, FI, NOM, IW_PSNR, IW _SSIM, IW_MSE, and FSIM.

The performance of full-reference IQA metrics varies between different levels of distortion,
indicating the sensitivity of these metrics to the severity of image distortions. Metrics such
as FI and VIF demonstrate relatively higher correlation coefficients across all distortion levels,
suggesting better alignment and stronger linear relationships with human judgments. Metrics
such as MS-SSIM and IW PSNR exhibit higher prediction errors across all distortion levels,
indicating poorer performance in predicting human judgments. The choice of the IQA metric
depends on the specific application requirements and the severity of image distortions, con-

sidering factors such as correlation, linearity, and prediction accuracy.
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Distortion Level | Metric | UQI | PSNR | SSIM | MS-SSIM | IFC | VIF FI | NOM | IW PSNR | IW SSIM | IW MSE | FSIM
SRCC | 0.07 | 0.09 | -0.17 -0.22 0.23 | 0.22 | -0.17 | -0.16 0.10 0.10 -0.10 0.16
High PLCC | 0.10 | -0.06 | -0.18 -0.22 0.37 | 0.34 | -0.16 | -0.23 0.04 -0.06 0.19 -0.11
RMSE | 1.19 | 1.27 1.51 1.01 0.88 | 1.00 | 1.29 | 1.42 1.12 2.23 1.27 2.23
SRCC | 0.02 | 0.15 | -0.15 -0.07 0.15 | 0.21 | -0.16 | -0.13 0.06 0.09 -0.06 0.08
Average PLCC | 0.02 | 0.01 | -0.13 -0.03 0.22 1 0.26 | -0.11 | -0.18 0.00 -0.03 0.16 -0.11
RMSE | 136 | 1.31 1.60 0.99 1.10 | 1.20 | 1.38 | 1.50 1.29 2.19 141 2.20
SRCC | -0.02 | 0.13 | -0.12 -0.02 0.11 | 0.16 | -0.13 | -0.11 0.03 -0.23 -0.03 0.04
Low PLCC | -0.09 | -0.06 | -0.19 -0.06 0.11 | 0.12 | -0.16 | -0.24 -0.12 -0.27 0.26 -0.24
RMSE | 149 | 134 1.64 0.80 1.29 | 144 | 144 | 1.54 1.46 2.18 1.56 2.05

Table 4.8: State-of-the-art Full reference metrics performance for each of the three levels of
distortions used in the dataset. Here, each level (high, average and low) is averaged over all
types of distortion.

Distortion Level | Metric | BIQI | BLIINDS | IQVG | NIQE | DIVINE | BRISQUE | PIQE | BMPRI | FRIQUEE | JPEGSNR | DCT | NBIQA | PSS | SSEQ | ILNIQE
SRCC [ -0.58 | -0.69 | 048 | 0.74 | -0.69 069 | 067 | -0.64 0.77 044 | -048 | -066 | -0.46 | -052 | -0.68
High PLCC [ -0.63 | -0.70 | 050 | 0.76 | -0.69 073 | -0.73 | -0.68 0.81 055 | -0.44| -0.72 | -058 | -0.46 | -0.67
RMSE | 1.52 | 178 153 | 157 | 159 1.69 162 | 1.60 1.54 213 176 | 1.85 | 150 | 1.16 | 136
SRCC | -059 | -0.65 | 0.42 | -0.67 | -0.62 063 | 062 | -059 0.71 046 | -033| -063 |-037| -046 | -0.48
Average PLCC | -0.68 | -0.65 | 049 | -0.76 | -0.65 072 | 072 | -0.70 0.77 060 | -030| -0.67 | -051] -0.44 | -0.61
RMSE | 1.47 | 171 148 | 156 | 148 1.58 161 | 1.63 137 1.95 160 | 1.68 | 1.30 | 1.18 | 141
SRCC | -0.68 | -053 | 033 | -0.72 | -0.61 058 | -051 | -047 0.70 038 | -030 | -049 | -030| -043 | -0.44
Low PLCC | -0.80 | -0.60 | 044 | -0.84 | -0.69 071 | -067 | -0.74 0.80 061 | -029| -062 | -042| -047 | -0.55
RMSE | 157 | 157 130 | 162 | 1.39 144 147 | 168 1.09 1.68 137 | 132 | 1.09 | 1.19 | 1.67

Table 4.9: State-of-the-art No reference metrics performance for each of the three levels of
distortions used in the dataset.

The data provided in the table 4.9 presents a comprehensive evaluation of various types
of image distortion in different levels and metrics. Each distortion type is assessed at three
distinct levels: High, Average, and Low. This multilevel evaluation allows for a nuanced un-
derstanding of how the severity of distortion influences image quality metrics. It should be
noted that certain distortions may exhibit varying effects on image quality depending on their
intensity levels. For instance, Motion Blur may have a more pronounced impact on image
quality at higher levels compared to lower levels.

A wide array of image quality metrics are employed to assess distortion effects. These metrics
include established measures such as PSNR , and MS-SSIM , as well as more specialized metrics
such as VIF and NQM. Using multiple metrics, the evaluation provides a comprehensive view
of image quality from different perspectives, considering factors such as luminance fidelity,
structural similarity, and perceptual relevance.

The SRCC and PLCC are computed for each metric and distortion level. These correlation
coefficients offer insights into the relationship between metric scores and human perception
of image quality. Positive correlations indicate that higher metric scores align with better
perceived image quality, while negative correlations suggest the opposite. Analyzing these
correlations helps to understand the effectiveness of each metric in capturing perceptual im-

age quality across different distortion scenarios.
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Tables 4.10 and 4.11 provided present the performance of the state-of-the-art full reference
and no-reference image quality metrics for different types and levels of distortion, respec-
tively. The analysis covers various types of image distortion, including Pincushion, Barrel,
Motion Blur, Gaussian Blur, Gaussian Noise, Salt and Pepper, and Poisson Noise; for each dis-
tortion type, the metrics are evaluated at three levels: High, Average, and Low. These levels
represent different degrees of severity or intensities of distortion, allowing a comprehensive
assessment of the performance of the metric in a variety of scenarios. The evaluation includes
several performance metrics, such as SRCC, PLCC, and RMSE. SRCC and PLCC indicate the
correlation between metric scores and human perception of image quality, with higher values
suggesting a better alignment with human judgment. RMSE provides information on the pre-
cision of metric predictions compared to ground-truth quality scores.

These distortions exhibit mixed performance across different metrics and levels. For example,
in the case of pincushion distortion at high levels, most metrics show negative correlations
(SRCC and PLCC), indicating a weak association between metric scores and perceived qual-
ity. However, at low levels, some metrics achieve relatively higher correlations, suggesting
better performance in quantifying quality degradation. Metrics generally perform poorly in
capturing quality degradation caused by motion blur, especially at high levels where correla-
tions are consistently negative. This indicates a significant challenge for existing no-reference
metrics in accurately assessing image quality in the presence of motion blur. These distortions
pose challenges to metrics, especially at higher levels, where correlations tend to be negative.
However, some metrics show better performance at lower levels, with higher correlations and
lower RMSE values. The performance of the metrics varies between distortion levels, with
some metrics demonstrating better correlations at low or average levels compared to high lev-
els. Poisson noise, in particular, seems to be challenging for metrics, as indicated by relatively
low correlations and higher RMSE values. This analysis highlights the strengths and limita-
tions of existing full reference and no-reference image quality metrics in assessing different

types and levels of distortion.
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Distortion Level Metric | UQI | PSNR | SSIM | MS-SSIM | IFC | VIF | FI NQM | IW_PSNR | IW_SSIM | IW_MSE | FSIM
SRCC | -0.62 | 0.09 -0.60 | -0.19 -0.56 | -0.70 | -0.47 | -0.58 | -0.32 -0.34 0.32 -0.49
Pincushion High PLCC | -0.62 | -0.12 -0.51 | -0.22 -0.53 | -0.65 | -0.37 | -0.48 | -0.43 -0.35 0.33 -0.55
RMSE | 143 | 1.03 1.00 0.69 1.56 | 1.55 | 0.88 | 1.23 1.31 1.08 0.97 0.88
SRCC | -0.43 | 0.19 -0.13 | 0.21 -0.19 | -0.31 | 0.09 | -0.35 | -0.37 -0.24 0.37 -0.21
Pincushion Average | PLCC | -0.49 | 0.00 -0.18 | 0.23 -0.25 | -0.42 | 0.01 | -0.40 | -0.31 -0.24 0.25 -0.32
RMSE | 1.71 | 1.27 1.12 0.88 1.89 | 1.87 | 1.00 | 1.48 1.63 1.01 0.89 0.96
SRCC | -0.23 | 0.10 0.04 0.50 048 |0.12 | 0.13 | -0.23 | -0.31 -0.17 0.31 -0.10
Pincushion Low PLCC | 0.07 | -0.10 0.20 0.51 0.23 | 0.09 | 034 |-0.24 |-0.26 -0.13 0.31 -0.11
RMSE | 1.76 | 1.29 1.04 0.60 2.08 | 2.04 | 095 | 1.52 1.78 1.15 0.83 0.72
SRCC | -0.53 | 0.30 -0.06 | 0.54 0.02 | -0.02 | 0.05 | -0.09 |-0.29 -0.29 0.29 0.12
Barrel High PLCC | -0.22 | 0.44 0.13 0.57 0.19 | 0.19 | 0.24 | -0.28 | -0.02 -0.07 0.01 0.16
RMSE | 1.19 | 0.95 0.84 0.37 1.22 | 121 | 075 | 1.12 1.03 1.18 1.65 0.85
SRCC | -0.38 | 0.33 -0.03 | 0.51 0.07 | -0.01 | 0.12 | -0.14 | -0.19 -0.17 0.19 0.09
Barrel Average | PLCC | -0.23 | 0.46 -0.06 | 0.48 0.11 | 0.06 | 0.03 | -0.22 | -0.03 -0.10 0.02 0.02
RMSE | 140 | 1.13 1.06 0.63 144 | 142 | 097 | 1.32 1.25 1.40 1.58 1.05
SRCC | -0.77 | 0.31 -0.60 | 0.52 -0.60 | -0.67 | -0.45 | -0.37 | -0.19 -0.57 0.19 -0.30
Barrel Low PLCC | -0.37 | 0.39 -0.59 | 0.65 -0.56 | -0.53 | -0.49 | -0.27 | -0.10 -0.57 0.07 -0.13
RMSE | 1.92 | 1.55 1.50 0.94 2.01 | 2.00 | 142 | 1.79 1.78 1.86 1.14 1.42
SRCC | 0.72 | 0.22 0.23 0.33 0.79 | 0.66 | 0.26 | 0.16 0.61 0.57 -0.61 0.61
Motion Blur High PLCC | 0.78 | 0.25 0.21 0.36 095 | 085 | 0.26 | -0.01 | 0.71 0.40 -0.44 0.51
RMSE | 1.73 | 1.72 2.49 1.41 0.48 | 0.87 | 221 | 2.02 1.41 3.06 0.84 3.09
SRCC | 0.52 | 0.68 0.44 0.47 0.66 | 0.90 | 0.32 | 0.25 0.84 0.52 -0.84 0.79
Motion Blur Average | PLCC | 0.72 | 0.74 0.64 0.50 0.80 | 0.95 | 0.61 | 0.15 0.91 0.57 -0.76 0.81
RMSE | 1.83 | 1.59 2.43 1.02 079 | 121 | 217 | 195 1.58 2.88 1.07 2.89
SRCC | 0.14 | 0.72 0.30 0.55 0.21 | 0.70 | 0.14 | 0.35 0.88 0.57 -0.88 0.85
Motion Blur Low PLCC | 045 | 0.77 0.68 0.57 0.47 | 0.88 | 0.55 | 0.22 0.86 0.60 -0.90 0.92
RMSE | 1.62 | 1.34 2.11 0.56 083 | 1.26 | 1.91 | 1.67 1.49 2.48 1.58 2.44
SRCC | 0.77 | 0.15 0.39 0.23 0.81 | 0.65 | 0.41 | 0.42 0.18 0.62 -0.18 0.67
Gaussian Blur High PLCC | 0.72 | 0.02 0.12 0.25 0.74 | 0.72 | 0.24 | 0.20 0.45 0.63 -0.40 0.53
RMSE | 0.95 | 1.66 2.04 1.66 025 | 028 | 1.74 | 1.88 1.23 2.66 0.39 2.83
SRCC | 0.76 | 0.53 0.50 0.33 095 092 | 049 | 053 0.85 0.70 -0.85 0.88
Gaussian Blur Average | PLCC | 0.84 | 0.56 0.47 0.31 091 | 097 | 049 | 042 0.91 0.82 -0.73 0.85
RMSE | 131 | 1.79 2.30 1.66 041 | 052 | 1.98 | 2.10 1.51 2.85 0.44 3.17
SRCC | 0.56 | 0.32 0.24 0.38 0.60 | 0.58 | 0.35 | 0.27 0.55 0.52 -0.55 0.81
Gaussian Blur Low PLCC | 0.79 | 0.42 0.47 0.42 092 | 092 | 049 |0.20 0.81 0.44 -0.64 0.74
RMSE | 1.62 | 1.75 2.44 1.36 0.59 | 0.89 | 212 | 2.12 1.76 3.20 0.86 3.14
SRCC | 0.61 | 0.36 0.43 0.38 0.67 | 0.26 | 0.30 | -0.07 | 0.39 0.52 -0.39 0.43
Gaussian Noise | High PLCC | 0.65 | 0.25 0.53 0.37 0.67 | 0.46 | 0.50 | -0.09 | 0.15 0.64 -0.22 0.59
RMSE | 0.71 | 0.97 0.83 0.70 0.48 | 0.75 | 0.61 | 0.88 0.79 2.33 1.55 2.35
SRCC | 0.73 | 0.63 0.71 -0.06 0.80 | 0.67 | 0.66 | -0.12 | 0.52 0.52 -0.52 0.67
Gaussian Noise | Average | PLCC | 0.71 | 0.57 0.78 -0.06 0.73 | 0.72 | 0.73 | -0.02 | 0.53 0.53 -0.57 0.75
RMSE | 0.54 | 0.74 0.65 0.82 0.60 | 0.54 | 0.40 | 0.69 0.54 2.15 1.93 2.00
SRCC | 0.50 | 0.44 0.56 0.22 0.59 | 0.59 | 0.52 | -0.04 | 0.55 0.55 -0.55 0.59
Gaussian Noise | Low PLCC | 0.55 | 0.57 0.77 0.25 0.61 |0.74 | 0.69 | -0.11 | 0.56 0.58 -0.62 0.76
RMSE | 0.70 | 0.88 0.96 0.37 0.54 | 0.79 | 0.62 | 0.79 0.65 2.00 2.06 1.92
SRCC | 0.66 | 0.59 0.66 0.06 0.83 | 0.59 | 0.61 | -0.03 | 0.60 0.52 -0.60 0.54
Salt and Pepper | High PLCC | 0.77 | 0.53 0.72 0.14 0.80 | 0.68 | 0.67 | 0.05 0.45 0.55 -0.51 0.70
RMSE | 0.78 | 0.99 0.95 0.53 0.39 | 0.86 | 0.66 | 0.92 0.78 2.30 1.65 2.26
SRCC | 0.44 | -0.04 | 0.09 0.18 0.37 | -0.09 | -0.03 | -0.02 | 0.20 0.58 -0.20 0.03
Salt and Pepper | Average | PLCC | 0.25 | 0.06 0.18 0.18 026 |0.12 | 0.14 | 0.25 0.07 0.58 -0.16 0.13
RMSE | 0.93 | 1.06 1.16 0.44 0.66 | 1.05 | 0.89 | 0.95 0.86 2.18 1.89 2.09
SRCC | 0.36 | 0.45 0.52 0.25 0.44 | 0.60 | 0.39 | 0.19 0.71 0.57 -0.71 0.52
Salt and Pepper | Low PLCC | 035 | 0.35 0.57 0.27 0.44 | 0.57 | 0.57 | 0.15 0.47 0.58 -0.58 0.52
RMSE | 0.84 | 0.97 1.19 0.49 0.57 | 1.08 | 0.93 | 0.90 0.80 1.73 2.34 1.69
SRCC | -0.26 | 0.58 0.05 0.30 -0.43 | 0.48 | 0.04 | 0.24 0.78 0.65 -0.78 0.13
Poisson Noise - PLCC | -0.36 | 0.61 0.31 0.35 -0.32 | 0.38 | 0.30 | 0.29 0.75 0.69 -0.79 0.23
RMSE | 091 | 0.81 1.15 0.69 0.81 | 1.08 | 0.95 | 0.74 0.71 1.46 2.61 1.44

Table 4.10: State-of-the-art Full reference metrics performance for each of the three levels
specific to the distortion types.
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Distortion Level Metric | BIQI | BLIINDS | IQVG | NIQE | DIVINE | BRISQUE | PIQE | BMPRI | FRIQUEE | JPEGSNR | DCT | NBIQA | PSS | SSEQ | ILNIQE
SRCC | -0.25 | -0.37 20.03 | -022 | -0.04 -0.14 008 |-003 | 053 -0.07 20.27 | 0.02 2032 | 013 | -0.27
Pincushion High PLCC | -0.21 | -0.30 015 | -022 |0.03 -0.21 009 |-005 |062 -0.03 20.20 | 0.12 2033 | 004 | -0.28
RMSE | 1.11 | 0.76 155 | 125 |076 0.80 0.64 | 0.96 1.83 1.82 1.20 | 049 082 | 073 | 128
SRCC | -0.20 | -0.18 003 | 013 | 030 0.20 020 | 0.03 0.24 0.15 013 | 0.16 20.25 | 0.19 | -0.09
Pincushion Average PLCC | -0.13 | -0.19 2006 | 010 |0.24 -0.17 028 |014 0.20 0.12 009 |0.18 4030 | 034 | -0.17
RMSE | 1.46 | 0.90 142|146 | 077 0.73 090 | 1.25 1.49 1.56 1.09 | 0.66 112 096 | 1.68
SRCC | 0.24 | 034 063 |035 |034 033 052 | 0.62 -0.09 20.20 20.27 | 0.44 2040 | 061 | -0.24
Pincushion Low PLCC | 0.29 | 046 061 | 021 |0.17 0.33 052 | 0.65 0.04 -0.26 0.25 | 043 -0.53 | 059 | -0.23
RMSE | 1.65 | 0.66 134|172 |09 0.79 095 | 155 114 1.35 0.96 | 059 140 | 114 | 1.94
SRCC | 0.13 | -0.09 035 |022 |008 0.10 053 | 045 031 2016 037 | 055 2054|019 | 029
Barrel High PLCC |0.16 |0.01 -0.35 | 019 |-008 -0.10 048 | 0.41 0.08 -0.09 044 | 036 032|026 | 025
RMSE | 0.70 | 0.79 220 |080 | 062 0.65 032 | 055 1.99 2.10 099 | 056 059 | 055 | 101
SRCC | 0.21 | 0.03 049 [028 | 007 0.02 059 | 054 0.08 -0.26 020 | 0.61 2049019 | 025
Barrel Average PLCC | 0.16 | -0.01 0.64 |008 |-0.11 -0.26 053 | 048 0.02 -0.05 033 | 045 032|016 | 011
RMSE | 094 | 089 217 | 107|074 0.86 050 | 0.77 1.94 2.02 096 | 055 078 | 079 | 123
SRCC | -0.37 | -0.57 022 |-049 |-038 054 0.05 | 0.08 048 0.14 20.04 | 027 | -0.02 | -048 | -0.38
Barrel Low PLCC | -0.41 | -0.54 057 | -0.60 | -0.53 -0.49 001 | 0.02 039 0.21 001 |-019 | -0.07 | -0.24 |-037
RMSE | 1.56 | 1.13 167 | 172 | 103 1.19 1.02 | 146 138 151 085 | 079 119 | 126 | 181
SRCC | -0.04 | 0.04 2064 | -056 |-049 -0.44 2010 |-0.09 | 027 013 027 | 045 | -0.68 | 019 | -0.89
Motion Blur High PLCC | -036 | -0.39 063 |-0.88 | -0.85 0.79 2069 |-042 | 080 0.15 037 | -088 | -024|004 |-088
RMSE | 0.81 | 2.20 146 | 117 | 201 1.94 185 | 1.23 0.75 2.74 229 | 247 143 | 113 | 075
SRCC | -0.38 | 0.02 2066 | -059 | 0.6 031 030 |-020 | 043 ~0.08 028 | 020 | -0.14 | -0.15 | -0.52
Motion Blur Average PLCC | -0.62 | -0.10 2081 |-073 |-072 -0.51 2059 [-033 |o072 -0.08 2026 | -0.59 | -0.19 | -012 | -0.57
RMSE | 0.50 | 1.59 135 | 066 | 152 1.37 1.21 | 0.69 0.76 2.42 181 | 173 073 | 065 | 077
SRCC | -0.60 | -0.02 2036 | -052 | -0.26 055 2056 | -039 | 0.79 ~0.01 0.24 | 0.03 | -036 | -0.14 | 0.24
Motion Blur Low PLCC | -0.61 | -0.05 -0.56 | -0.60 |-053 -0.59 044 |-027 |078 -0.11 0.14 | 036 |-035|-0.16 | 0.17
RMSE | 0.82 | 1.05 1.06 | 081 |1.02 0.92 072 | 0.72 0.66 1.94 132 | 1.03 071 | 051 | 131
SRCC | -041 | -0.64 004 | -033 |-047 2035 20.18 | 0.20 20.16 043 2070 | 068 | -0.71 | 054 | -0.83
Gaussian Blur High PLCC | -0.48 | -0.77 031 | -054 |-040 -0.44 041 |-005 | 030 0.46 -0.66 | -0.69 | -0.85| 047 |-0.83
RMSE | 3.03 |3.19 076 | 297 | 284 335 310 | 3.09 058 1.46 290 | 329 313|197 | 217
SRCC | -0.83 | -0.21 049 | -092 | -0.67 -0.60 088 | -0.88 | 042 030 038 | 095 | -0.93|-0.10 | -0.89
Gaussian Blur Average | PLCC | -0.92 | -0.58 077 | -098 |-056 -0.89 0.94 |-080 | 082 039 041 | -098 | -0.95|-0.04 |-0.85
RMSE | 247 | 3.00 074 | 262 | 282 3.17 295 | 284 054 1.72 277 | 3.08 267 | 1.91 | 138
SRCC | -0.82 | -0.12 044 |-078 |-037 -0.87 084 | -079 | 066 0.42 032 | 081 | -0.87 | -0.15 | -0.56
Gaussian Blur Low PLCC | -0.83 | -0.59 083 | -094 |-065 0.91 085 | -0.86 | 082 0.61 038 | 094 | -0.80 | -031 | -0.69
RMSE | 1.61 | 2.54 070 | 166 | 239 2.54 211|212 0.71 1.88 230 | 237 145 | 134 | 076
SRCC | -0.55 | 0.04 009 |-061 |-033 0.20 20.01 | 0.03 053 -0.35 024 | 005 035 | -0.32 | -0.60
Gaussian Noise High PLCC | -058 | -0.19 2001 |-0.70 | -0.48 0.24 014 |-029 | 065 -0.48 0.08 | 0.09 -0.16 | -0.38 | -0.71
RMSE | 1.04 | 1.08 136|103 | 107 0.79 089 | 116 1.80 2.25 110 | 1.23 068 | 1.06 | 120
SRCC | -0.72 | -0.19 028 | -0.89 | -0.66 -0.30 033 | -036 | 065 -0.27 009 | 025 013 | -0.18 | -0.71
Gaussian Noise Average | PLCC | -0.66 | 0.04 20.09 |-084 |-0.75 -0.36 038 |-036 | 042 -0.30 021 | 040 -0.20 | -0.13 | -0.70
RMSE | 1.32 | 1.50 131 | 143 | 100 0.89 143 | 161 143 1.85 1.06 | 151 055 | 123 | 160
SRCC | -0.59 | 0.06 012 | -071 |-058 0.28 2003 | 032 048 037 0.16 | 039 010 | -0.08 | -0.67
Gaussian Noise Low PLCC | -0.60 | 0.36 -0.28 |-068 |-073 -0.39 014 |-0.15 | 032 -0.18 017 | 055 -0.15 | -0.08 | -0.56
RMSE | 162 | 171 143|165 | 112 116 178 | 1.82 1.29 1.68 1.08 | 1.30 054 |124 | 177
SRCC | -054 | 0.10 031 |-092 |-071 0.20 031 | -031 | 048 ~0.72 20.03 | 0.19 070 | -0.03 | -0.71
Salt and Pepper High | PLCC | -0.50 | 0.17 014 |-095 |-073 0.09 033 |-030 | 048 -0.72 0.04 | 025 061 | -0.20 | -0.77
RMSE | 1.07 | 1.30 151 | 118 | 094 0.72 118 | 136 1.70 218 110 | 121 030 | 099 |133
SRCC | 021 | 047 005 | -0.60 | 0.24 0.08 0.08 | 047 -0.03 -0.32 018 |-025 | -0.32]-007 |-0.22
Salt and Pepper Average | PLCC | -0.11 | 0.28 007 | -049 |-0.02 -0.08 <0.10 | 0.54 -0.15 -0.27 018 |-034 |-032|-005 |-035
RMSE | 1.37 | 1.04 148 | 130 | 101 0.82 117|130 1.84 211 115 | 115 060 | 090 | 136
SRCC | 0.36 | 0.54 043 |-050 | 032 032 017 | 057 -0.46 038 042 | 010 | -0.10 | -0.14 | 0.23
Salt and Pepper Low PLCC | 0.24 | 042 038 |-045 |0.16 0.10 20.06 | 0.49 -0.36 0.27 025 |-0.03 |-0.14|-011 |0.14
RMSE | 1.24 | 091 161 | 146 | 099 0.73 111|119 176 1.90 101 | 1.04 060 | 084 | 134

Table 4.11: State-of-the-art No reference metrics performance for each of the three levels spe-
cific to the distortion types.
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Chapter 5

Conclusions

In conclusion, this thesis advances the understanding of visual distortions in 360° images and
their profound implications for QoE. Through a meticulous exploration of distortion impacts
on perceived image quality, facilitated by a curated 360° Image Quality Dataset and compre-
hensive subjective evaluation, valuable insights have been gained. MOS and ANOVA analysis
have quantitatively assessed the perceptual impact of distortions, highlighting the need for
custom image processing strategies to improve QoE. Furthermore, the evaluation of exist-
ing image quality metrics has shed light on their performance in the context of 360° imagery,
guiding the selection of appropriate metrics for specific applications. By synthesizing key find-
ings and providing insight into the refinement of assessment methodologies for this emerging
medium, it is with great belief that this thesis will contribute to the groundwork and state-of-
the-art for future research efforts aimed at improving user experience and satisfaction with

visual content across various platforms.
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